
 i

Beginning iOS
Storyboarding with

Xcode
Easily Design and Develop Your App, from Concept

and Vision to Code

■ ■ ■

Rory Lewis

Yulia McCarthy

Stephen M. Moraco

www.it-ebooks.info

http://www.it-ebooks.info/

ii

Beginning iOS Storyboarding with Xcode

Copyright © 2012 by Rory Lewis, Yulia McCarthy, and Stephen M. Moraco

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-4272-7

ISBN-13 (electronic): 978-1-4302-4273-4

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in
an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

President and Publisher: Paul Manning
Lead Editor: Matthew Moodie
Technical Reviewer: Matthew Knott
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Morgan Ertel,

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, Matthew Moodie,
Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan
Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Brigid Duffy
Copy Editor: Corbin Collins
Compositor: Bytheway Publishing Services
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring Street, 6th
Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com.

www.it-ebooks.info

http://www.it-ebooks.info/

 iii

To my mother, Adeline. Thank you for those 13 hours! Love you.

—Rory

To my amazing mom—the most caring and supportive person I’ve ever known.
Thank you for your endless love!

 —Yulia

To Donna, my wife of 31 years, my best friend and travelling companion through this life and
around this beautiful planet. Without your support and encouragement, many of my efforts
throughout our time together would not have been possible, nor nearly as enjoyable. I look

forward to our upcoming years together.

To my son Steve, for sharing in our many endeavors together, for your graphics contribution to
our first joint iOS app, 9CardGolf in the App Store, but most importantly for being a shining

example to me, and I hope to others, of constant self-motivation and constant learning, and for
maintaining a youthful passion for learning about the universe in which we live. I look forward

to seeing where you go with your photography passion and the life ahead of you.

—Stephen

www.it-ebooks.info

http://www.it-ebooks.info/

iv

Contents at a Glance

■ Foreword: About the Authors... viii
■ About the Contributing Author .. xii
■ About the Technical Reviewer.. xiii
■ Introduction.. xiv
■ Chapter 1: Preliminaries ... 1
■ Chapter 2: Fundamentals .. 27
■ Chapter 3: Storyboarding with MapView .. 91
■ Chapter 4: Building a Utility Application... 159
■ Chapter 5: Storyboarding a Page-Based App.. 211
■ Chapter 6: Mastering Table Views with Storyboarding: Core Data… 273
■ Chapter 7: Mastering Table Views with Storyboarding: Designing…......... 305
■ Chapter 8: Mastering Table Views with Storyboarding: Coding….............. 383
■ Chapter 9: Single View ##: wanderBoard Part I…...................................... 477
■ Chapter 10: Single View #3: wanderBoard Part II....................................... 503
■ Chapter 11: Single View #3: wanderBoard Part III 569
■ Chapter 12: How Far You’ve Come.. 609
■ Index ... 613

www.it-ebooks.info

http://www.it-ebooks.info/

 v

Contents

■ Foreword: About the Authors... viii
■ About the Contributing Author .. xii
■ About the Technical Reviewer.. xiii
■ Introduction.. xiv
■ Chapter 1: Preliminaries ... 1
Necessities and Accessories ...1

Getting a Mac ...2
Getting OS X..4
Become a Developer...6

Getting Ready for Your First iPhone/iPad Project...17
Installing DemoMonkey..21
■ Chapter 2: Fundamentals .. 27
helloAlien: A Quick Example Application..35

Preliminaries ..36
Step1: Create a Button That Segues to a Secondary View...38
Step 2: Pass Information Back from a Secondary View (Alien View) to the Main View..47
Step 3: Send Information Out to the Secondary View (Alien View)...70
Step 4: Custom Segue ..83

■ Chapter 3: Storyboarding with MapView .. 91
flickrPhotoMap: A Single View App..92

Preliminaries ..93
Step 1: Setting Up the Data Connection and Displaying Geotagged Photos on a Map ...94
Step 2: Making a Transition to a Secondary Scene from Annotation Callouts ...121
Step 3: Creating a Modal Scene that Allows the User to Rate Your Photos..140

■ Chapter 4: Building a Utility Application... 159
utilityScales: A Utility App ..160

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

vi

Preliminaries ..161
Step 1: Setup..162
Step 2: Prepping the Storyboard..171
Step 3: Coding the Flipside View Controller ...181
■ Chapter 5: Storyboarding a Page-Based App.. 211
futureTravel: A Page-Based App ..212
Preliminaries ..212
Step 1: Create from Template ..213
Step 2: Prep Storyboard...225
Step 3: Code: ModelController ...236
Step 4: Code: DataViewController ..254
Step 5: Code: RootViewController ..265
■ Chapter 6: Mastering Table Views with Storyboarding: Core Data… 273
bookManager: A Master-Detail App ...274
Preliminaries ..277
Step 1 of 3: Set Up files, Images, Core Data and Data Model278
■ Chapter 7: Mastering Table Views with Storyboarding: Designing…......... 305
Step 2: Storyboarding the App ...305

Configuring the Master Scene ..306
Designing the Top Level Views: Categories Scene...311
Designing the Top Level Views: Authors Scene..321
Laying Out the Main Book List View: Books Scene ..329
Storyboarding the Detail View: Book Detail Scene ...341
Creating the UI for Entering and Saving New Data: Add Book Scene...348
Making Final Tweaks..374

■ Chapter 8: Mastering Table Views with Storyboarding: Coding….............. 383
Step 3: Insert the Code Behind the Storyboard Elements and Tweak…383

Creating a Custom UITableViewCell subclass ..384
Modifying the Detail View Controller ..387
Creating the SelectionViewController ...397
Coding the Add Book View Controller ...402
Hooking Up the Books Scene ...421
Adding Code for the Categories Scene ...442
Implementing the Authors Scene ...456
Wrapping Up and Loading Test Data ..470

■ Chapter 9: Single View ##: wanderBoard Part I…...................................... 477
wanderBoard: A Single-View App ..477
Preliminaries ..480

How We Created our 3D Landscape ...481

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

 vii

Step 1: Set Up the Files, Project Settings, and Assets...483
Step 2: Prep the Storyboard...483
■ Chapter 10: Single View #3: wanderBoard Part II....................................... 503
Step 3: Finish the ViewController Header and Implementation Files504
Step 4a: Create the Next Eight Scenes with Assistance ..510

Scene 2...512
Scene 3...528
Scene 4...538
Scene 5...546
Scene 6...551
Scene 7...554
Scene 8...559
Scene 9...562

■ Chapter 11: Single View #3: wanderBoard Part III 569
Step 4b: Create the Final Nine Scenes...569
■ Chapter 12: How Far You’ve Come.. 609
Final Thoughts ...609

Multiple Storyboard Files in One Application..610
Having All .xib Files in One Storyboard Basket...611
What Do You Mean, Not All Scenes Are Appropriately Placed in Storyboard Files?...612

Hey, I Have Questions! ...612
■ Index ... 613

www.it-ebooks.info

http://www.it-ebooks.info/

viii

Foreword: About the Authors

The three authors have found a beautiful way to lead the beginner into Storyboarding and at the
same time show the old school coders of Objective-C a new exquisite methodology for learning
and debugging this incredible tool. Essentially, you have a guru of explaining complex Objective-
C to beginners, a former Apple iOS intern, and a super-successful, old-school coder showing
many people from many different walks of life the alpha and omega of Storyboard creation,
debugging, and tweaking.

Dr. Rory Lewis

Rory and I met in L.A. in 1983. He reminds me of one of my favorite film characters: Buckaroo
Banzai—always going in six directions at once. If you stop him and ask what he’s doing, he’ll
answer comprehensively and with amazing detail. Disciplined, colorful, and friendly, he has the
uncanny ability to explain the highly abstract in simple, organic terms. He always accomplishes
what he sets out to do, and he’ll help you do the same.

Dr. Rory Lewis Stephen M.

Moraco
Yulia McCarthy

www.it-ebooks.info

http://www.it-ebooks.info/

 ix

Why You’ll Relate to Dr. Lewis
While attending Syracuse University as a computer-engineering student, Rory scrambled to pass
his classes and make enough money to support his wife and two young daughters. In 1990, he
landed a choice, on-campus job as a proctor in the computer labs in the L.C. Smith College of
Engineering. Even though he was struggling with subjects in the Electrical Engineering program,
he was always there at the Help Desk. It was a daunting experience for Rory because his job was
only to help his fellow students with computer lab equipment questions, yet he invariably found
his classmates asking deeper and harder questions: “Dude, did you understand the calculus
assignment? Can you help me?!”

These students assumed that, because Rory was the proctor, he knew the answers. Afraid
and full of self-doubt, he sought a way to help them without revealing his inadequacies. Rory
learned to start with: “Let’s go back to the basics. Remember that last week when the professor
presented us with an equation…?” By going back to the fundamentals, restating and rebranding
them, Rory began to develop a technique that would, more often than not, lead to working
solutions. By the time his senior year rolled around, there was often a line of students waiting at
the Help Desk on the nights Rory worked.

Fast-Forward 17 Years
Picture a long-haired, wacky professor walking through the campus of the University of Colorado
at Colorado Springs, dressed in a stunning contrast of old-school and dropout. As he walks into
the Engineering Building, he’s greeted by students and faculty who smile and say hearty hellos,
all the while probably shaking their heads at his tweed jacket, Grateful Dead t-shirt, khaki pants,
and flip-flops. As he walks down the hall of the Computer Science Department, there’s a line of
students standing outside his office. Reminiscent of the line of students that waited for him at the
Help Desk in those early years as a proctor in the computer lab, they turn and greet him, “Good
morning, Dr. Lewis!” Many of these UCCS students aren’t even in his class, but they know Dr.
Lewis will see them and help them anyway.

Past—Present—Future
Dr. Lewis holds three academic degrees. He earned a Bachelor of Science in Computer
Engineering from Syracuse University. Syracuse’s L.C. Smith College of Engineering is one of the
country’s top schools. It’s there that Intel, AMD, and Microsoft send their top employees to study
for their PhDs.

Upon completing his BS (with emphasis on the mathematics of electronic circuitry in
microprocessors), he went across the quad to the Syracuse University School of Law. During his
first summer at law school, Fulbright & Jaworski, the nation’s most prolific law firm, recruited
Rory to work in its Austin office, where some of the attorneys specialize in high-tech intellectual-
property patent litigation. As part of his clerking experience, Lewis worked on the infamous AMD
v. Intel case; he helped assess the algorithms of the mathematics of microprocessor electrical
circuitry for the senior partners.

During his second summer in law school, Skjerven, Morrill, MacPherson, Franklin, &
Friel—the other firm sharing the work on the AMD v. Intel case—recruited Rory to work with
them at their Silicon Valley branches (San Jose and San Francisco). After immersing himself in
law for several years and receiving his JD at Syracuse, Lewis realized his passion was for the
mathematics of computers, not the legal ramifications of hardware and software. He preferred a
nurturing and creative environment rather than the fighting and arguing intrinsic in law.

After three years away from academia, Rory Lewis moved south to pursue his PhD in
Computer Science at the University of North Carolina at Charlotte. There, he studied under Dr.
Zbigniew W. Ras, known worldwide for his innovations in data mining algorithms and methods,
distributed data mining, ontologies, and multimedia databases. While studying for his PhD,
Lewis taught computer science courses to computer engineering undergraduates, as well as e-
commerce and programming courses to MBA students.

www.it-ebooks.info

http://www.it-ebooks.info/

x

Upon receiving his PhD in Computer Science, Rory accepted a tenure-track position in
Computer Science at the University of Colorado at Colorado Springs, where his research is in the
computational mathematics of neurosciences. Most recently, he co-wrote a grant proposal on the
mathematical analysis of the genesis of epilepsy with respect to the hypothalamus. However,
with the advent of Apple’s revolutionary iPhone and its uniquely flexible platform—and market—
for mini-applications, games, and personal computing tools, he grew excited and began
experimenting and programming for his own pleasure. Once his own fluency was established,
Lewis figured he could teach a class on iPhone apps that would include non-engineers. With his
insider knowledge as an iPhone beta tester, he began to integrate the parameters of the proposed
iPad platform into his lesson plans—even before the official release in April 2010.

The class was a resounding success, and the feedback was overwhelmingly positive,
from students and colleagues alike. When approached about the prospect of converting his
course into a book to be published by Apress, Dr. Lewis jumped at the opportunity. He happily
accepted an offer to convert his course outlines, class notes, and videos into the book you are
now holding in your hands.

Why Write This Book?
The reasons Dr. Lewis wrote this book are the same reasons he originally decided to create a class
for both engineering and non-engineering majors: the challenge and the fun! According to Lewis,
the iPhone and iPad are “… some of the coolest, most powerful, and most technologically
advanced tools ever made—period!”

He is fascinated by the fact that, just underneath the appealing touchscreen of high-
resolution images and fun little icons, the iPhone and iPad are programmed in Objective-C, an
incredibly difficult and advanced language. More and more, Lewis was approached by students
and colleagues who wanted to program apps for the iPhone and would ask his opinion on their
ideas. It seemed that with every new update of the iPhone, not to mention the advent of the
expanded interface of the iPad, the floodgates of interest in programming apps were thrown open
wider and wider. Wonderful and innovative ideas just needed the proper channel to flow into the
appropriate format and then out to the world.

Generally speaking, however, the people who write books about Objective-C write for
people who know Java, C#, or C++ at an advanced level. So, because there seemed to be no help
for the average person who has no such knowledge but who has a great idea for an iPhone/iPad
app, Dr. Lewis decided to launch such a class. He realized it would be wise to use his own notes
for the first half of the course and then explore the best existing resources he could find.

As he forged ahead with this plan, Lewis was most impressed with Beginning iPhone 3
Development: Exploring the iPhone SDK. This best-selling instructional book from Apress was
written by Dave Mark and Jeff Lamarche. Lewis concluded that their book would provide an
excellent, high-level target for his lessons, a “stepping-stones” approach to comprehensive and
fluent programming for all of Apple’s multitouch devices.

After Dr. Lewis’s course had been successfully presented, and during a subsequent
conversation with a representative from Apress, Lewis happened to mention that he’d only
started using that book about halfway through the semester, as he had to bring his non-
engineering students up to speed first. The editor suggested converting his notes and outlines
into a primer—an introductory book tuned to the less-technical programming crowd. At that
point, it was only a matter of time and details—like organizing and revising Dr. Lewis’s popular
instructional videos to make them available to other non-engineers excited to program their own
iPhone and/or iPad apps.

So, that’s the story of how a wacky professor came to write this book. We hope you’re
inspired to take this home and begin. Arm yourself with this knowledge and begin now to change
your life!

Ben Easton

Author, Teacher, Editor

www.it-ebooks.info

http://www.it-ebooks.info/

 xi

Stephen M. Moraco

Stephen has more than 30 years of experience in software engineering. He’s developed projects
writing in high-level languages such as PL/I, RPG, ANSI C, C++, C#, Objective-C, and assembly
languages for more microprocessors than he can count on two hands. Prior to joining Hewlett-
Packard/Agilent Technologies 1989, he was an embedded-systems designer/developer. Stephen
is a past member of the Large-scale Logic Analyzer Team, building system recovery media and
writing triggering/capture drivers for multichannel custom data capture ASICs. As a software
process engineer, he worked with medium-sized R&D teams developing techniques to improve
the rate of release and initial release quality of software products. Stephen also designed and
wrote an operating system for optical drives produced by Hewlett-Packard.

Stephen’s profession is also his hobby. He is a strong believer in constant learning and of
constantly practicing what he’s learning. All during his career Stephen developed on non-work-
related projects as a form of self-training. He enjoys designing and building his own
hardware/software systems for home control and general experimentation. Stephen also
developed firmware for key integration systems that fly aboard amateur radio satellites and
developed hardware and software for testing these systems.

Stephen and his son Steve both enjoy building large LEGO models and working with
LEGO Mindstorms robotics. Son Steve is studying photography, and together they’ve volunteered
with Colorado First LEGO League for the past five years, with Dad refereeing the Mindstorms
Robotics tournaments for 9–14 year-olds throughout Colorado while son Steve documents the
excitement of the events though his photography.

In the fall of 2009, father Stephen and son Steve took an Objective-C, iOS programming
class together at the University of Colorado at Colorado Springs. Shortly thereafter Stephen
started his company Iron Sheep Productions LLC, the name under which he sells the hardware
and software he’s developed. After a successful 22-year career with Hewlett-Packard/Agilent
Technologies, Stephen is now a retired professional software engineer and … a successful iPhone
and iPad app programmer who sells his apps on the iTunes store.

Yulia McCarthy

Yulia is a Senior iOS Developer at InspireSmart Solutions, Inc., a local Denver firm specializing in
innovative mobile business solutions. After graduating from one of the best classic universities in
Russia with a BS in Mathematics, she went on to conquer the snowy peaks of Colorado, pursuing
her dream of snowboarding and adventure. Soon she decided to pursue a graduate career in
Computer Science at University of Colorado at Denver where, after taking an iPhone
development class with Dr. Lewis, she quickly converted into a Mac user and transferred all her
passion and incredible ability to program and solve complex problems into developing iPhone
and iPad apps, which has been her new passion ever since. Her amazing talent soon attracted iOS
recruiters at Apple, and now Yulia is even more inspired and devoted to Cocoa Touch
programming after her invaluable experience as an iOS Apps and Frameworks intern at Apple’s
headquarters in Cupertino, California during the summer of 2011. She believes that life is all
about constantly reaching for new horizons and challenging yourself. As a programmer, this
concept is very close to Yulia’s heart.

From Russia to UC Denver to Apple’s iOS Division at Cupertino, Yulia believes that
everything is possible if we follow our dreams.

www.it-ebooks.info

http://www.it-ebooks.info/

xii

About the Contributing Author

Ben Easton is a graduate of Washington & Lee University and has a BA in
Philosophy. His eclectic background includes music, banking, sailing, hang
gliding, and retail. Most of his work has involved education in one form or
another. Ben taught school for 17 years, mostly middle-school mathematics.
More recently, his experience as a software trainer and implementer
reawakened his long-time affinity for technical subjects. As a freelance writer,
he has written several science fiction stories and screenplays, as well as feature
articles for magazines and newsletters. Ben resides in Austin, Texas, and is
currently working on his first novel.

www.it-ebooks.info

http://www.it-ebooks.info/

 xiii

About the Technical Reviewer

Matthew Knott is a Learning Platform developer and SharePoint expert. He has
been programming since a young age and hasn’t stopped learning since. An
experienced C and C# developer, Matthew has recently started developing iOS
apps to mobilize the Learning Platform. He lives in Wales, United Kingdom,
with his wife and two children and likes to write on his blog (mattknott.com)
from time to time.

www.it-ebooks.info

http://www.it-ebooks.info/

xiv

Introduction
In editions of Rory’s previous book iPhone and iPad Apps for Absolute Beginners (Apress), there
were only two ways to teach the reader how to make an iOS app user interface. The first was to
write everything in code, and the other was to use Interface Builder to compose a Windows-based
app. But things have changed with Storyboarding … boy, have they!

Storyboarding first appeared with Xcode version 4.2. When we first saw the scenes that
made up an app, we thought Storyboard was fantastic. It was wonderful how Storyboard allowed
us to navigate a path through out app in a visual way. Almost immediately Rory found freshmen
students coming into his office, knee-deep in trouble using Storyboards. Meanwhile Xcode
experts were pooh-poohing Storyboards. This book helps the novice understand the power of
Storyboards and can help even experts in Xcode to unleash it.

In this book you’ll discover how Xcode’s Interface Builder’s support for Storyboarding in
iOS 5 makes designing your iOS apps so much easier. Storyboarding lets you graphically arrange
all your views within a single design canvas, where you can then define the app’s logical flow and
even assign transition animations. You’ll be able to learn how to use Storyboards to quickly go
from concept to a fully functional iOS application.

First, we go over the fundamental concepts of Storyboarding and the technology behind
it. We then walk you through building seven complete projects that advance you through using
various Storyboarding features, covering the most important aspects you need to know to
successfully create your own apps from start to finish. By the end of this book, you’ll eventually
see how to use Storyboarding with almost every application template offered by Xcode and you’ll
learn which Storyboarding techniques are most suitable in certain scenarios.

Working with Storyboarding involves much more than simply dragging and dropping
View Controllers onto a canvas. In this book we show how to start from scratch and build
complete apps using Storyboarding. Along the way we demonstrate using common iOS
technologies as Map Views, Page View Controllers, Split View Controllers, Core Data, Table
Views, and more—and we tell you how they all fit together with the new Storyboarding feature.

What You’ll Learn

In Chapter 1, we help you to get started in iOS development by walking you through Apple’s iOS
Developer Program registration process and installing Xcode and other tools you’ll be using
throughout this book.

Chapter 2 talks about the basics of Storyboard structure and introduces the main Storyboarding
concepts, including standard view transitions, passing information around, and creating custom
transitions between the views.

Chapter 3 explains how to create a map-driven app using Storyboarding and how to transition to
other scenes from a Map View. It also demonstrates several important Storyboarding concepts,
such as triggering manual segues and instantiating View Controllers designed in the Storyboard

www.it-ebooks.info

http://www.it-ebooks.info/

INTRODUCTION

 xv

from within the code. Additionally, you’ll learn how to easily parse JSON data from a remote
server (such as Flickr) using nothing but the new iOS 5 API.

In Chapter 4, you’ll find out how to develop a fun utility app using Storyboarding targeted for the
iPad. You’ll learn the foundation of many apps, which is how to place controls on the settings
screen of a utility application and to return those settings to the Main View of the app via the
Settings View delegate protocol. You’ll get a good grasp of the main Storyboarding specifics of the
iPad environment, including Split View Controllers, Popover View, and iPad-specific segues. As a
part of building this chapter’s project, you’ll also demonstrate how you can use a build-it media
framework to enable your app to play audio files.

In Chapter 5, we explore a very special Xcode template: the Page-Based Application template.
Unlike other templates, it doesn’t let you opt out of using Storyboarding. In this chapter, you’ll
learn the powerful tools that let you create Page View Controller transitions. We dig deep into the
ins and outs of how to use the UIPageViewController to build an iPad brochure with beautiful,
built-in page-curl animations and custom layout.

Chapters 6–8 bring to you a whole new world of Storyboarding features that dramatically change
the way to program Table Views. We walk you through a more advanced Table Views-based
project that utilizes Core Data in the back end. You’ll learn critical Storyboarding techniques such
as Dynamic Cell Prototyping and designing Static Table Views. Most importantly, in this chapter
we show you how to design your entire app workflow entirely in the Storyboard before doing any
coding at all.

In Chapters 9–11 you’ll learn to develop a cool game app that stretches your knowledge of how
segues can be used to provide much more complex navigation paths between screens.

Who Should Read This Book?

This book is for readers of Rory Lewis’s last book, iPhone and iPad Apps for Absolute Beginners,
but it’s also for the beginner who’s never programmed but who can use the Storyboarding tool in
Xcode to get up and running fast. This book is also for experienced iOS developers who want
to learn Storyboarding to quickly cut down on app development and debugging time.

For the beginner who has never programmed, Beginning iOS Storyboarding with
Xcode shows how to extract those cool and innovative app ideas you have in your head into a
working app ready for sale on the App Store. Even if you’re an intermediate or pro-level
Objective-C developer, you can still learn the ins and outs of Xcode’s new Storyboarding
feature—and find new ways of building and debugging your new Storyboarding app. Yup: This
book is for you, too.

Regardless of your skill level, we’re extremely happy to have you on board and hope you
enjoy the ride. Let’s get to Storyboarding!

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

1

1
Chapter

Preliminaries
This introductory chapter will make sure that you have all the required tools and
accessories to proceed fully and confidently. Three types of readers are likely
reading this book. One group can skip to Chapter 2 immediately without reading
Chapter 1. Another group may only need to read one small section in Chapter 1
and then move on to Chapter. The third group should read Chapter 1 very
carefully before moving on.

 Group 1: You own a Mac. You have experience coding with
Xcode on your Mac. You have an up-to-date iOS SDK and an
up-to-date version of Xcode. You also have experience with
DemoMonkey, and it's installed on your machine. If all this is
true, meet me in Chapter 2.

 Group 2: You own a Mac. You have experience coding with
Xcode on your Mac. You have an up-to-date iOS SDK and an
up-to-date version of Xcode. However, you don't have
experience with DemoMonkey or it's not installed on your
machine. Please check out the section "Installing
DemoMonkey" in this chapter and then meet me in Chapter 2.

 Group 3: You are a seeker of knowledge and have begun
travelling down a wonderful road. We need to check your
backpack and make sure you have all the tools you'll need for
your journey. So let's start right here.

Necessities and Accessories
In order to program for the iPhone and/or iPad, and to follow along with the
exercises, tutorials, and examples presented in this book, you’ll need to have 6

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Preliminaries 2

minimal requirements which you may not completely understand right now but
that’s OK just roll with me for a second, I’ll explain everything as we go through
these steps.

NOTE: Whenever we say iPhone or iPad, we’re referring to any iPhone or iPad OS
device, including the iPod touch. Also when we say Macintosh HD, yours may be
named something different.

Briefly, you will need six things:

 An Intel-based Macintosh

 The correct operating system for your Mac (OS X 10.7.4 Lion
or later)

 Be a registered developer or be simulator-based (discussed in
detail later in this chapter)

 To have the correct operating system for your iPhone (iOS 5
or above)

 To have the correct Software Development Kit (SDK) for your
iPhone that runs a program called Xcode (version 4.3
and above)

 To install and run DemoMonkey

Let's go into each of these in a bit more detail.

Getting a Mac
If your Mac was manufactured after 2006, you’re okay. One of the authors
purposefully programs everything on a MacBook bought in 2008. All the videos
on the net are screencast from Dr. Lewis's MacBook from 2006; or if he
broadcasts from his 2010 iMac, he first runs it on his MacBook bought in 2006.

 You don’t need the latest revved-up Mac. If you haven’t
bought one yet, we suggest you get a basic, no-frills
MacBook Air.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Preliminaries 3

 If you do own an older Mac, you may be able to add some
RAM. Make a free appointment at the Genius Bar at an Apple
Store and ask whether they can increase the RAM on your
older model Mac, and if so, ask about the maximum the RAM
can be increased. Then ask explicitly: "Can this old computer
run Lion, at least 10.7.1, and Xcode 4.3 or later?" Note that
some of the apps in this book will work using Xcode 4.3 on
Snow Leopard. But if possible, try to get Lion (at least Mac OS
X 10.7.4) and iOS SDK 4.3.

 If you don't have a Mac, you'll need to buy one if you want to
follow along with this book and or program Objective-C to
make iPhone apps. Keep in mind that, as mentioned, we have
made a point to code and run every program in this book on
Apple’s smallest and cheapest model, the MacBook. Apple
has discontinued the MacBook; it now sells the MacBook Air
for $999, which is more advanced than the Author's MacBook.
You can purchase a MacBook on eBay and other such sites.
See Figure 1-1.

Figure 1-1. The authors use the cheapest 2006 Mac on the market, the MacBook, to perform all the
coding and compiling in this book. Many of the authors’ students purchase the MacBook Air for $999 as
illustrated here.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Preliminaries 4

Getting OS X
You will need the correct version of OS X. At the time of this writing, that version
is OS X 10.7.4. We need to make sure that you have the latest greatest
operating system inside your Mac. We see a lot of emails and forum questions
revealing that many of you will think: ‘‘Ah, my code probably did not compile
correctly because Dr. Lewis has a different version of OS X or/and iOS on his
machine…’’

NOTE: Even if you think everything is up to date, we suggest you follow along with
the procedure in this section and make sure your system has the latest OS X and the
latest iOS inside it. We say this because as you follow along in this book and tackle
all the programs, there will be times when your code doesn’t work the first time you
run it.

To make sure your system is recent enough to follow along with the book,
please do the following:

1. Close every program running on your Mac so that only the
Finder is running.

2. Click the little apple in the upper left-hand corner of your screen
and select About This Mac. You'll see the window shown in
Figure 1-2. Make sure it says OS X 10.7.4.

Figure 1-2. Here you can see that Dr. Lewis’s MacBook is using is OS X 10.7.4.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Preliminaries 5

Now to make sure you have the latest software on your Mac:

1. With all your programs closed except for the Finder, click the
apple in the upper left-hand corner again and select Software
Update… as illustrated in Figure 1-3.

2. If updates are available, click Continue and follow the
instructions and four screen prompts, as shown in Figure 1-3.

Figure 1-3. Top: Checking for new software. Second from top: Download the new software. Second
from bottom: Wait for software to download. Bottom: Click Restart to have your Mac properly install the
new software.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Preliminaries 6

If by the time you are reading this book, you realize that your version of OS X or
iOS makes my pictures seemed dated, don't freak out. We have an online forum
where we and volunteers love to help others. We always update the forum with
news about recent updates of OS X and iOS. You can visit the forum here:

www.rorylewis.com/ipad_forum/
http://bit.ly/oLVwpY

Become a Developer
You will need to become a registered developer via the iPhone/iPad Software
Development Kit (SDK) for $99. Or you can pay $0 for an introductory set of
bells and whistles.

Making Your Choice
If you are a student, it’s likely that your professor has already taken care of this,
and you may already be registered under your professor’s name. If you are not a
student, you need to decide which type of developer you would like to be. Here
are your options:

 $0 option: You can go to the App Store and download Xcode
for free. This is fine, but bear in mind that unless you become
a developer ($99), you will only be able to see the apps you
code and program in this book running on the iPhone or iPad
Simulator. That means you can't run them on a real physical
iPad or iPhone. You also won't be able to sell your apps on
the iTunes store. Lastly, you won't be able to log in to the
developer site to view code snippets and updates, beta-test
new products, or be a part of the Apple online community.
This may be a very good choice for the person who isn't sure
whether they want to continue with Xcode and programming.
If that's the case, then download the latest version of Xcode
from https://developer.apple.com/xcode/ and meet me at
Figure 1-13.

 $99 option: If you do want to run your apps on a physical
device such as a real iPad or iPhone, sell apps on the iTunes
store, and be a part o f t he developer g roup a t Apple------simply
continue reading.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Preliminaries 7

Installing Xcode
Let's get started installing Xcode.

1. Go to http://developer.apple.com/programs/ios/ or
http://bit.ly/rrrdjc. You’ll see a page similar to the one
shown in Figure 1-4. Click the Enroll Now button.

Figure 1-4. Click the Enroll Now button.

2. Click the Continue button, as illustrated in Figure 1-5.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Preliminaries 8

Figure 1-5. Click the Continue button.

3. Most people reading this book will select the ‘‘I need to create a
new account for…’’ option (arrow 1 in Figure 1-6). Next, click
the Continue button (arrow 2). (If you already have an existing
account, then you have been through this process before; go
ahead with the process beginning with the ‘‘I currently have an
Apple ID...’’ option, and I’ll meet you at step 6, where you’ll log
in to the iPhone/iPad development page and download
the SDK.)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Preliminaries 9

Figure 1-6. Click the “I need to create a new account …”option to proceed.

4. You are probably going to be enrolling as an individual, so click
the Individual link shown in Figure 1-7. If you are enrolling as a
company, click the Company option to the right and follow the
appropriate steps; Skip to step 6.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Preliminaries 10

Figure 1-7. Click the Individual option.

5. Enter all your information as shown in Figure 1-8 and pay your
fee of $99 for the Standard Program. This provides all the tools,
resources, and technical support you will need. (If you’re
reading this book, you really don’t want to buy the Enterprise
program a t $299-----it’s for commercial in-house applications.)
After paying, save your Apple ID and username; then receive
and interact with your confirmation email appropriately.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Preliminaries 11

Figure 1-8. Enter all your information accordingly.

NOTE: Before you move on to step 6, make sure you have received your confirmation
email and chosen a password to complete the last step of setting you up as a bona
fide registered Apple developer. Congratulations!

6. Use your Apple ID to log in to the main iOS development page
at http://developer.apple.com. This page has three icons for
the three types of Apple programmers. As shown on Figure 1-9,
click the iOS Dev Center icon, which leads to the download
page for iOS development software.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Preliminaries 12

Figure 1-9. For now click on the iOS Dev Center icon as indicated by the arrow. Later you may want to
also program apps for the Mac Computer or the Safari Web Browser.

7. After logging in with your username and password as described
in step 6, you will see a screen similar to Figure 1-10. The iOS
Dev Center contains all the tools necessary to build iOS apps.
Later on you will spend time here, but for now just go to the
Developer Page of the latest build of the iOS SDK. Click the icon
indicated by the arrow.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Preliminaries 13

Figure 1-10. The Downloads link takes you to the bottom of the page as shown in Figure 1-11.

NOTE: At the time of writing, Xcode 4.3 and iOS SDK 5 are the latest environments.
There is a great chance that by the time you read this book these may have larger
numbers. This is not a problem—just go on to step 8. If by chance there is something
that has really thrown us a curve ball, it will be discussed and solved for you in our
forum located at www.rorylewis.com/ipad_forum/ or
http://bit.ly/oLVwpY.

8. For now we want you to click on the latest version. The figures
in this section show the latest version at the time of print. These
will be different by the time you read this. Right now the latest
version is Xcode 4.3 for Lion, so click the link indicated by the
arrow in Figure 1-11.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Preliminaries 14

Figure 1-11. Clicking the Download Xcode 4 button takes you to the Xcode 4 Developer page.

9. Click the View in Mac App Store button. Remember that if it’s a
later version than shown in Figure 1- 12 things may look slightly
different, but we have confidence in you.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Preliminaries 15

Figure 1-12. Click the View in Mac App Store link.

10. Click the Install button, as shown in Figure 1-13. As the
download continues, the Install button changes to say
‘‘Installing.’’ When it has completed downloading Xcode and
iOS SDK, it changes to ‘‘Installed.’’ Included with Xcode's iOS
SDK is Apple’s Integrated Development Environment (IDE). This
is the programming platform that contains a suite of tools, sub-
applications, and boilerplate code that enable programmers to
do their jobs more easily.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Preliminaries 16

Figure 1-13. Click Install and then wait for the download to complete.

With your Xcode and iPhone/iPad Simulator tools installed and ready to access
easily, you’re almost ready to roll.

ABOUT DEMOMONKEY

Before you load the final tool—called DemoMonkey—let’s step back and have a look at where
we’re going.

Through the years we have found that the most efficient means to teach students code is to take
what we call the subsystem approach, teaching you what pieces or sections of code will serve
you in which situations. In this book we will use a cool program you may have seen if you
watched the latest WWDC: it’s called DemoMonkey. Essentially, you drag a heading explaing
what needs to be done from the DemoMonkey palette, and as you drop it into your code at the
appropriate section of your Xcode file, it magically transforms into code that the author of the
DemoMonkey file wrote. Before you can download and compile the Xcode project that creates
DemoMonkey, you need to make sure Xcode works.So in the next section you first run a simple
app to make sure all is in order in Xcode land.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Preliminaries 17

Getting Ready for Your First iPhone/iPad
Project
Before starting on your first Storyboarding app, you need to make sure that
everything runs. Assuming you’ve already downloaded and installed Xcode,
open up Xcode.

1. Press Command + Shift + N (N), simultaneously. This will
open a new window that showcases the different types of
project templates in the land of Xcode.

2. Figure 1-14 displays the project templates: Master-Detail
Application, OpenGL Game, Page-Based Application, Single
View Application, Tabbed Application, Utility Application, and
Empty Application. Click Single View Application as shown in
Figure 1-14 and then click Next.

Figure 1-14. Select the Single View Application and then click Next.

3. On your screen you should see something very similar to Figure
1-15. First call your project test as indicated by arrow 1.
Choose iPhone (arrow 2) and then click Next (arrow 3).

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Preliminaries 18

Figure 1-15. Let’s go for a test drive.

NOTE: For this test we are not using Storyboarding; we just want to see that Xcode
builds a simple app. So keep everything unchecked—yes, including "Use
Storyboard" for now (as shown in Figure 1-15).

4. Figure 1-16 shows the initial view of Xcode’s IDE. Click the
ViewController.h file as indicated by the arrow.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Preliminaries 19

Figure 1-16. The initial Integrated Development Environment (IDE) screen.

5. This will bring up the screen shown in Figure 1-17 where we
want you to run your blank app by clicking on the ‘‘go’’ button,
as indicated by the arrow. Oh yeah!

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Preliminaries 20

Figure 1-17. Run it!

6. The iPhone Simulator pops up, as illustrated in Figure 1-18.

Figure 1-18. Your first test drive.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Preliminaries 21

Congratulations! You've loaded Xcode and you've taken it for a test drive. Now
let's get DemoMonkey running and start Storyboarding.

Installing DemoMonkey
DemoMonkey is an optional tool intended to help you follow along with the book
projects. You only need it if you choose to use our .demoMonkey files for each
chapter, which will allow you to drag and drop ready-to-use code snippets into
the Xcode for most of the steps. Otherwise, you can still type the code yourself,
and if you choose not to use DemoMonkey for this book, you can skip the rest
of this chapter.

DemoMonkey will make life easier for you and let you focus more on the code
you a re using-----but you will still be challenged in this book, and that's simply
part of our pedagogy. The issue is really how to handle things when you get
challenged.

NOTE: When you do find yourself in one of those tough spots, you can always reread
the section, rewind the video examples, or—most importantly—go visit the forum
where there are often many people, including us, online and ready to help you
immediately. We may refer you to somebody else's solution or we may help you
directly. So go to the forum, say "hello" to the crowd, and become immersed by first
seeking help from others and then going back to help others at the forum, located at
www.rorylewis.com/ipad_forum/ or http://bit.ly/oLVwpY.

With your Xcode running and building apps, you can now install DemoMonkey.

1. Apple provides DemoMonkey as an OS X sample code project
that is available for download to anyone. Go to
http://developer.apple.com/library/mac/#samplecode/DemoMo
nkey/Introduction/Intro.html or http://bit.ly/v3BuKI, as
shown in Figure 1-19. Click Download Sample Code as
indicated by the arrow and save the zip file into a desired
location on your machine.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Preliminaries 22

Figure 1-19. Download Sample Code

2. Unzip the zip file by double-clicking it, open the folder, and then
double click on the DemoMonkey.xcodeproj file, as indicated by
the arrow in Figure 1-20. Once the Xcode project is open, press
Command + B (B) simultaneously to compile the project.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Preliminaries 23

Figure 1-20. Open the DemoMonkey Xcode project inside your DemoMonkey folder.

3. After the ‘‘Build Succeeded’’ message shows up, expand the
Project Navigator, right-click on the DemoMonkey.app icon, and
then choose Show in Finder from the context menu, as shown in
Figure 1-21.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Preliminaries 24

Figure 1-21. Expand the Project Navigator and choose Show in Finder from the context menu.

4. Lastly, once Finder opens the folder containing the application
you just built, drag the DemoMonkey.app to your Applications
folder, as shown in Figure 1-22.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1: Preliminaries 25

Figure 1-22. Drag the DemoMonkey.app to your Applications folder.

NOTE: If for some reason you were unable to reproduce the steps in this section, you
can download a compiled DemoMonkey.app from our site using this link:
www.rorylewis.com/docs/02_iPad_iPhone/Storyboarding%20Book/Stor

yboarding%20Video%20Tutorials.html. Then simply drag it to your
Applications folder.

You're ready to roll now!

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

27

2
Chapter

Fundamentals
With the release of iOS 5, Apple has given iOS developers an updated SDK with
more than 1500 APIs, among which Storyboarding is one of the most intriguing.

So what is Storyboarding? And how can it make your life as iOS developer
easier?

For our introduction to Storyboarding, we will navigate our way through this
awesome new tool. Storyboarding allows one to lay out the workflow of your
app using the new Storyboards feature built into the design tools of Xcode.
Created for apps that use Navigation and Tab Bars to transition between Views,
Storyboards ease the development by managing the View Controllers for you.
You can specify the transitions and segues that are used when switching
between Views without having to code them by hand. Storyboarding enables
you to interact seamlessly and link all the screens in your application without the
cumbersome code you had to write for the transitions between the screens and
the controls used to trigger the transitions. This allows you to see every possible
path through your application graphically, greatly reducing the amount of code
you need to write for a complex multi-View application.

Before we dive into all the nuts and bolts of creating apps using Storyboarding,
let’s take a quick tour of what lies behind this new developer tool.

As you may already know, since the release of Xcode 4, Interface Builder (IB)
has been completely integrated within the Xcode IDE so there is no longer a
separate application for building your user interface (UI). Selecting an interface
file (.nib/.xib) in your project simply opens the IB Editor within Xcode, where
you tweak your UI just the way you want it.

Storyboard is a new IB file, introduced in Xcode 4.2, which allows you to view
the entire UI of your app in one place, including the transitions between the
parts of your app and the triggers that initiated those transitions, so you can

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 28

very conveniently get an overview of the app. It is very similar to a .nib/.xib file
except that it manages multiple View Controllers for you and allows you to
specify the transitions used when switching from one View to another without
having to code them manually. You can think of a Storyboard as a collection of
mini .xibs and transitions and/or relationships between them.

With the built-in Storyboarding feature, you can now lay out the workflow of your
app visually before writing any code at all! It also reduces the amount of code
you need to write for complex multiscreen applications.

Ever wondered what lies behind the mysterious .storyboard files? The answer
may surprise you: i t’s XML (Extensible Markup Language)-----yes, good ol' XML
that’s so widely used in web-server communication and a variety of web
applications. So, at the low level, Storyboard is just a text document formatted
in a special way that defines an object graph of your application UI, and which
iOS interprets at runtime to render the UI elements, based on the rules specified
in the document. This XML file keeps track of all the attributes for every UI
element in the Storyboard as well as transitions and/or relationships between
them.

In fact, you can check it out for yourself. Open Xcode and create a new project.
Select the Single View Application template in the first dialog screen. Hit Next.
Name the project whatever you like, but make sure the Use Storyboards option
is checked. Save it to your preferred location. Once the new project opens up,
you’ll see that Xcode has created a file for you called
MainStoryboard.storyboard. Select the file in the Project Navigator as shown in
Figure 2.0A. Now click the Version Editor icon in the top right-hand corner of the
main toolbar and then click the Log mode icon in the bottom right-hand corner
as shown in Figure 2-0B. You can now see the XML behind your Storyboard file.
Not very pretty, huh? Imagine how complex and hard to read it gets after you
add tons of UI elements to it? Luckily, Interface Builder nicely renders it for you
in the form of graphical elements that are much more pleasant to interact with
than raw XML.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 29

Figure 2-0A. Standard Storyboard file of the Single View Application template

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 30

Figure 2-0B. Storyboard file viewed as XML document

Now that you know the secret behind the Storyboard implementation, let’s take
a quick peek at how it looks at first sight.

As you probably noticed, the basic Storyboard created by the Xcode for Single
View Application template is almost identical to any regular .xib file you may
have seen before, with just a few exceptions: there’s an incoming arrow pointing
towards the main View, and there’s a black container below the main View that
says ‘‘View Controller.’’ Both of these elements serve a very clear purpose.
Because Storyboard can have multiple View Controllers, you need a way to
specify which one of those should load when the app starts; the arrow is
pointing towards the View Controller that will be the first View presented to the
user when the app is launched. To change the Initial View Controller of your
application, drag and drop the arrow onto any View Controller in the Storyboard
that you want to be presented first.

What about the black container? It’s a so-called Dock for each View Controller
scene. As we mentioned earlier, Storyboard can be seen as a collection of nibs,
and each one of them has a View Controller class it’s controlled by (default or
custom) and a First Responder.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 31

NOTE: First Responder is a placeholder object that represents the first object in the
responder chain, which is determined dynamically at runtime by the UIKit framework.
This object first receives many kinds of events like touches, key events, action
messages, and so on. In iOS applications, there is no single First Responder object—
the First Responder is always the View that is the target of a touch, which is typically
the currently selected object or the object with the current focus in the frontmost
window.

The Dock gives you easy access to the two objects just described, which you
would normally see at the top of the Document Outline in a regular nib file. You
can see the icons representing View Controller and First Responder placeholder
objects by clicking the Dock as shown in Figure 2-0C. You can use these
referencing icons to quickly connect the IBOutlets and specify IBAction for your
UI elements. Each View Controller in the Storyboard has a set of those two
objects, so you can conveniently edit all the necessary details of each
Storyboard scene by focusing on just one particular screen at a time.
Additionally, the Dock may contain other objects added to a scene, such as
Gesture Recognizers, Navigation Items, and others. You’ll get a better
understanding of how to use them when you get to actual coding.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 32

Figure 2-0C. Scene’s Dock with First Responder and View Controller objects

We’ll give you a short overview of the main high-level concepts you should
understand before we start Storyboarding apps.

Figure 2-0D depicts the main components of a standard Storyboard file that
gets created for you by Xcode when you pick a Master-Detail Application
template for your project. We’ll now explain the role those key components play
and how they fit together.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 33

Figure 2-0D. Storyboards’ Master-Detail Application template

There are two main concepts in Storyboarding: scene and segue.

Scene is a View Controller that either represents a screen in the app or just one
major component area (like a split View pane in a Split View Controller). You can
do everything here you used to do in a nib file: drag and rearrange UI elements
(like labels, text fields, and images), resize them, set their properties in the
Attribute Inspector, and so on.

Segue defines navigation in your Storyboard. It indicates how to get from point
A to B. You usually create a segue by picking an event source (like a button or a
table View cell) and choosing a scene to transition to. You can also choose the
type of animation you want to use. All Apple built-in animations are available to
you by making a simple selection. Additionally, you can even create your own
custom animations for custom segues.

As a result, you use scene and segue to build your application UI.

NOTE: You can have multiple Storyboards in your app. You just need to specify the
name of the main one in your [appName]-Info.plist under the “Main storyboard
file base name” key, which has the default value MainStoryboard.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 34

You start with a View Controller object that represents your first scene (the initial
View Controller). To get View Controllers for your Storyboard, you select Objects
and Controllers from the Object Library (just as you did with all other UI
elements in nib files) and drag the View Controllers you need onto the
Storyboard canvas. Each View Controller always manages a single scene of
your app.

NOTE: On the iPhone, each scene represents the contents of a single screen. For
iPad applications, a screen can be composed of the contents of more than one scene
(as in the case of a Split View Controller).

One of the most important concepts is how data is passed around. Here is a
very classic scenario: a Master-Detail application where you display some data
in a Table View, and when user taps on a cell, a Detail View is presented that
displays additional information about the selection. In this case you must send a
reference to the selected object to the Detail View so it knows exactly what to
display.

Storyboarding comes with an API for that. A method called
prepareForSegue:sender: on every UIViewController, and it is intended to be
overridden. You can write code here that will take effect whenever each segue
fires.

Segues are UI elements just like labels and Image Views are. You can select a
segue in the Storyboard and inspect its properties. You can distinguish between
segues by checking each segue's identifier property, which can be set in the
Attributes Inspector. We show you how to do that and we cover several other
major Storyboarding aspects in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 35

Figure 2-0E. Storyboarding in use in the professional environment.

To illustrate that Storyboards are indeed used quite extensively, even for large-
scale projects, Figure 2-0E shows one of nine Storyboard-based projects being
used at one of the author’s clients. This figure is indicative of how, even at the
professional level, Storyboards are here to stay.

So without further ado, let’s get going.

helloAlien: A Quick Example Application
We’ll start by introducing you to our four fundamental concepts of
Storyboarding:

 Easily create transitions between views with little or no code.

 Pass information back from a Secondary View to a Main View.

 Send information to a Secondary View from a Main View.

 Transition between views with user-created visual effects.

In our example application we demonstrate these four concepts by
 Creating a button that invokes a transition from a Main View to

a Secondary View .

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 36

 Passing a Yes/No value from a Secondary View (Alien View) to
the Main View.

 Sending user-entered text to the Secondary View (Alien View)
from the Main View.

 Create a custom segue (pronounced ‘‘segway’’) which
implements a fade-out/fade-in between the two views.

To do this we’ll write a simple app that asks an Alien whether he’s out there.
Going to the Secondary View, you’ll see there is a switch that the Alien can
switch on------if, of course, the Alien exists. If the Alien switches the switch to the
on position, when you go back to the Main View, a message appears saying he
does exist. You can then say something to the Alien, and you’ll see the message
out there in outer Alien space in the Secondary View. Lastly, you’ll create a
custom segue that transports you from the Main View to the Secondary View in
a beautiful way. So let’s get to it!

Preliminaries
As in all the chapters, we supply you with a video of Dr. Lewis writing and
running the code exactly as described here in the book. You can also download
the code that’s from the video and used precisely ‘‘as is’’ here in this book. And
you can download the DemoMonkey files and images used in each chapter.

These download files are at http://bit.ly/sMRvAP as illustrated in Figure 2-1.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 37

Figure 2-1. Videos, code, and files for this chapter

In Figure 2-1, arrow 1 points to an image from the video of this chapter, located
at http://bit.ly/tNKUij. Arrow 2 points to an Xcode icon that links to the
Xcode of this chapter, located at http://bit.ly/QSYAV6. Arrow 3 points to an
icon that links to all the files necessary for this chapter, including the images and
the DemoMonkey files located at http://bit.ly/Qxr16s. If you need more help,
go to the forum http://bit.ly/oLVwpY.

Before you start, make sure you’ve downloaded the images and DemoMonkey
file at http://bit.ly/Qxr16s and that you have opened them up on your
desktop.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 38

Step1: Create a Button That Segues to a
Secondary View

Figure 2-2. Start a Single View Application.

1. Open Xcode and click ++N (File New Project), as
shown in Figure 2-2. Select Single View Application and press
Enter/Return. Name it helloAlien. We’ve used the Company
Identifier com.apress. You can name yours whatever you like, but
if you feel there is a chance you will need to compare your code
to ours at any time, go ahead and name it com.apress like ours so
that there will be less chance of confusion. We won’t use a class
prefix. Make sure to select iPhone and check both Use
Storyboard and Use Automatic Reference Counting. Click Next,
and you will be prompted for the location where you want to save
your project. Choose a location and click Create.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 39

Figure 2-3. Drag in the images.

2. Navigate to your Target Settings by clicking the project icon at
the root of the Navigation tree and drag the two Alien icon
image files named iPhone 57.png and iPhone4 114.png into the
icon boxes (Figure 2-3). The IPhone57 image goes into the
regular icon box, and the iPhone4 114 image goes into the
Retina box. Also drag the Alien.png and Alien Face.png image
files into your Supporting Files folder. Make sure to check
‘‘Copy Items into destination group’s folder.’’

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 40

Figure 2-4. Also drag the icons from the root folder to the Supporting Files folder.

3. Once these files are copied into your Supporting Files folder,
drag the icon image files into your Supporting Files folder as
shown in Figure 2-4. Deselect the Landscape Left and
Landscape Right images within the Supported Device
Orientations section, because this application only supports the
Portrait orientation.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 41

Figure 2-5. Add a Navigation Controller.

4. To make handling view transitions simple, we’ll let a Navigation
Controller coordinate the transitioning for us. Open the
Storyboard file by going to the Project Navigator pane on the
left and click MainStoryboard.storyboard to open it. It’s in this
new Storyboard file that you’ll define most, if not all, of the
views (called scenes in Storyboarding) in the application and
specify the transitions between them. Now select the View
Controller (by single-clicking the black bar below it). With the
View Controller selected, click Editor Embed In Navigation
Controller as shown in Figure 2-5. This will place a Navigation
Controller to the left of your existing View Controller Scene and
connect the two with an arrow indicating the relationship
between them. It will also add a Navigation Bar to your existing
View Controller. The Navigation Controller places buttons on the
Navigation Bar to indicate how/when you can return to views
you have left. You’ll see this in action shortly when you run the
newly created application.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 42

Figure 2-6. Assign Alien.png to the Main View.

5. You’re going to name the current View to View. Double-click the
center of the View Controller’s Navigation Bar and enter the
name View. (You’ll see this name being used in buttons created
by the Navigation Controller ----- you need to return to this view
from another view when you run this app.) Now add an image to
your view by dragging an Image View onto the existing View
Controller Scene’s canvas. Let it autosize to the full View size
and center it in the View as you drag the Image View onto the
View. Go to the Attributes Inspector and select Alien.png as the
image it should show. The image will appear showing what the
Scene now looks like. See Figure 2-6.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 43

Figure 2-7. Add a button and View Controller.

6. Next you need to add a button to this scene and add a new
View Controller Scene that will become the Secondary ‘‘Alien’’
View. First drag a Round Rect button onto the canvas and name
it Find Alien by first double-clicking it. Stretch the button so the
text shows and then center the button within the view. To add a
new scene, drag a View Controller from the Object Library to the
right-hand side of the existing View Controller scene. Hold it
there for a second, and the existing scene will shift to the left.
Once it does, place the new View Controller to the right of the
Main View Controller scene that has shifted to the left. This is
illustrated in Figure 2-7.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 44

Figure 2-8. Connect the button to the new View Controller.

7. You now need to perform one of the coolest things
Storyboarding can do-----seamlessly connect segues from one
view to the next. In this case you want to connect the button
you just created to segue to the new scene you’ve added. In the
olden days this took huge amounts of code. Now you just
Control-drag. To connect the Find Alien button to the new View
Controller, Control-drag from the Find Alien button to the new
View Controller as shown in Figure 2-8.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 45

Figure 2-9. Select Push.

8. Once you’ve Control-dragged over to the new View Controller,
let it go and you will see a menu as shown in Figure 2-9 where
you set the Storyboard segue transition style. Use the Push
style for now. Select the Push transition style from the
Storyboard Segues pop-up menu.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 46

Figure 2-10. Name the new View Controller and set the image.

9. Name this second View Controller Alien View. To do this, as you
did with the first view, double-click the new View Controller’s
Navigation Bar and name it Alien View. While we’re here let’s
create the Alien’s Image View. Drag an Image View onto the
View Controller’s canvas. With the image View still selected, in
Attributes Inspector select Alien Face.png as its Image. This is
illustrated in Figure 2-10.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 47

Figure 2-11. The segue works! No Code!

10. Believe it or not, you already have a running app! Run it by
clicking the Run button in the top left-hand corner of Xcode, and
as shown in Figure 2-11 it works beautifully. Click the button,
and you go to the Alien View. Click the back button entitled
View on the left-hand side of the Navigation Bar in the Alien
View, and you return to the Main View. Beautiful!

Step 2: Pass Information Back from a Secondary
View (Alien View) to the Main View
In this step we show the typical pattern for passing information back from a
Secondary View to the Main View. You do this most often by describing the
communication as a protocol, and with the Main View setting itself up as the
delegate of the Secondary View. Let’s see how this is done.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 48

Figure 2-12. Drag a label onto the Main View.

1. When passing back results from the Alien View, you need some
way to display the fact that the results have been returned.
You’re going to show text on the Main View that changes based
on the value returned. Add a label where you can indicate
whether the Alien exists. Drag a label onto the Main View under
the button. Center it, set the text color to white, and enter
Status will appear here into the Text box as shown in
Figure 2-12.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 49

Figure 2-13. Control-drag from the Label to ViewController.h.

2. To be able to set the label text from our code, you need to have
a connection to this new label. Let’s create the Label’s IBOutlet
(your connection). Open the Assistant (its icon is in the white
circle in Figure 2-13) and make sure it has correlated the
ViewController.h file onto the right-hand pane of the Split View.
Control-drag from the label to the ViewController.h file,
dropping it directly under the @interface ViewController line as
shown in Figure 2-13.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 50

Figure 2-14. Control-drag from the Label to ViewController.h.

3. After you drop the connector into the ViewController.h file, a
connection dialog box appears. Keep this connection type as an
Outlet and name it lblFindStatus. (The lbl prefix reminds you
that a label is connected to this outlet.) This dialog is illustrated
in Figure 2-14.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 51

Figure 2-15. Add a new View Controller subclass.

4. You now need to add custom code to the View Controller for
your Alien View. Do this by creating a new derived View
Controller class. Select the helloAlien group in the Project
Navigator (so the new files are placed within this group). Press
+N and select the Objective-C class option as shown on the
left in Figure 2-15. After clicking Next, name the new class
AlienViewController, select the UIViewController subclass
option as shown on the right in Figure 2-15, and click Next.
Don’t change any options-----save them. Note that the two new
files (AlienViewController.h and .m) were placed below the
Supporting Files group. Drag them back above the group so
they appear with the rest of the files.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 52

Figure 2-16. Assign the new Detail View.

5. You need to assign the new AlienViewController class you’ve
just created to your Alien View. Go back into the Storyboard file
and select the A lien V iew-----but you need to be precise here. In
Document Outline Navigator, go to the View Controller --- Alien
View Scene View Controller --- Alien View and click it to select
it. With it properly selected, in the Utilities’ Identity Inspector in
the Custom Class area select the class AlienViewController as
illustrated in Figure 2-16.

NOTE: In the remainder of this chapter you’re going to do things like Apple
Developers do onstage at conferences like WWDC. You’re going to drag snippets of
code into your project while we describe what you're doing. This is intended to save
you a lot of time (because you don’t have to type the code), yet still give you an
opportunity to study the code with each drag-and-drop. To get started, open the
DemoMonkey file you downloaded along with the images you’ve already placed into
this project. Locate the file named Chapter2.demoMonkey and continue on the
next page.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 53

Figure 2-17. Open DemoMonkey.

6. Open the Chapter2.demoMonkey file. The window first appears
very small as you see in Figure 2-17. Simply grab a corner and
stretch the window so that the lines are visible.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 54

Figure 2-18. Expand the DemoMonkey window and place it on the side.

7. In Figure 2-18 you can see that we’ve placed the DemoMonkey
file to the right of the Xcode window and stretched it so that the
lines can be seen. Some of them may be off the bottom of the
screen, depending on your display resolution. If they are, scroll
the DemoMonkey window when you need to get to these off-
screen lines.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 55

Figure 2-19. Name the segue ShowAlienView.

8. In order for the code to know which segue is taking place, give
each segue a name. The code can then look for this name to
know which segue has occurred and take the actions
appropriate to the named segue. To name the segue, select it
by clicking the circled icon in the middle of the segue arrow and
then choosing the Attributes Inspector in the Utility area as
shown in Figure 2-19. Click in the Identifier text box and then
drag the ‘‘01 segueName’’ DemoMonkey snippet onto the
Identifier text box and drop it there. The name ShowAlienView
appears in the Identifier box.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 56

Figure 2-20. Create delegate protocol forward-declaration.

9. You’ll use a delegate protocol to talk back to the Main View’s
controller. So, let’s create it now:

a. Open the AlienViewController.h file, insert a
declaration of the name of your new protocol by
dragging the ‘‘02 AlienVC.h - protocol forward
declaration’’ snippet to just under the #import
<UIKit/UIKit.h> line.

b. Add your delegate property by dragging in the ‘‘03
AlienVC.h - delegate property’’ snippet to just under
the @interface AlienViewController :
UIViewController line.

c. Create a definition for your
AlienViewControllerDelegate protocol. Do this by
dragging ‘‘04 AlienVC.h - protocol definition’’ and
placing it after the @end line of the interface (at the end
of the file) as shown in Figure 2-20.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 57

Figure 2-21. Synthesize the AlienViewController Delegate property.

10. Quick recap: You’ve declared the protocol and declared the
delegate property that refers to an object which must conform
to this protocol. Now you need to synthesize the delegate
property. To do that, first open the AlienViewController.m file
and simply drag out from ‘‘05 AlienVC.m - synthesize delegate’’
and drop it under the @implementation AlienViewController
line as shown in Figure 2-21.

NOTE: In Xcode, to synthesize means to generate code. In this case you’re
generating the setter and getter for your delegate property. The purpose of the
@synthesize directive is to save work for coders because we no longer have to
write the setter and getter methods for every property we create.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 58

Figure 2-22. Make the Main View Controller adhere to the AlienViewControllerDelegate protocol.

11. You now want to make sure that the ViewController adheres to
the AlienViewControllerDelegate protocol you’ve just created.
To do that, first open the ViewController.h file and drag ‘‘06
VC.h - import AlienVC header’’ to just below the #import
<UIKit/UIKit.h> line. Now you need to add @interface
ViewController : UIViewController onto the protocol
conformance declaration by dragging ‘‘07 VC.h - show that
adheres to protocol’’ as shown in Figure 2-22.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 59

Figure 2-23. Select Jump to Definition .

12. Next add the new protocol method to the code. Copy the
method signature directly from the protocol declaration so you
get it exactly correct. Click the protocol name (found in the < >
brackets) and then select the right-mouse menu item Jump to
Definition to jump directly to your new protocol. (Note you may
have to build (press +B) the code once to get this name
recognized.)

NOTE: Why did we use this Jump to Definition technique? Because you have to learn
about a very large number of protocols and object interfaces when writing code for
iOS. The best way to learn is to refresh what you know about a protocol or interface
each time you use it. By going directly to the protocol declaration, you get a chance
to remind yourself of the other methods declared to be part of the protocol. See?
Continuous training as you work!

If you’ve been around in the code business for a while, did you notice that you don’t
have to know which file the protocol is declared in? Xcode found it for you
automatically. Thank you, Xcode (and the developers who built it)!

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 60

Figure 2-24. Grab the method from the protocol.

13. Now select and copy the signature of the alien:saysIAmHere:
method as shown in Figure 2-24 (the code you’re grabbing is
highlighted).

NOTE: Did you notice the @required directive just above the method line you’re
copying? That means any object that indicates it conforms to your delegate protocol
(in this case, the ViewController) must have implemented the method
alien:saysIAmHere:. When you state @required in your protocol definition, and
you state in another class that you conform to the protocol, the compiler generates an
error when you haven’t yet implemented one or more of the @required methods of
the protocol. This helps ensure that you’ve written all the code you minimally need to
handle the protocol.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 61

Figure 2-25. Paste the delegate method.

14. Continuing with the creation of the delegate protocol method:
Go back to the ViewController.m file. Paste the method you just
copied right before the @end as shown in Figure 2-25. Add the
curly braces in place of the semicolon and add the code from
‘‘08 VC.m - protocol-method content’’ inside these braces that
tells you a message (writes text to your new label) when the
Alien is found. We happen to say Status: whoa, found aliens!
but you of course can insert anything you want. The new
method now looks like this:

-(void)alien:(AlienViewController *)view saysIAmHere:(BOOL)bIsHere
{
 self.lblFindStatus.text = (bIsHere) ? @"Status: whoa, found aliens!" :
@"Status: no aliens found";
}

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 62

NOTE This code simply places one of two messages into the onscreen label
depending on the state of the parameter bIsHere. Notice too that you’re writing this
message text to the .text property of the User Interface object, which you know
should be a label due to the lbl prefix of the name.

15. You have the segue name ShowAlienView and you have added
the delegate protocol method to ViewController so that it
knows what to do when the Alien View tells it whether an Alien is
present. But now you need to initialize the displayed text when
the application first starts to say that you’ve not found an Alien
yet. So, staying in the ViewController.m file, go to the
viewDidLoad method and drag in another line of code “09 VC.m
- ViewDidLoad content’’ so the method now looks as follows:

- (void)viewDidLoad
{
 [super viewDidLoad];
 [self alien:nil saysIAmHere:NO];
}

NOTE This code invokes the same new protocol method, but within
ViewController, not from AlienViewController. You’re not the
AlienViewController so pass nil as the first parameter, and the state you
initially want is “NO alien found,” so pass NO as the second parameter. Conveniently,
the viewDidLoad method happens once when you first start the application, so the
onscreen label is set as you need, when you first see it.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 63

Figure 2-26. Add prepareForSegue method.

16. Now you need to tell the AlienViewController that
ViewController can handle data it sends to its delegate. Do this
by telling the AlienViewController that ViewController is the
delegate. The prepareForSegue method exists just so you can
do things like this. Let’s add a prepareForSegue method and set
the AlienViewController delegate property. Dragging ‘‘10 VC.m
- prepareForSegue method’’ to just under
shouldAutorotateTo...: yields:

- (void)prepareForSegue:(UIStoryboardSegue *)segue sender:(id)sender
{
 if ([[segue identifier] isEqualToString:@"ShowAlienView"]) {
 [[segue destinationViewController] setDelegate:self];
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 64

NOTE: This method first checks to see whether the segue is the one you want
(ShowAlienView). If it is, you set the destination view’s delegate property to self
(this ViewController instance). Now when the destination view appears and
wants to pass information to the delegate by invoking the alien:saysIAmHere:
method, the matching method in ViewController is invoked which then sets your
label text.

Figure 2-27. Set initial state of switch to Off.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 65

17. You now have the segue named ShowAlienView setting the
delegate property to the ViewController instance so that it can
display alien-exists statuses. But our Alien needs to be able to
tell you that it exists! So how about a simple ‘‘exist’’ switch? Go
add a switch to the Alien View along with a description label.
Open the Storyboard file, select the Alien View Controller Scene,
and drag a switch onto the Alien View. Set the Switch State to
Off as shown in Figure 2-27.

Figure 2-28. Left-aligned with white text

18. You also need instructional text, so drag a label onto the canvas
to the left of the switch. Make it left-aligned, set the Text Color
to white, and set the Text to Can I be seen? as shown in
Figure 2-28.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 66

Figure 2-29. Add an IBAction for the switch.

Figure 2-30. Name the IBAction method onSwitchValueChanged.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 67

19. Now you need to add an IBAction method for the switch. Open
the Assistant Editor and make sure the AlienViewController.h
file is to the right of the Alien View. Control-drag from the switch
to the blank line after the delegate property as shown in Figure
2-29. Select Action from the Connection drop-down and enter
the name onSwitchValueChanged as shown in Figure 2-30.

Figure 2-31. Create a variable to hold the value of the switch.

20. Xcode has generated a method shell for this in the
implementation file that you now need to code to get the value
from the switch. But before you do this, you need to first create
a variable that will hold the switch state. So, let’s first declare
this variable. Go to the AlienViewController.m file and drag ‘‘11
AlienVC.m -add instance variable’’ just to the right end of the
@interface AlienViewController () line, so that you now have
the code as shown In Figure 2-31:

@interface AlienViewController () {
@private // unneccessary, but reminds us!
 BOOL m_bIsAlienSeen;
}

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 68

21. You need to set up the initial state of this variable and return the
state of this variable to your delegate. Conveniently, you can
use viewWillAppear to set the initial state and
viewWillDisappear to report the switch value as you’re leaving.
To add these two methods, drag ‘‘12 AlienVC.m -add
viewWillAppear/Disappear methods’’ to just after the
viewDidLoad method, so that we now have the code as shown in
Figure 2-32.

Figure 2-32. Add the two methods viewWillAppear and viewWillDisappear.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 69

Figure 2-33. Add code to capture the current switch value when it changes.

22. Finally, you’re in a position to capture the switch value whenever
it’s changed. Drag ‘‘13 AlienVC.m - add action method content’’
inside the curly braces of the onSwitchValueChanged: method so
that the code appears as shown in Figure 2-33.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 70

Figure 2-34. Whoa! Found the Alien!

23. You’ve completed the code modifications for Step 2. Let’s run
the code in the iPhone Simulator to see if you have it all
working! Click the Run button at the top left of the Xcode
window. When the Simulator starts, click Find Alien to go to the
Alien View. Your new switch should be there. Toggle the switch
to On and click the back button (top left of Navigation Bar) to
return to the Main View. Did your Status: text change? Did you
find your Alien? Figure 2-34 illustrates this test sequence.

Step 3: Send Information Out to the Secondary
View (Alien View)
In this section we’re going to demonstrate a common technique for passing
information out to the destination view. In this case, you’re going to add a text
field to your Alien Finder main screen and pass the text on to the Alien’s
universe! Let’s get started.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 71

Figure 2-35. Say something to the Alien.

1. You now want to send a message to the Alien once he tells us
he exists. Drag a text field onto the Main View above the Find
Alien button. Center the text and enter Say something to the
Alien as the Placeholder text (this text informs the user of the
purpose of the Text Field) as illustrated in Figure 2-35.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 72

Figure 2-36. Control-drag from the Text Field down to the View Controller icon.

2. You now need to assign the View Controller as the Text Field’s
delegate so that i t can know when the editing i s done-----so you
can dismiss the keyboard. Control-drag from the ‘‘Say
Something to the Alien!’’ Text Field down to the View Controller
icon right below as shown in Figure 2-36.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 73

Figure 2-37. Connect to the “delegate” outlet.

3. In the drop-down menu, connect it to the ‘‘delegate’’ outlet as
illustrated in Figure 2-37.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 74

Figure 2-38. Create the property for the string message to the Alien.

4. Next create and synthesize a property for your message string
to the Alien. Go to the ViewController.h file and under the
lblFindStatus property add a new property by dragging ‘‘14
VC.h - add alienText property’’ as illustrated in Figure 2-38. To
synthesize it, go back to the ViewController.m file under the
lblFindStatus synthesis and add the new property synthesis by
dragging ‘‘15 VC.m - synthesize AlienText property’’ into place.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 75

Figure 2-39. Controlling the text editing to the Alien.

5. When you enter t ext, you need two sets o f code-----one method
to dismiss the keyboard, and the other to capture the text that
was entered in the text field. You’ll do this with
textFieldDidEndEditing and textFieldShouldReturn delegate
methods that are provided by the UITextFieldDelegate
protocol. All you need to do is to add implementation for both
methods. Staying in the ViewController.m file, drag ‘‘16 VC.m -
add Text Editing support methods’’ as illustrated in Figure 2-39.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 76

Figure 2-40. The property for the message to the Alien

6. You need to create and synthesize a property, but this time it’s
for you to capture the text you’re sending to the Alien. In the
AlienViewController.h file, add a property by dragging in ‘‘17
AlienVC.h - add messageForAlien property’’ as illustrated in
Figure 2-40.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 77

Figure 2-41. Synthesize the message to the Alien property.

7. In the AlienViewController.m file, under the lblFindStatus
synthesis, add the new property synthesis using ‘‘18 AVC.m
synthesize messageForAlien property’’ as illustrated in
Figure 2-41.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 78

Figure 2-42. Create a means for Alien to receive the text.

8. Now you need to create a means to have the Alien receive the
text being written to the Alien. Go to Storyboard and drag a
label onto the Alien View. Center it, make it yellow, and empty
out its text as illustrated in Figure 2-42.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 79

Figure 2-43. Create the new label IBOutlet.

9. You need an outlet for the label you created in step 41, so open
the Assistant Editor and Control-drag from the label to the
header file and drop it below the messageForAlien property as
illustrated in Figure 2-43.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 80

Figure 2-44. Name it lblMessageForAlien.

10. Keep it as an Outlet and name it lblMessageForAlien as
illustrated in Figure 2-44.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 81

Figure 2-45. Add code to assign text to your onscreen label.

11. You need to make sure that the viewWillAppear method will
show the label’s text. Go to the AlienViewController.m file and
drag in ‘‘19 AlienVC.m - add viewWillAppear content’’ as shown
in Figure 2-45 and illustrated here:

-(void)viewWillAppear:(BOOL)animated
{
 [super viewWillAppear:animated];
 // preset to switch is off
 m_bIsAlienSeen = NO;

 // place given text on screen
 lblMessageToAlien.text = self.messageForAlien
}

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 82

Figure 2-46. Adjust the prepareForSegue method.

12. Lastly, and this should look quite familiar to you, pass the text to
the Alien View by setting the Alien View property to the value of
the Main View property. Open ViewController.m and scroll
down to the prepareForSegue: method. Drag ‘‘20 VC.m - add
prepareForSegue content’’ placing it within the if statement
after the setDelegate: call as shown in Figure 2-46.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 83

Figure 2-47. Hello Mr. Alien!

13. You’ve completed modifying the code. Run the code on the
iPhone Simulator once again to prove that your changes work
as expected. When the Main View appears, enter text into your
new text field. Click Find Alien, and when the new view appears,
there’s your message out in the Alien universe! Figure 2-47
shows what your result should look like.

Congratulations. You’ve just completed adding the code to receive text from the
user, passing it as a string from the source view to the destination view, and
showing it on the destination view when the view appears. Easy, right?

Step 4: Custom Segue
This section demonstrates the ease with which you can substitute a custom
segue you created for the default segue you’ve been using.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 84

Figure 2-48. A new class for your segue override

1. To create a new view transition for segue use, you now can
simply create a specialized class of UIStoryboardSegue and
override the default perform method. Let’s create the new
derived class by clicking the helloAlien group in the Project
Navigator and pressing +N as illustrated in Figure 2-48. The
new dialog appears. Choose “Objective-C Class” and click
Next.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 85

Figure 2-49. Name it CustomAlienSegue.

2. In the ‘‘Choose options for your new file’’ dialog, enter the name
CustomAlienSegue for your class. Make it a subclass of
UIStoryboardSegue as is illustrated in Figure 2-49. Click Next to
create the class files.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 86

Figure 2-50. Paste the new CustomAlienSegue code.

3. In the CustomAlienSegue.m file, delete all the code, leaving just
the comments at the top of the file. Now add your custom
implementation by dragging in ‘‘21 CustomAlienSegue.m -
replace implementation’’ as illustrated in Figure 2-50.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 87

Figure 2-51. Select the Custom segue type.

4. You need to tell the Storyboard to use your custom segue. So
go to the Storyboard file and select the segue (by clicking the
circle in the middle of the segue arrow between the two View
Controllers). In the Utility area’s Attribute Inspector, change the
Storyboard Segue Style from Push to Custom in the drop-down
menu as illustrated in Figure 2-51.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 88

Figure 2-52. Enter your new class name CustomAlienSegue.

5. A Segue Class option appears. Enter the custom segue’s name,
CustomAlienSegue, as illustrated in Figure 2-52.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 89

Figure 2-53. Custom segue fade.

6. You’ve completed the modifications for Step 4 of this chapter’s
four steps. Run your application in the iPhone Simulator to see
the result of your latest work. When your application starts, click
Find Alien and watch your new custom segue in action (shown
in Figure 2-53). If the Main View faded out to black, and your
Alien View faded in from black, then you’ve activated the
custom segue correctly. Congratulations!

NOTE: Are you wondering what the custom segue does? We use a couple key facts
to make a quick and simple effect. The UIStoryboardSegue object, upon which
our custom class is based, knows which viewController is going away and which
viewController is going to be shown. Also, to show or hide a User Interface object
(our views), you can adjust its alpha setting. An alpha value of 1.0 is showing, and a
value of 0.0 is hidden. This alpha change can be animated. Using these facts, we
created three methods as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2: Fundamentals 90

We override the only UIStoryboardSegue method perform. In our perform method,
we tell the leaving view to animate a fade-out (by adjusting its alpha from 1.0 to 0.0
over time). But we also want to fade-in the appearing view, so we tell the animation
to call our finishedFadeOut method when the fade-out is complete. In this
finishedFadeOut method, we tell the view that’s going to be shown to do a fade-
in animation (again, by adjusting its alpha this time from 0.0 to 1.0 over time) and
when it’s been completed to call our final finishedFadeIn method. In our last
method we simply set our first view, which is no longer showing, back to a faded-in
state. See? Simple!

www.it-ebooks.info

http://www.it-ebooks.info/

91

3
Chapter

Storyboarding with
MapView
For your second Storyboarding app, you’ll build a really fun Navigation-Based
Application that uses MapKit and CoreLocation frameworks. You’ll use Flickr as
a data source for retrieving photos taken around a specific location and
annotate them on a MapView. The Storyboard topics include setting different
transition types for segues, building Storyboard scenes utilizing MapView and a
static TableView, and initializing segue transitions to other views from
MapView’s callouts. We will also demonstrate several handy programming
techniques, such as dealing with NSURL and parsing some basic JavaScript
Object Notation (JSON) data received from a remote server, which has become
a great deal simpler with the release of iOS 5.

Figure 3-1 is a screenshot of the final app. The left-hand image illustrates the map
zoomed over our location here in Colorado Springs, Colorado. You see a number of
blue pins, indicating images taken near the specified location, that have been
uploaded to our Flickr account associated with this app and that now appear on the
MapView. Selecting the southernmost pin, you see the image titled ‘‘Great Sand
Dunes,’’ which has been parsed from the Flickr server. Clicking the blue chevron
disclosure button, as directed in the app’s Storyboard, takes you to the detail view
of that image with a back button allowing the user to return to the main view. The
image shown is the photo we shot while camping near the famous Sand Dunes in
Colorado, located exactly as indicated on the map. The GPS location of the photo
was automatically captured by my iPhone as we took the picture. We later uploaded
this image to the Flickr site.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 92

Figure 3-1. This is the final version of this chapter’s app.

For this exercise, you’ll focus on the Storyboarding aspect, so for now, allow us to
suggest that you simply use our Flickr account and get the hang of the
Storyboarding aspect. Once you do that setting up your own Flickr account will be
trivial. We say this because the learning curve in this app is quite steep, and you
may not want to be distracted about which images, Flickr account, and so on are
being used. There will be enough to occupy your mind as you move through this
very exciting and very cool app.

flickrPhotoMap: A Single View App
We have divided this project into three phases:

 Creating a simple MapView scene, setting up the data
connection, and displaying geotagged photos on the map

 Creating a secondary scene in Storyboard and making the app
transition to that scene by clicking each annotation callout’s
disclosure button

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 93

 Creating a modal segue to an additional scene that lets users
rate the photo once they click on the callout’s thumbnail

In each step we apply the basic Storyboarding techniques from Chapter 2 to a
real-life scenario and we demonstrate how iOS 5 Storyboarding makes dealing
with more complex UI elements, like MapView and TableView, a lot less
intimidating.

Preliminaries
As with all chapters, here we supply you with all the files and code necessary for
this project. However, we don’t show the images on where to go because they
all reside at http://bit.ly/sMRvAP, as illustrated in Figure 3-2.

Looking at Figure 3-2, arrow 1 shows an image from the video of this chapter
that links to the video, arrows 2 and 3 point to download icons for the Xcode
project and all files necessary for this chapter, including the images and the
DemoMonkey files. If you need more help, go to the forum at http://bit.ly/
oLVwpY. Before you start, make sure you have downloaded the images and
DemoMonkey files at http://bit.ly/sMRvAP and that you have them opened up
on your desktop.

Figure 3-2. Videos, code, and files for this chapter

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 94

Before embarking on the three steps, keep in mind that:

 In Step 1 you’ll set up the code behind the Storyboard
features you’ll enact in Step 2.

 Step 2 will be the Storyboarding.

 Step 3 will be a combination of code and Storyboarding as
you tweak our very cool app.

Step 1: Setting Up the Data Connection and
Displaying Geotagged Photos on a Map
In the first step you’ll create a single-View scene in which, upon the app start,
you’ll download the information about our geotagged photos from our Flickr
account and display annotations on the map representing locations where the
photos were taken. Note that for this application to run successfully, you must
be connected to the Internet. You can follow along using the API key we have
set up for this book, but if you want to use the Flickr service in your own project
you will need to apply for your own unique API key. You can apply for an API
key online at www.flickr.com/services/api/misc.api_keys.html.

1. Open Xcode, press N, and select a Single View Application.
Name it FlickrPhotoMap. Name the Company Identifier
com.storyboarding. We will not use a Class Prefix. Make sure to
select iPhone in the Device Family drop-down and check both
Use Storyboard and Use Automatic Reference Counting, as
shown in Figure 3-3. Once created, save it onto your desktop.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 95

Figure 3-3. Start with a Single View Application template.

NOTE: In this app you’ll be using MapView and Reverse Geocoding. To use those
features you must link required frameworks to your project. Click the project title at
the top of the Navigation tree. In the target settings on the right, select the Build
Phases tab, open up the Link Binary With Libraries section, and click the plus button
at the bottom. Then, in the pop-up window, search for MapKit, as shown in Figure
3-4, select it in the list, and click the Add button. Repeat the steps again to add the
CoreLocation framework.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 96

Figure 3-4. Add MapKit and CoreLocation frameworks to the project.

2. If the newly added framework files end up outside the project
Navigation tree, drag them into Frameworks group as shown in
Figure 3-5. You also need to drag the Images folder into the
Xcode project. The folder is located in your download pack from
the author's site. Navigate to the Images folder and drag the
entire folder, in as shown in Figure 3-6. Also make sure the box
‘‘Copy items into destination group’s folder (if needed)’’ is
checked, as shown in Figure 3-7.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 97

Figure 3-5. Move newly added files to the Frameworks folder.

Figure 3-6. Drag the images for this app into the Supporting Files group.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 98

Figure 3-7. “Copy images into destination group’s folder…” must be checked

3. Now select both ViewController.h and ViewController.m files
and hit Delete. In the confirmation dialog, click Move to Trash,
not Remove References.

4. You will now create your own main View Controller. Hit N and
select the Objective-C class option as shown in Figure 3-8.
Click Next, select the UIViewController subclass, and name it
MapViewController, as shown in Figure 3-9. Do not change any
options. Save it.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 99

Figure 3-8. Create a new Objective-C class.

Figure 3-9. Name new class MapViewController.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 100

5. Now go to the MainStoryboard.storyboard file, select the View
Controller icon at the bottom of the main scene as shown in
Figure 3-10, open the Utilities Pane, select the Identity
Inspector, and change the Custom Class to MapViewController.
Save the changes.

Figure 3-10. Select View Controller icon at the bottom of the main scene.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 101

6. Find MapView in the Object Library and drag it to the View
Controller canvas as shown in Figure 3-11.

Figure 3-11. Place a MapView onto the main view.

7. Also place an Activity Indicator on top of the MapView as shown
in Figure 3-12, because it may take time to download data from
the Internet, and it would be helpful to see the progress. Center
it towards the top. Then, while it’s still selected, go to the
Attributes Inspector and check the Hides When Stopped option.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 102

Figure 3-12. Drag an Activity Indicator onto the View.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 103

8. Click the Assistant icon. If Assistant doesn’t display the
MapViewController.h file automatically, you can select it from
Recent Files submenu under the Related Files Options menu (at
the top of the screen divider as circled on Figure 3-13). You’ll
now create and connect IBOutlets for your MapViewController
class. Control-drag from MapView onto the
MapViewController.h file and drop it right before @end as shown
in Figure 3-13. Name it mapView.

Figure 3-13. Control-drag from the MapView into the MapViewController.h file to create an IBOutlet.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 104

9. Repeat the process to create an IBOutlet for the Activity
Indicator and name it activityIndicator as shown in
Figure 3-14.

Figure 3-14. Create IBOutlet for the Activity Indicator.

10. To be able to access MapKit features, you must import the
framework’s header. Add #import <MapKit/MapKit.h> and
specify that your MapViewController class is going to implement
the MKMapViewDelegate protocol: add <MKMapViewDelegate> at
the end of the line with class name declaration as shown in
Figure 3-15.

Figure 3-15. Import MapKit header files.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 105

11. Turn off the Assistant. Open the MapViewController.m file. If
Xcode has already created an empty private declaration section
like the one highlighted on Figure 3-16, remove it and replace it
with the code shown in Figure 3-17 (you can also achieve that
by dragging and dropping the DemoMonkey step "01
MapViewController.m Private Declarations + API Constants"
right before @implementation). Here you simply declare
constants, variables, and signatures of the methods you need in
this View Controller. You’re going to use these variables and
methods to request and process the data from the Flickr
service. You’ll discover what role each of these data members
plays in the following steps. As mentioned earlier, to get access
to the Flickr API, you must supply a unique API key in your web
request. In this case, we also need to provide a user ID,
because we only want to download photos from our own Flickr
account. Both of those constants are defined here.

Figure 3-16. Default private declaration section created by Xcode

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 106

Figure 3-17. Add private declaration section.

12. To avoid any unexpected problems, add placeholders for the
methods you’ve just declared. Insert the code shown in Figure
3-18 at the bottom of the file right before @end (DemoMonkey
step ‘‘02 MapViewController.m Methods Placeholders’’). You’ll
add implementation for these methods as you move along with
the project.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 107

Figure 3-18. Add methods placeholders.

13. Uncomment the viewDidLoad method if it’s commented out and
insert the code shown in Figure 3-19 at the bottom of the
method implementation, right below [super viewDidLoad]; line
(DemoMonkey step ‘‘ 03 MapViewController.m viewDidLoad’’).
This will tell your MapView to zoom over the specified region
and set its delegate property, which will allow your
MapViewController to receive standard messages from the
MapView during its operation (delegate callbacks). Lastly, in
viewDidLoad you’ll also initiate the search for geotagged photos
on Flickr by evoking the [self searchFlickrPhotos] method
call, which you’ll be implementing shortly.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 108

Figure 3-19. Add viewDidLoad code in MapViewController.m.

14. If you didn’t leave any steps out, you can run the app, and it will
display the map zoomed over the Colorado Springs area as in
Figure 3-20.

Figure 3-20. Run the app to make sure the MapView was connected properly.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 109

15. Now you’re going to create an NSObject<MKAnnotation>
subclass so you can display custom photo annotations on the
MapView. Hit N and select the Objective-C class option. On
the next screen make sure NSObject is chosen in the ‘‘Subclass
of’’ section and name it PhotoAnnotation. Save it. Then replace
all the code in the PhotoAnnotation.h file with that shown in
Figure 3-21 (you can drag and drop the code from
DemoMonkey step ‘‘04 PhotoAnnotation.h Interface’’). Here
you’re declaring several p roperties-----three standard ones
(coordinate, title, and subtitle) and four custom properties
that you’re going to use specifically for storing information about
photos represented by the annotations (image, thumbnail,
imageURL, and thumbnailURL). You’ll also declared two methods:
a custom initializer to create the PhotoAnnotatation objects
(used to initialize custom properties when annotations are
created) and the updateSubtitle method, which we’ll talk about
in more detail in the next step.

Figure 3-21. Select the code you will replace in PhotoAnnotation.h.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 110

16. Select the PhotoAnnotation.m file in the Project Navigator and
replace the code in it as shown in Figure 3-22 (DemoMonkey
step "05 PhotoAnnotation.m Implementation"). Most of the code
here is self-explanatory or has descriptive comments. The
method updateSubtitle will be called when user touches an
annotation on the map. It will update the annotation callout’s
subtitle to display the name of the place where the photo was
taken. It’s using the latest iOS 5 feature, reverse geocoder,
which is a part of the CoreLocation framework. It provides the
easiest way to reverse geocode a location and get the
information associated with it, called placemark. You create an
instance of CLGeocoder and invoke the
reverseGeocodeLocation:completionHandler: method, from
which you get an array of placemarks, with the most relevant
one being at index 0. You then extract the information you need
from the CLPlacemark object using the placemarkToString:
helper method and update subtitle for that annotation.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 111

Figure 3-22. Replace the code in PhotoAnnotation.m.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 112

17. Once you have the PhotoAnnotation class in place, you can
start working on adding annotation to the MapView. First of all,
let's make the newly created class visible to the main View
Controller. Go to the MapViewController.m file and add #import
"PhotoAnnotation.h" to the imports section at the top
(DemoMonkey step ‘‘06 MapViewController.m Import
PhotoAnnotation.h’’). Now you can implement the
MKMapViewDelegate protocol method in which you’ll tell the
MapView how your annotations should look like once you add
them to the map. Add the implementation for the
mapView:viewForAnnotation: method to the end of the file right
before @end as shown in Figure 3-23 (alternatively you can drag
DemoMonkey step ‘‘07 MapViewController.m mapView:
viewForAnnotation:’’.

Figure 3-23. Add implementation for the mapView:viewForAnnotation: method.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 113

18. In this step you’ll add implementation for the
searchFlickrPhotos method. Find the empty placeholder for the
method, which was added in step 12, and insert code for it as
shown in Figure 3-24 (DemoMonkey step ‘‘08
MapViewController.m searchFlickrPhotos’’). In this method you
construct a URL string that will initiate a search request to the
Flickr server (the format of the URL request and available
parameters are provided in Flickr documentation, at
http://flickr.com/services/api/; in our case, we specified
the API key, user ID, geotag option, and response format). Note
that you’re outputting the URL you just built to the console for
testing purposes. In the next couple of lines, you create an
NSURL object with the constructed string and dispatch
synchronous download request for the contents of that URL by
calling the dataWithContentsOfURL: static method on NSData.
Note that the download request is performed in a background
thread-----otherwise the UI may become unresponsive to the
user. Right before the request is sent, start your Activity
Indicator, so you can see the progress. (Upon completion of the
data transfer you’ll invoke the saveData: selector, in which you
parse the JSON data, save it in a usable format, and perform
other necessary operations with the fetched data. This step is
coming shortly.)

Figure 3-24. Add searchFlickrPhotos method implementation.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 114

19. As the result the Flickr server will return a JSON string
containing a list of all the photos for the specified user ID that
have location information associated with them.

20. By now you should be able to run the app and see the URL
string printed in the console window as shown in Figure 3-25.

Figure 3-25. Run the app to check out the URL string you’ve constructed.

21. This step is optional. Select the URL that was printed by the app
as shown in Figure 3-26, paste it into your web browser’s
address bar, and hit Enter. If there were no errors in the URL
string, you should get a response from Flickr similar to the one
shown in Figure 3-27 (on the left: standard unformatted
response, on the right: response in a user-friendly format
formatted for you by the JSONView plug-in). What you
downloaded from Flickr is JSON data. To be able to use the
information stored in it, you must parse it.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 115

Figure 3-26. Copy the URL and paste it into a web browser’s address bar.

22. In the JSON sample in Figure 3-27, you can see that the
response from Flickr does not contain the actual image data. To
download the images and get their geospatial data, you need to
extract the information for each image in the ‘‘photo’’ collection
and perform several additional steps. In this case, the most
convenient way to accomplish that is to use a new iOS 5
feature: the NSJSONSerialization class. It’s a native JSON
parser that converts JSON to Foundation objects (usually an
NSDictionary or an NSArray based on the structure of your
JSON document) and vice versa. The
NSJSONSerialization class has a static method called
JSONObjectWithData:options:error. You’re going to use it to
turn your Flickr JSON data into an NSDictionary.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 116

Figure 3-27. Flickr JSON response displayed in the Chrome browser

23. Let's add implementation for the saveData: method mentioned
in step 18. Find its placeholder in the MapViewController.m file
and insert the code shown in Figure 3-28 (DemoMonkey step
"[09 MapViewController.m saveData:").

This method may seem a bit overwhelming at first, but it’s
actually quite simple. Because you saw the hierarchy of the
JSON response in step 19, you know which key in the results
dictionary will get you access to the array of photos you’re
interested in. The following code parses the JSON data into an
NSDictionary and saves the array of photo info items stored in it
under photo key into an NSArray for further processing:

NSError *error = nil;
NSMutableDictionary *response = [NSJSONSerialization JSONObjectWithData:data
options:NSJSONReadingMutableContainers error:&error];
NSArray *photos = [[response objectForKey:@"photos"] objectForKey:@"photo"];

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 117

Figure 3-28. Add the saveData: method implementation.

24. In this case, the photos array is an array of NSDictionary
objects. Each dictionary contains information about the photo,
such as ID, farm, server, title, and so forth, from which you can
construct the URLs to retrieve the actual image data and image
geolocation from Flickr.

Note that we use the NSJSONReadingMutableContainers option
for parsing JSON data. We do this to be able to append
additional information to the parsed objects (like thumbnail URL,
image URL, and geocode).

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 118

25. Getting back to the rest of the saveData: method code: after
parsing the JSON data, initialize the variables declared in step
11 and start enumerating through the array. In this for loop you
simply construct three types of URL strings based on the
attributes stored in each photo info dictionary. You’ll use these
URLs later to load thumbnail, medium size image, and image
geo-spatial data for each photo. The rules for constructing
mentioned URLs are in the Flickr API Documentation at
www.flickr.com/services/api/misc.urls.html. Finally, save the
dictionaries containing data about each photo into a
parsedDataDictionary variable. Use photo id string as a key so
later you can update each photo dictionary with geo-spatial
data by simply retrieving it via photo id. The last code block in
the method is almost identical to the one from step 18. Because
the geolocation data of the photos is stored separately on Flickr,
you have to make another API call using the
photoGeoInfoURLString you’ve just constructed for each photo
to retrieve its location data:

dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
NSData *data = [NSData dataWithContentsOfURL:[NSURL
URLWithString:photoGeoInfoURLString]];
[self performSelectorOnMainThread:@selector(saveGeoCodeData:) withObject:data
waitUntilDone:YES];
});

Once the data is fully fetched, it will be parsed and saved by
invoking the saveGeoCodeData: method, which you’ll implement
next.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 119

26. Find the placeholder for saveGeoCodeData: and insert the code
shown in Figure 3-29 (if you’re using DemoMonkey, drag step
"[10 MapViewController.m saveGeoCodeData:" into the method
placeholder). This method is quite similar to the saveData:
method discussed in the previous step, except that in this case
you only need to retrieve two values from the JSON response
(latitude and longitude of where photo was taken). Thus, you
parse the JSON data using the same NSJSONSerialization
class and, if there were no errors, save the geocode values into
the corresponding photo info dictionary retrieved from the
parsedPhotosDictionary variable by photo ID key. Note that the
parsing options this time are set to kNilOptions constant
because you don’t need the parsed objects to be modifiable in
this case.

Once all objects are updated, stop the progress indicator and call
the method that will annotate your photos on the MapView:

 if (updatesCount == totalNumberOfPhotos) {
 [self.activityIndicator stopAnimating];
 [self populateMapWithPhotoAnnotations];
 }

Figure 3-29. Add the saveGeoCodeData: method implementation.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 120

27. Find the placeholder for the populateMapWithPhotoAnnotation
method and insert the code shown in Figure 3-30 (DemoMonkey
step "11 MapViewController.m
populateMapWithPhotoAnnotation"). In this step you’re adding
the code to annotate your geotagged photos on the MapView. To
accomplish that, loop through the objects you saved into
parsedPhotosDictionary. If latitude and longitude values
aren’t nil, you create a PhotoAnnotation object for that photo,
initialize it with the necessary data from the photo info dictionary
(title, geocode, URLs, and so on), and save it into a temporary
NSArray. Finally you add all created annotations to the MapView.
At this point you no longer need the data stored in the
parsedPhotosDictionary variable, so you free the memory
occupied by it simply by setting its value to nil.

Figure 3-30. Add the populateMapWithPhotoAnnotation method implementation.

28. You should now be able to see the results of your work as
shown in Figure 3-31. If you click any annotation, a callout
bubble will show up with the name of the photo the annotation
represents.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 121

Figure 3-31. Build and run the app.

Step 2: Making a Transition to a Secondary Scene
from Annotation Callouts
In the second of your three steps you’ll create a secondary scene in Storyboard,
which will display a medium-size image represented by a selected MapView
annotation and the full image name. You’re going to make the app transition to
that scene every time the user clicks the selected annotation’s callout disclosure
button.

1. Chapter 2 showed you how to embed a View Controller into a
Navigation Controller using an Xcode menu. This step shows
you an alternative way of accomplishing the same task. You
can use either, based on your preference. Go the Storyboard
file and drag a Navigation Controller from the Object Library
onto the canvas. Place it to the left of your MapViewController
as shown in Figure 3-32.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 122

Figure 3-32. Drag a Navigation Controller onto the Storyboard.

2. You can get rid of the default Root View Controller that was
automatically added to the scene by selecting it and pressing
Delete. Additionally, grab the Initial View Controller arrow that’s
pointing to the MapView Controller and drag it onto the newly
added Navigation Controller as shown in Figure 3-33.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 123

Figure 3-33. Set the Navigation Controller to be the Initial View Controller.

3. Create the rootViewController relationship between the
Navigation Controller and the MapView Controller by Control-
dragging from the Navigation Controller to the MapView
Controller as shown in Figure 3-34. Let it go and select
Relationship --- rootViewController from the menu as shown in
Figure 3-35.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 124

Figure 3-34. Control-drag from the Navigation Controller to the MapView Controller.

Figure 3-35. Create the rootViewController relationship.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 125

4. Select the Navigation Controller and in the Attributes Inspector
set its Top Bar to Translucent Black Navigation Bar as shown in
Figure 3-36.

Figure 3-36. Set the Top Bar property of the Navigation Controller to Translucent Black Navigation Bar.

5. Drag another View Controller from the Object Library onto the
canvas. Place it just to the right of the MapView Controller as
shown in Figure 3-37.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 126

Figure 3-37. Add a new View Controller to the Storyboard.

6. Create a Storyboard Segue by Control-dragging from the
MapView Controller icon to View Controller as shown in Figure
3-38. Release it and choose Push as the segue type from the
menu as shown in Figure 3-39. Select the new segue and set its
Identifier property in the Attributes Inspector to
ShowFullSizeImageSegue as shown in Figure 3-40. Lastly,
double-click the View Controller’s Navigation Bar and set its title
to Selected Photo as shown in Figure 3-41.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 127

Figure 3-38. Control-drag from the MapView Controller to the new View Controller.

Figure 3-39. Create Push segue.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 128

Figure 3-40. Set the segue’s Identifier.

Figure 3-41. Set the View Controller’s title.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 129

7. You’re now ready to add the rest of the elements to your new
scene. You’re going to need a UIImageView to display the
downloaded Flickr image and a UILabel to show its title. So go
ahead and drag an Image View onto the View Controller‘s view,
make it approximately 230 points high and 320 points wide, and
position it closer to the top as shown in Figure 3-42.

Figure 3-42. Add an Image View to the scene.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 130

8. Now find a Label in the Object Library and drag it onto the View
as well. Adjust its width and position it below the Image View as
shown in Figure 3-43. You can set its title to Photo Title for
now, just to keep things organized. It will be changed to the title
of the actual photo during runtime. Also set Label properties in
the Attributes Inspector as follows: Font: System Bold of size
18, Text Color: White Color, Alignment: Center. As you probably
noticed, the label is no longer visible on the screen. Click
anywhere inside the main View to select it and change the
background color to Black in the Attributes Inspector as shown
in Figure 3-44.

Figure 3-43. Add a label to the scene and adjust its properties.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 131

Figure 3-44. Change the background color of the main View.

9. In this step you’re going to create a new UIViewController
subclass, which will control your secondary scene. Hit N,
select the Objective-C class option, and click Next. Make sure
the UIViewController is selected in the ‘‘Subclass of’’ section as
shown in Figure 3-45. Name the class PhotoViewController and
save it.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 132

Figure 3-45. Create a new UIViewController subclass.

10. In the Storyboard select the second View Controller, and in the
Identity Inspector set its class to the newly created
PhotoViewController class as shown in Figure 3-46.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 133

Figure 3-46. Set the secondary View Controller’s class to PhotoViewController.

11. Click the Assistant icon. If Assistant didn’t display the
PhotoViewController.h file automatically, you can select it from
Recent Files submenu under the Related Files Options menu (at
the top of the screen divider). You’ll now create and connect
IBOutlets for your PhotoViewController class. Control-drag
from UIImageView into the PhotoViewController.h file and drop
it right before @end as shown in Figure 3-47. Name it
photoImageView. Similarly, Control-drag from the label and name
the property photoTitleLabel.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 134

Figure 3-47. Create IBOutlets for PhotoViewController.

12. At this point, you’re done with the Storyboard. You now need at
add a few more lines of code to make everything work. Close
the Assistant and navigate to the PhotoViewController.h file.
Add the forward declaration of the PhotoAnnotation class
"@class PhotoAnnotation;" right before the @interface and
create another property called photoAnnotation as shown in
Figure 3-48 (DemoMonkey step "12 PhotoViewController.h Add
photoAnnotation Property"). This new property will store a
reference to the selected annotation so you can get access to
the data necessary to download and display the actual photo.
Don’t forget to synthesize the new property in
PhotoViewController.m and make the PhotoAnnotation class
visible to PhotoViewController by adding the following code at
the top of the file:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 135

#import "PhotoViewController.h"
#import "PhotoAnnotation.h"
@interface PhotoViewController ()
@end
@implementation PhotoViewController
@synthesize photoImageView;
@synthesize photoTitleLabel;
@synthesize photoAnnotation;
…

Figure 3-48. Add the photoAnnotation property.

13. Here you’re going to add implementation for the viewDidLoad
method. Find the viewDidLoad method in the
PhotoViewController.m file and insert the code shown in Figure
3-49. This code will update the UI so it displays the appropriate
image and title for the annotation that will be passed by
MapViewController right before the segue is performed.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 136

Figure 3-49. Add the viewDidLoad implementation in PhotoViewController.m.

14. In this step you’ll implement two additional MKMapViewDelegate
protocol methods, which you need in order to display the
secondary scene. First, switch to MapViewController.m and
import PhotoViewController.h to make it visible to this class.
Then navigate to the MKMapViewDelegate protocol pragma
section as shown in Figure 3-50.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 137

Figure 3-50. Navigate to the MKMapViewDelegate Protocol pragma section.

15. Add implementation for the following two methods right before
@end as shown in Figure 3-51 (DemoMonkey step "[14
MapViewController.m Other MapView Delegate Protocol
Methods"):

- (void)mapView:(MKMapView *)aMapView annotationView:(MKAnnotationView *)view
calloutAccessoryControlTapped:(UIControl *)control
{ … }
and
- (void)mapView:(MKMapView *)MapView didSelectAnnotationView:(MKAnnotationView
*)view
{ … }

The first of the two MapView callback methods gets called when
the user clicks a callout disclosure button. In that case, you
invoke

[self performSegueWithIdentifier:@"ShowFullSizeImageSegue"
sender:photoAnnotation];

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 138

 on your MapView Controller, which will perform the Storyboard
Segue created in step 31. This little line of code is all it takes to
initiate a secondary scene transition from a MapView callout. In
the second delegate callback, which happens when the user
selects an annotation on the map, you simply call the
updateSubtitle method on the selected annotation so its
coordinate is reverse-geocoded and the location name is
displayed in the callout subtitle.

Figure 3-51. Implement the remaining MKMapViewDelegate protocol methods.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 139

Finally, you must pass the selected annotation from
MapViewController to the destination PhotoViewController before
the transition takes place. Do this in the prepareForSegue: method.
Scroll up to the #pragma mark - Flickr API Processing section and
insert the code shown in Figure 3-52 right before it (DemoMonkey
step "15 MapViewController.m prepareForSegue:"). Here you check
the Identifier of the invoking segue, and if it matches the desired
one, you simply set the photoAnnotation property of
PhotoViewController (which is the destination View Controller) to
the sender object, for which, as you remember from the previous
step, you passed the selected PhotoAnnotation object. As a minor
cleanup, you should implement the viewWillAppear method
(DemoMonkey step "16 MapViewController.m viewWillAppear:]").
Add the following code right before viewDidUnload:

- (void)viewWillAppear:(BOOL)animated {
 [super viewWillAppear:animated];
 self.navigationController.navigationBarHidden = YES;
}

Figure 3-52. Implement the prepareForSegue: method for MapViewController

In this method you set the navigationBarHidden property of the
Navigation Controller to YES, which insures that once you return
from the secondary scene, the Navigation Bar doesn’t cover the
MapView.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 140

16. Build and run the app. You should now be able to click the
annotation and see the callout with the photo title and the name
of the place where it was taken. If you tap the blue disclosure
button, the secondary view displaying the actual photo will
appear as demonstrated on Figure 3-53.

Figure 3-53. Implement the prepareForSegue: method for MapViewController.

Step 3: Creating a Modal Scene that Allows the
User to Rate Your Photos
In this third step you’re going to add some fun to your app and let the user
interact with it a bit more. You will create an additional Storyboarding scene,
which is going to contain a very simple static TableView fully created in the
Storyboard. Once the user clicks a thumbnail, which you’re going to add to the
Left Callout Accessory View of the annotation callout, you’ll present a modal
scene with a basic TableView displaying rating choices. When user selects a cell

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 141

in this TableView, the modal View Controller will be dismissed, and the pin color
of the affected annotation will change according to the rating picked.

1. Open the Storyboard. Find a Table View Controller in the Object
Library and drag it onto Storyboard canvas right above the
Photo View Controller as shown in Figure 3-54.

Figure 3-54. Add a Table View Controller to the Storyboard.

2. You’re now going to use one of the best Storyboarding
features-----Cell Prototyping. It makes customizing your
TableView cells a real breeze.

First, select the TableView and change the Row Height in the
Size Inspector to 64. Then drag an ImageView and a label into
the cell as shown in Figure 3-55.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 142

Figure 3-55. Creating a Prototype Cell.

3. Select the UIImageView and set its Image property to
BluePin.png in the Attributes Inspector and then switch to the
Size Inspector and adjust Image View width and height as
shown in Figure 3-56. Also make the label wider and set its text
to ‘‘Decide later.’’ Re-align the elements if needed to center
them inside the cell. You can leave all other properties as
default.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 143

Figure 3-56. Adjust and position cell elements.

4. Select the TableView and change its Content type to Static Cells
and Style to Grouped as shown in Figure 3-57 (if the height of
the cells shrank back to 44, switch to the Size Inspector and set
it to 64 again). Select the Table View section by clicking on the
striped background at the very top of the Table View (you can
also navigate to it by expanding the Document Outline pane
located on the left side of the Storyboard canvas). Change the
Table View Section Rows and Header properties as shown on
Figure 3-58. Lastly, using the Attribute Inspector, change the
label text and the image for each cell to match the ones shown
in Figure 3-59 (use RedPin.png, GreenPin.png, and
YellowPin.png images respectively).

Figure 3-57. Change Table View properties.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 144

Figure 3-58. Change Table View Section properties.

Figure 3-59. Change images and text for the rest of the static Table View cells.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 145

5. Create a new segue between the MapView Controller and Table
View Controller by Control-dragging from the MapView
Controller icon to the Table View Controller as shown in Figure
3-60. Release it and select Modal for segue type from the menu.
Select the new segue, set its Identifier property in the Attributes
Inspector to ShowPinChoicesSegue, and change its Transition
type to Flip Horizontal as shown in Figure 3-61.

Figure 3-60. Control-drag from the MapView Controller to the Table View Controller.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 146

Figure 3-61. Set segue attributes.

6. In this step you’ll create a new UIViewController subclass,
which will control your Table View scene. Hit N, select the
Objective-C class option, and click Next. Make sure
UITableViewController is selected as the Subclass option.
Name the class PinSelectionViewController and save it.

NOTE: Static TableViews designed in a Storyboard can only be used with a
UITableViewController subclass.

7. In the Storyboard, select the Table View Controller and in the
Identity Inspector set its class to the newly created
PinSelectionViewController class as shown in Figure 3-62.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 147

Figure 3-62. Set the Table View Controller’s class to PinSelectionViewController.

8. Hit N and select the Objective-C protocol option as shown in
Figure 3-63. Click Next, name the file
PinSelectionDelegateProtocol, and save it.

Figure 3-63. Create an Objective-C protocol.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 148

9. Open the newly added PinSelectionDelegateProtocol.h file and
replace the code in it with the one shown in Figure 3-64
(DemoMonkey step ‘‘17 PinSelectionDelegateProtocol.h’’). Here
you define AnnotationPinType enum for convenience and a
method, which will be implemented by your MapViewController
class (this method will get called when the user selects the rating
cell in the Table View scene).

Figure 3-64. Add code to PinSelectionDelegateProtocol.h

10. Go to the PinSelectionViewController.h file and replace the
code in it with that shown in Figure 3-65 (refer to DemoMonkey
step ‘‘18 PinSelectionViewController.h Interface’’). Here you’re
creating two properties: delegate and currentPinType. The first
one will be used to notify your MapViewController about user
selection and update its UI. The second one will be used to
display the current rating of the photo. As always, go to
PinSelectionViewController.m and add @synthesize
statements for both of the properties right below
@implementation (DemoMonkey step ‘‘19
PinSelectionViewController.m Synthesize Properties’’):

#import " PinSelectionViewController.h"
@interface PinSelectionViewController ()
@end
@implementation PinSelectionViewController
@synthesize delegate;
@synthesize currentPinType;
…

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 149

Figure 3-65. Change the PinSelectionViewController class interface.

11. Scroll to the #pragma mark - Table view data source section
of the code, select everything all the way till @end and replace
the selected code with that shown in Figure 3-66 (DemoMonkey
step ‘‘20 PinSelectionViewController.m TableView Delegate and
Datasource Methods’’). Note that because you’re using a static
Table View you don’t need to implement any standard Table
View Data Source methods. The only Data Source method we
chose to implement is tableView
willDisplayCell:forRowAtIndexPath:. In this method we simply
set the accessoryType property of the cell, for which the
indexPath.row matches the currentPinType, to checkmark, thus
indicating the current rating of the selected photo. In the
tableView:didSelectRowAtIndexPath: method you notify the
delegate about the row number that was selected by invoking
the method you defined in PinSelectionDelegateProtocol. The
programming technique used here is one of the most common
and most widely used design patterns in iOS development (the
delegate pattern).

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 150

Figure 3-66. Replace the TableViewDelegate and TableViewDataSource methods.

12. Go to the PhotoAnnotation.h file. First add #import
PinSelectionDelegateProtocol.h right above the @interface.
Then create two new properties as shown in Figure 3-67
(DemoMonkey step ‘‘21 PhotoAnnotation.h Two New
Properties’’). In PhotoAnnotation.m add synthesize pinType
property only. You don’t need to synthesize the
annotationViewImageName property here because it’s readonly,
and you’re going to specify a custom getter for it in the next
step.

Figure 3-67. Modify the PhotoAnnotation.h file.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 151

13. Add the getter method for the annotationViewImageName
property as shown in Figure 3-68 (refer to DemoMonkey step
‘‘22 PhotoAnnotation.m Custom Getter Method for pinType
Property’’). In this method you define the image name for
annotation View based on its type, which will be set when the
user rates the photo represented by the annotation. The default
image for unrated photos will be BluePin.png.

Figure 3-68. Add the getter method for the annotationViewImageName property.

14. You need to modify a few things in the MapViewController
class. First go to MapViewController.m and import
PinSelectionViewController.h at the top of the file.

15. To add a button with a photo thumbnail, add the code shown in
Figure 3-69 at the end of the mapView:didSelectAnnotationView:
method implementation (use the code from DemoMonkey step
‘‘[23 MapViewController.m Add Left Callout Button Code’’).

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 152

Figure 3-69. Modify the mapView:didSelectAnnotationView: method.

16. When the thumbnail is touched, the
onLeftCalloutAccessoryViewTouched: method will be called.
Add implementation for this method as shown in Figure 3-70
(DemoMonkey step ‘‘[24 MapViewController.m
onLeftCalloutAccessoryViewTouched:’’). In this method you
invoke your second Storyboard Segue with the
ShowPinChoicesSegue Identifier, which will present a modal Table
View Controller designed in the Storyboard.

Figure 3-70. Add implementation for the onLeftCalloutAccessoryViewTouched: method.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 153

17. Modify the prepareForSegue: method by inserting additional
code at the end of the method implementation as shown in
Figure 3-71 (use DemoMonkey step ‘‘25 MapViewController.m
Modify prepareForSegue:’’). Here you add a condition for the
second segue, where you set the
PinSelectionViewController’s delegate and pass the current
pin type of the selected annotation, so the correct Table View
cell is marked.

Figure 3-71. Modify the prepareForSegue: method.

18. Scroll to mapView:viewForAnnotation: and replace each
occurrence of the string @"PhotoAnnotation" and
@"BluePin.png" with the following expression (as shown in
Figure 3-72):

((PhotoAnnotation *)annotation).annotationViewImageName

 There should be a total of three replacements. You’re doing this
to distinguish the annotations with different ratings. Because the
annotation Views are being constantly reused by the MapView,
you must specify a unique reuseIdentifier for each pin color. In
this case the name of the pin image is perfectly suitable to be
used as reuseIdentifier. Because the default pin type is
BLUE_PIN = 0, each annotation will display blue by default.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 154

Figure 3-72. Modify the mapView:viewForAnnotation: method.

19. To make sure the right segue gets performed when one or the
other Callout Accessory View is touched, replace the last line of
code in the mapView:calloutAccessoryControlTapped: method
with the one shown in Figure 3-73 (DemoMonkey step ‘‘[26
MapViewController.m Modify
mapView:calloutAccessoryControlTapped:’’).

Figure 3-73. Modify the mapView:calloutAccessoryControlTapped: method.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 155

20. Now go to the MapViewController.h file and add an import
statement as shown in Figure 3-74. Also add a comma and add
PinSelectionDelegate in the angle brackets of the class
declaration.

Figure 3-74. Import PinSelectionDelegateProtocol.h in MapViewController.h.

21. Finally, implement the PinSelectionDelegate Protocol method
as shown in Figure 3-75 (drag DemoMonkey step ‘‘28
MapViewController.m Add Implementation for
PinSelectionDelegate Protocol Method’’). This method gets
called when user selects a cell in PinSelectionViewController’s
Table View. Here, you change the pin type based on the
received rating, remove the selected annotation from the
MapView, and add it back in to force its annotation View to
reload. Last, dismiss the modal PinSelectionViewController.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 156

Figure 3-75. Add the implementation for PinSelectionDelegate Protocol method.

22. Build and run. Congratulations! You should now be able to see
the screens as shown in Figure 3-76 when you click the left or
right callout accessory View.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3: Storyboarding with MapView 157

Figure 3-76. Final look of the app.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

159

4
Chapter

Building a Utility
Application
So far in this book you’ve built two Single View Applications with Storyboards. In
Chapter 2 you built AlienView and in Chapter 3 you built FlickrPhotoMap. We are
now moving forward, and you're going to build a Utility Application using
Storyboards. You typically use Utility Applications when you want to create
easy-to-use apps that consist of two pages: a one-page Main View and a
second View that comes with a flip animation transition. The Utility Application
sets up these two pages with two essential buttons: an Info button and a Done
button. The Info button flips the user from the Main View to the Flipside View,
and the Done button flips the user back to the Main View.

You may not know it but you’re probably very familiar with a Utility application
that comes with your iPhone, and that is the Weather app, shown in Figure 4-1.
The Weather app is a perfect example of a Utility Application in the sense that it
optimizes a simple task that requires a minimal amount of user interaction.

The Utility Application is also one of three special templates in that it, along with
the Navigation-Based Application and the Window-Based Application, are the
only three project templates that offer the option to automatically include
support for Core Data. Furthermore, the Utility Application is one of the most
extensive templates in Xcode-----it implements a fully working Utility Application
right at the get-go.

We introduce the Utility Application with Storyboarding by coding a very cool
app that teaches musicians when to select a particular scale for a particular
genre or mood. It displays finger notations on both acoustic guitar and electric
guitar fretboards, along with accompanying sounds for each scale.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Building a Utility Application 160

Figure 4–1.The Weather app that comes along with the iPhone is probably the most famous and most
used Utility Application.

utilityScales: A Utility App
Let's first talk about our utilityScales design decisions: We chose to illustrate
the use of the Utility Application template by creating an application with which
you can hear various scales on both acoustic and electric guitars. We chose
eight musical scales to demonstrate this concept.

We needed to display a list of scales and the genres and moods each scale
would be associated with. With this in mind we decided to use the Table View
already present in the Flipside View Controller to list the scales. We also
selected the Subtitle layout for the table cells so that we could show both the
category of each scale as well as its name. We chose the iPad layout because it
gave us more room for the scale-fingering images. We created the assets for the
program, which consisted of 8 scales each for two guitars, 16 associated scale-
fingering diagrams, a smaller image of each guitar for the play buttons, a loading
(or Default) screen, an application icon, and more. It meant a total of 16 audio
recordings and 23 graphic files in all.

We decided to make the user interface somewhat nonstandard in that we
wanted to have play/stop buttons for each guitar type. They both needed to

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Building a Utility Application 161

have identical functionality, so we encapsulated their functionality in a dedicated
PlayButton c lass. To incorporate the audio p layback functionality-----which
consists of special configuration and methods to load the files, start and stop
playback o f each, and so on-----we chose to encapsulate this functionality in its
own class (an object with its own .h/.m files).

Lastly, we have eight scales, each with two audio files, two images, a title, and a
description-----all of which we chose to store in instances of a new Scale class
(also an object with its own .h/.m files). This lets us have eight initialization
statements instead of having to initialize many different arrays with each of
these attributes.

In the Storyboard file we set up the initial background of the main display, the
Navigation Bar for the display with its custom colors, and a semitransparent
‘‘pad’’ on which we placed the two play buttons programmatically. On the
flipside portion of the Storyboard, we configured and named the single dynamic
cell template and we configured the title bar coloring and text.

We have divided this project into different phases: one for setting up the project
in Xcode, one for setting up the Storyboard, and two for coding. They are as
follows:

 Setup: Setting up with the template, adjusting the project
settings, dragging in the assets, and adding the frameworks.

 Prepping the Storyboard: In the Main View and Second View,
you’ll be tweaking the Navigation Bars, the colors and buttons
and so forth, and adding UIImagesViews, UITableViews, and
the landing Views.

 Coding the Main ViewController: Coding and connecting.

Preliminaries
Similarly to Chapters 2 and 3, we supply you with all the files and code
necessary for this chapter at http://bit.ly/sMRvAP as illustrated in Figure 4-2.
Again, as always, take the time to clean up your desktop and download all
image and audio files to your desktop, and you’re ready to roll. If you need more
help, go to the forum at http://bit.ly/oLVwpY. In particular, make sure before
you start that you’ve downloaded the DemoMonkey files at
http://bit.ly/sMRvAP and unzipped it on your desktop.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Building a Utility Application 162

Figure 4-2. Select Utility Application.

Step 1: Setup
Setup is the first of the four steps you will follow for this project. You’ll create a
new iPad Utility Application project, name it utilityScales, and adjust the project
settings by deselecting the portrait and upside-down options. Then you’ll drag
image, class, and audio assets into the project. Finally, you’ll add necessary
frameworks. With that completed, you’ll have set up your project and will be
ready to prep the Storyboard in the second step.

1. Open Xcode, press N (File New Project), select the
Utility Application template, and click Next.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Building a Utility Application 163

2. Name the app utilityScales. We’ve used a Company Identifier
called com.apress. You can name yours whatever you like, but if
you feel there is a chance you will need to compare your code
to ours at any time, go ahead and name it com.apress like ours
so there will be less chance of confusion. We won’t use a class
prefix. Make sure to select iPad and check both Use Storyboard
and Use ARC as shown in Figure 4-3. Once created, save it to
your desktop.

Figure 4-3. Name the new project utilityScales.

3. Once you’ve saved it to your desktop, the Project folder opens.
You’re only going to use Landscape orientation because it's
better for displaying the neck of the guitar. This means you need
to deselect the default Portrait and Upside Down orientations.
Next, open your utilityScales Assets folder that you
downloaded and unzipped onto your desktop from
http://bit.ly/sMRvAP. First select the Default-
Landscape~ipad.png file and drag the image into the Landscape
slot as shown in Figure 4-4.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Building a Utility Application 164

Figure 4-4. Deselect the Portrait and Upside Down options and drag in Default-Landscape~ipad.png.

4. You’ll perform two tasks in this step. First move the Default-
Landscape~ipad.png from the root directory of utilityScales
target iOS SDK 5.0 (the blue folder in the upper right-hand
corner) to the Supporting Files folder. Then add the Images
and Audio Files folders into the Supporting Files folder. To do
this, select both the Audio Files folder and the Images folder
from inside the UtilityScales Assets folder on your desktop
and drag and drop them over to the Supporting Files folder as
shown in Figure 4-5.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Building a Utility Application 165

Figure 4-5. Place all images into the Supporting Files folder.

5. The "Choose options for adding these files" dialog opens. Make
sure you select the "Copy items into the destination group's
folder (if needed)" option. Also select the "Create groups for any
added folders" option. Finally make sure you "Add targets" as
shown in Figure 4-6. You do this to make sure that it will work
on other devices. You can do this only if these images, added
folders, and targets are all inherent and encapsulated into your
app. Sometimes students send us their homework without
selecting these options, which makes the app, upon arrival for
grading, void of all the images, folders, audio files, and
targets-----and of course with these missing, their project does
not build.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Building a Utility Application 166

Figure 4-6. Make sure you select Copy Items and Create Groups to the utilityScales target.

6. Make sure that your Supporting Files folder looks as our does
in Figure 4-7. Because we selected the ‘‘groups’’ option, the
Audio Files and Images folders are beautifully instantiated
inside the Supporting Files folder. This is good coding and
something that tells those who view your code that you have
good practices.

Figure 4-7. A beautiful file structure.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Building a Utility Application 167

7. We’ve created three class files for your convenience because
we want you to focus on Storyboarding, not creating files: an
AudioPlayer class (AudioPlayer.h and AudioPlayer.m), a
PlayButton class (PlayButton.h and PlayButton.m), and a Scale
class (Scale.h and Scale.m). You want to add this code as well
to your application. Grab these six files from the utilityScales
Assets folder and drag them to your utilityScales folder as
shown in on the upper left-hand image in Figure 4-8. When the
‘‘Choose options’’ dialog appears, select ‘‘Copy items into
destination’’ and check the ‘‘Create groups’’ check boxes. When
you have done this, click Next as shown on the upper right-
hand image in Figure 4-8. Finally go to Build Phases, click the
add button, and select the three implementation files as shown
on the lower center image in Figure 4-8.

Figure 4-8. Bring in the class files we’ve created for you.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Building a Utility Application 168

8. Make sure your utilityScales folder looks like ours in Figure
4-9. If for some reason it doesn’t have the same files and
folders, go back and retrace your steps, making sure that you
get to this point with your utilityScales folder looking like ours.

Figure 4-9. Your utilityScales folder ready to go.

9. As you already know, you’ll be playing audio files in this app.
Right now if you tried to build this app (try it if you like, you'll see
many errors) you’d have a problem because you don’t have any
means to p lay audio f iles-----even though you’ve defined the
class and imported the audio files. You need to add the audio
framework. Click the Summary button at the top of the editor,
look towards the bottom of the summary page for the section
called ‘‘Linked Frameworks and Libraries’’ (you may have to
scroll the page to see it). At the bottom of this section, click the
[+] button. Now select the AudioToolbox.framework as shown in
Figure 4-10.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Building a Utility Application 169

Figure 4-10. Add the first of two necessary frameworks. Select the AudioToolbox.framework.

10. Before leaving the frameworks and libraries add dialog, you
need to add another framework. You’ve just added the audio
framework, but it seems you also need an Objective-C interface
in order to interact with this just included lower-level framework
from our code. Therefore, also add the AVFoundation framework,
which you call from the code to play audio files. It, in turn, calls
the lower level AudioToolbox framework to do the actual file
playing. So select the AVFoundation.framework in addition to the
AudioToolbox.framework (by Command-clicking on the
AVFoundation.framework so that both are selected) as shown in
Figure 4-11. Finally, click Add button to add both frameworks to
the utilityScales target of the project.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Building a Utility Application 170

Figure 4-11. Also add the AVFoundation.framework.

11. Once you’ve added your two frameworks, you’ll see them
located in the root directory of the utilityScales folder. Drag
them into your Frameworks folder. Now you should have the
three core frameworks of a Utility Application, along with the
new AVFoundation and AudioToolbox frameworks, as shown in
Figure 4-12.

Figure 4-12. Move your new frameworks to the Frameworks folder.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Building a Utility Application 171

Step 2: Prepping the Storyboard
You’ll start by prepping the Main View by coloring the Navigation Bar and
changing the Info button to Scales. Next you’ll add a UIImageView image that
doesn’t have any user interaction! You’ll then add a landing area for your play
buttons that, again, won’t have any user interaction. Once you do that you’ll
label the landing area ‘‘View - Play button area.’’ This completes the First View.

The Second View will also need prepping-----you’ll start by coloring and adding a
title to the Navigation Bar. Next you’ll add a UITableView that will have dynamic
cells and be grouped. You’ll also set the datasource and delegate to your
ViewController.

1. As mentioned earlier, the Utility Application comprises two
Views: a Main View and a Flipside View. The user gets to the
Flipside View by tapping the Info button found on the right side
of the Navigation Bar in the Main View. Let's have a look at this
and start setting up the Storyboard. Open the Storyboard and
you will indeed see the Main View and the Flipside View as
shown in Figure 4-13. You can see that the segue has already
been built, and it’s all there. Note that in the iPad, the Flipside
View is shown as a Popover View.

Figure 4-13. Open the Storyboard file and see the Main View and Flipside View.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Building a Utility Application 172

2. Select the Title Bar (Navigation Controller) by clicking it and then
use the Attributes Inspector to navigate to the Tint selector.
Select the Teal color as shown in Figure 4-14.

Figure 4-14. Start by colorizing the Title Bar.

3. Now you want to customize the Info button. First click the Info
button (click twice to get the button itself and not the bar title)
and then in the Attribute Inspector go to the Title box in the Bar
Item section and change the name to Scales. You also want it to
be the same color as the Navigation Bar, so go ahead and
change the color to teal as shown in Figure 4-15. Note that you
may have programmed another application that has reset the
default of Style and Identifier; if this is the case, make sure your
selections are like ours in Figure 4-15.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Building a Utility Application 173

Figure 4-15. Customize the Info Button.

4. The main screen will house an image of a guitar fretboard with
fingerings on it. This means you need to drag an Image View
onto the canvas and allow it to autosize appropriately as shown
in Figure 4-16. Depending on the resolution of your display, you
may need to first zoom out to do this properly.

Figure 4-16. Drag in an Image View.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Building a Utility Application 174

5. You’ll need a place on the canvas to put your play buttons. (You
may want to take a sneak peek and see the play buttons in
Figures 4-59 and 4-60.) To do that, drag another view near the
top left-hand corner of the existing Image View as shown in
Figure 4-17. Note that the view is highlighted with light grey at
the bottom of the Library.

Figure 4-17. Create a space for the play buttons.

6. With this new smaller view selected, in the Attributes Inspector
change the color to teal. Next go to the Identity Inspector and
set the label to ‘‘View - Play Button Area’’ (this allows you to
clearly identify this new smaller view in your document outline).
Finally, with the new smaller view still selected, and now a teal
color, go to the Size Inspector and place the view 20 pixels from
the left and 64 pixels from the top. Now make the view have a
width of 190 pixels with a height of 110 as shown in Figure 4-18.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Building a Utility Application 175

Figure 4-18. Customize the "play button area" view.

7. To show the Default image you placed into the Supporting
Files folder, click the UIImageView in the Main View Controller
Scene and then in the Attributes Inspector select Default-
Landscape-ipad.png from the drop-down menu as shown in
Figure 4-19.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Building a Utility Application 176

Figure 4-19. Set your Default image as the initial image within the Main View.

8. Now go to the Flipside View Controller Scene and select the
Navigation Bar Title (in the document outline within the Flipside
View Controller Scene, click the ‘‘Navigation Item ---- Title’’ line).
Then in the Attributes Inspector rename the title to Scales as
shown in Figure 4-20.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Building a Utility Application 177

Figure 4-20. Customize the Flipside View Controller.

9. You probably want both the Navigation Bar of the Main View
and the Navigation Bar of the Flipside View to be the same
color, so click the Flipside View's Navigation Bar (in the
document outline) and then select teal again in the Attributes
Inspector's Tint selector. Now you want to change the Done
button to teal, so click it and select teal from the Attributes
Inspector. Lastly, think about what you want here in the Flipside
View. You want this to be a Table of scales that the user can
choose from (refer to Figure 4-58). This means you’ll have to
drag in a Table View. Once you’ve dragged in your Table View
and allowed it to autosize itself, your Flipside View should look
like ours does in Figure 4-21.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Building a Utility Application 178

Figure 4-21. Set the Navigation Bar and Done button to teal and then change the Title and bring in a
Table View.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Building a Utility Application 179

10. Once your Table View is nicely sized inside your Flipside View,
with it still selected go to the Attributes Inspector and select
Dynamic Prototypes as the Type of Content structure in the
Content drop-down menu. You do this because not only do you
want a heading in your table, but you also want subtitles.
Dynamic Prototypes let you adjust the cell style without
providing cell content. Set the number of Prototype cells to 1
(from 0). You also want to select the grouped style for your table
so you can have a header for your group of scale entries in your
table (refer to Figure 4-58), so in the Style drop-down menu,
select Grouped. At this point your Table View should look like
ours in Figure 4-22.

Figure 4-22. Customizing the Table View.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Building a Utility Application 180

11. You’ll want to have subtitles in each cell. To do that, click the
cell itself to select it and in the Attributes Inspector select
Subtitle from the drop-down menu in Style. Also change the
default blue color to gray in the Selection drop-down menu.
Finally you want to build these cells from code, so you need to
name them so you can locate them within the Storyboard file
and load them into your code whenever you need them. To do
that, name the Identifier in the Attributes Inspector to ScaleCell
as shown in Figure 4-23.

Figure 4-23. Customizing the cells.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Building a Utility Application 181

Step 3: Coding the Flipside View
Controller
Keeping it really simple, first you set up the header and implementation files.
Then you add ImageView and NavTitle IBOutlets.

1. Start by working on the code that will present the scales to the
user—which, as you've seen, are shown on the Flipside View.
Do that by going to your desktop, opening your demoMonkey file,
and placing it on the right-hand side of your screen. You’ll
probably want to resize your Xcode window to allow you to see
your open demoMonkey file on the right-hand side of your screen
(Xcode on the left). Now in Xcode open your
FlipsideViewController implementation file (.m) as shown in
Figure 4-24 by clicking it in the Project Navigator pane on the
left-hand of the Xcode window.

Figure 4-24. Open the FlipsideViewController implementation file.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Building a Utility Application 182

2. You’re going to want to code using dual screens of code and
Storyboard. To do that, click the Assistant Editor as shown in
Figure 4-25. This places your main file of interest on the left and
a related file on the right of the editor area in the Xcode window.
(For example, when an implementation file is selected, the
implementation file is shown on the left and the header file
associated with the implementation file is shown on the right.)

Figure 4-25. Click the Assistant Editor.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Building a Utility Application 183

3. As mentioned, you’re building your Flipside View Controller. You
do that by dragging in from DemoMonkey the ‘‘01 FlipView.h ---
add include’’ snippet, which contains the include #import
"Scale.h", as this includes the header for the Scale class we
built for you. Next drag in the ‘‘02 FlipView.h --- add protocol
message signature’’ file that adds a little more to the protocol
than what you already have, along with comments. Then bring
in the ‘‘03 FlipView.h --- add protocol adheres to,’’ which
indicates that the Flipside View adheres to Table View
datasource and delegate protocols. Finally drag in ‘‘04
FlipView.h --- add scaleType property,’’ which
remembers/indicates which scale the user selected from the
Table View. Now do the drags as shown in the following code
and then review Figure 4-26 to ensure that you ended up with
the file content looking like the code in the figure.

#import <UIKit/UIKit.h>
#import "Scale.h" 01 FlipView.h – add include

@class FlipsideViewController;

@protocol FlipsideViewControllerDelegate
 02 FlipView.h – add protocol message signature
// report the selection from this view
- (void)flipsideViewController:(FlipsideViewController *)controller
selectedScale:(Scale *)scale;

// report that the user is done with this view
- (void)flipsideViewControllerDidFinish:(FlipsideViewController *)controller;
@end

 03 FlipView.h – add protocols adheres to

@interface FlipsideViewController : UIViewController <UITableViewDataSource,
UITableViewDelegate> {

}
@property (weak, nonatomic) IBOutlet id <FlipsideViewControllerDelegate>
delegate;
@property (readwrite, atomic) enum eScaleType selectedScaleType;

 04 FlipView.h – add scaleType property
- (IBAction)done:(id)sender;

@end

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Building a Utility Application 184

Figure 4-26. Drag the first four DemoMonkey snippets into your FlipsideViewController.h file.

4. You’re now going to go back to your Storyboard file and hook
up the Table View. So while still in the dual-screen Assistant
mode, open up Storyboard as shown in Figure 4-27.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Building a Utility Application 185

Figure 4-27. Reopen Storyboard.

5. You want to add an IBOutlet connecting the TableView to the
FlipsideViewController. As shown on the left-hand side of
Figure 4-28, start by locating the Flipside View Controller Scene
in the document outline. Next open the
FlipsideViewController, and then the view, and finally when
you get to the Table View, click to select it and then Control-
drag from it over to the FlipsideViewController.h file just
under the second @property as shown in Figure 4.28. Once
you’re there, release it.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Building a Utility Application 186

Figure 4-28. Connect the Table View to the FlipsideViewController.

6. We’ll name it Table View (tv) Scale Table (tvScaleTable). Once
you’ve named it, click the Connect button as shown in Figure
4-29. By using the Control-drag technique, as you already
know, Xcode has now created the property declaration for you,
along with the property synthesis and the clearing of the
property at object deallocation, the last two of which were
modifications it made in the class implementation file.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Building a Utility Application 187

Figure 4-29. Name the IBOulet tvScaleTable.

7. It’s a good habit to make sure that when you Control-drag into
code, you always check that the connection was correctly
made. This is easy to see if you look for it. Looking at Figure
4-30, you see two dots, one showing that the @property has a
connection with a Storyboard object and the second indicating
that the IBAction has a connection. Now, if you move your
mouse pointer over the dot next to the new @property, you’ll
see the Table View highlight in the Storyboard View, indicating
that the connection has been established. Nice, right? Now go
hover over the IBAction dot to see what’s connected to the
action! (Hint: it should be the Done button.) You’ve completed
adding code to the FlipsideViewController.h (header file). Now
move on to its implementation file.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Building a Utility Application 188

Figure 4-30. Make sure the IBOutlet connected.

8. The open implementation file should look as shown in
Figure 4-31.

Figure 4-31. Open the FlipsideViewController implementation file.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Building a Utility Application 189

9. The FlipsideViewController has a method and an instance
variable that do not need to be referenced publicly (that is, from
outside the class itself.) Therefore, we choose to declare them
as private at the top of this implementation file. We have a
mutable array of musical scales and we're going to have a
property in which we record the scale that’s been selected by
the user. Drag the ‘‘05 FlipView.m --- add private interface’’
snippet from DemoMonkey into your implementation
immediately to the right of the @interface
FlipsideViewController () line of code. You should end up
with the code looking like Figure 4-32.

Figure 4-32. Create the private interface.

NOTE: Private instance variables, methods, and properties are declared most often
by placing them in the unnamed category at the top of the implementation file. You'll
notice that the latest templates generated by Xcode already have this private
interface declared for you at the top of generated implementation files. This serves to
remind you where to put these items as you’re adding code to these generated files.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Building a Utility Application 190

You now want to synthesize the scale type that you created, so drag in ‘‘06
FlipView.m --- add scaleType synthesis’’ from DemoMonkey and place it under
the @synthesize tvScaleTable = _tvScaleTable; line as shown in the following
code:

@implementation FlipsideViewController

@synthesize delegate = _delegate;
@synthesize tvScaleTable = _tvScaleTable;
@synthesize selectedScaleType; 06FlipView.m – add scaleType
synthesis

10. Now that you’ve synthesized the set/get methods for the scale
type property, you want to load the scales into memory the first
time you load the app. Drag in ‘‘07 FlipView.m --- add
viewDidload code’’ and place it directly under [super
viewDidLoad]; inside your viewDidLoad. Here you can see that
we have created eight Scale objects and added them to our
array, as shown in Figure 4-33.

Figure 4-33. Eight scale objects to add to our array.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Building a Utility Application 191

11. When the view first appears, you have a responsibility to show
what scale was viewed the last time. Or, if no scale has been
selected yet-----as in the f irst t ime that the app is used-----you’ll
show the first scale. To do this, drag in the code in ‘‘08
FlipView.m --- add viewWillAppear code’’ and place it directly
after the close of the viewDidLoad method as shown in
Figure 4-34.

Figure 4-34. Add the viewWillAppear method.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Building a Utility Application 192

12. In this step you’ll drag in four snippets of code from
DemoMonkey. First set a method that will set up the scale for
type by dragging in the ‘‘09 FlipView.m --- add
SelectedScaleforType method’’ just before the -
(BOOL)shouldAutorotateToInterfaceOrientation line. Next
replace the code inside the -
(BOOL)shouldAutorotateToInterfaceOrientation:, which would
normally determine the view of the rotation. In this case you’ll
only use Landscape (to show the guitar neck). Select the return
YES; statement and delete it. Place new code inside the
squiggly brackets by dragging in ‘‘10 FlipView.m --- replace
shouldRotateOrientation code,’’ which invokes a macro that
determines whether the passed-in rotation is one of the two
accepted Landscape orientations and returns yes if it’s one of
the two. Now, if the user has pressed the Done button, you
want to grab the musical scale and tell the Main View what was
selected and then tell the Main View to tear down this View. So
grab ‘‘11 FlipView.m --- add [done] action code’’ and place it
inside the - (IBAction)done:(id)sender squiggly brackets in
front of the line that's already there. The last of our four
snippets, shown in shown in Figure 4-35, comprises the code in
‘‘12 FlipView.m --- add Tableview delegate(s) methods.’’ Place it
right before the @end of the code. This is the UITableView
delegate code, which actually responds to the selection of a
scale by the user. Here you will see we added the
UITableViewDataSource protocol methods and the
UITableViewDelegate protocol methods.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Building a Utility Application 193

Figure 4-35. Our implementation file after adding the fourth snippet.

13. Now that you’ve taken care of the Flipside View, let's move on
to the controller! Open up the MainViewController's header file
as shown in Figure 4-36. Also, let's move out of the Assistant
editor for a little bit and work in the Standard editor. Click the
button to the left of the Assistant editor (shown back in Figure
4-25) to return the editor portion of the Xcode window to a
single editor pane.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Building a Utility Application 194

Figure 4-36. Open the MainViewController.

14. Start by adding two includes (#import "AudioPlayer.h" and
#import "PlayButton.h") located in the ‘‘13 MainView.h --- add
includes.’’ You do this because you need to get the information
from the audio and play button header files. Next, make sure
that this object supports the FlipsideViewControllerDelegate,
UIPopoverControllerDelegate, and AudioPlayer protocols. Do
that by dragging in ‘‘14 MainView.h --- add protocols’’ as shown
in Figure 4-37.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Building a Utility Application 195

Figure 4-37. Start customizing the mainView interface file.

15. Now you need to add some properties for some objects in the
Main View, which means you need to get back into the
Storyboard file. Also, select the Assistant editor so you can see
the interface code in one screen and the Storyboard in the
other. Reopen your Storyboard file as shown in Figure 4-38.

Figure 4-38. Back to Storyboard.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Building a Utility Application 196

16. You’re going to create IBOutlets again, but before you can
Control-drag from the Storyboard objects into the
MainViewController.h, you need to make sure that the second
screen is indeed displaying the MainViewController.h file. In the
document outline, click the MainViewController in the
MainViewController scene. If the right side is still configured
correctly, it will now be showing MainViewController.h. If it’s
not showing your .h file, you need to reselect automatic as
shown in Figure 4-39. If automatic is selected, then the interface
file will be shown for the currently selected scene.

Figure 4-39. Make sure your second screen is displaying the MainViewController.h file.

17. Control-drag from the Image View in the document outline to
the MainViewController.h file, just under the @property as
shown in Figure 4-40.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Building a Utility Application 197

Figure 4-40. Connect the Image View to the MainViewController.

18. This is an Image View (iv) which you want to be showing your
background image, so name it ivBackground as shown in Figure
4-41. After entering the name, click Connect.

Figure 4-41. Name the property ivBackground.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Building a Utility Application 198

19. Now let's hook up the ‘‘Play Button Area’’ View. Select it in the
document outline and Control-drag from it to under the
@property you added in the previous step. This is illustrated in
Figure 4-42.

Figure 4-42. Now you hook up the button.

20. This is just a View (vw) and is the button's place, so name it
vwButtonPlace. Once entered, click Connect as shown in
Figure 4-43.

Figure 4-43. Name the property vwButtonPlace.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Building a Utility Application 199

21. Because you want to set the title from code, you’ll also need to
hook up the Navigation Bar Title to the MainViewController. So
Control-drag from the Navigation Item - Title to below the
previous @properties as shown in Figure 4-44.

Figure 4-44. Hook up the Navigation Bar Title.

22. This is a navigation item (ni) and it’s the title, so name it niTitle
as shown in Figure 4-45.

Figure 4-45. Name the property niTitle.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Building a Utility Application 200

23. While you’re here, you need to set the datasource and delegate
for the table to the FlipsideViewController. We forgot about
this in the video, and the book follows directly along with the
code generated by the video. Right-click the Table View cells
and connect the datasource to the FlipsideViewController as
shown in Figure 4-46.

Figure 4-46. Start setting the datasets and delegates for the flipside.

24. Connect the delegate as shown in Figure 4-47.

Figure 4-47. Now connect the delegate.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Building a Utility Application 201

25. Open up the MainViewController’s implementation file as
shown in Figure 4-48.

Figure 4-48. Open up the MainViewController’s implementation file.

26. Leaving the Assistant editor mode and going back to the
Standard Editor mode (one screen), drag in two DemoMonkey
snippets. First add in the includes: #import "Scale.h" and
#import "PlayButton.h" with ‘‘15 MainView.m --- add includes.’’
The MainView also has a private interface, so also drag in ‘‘16
MainView.m --- add private interface.’’ In this case you have
instance variables for the selected scale, the audio player, and a
reference to the last play button pressed. You also have two
private properties that contain references to your two play
buttons, and last, you have some methods that are invoked
when the electric guitar or acoustic guitar play buttons are
pressed. This is illustrated in Figure 4-49.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Building a Utility Application 202

Figure 4-49. The implementation file after the next two code additions.

27. You now need to synthesize the private properties, so drag in
‘‘17 MainView.m --- add synth of private buttons’’ as shown in
Figure 4-50.

Figure 4-50. More synthesis is necessary for acoustic and electric guitar play buttons.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Building a Utility Application 203

28. Remember that when the view loads the first time you want to
continue setting up the application, so within the viewDidLoad
method you set up details of the audio player and keep track of
the last button that was played. Also round the corners of the
buttons themselves, as well as the corners of the button place
View you've just had. You also need to hide the buttons when
you start. Drag in ‘‘18 MainView.m --- add viewDidLoad code’’
and place it under the comment of the super viewDidLoad (// Do
any additional setup after loading the view, typically
from a nib) as shown in Figure 4-51.

Figure 4-51. Customize the viewDidLoad method.

29. In viewDidUnload, you need to remove your two private buttons
from the view and remove references to them. Here you’ll need
to drag in ‘‘19 MainView.m --- add viewDidUnload code’’ and
place it in the viewDidUnload method as shown in Figure 4-52.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Building a Utility Application 204

Figure 4-52. Customize the viewDidUnload method.

30. When the view first appears, you're going to set up the title so
that the user is told to go ahead and select a scale for the first
time. Drag in ‘‘20 add viewWillAppear code,’’ placing it
immediately after the viewDidUnload method you just modified.
Drag in ‘‘21 MainView.m --- add playButtonsAreHidden method’’
and place it right after the closing parenthesis of -
(void)viewWillAppear as shown in Figure 4-53. You’ll do the
same thing with orientation left and right. Drag in ‘‘22
MainView.m --- replace shouldAutoRotate code’’ and after
deleting the existing autorotate code (return YES;), place this in
its place. You also want to hide the buttons when you start so
that the user will be prompted to first choose a scale. Drag in
the ‘‘23 MainView.m --- add flipsideViewControllerDidFinish’’
code as the new first line of that method.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Building a Utility Application 205

Figure 4-53. After the second of your four code additions.

31. You also want to set a method that will identify the scale that
was selected by the View Controller. Drag in ‘‘24 MainView.m ---
add fccSelctedScalemethod’’ and place this after
flipsideViewControllerDidFinish as shown in Figure 4-54.
And you need to tell the view what scale is selected so that it
will show itself. Drag in ‘‘25 MainView.m --- add prepforsegue
code.’’

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Building a Utility Application 206

Figure 4-54. Identify the scale.

32. You need to add an audio player delegate. Drag ‘‘26
MainView.m ---- add audioPlayerDelegate methods’’ and place it
right before the @end as shown in Figure 4-55.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Building a Utility Application 207

Figure 4-55. Add the audio player delegate method.

33. Finally you need to add the methods in support of the play
button delegate protocol. Drag in ‘‘27 MainView.m --- add
playButtonDelegate methods’’ and place it right before the @end
as shown in Figure 4-56. And that is it! Click Run and see your
beautiful app run.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Building a Utility Application 208

Figure 4-56. Add the PlayButtonDelegate methods.

34. It starts up and asks you to select a scale; when you select a
scale, the first image appears. In this case, we first selected
Major Pentatonic and then, as shown in Figure 4-57, we’re
about to choose a new scale. When the new scale is selected,
the image changes dynamically. Figure 4-58 illustrates how the
button appears when you say Done. Figure 4-59 shows how
you can switch between looking at the scales on an acoustic
guitar and an electric guitar.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Building a Utility Application 209

Figure 4-57. It works!

Figure 4-58. Now when we say Done … the button appears.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4: Building a Utility Application 210

Figure 4-59. You can change the type of guitar by pressing the play buttons.

www.it-ebooks.info

http://www.it-ebooks.info/

211

5
Storyboarding a
Page-Based App
Our fourth Storyboarding app is a pretty zany endeavor to say the least. You’ll
be building a Page-Based Application that will house a dynamic, electronic
brochure that actually consists of 4 mini-brochures. The fun thing is that your
‘‘client’’ is a time travel agency that has the ability to travel forward and
backwards in time! We’re calling this the futureTravel application, and you will
learn many cool tools and methods as you use it to move forward in your
Storyboarding skills.

Note that apps 1 through 3 were based on standard Storyboarding skills with an
emphasis on the code. Apps 4 through 7 will focus on advanced Storyboarding
features and methods that build on the theoretical code covered in earlier
sections.

FutureTravel encapsulates four brochures in one. This means that as the user
lands on the second page of four, the user may choose one of the four possible
destinations. After this choice is made, the remaining two pages are then
automatically customized to the user’s choice of destination. If the user decides
that she wants to explore the other three destinations, futureTravel allows her to
simply page back and select a different destination and then page forward again
with new dynamic pages associated with the new choice of destination.

Using the Page-Based Application template is all about replacing the built-in
data model with your own. The page navigation simply lets you view the pages
generated from this underlying model. You’ll use the iPad layout as it gives you
more room for text on the pages of your travel flyer. You’ll replace the built-in
model with your own set of pages, with an image for the page and the page
number. You’ll encapsulate this page data in its own class (object with own
.h/.m files). And you’ll build the array of pages data at runtime in the
ModelController startup methods. In the Storyboard file you adjust the UI to
your liking.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 212

futureTravel: A Page-Based App
We divide this project into five steps. First you create the project from a
template and then you prep the Storyboard. Steps 3 through 5 consist of coding
the ModelController, DataViewController, and RootViewController. This
project will become quite hierarchical in nature, so you may want to note the
general outline of our coding strategy:

1. Create from Template: First we start a new Page-Based
Application called futureTravel, with com.apress, iPad, and
using ARC. Then we adjust project settings by deselecting
portrait and upside-down capabilities. Next we drag in assets
such as the Default-Lanscape*~ipad.png and the
ModelPageData class files (.h & .m) to the futureTravel group. To
test that it’s all working, we build the project.

2. Prep Storyboard: Two parts to think about here: the Root View
and the Data View. For the Root View we color the view
background: RGB(254,196,37), the color of Apress yellow. The
Data view is a little more complex. Here we also color the view
background: RGB(253,224,145), a lighter version of Apress
yellow we used earlier, but we need to do more here. We
remove subordinate view and add a UIImageView in its place,
which will be the same as our load image (20,20 984x679). This
will not have any user interaction. With this done, we adjust all
four edges and autosize in both directions. We also adjust the
placement and configuration of the label and place it correctly.
Finally we change the text to right-aligned and its color to Dark
Gray Color.

3. Code ModelController.

4. Code DataViewController.

5. Code RootViewController.

Preliminaries
We created the assets for the program, which consist of a launch image and the
first two images (travel introduction and destination selection), and then we
created two images for each of the four destinations. We generated @2x

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 213

versions of all these files, which will automatically be used if we run this
application on the new iPad (Retina display version). We also created a special
image, used to mark the client’s destination selection. This leaves us with a total
of 23 images generated for this project. You can download the images, assets,
extras, and DemoMonkey files here: http://www.rorylewis.com/xCode/
StoryBoarding%20in%20Xcode/Chapter05_futureTravel%20Assets.zip. You can
download the source code we programmed while filming the video here:
http://www.rorylewis.com/xCode/StoryBoarding%20in%20Xcode/Chapter05_futu
reTravel.zip. As always, we suggest that you clean up your desktop, download
all the images, and open up your DemoMonkey file before you begin.

Step 1: Create from Template

Figure 5-1. iBooks and our app, the Page-Based Application.

1. Before proceeding too far let’s make sure you understand when
you’d want to use a Page-Based Application. After Apple
released the iBook app in the App Store, there was an
immediate demand to code the cool page-curling effect. In
response, Apple introduced a new template called Page-Based
Application in Xcode 4. The Page-Based Application uses a
single View Controller that dynamically replaces content based
on each page the user navigates to. It’s somewhat strange for

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 214

Apple to provide the one and only instance where Xcode
provides a template that is so far beyond the stripped-down,
basic foundation it usually provides. With the Page-Based
Application, Apple actually provides a sample application.
However, we will go over some cool tricks and hidden traps very
carefully in this chapter.

NOTE: You will want to use the Page-Based Application template when you want to
create a project containing an application designed to display a page for each new
view.

Figure 5-2. Start a new Page-Based Application project in Xcode.

2. Open Xcode, press ++N, select a Page-Based Application,
and click Next as shown in Figure 5-2.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 215

Figure 5-3. Name the app futureTravel and then deselect Portrait and Upside Down.

3. Enter com.apress as the Company Identifier. We won’t use a
class prefix. Make sure to select iPad and check Use
Automated Reference Counting. Do not check Include Unit
Tests (Figure 5-2). Once created, save it onto your desktop. You
will see the new futureTravel project open up. As mentioned,
we’re making this app for the iPad only-----we’ll also make it
Landscape only for the text images that we will be using. They
have text orientated in Landscape orientation, so uncheck
Portrait and Upside Down as shown in Figure 5-3. Interesting to
see what is missing here … can you see it? Notice there’s no
option of not using the Storyboard with this Page-Based App.

NOTE: When using the Page-Based model template, you have one goal: to go in and
replace the model for the page content with your own model for the page content.
You will now start this by adding your own data object and reworking the existing
object to use the new data object.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 216

Figure 5-4. Drag the startup images into your root directory.

1. Open up your futureTravel Assets folder you downloaded from
http://www.rorylewis.com/xCode/StoryBoarding%20in%20Xcode
/Chapter05_futureTravel%20Assets.zip and unzip it onto your
desktop. Select both of the startup images Default-
Landscape@2x~ipad.png and Default-Landscape~ipad.png and
drag them over to the root directory. Notice that you also have
images for the new iPad (the Retina iPad), if you choose to
compile this app directly onto the Retina iPad, as shown in
Figure 5-4.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 217

Figure 5-5. Make sure you copy the startup images into your project.

2. When the ‘‘Choose options for adding these files’’ dialog pops
up, check ‘‘Copy items into destination group’s folder.’’ Also
check ‘‘Create groups for any added folders.’’ Make sure your
target is futureTravel and that it is checked (Figure 5-5).

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 218

Figure 5-6. Xcode automatically brings in the images.

3. Notice that Xcode detects that these images are for the
Landscape and the Retina display and automatically drops them
into the appropriate Launch Image boxes as shown in
Figure 5-6.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 219

Figure 5-7. Drag the Images folder into the Supporting Files folder.

4. Now select the entire Images folder and drag it into the
Supporting Files folder as shown in Figure 5-7.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 220

Figure 5-8. Copy the startup images folder into your project.

5. As in step 5, when the ‘‘Choose options for adding these files’’
dialog pops up, check ‘‘Copy items into destination group’s
folder’’ and ‘‘Create groups for any added folders.’’ Make sure
your target is futureTravel and that it is checked as shown in
Figure 5-8.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 221

Figure 5-9. Notice the new group that Xcode has now created for you.

6. Xcode instantiates a brand new group inside the Supporting
Files folder as shown in Figure 5-9.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 222

Figure 5-10. Drag in the Data class.

7. Because we’re focusing on the Storyboard aspect, we decided
to create the data model code for you. We describe this code in
detail later in the chapter, but for now just select both the
ModelPageData.h and the ModelPageData.m files and drag them
into your project as shown in Figure 5-10. If you have one of the
older versions of Xcode, you may have to instruct Xcode to
build these new files. (By the time this book comes out, this may
be fixed.) Step 12 shows you how to tell XCode to build these
new files.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 223

Figure 5-11. Copy the files.

8. Again check all the proper boxes as shown in Figure 5-11.

Figure 5-12. Manually add the new file to be built, if not already there.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 224

9. Click futureTravel at the root of the Navigation tree. In Target
settings on the left, pick the Build Phases tab at the top. Now
expand the Compile Sources section. If you don't see the
ModelPageData.m file in this list, click the + (plus) button, select
the ModelPageData.m implementation file, and click Add as
shown in Figure 5-12. This will add ModelPageData.m to the
project. In case the desired files aren’t shown in the "Choose
items to add" list, click the Add Other button and find the files
you want to add in your directory structure.

Figure 5-13. Another way to do this…

10. This is not the only way to do this if, by the time you read this,
Apple has not fixed it. If you go to your futureTravel folder,
right-click it, and select Add Files to futureTravel, as shown in
Figure 5-13, and then go out to your folder on your desktop and
select the files, it automatically adds the sources to the compile
list. This way you have two different ways to get around this
minor bug with the new Xcode working in Lion.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 225

Step 2: Prep Storyboard

Figure 5-14. Open Storyboard.

1. We’re going to work on the real thing now: the Storyboard.
Let’s open your Storyboard! Go to the Project Navigator and
click your Storyboard file as shown in Figure 5-14.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 226

Figure 5-15. Wow! The Storyboard itself is already set up!

2. When you open the Storyboard, you will probably be amazed
how the Page-Based Application template has instantiated a
fully working paging app! You see two scenes, the Root View
Controller and the Data View Controller, as shown in Figure
5-15. Remember that the Root View Controller is the frame that
shows the pages. The Data View Controller shows you an
instance of a page. It’s sometimes difficult for students to get it
that all the pages will be procured through each instance of the
Data View Controller. You don’t get to add a whole lot of other
UI elements into this, but you can tweak it.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 227

Figure 5-16. Change the color of the Root View Controller to Apress Yellow

3. You're going to change the background color of the Root View
Controller from the default brown color to the Apress yellow.
Start by clicking the Root View Controller. You can see that in
the View being highlighted on the left side of Figure 5-16. The
Apress colors are Red@254, Green@196 and Blue@37. Change
the three primary colors in the Colors dialog as shown in the
right image in Figure 5-16.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 228

Figure 5-17. Adjusting the Data View Controller.

4. We do like the frame Apple gave us here, but we will arrange
some of the other default attributes as follows. We want to keep
the label but we want it to be at the bottom. Simply grab it and
move it down to the bottom by selecting it in the Document
Outline as shown on the left side in Figure 5-17. Or simply click
the actual label itself and drag it down. Use the guideline to
center it as needed. Open the Attributes Inspector tab and make
the text align to the right as shown on the right side in Figure 5-
17. Lastly, change the Text Color property to Dark Grey Color as
shown in Figure 5-18. Also move the internal content View up a
little, so i t doesn’t i ntersect w ith the Label-----you can either drag
it up using the mouse or select it, going to the Size Inspector
pane on the right and changing the Frame Rectangle’s Y
attribute to 20.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 229

Figure 5-18. Set the font color.

5. You need to house images in the scene, so drag an Image View
from the Library and place it inside the current View in the
center of the scene.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 230

Figure 5-19. Replace and delete the old view.

6. If you didn’t care about the amount of objects you have, then
you could leave the nesting o f l ayers as they a re-----but there is a
lesson here. What you want to do is develop good practices, so
what we want you to do is replace the View with the Image
View. Look at Figure 5-19: in 1 you select the Image View. In 2
you drag it above the View and below the Label - Label. In 3 you
select the old View. In 4 you delete this old View you just
selected. In 5 you select the Image View so you can bring it
back to position on the Storyboard in the next step.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 231

Figure 5-20. Move the View to its correct position.

7. Move the main View until you see the square dotted lines on
both the left and right upper sides of the Data View Controller as
shown in Figure 5-20.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 232

Figure 5-21. Make sure the Image View scales correctly.

8. Click the Image View and then go to the View in Size Inspector
and see that the red rectangle in the Example scales
appropriately. It will look like it stretches with the window, and
this is correct. But the label needs to be grounded, so click the
label and in the Autosizing box select the bottom, left, and
horizontal middle red anchors. Deselect the top one. Your label
should be grounded as shown in Figure 5-21. This means that
as the View that contains the label changes its size, the label
maintains its proper position and size. The property you’ve just
set visually by selecting appropriate anchor points is called
autoResizingMask. Every UIView subclass has it. In fact, it’s a
very handy attribute, especially when you’re developing an app
that supports multiple device orientations.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 233

Figure 5-22. Select the View that holds the label and Image View for a final edit.

9. We have one more adjustment to make to the main View. Select
the main View that holds the Label - Label and the Image View
as shown in Figure 5-22.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 234

Figure 5-23. Change the color of the View to Apress yellow.

10. Once you’ve selected the View, in the Attributes Inspector open
the Colors dialog by clicking the Background color swatch.
Open the RGB selection from the drop-down menu and set
Red@253, Green@224, and Blue@145 as shown in Figure 5-23.
Close it. You now can run the app and see what you have.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 235

Figure 5-24. A beautiful launch image starts the app.

11. Sure enough, once the app builds and runs, it begins with the
beautiful launch image you inserted that displays while the
application finishes starting up. Notice how it automatically
starts in Landscape regardless of how you’re holding it. The
image also fits beautifully onto the page as shown in
Figure 5-24.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 236

Figure 5-25. Beautiful page curls all done for you.

12. As mentioned at the beginning of this chapter, it’s
unprecedented for Apple to provide such a turnkey Xcode
framework. Once the launch image is completed, you go
immediately to the first page and see the Apress yellow, the
grey font, and the p lacement o f the l abels------all of which you
took care of in the Storyboard. Then, selecting the page to turn
on the very right hand side of the page, as shown in Figure
5-25, you see a beautiful page curl appear, all without coding a
single line. Wow! The only thing missing now is your page
content, which is what we do in step 3 of 5. So let’s get to it!

Step 3: Code: ModelController
Before you start coding, we’d like to take a minute to recap, look around, and
view the forest as well as the trees. You have three steps left. The first was
setting up the project. The second was adjusting your Storyboard. Now you will
code step 3, the ModelController, step 4, the DataViewController, and step 5,
the RootViewController. There is a good reason for these three steps, because
the Page-Based Application provides exactly these three classes:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 237

RootViewController, ModelController, and DataViewController. You will now
spend the rest of this chapter coding these three classes.

NOTE: We strongly suggest that when you use the Page-Based Application template
for your own projects, you too divide your project into five steps: first, preliminary
files allocation; second, Storyboard adjusting; and lastly coding the three provided
classes.

An easy way to remember these classes in the Page-Based Apps is as follows:

 The DataViewController manages the actual data and Views
you want your user to see.

 RootViewController keeps track of current and new Views
(pages) requested by your user.

 ModelController receives and creates new Views (pages)
requested from RootViewController.

So now that you have a refresher on where we’ve been, where we’re at, and
where we’re going, let’s start coding.

NOTE: We’re going to go a little out of order and start with the ModelController
first. The reason for this is that if you start building the code in order,
DataViewController to RootViewController to ModelController, then it
will be difficult to test whether the code is building correctly. Alternatively, building it
in the reverse order as we are coding, you can literally press +B at the end of
every section, and if there are no compile errors or warnings you know you’re doing it
correctly. Essentially, we’re going backwards so that we can test by building as
we go.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 238

Figure 5-26. Open the ModelController.m and set the stage.

1. You need to first reorganize the Xcode windows for coding.
First select the ModelController.m implementation file and then,
looking at the right-hand image In Figure 5-26, if your Standard
editor is on, deselect it by selecting the Assistant editor. Keep
the Navigator on, close the Debug area, and deselect the
Utilities pane as shown in Figure 5-26.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 239

Figure 5-27. Your Xcode canvas for coding and following along with us.

2. Once you’ve set the Xcode stage with the ModelController
implementation file on your left pane and its header file on your
right pane, open up DemoMonkey and, depending upon the size of
your screen, place it at about the same position shown in
Figure 5-27.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 240

Figure 5-28. Drag in your first snippet from DemoMonkey.

3. We want to add a new property called destinationNumber
because in the travel flyer you’re making, you have four possible
destinations that you want to see as you’re paging through the
flyer. As we move forward we will dig deeper into this property.
For now, start by dragging the ‘‘01 ModelController.h --- add new
property’’ snippet from demoMonkey into the header file
immediately under the @interface ModelController line of code
as shown in Figure 5-28.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 241

Figure 5-29. A general review of how to set out your files.

4. Before you go too far dragging snippets onto the
ModelController.h file, let’s quickly go over the format we use
in setting up each page, which is the format we strongly suggest
that you adhere to. From the top, our public interface, a section
for instance variables, properties, and then our instance
methods at the end. We will call these sections as we guide you
to where you should place your DemoMonkey snippets as shown
in Figure 5-29. This view, however, is with the Assistant editor.
We’ll be switching back and forth between the Assistant editor
and the Standard editor as shown in Figure 5-30.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 242

Figure 5-30. Same header file but now viewed in the Standard editor.

5. The reason we’re going over this is because, as you know,
these screen shots are directly from the video, and because we
switch between the Assistant and Standard editors constantly,
you need to be able to recognize them. For example, Figure
5-30 shows the same header file shown in Figure 5-29, except
we’ve switched off the Assistant editor and clicked the Standard
editor.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 243

Figure 5-31. Open the ModelController implementation file and drag the first of the three snippets into
the implementation file.

6. Open the ModelController.m. You will drag in three snippets.

 First drag in the ‘‘02 ModelController.m --- add import of
pageData object’’ snippet, which connects the implementation
file with the class you brought into the project in Figure 5-10.
We will dig deeper into why we connect it and what the class
does, but for now just import it as seen on line 12 in
Figure 5-31.

 Now looking at line 14, right after the /*, delete the first line of
text and replace it with ‘‘03 ModelController.m --- replace one-
liner description’’ just to remind yourself that this is a controller
object that manages an array, or collection of data objects.

 This model was originally written to support the number of
elements in an array, but that’s no longer true for us. We have
a fixed value for max pages, so what you will do is after adding
the property synthesis for the new property you’ve added is
simply add a definition for the number of pages.

NOTE: Another way you could have done this would be to make a property getter
override with a property for the number of pages that would always return the same
value.

The reason we chose our method to change the array with
destinationNumber = m_nDestinationNumber; rather than the
option described in the nearby gray box is because our method is
fun and teaches you a couple of really cool techniques to use with
Storyboarding:

 We have an anonymous enumeration enum that’s not
given any name.

enum {
 MAX_PAGES = 4
};

 We also work with no instance variables tied to this
enumeration. Our method abides strictly to the value that
we can now use by name.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 244

 It’s similar in a way to creating a #define directive but it’s
not treated as a text substitution by the compiler.
Instead, this mechanism creates a constant integer value
for each name within the enum, which means we’re
showing you a cool way to create a number of unrelated
named integer constants without using an array and then
use them should your application require. In our case,
we will use only MAX_PAGES. But for you, this way frees
you and opens the door to using this method for your
specific purposes in any other future applications.

Now go back and do what we’ve outlined with the bullets. Start
off by adding the property synthesis. Drag in the ‘‘04
ModelController.m --- add property synthesis’’ snippet and place it
directly under @synthesize pageData = _pageData; as shown in
Figure 5-31.

Figure 5-32. Add a definition for the number of pages and then delete the date formatting for the old
data model.

7. You need to have a definition for the number of pages your
array will be working with. Drag in the ‘‘05 ModelController.m ---
add anonymous enum’’ snippet and place it underneath the
synthesis you just placed as shown in Figure 5-32. Now you
need to take out the generation of the older model, because as
mentioned you’re not going to use dates anymore, and
substitute it with our own data. So select the three lines of code
as shown in Figure 5-32 and delete them.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 245

Figure 5-33. Replace the old data model with your data model.

8. Drag in the ‘‘06 ModelController.m --- replace init code (within if
{})’’ snippet and place it exactly in place of the code you deleted
in Figure 5-33 inside the if statement as shown in Figure 5-34.
You can see that we preset our destination Page 1 with
self.destinationNumber = 1;. You also need to set up an array
of pages, but because we don’t just have 4 pages in our flyer
but 4 flyers integrated into one, you end up with an 8-pack of
pages p lus 2 front pages, which make a total o f 10 pages-----
whereas the max number of pages for any one trip through the
flyers is 4. Here’s what we’re going to do:

 Always reserve ‘‘01-Intro.png’’ for slot 1 in the array

 Always reserve ‘‘02-Pick.png’’ for slot 2 in the array

Now we have only 2 slots left in our array and we need to stuff 8
pages into it. Solutions:

 newPageDescription ‘‘n-Aspect-ni.png’’ for slot 3 in the
array

 newPageDescription ‘‘n-Aspect-ni+1.png’’ for slot 4 in
the array

Expanding this a little more:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 246

ModelPageData …."01-Intro.png" andPageNbr:1ofMax:MAX_PAGES];…;
newPageDescription …"02-Pick.png" andPageNbr:2ofMax:MAX_PAGES];…;
newPageDescription …"1-Aspect-1.png" andPageNbr:3ofMax:MAX_ PAGES];…;
newPageDescription …"1-Aspect -2.png" andPageNbr:4ofMax:MAX_ PAGES];…;

newPageDescription …"4-Aspect-1.png" andPageNbr:3ofMax:MAX_ PAGES];…;
newPageDescription …"4-Aspect-2.png" andPageNbr:4ofMax:MAX_ PAGES];…;

What we’ve done here is overcome the obstacle of keeping an array
of 4 to handle 10 pages. But you need to adjust your
DataViewController for this to work. If you understand this well,
move onto step 35 and Figure 5-35. If you ‘re still not quite clear,
then check out Figure 5-34.

Figure 5-34. Two diagrams to help illustrate how our pages are stored in the 10 position array.

9. Figure 5-34 comprises two images that help illustrate the non-
trivial method we’re using to organize our array. The left side of
Figure 5-34 shows our Storyboard pages as four sets of
destinations with our original first two pages, but arranged in a
way that we end up with duplicates. To solve this problem we
instead layout the non-duplicate pages into a list of 10, as
illustrated on the right-hand side of Figure 5-34 and described in
detail in step 34.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 247

Figure 5-35. Take out the code pointing to the original array.

10. As mentioned, you need to adjust your DataViewController for
this method of organizing the array to work. Find the
viewControllerAtIndex:storyboard: method. Remember that,
as evident in Figure 5-34, you can’t use the array count
[self.pageData count] as shown and done for you on line 90 in
Figure 5-35. You need to change this as follows:

… if (([self.pageData count] == 0) || (index >= [self.pageData count])) {
 return nil;…

we change to:

… if (([self.pageData count] == 0) || (index >= MAX_PAGES)) {
 return nil;…

So select lines those 4 lines and delete them as shown in
Figure 5-35.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 248

Figure 5-36. Insert the new code that interacts with the new array.

11. Drag in the ‘‘07 ModelController.m --- In "ViewControllerAtIndex:
Storyboard:" replace index-check code with new’’ snippet and
drop it into the exact spot where you deleted your code in
Figure 5-35, as shown in Figure 5-36. Note that nObjectIdx +=
(self.destinationNumber - 1) * 2; is how you take care of
your new index, which returns a value of 0 thru 9 based on the
destination. But you have a problem, because it’s still grabbing
objects based on the old index (line 103 of Figure 5-36). You need
to change this in the next step.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 249

Figure 5-37. Copy the new nObjectIdx.

12. All you have to do here is replace the old index index

dataViewController.dataObject = [self.pageData objectAtIndex:index];

with the new index nObjectIdx

if(index > 1) {
 nObjectIdx+= (self.destinationNumber - 1) * 2;
 }

Select it as shown in Figure 5-37 and copy it.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 250

Figure 5-38. Paste the new nObjectIdx.

13. Paste the new index as shown in Figure 5-38. This now finishes
the changes to this method. Now you’re getting the
DataViewController for a given page index to go to the next
page, and the next page, up to 4. This will calculate the right
location within this array.

NOTE: You could have used “08 ModelController.m – in same method, replace
‘index’ with …” but most of you will copy and paste as we have done.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 251

Figure 5-39. Looking at the reverse calculation.

14. Up to this point you’ve been dealing with the forward calculation
for positions on the array. Now you need to deal with the
reverse calculations. You need to replace three lines from
indexOfViewController as shown in Figure 5-39. Select and
delete them.

Figure 5-40. Insert the new reverse calculations.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 252

15. Drag in the ‘‘09 ModelController.m ---in "indexOfViewController"
replace // for thru return with…’’ snippet and drop it into the
spot you deleted in Figure 5-39. This is shown in Figure 5-40.

Figure 5-41. Select MAX_PAGES.

16. You need to make sure that our idea of using MAX_PAGES as an
array count will work, so you need to associate it with the
pageViewController. Copy it as shown in Figure 5-41.

Figure 5-42. Paste MAX_PAGES.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 253

17. Once you’ve copied MAX_PAGES, scroll down to the line if
(index == [self.pageData count]) and paste it over the
[self.pageData count] as shown here:

index++;
if (index == [self.pageData count]) {
 return nil;
}

Replace self.pageData.count with

index++;
if (index == MAX_PAGES) {
 return nil;
}

This is shown in Figure 5-42.

Figure 5-43. Before moving on, make sure it builds.

18. Before moving on to step 4 of 5, let’s make sure that everything
builds as expected. Press +B and make sure it all builds
correctly as shown in Figure 5-43.

NOTE: You could have used “10 ModelController.m – in
viewControllerAfterViewController: replace right side of final equals with…” but most
of you will copy and paste the MAX_PAGES as we have done.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 254

Step 4: Code: DataViewController

Figure 5-44. Open the DataViewController.

1. First, keep in mind that the DataViewController is the guy that
manages the views you want your user to see and interact with,
along with the RootViewController and ModelController, which
present the pages. So open up the DataViewController as
shown in Figure 5-44.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 255

Figure 5-45. Add the delegate for the protocol for our forward declaration.

2. You need to first add a protocol forward declaration. Drag in the
‘‘11 DataViewController.h ---add protocol forward declaration’’
snippet and drop it right before the @interface as shown in
Figure 5-45. The reason you need the @protocol
DataViewControllerDelegate; forward declaration is that you’ll
need to declare a property that is a delegate which conforms to
this protocol (meaning that the methods defined by the protocol
will be implemented by the delegate class). Then when your
user selects a destination, this DataViewController is going to
tell whatever is listening (the delegate) the number of the
destination that was selected via a method in this protocol. You’ll
see this in an upcoming step.

Next, DataViewController needs a new property. You do have
your data label *dataLabel, but you created a new image view in
Storyboard and right now you don’t have a means to display
images in it. So you need to jump back into Storyboard and add
it. Let’s quickly take care of that.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 256

Figure 5-46. Open Storyboard.

3. Open Storyboard as shown in Figure 5-46, but make sure you
also click the Assistant editor, which is not shown in
Figure 5-46.

Figure 5-47. Make sure that your default settings for Assistant editor are on Automatic.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 257

4. Make sure your default settings for the Assistant editor are on
Automatic. Ours were on Manual from earlier, and so might
yours be. Click the label saying either Automatic or Manual just
to the right of the two forward and back arrows as shown in
Figure 5-47.

Figure 5-48. Control-drag to the header file.

5. Once you’ve selected the Assistant editor, and it’s on Automatic,
Control-drag from the UIImageView out to the
DataViewController.h file next to your existing properties as
shown in Figure 5-48.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 258

Figure 5-49. Name the UIImageView data type.

6. Xcode knows that this is a UIImageView data type, so you don’t
have to change that once the dialog appears. You do need to
give it a name, though. This is your page image variable (iv), so
preface the name ‘‘PageImage’’ with ‘‘iv’’ (we use data type
names so we can remember what type each variable refers to).
Name it ivPageImage as shown in Figure 5-49. Okay, you’re
done doing what we forgot to do in Storyboard in the first place,
so let’s go back to the DataViewController header file (you can
switch off the Assistant editor and go back to the Standard
editor).

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 259

Figure 5-50. Add the new delegate property into the header file.

7. Drag in the ‘‘12 DataViewController.h ---insert two properties and
protocol - just before the @end’’ snippet and insert it right
before the @end. Here we inserted the new delegate property
and the definition of the protocol we forward-declared in step
44. As you can see in Figure 5-50, you have a couple of
warnings because you don’t have the implementation done yet,
which is normal. Let’s get to the implementation file and get
things working correctly!

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 260

Figure 5-51. Open the implementation file and import the page data objects.

8. Notice that because you did the drag-and-drop for ivPageImage
through the Storyboard, Xcode added the necessary
implementation code for you as well: @synthesis and the
ivPageImage in the viewDidUnload is set to nil. Now you need
to import the interface for the pageData object. Drag in the ‘‘13
DataViewController.m --- add import and pageData object
(#import "ModelPageData.h")’’ snippet and insert it under the
#import "DataViewController.h".

You also need to add some methods to the private interface.
Drag in the ‘‘14 DataViewController.m --- add methods to private
interface’’ snippet and insert it alongside, not under, the
@interface DataViewController as shown Figure 5-51.

The private method declarations added to the
DataViewController.m file are as follows:

-(void)onButtonPress:(UIButton*)sender;
-(void)showHideImageSelectionIndicator:(NSInteger)imageNbr;
-(void)placeImageSelectorButtonAtLocation:(CGPoint)location tag:(NSInteger)tag;
-(void)placeSelectionIndicatorAtLocation:(CGPoint)location
label:(NSString*)text;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 261

Figure 5-52. Bring in the setter overrides.

Note that as of yet you don’t have your delegate property
synthesized. There’s a reason for this, and you’re just about to
see it. You’re not going to synthesize the delegate setter and
getter. Rather, you’re going to add an explicit setter and getter
pair. This is a little bit sneaky because you’re going to
communicate with the delegate and the selected page by
referencing a single variable from all instances of this class. You
do this by using your static class variables (s_pDelegate and
s_nSelectedDestinationNumber) rather than instance variables.
This way every instance has the same value for these guys once
they are set. (Instance variables have separate values for each
instance of a class. Class variables have a single shared value
for all instances of a class.)

Drag in the ‘‘15 DataViewController.m --- add static variables and
their getters/setters’’ snippet and drop it in below the
@synthesize dataObject = _dataObject; as shown in
Figure 5-52.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 262

Figure 5-53. Make viewWillAppear adhere to our own text.

9. You may notice in viewWillAppear that it’s actually setting a
label text self.dataLabel.text with a description of the data
object [self.dataObject description], which turns out to be
the month object.

- (void)viewWillAppear:(BOOL)animated
{
 [super viewWillAppear:animated];
 self.datalabel.text = [self.dataObject description];
}

As you know by now, this is the default ‘‘app’’ that Apple, for our
convenience, randomly chose to use for the generic Page-
Based App sample. However, you are doing a travel flyer, so
you need to change this by dragging in ‘‘16
DataViewController.m --- in viewWill Appear: replace datalabel
assignment code with …’’ and inserting it under [super
viewWillAppear:animated]; (making sure you remove the line
that’s currently underneath it).

This now sets out the tasks that you want to execute just before
the view appears. Specifically, you want to set the image and
the new label text to the ones stored in the current pageObject:

self.ivPageImage.image = [UIImage imageNamed:self.pageObject.filename];
self.dataLabel.text = self.pageObject.pageTitle;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 263

Now, once you open up the brochure and are on the second
page, you put transparent buttons over the images:

[self placeImageSelectorButtonAtLocation:CGPointMake(50, 100) tag:1];
[self placeImageSelectorButtonAtLocation:CGPointMake(510, 90) tag:2];
[self placeImageSelectorButtonAtLocation:CGPointMake(180, 350) tag:3];
[self placeImageSelectorButtonAtLocation:CGPointMake(610, 350) tag:4];

Then put a set of markers on the images to indicate user
selection (these will be displayed one at a time):

[self placeSelectionIndicatorAtLocation:CGPointMake(190, 85) label:@"1"];
[self placeSelectionIndicatorAtLocation:CGPointMake(660, 100) label:@"2"];
[self placeSelectionIndicatorAtLocation:CGPointMake(345, 360) label:@"3"];
[self placeSelectionIndicatorAtLocation:CGPointMake(750, 330) label:@"4"];

You’re also choosing to show and hide the markers here:

[self showHideImageSelectionIndicator:s_nSelectedDestinationNumber];

This is shown in Figure 5-53.

Figure 5-54. Change to Landscape only.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 264

10. The default template app is designed for both Landscape and
Portrait orientations, but yours is Landscape only. You need to
change this by modifying
shouldAutorotateToInterfaceOrientation: : to return true only
for Landscape. Drag in ‘‘17 DataViewController.m ---replace
rotation ok code’’ and insert in place of the return YES; code as
shown in Figure 5-54.

Figure 5-55. Add our private methods.:

11. You now need to implement all the private methods we’ve been
talking about. Drag in ‘‘18 DataViewController.m --- insert utility
methods - just before @end’’ and insert it right before the @end.

Here you implement the private methods that create and
position the hidden buttons and markers (see Figure 5-54):

placeImageSelectorButtonAtLocation and placeSelectionIndicatorAtLocation

Looking at the implementation of
placeSelectionIndicatorAtLocation: method, note that it
simply creates a UIButton instance, sets its position and
background image, and adds the marker button to the view:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 265

[btnImageIndicator setBackgroundImage:[UIImage imageNamed:@"LetsGoCloud"]
forState:UIControlStateNormal];

You also define a tag for each button so you can later show only
the one that’s currently selected by the user, as well as make it
non-touchable:

btnImageIndicator.tag = [text intValue] + 10;
btnImageIndicator.userInteractionEnabled = NO; // not touchable!

We also have coded our buttons so that if your user taps on any
of the four hidden buttons, an action method gets called:

-(void)onButtonPress:(UIButton*)sender
{
 s_nSelectedDestinationNumber = sender.tag;
 [self showHideImageSelectionIndicator:s_nSelectedDestinationNumber];
 [self.delegate
dataViewControllerSelectedDestination:s_nSelectedDestinationNumber];
}

When it’s called it invokes the delegate method [self.delegate
dataViewControllerSelectedDestination:s_nSelectedDestinat
ionNumber]; which in turn tells your RootViewController which
page set to load.

This is shown in Figure 5-55.

12. You’re now ready to Build and see if it all works. If you didn’t
miss anything, you should see a ‘‘Build Succeeded’’ message.

Step 5: Code: RootViewController

Figure 5-56. Let’s code the RootViewController to handle the communication it will be receiving.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 266

1. Open up the RootViewController.h file. Drag in “19
RootViewController.h – add include” and insert it right after the
#import <UIKit/UIKit.h> as shown in Figure 5-56. You do this
because you need make the DataViewControllerDelegate
protocol visible to the RootViewController, because you’re
going to make it conform to this new protocol. But it’s not there
yet, so let’s add it in. Remove the closing angle bracket at the
end of @interface line, drag in “20 RootViewController.h – add
protocol,” and insert it right alongside
UIPageViewControllerDelegate, as shown here:

#import <UIKit/UIKit.h>
#import "DataViewController.h"

@interface RootViewController : UIViewController <UIPageViewControllerDelegate,
DataViewControllerDelegate> {
}

@property (strong, nonatomic) UIPageViewController *pageViewController;
@end

Figure 5-57. Finish the implementation.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 267

2. You’re done with the header. It’s time to finish the
implementation. Navigate to RootViewController.m. The first
thing you want to take care of is that you no longer need
#import "DataViewController.h" because it’s in your header
file, so delete it. Note the warning on line 23 in Figure 5-57.
That’s there because your protocol method isn’t implemented
yet. So first set the delegate. Find the viewDidLoad method
implementation, drag in ‘‘21 RootViewController.m --- set
delegate (startingViewController.delegate = self;),’’ and insert it
right after the DataViewController *startingViewController
instantiation and before NSArray *viewControllers as shown
here:

DataViewController *startingViewController = [self.modelController
viewControllerAtIndex:0 storyboard:self.storyboard];
startingViewController.delegate = self; // tell object we want to hear from it
 NSArray *viewControllers = [NSArray arrayWithObject:startingViewController];

You have to do this because you, not Apple, support this
delegate, so you need to insert code to actually set the
delegate. The RootViewController will now receive the
messages from the DataViewController.

Figure 5-58. Support Landscape only.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 268

3. Again you need to show that you support Landscape only. Go
to shouldAutorotateToInterfaceOrientation:, delete the
return YES; line of code, drag in ‘‘22 RootViewController.m ---
replace rotation ok code,’’ and insert it as shown in Figure 5-58.

Figure 5-59. Adjust the PageViewController.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 269

4. You need to adjust the PageViewController now, considering
that with an iPad, if you’re in Portrait it will be a single
presentation. If you’re in Landscape, it goes to a dual page
presentation with left and right pages by default. You’re not
going to do this. You’re going to use the Portrait-only option
(although displaying the app in Landscape mode). So find the
pageViewController:spineLocationForInterfaceOrientation:
method, select the bottom portion of its code that’s related to
the Landscape option (it starts with the // In landscape
orientation… comment), and delete it as shown in Figure 5-59.
Lastly, remove the surrounding if
(UIInterfaceOrientationIsPortrait(orientation)) {}
statement, so only the code inside the if-statement is left in the
implementation.

Figure 5-60. Final view of the pageViewController

5. Figure 5-60 is a final view of the deleting we did in the previous
step. It doesn’t fit in the figure so we’ve placed it here in smaller
font for your convenience:

- (void)pageViewController:(UIPageViewController *)pageViewController
didFinishAnimating:(BOOL)finished previousViewControllers:(NSArray
*)previousViewControllers transitionCompleted:(BOOL)completed
{}
 */
- (UIPageViewControllerSpineLocation)pageViewController:(UIPageViewController
*)pageViewController
spineLocationForInterfaceOrientation:(UIInterfaceOrientation)orientation

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 270

{
 // In portrait orientation: Set the spine position to "min" and the page view
controller's view controllers array to contain just one view controller. Setting
the spine position to 'UIPageViewControllerSpineLocationMid' in landscape
orientation sets the doubleSided property to YES, so set it to NO here.
 UIViewController *currentViewController =
[self.pageViewController.viewControllers objectAtIndex:0];
 NSArray *viewControllers = [NSArray arrayWithObject:currentViewController];
 [self.pageViewController setViewControllers:viewControllers
direction:UIPageViewControllerNavigationDirectionForward animated:YES
completion:NULL];
 self.pageViewController.doubleSided = NO;
 return UIPageViewControllerSpineLocationMin;
}
@end

Figure 5-61. Insert the delegate response methods and run it.

6. Insert the delegate response methods by dragging in ‘‘23
RootViewController.m --- add DVC - delegate method’’ and
inserting it right before the @end as shown in Figure 5-61. We
know you’ve been waiting for this for a while. Go ahead and Run
it!

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 271

Figure 5-62. Initial splash

7. The initial splash screen to the four-page flyer is shown in Figure
5-62, with the red circle showing from where to swipe (or tap) to
turn the page.

Figure 5-63. The page navigation

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5: Storyboarding a Page-Based App 272

8. Once the user enters the flyer they see that we have four
destinations. As the user taps on them, they see that they are
clickable. The ‘‘Let’s go here’’ indicator appears on the one the
user has tapped and is immediately hidden on the one the user
last tapped. You want to make sure that whatever image the
user selects correctly selects the expected next page when they
tap to go to the next page as shown in the right-hand picture in
Figure 5-63. Sure enough, the trip to Los Angeles 2 million years
ago appears. Similarly, Figure 5-64 shows Cape Town, 1.3
million years ago. Wow!

Figure 5-64. More views

www.it-ebooks.info

http://www.it-ebooks.info/

273

6
Chapter

Mastering Table Views
with Storyboarding:
Core Data Setup
The last two apps you’ll work on in this book are more complex and
professional. Accordingly, we are dividing each one into three chapters. The
Master-Detail Application: bookManager app is covered in Chapters 6, 7, and 8.
The final app, Single View #3: wanderBoard, is covered in Chapters 9, 10,
and 11.

In this chapter, you’ll begin to develop a fairly intricate book manager
application that will demonstrate how Storyboarding simplifies the building of
apps that extensively utilize Table Views. Before diving in to this project,
appreciating a little bit about the iOS history behind the Master-Detail
Application will help you decide whether to use this template in the future.
Remember how in Chapter 4 you used the Utility Application template to make
an iPad Split View (see that chapter’s Figure 4-57)? You created a Main View by
coding a MainViewController and then created a Secondary View by coding a
FlipSideViewController.

Well, that wasn’t always so easy. When we first began coding for the iPad with
the iOS SDK 3.2, it took a whole lot of work to create a Split View. Now in iOS 5
Apple has integrated the Split View-based Application template into the
Navigation-based Application template and called it the Master-Detail
Application template. Simply put, when you use the Master-Detail Application
template and a user runs your app on an iPhone, it acts like it was programmed

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Mastering Table Views with Storyboarding: Core Data Setup 274

with a Navigation-based Application template. When a user runs your app on an
iPhone, it acts like it was programmed with a Split View-based Application
template.

On the Internet, most Master-Detail Application ‘‘tutorials’’ show instructions for
coding the Split View Controller, not using Storyboard but still doing things the
old-fashioned way-----by going back to xibs. That method ignores the reason why
Apple created the Master-Detail Application template. Remember to use the
Master-Detail Application template when you know you’ll be working with lists,
databases, and tables-----particularly if you want to let the user drill down through
your data in a hierarchical manner.

In this app, you’ll learn Storyboarding for lists and tables using the Master-Detail
Application template. You’ll also learn how to connect this data dynamically to a
SQLite database. We’ve included the database component because it’s
certainly a game changer when you can say you know how to hook up data to a
database. Finding Xcoders who have any experience at all with SQL is difficult
for employers. As if that weren’t enough, we will also introduce you to
MagicalRecord, an open source library available on GitHub and used by many of
the coders. MagicalRecord is a very efficient and amazingly easy-to-use
framework created by MagicalPanda Software specifically for interacting with
Core Data.

We explain all that later in the chapter. For now, feel good that you are about to
embark on learning how to encapsulate the following:

 SQLite

 GitHub (a repository for software development projects using
the git revision control system)

 Core Data into a Master-Detail Application template!

Awesome!

bookManager: A Master-Detail App
The bookManager app keeps track of a select group of Apress books, including
their categories, titles, and authors. It also provides the ability to add, edit, and
delete books in the SQLite database.

The top of the hierarchical tree is the My Library node, which has two
categories, Books and Authors, as shown in the left-hand image in Figure 6-0A.
Tapping Books drills down to the Categories node, where the user can choose a
category of Apress books, edit them, or go back to My Library as shown in the
center image in Figure 6-0A. Tapping Authors in the left-hand image leads to the

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Mastering Table Views with Storyboarding: Core Data Setup 275

Authors node, where the user can select an Apress author, edit the authors, or
go back to My Library as shown in the right-hand image in Figure 6-0A.

Figure 6-0A. The bookManager app’s My Library at the root level.

The bookManager app has three views in which one can see the Apress books.
First, as illustrated in Figure 6-0B, when the user taps Books from the Author
selection; second, when the user taps Books from the Categories selection; and
third, when the user wants to edit, delete, or add a book. The bookManager app
also provides two distinct dialog boxes for adding a new category or a new
author, illustrated in Figure 6-0C.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Mastering Table Views with Storyboarding: Core Data Setup 276

Figure 6-0B. Books from Authors, from Categories, and editing from Categories

Figure 6-0C. Adding a Category and adding an Author

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Mastering Table Views with Storyboarding: Core Data Setup 277

The project is divided into three chapters. In this chapter, you set up the files,
images, Core Data, and data model. In Chapter 7, you design the entire app
using only Storyboard. And in Chapter 8, you insert the code behind the
Storyboard elements and tweak a couple of Storyboard necessities.

Preliminaries
This chapter is the most challenging yet. We provide a substantial set of assets
to help you in case you get stuck along the way. Again, as in all the chapters, we
supply you with all the files and code necessary at http://bit.ly/sMRvAP and
on the book’s page at apress.com. You can also download the final version of
the app here at http://www.rorylewis.com/xCode/StoryBoarding%20in%20Xcode
/Chapter06_bookManager.zip but just downloading the final version won’t really
help you learn how to use GitHub, MagicalRecord, or SQLite, so we suggest
downloading the assets folder now and taking note of the following: when you
download the assets zip file from at http://www.rorylewis.com/xCode/Story
Boarding%20in%20Xcode/Chapter06_bookManager%20Assets.zipyou will see two
files, bookdata.plist and chapter6.demoMonkey, together with two folders,
images and MagicalRecord.

You will be using the plist file for database creation, the DemoMonkey file for the
code, and the images folder for your images. If you can’t get your head wrapped
around GitHub and MagicalRecord, don’t worry. We also provide the entire
folder MagicalRecord, which is what you end up with after going through the
GitHub exercise, so you can drag it entirely into your project and continue
following along. We suggest using MagicalRecord and exploring GitHub. It will
certainly elevate you into an elite set of coders if you can say that you have
GitHub and Core Data experience.

Clear out your desktop, download http://www.rorylewis.com/xCode/Story
Boarding%20in%20Xcode/Chapter06_bookManager%20Assets.zip unzip the folder,
and let’s get going.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Mastering Table Views with Storyboarding: Core Data Setup 278

Step 1 of 3: Set Up files, Images, Core Data
and Data Model

Figure 6-1. Start a Master-Detail Application.

1. Open Xcode, press ++N, and select Master-Detail
Application as shown in Figure 6-1.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Mastering Table Views with Storyboarding: Core Data Setup 279

Figure 6-2. Select the options for the bookManager app.

2. For Product Name, enter bookManager, and for the Company
Identifier enter com.storyboarding. We won’t use a class prefix.
Make sure to select iPhone and put a check mark next to Use
Storyboards and Use Automatic Reference Counting as shown
in Figure 6-2. Leave Use Core Data and Include Unit Tests
unchecked. Save the project to your desktop.

NOTE: We left Use Core Data option unchecked for this project template only to
prevent Xcode from generating CoreData setup code for us. Since we are going to
use MagicalRecord in this app the above-mentioned code is already integrated into it.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Mastering Table Views with Storyboarding: Core Data Setup 280

Figure 6-3. Open up your assets folder.

3. You’ll now drag assets into your project. If you have not
downloaded the assets folder from http://www.rorylewis.com/
xCode/StoryBoarding%20in%20Xcode/Chapter06_bookManager%20
Assets.zip, do it now. After saving it to you desktop, unzip it.
Select the images folder and bookdata.plist as shown in Figure
6-3. Drag both items over into the Supporting Files folder inside
the bookManager folder as indicated by the arrows in Figure 6-3.
Your Supporting Files folder should look similar to our
Supporting Files folder shown in Figure 6-3.

4

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Mastering Table Views with Storyboarding: Core Data Setup 281

Figure 6-4. Copy items into destination group’s folder.

4. You need to make sure that the actual contents of the file and
the plist are inherent in the app, so make sure you select ‘‘Copy
items into destination group’s folder (if needed)’’ and ‘‘Create
groups for any added folders’’ and that your target will be this
app, bookManager. This is illustrated in Figure 6-4.

Figure 6-5. Add the CoreData frameworks to the project.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Mastering Table Views with Storyboarding: Core Data Setup 282

5. You’ll be using a database quite extensively i n this app-----this is
part of the Core Data framework. Coding a database from
scratch would take a huge amount of resources, time, and
effort. Core Data provides pre-built classes and tools for data
management, and it’s done in a way that you simply build your
custom code on top of the basic functionality provided in Core
Data. To set this up, select the main project file in the Project
Navigator, select bookManager under Targets, and click the Build
Phases tab as shown in Figure 6-5.

Figure 6-6. Click the add button.

6. Once the Build Phases tab is open go to the Link Binary with
Libraries section and expand it. To add Core Data framework to
this list, click the add (+) button as shown in Figure 6-6.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Mastering Table Views with Storyboarding: Core Data Setup 283

Figure 6-7. Search for and then select CoreData framework.

7. After you click +, enter coredata into the search field. This will
yield the CoreData.framework icon. Select it as shown in Figure
6-7 and then click Add.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Mastering Table Views with Storyboarding: Core Data Setup 284

Figure 6-8. The CoreData.framework is now inside your bookManager target.

8. Once you’ve added the CoreData.framework, it will appear
inside your bookManager target as shown in the left-hand image
in Figure 6-8. Move it to the Frameworks folder as shown in the
right-hand image in Figure 6-8.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Mastering Table Views with Storyboarding: Core Data Setup 285

Figure 6-9. Create a new group called Source in Project Navigator.

9. While in the Project Navigator, go ahead and create a new
subgroup inside the bookManger group called Source as shown
in Figure 6-9. You’ll use this in a moment.

MAGICALRECORD

Core Data is not the emphasis of this book, so we won’t go too deeply into all its details. To make
life easier, though, we’ll bring in an open source helper that’s being used extensively by many
highly respected Xcoders—including our students who are now working at Apple. This open
source framework makes working with Core Data incredibly easy. It’s called MagicalRecord, and
it’s available on GitHub at https://github.com/magicalpanda/MagicalRecord. To
download the zip file directly, you can use https://github.com/magicalpanda/
MagicalRecord/zipball/master or you can get it from the assets folder you downloaded
earlier for this chapter. Take our advice, though, and explore GitHub. If you don’t already have a
GitHub account, you can go ahead and get one. It’s free!

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Mastering Table Views with Storyboarding: Core Data Setup 286

NOTE: Here’s a resource for getting yourself familiar with MagicalRecord’s setup:
http://yannickloriot.com/2012/03/magicalrecord-how-to-make-

programming-with-core-data-pleasant/.

Figure 6-10. Download MagicalRecord.

10. Once you’re inside GitHub, you can search for MagicalRecord or
MagicalPanda and you should arrive at https://github.com/
magicalpanda/MagicalRecord. Click the Zip button, and the
download will begin as indicated by the arrows in Figure 6-10.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Mastering Table Views with Storyboarding: Core Data Setup 287

Figure 6-11. Unzip and navigate to the MagicalRecord folder.

11. Once you have successfully downloaded the magicalpanda-
MagicalRecord zip file to your desktop, unzip it and navigate
your way to the MagicalRecord folder. Select the folder as shown
in Figure 6-11.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Mastering Table Views with Storyboarding: Core Data Setup 288

Figure 6-12. Drag the MagicalRecord folder into your project.

12. Drag the MagicalRecord folder into your project inside the
Source folder you created in step 9, as shown in Figure 6-12,
and select the same saving protocols that you did a few steps
ago back in Figure 6-2.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Mastering Table Views with Storyboarding: Core Data Setup 289

Figure 6-13. Open the project’s .pch file.

13. Now that you’ve added the MagicalRecord source code to your
project, you need to make it visible to your project so you can
enjoy all the various extensions to Core Data that it provides.
Essentially, MagicalRecord is a collection of categories that
extend main Core Data functionality and simplify its usage. All
the important header files necessary for it to function properly
are listed in the CoreData+MagicalRecord.h file. You can make
MagicalRecord visible to the entire project by simply putting this
header file into the bookManager-Prefix.pch file. Navigate to the
Supporting Files folder and click the .pch (pre-compile header)
file to open it as shown in Figure 6-13.

NOTE: Xcode has a high-level command called ProcessPCH that informs the
compiler which header files it needs to precompile and include into the project
based on information in .pch file. These pre-compiled headers are kept in a
subdirectory of /Library/Caches and then automatically included in every file
during compilation. The files included into prefix header are usually the files that
rarely change, which can speed up the compilation process. This lets you include a
file without adding an import statement to every file that uses it, thus making it
globally “visible” throughout the entire project.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Mastering Table Views with Storyboarding: Core Data Setup 290

Figure 6-14. Open the DemoMonkey file and drag the first step into the project’s .pch file.

14. Open the .demoMonkey file supplied with this chapter and keep it
in a handy place on your desktop. Start by dragging the ‘‘01
CoreData + MagicalRecord.h’’ snippet from DemoMonkey into the
bookManager - Prefix.pch file, immediately under the #import
<Availability.h> line of code as shown in Figure 6-14 and as
follows:

#import <Availability.h>
#import "CoreData+MagicalRecord.h

This header now makes the MagicalRecord framework available
throughout the project without the need to import any additional
files.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Mastering Table Views with Storyboarding: Core Data Setup 291

15. When adding a new library/framework to your project, it’s good
practice to immediately run or at least build it to check your
work, as this is a critical juncture, and errors need to be
immediately corrected before you continue to code. Click Run
and make sure your project compiles successfully. Sometimes
things change pretty quickly in the open source community, and
fact is of course beyond our control. In this book we’re using
MagicalRecord-2.0.3-12-g1d9e0db. If you followed all the steps
carefully, and your project doesn’t compile at this point, check
your version o f MagicalRecord-----if it doesn’t match ours,
replace your MagicalRecord source folder with the one provided
in the Assets bundle for this chapter and try again.

Figure 6-15. Initialize the SQLite database.

16. You’re now going to embark on a task that frustrates many
computer science students and is a huge obstacle for many
Xcoders out there: connecting a database to Xcode. In this case
you’re going to set up a SQLite database using the
MagicalRecord API, and you’re going to love it! Open the
AppDelegate.m file and drag the ‘‘02 AppDelegate.m initiate
CoreData with MagicalRecord 1’’ snippet from DemoMonkey
right before the return YES, as shown in Figure 6-15 and as
follows:

#import "AppDelegate.h"
@implementation AppDelegate
@synthesize window = _window;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Mastering Table Views with Storyboarding: Core Data Setup 292

- (BOOL)application:(UIApplication *)application didFinishLaunching
…*)launchOptions
{
 // Override point for customization after application launch.
 [MagicalRecord setupCoreDataStackWithStoreNamed:@"MyDatabase.sqlite"];
 return YES; …

NOTE: With MagicalRecord you can initialize the entire SQLite database with a single
line of code! It’s not difficult—it just requires you to focus on exactly what you’re
doing and why you’re doing it. So let’s do it!

Figure 6-16. Clean the persistence store.

17. You also need to clean your persistence store in the
applicationWillTerminate method. Do that by dragging the ‘‘03
AppDelegate.m initiate CoreData with Magic Record 2’’ snippet
from DemoMonkey and placing it as shown in Figure 6-16.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Mastering Table Views with Storyboarding: Core Data Setup 293

Figure 6-17. Creating Data Model

18. To create your data model, create data files inside a new group
called Data Model. Starting with creating the group, right-click
the bookManager folder and select New Group as shown on the
left in Figure 6-17. Once the new group is created, a folder
called New Group appears. Rename it Data Model. Right-click the
Data Model folder and select New File as shown on the right in
Figure 6-17.

Figure 6-18. Create a Core Data data model.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Mastering Table Views with Storyboarding: Core Data Setup 294

19. A dialog box asks you to choose a template for your new file. By
default the Cocoa Touch selection under iOS in the left-hand
pane is selected. Ignore this and choose the Core Data Data
Model template as shown on the left in Figure 6-18. A new
dialog box asks you whether you would like to save the data
model. Replace the default Model.xcdatamodeld with
datamodel.xcdatamodeld as shown on the right in Figure 6-18.

Figure 6-19. Create your SQLite entities.

20. Your database will hold a selection of Apress books that you’ll
define in terms of three tables (also called entities):

 The author

 The book

 The book’s category (such as iOS, Android, web, and so
on)

You need to tell the SQLite database about that. Click the + icon
at the bottom of the data model canvas and name the first entity
DBAuthor. Repeat this two more times, naming the two new
entities DBBook and DBCategory respectively, as illustrated in
Figure 6-19.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Mastering Table Views with Storyboarding: Core Data Setup 295

Figure 6-20. Create the attributes for the Category records.

21. After your three entities are created, you need to create the
attributes for each entity. We’ll go through the creation of the
Category entity in detail and then assign the remaining two for
you to do on your own with less help. With the DBCategory entity
selected, click the + button as shown on the left in Figure 6-20.
When you first add an attribute, the default name will simply be
attribute. You need a way to give each category (such as iOS,
Android, or web) a name and an ID. So, name the first attribute
categoryId. Click the + button again and name the next attribute
categoryName. Click the selection button to the right of the Type
column on the categoryId row and choose Integer 32. Then
click the selection button on the categoryName row and select
String as shown on the right in Figure 6-20.

Figure 6-21. Finish the attributes for DBAuthor and DBBook.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Mastering Table Views with Storyboarding: Core Data Setup 296

22. Now you have to repeat the process for the author and book
entities. For your Author entity, you only need an authorId,
firstName, and lastName set of attributes. Make the authorId be
Integer 32 and the first and last names String. For the Book
entity you need seven attributes (of course, you could have
many more, but for this exercise seven will suffice). You’ll bring
in the authorId and categoryId from DBAuthor and DBCategory
as foreign keys, so you find a corresponding author and
category for each book. You also need a unique bookId. And
you need four more attributes describing each book: a short
description, an image name associated with each book that
you’ll later link to the cover image of each book, the book title,
and the book’s publishing year. With that said, make authorId,
bookId, and categoryId all as type Integer 32. Make
bookDescription, imageName, title, and year all be type String
as shown in Figure 6-21.

NOTE: A foreign key points to another entity in the database and is a way to link
different entities together. For example, you’re linking a book to its author and its
category using foreign keys.

Figure 6-22. Generate classes for all the entities.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Mastering Table Views with Storyboarding: Core Data Setup 297

23. Now that you’ve defined the necessary tables and fields, you
need to generate classes for all the entities so you can
manipulate them from code. Select all three attributes DBAuthor,
DBBook, and DBCategory by selecting the first one, holding down
the Shift key, and clicking the last one. Click Editor and choose
Create NSManagedObject Subclass as shown in Figure 6-22.
An options dialog box will appear-----press Enter or click the
Create button, keeping the default settings.

Figure 6-23. Success!

24. You’ll know you’ve been successful when you see header and
implementation files for all your entities neatly lined up inside
your Data Model folder. This may not seem like a big deal now,
but when you have a few hundred entities in you database,
having Xcode automatically create these is a miracle of sorts.
You can now add custom methods to each of these entities.
Make sure your Data Model folder, entities, and attributes look
exactly like ours in Figure 6-23 before moving on.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Mastering Table Views with Storyboarding: Core Data Setup 298

Figure 6-24. Before moving on …

25. Also before moving on, you should check a couple of things so
you’re aware of what you’ve created so far. Click the
DBCategory.h file. As you can see in Figure 6-24, Xcode has
generated all the properties for you based on the data fields
you’ve specified in your data model over the last few steps.
What you’ll be doing over the next few steps is adding methods
to these properties so that you can retrieve the data.

NOTE: Over the next six steps, all the methods you’ll be adding essentially do the
same thing: they either create or delete a new entity with the values provided in a
dictionary or they allow you to retrieve other data based on foreign key relationships,
such as books wanting authors’ names and authors wanting category names.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Mastering Table Views with Storyboarding: Core Data Setup 299

Figure 6-25. Setting up the DBBook.h file

26. Select DBBook.h in the Project Navigator. Drag in the ‘‘04
DBBook.h Methods and Extra Properties Declaration’’ snippet
from DemoMonkey and place it right before the @end. Then type
in two #imports, for DBAuthor.h and DBCategory.h, as shown in
Figure 6-25 and as follows:

#import <Foundation/Foundation.h>
#import <CoreData/CoreData.h>
#import "DBAuthor.h"
#import "DBCategory.h"

@interface DBBook : NSManagedObject
…
@property (nonatomic, retain) NSString * imageName;
- (DBAuthor *)author;
- (DBCategory *)category;
…
- (void)deleteEntity;
@end

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Mastering Table Views with Storyboarding: Core Data Setup 300

Figure 6-26. Setting up the DBBook.m file

27. Navigate to DBBook.m. Drag in the ‘‘05 DBBook.m Methods and
Extra Properties Implementation’’ snippet from DemoMonkey
and place it right before the @end as shown in Figure 6-26.

Figure 6-27. Setting up the DBCategory.h file

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Mastering Table Views with Storyboarding: Core Data Setup 301

28. Open DBCategory.h and drag in the ‘‘06 DBCategory.h Methods
and Extra Properties Declaration’’ snippet from DemoMonkey.
Place it between the last @property and the @end as shown in
Figure 6-27.

Figure 6-28. Setting up the DBCategory.m file

29. Now go to DBCategory.m, drag in the ‘‘07 DBCategory.m
Methods and Extra Properties Implementation’’ snippet from
DemoMonkey, and place it between the last @dynamic and the
@end. Also add #import "DBBook.h" right after #import
"DBCategory.h" as shown in Figure 6-28 and as follows:

#import "DBCategory.h"
#import "DBBook.h"

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Mastering Table Views with Storyboarding: Core Data Setup 302

Figure 6-29. Setting up the DBAuthor.h file

30. Open DBAuthor.h and drag in the ‘‘08 DBAuthor.h Methods and
Extra Properties Declaration’’ snippet from DemoMonkey. Place
it between the last @property and the @end as shown in
Figure 6-29.

Figure 6-30. Setting up the DBAuthor.m file

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6: Mastering Table Views with Storyboarding: Core Data Setup 303

31. Navigate to DBAuthor.m. Drag in the ‘‘09 DBAuthor.m Methods
and Extra Properties Implementation’’ snippet from
DemoMonkey and place it between the last @dynamic and the
@end. Also add #import "DBBook.h" right after the #import
"DBAuthor.h’’ as shown in Figure 6-30 and as follows:

#import "DBAuthor.h"
#import "DBBook.h"

That’s it! You’ve got through the setup and are ready to get on with designing
the app using Storyboarding in Chapter 7.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

305

7
Chapter

Mastering Table Views
with Storyboarding:
Designing the Flow
You’ve finished setting up the foundation for the bookManager Master-Detail
Application (in step 1 of 3, Chapter 6) and are ready to move on to step 2 of the
app in this chapter. You’ve brought in all the images and the info about the
books and set up the SQLite database. Cool! Well, if you think that was cool,
wait until you see what we have in store for you as we lay out the entire app’s
workflow in the Storyboard. Here in Chapter 7 you’ll be routing and connecting
elements with such ease it will amaze you-----particularly if you ever tried that
sans Storyboard.

Step 2: Storyboarding the App
Okay-----let’s go.

j

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 306

Configuring the Master Scene

Figure 7-1. Open the Storyboard.

1. Now that you’ve set up your data model, you can start
designing your interface. Open the Storyboard. You will
immediately see that Xcode has already created a basic
hierarchy of the Master-Detail Application for you. A basic
Navigation Controller is connected to a Master View Controller
that segues to a Detail View Controller as shown in Figure 7-1.
You’ll be using this template to fulfill your requirements.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 307

Figure 7-2. Rename the title to My Library.

2. Double-click the title Master on the header of the Master View
Controller, rename it My Library, and then click once on the
prototype cell to select it as shown in Figure 7-2.

Figure 7-3. Change the Row Height of the cell to 50.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 308

3. Select the Utilities View and click the Size Inspector. Enter 50
for the Row Height attribute as shown in Figure 7-3 and press
Enter.

Figure 7-4. Select the Table View.

4. The scene you’re working on is going to be the first view in your
app. In this case, it will let the user choose between the two top
hierarchies of your library: Books and Authors. So, you know
exactly how many cells you’re going to display in your Table
View: two cells. That makes it a great candidate for being a
Static Table View-----a wonderful new feature only available with
Storyboarding that allows you to lay out the content of your
Table View statically in Storyboard, display it at the runtime, and
even transition to other views when user selects a cell, all
without writing any code at all! Let’s convert the Table View to
static format: select the Table View by clicking below the
prototype cell as shown in Figure 7-4.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 309

Figure 7-5. Change the Table View Content type.

5. Select the Attributes Inspector and change the Content type
from Dynamic Prototypes to Static Cells. You’ll see three
identical cells appear as shown in Figure 7-5.

NOTE: Dynamic Table Views display dynamic content, and in that case Table View is
a large (and sometimes unbounded) number of rows. Dynamic Table Views use
reusable Dynamic Cell Prototypes to display quite large data sets very efficiently.
Static Table Views are basically “what you see is what you get.” With static content,
the number of rows in a Table View is a known and fixed number, so you can design
all rows in the Interface Builder. Note that Static Table Views can only be created
using Storyboards and must be controlled by a Table View Controller subclass.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 310

Figure 7-6. Name the roots of the hierarchical tree.

6. Click one of the three cells and delete it so that only two remain.
Now let’s think about things. You’ll have two trees of data,
flowing from looking at the database in terms of Books, or
looking at the database in terms of Authors. This means your
root node has two choices: Books and Authors. Change the
label text of the two cells from Title to Books and Authors as
shown in Figure 7-6. Now you’re going to delete the segue
connecting the Master View Controller to the Detail View
Controller: click the segue, as shown in Figure 7-6, to select it
and then delete it.

Figure 7-7. Delete the code between @end and @implementation in MasterViewController.m—the
arrow indicates the place where the code used to be.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 311

7. Before moving on to the next step, there’s one last thing you
must do for your Static Table View to display properly. You need
to delete some of the existing code for the Master View
Controller. Xcode created some code for you in
MasterViewController.m as part of the Master-Detail Application
template. This code implements the UITableViewDelegate and
UITableViewDataSource protocol methods, which will override
the Static Table View content you defined in the Storyboard if
they are present. So click the MasterViewController.m file in the
Project Navigator, select all the code between @implementation
and @end, and remove it as shown in Figure 7-7.

NOTE: Because this is a static table it doesn’t require any additional code. Later
you’ll create segues from each of the static cells Books and Authors to their
respective View Controllers you want them to transition to. That’s why for now you
won’t have a segue connecting the Master View Controller to the Detail View
Controller.

Designing the Top Level Views: Categories Scene

Figure 7-8. Drag in a new View Controller.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 312

1. According to the app’s flow, you want to display a list of
available categories when the user taps the Books cell. Thus
you’ll need an additional View Controller that will display the
various categories for the books. Now you’ll move the current
Detail View Controller, which you disconnected from the Master
View Controller in the previous step, over to the right. You can
just see the left-hand side of it on the right in Figure 7-8. You’re
doing this to make space for the new View Controller you’re
going to drag in. Once you have enough space, drag in a new
View Controller from your Object Library as shown in Figure 7-8.

Figure 7-9. Drag in a Table View.

2. Find a Table View in the Object Library and drag it onto your
new View Controller as shown in Figure 7-9.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 313

Figure 7-10. Drag in a Table View cell.

3. Now drag a Table View cell into your new Table View as shown
in Figure 7-10.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 314

Figure 7-11. Change the Table View Cell Style to Basic.

4. For this Table View you’ll use Dynamic Prototypes. In fact, your
Table View will display three different types of cells. One will be
a basic style that will just display a label with a category name
for each category you have in your database. There will be as
many cells of this kind in the Table View as you have categories
in your database. A second type of cell will display the ‘‘All
books’’ label that when the user taps the cell shows all the
books in the database regardless of category. This cell will be
displayed at all times at the end of the list of categories. The
third type of cell will be an ‘‘Add new’’ cell that gives the user an
ability to add new category to the database. This cell will also be
displayed all the time and is always the very last cell of the Table
View. Modify your Table View Prototype content to achieve this.
First, click the cell you’ve already added and change its style to
Basic as shown in Figure 7-11.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 315

Figure 7-12. Change Cell’s Row Height.

5. Click the Size Inspector as shown in Figure 7-12 and then
change the Row Height from whatever your height is to 50 (we
had manually adjusted ours to 54, but change whatever height
you have in your case to 50).

Figure 7-13. Change the Identifier and Accessory attributes.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 316

6. Go back to the Attributes Inspector and change the Identifier to
a name that will mean something in your code------let’s call it Cell,
because this is the standard cell prototype you’ll be reusing to
display your categories. Now click the Accessory option and
from the drop-down menu select Disclosure Indicator as shown
in Figure 7-13. Double-click the Title label inside the Table View
Cell prototype and rename it ‘‘Category name.’’ Then make sure
the cell you just configured is selected (highlighted blue) and
press +C to copy it.

Figure 7-14. Duplicate the first cell.

7. Press +V and paste the duplicated ‘‘Category name’’ cell as
shown in Figure 7-14. Double-click the new cell you just pasted
and change its name to ‘‘All books,’’ because this cell takes the
user to a page containing all the Apress books. The regular
‘‘Category name’’ cell takes the user to books that belong to
iOS, Android, or any other category you may choose. Once
you’ve changed the name to ‘‘All books,’’ change its Identifier
(which is still showing up as Cell from the paste you made of the
first cell) to AllCell. Once your identifier shows AllCell, continue
to the next step.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 317

NOTE: As you’ve now seen, the Storyboard makes it incredibly easy to copy cells and
modify them to your needs as you create prototypes. It’s key that you wrap your head
around this concept and use it as much as you can. We still see experienced coders
coding this by hand because they just haven’t “gotten it”—how Storyboarding makes
it so easy to create new prototypes.

Figure 7-15. Create the “Add new” cell.

8. You need to make one more cell. This new cell will be the one
that allows the user to add a new category that that can be
anything the user wants. Think about this for a second: you’re
going to create a cell that in the future, without you or the user
doing any coding, can be named Best Apress Books, Monkey,
or anything e lse-----amazing! Do what you did in Figure 7-14:
click either of the two cells you already have to select it and
press +C to copy it. Press +V and rename the cell’s label to
‘‘Add new.’’ To make it look different, let’s have some fun and
change a few properties. Set the Accessory type to Detail
Disclosure as shown in Figure 7-15. You’ll have to rename the
Identifier to something unique, because this is a special cell, so
change it to AddCell.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 318

Figure 7-16. Change the text color.

9. Change the color of the ‘‘Add new’’ text so that the user can
easily see that ‘‘Add new’’ is different from the other options.
Click once on the text ‘‘Add new’’ and change the color to blue
as shown in Figure 7-16.

NOTE: Make sure you’re saving your work as you go along!

Figure 7-17. Create a Push segue from the Books cell to Categories.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 319

10. We are now ready to create a Push segue from the Books cell of
the Master View Controller to the scene you’ve just set up.
Because you have a Static Table View in the Master, you can
initiate segues right from the cell itself. So click the Books cell in
Master and Control-drag from it to the View Controller (see 1 in
Figure 7-17) that will display our categories, release it, and
choose Push (see 2 in Figure 7-17) from the pop-up.

Figure 7-18. Set the segue Identifier and change the destination view’s title.

11. Select the new segue and set its Identifier option in the
Attributes Inspector to ShowCategories (see 1 in Figure 7-18).
Also double-click the destination View Controller’s Navigation
Bar and set its title to Categories (see 2 in Figure 7-18).

NOTE: An identifier is a string that your application uses to distinguish one segue
from another. You assign different identifiers to each segue so that the
prepareForSegue:sender: method in your Source View Controller can tell them
apart and prepare each segue appropriately. You always assign identifiers to your
segues.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 320

Figure 7-19. Create an Edit Bar button item.

12. As mentioned, you’re going to let the user edit the Table View
and remove cells. This means you need a button on the
Navigation Bar to switch the Table View into editing mode. Drag
a Bar button item from your Object Library onto the right side of
your Navigation Bar. Double-click its default title Item and
change the text to Edit as shown in Figure 7-19.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 321

Designing the Top Level Views: Authors Scene

Figure 7-20. Select the Categories Scene and copy it.

1. You’re finished with the first of your two Root Views: Books that
leads to Categories. The next view you need is Authors. That
view will be very similar to the Categories View you just made.
To save time you can simply copy this scene and paste it into
your Storyboard by clicking the scene as shown in Figure 7-20
and pressing +C.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 322

Figure 7-21. Paste the new scene.

2. Click once on the Storyboard background (indicated by the blue
graph paper look) and press +V as shown in Figure 7-21.

NOTE: It will look like nothing happened at first because it’s been pasted right on top
of the original scene.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 323

Figure 7-22. Zoom out and reorganize.

3. You need to drag the new scene you created, which is currently
residing on top of the Categories Scene. First zoom out and
then drag the new scene as shown in Figure 7-22 to a position
directly below the Categories Scene.

NOTE: Strictly speaking, it’s correct to call it the [YourName] View Controller Scene.
However, in various Xcode communities some have chosen to shorten the name to
either View or Scene. Hence, even within Apple, there are arguments on this matter.
Xcode books, blogs, and conference proceedings also don’t yet agree. We refer to
them using both terms in order to get you used to people referring to it either way.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 324

Figure 7-23. Select the Authors static cell in Master.

4. Zoom back in, click the Authors cell in the Master View
Controller as shown in Figure 7-23, and begin to Control-drag
toward the newly added scene.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 325

Figure 7-24. Connect the Authors cell of Master View Controller to the Authors Scene.

5. Continue Control-dragging from the Master View Controller and
release it when you get to the Table View of the Authors Scene
as shown in Figure 7-24.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 326

Figure 7-25. Create a Push segue.

6. When you release, select the Push option from the Storyboard
Segues menu as shown in Figure 7-25. Select the segue and set
its Identifier property to ShowAuthors in the Attributes Inspector
as you did for the ShowCategories segue in step 17.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 327

Figure 7-26. Some modifications

7. Change the Categories title on the Navigation Bar to Authors,
and the ‘‘Category name’’ label of the top prototype cell to
‘‘Author name.’’ Also, because we don’t need the ‘‘All Books’’
cell here, delete it. Your Authors Scene should now look just like
the one shown in Figure 7-26.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 328

Figure 7-27. Create another View Controller.

8. The next view is the one to display a list of books, belonging
either to a category or author that the user selects. This means
you have to create another View Controller. It’s going to be very
similar to the one you just copied for the Authors Scene-----you
can use it again as a basis for this new View Controller. You still
have a copy of the Categories Scene in your clipboard unless
you’ve copied something else since, so just click anywhere on
the blue Storyboard canvas and press +V to paste it again
(otherwise copy the Categories Scene to the clipboard again
and paste it onto the Storyboard canvas). Zoom out, moving the
Detail View Controller over to the right-hand side to make
enough room to position the new View Controller just to the left
of it as shown in Figure 7-27.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 329

Laying Out the Main Book List View: Books Scene

Figure 7-28. Create the Custom cell.

1. In this view users see a list of books in which each row displays
the title and a thumbnail of the book cover. You dragged in
some book images in Chapter 6. What we need to do here is
change the “Category name” cell, which is now a Basic cell, to
a Custom cell you can add custom UI elements to. Click the cell
and in the Attributes Inspector change the Style from Basic to
Custom as shown in Figure 7-28.

Figure 7-29. Drag one UIImageView and three labels into the Custom cell.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 330

2. With the top cell selected, open the Size Inspector and change
the row height to 87 to accommodate the height of the book
cover images. You also need a UIImageView to hold the book
image, so drag a UIImageView into the cell. Make the Image
View width 50 and the Image View height 66 (using either the
Size Inspector or your mouse). You also need to display three
information labels for the book cover: title, publishing year, and
author. Drag a label to the right of the Image View and, after
configuring it, copy and paste it twice. Figure 7-29 shows the
first label being dragged onto the cell.

Figure 7-30. Copy and paste the first label.

3. Copy and paste the first labels two times and align the labels
under each other nicely. Drag the right side of each label over
so that it fills the majority of the cell-----or make them all 200
points in width using the Size Inspector. With the top label
selected, go back to the Attributes Inspector, uncheck the
Autoshrink option, change the font to System Bold 17.0, and
change its color to blue. Then change the text of each label to
‘‘Title,’’ ‘‘Author.’’ and ‘‘publication year’’ respectively as shown
in Figure 7-30. We also changed the font size of publication year
to be System 15.0 because it just looked a little too big. Save
your work.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 331

NOTE: You’re adding text to prototype cells solely to help the design process.
Because it’s a prototype cell, all the label titles will be assigned dynamically during
the runtime, but adding placeholder data to our elements helps guide you through the
layout and customization process.

Figure 7-31. Adding a subview

4. You also want the ability to show, at all times, a total count of
the books you have in any category. You can easily achieve that
by placing an arbitrary UIView at the bottom of our Table View
contents, underneath the prototype cells. Drag a basic UIView
from the Object Library into the Table View as shown in
Figure 7-31.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 332

Figure 7-32. Enter temporary text into the label.

5. You also need to add a text label to tell the user what the count
is, so drag a UILabel from the Object Library and place it inside
the UIView you added in the previous step. Pull the handles out
on each side to cover the entire view, center the text, and enter
the temporary text ‘‘5 books’’ as shown in Figure 7-32. (You
may then want to change the text color to Dark Gray Color and
the font to System Bold 15.)

NOTE: This footer view can contain anything, such as an image, a button, a text view,
a map—whatever the application needs. Using Storyboards makes it easy to lay out
diverse application UIs without having to code much behind the Storyboard.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 333

Figure 7-33. See what an image will look like.

6. To get even better visual overview of the appearance of your
custom cell at runtime, check out an example book cover
image. When the app is running, it will retrieve the images for
each book based on data stored in the SQLite database. But for
now, click the blank Image View, locate the Image property in
the Attributes Inspector, and enter 1.png or choose any other
image filename from your Supporting Files images folder. If
you do select the 1.png file, then it should look similar to what’s
shown in Figure 7-33. While you’re in the Attributes Inspector,
also change the Background color of the Image View to Light
Gray, just so it stays visible in case you don’t have an image to
display for some of the books.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 334

Figure 7-34. Connect the “Category name” prototype cell to the newly created scene.

7. You want the book list to display a specific list of books
whenever a user taps a cell in the parent View Controller (the
‘‘Category name,’’ ‘‘All books,’’ and ‘‘Author name’’ cells). This
means you still need to make segues from each of the three
parent cells to your newly created View Controller Scene. Select
‘‘Category name’’ prototype cell and Control-drag to the newly
created View Controller as shown in Figure 7-34. When you
release the segue connector, choose Push from the Storyboard
Segues menu.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 335

Figure 7-35. Connect the “All books” cell to the newly created scene.

8. Select the ‘‘All books’’ cell and Control-drag to the same View
Controller as in the previous step, which is shown in Figure
7-35. Make it a Push segue as well.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 336

Figure 7-36. Connect the “Author name” prototype cell to the newly created scene.

9. Scroll down to the Authors Scene, select the ‘‘Author name’’
cell, and Control-drag up to the newly created View Controller
as shown in Figure 7-36. When you release the segue
connector, choose the Push option from the Storyboard Segues
menu.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 337

Figure 7-37. Specify unique identifiers for each segue.

10. Now that you’ve connected the segues, you need to do one
more step because you have to pass additional data to the book
list View Controller. You need to specify an identifier for each
segue so you can access them later when you code. Select the
‘‘Category name’’ cell segue (1a in Figure 7-37) and in the
Attributes Inspector, enter ShowCategoryBooks as its Identifier
property (1b in Figure 7-37). Select the ‘‘All books’’ cell segue
(2a in Figure 7-37) and set its Identifier to ShowAllBooks (2b in
Figure 7-37). Select the ‘‘Author name’’ cell segue (3a in Figure
7-37) and set the Identifier property to ShowAuthorBooks (3b in
Figure 7-37).

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 338

Figure 7-38. Change the Categories title to Books.

11. As you may have noticed, your book list view still displays the
title Categories because you created it by copying the
Categories scene and modifying it. Let’s change it to match its
contents. Double-click the text and replace it with Books as
shown in Figure 7-38. You may also get rid of the ‘‘All books’’
cell prototype, as it doesn’t apply to this View Controller
(although it won’t cause any problems if you leave it as is; that
cell will just never get used for this Table View).

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 339

Figure 7-39. Modifying the “Author name” cell

12. Let’s make the Authors Scene a bit more interesting by making
each author’s cell display a count, at the end of the cell, of how
many books by this author are in the database. (In real life you
may create, for example, an inventory app wherein your client
can immediately see the tally of items in stock. This data will be
calculated on the back end and displayed inside each cell. This
step is a perfect example to teach you how to do that.) So,
modify the ‘‘Author name’’ cell. Select it and in the Attributes
Inspector change the Style property from Basic to Custom. Also
drag a label onto the cell, placing it on its left-hand side as
shown in Figure 7-39.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 340

Figure 7-40. Adjust the two labels.

13. Drag a second label (this one will hold the count) onto the right-
hand side of the cell as shown in Figure 7-40. With it still
selected, in the Attributes Inspector set its Text attribute to any
number, so you can remember its role later. We gave ours the
number 5. Also, align the text to the right, make it System Bold
16.0 font, and change the font color to blue.

Figure 7-41. Change Label to Author.

14. Now select the first label you brought in, make it wide enough to
take all the space up to the beginning of the count label, set its
font to System Bold 20, and change its text to Author name as
shown in Figure 7-41.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 341

Storyboarding the Detail View: Book Detail Scene

Figure 7-42. Start editing the Detail Scene for the selected book.

1. You’ll now start designing your Detail View Controller. You first
have to navigate your way to the very right-hand side of the
canvas. Click the “Detail view content goes here” label and
delete it as shown in Figure 7-42.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 342

Figure 7-43. Start bringing in the labels.

2. Jump ahead to F igure 7 -46 just for a m inute-----you’ll see that
you need a Title and three lines of text, each of which includes
two labels. What you’ll do is bring on a label for the Title, stretch
it over the width of the view, format it, bring in two labels for the
first of the three lines, format them as well, and then copy and
paste them both twice. So, drag in your first label and change
the text to Title. Make it almost as wide as the view itself, center
it, set the font to System Bold 16.0, and change the text color to
blue. Drag in another label and place it left-aligned, directly
under Title. Change the text to Category: and set the font to
System Bold 17.0. Then pull it to the right to stretch it just
enough to accommodate the text. Now bring in another label
and place it to the right of the one you just added as shown in
Figure 7-43. Drag the right-hand handle of the label out almost
to the right-hand edge of the canvas and change its text to
Category Label.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 343

Figure 7-44. Paste and align two more lines.

3. Select the Title label and set its Alignment in the Attributes
Inspector to center the text. Now select both Category: and
Category Label, press +C to copy them both, and then press
+V twice. Now start to align them as shown in Figure 7-44.
Once you have them n icely a ligned-----perfectly under one
another-----move on to the next step.

Figure 7-45. Rename and drag in a UIImageView for the book cover.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 344

4. Rename the two lines you just pasted to Author: with Author
Label and Year: with Year Label. Now drag in a UIImageView
from the Library to accommodate an image of the book’s cover.
Go to the Size Inspector and set the dimensions to 111 x 160.
Then center the image as shown in Figure 7-45.

Figure 7-46. Finish off the view.

5. Two last things you’ll do is associate the Image View to the
temporary larger image 1big.png and drag in a Text View, as
shown in Figure 7-46, that will accommodate the short book
description we’ve provided for you. The text for Text View is
selected from the database along with the appropriate name of
the image.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 345

Figure 7-47. Align and rename the text of the Text View.

6. Once you place the Text View onto the canvas, center it. In the
Attributes Inspector uncheck the Editable option and enter
Description in the Text box as shown in Figure 7-47. Please
keep saving each step as you move along.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 346

Figure 7-48. Connect the book list to the Detail View Controller.

7. This view will appear when the user taps any of the books in the
list, so let’s arrange this navigation in the Storyboard. Select the
top cell in the Books Scene and Control-drag over to the Detail
View Controller as shown in Figure 7-48. When you release the
segue connector, choose the Push option from the Storyboard
Segue menu.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 347

Figure 7-49. Rename the View title to Book Detail.

8. Once you connect your segue, you’ll see the Navigation Bar
appear in the Detail View. Double-click the title text and rename
it to Book Detail as shown in Figure 7-49.

Figure 7-50. Assign the identifier

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 348

9. You need to assign a unique identifier to the new segue, so click
the segue going to the Detail View Controller. Once you have it
selected, switch to the Attributes Inspector and name the
Identifier for this segue ShowBookDetails as shown in
Figure 7-50.

Creating the UI for Entering and Saving New Data:
Add Book Scene
One of the cool things about your app is that it will allow the user to do
something that used to be very difficult to program: add new content into the
app and save i t. S toryboarding has made this t ask a lot easier-----furthermore, it’s
an incredible skill to have.

Figure 7-51. Creating the Add Book Scene

1. You’ll now start designing a new scene that will display a simple
form where the user can enter basic information about a book
and save it into the database. Because you know what kind of
data you need to capture for a book, it makes sense to make a
Static Table View for it. To create a Static Table in Storyboards

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 349

you must use a Table View Controller. Drag out a Table View
Controller from the Object Library onto your Storyboard canvas
as shown in Figure 7-51.

Figure 7-52. Edit the Table View cell of the Static Table View.

2. Click the top cell and in the Size Inspector set the Row Height to
50. Because you don’t need this cell to be highlighted on touch,
with the cell still selected switch to the Attributes Inspector and
change the Selection property from Blue to None. Drag out a
label and place it on the left-hand side of the cell. Then in the
Attributes Inspector change Text to title, set the font to System
Bold 14.0, and make it any color you choose (we picked a grey-
blue color from the standard palette). Also change the text from
being left-aligned to right-aligned. Now for a pretty cool trick,
use an Image View as a separator to sit between the field’s
header and the information the user will be entering. Bring in a
UIImage View and place it in the cell. In the Attributes Inspector
set the Background color to Light Grey. Back in the Size
Inspector, set the width to 1 and the height to 50 so it looks just
like thin grey line separator. Finally, set the Y value to 0 as
shown in Figure 7-52.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 350

Figure 7-53. Drag in the Text Field.

3. To be able to add new content into a SQLite database from the
app, you need to be able to type data into the app. You’ll need
to use a Text Field for this. Drag a Text Field from the Object
Library into your cell and expand it until it reaches about 233
points as shown in Figure 7-53. In the Attributes Inspector set
the Border Style of the Text Field to be invisible. That’s the first
button to the left.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 351

Figure 7-54. Select the Table View for further edits.

4. You want to set your Table View to Grouped so you can provide
sections for it. Make sure as you go through the next steps that
the Table View is selected. You can click anywhere inside the
Table View below the prototype cell to select it as shown in
Figure 7-54.

Figure 7-55. Group the Table View.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 352

5. With the Table View selected, in the Attributes Inspector change
the Style from Plain to Grouped as shown in Figure 7-55.

Figure 7-56. Change the Table Content type.

6. Change the Content type from Dynamic Prototypes to Static
Cells as shown in Figure 7-56. After that you will see three static
cells appear. You only need two. Select one and delete it.

Figure 7-57. Selecting the Table View Section in Document Outline.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 353

7. Change the left label’s text of the bottom cell to year (see 1 in
Figure 7-57). Now click carefully anywhere on the striped
grouped Table View background (see 2 in Figure 7-57) and
make sure you don’t select one of the cells or the Table View
itself. You can open the Document Outline pane and select the
Table View Section as shown on the right in Figure 7-57.

Figure 7-58. Set the Header to Book Info.

8. With the Table View Section selected, in the Attributes Inspector
enter Book Info as the Header attribute of the Table View
Section as shown in Figure 7-58.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 354

Figure 7-59. Create another section

9. Now you can simply copy the first section and paste it. Make
sure you click Table View Section --- Book Info in the Document
Outline again to select i t-----otherwise these instructions may not
produce the desired results. With the section selected, press
+C and then immediately press +V as shown in Figure 7-59.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 355

Figure 7-60. Modify the new section.

10. You’ll let the user do something really cool here. Rather than
have users remember an author’s name, you’ll let them select a
name from a list. Double-click the header of the new section you
just pasted and change its text from Book Info to Author. You
also have too many cells i n this section-----delete one cell so only
one remains. Select the cell and in the Attributes Inspector
change the following properties: set Style to Basic (see 1 in
Figure 7-60), Selection to Blue, and Accessory to Disclosure
Indicator (see 2 in Figure 7-60). Double-click the Title label that
appeared after you changed the cell’s style and change its text
to Select author (see 3 in Figure 7-60) so users know they’re
now going to select from one of Apress’s authors. The final look
of this section is shown in Figure 7-60.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 356

Figure 7-61. Click once on the Author header to select the section and press +C.

11. Unlike the copying in the first section, where you used
Document Outline to help select the right section object, your
sections are now clearly identified by headers. You can easily
select the second section in the view canvas itself to copy and
paste it. Click the Author header text to highlight it, press +C
to copy it as shown in Figure 7-61, and immediately press +V
to paste it.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 357

Figure 7-62. Making another section

12. You should now see the third section appear at the bottom of
the Table View, which is identical to the one right above it, as
shown in Figure 7-62. Double-click the header and change its
text to Category.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 358

Figure 7-63. Edit the third section.

13. Also change the ‘‘Select author’’ label’s text to Select category.
The final look of the section is shown in Figure 7-63.

Figure 7-64. Rearrange sections exercise

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 359

14. It’s important that you know how easy it is to create and
rearrange sections in Storyboards when you’re programming
your own app because you or your client may want to change
the order of these sections. So, pretend that you want to move
the Category section above the Author section. Simply click it
once and drag it up as shown in Figure 7-64.

15. You want to allow the user to add Book info, Category, Author,
and Description data for a book just as you have it in your
SQLite database. To do that, you need to add one more section.
Copy and paste the Author section again, just as in step 60.
Yup, it’s now that easy once you get past that first section!

Figure 7-65. Select the new section.

16. Click the header and change its title from Author to Description.
Then select the last cell by clicking it once as shown in
Figure 7-65.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 360

Figure 7-66. Changing the cell’s Style

17. The Description section is where users can add their own
description. You need to modify what you just pasted to
accommodate this basic need. In the Attributes Inspector
change the style from Basic to Custom as shown in Figure 7-66.
Also change Selection from Blue to None. There’s no need for
the disclosure icon in this cell, so also change Accessory from
Disclosure Indicator to None.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 361

Figure 7-67. Adding Text View to the cell

18. You’ll need the cell to have enough height to accommodate the
lines of text the user will enter to describe the book being
added. You’ll also need to have a Text View. With the cell
selected, in the Size Inspector change the cell height to 100.
This will give users enough room to see a few rows of the text
they’re entering (it’s difficult to type text when you can only read
one or two lines). The next thing you need to do is add a Text
View as shown in Figure 7-67. Drag the handles so that it fills
the cell nicely. We made ours 281 points wide and 88 points
high.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 362

Figure 7-68. Select the Table View Controller for embedding.

19. This scene is going to be a Modal Scene, so you need to embed
it into a Navigation Controller to be able to use the Navigation
Bar in this view. To do that, select the Table View Controller as
shown in Figure 7-68. Note that the Document Outline on the
left of Figure 7-68 shows that the Table View Controller is
selected inside the Table View Controller Scene. Make sure this
is the case w ith your p roject before you s tart to embed-----you
won’t be happy if it’s not, because you’ll have to start all over.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 363

Figure 7-69. Embed the Table View Controller into a Navigation Controller.

20. With the Table View Controller selected, choose Editor ➤
Embed In ➤ Navigation Controller as shown in Figure 7-69.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 364

Figure 7-70. The new Navigation Controller is created.

21. A beautiful, brand spanking new Navigation Controller is created
with a Root View Controller relationship to what you’ll now name
the Add Book View. Double-click the view title and name it Add
Book as shown in Figure 7-70.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 365

Figure 7-71. Create a segue to get to the Add Book Scene.

22. Now you need to do a little thinking. In order to get to this
scene, the user needs to tap the Add New cell in the Books
View. Right now, nothing connects these scenes, so you need
to create a new segue. Click the Add New cell and Control-drag
over to the Navigation Controller as shown in Figure 7-71.
Because this is a Modal Scene-----which is only presented to
enter data-----this time, rather than do a Push segue that makes
the next view slide in, you’ll do a Flip segue that makes the next
view flip in. This time when you release the segue connector,
select the Modal option from the Storyboard Segues menu.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 366

Figure 7-72. Select the new segue.

23. Ahh… a beautiful new segue is created. Let’s tweak it a little bit.
Select it as shown in Figure 7-72.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 367

Figure 7-73. Change the Transition type.

24. With the new segue selected, change the Transition type to Flip
Transition using the Attributes Inspector as shown in Figure
7-73-----because as mentioned earlier, it’s nice to experiment
with different transition types so that you become familiar with
them. Also set the segue’s Identifier attribute to AddNewBook.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 368

Figure 7-74. Last thing: create a new Table View Controller

25. The last thing you need to do is allow the user to select a
category or author that’s available. To do that, make a really
basic Table View Controller. But here’s something fun: rather
than make two Table View Controllers, one for Authors and one
for Categories, we’ll show you how Storyboarding lets you use
the same Table View for both needs! Drag out another Table
View Controller and place it in the right-hand side of the Add
Book Scene as shown in Figure 7-74.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 369

Figure 7-75. Modify the Table View and then connect a segue from the “Select category” cell.

26. This new Table V iew, as mentioned, w ill be a very basic-----no
frills. Select the Prototype cell that was automatically added to
the Table View for you, in the Attributes Inspector set its Style to
Basic, and enter Cell for the Identifier property. This cell will
eventually hold either the name of the Category or the name of
the Apress Author in it. Now step back and think about how
your user is going to get to this scene. Your user must select
either the ‘‘Select category’’ cell or the ‘‘Select author’’ cell. This
means you’ll need two segues, one from each of those cells.
First select the ‘‘Select category’’ cell and Control-drag over to
the Table View Controller as shown in Figure 7-75. When you
release the segue connector, select the Push option from the
Storyboard Segues menu. Enter SelectCategory as the Identifier
to the segue in the Attributes Inspector, as you’ve done multiple
times throughout the chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 370

Figure 7-76. Connect the “Select author” cell in the same way.

27. Now select the ‘‘Select author’’ cell and Control-drag over to the
Table View Controller as shown in Figure 7-76. When you
release the segue connector, choose Push from the Storyboard
Segues menu. Enter SelectAuthor as the Identifier to the segue
in the Attributes Inspector as usual.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 371

Figure 7-77. Modify the View Title.

28. Double-click the View Title and change it to Select as shown in
Figure 7-77.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 372

Figure 7-78. Add the buttons to the Modal Scene.

29. Because the Add Book Scene is a Modal Scene, you need to
have two Bar button items. One will be to save the entry that the
user has just created, and the other will let the user cancel out
of the situation and return back to the previous View Controller.
Drag in your first Bar button item from the Object Library as
shown in Figure 7-78.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 373

Figure 7-79. Add two Bar button items.

30. Drag the first Bar button item onto the right side of the header
and name it Save. Then drag another out to the right side of the
header and name that one Cancel as shown in Figure 7-79.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 374

Making Final Tweaks

Figure 7-80. App’s story flow so far.

1. Figure 7-80 shows the Storyboard so far. Looking pretty good!
It tells you the entire app’s story and logical flow. You can see
how the parts of your app fit together without even thinking
about writing any code at all. Isn’t that exciting? Finally, you can
make one more minor improvement to your data flow. Consider
a situation in which the author only has one book, meaning
there’s no need to go to a list of books (Books Scene). In that
case, it makes more sense to just jump right to the Book Details
Scene (to the right of the Books Scene). To implement this, you
need to modify a couple things.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 375

Figure 7-81. Delete the ShowAuthorBooks segue.

2. Select the segue going from the Authors Scene to Books Scene
(the one that has the ShowAuthorBooks Identifier assigned to it)
as shown in Figure 7-81 and delete it.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 376

Figure 7-82. Create a new segue from the actual View Controller.

3. Now, instead of going from the ‘‘Author name’’ cell to the list of
books, you’ll create a segue from the View Controller itself.
Select the Authors Scene by clicking its Dock (the black bar at
the bottom). Then choose the View Controller as shown in
Figure 7-82.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 377

Figure 7-83. Control-drag to the Books Scene.

4. Control-drag from the View Controller out to the Books Scene
as shown in Figure 7-83. When you release the segue
connector, choose Push from the Storyboard Segues menu.
Assign the ShowAuthorBooks Identifier to it, just as you
previously had it set up.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 378

Figure 7-84. Repeat to the Book Detail Scene.

5. You’ll do the exact same thing for the Detail View Controller as
shown in F igure 7-84-----except that when segue is created,
make sure to assign a different Identifier to it.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 379

Figure 7-85. Assign the Identifier to the new segue.

6. Name this one ShowAuthorBookDetail (shown in Figure 7-85).
The trick with creating the segues from the View Controller is
that you can manually perform those segues from the code
when certain conditions are met. In this case, you’ll determine
which one of the two segues to perform when user taps the
Table View Cell based on the number of books the particular
author has.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 380

Figure 7-86. The final Storyboard layout!

7. At this point, your final Storyboard should look just like Figure
7-86. It’s time to run your app and see what you have!

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7: Mastering Table Views with Storyboarding: Designing the Flow 381

Figure 7-87. It works!

8. As can be seen from Figure 7-87, the app actually works and
navigates from the Root View to Categories and Authors
Scenes-----except, when you compare it to Figures 6-0A and 6-
0B (the final look of the app), you can see that the lists aren’t
populated. This is because even though the Storyboard is
functional, there’s no code underneath it that would connect the
views and tables to the SQLite database. That’s the part you’re
going to tackle in the next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

383

8
Chapter

Mastering Table Views
with Storyboarding:
Coding the Back End
So far, without writing any code, you’ve designed a pretty complex Inventory
system that will keep track of items-----in this case, Apress books-----and add
items to the database from the app itself. As you saw in Chapter 7’s Figure
7-87, it all works except that you don’t have any data linked to the app.

Here in Chapter 8, in step 3 of 3 for the app, you’ll be writing code that will
connect your SQLite database to each of the View Controllers you created in
Chapter 7.

Step 3: Insert the Code Behind the
Storyboard Elements and Tweak a Couple
Storyboard Necessities
Let’s start this third step by creating a custom UITableViewCell subclass.

m

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 384

Creating a Custom UITableViewCell subclass

Figure 8-1. Create a new class to connect to your custom cell prototypes.

1. The UITableViewCell located at the root of the Storyboard you
created in Figure 7-29 is a good place to start because most of
the connections lead out from there. However, you’ll first need
to create a subclass of UITableViewCell that will provide you
with all the necessary outlets to connect the elements in your
custom cell prototypes. Press +N to create a new class and,
after selecting the Objective-C class, click Next as shown in
Figure 8-1.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 385

Figure 8-2. Make sure it’s a subclass of UITableViewCell.

2. Typically, you go screaming past this dialog box, but please
slow down and make sure that this is a subclass of
UITableViewCell. You’ll call this class CustomCell. Click Next as
shown in Figure 8-2. Use the default save settings in the next
dialog by clicking Create.

Figure 8-3. Define the outlets.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 386

3. By default, Xcode will open the implementation file but we want
you to first open the header file. Go to CustomCell.h in the
Project Navigator and open it. The first thing you’ll do here is
define the outlets you’ll need for your interface. Start by
dragging the ‘‘10 CustomCell.h IBOutlets’’ snippet from
DemoMonkey, which is the first snippet in PART THREE. Place
it where you always define outlets, before the @end. You are
defining four outlets here: leftImageView, mainLabel,
detailLabel1, and detailLabel2, as shown in Figure 8-3 and as
follows:

#import <UIKit/UIKit.h>

@interface CustomCell : UITableViewCell

@property (nonatomic, strong) IBOutlet UIImageView *leftImageView;
@property (nonatomic, strong) IBOutlet UILabel *mainLabel;
@property (nonatomic, strong) IBOutlet UILabel *detailLabel1;
@property (nonatomic, strong) IBOutlet UILabel *detailLabel2;

@end

All the properties here are pretty self-explanatory. You’ll learn what
roles they play soon, when you connect them to your UI in the
Storyboard. Save the header file, and let’s add a few things to its
implementation.

Figure 8-4. Synthesize the four outlets.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 387

4. Jump over to the CustomCell.m implementation file and
synthesize the four IBOutlets you just defined. Drag in the ‘‘11
CustomCell.m @synthesize’’ snippet from DemoMonkey and
place it right after the @implementation CustomCell as shown in
Figure 8-4 and as follows:

#import "CustomCell.h"

@implementation CustomCell
@synthesize leftImageView;
@synthesize mainLabel;
@synthesize detailLabel1;
@synthesize detailLabel2;

Modifying the Detail View Controller

Figure 8-5. Select the Book Details Scene.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 388

1. In Chapter 7 you already created connections from Table View
cells located at the root of your Storyboard. Now you’ll go
backwards from the leaves of each branch of the Storyboard
toward the root and add the code for all these scenes. Start with
the Detail View Controller. Click the Storyboard, open it up, and
then select the Book Details Scene as shown in Figure 8-5.

Figure 8-6. Open the Assistant editor.

2. You’ll be dragging connections from the Storyboard over to
your code, so as you’ve done in the past, you’ll need to have
Storyboard open on the left and the code on the right. Open up
the Assistant editor as shown in Figure 8-6.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 389

Figure 8-7. Control-drag from the Title label over to the DetailViewController.m.

3. Looking at the Book Details, before getting immersed in the
code, think about this: you have UI elements that you want to
connect to the SQLite database, so they can display data, right?
You need outlets that your code can use to do this. So you need
outlets for each of the elements you have here. You’ll go a step
further than s imply c reating them-----you’ll also make them
private interfaces, because you don’t need to access them from
outside this class. You have the Assistant open, but make sure
it has the DetailViewController.m file open. If not, switch to it
using the drop-down right above the code. We added a couple
spaces after the -(void)configureView so there would be some
room. Now Control-drag from the Title over to the code as
shown in Figure 8-7.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 390

Figure 8-8. Creating the Outlet connection.

4. Release the Control-drag and leave all the defaults in the pop-
up that will configure the Outlet connection. All you need to do
is give it a name. Let's call it _titleLabel, as shown in Figure
8-8 and as follows:

#import "DetailViewController.h"
#import "DBBook.h"

@interface DetailViewController ()
- (void)configureView;

@property (weak, nonatomic) IBOutlet UILabel *_titleLabel;

@end

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 391

Figure 8-9. Repeat for the next three of five elements.

5. You now need to repeat the process of Figures 8-7 and 8-8 five
more times, one for each of the three right-hand labels: the
Category Label, Author Label, and Year Label. Control-drag
from Category Label to the implementation file as shown in
Figure 8-9 and name it _categoryLabel just as you named Title
_titleLabel in Figure 8-8. Repeat two more times: Control-drag
from Author Label to the implementation file and name it
_authorLabel; Control-drag from Year Label to the
implementation file and name it _yearLabel.

The three labels are shown here:

#import "DetailViewController.h"
#import "DBBook.h"

@interface DetailViewController ()
- (void)configureView;

@property (weak, nonatomic) IBOutlet UILabel *_titleLabel;
@property (weak, nonatomic) IBOutlet UILabel *_categoryLabel;
@property (weak, nonatomic) IBOutlet UILabel *_authorLabel;
@property (weak, nonatomic) IBOutlet UILabel *_yearLabel;

@end

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 392

Figure 8-10. Connect the book image.

6. Click the image of the book as shown in Figure 8-10, Control-
drag from it to the implementation file, and name the outlet
_bookImage as shown here:

#import "DetailViewController.h"
#import "DBBook.h"

@interface DetailViewController ()
- (void)configureView;

@property (weak, nonatomic) IBOutlet UILabel *_titleLabel;
@property (weak, nonatomic) IBOutlet UILabel *_categoryLabel;
@property (weak, nonatomic) IBOutlet UILabel *_authorLabel;
@property (weak, nonatomic) IBOutlet UILabel *_yearLabel;
@property (weak, nonatomic) IBOutlet UIImageView *_bookImage;

@end

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 393

Figure 8-11. Connect the Description.

7. Lastly, click once directly under Description and Control-drag
from the highlighted box to the implementation file as shown in
Figure 8-11. Name the outlet _descriptionTextView as shown
here:

#import "DetailViewController.h"
#import "DBBook.h"

@interface DetailViewController ()
- (void)configureView;

@property (weak, nonatomic) IBOutlet UILabel *_titleLabel;
@property (weak, nonatomic) IBOutlet UILabel *_categoryLabel;
@property (weak, nonatomic) IBOutlet UILabel *_authorLabel;
@property (weak, nonatomic) IBOutlet UILabel *_yearLabel;
@property (weak, nonatomic) IBOutlet UIImageView *_bookImage;
@property (weak, nonatomic) IBOutlet UITextView *_descriptionTextView;

@end

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 394

Figure 8-12. Edit the DetailViewController.m file.

8. Now that you’ve hooked up elements from the Storyboard over
to the DetailViewController.m file, you need to add a few more
snippets of code. Particularly, you need to import the DBBook.h
file so you can access the interface for this class. Open up the
DetailViewController implementation file, drag in the ‘‘--
DetailViewController.m Imports’’ snippet from DemoMonkey,
and place it right after the #import "DetailViewController" as
shown in Figure 8-12 and as follows:

#import "DetailViewController.h"
#import "DBBook.h"

@interface DetailViewController ()
- (void)configureView;

@property (weak, nonatomic) IBOutlet UILabel *_titleLabel;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 395

Figure 8-13. Add in code for the configureView method.

9. You need to update UI for the Book Details Scene with data
from the SQLite database comprising all these essential details
of whatever book the user selects. To do this, you edit and
tweak the configureView method. We’ve written out these
additional elements for configureView for you in a way that you
can always use it as a template. First of all, comment out the
line of code that’s currently there:

//self.detailDescriptionLabel.text = [self.detailItem description];

Drag in the ‘‘12 DetailViewController.m configureView’’ snippet
from DemoMonkey and place it inside the configureView
method implementation, right below the commented-out line as
shown in Figure 8-13 and as follows:

- (void)configureView
{
 // Update the user interface for the detail item.

 if (self.detailItem) {
 //self.detailDescriptionLabel.text = [self.detailItem description];

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 396

 DBBook *object = self.detailItem;
 self._titleLabel.text = object.title;
 self._authorLabel.text = object.author.fullName;
 self._categoryLabel.text = object.category.categoryName;
 self._yearLabel.text = object.year;
 self._descriptionTextView.text = object.bookDescription;
 self._bookImage.image = [UIImage imageNamed:[NSString
stringWithFormat:@"%@big.png", object.imageName]];
 }
}

In DBBook object = self.detailItem, you get the detailItem
passed to you during the segue. Then for the next six lines,
beginning with the self.*, you assign all the properties for the
text and image outlets you created in Figures 8-7----8-11.

NOTE: You may want to navigate to your Data Model folder and open the
DBBook.h file to understand why you created the bookId, categoryId,
authorId, title, year, and bookDescription in Chapter 6. You can see how
the DetailViewController is going to use those attributes to display the data
stored in the database entity.

This ends what you need to add in the DetailViewController. You’ll now move
onto creating another ViewController class, the SelectionViewController.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 397

Creating the SelectionViewController

Figure 8-14. Create the SelectionViewController.

1. Another “leaf” scene in your Storyboard is the one that allows
users to choose the author or the category when they are
creating a new book. Press +N to create a new subclass and
after selecting the Objective-C class, click Next just as you did
in Figure 8-1. Call this class the SelectionViewController,
make sure it’s a subclass of UITableViewController, and then
click Next as shown in Figure 8-14.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 398

Figure 8-15. Replace the code in SelectionViewController.h.

2. You’re going to radically change the SelectionViewController’s
header file, so to save time you’ll simply replace the entire code
for reasons that’ll be explained as you go along. First, select all
the original code in SelectionViewController.h and delete it.
Drag in the ‘‘13 SelectionViewController.h interface + Protocol’’
snippet from DemoMonkey and place it at the bottom of the file
as shown in Figure 8-15 and in the rest of this step.

First, you have set out an array that will be passed to the View
Controller during the segue. It will contain a collection of
DBAuthor or DBCategory objects, based on which cell the user
taps. You do this with the following:

@property (nonatomic, strong) NSArray *objects;

Then you need to return the book or category selection the user
makes. That means you need a delegate object you’ll be
passing the selection back to. You do this with the following:

@property (nonatomic, assign) id<SelectionVCDelegate> delegate;

Lastly, you define a protocol with the
selectionViewController:didSelectObject: method, which
you’ll use to pass that selection back to the delegate:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 399

@protocol SelectionVCDelegate <NSObject>
- (void)selectionVC:(SelectionViewController *)aVC didSelectObject:(id)anObject;

Figure 8-16. Synthesize and import what you added into the header file.

3. You now need to synthesize the delegate and objects properties
you created in your header file. Open the
SelectionViewController.m file. You haven’t made a
DemoMonkey step for this, so just type @synthesize delegate;
and @synthesize objects; under @implementation
SelectionViewController. You also need to import the header
files for the database entities of Author and Category because
you need to have access to their attributes. Drag in the ‘‘--
SelectionViewController.m imports’’ snippet from DemoMonkey
and place it under #import "SelectionViewController.h" as
shown in Figure 8-16 and as follows:

#import "SelectionViewController.h"
#import "DBAuthor.h"
#import "DBCategory.h"

@interface SelectionViewController ()

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 400

@end

@implementation SelectionViewController
@synthesize delegate;
@synthesize objects;

- (id)initWithStyle:(UITableViewStyle)style

Figure 8-17. Replace the UITableViewDataSource protocol methods.

4. You’ll now add the code for your Table View. You’ll replace the
TableViewDataSource protocol methods that Xcode has already
inserted for you with your own to make things less confusing.
Scroll down from where you’ve just been working. Go to the end
of shouldAutorotateToInterfaceOrientation, select everything
from there to just before the @end, and delete it. Drag in the ‘‘14
SelectionViewController.m TableView Datasource and Delegate’’
snippet from DemoMonkey and put it right before the @end as
shown in Figure 8-17.

Because you’re using this Table View Controller for both
Categories and Authors, in the
cellForRowAtIndexPath:(NSIndexPath *)indexPath method
check the class of the object you have in the array and then
display the category name from the database if it’s a Category.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 401

if ([object isKindOfClass:[DBCategory class]]) {
 cell.textLabel.text = ((DBCategory *)object).categoryName;
}

… or the author’s name from the database if it’s an Author:

 if ([object isKindOfClass:[DBAuthor class]]) {
 cell.textLabel.text = ((DBAuthor *)object).fullName;
 }

Then, when the user selects a choice, make a call back to the
delegate to pass the object the user selected:

if ([self.delegate respondsToSelector:@selector(selectionVC:didSelectObject:)])
{
 [self.delegate selectionVC:self didSelectObject:[objects
objectAtIndex:indexPath.row]];
 }

Save it now because you need to go back into Storyboard to
assign this ViewController class to the corresponding scene.

Figure 8-18. Click Select Scene and associate it with SelectionViewController.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 402

5. Open up Storyboard and go to the Table View Controller, which
is directly to the right of Add Book Scene (refer back to Figure
7-77). Click the Table View Controller icon once as indicated by
the left arrow in Figure 8-18. With the View Controller selected,
go to your Identity Inspector and make its Class adhere to what
you just coded: SelectionViewController, shown by the right
arrow in Figure 8-18. Select the Prototype cell, switch to the
Attributes Inspector, and make sure its Identifier property is set
to Cell.

Coding the Add Book View Controller

Figure 8-19. Create the next class, AddBookViewController.

1. Press +N to create a new subclass and, after selecting the
Objective-C class, click Next. Name it AddBookViewController
and make it a subclass of UITableViewController as shown in

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 403

Figure 8-19. Once saved, you’ll first want to add outlets to it, so
let’s go back to Storyboard.

Figure 8-20. Add Outlets to AddBookViewController.

2. Open up Storyboard and select the Add Book Table View
Controller just as you selected the Selection View Controller in
Figure 8-18. With the Table View Controller selected, go to the
Identity Inspector and make the Class adhere to what you just
created, the AddBookViewController as shown in Figure 8-20.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 404

Figure 8-21. Select the AddBookViewController implementation file.

3. Switch to the Assistant editor mode. In the right-hand pane
you’ll see that by default Xcode brings up the header file. You
want to work in the implementation file, so in the selection
ribbon above the code of the header file select the
implementation file as shown in Figure 8-21.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 405

Figure 8-22. Create outlets for the title and year attributes.

4. You want to make outlets for the title of the book and the year
of the book first. Click once on the title text field area to the right
of the title label and Control-drag over to the implementation file
below the @interface as shown in Figure 8-22. Name it
_titleTextField in the pop-up dialog. Repeat the same for the
year text field and name it _yearTextField. Your outlet code
should now look like the following:

#import "AddBookViewController.h"

@interface AddBookViewController () {
 NSMutableDictionary *_bookDict;
}

@property (weak, nonatomic) IBOutlet UITextField *_titleTextField;
@property (weak, nonatomic) IBOutlet UITextField *_yearTextField;
…

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 406

Figure 8-23. Create an outlet for the Description text.

5. You need to make one more IBOutlet here. The tricky part is to
make sure to only click the text as shown in Figure 8-23 and
that you only click it once. Once correctly selected, Control-
drag over to the implementation file and name the outlet
_descriptionTextView as shown here:

#import "AddBookViewController.h"

@interface AddBookViewController () {
 NSMutableDictionary *_bookDict;
}

@property (weak, nonatomic) IBOutlet UITextField *_titleTextField;
@property (weak, nonatomic) IBOutlet UITextField *_yearTextField;
@property (weak, nonatomic) IBOutlet UITextView *_descriptionTextView;
…

While focused on this Text View, you can really empty the text out
of here because users will be entering data into it when they create
a new book. So, with the text View still selected, go to the
Attributes Inspector and delete all the text in the text box.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 407

Figure 8-24. Set up the delegate for your text fields.

6. You need to set the delegate of your text fields to be the Add
Book View Controller so you can save the data that the user
types into them. Control-drag from the title text field to the
Table View Controller icon in the Dock as shown in Figure 8-24.
Another dialog connection window appears with options,
divided under two sections: Storyboard Segues and Outlets.
You want this to be an outlet, so select delegate, nested inside
the Outlets option. Repeat the exact same procedure with the
year text field.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 408

Figure 8-25. Set up the delegate for Description Text View.

7. You now need to set up the delegate for your Description Text
View. Control-drag from the Text View as shown in Figure 8-25.
Again, you want this to be an outlet, so select delegate nested
inside the Outlets option.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 409

Figure 8-26. Editing the new interface

8. Close the Assistant and open the Standard editor. Open the
AddBookViewController.h header file so you can modify the
interface. Delete the three lines of code that appear by default
and replace them with the next snippet you saved in
DemoMonkey. Drag in the ‘‘15 AddBookViewController.h
interface and protocol’’ snippet from DemoMonkey and place it
where you just deleted the original header text. This is shown in
Figure 8-26.

The delegate property and AddBookVCDelegate protocol you
included in the header file

@property (nonatomic, assign) id<AddBookVCDelegate> delegate;

is what you’ll use to notify the parent View Controller when the
new database entity has been created, which will be passed up
to the implementation file so it can be displayed as follows:

- (void)addBookVC:(AddBookViewController *)aVC didCreateObject:(id)anObject;

Before you forget, let's synthesize the delegate.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 410

Figure 8-27. Synthesize the delegate.

9. Open up the AddBookViewController.m file and synthesize the
delegate as shown in Figure 8-27 and as follows:

@interface AddBookViewController () {
…
…
@end

@implementation AddBookViewController
@synthesize _titleTextField;
@synthesize _yearTextField;
@synthesize _descriptionTextView;
@synthesize delegate;

…

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 411

Figure 8-28. Add mutable dictionary and #import your database entities.

10. While the user is entering the information about the new book,
such as title, year and book description, you need a place to
safely and temporarily store the data until they tap Save. You
could do this in many ways: one of them is to use a mutable
dictionary. That means you need an NSMutableDictionary
instance variable, from which you’ll create a new entity later.
Call it _bookDict. Declare it inside a set of curly braces right
under the @interface in the private declarations section, as
shown in the following code. You need to import all your
database entities. Drag in the ‘‘-- AddBookViewController.m
Imports’’ snippet from DemoMonkey and place it under the
#import as shown in Figure 8-28 and as follows.

#import "AddBookViewController.h"
#import "DBBook.h"
#import "DBCategory.h"
#import "DBAuthor.h"

@interface AddBookViewController () {
 NSMutableDictionary *_bookDict;
}

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 412

@property (weak, nonatomic) IBOutlet UITextField *_titleTextField;
…
…

Figure 8-29. Bring in the text field delegate methods.

11. Because this is a Static Table View, you don’t need to
implement dataSources or delegate methods, so delete
everything between the end of the
shouldAutorotateToInterface rotation method to just before the
@end. In its place bring in things you do need, such as the text
field delegate methods and the Text View delegate methods,
which will help you save the data as the user enters the
information. Starting with the text field delegate methods, drag
in the ‘‘16 AddBookViewController.m Text Field Delegate
Methods’’ snippet from DemoMonkey and place it before the
@end. It should look like what’s shown in Figure 8-29.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 413

Figure 8-30. Bring in the text view delegate methods.

12. Continuing with the text view delegate methods, drag in the ‘‘17
AddBookViewController.m Text View Delegate Methods’’
snippet from DemoMonkey and place it between the @end and
the text field delegate method you placed in Figure 8-29. This is
illustrated in Figure 8-30.

NOTE: The delegate methods you added in the last two steps are part of the standard
UITextFieldDelegate and UITextViewDelegate protocols declared in the UIKit
framework. These methods are the most common way to pass notifications from your
text fields and Text Views about changes in their editing state. In your case, simply
save the data typed by the user into the _bookDict dictionary object once each
UITextField (or UITextView) notifies your AddBookViewController, which
you assigned to be the delegate, that the user finished editing. The latter is achieved
via textFieldDidEndEditing: (textViewDidEndEditing:) method
callbacks, which get invoked every time a text field (Text View) loses focus or
programmatically resigns First Responder after a Return key is pressed. The data
collected into the _bookDict dictionary will eventually be saved into the database
once the editing is complete and the Save button is pressed.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 414

Figure 8-31. Implement the prepareForSegue: method.

13. Still in the AddBookViewController.m file, implement the
prepareForSegue: method. Drag in the ‘‘18
AddBookViewController.m prepareForSegue’’ snippet from
DemoMonkey and place it just before the @end as shown in
Figure 8-31.

In this method you first check for the segue identifier

if ([[segue identifier] isEqualToString:@"SelectCategory"]) {
…

or
if ([[segue identifier] isEqualToString:@"SelectAuthor"]) {
…

and then you pass the array of categories

[(SelectionViewController *)[segue destinationViewController]
setObjects:[DBCategory allCategories]];

or the array of authors

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 415

[(SelectionViewController *)[segue destinationViewController]
setObjects:[DBAuthor allAuthors]];

to the destination View Controller, which is the
SelectionViewController in both cases.

Finally, you set the delegate of the SelectionViewController to
your AddViewController so that once the user selects an author
or a category, you can save that selection into your _bookDict
dictionary:

[(SelectionViewController *)[segue destinationViewController]
setDelegate:self];

Figure 8-32. Implement the delegate method to choose category or author.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 416

14. Continuing to focus on the code users will need as they enter a
new book, author, and category, you still have a couple more
chores to fulfill. Once the user selects the category or the
author, you want to receive a delegate callback from the
SelectionViewController, so you need to implement this
delegate method. Drag in the ‘‘19 AddBookViewController.m
Choose Category of Author’’ snippet from DemoMonkey and
place it just before the @end as shown in Figure 8-32.

You defined this delegate method in the
SelectionViewController.h file:

- (void)selectionVC:(SelectionViewController *)aVC
didSelectObject:(id)anObject;

Here, based on what kind of class the received object is,

if ([anObject isKindOfClass:[DBCategory class]]) {

you’ll either save the category ID

[_bookDict setObject:((DBCategory *)anObject).categoryId forKey:@"categoryId"];

or the author ID

 [_bookDict setObject:((DBAuthor *)anObject).authorId forKey:@"authorId"];

and display the category name

cell.textLabel.text = ((DBCategory *)anObject).categoryName;

or display the author name

cell.textLabel.text = ((DBAuthor *)anObject).fullName;

in the corresponding cell. After all that’s done, you’ll pop the
View Controller off the stack

[self.navigationController popViewControllerAnimated:YES];

so the user can return back to the AddBookViewController and
continue editing book info.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 417

Figure 8-33. Implement two IBActions for the Save and Cancel buttons.

15. The last thing you need to do here in the
AddBookViewController.m is implement two IBActions, one for
the Save button and another for the Cancel button. Drag in the
‘‘20 AddBookViewController.m IBAction’’ snippet from
DemoMonkey and place it just before the @end as shown in
Figure 8-33.

For the Cancel button, you have the cancelPressed: method

- (IBAction)cancelPressed:(id)sender {

in which you’ll simply dismiss the ModalViewController without
saving any changes:

[self dismissModalViewControllerAnimated:YES];

In the savePressed: method,

- (IBAction)savePressed:(id)sender

will resign the First Responders (title, year, or description text
fields) if there are any. This will dismiss the keyboard if it’s still
up:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 418

[self._titleTextField resignFirstResponder];
[self._yearTextField resignFirstResponder];
[self._descriptionTextView resignFirstResponder];

You then verify that the user has modified any fields so that the
book info dictionary has been created and isn’t nil. And you
create a new entity from the _bookDict dictionary using the
DBBook helper method you implemented in Chapter 6:

if (_bookDict != nil) {
 DBBook *newBook = [DBBook createEntityWithDictionary:_bookDict];

Finally, you notify the delegate about the creation of this object
so it can be added to the list of books right away if needed:

if ([self.delegate respondsToSelector:@selector(addBookVC:didCreateObject:)]) {
 [self.delegate addBookVC:self didCreateObject:newBook];

And dismiss the AddBookViewController:

[self dismissModalViewControllerAnimated:YES];

Figure 8-34. Connect the IBActions you created.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 419

16. Now you need to connect the IBActions you created for the Edit
and Cancel buttons. So save your work and open the
Storyboard. Go to Add Book and Control-drag from the Save
button to the Add Book View Controller as shown in
Figure 8-34.

Figure 8-35. Select savePressed: Sent Actions.

17. When the pop-up appears, select the savePressed: method
nested inside the Sent Actions section as shown in Figure 8-35.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 420

Figure 8-36. Repeat for Cancel.

18. Control-drag from Cancel to the Add Book View Controller as
shown in Figure 8-36. This time, however, when the pop-up
appears, select the cancelPressed: option nested inside the
Sent Actions options as you did in Figure 8-35.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 421

Hooking Up the Books Scene

Figure 8-37. Create the BookViewController.

1. Let’s move on now to the next View Controller. Press +N to
create a new subclass and after selecting the Objective-C
class, click Next. Name it BooksViewController and make it a
subclass of UIViewController as shown in Figure 8-37. Save it
in its default location as you’ve always done in this book. When
you’re done, go back into Storyboard.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 422

Figure 8-38. Connect the leftImageView outlet to the Book cover image.

2. Once you’ve opened up Storyboard, navigate to the Books
scene. Remember that in the Books Table View you’re using
custom cells, so you need to connect the outlets to the custom
cell subclass you created earlier in steps 1---4. Select the top cell
containing the Book Image, Title, and so on, and then open up
the Identity Inspector and in the Class field click CustomCell
(refer to Figure 8-18 or 8-43 if you need a memory refresher).
With the Cell Prototype still selected, open the Connections
Inspector to see a list of all available outlets. Drag out from the
leftImageView outlet and connect it to the book’s cover image,
which for now, in this case, is 1.png. This is shown in Figure 8-
38. This outlet will enable your connectivity to the SQLite
database so you can display whatever associated image is
saved in the database, not the static 1.png.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 423

Figure 8-39. Connect the mainLabel outlet to the Title.

3. Control-drag from the mainLabel outlet and connect it to Title as
shown in Figure 8-39.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 424

Figure 8-40. Connect the detailLabel1 outlet to the Author.

4. Control-drag from the detailLabel1 outlet and connect it to
Author as shown in Figure 8-40.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 425

Figure 8-41. Connect the detailLabel2 outlet to the publication year.

5. Control drag from the detailLabel2 outlet and connect it to
publication year as shown in Figure 8-41. Save it, and let’s
move on.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 426

Figure 8-42. Select the View Controller.

6. You also need to create IBOutlets for the Table View and the
Book count label. So select View Controller - Books as shown in
Figure 8-42 so that you can assign a class to it.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 427

Figure 8-43. Name the class BooksViewController.

7. With View Controller - Books still selected, in the Identity
Inspector click BooksViewController in the Class field as shown
in Figure 8-43.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 428

Figure 8-44. Connect to the implementation file.

8. Open the Assistant editor and make sure the
BooksViewController.m file is the Xcode file that appears in the
right-hand panel. Click once in the Table View section of Books
and Control-drag over to the implementation file, releasing it
right under the @interface as shown in Figure 8-44. When the
pop-up appears, name it _tableView and leave all the other
defaults of the outlet as is.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 429

Figure 8-45. Connect the _countLabel outlet.

9. Now select the book counter and Control-drag over to the
implementation file, dropping it right below the previous outlet
as shown in Figure 8-45. Name it _countLabel and again leave
the defaults as is. Save your work.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 430

Figure 8-46. Control-drag to the View Controller icon in the Dock.

10. Lastly, Control-drag from the Table View to the View Controller
icon in the Dock as shown in Figure 8-46.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 431

Figure 8-47. Connecting the dataSource outlet

11. In the dialog connection window that appears, select
dataSource nested inside the Outlets option as shown in Figure
8-47. Repeat the exact same procedure to connect the delegate
outlet of the Table View.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 432

Figure 8-48. Add in two additional properties of DBCategory and DBAuthor type.

12. Open the Standard editor and open the BooksViewController.h
file. Select all three lines of default code and delete it. You want
to add two additional properties of categories and author into
BooksViewController. Drag in the ‘‘21 BooksViewController.h
Interface’’ snippet from DemoMonkey and place it in the body of
the view as shown in Figure 8-48.

The two new properties are category and author:

@property (nonatomic, strong) DBCategory *category;
@property (nonatomic, strong) DBAuthor *author;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 433

Figure 8-49. Synthesize, import header files, and other tweaks

13. Save your work, leave BooksViewController.h, and open its
implementation file. Type in syntheses statements for
_tableView, _countLabel, category, and author. Additionally,
you’ll need a variable to store the books in. Again, use a
mutable array and call it _books. To do this, add its declaration to
the private interface section right below the @interface. Make
sure to enclose it in curly braces:

@interface BooksViewController () {
 NSMutableArray *_books;
}

Now you need to import the necessary header files. Drag in the ‘‘--
BooksViewController.h Imports’’ snippet from DemoMonkey and
place it directly under the only existing header file #import
"BooksViewController.h" as shown in Figure 8-49.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 434

Lastly, on viewDidLoad you’ll populate the books array with DBBook
objects. Drag in the ‘‘22 BooksViewController.m ViewDidLoad’’
snippet from DemoMonkey and place it in the viewDidLoad method
directly under the //Do any additional setup … comment as
shown in Figure 8-49 and as follows:

- (void)viewDidLoad
{
 [super viewDidLoad];
 // Do any additional setup after loading the view.

 if (self.category != nil) {
 _books = [NSMutableArray arrayWithArray:self.category.books];
 }
 else if (self.author != nil) {
 _books = [NSMutableArray arrayWithArray:self.author.books];
 }
 else {
 _books = [NSMutableArray arrayWithArray:[DBBook allBooks]];
 }
}

You can see you’re using the category property self.category and
the author property self.author to decide which books you need to
display: the ones that belong to a specified category or a selected
author. However, if none of those properties is defined by the user,
you’ll display all the books you have in the SQLite database:

else {
 _books = [NSMutableArray arrayWithArray:[DBBook allBooks]];
}

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 435

Figure 8-50. Set up the Table View to display books.

14. To display the books data in the Table View, you must
implement the delegate methods. Drag in the ‘‘23
BooksViewController.m Display Books’’ snippet from
DemoMonkey and place it right before the @end as shown in
Figure 8-50.

You want the very bottom cell of the Table View to display static
content (‘‘Add new’’ cell), which will be visible at all times, and
tapping this cell will allow the user to create a new book record.

To achieve that, you do a little trick here in

- (NSInteger)tableView:(UITableView *)tableView
numberOfRowsInSection:(NSInteger)section

by adding one extra row to your Table View in addition to the
number of objects you have in the _books array:

return _books.count + 1;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 436

This guarantees that you’ll always have at least one cell in the
Table View, so you simply need to get your Table View to load
the right Prototype cell from the Storyboard, based on certain
conditions.

Notice that in this method you also update the text of the
_countLabel------this way it’s always up-to-date.

You de-queue the appropriate cell by its identifier, ‘‘Cell’’ or
‘‘AddCell,’’ which you’ve specified at design time:

NSString *cellIdentifier = (indexPath.row < _books.count) ? @"Cell" :
@"AddCell";
 CustomCell *cell = [tableView
dequeueReusableCellWithIdentifier:cellIdentifier];

Based on the reuse identifier, you update the cell’s content
accordingly:

if ([cell.reuseIdentifier isEqualToString:@"Cell"]) {
 DBBook *object = [_books objectAtIndex:indexPath.row];
 cell.mainLabel.text = object.title;
 cell.detailLabel1.text = object.author.fullName;
 cell.detailLabel2.text = object.year;
 cell.leftImageView.image = [UIImage imageNamed:[NSString
stringWithFormat:@"%@.png", object.bookId]];
 }

NOTE: The cell’s reuse identifier is the means for you to tell your Table View what
kind of Storyboard Prototype cell you want to be de-queued and displayed for a
certain row. Thus, it’s very important to set the identifiers correctly. If the identifier
isn’t set or is invalid, the
dequeueReusableCellWithIdentifier:cellIdentifier method will return
nil, and the app will crash. This is one the most common mistakes when prototyping
Table View cells in a Storyboard.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 437

Figure 8-51. Set up editing mode.

15. Add the methods that will allow the user to edit the Table View
and remove the book records. Drag in the ‘‘24
BooksViewController.m Delete Books’’ snippet from
DemoMonkey and place it right before the @end as shown in
Figure 8-51. Here you implement standard
UITableViewDataSource methods that are in charge of Table
View editing. When the user taps the standard Delete button of
the Table View while in Editing mode, they get the
corresponding DBBook object for that row. This allows the user to
remove it from the _books array, and then delete the entity from
the database using MagicalRecord API. Finally, remove the
Table View row for that record with animation, which is
beautifully handled for you by the Table View itself:

 if (editingStyle == UITableViewCellEditingStyleDelete) {
 DBBook *object = [_books objectAtIndex:indexPath.row];
 [object deleteEntity];
 [_books removeObjectAtIndex:indexPath.row];
 [tableView deleteRowsAtIndexPaths:[NSArray arrayWithObject:indexPath]
withRowAnimation:UITableViewRowAnimationFade]; }

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 438

Figure 8-52. Implementing the prepareForSegue: method

16. Next, drag in the ‘‘25 BooksViewController.m
prepareForSegue:’’ snippet from DemoMonkey and place it right
before the @end as shown in Figure 8-52. In the
prepareForSegue: method, you look for two different segue
identifiers: the ShowBookDetails identifier and the AddNewBook
identifier. In the first case, you only need to send the selected
DBBook object to the destination View Controller, which is the
DetailViewController in your setup:

NSIndexPath *indexPath = [self._tableView indexPathForSelectedRow];
DBBook *object = [_books objectAtIndex:indexPath.row];
[(DetailViewController *)[segue destinationViewController]
setDetailItem:object];

In the second case, you need to set a delegate so that you can
get the newly added object back from the
AddBookViewController:

AddBookViewController *addBookVC = (AddBookViewController
*)navigationVC.topViewController;
[addBookVC setDelegate:self];

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 439

Also, remember that your AddBookViewController is embedded
into the Navigation Controller. But here’s the issue: in order to
get to the AddBookViewController, you must follow the
Navigation Controller hierarchy as indicated here:

AddBookViewController *addBookVC = (AddBookViewController
*)navigationVC.topViewController;

NOTE: This is a very common pitfall. Remember that whenever your segue’s primary
destination View Controller is a Navigation Controller, you must access its
topViewController and cast it to the appropriate class in order to get to the View
Controller you’re likely intending to prepare for segue.

Figure 8-53. Implement delegate methods to receive the newly added book objects.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 440

17. Additionally, you’ll implement the delegate method for the
AddBooksViewController, in which you can access the object
that’s been created by the user and add it to the Table View.
Drag in the ‘‘26 BooksViewController.m Add Books’’ snippet
from DemoMonkey and place it right before the @end as shown
in Figure 8-53. In this method, addBookVC:didCreateObject:,
you’re checking whether you’re currently displaying books per a
certain category or per a certain author, and if so, whether the
book you’re about to add to the Table View belongs to one of
those groups:

self.category != nil && ((DBBook *)anObject).category != self.category) ||
self.author != nil && ((DBBook *)anObject).author != self.author))

If that’s not the case, you don’t update the current list of
books-----otherwise, if the object passes the tests, you add a new
row to the very top of the Table View:

NSIndexPath *indexPath = [NSIndexPath indexPathForRow:0 inSection:0];
[self._tableView insertRowsAtIndexPaths:[NSArray arrayWithObject:indexPath]
withRowAnimation:UITableViewRowAnimationAutomatic];

Figure 8-54. Control-drag from the edit button to make an IBAction.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 441

18. Finally, you need to specify an IBAction for the Edit button in
your Navigation Bar. Remember that once the user taps this
Edit button, the Table View will switch to the editing mode, and
the user will be able to delete cells. So open up Storyboard and
navigate to Books Table View. Then open up the Assistant
editor and make sure the right-hand pane is the implementation
file of BooksViewController. Click inside it and scroll down to
the bottom of the code. Now Control-drag from the Edit button
down to just before the @end as shown in Figure 8-54.

In the pop-up dialog for the Action, name it editPressed. Now,
make sure before you click Connect, because you’ve always
been leaving everything in its default, that you select
UIBarButtonItem from the drop-down menu in the Type field.
Before proceeding, make sure your IBAction looks as follows:

- (IBAction)editPressed:(UIBarButtonItem *)sender {
}
@end

Figure 8-55. Make IBAction capable of toggling.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 442

19. Press Return after the first bracket located after sender { and
create a line between the beginning and ending brackets so that
you can code inside the method. You need to write code so that
you can toggle the editing mode for the Table View on and off.
Type the following code:

- (IBAction)editPressed:(UIBarButtonItem *)sender {
 if (self._tableView.editing) {
 self._tableView.editing = NO;
 sender.title = @"Edit";
 }
 else {
 self._tableView.editing = YES;
 sender.title = @"Done";
 }
}

Refer to Figure 8-55 for details.

Adding Code for the Categories Scene

Figure 8-56. Create the CategoriesViewController.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 443

1. The next View Controller you’ll create is the Categories View
Controller. Press +N to create a new subclass and, after
selecting the Objective-C class, click Next. Name it
CategoriesViewController and make it a subclass of
UIViewController as shown in Figure 8-56. Save it in its default
location.

Figure 8-57. Imports and an array to hold the categories

2. Open up the CategoriesViewController.m file. Drag in the ‘‘--
CategoriesViewController.m Imports’’ snippet from
DemoMonkey and place it under the #import
"CategoriesViewController.h" line.

You’ll also need an array to store the objects from the database.
You can just add this into the private @interface section. Type
NSMutableArray *_categories; enclosed into a set of curly
braces as shown in Figure 8-57 and as follows:

@interface CategoriesViewController () {
 NSMutableArray *_categories;
}

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 444

Figure 8-58. Select the View Controller – Categories.

3. You now need an outlet for the Table View that you have in the
Categories Scene. Open up Storyboard and navigate to View
Controller --- Categories. Click it once to select it as shown in
Figure 8-58.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 445

Figure 8-59. Set the Class for the Categories Scene.

4. With the View Controller --- Categories selected, open the
Identity Inspector and set the Class to CategoriesViewController
as shown in Figure 8-59.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 446

Figure 8-60. Create the Table View outlet.

5. Open the Assistant editor and make sure you have the
CategoriesViewController implementation file on the right-hand
pane of the Assistant. Now, Control-drag from the Table View to
right before the @end as shown in Figure 8-60.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 447

Figure 8-61. Name the outlet _tableView.

6. Name the outlet _tableView as shown in Figure 8-61. Click
Connect and save everything.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 448

Figure 8-62. Populate the _categories array with the objects from the database

7. Open the Standard editor and then open the
CategoriesViewController.m file. You’re going to populate the
_categories array with the objects from the database on
viewDidLoad: call. Drag in the ‘‘27 CategoriesViewController.m
ViewDidLoad’’ snippet from DemoMonkey and place it inside
the viewDidLoad: method as shown in Figure 8-62 and as
follows:

- (void)viewDidLoad
{
 [super viewDidLoad];
 // Do any additional setup after loading the view.
 _categories = [NSMutableArray arrayWithArray:[DBCategory allCategories]];
}

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 449

Figure 8-63. Display the items in the Table View.

8. Next, you need to display the items in the
CategoriesViewController. Drag in the ‘‘28
CategoriesViewController.m Display Categories’’ snippet from
DemoMonkey and place it right before the @end as shown in
Figure 8-63.

The way you display the items in the Table View is very similar
to the one you did in the BooksViewController, except that here
in the (NSInteger)tableView:(UITableView *)tableView
numberOfRowsInSection:(NSInteger)section you display two
static rows at the end of the Table View in addition to the
number of book categories you have in the database:

return _categories.count + 2;

Thus, you need to check for two additional cell reuse
identifiers-----AllCell and AddCell-----when displaying the cells in
order to load the proper ones from the Storyboard:

- (UITableViewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath:(NSIndexPath *)indexPath
{

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 450

 static NSString *cellIdentifier = nil;
if (indexPath.row < _categories.count) {
 cellIdentifier = @"Cell";
 }
 else if (indexPath.row == _categories.count) {
 cellIdentifier = @"AllCell";
 }
 else {
 cellIdentifier = @"AddCell";
 }

Figure 8-64. Bring in code that will delete the categories.

9. You now need to bring in code that will delete the categories.
Drag in the ‘‘29 CategoriesViewController.m Delete Categories’’
snippet from DemoMonkey and place it right before the @end as
shown in Figure 8-64. You may notice that this is almost
identical to Delete Books in Figure 8-51.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 451

Figure 8-65. Add a new category.

10. Adding a new category is a little different, though. Because you
only need to capture the category name, you don’t need a
whole new V iew Controller for that-----you can do it using a
UIAlertView. Drag in the ‘‘30 CategoriesViewController.m Add
New Category’’ snippet from DemoMonkey and place it right
before the @end as shown in Figure 8-65.

Here, once the user clicks the ‘‘Add new’’ cell

if ([cell.reuseIdentifier isEqualToString:@"AddCell"]) {

you simply pop a standard UIAlertView that contains a built-in
UITextField:

UIAlertView *alertView = [[UIAlertView alloc] initWithTitle:@"Add Category"
message:nil delegate:self cancelButtonTitle:@"Cancel" otherButtonTitles:@"Add",
nil];
 alertView.alertViewStyle = UIAlertViewStylePlainTextInput;
 UITextField *alertTextField = [alertView textFieldAtIndex:0];

You then implement the UIAlertViewDelegate method:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 452

- (void)alertView:(UIAlertView *)alertView
didDismissWithButtonIndex:(NSInteger)buttonIndex

Save the category into the database and add it to the
_categories array:

DBCategory *newCategory = [DBCategory createEntityWithDictionary:[NSDictionary
dictionaryWithObject:categoryName forKey:@"categoryName"]];
 [_categories insertObject:newCategory atIndex:0];

Insert a new row into the Table View:

[self._tableView insertRowsAtIndexPaths:[NSArray arrayWithObject:indexPath]
withRowAnimation:UITableViewRowAnimationAutomatic];

Figure 8-66. Implement the prepareForSegue: method.

11. Next you’ll implement the prepareForSegue: method. Drag in
the ‘‘31 CategoriesViewController.m PrepareForSegue’’ snippet
from DemoMonkey and place it right before the @end as shown
in Figure 8-66.

While storyboarding your UI, you specified two segues from the
Categories Scene, between which you must distinguish:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 453

 ([[segue identifier] isEqualToString:@"ShowCategoryBooks"])

and
if ([[segue identifier] isEqualToString:@"ShowAllBooks"])

In the first case, you set the Category property of the
destination View Controller, which is BooksViewController, to
the currently selected Category, and also reset its Author
property to nil, in case it was previously assigned a value:

[(BooksViewController *)[segue destinationViewController] setCategory:object];
[(BooksViewController *)[segue destinationViewController] setAuthor:nil];

This way you make sure BooksViewController will only display
the books that belong to the selected Category.

In the second case, you set both the Category and the Author to
nil:

[(BooksViewController *)[segue destinationViewController] setCategory:nil];
[(BooksViewController *)[segue destinationViewController] setAuthor:nil];

In which case, you may remember, viewDidLoad
BooksViewController will load all books you have.

Figure 8-67. Set up another IBAction for an Edit button.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 454

12. Lastly, you’ll create the exact same IBAction method as you did
for the BooksViewController, which will toggle the editing mode
in your Table View. Drag in the ‘‘32 CategoriesViewController.m
IBAction’’ snippet from DemoMonkey and place it right before
the @end as shown in Figure 8-67.

Figure 8-68. Connect the Edit button to the Categories View Controller.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 455

Figure 8-69. Select editPressed: from Sent Actions.

13. All you need to do is connect it to your Edit button on the View
Controller. In Storyboard connect the Edit button to the
Categories View Controller as shown in Figures 8-68 and 8-69.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 456

Implementing the Authors Scene

Figure 8-70. Create the last View Controller class!

1. The last View Controller you need to create is the Authors View
Controller. Press +N to create a new subclass and, after
selecting the Objective-C class, click Next. Name it
AuthorsViewController and make it a subclass of
UIViewController as shown in Figure 8-70.

NOTE: The next few steps for Authors repeat what you did for Categories, so these
instructions will be brief. But we’ll supply the images.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 457

Figure 8-71. Drag in the imports, Categories, and Author Display.

2. Open up the AuthorsViewController.m file, drag in the ‘‘--
AuthorsViewController.m Imports’’ snippet from DemoMonkey,
and place it right under the #import "AuthorsViewController.h"
as shown in Figure 8-71. These imports are DBBook.h,
BooksViewController.h, DetailViewController.h, and
CustomCell.h. Create the mutableArray just as you did for
Categories.

Change @interface AuthorsViewController () to:

@interface AuthorsViewController () {
 NSMutableArray *_authors;
}

Drag in the ‘‘33 AuthorsViewController.m ViewDidLoad’’ snippet
from DemoMonkey and place it inside the viewDidLoad: as you
did for Categories.

Drag in the ‘‘34 AuthorsViewController.m Display Authors’’
snippet from DemoMonkey and place it right before the @end.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 458

Figure 8-72. Drag in the Delete Authors snippet.

3. Drag in the ‘‘35 AuthorsViewController.m Delete Authors’’
snippet from DemoMonkey and place it right before the @end as
shown in Figure 8-72.

Figure 8-73. Make the outlet for the Table View.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 459

4. You’ll also need an outlet for the Table View. Open Storyboard
and navigate to the Authors Scene. Click View Controller ---
Authors once to select it as shown in Figure 8-73.

Figure 8-74. Set the Class for Authors Scene.

5. With View Controller --- Authors selected, set the Class to
AuthorsViewController as shown in Figure 8-74.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 460

Figure 8-75. Open the Assistant and create the outlet.

6. Open the Assistant editor, make sure the
AuthorsViewController.m is open in the right-hand pane, and
drag from the Authors Table View to AuthorsViewController.m
to create the outlet as shown in Figure 8-75.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 461

Figure 8-76. Name the outlet _tableView.

7. Once the Connection pop-up appears, name the outlet
_tableView as shown in Figure 8-76.

Figure 8-77. Connect the outlets to your custom Table View cell.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 462

8. Close the Assistant editor, go back to the Standard editor, and
connect the outlets to your custom Table View cell. Click the
cell once as shown in Figure 8-77.

Figure 8-78. Set the cell’s Class to CustomCell.

9. Set its Class to CustomCell as shown in Figure 8-78.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 463

Figure 8-79. Connect the mainLabel to “Author name.”

10. With the top cell still selected, open the Connections Inspector
and connect the mainLabel outlet to the ‘‘Author name’’ label as
shown in Figure 8-79.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 464

Figure 8-80. Connect the detailLabel1.

11. Connect the detailLabel1 to ‘‘Label --- 5’’ as shown in
Figure 8-80.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 465

Figure 8-81. Final connections

12. Your final connections should look like ours as shown in
Figure 8-81.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 466

Figure 8-82. Add new authors (slight variation).

13. Now go back to the AuthorsViewController.m and drag in the
‘‘36 AuthorsViewController.m Add NewAuthors + Drill Down’’
snippet from DemoMonkey. Place it right before the @end as
shown in Figure 8-82. As you may remember, when you were
designing this scene you created two segues that originated from
the Authors View Controller itself rather than a cell or a button.
Thus, you must perform those segues manually from the code
when certain conditions are met. In your case, you’ll perform the
segues once the user selects a Table View cell. In the
tableView:didSelectRowAtIndexPath: method, you manually
perform a segue with a specific identifier (ShowAuthorBooks or
ShowAuthorBookDetail) based on how many books the selected
author has:

if (object.books.count > 1 || object.books.count == 0) {
 [self performSegueWithIdentifier:@"ShowAuthorBooks" sender:[tableView
cellForRowAtIndexPath:indexPath]];
 }
 else if (object.books.count == 1) {

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 467

 [self performSegueWithIdentifier:@"ShowAuthorBookDetail" sender:[tableView
cellForRowAtIndexPath:indexPath]];
 }

If there’s exactly one book, you’ll perform the
ShowAuthorBookDetail segue to show the Book Details Scene for
this book; if the author has more than one book or no books at all,
you’ll perform the ShowAuthorBooks segue to display the Books
Scene with the list of books associated with this author.

If the selected cell’s identifier is not Cell, which leaves you with the
AddCell option, you’ll pop up a UIAlertView with text field and Add
button, almost identical to the one you did for the Categories
Scene. Once the user taps the alert view’s Add button, you create a
new author entity with the provided name. Now, add the new author
to the _authors array, and insert a new row at the top of the Table
View.

Figure 8-83. IBAction same as for Categories

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 468

14. The IBAction for the Edit button here is the same as in
Categories. It toggles the editing mode for the Authors Table
View in exactly same way. Drag in the ‘‘37
AuthorsViewController.m IBAction’’ snippet from DemoMonkey
and place it right before the @end as shown in Figure 8-83.

Figure 8-84. Add the prepareForSegue: method implementation.

15. Finally, you’ll implement the prepareForSegue: method. Drag in
the ‘‘38 AuthorsViewController.m prepareForSegue:’’ snippet
from DemoMonkey and place it right before the @end as shown
in Figure 8-84. The code here is a hybrid between the
implementations you wrote for CategoriesViewController and
BooksViewController.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 469

Figure 8-85. Connect the Edit button.

16. Back in Storyboard, Control-drag from the Edit button to the
Authors View Controller icon in the Dock as shown in Figure
8-85. Select editPressed: from the pop-up dialog and save the
file.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 470

Wrapping Up and Loading Test Data

Figure 8-86. Connect the first Table View.

1. Control-drag from the Table View to the Authors View Controller
icon in the Dock as shown in Figure 8-86.

Figure 8-87. Select dataSource.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 471

2. In the Connection dialog that appears, select dataSource
nested inside the Outlets option as shown in Figure 8-87.
Repeat the exact same procedure to connect the delegate
outlet of the Table View.

Figure 8-88. Repeat for Categories as well.

3. Now you need to repeat for Categories what you just did with
Authors. Connect the Table View with the Categories View
Controller icon as shown in Figure 8-88 and select dataSource
from the Option dialog. Repeat again to similarly connect the
delegate outlet.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 472

Figure 8-89. Populate the database with test data.

4. You’re almost ready to run your app! Although it’s not required,
and you should be able to run the app with an empty database,
we recommend that you add one last piece of code. You’ve
prepared a test database for this app, so you can test its
functionality without the need to create many records yourself.
Let’s plug it in and see how the app works. Navigate to
AppDelegate.m and drag in the ‘‘-- AppDelegate.m Imports’’
snippet from DemoMonkey. Place it below the #import
"AppDelegate.h" line. Then find the following method:

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions

Drag in the very last ‘‘-- AppDelegate.m Data for Testing’’
snippet from DemoMonkey. Insert it at the end of the method
implementation right below the following:

[MagicalRecord setupCoreDataStackWithStoreNamed:@"MyDatabase.sqlite"];

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 473

See Figure 8-89 for the final view of the AppDelegate.m after the
two modifications you just made.

Figure 8-90. Run it!

5. Run it and test out the path from My Library to Books and then
the path from My Library to Authors as shown in Figure 8-90.

8

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 474

Figure 8-91. Three views working

6. In Figure 8-91, the first image shows the Books View reached
from Authors after selecting author Rory Lewis from the Table
View. The middle image shows the Books View from Categories.
The third image shows Deleting books. All working correctly.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8: Mastering Table Views with Storyboarding: Coding the Back End 475

Figure 8-92. Adding

7. The Adding Categories and adding Authors also works
perfectly.

You can now say you’ve experienced, in detail, how you use the Master-Detail
Application template to make an iPhone act like it was programmed with a
Navigation-based Application template-----or make an iPad act like it was
programmed with a Split View-based Application template. This is huge,
because now you know how to use the Master-Detail Application template when
you want to work with lists, databases, and tables, particularly if you want to
give the user the ability to drill down through your data in a hierarchical manner.
You’ve also had experience now with the database component, and as
mentioned, it’s very difficult for employers to find Xcoders who have any
experience at all with SQL.

Good job! Now get ready for your last app.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

477

9
Chapter

Single View #3:
wanderBoard Part I
In this final Storyboarding app, you’ll build a simple maze-wandering game that
allows the user to walk through a 3D maze that has one correct path among
dead ends. As with the last app, this one is divided into three chapters:
Chapter 9---11.

In this app you’ll include a means to have the user graphically steer through the
maze that implies motion. You’ll be using mostly graphical images and
Storyboarding techniques to develop this app while using as little code as
possible. Similarly to Chapter 2’s AlienView and Chapter 3’s FlickrPhotoMap,
this i s a lso a Single V iew Application w ith S toryboards-----but it’s considerably
more advanced. By the time you’re done with this app, you’ll have designed a
serious graphical game using mostly Storyboarding.

wanderBoard: A Single-View App
We’ve designed the visuals to look as if you’re in the maze looking left, right, or
straight ahead. When you start the app you’re dropped at the opening of a
maze, as shown in Figure 9-0A, and you tap apparent openings in the walls to
navigate from each location to the next. Occasionally, you wander down a path
that goes nowhere and see a red arrow indicating that you can back up.
Tapping the arrow returns you to your previous position in the maze, and you
can keep tapping arrows to back all the way out of the dead-end path until the
arrows stop appearing. Then you can continue forward in another direction to
keep exploring the maze as shown in Figure 9-0B.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Single View #3: wanderBoard Part I 478

Figure 9-0A. wanderBoard’s “Welcome to our Maze” start: The view changes appropriately as the app
keeps track of where you are in the virtual 3D space.

Figure 9-0B. Dead ends look like the left-hand image. “You’ve made it!” signals you’re out of the maze
(right-hand image).

We chose the iPad Landscape layout because it gives more room for maze
presentation and room for navigation controls. The View Controller behavior is

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Single View #3: wanderBoard Part I 479

data-driven, meaning we encode information within the onscreen objects to
control behavior of the application in a couple of ways:

 The object.tag property indicates mid-section or the end of
dead-end paths.

 Segue identifiers indicate directions of travel Left, Right, or
Forward, so the segue animation can also reflect the direction
taken. This results in very little code being added to the View
Controller template.

You’ll use a Single View Controller object behind all 18 Maze Views. It’s been
given a special ability to determine whether and when to show a Reverse button
(the red arrow) and it passes on segue direction by looking at the segue
identifier and determining what to pass to the custom segue to affect its
behavior. This View Controller uses a property of all View Controllers
(isMovingToParentViewController) to determine when you’re entering a dead-
end path or leaving the path. Upon entry, the intermediate Reverse buttons are
hidden, so you can’t reverse until you get to the very end of a dead-end path.
The ViewController code knows which buttons are intermediate by inspecting
the .tag property of the Reverse buttons (which may or may not be present).
The tag values are: tag=1 means mid-location, and tag=0 means end of path.

We also introduce some professional-level architectural designs in this app:

 A custom segue class handles the maze movement transitions
(MovementSegue.m/.h).

 The Storyboard file encloses the Single View Controller within
a Navigation Controller so that entering new locations and
backing up when needed are simply push and pop operations.
We configure the Single View as the entry to the maze and end
by adding 17 more View Controllers, each with custom segues
between them.

The wanderBoard app keeps track of how you move through a pseudo-
geospatial area. In fact there are 18 scenes that the user can be in. Segues track
where the user is by keeping track of which scene the user is in.

NOTE: There appears to be a bug in Xcode v4.3.2 (4E2002 in our case)
wherein a duplicate of a UIButton from within Storyboard appears to
occasionally fail to copy the ‘‘Shows Touch on Highlight’’ property.
You may have to set this even though the button was duplicated! We
will address this when we get there.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Single View #3: wanderBoard Part I 480

There will be a serious amount of repetition as you build the 18 scenes. And
unfortunately, as noted in the nearby Note, there seems to be a bug with Xcode
v4.3.2 that, as you will later see, prohibits us from completely automating the
repetition of the 18 steps. With that in mind, we divide the project into four
steps. First, you set up the files, adjust your project settings, and drag in your
assets. Then you prep the Storyboard by adding your Navigation Controller,
Image View, welcome label, and add the buttons. Next, you finish your View
Controller header and implementation files. Finally, in MainStoryboard, you
create the remaining 17 scenes (we give this step with and without assistance).
This chapter covers the first two steps. The next two (the final one with
assistance) are found in Chapter 10. The final step without assistance is in
Chapter 11.

Preliminaries
As always, we supply you with all the files and code necessary for this chapter
at http://bit.ly/sMRvAP. You can also download the final version of the app at
http://bit.ly/Od8IUE. For an app of this size, you may want to download the
Assets folder from http://bit.ly/Od9a5v and take note of the following: when
you download the Assets.zip file, you’ll see seven files/ These are: Default-
Landscape@2x~ipad.png, Default-Landscape~ipad.png, icon72x72.png,
icon144x144.png, MovementSegue.h, MovementSegue.m, and
wanderBoard.demoMonkey, together with the two folders Images and Sources.
You’ll use the four .png files for icons and Landscape launch images. (We
explain the MovementSegue files later, and of course you know what the
demoMonkey file is all about.)

The Images folder contains 19 images, 18 of which you’ll be using in the maze.
Don’t worry, we explain in detail how you can generate you own 3D landscapes.
The 19th image is the red arrow image that tells users they have to start
backtracking (shown in the left-hand image in Figure 9-0B). The Sources folder
contains the OmniGraffle and Sweet Home 3D files we used to make the 3D
images.

NOTE: You may or may not want to find out how we created the 3D images used in
the maze. If you’re not interested in creating 3D imagery, skip ahead to the section
“Step 1: Set Up the Files, Project Settings, and Assets.” If you are interested,
continue reading.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Single View #3: wanderBoard Part I 481

How We Created Our 3D Landscape
Because our focus is Storyboarding, we won’t spend too much time explaining
how to create 3D images. (We have an extensive 28-minute video of Stephen
explaining exactly how to download, create, and integrate the OmniGraffle files
with the Sweet Home 3D f iles a t h ttp://bit.ly/sMRvAP-----see ‘‘Chapter
9_wanderBoard: How we created the 3D Maze for our Xcode’’ towards the
bottom of the page.)

We used a simple tool called OmniGraffle to design the floor plan and camera
views that users see as they go through the maze (Figure 9-0C). We then used
the OmniGraffle images to guide our data entry into Sweet Home 3D to make
the maze come to life with perspectives, walls and bricks, light sources,
shadows, ornaments, desks, shelves, and other goodies we dragged into the file
to create the scenes (Figures 9-0D and 0E). We’re sure these two tools can be
used in a much more sophisticated way. We’ve seen examples of what other
people have done with these tools and they are absolutely amazing.

Figure 9-0C. OmniGraffle provided a very easy, intuitive way for us to design the maze.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Single View #3: wanderBoard Part I 482

Figure 9-0D. In this image we superimposed the OmniGraffle and Sweet Home 3D files on top of the
Sweet Home 3D web site. We hand-entered the walls as shown in our drawing into Sweet Home 3D.

Figure 9-0E. The exit of the maze in OmniGraffle depicted by the bird in the yellow circle at the bottom
right of the image is replaced by a desk in Sweet Home 3D.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Single View #3: wanderBoard Part I 483

Step 1: Set Up the Files, Project Settings,
and Assets
As always, clear out your desktop. Then go to http://www.rorylewis.com/xCode/
StoryBoarding%20in%20Xcode/Chapter07_WanderBoard-Assets.zipdownload
the file, and unzip the folder to your desktop.

Figure 9-1. Start a Single View Application and save it as wanderBoard.

1. Open Xcode, press ++N, and select a Single View
Application. Name it wanderBoard. For Company Identifier,
enter com.apress so if you have to compare or substitute some
of our code with your code, it will all match. Select iPad
because this app is an iPad-only app, you’ll use Automatic
Reference Counting and you’ll of course use Storyboards as
shown in Figure 9-1. Save it to your desktop.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Single View #3: wanderBoard Part I 484

Figure 9-2. Set up the app as Landscape-only.

2. You’re now going to set up our app and then drag in some of
the assets from the WanderBoard - Assets folder you
downloaded from the web. Make the app Landscape-only so
you don’t have to create a bunch of extra images for the
different o rientations (you already have 18 as i t i s-----bear this
caution in mind, by the way, if you create a game of your own
that has many images). Uncheck the Portrait and Upside Down
options in the Supported Device Orientations section in your
Summary as shown in Figure 9-2. Figure 9-2 shows two
Landscape images in the Launch Images section at the bottom
of the f igure-----you accomplish that by dragging in your two
splash screens Default-Landscape@2x~ipad.png and Default-
Landscape~ipad.png together from your folder into your root
directory as shown in the top left-hand corner in Figure 9-2.
When you drop it in the directory, make sure to copy items into
the project folder as always. What you will see is that as you
drag them in, they automatically show up in the Launch Images
because they’re set at the proper resolutions and have the
correct names.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Single View #3: wanderBoard Part I 485

Figure 9-3. Drag in the app icons.

3. The last step automatically found the correct resolutions for the
Launch Images and did the work for you. For the icons,
however, it’s a different story. Drag icon72x72.png and
icon144x144.png individually from your folder into the App Icons
slots, with the icon144x144.png icon going into the Retina Display
slot as shown in Figure 9-3. Later you’ll move these icons,
currently stored by default in your project's root folder, into the
Supporting Files folder.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Single View #3: wanderBoard Part I 486

Figure 9-4. Make sure to set the options correctly for the drag of your images folder.

4. Now select your Images folder inside your downloaded folder
and drag it into your Supporting Files folder. When the Choose
Options dialog box appears, create a copy and groups as
shown in Figure 9-4. Make sure your Supporting Files folder
looks like ours. If not, you may have accidently placed them
outside the Supporting Files folder.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Single View #3: wanderBoard Part I 487

Figure 9-5. Bring in the segue code.

5. Now drag in the segue code MovementSegue.h and MovementSegue.m
files we made for you into the wanderBoard folder as shown in
Figure 9-5. Remember that Xcode doesn’t know how to build
the implementation file because this is an unexpected way for
the framework to have been set up. So you need to set up a
new compile source.

NOTE: You added the class files differently than you’ve done in the past. Instead of
selecting the group and then picking “Add files to {group},” you simply dragged the
.m and .h files to the group from Finder. At the time of this writing, Xcode doesn’t
add the instruction to compile the .m file when you use this drag-and-drop method of
adding class files. That’s why you need the following step. If you used the “Add
files...” method, you should find that the compilation of the .m file was already added
for you.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Single View #3: wanderBoard Part I 488

Figure 9-6. Setting up a new compile source

6. To create a new compile source for the segue class, click the
Build Phases tab (visible in Figure 9-2 if you can’t find it) and
then select Compile Sources (3 items). You need to add a new
compile source, which will be the segue. Click the + button
under Sources (3 items) and select the MovementSegue.m file from
the Finder dialog as shown in Figure 9-6.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Single View #3: wanderBoard Part I 489

Figure 9-7. Move the icon files into the Images folder.

7. You’re almost done dragging in the assets. You just need to do
a little housecleaning now. Drag the two icon files icon72x72.png
and icon144x144.png into your Images folder, located inside as
shown in Figure 9-7.

Figure 9-8. Make sure you’re set up correctly by building the code.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Single View #3: wanderBoard Part I 490

8. You’ve now dragged all the assets into the project. Before
moving on to the next section where you start programming the
app, first make sure you’ve done everything correctly. Press
+B as shown in Figure 9-8 and make sure it builds correctly.
Note that in Figure 9-8 we’ve closed the Supporting Files
folder. Yours may still be open.

Step 2: Prep the Storyboard
In this section you’ll set up your Storyboard. You’ll start by working on the first
scene by adding your View Controller, UIImageViews, welcome label, and
buttons. After you code this in the next section, bear in mind that you’ll have to
repeat it for the remaining 17 scenes.

Figure 9-9. Create the Navigation Controller.

1. Open the Storyboard and you’ll see the iPad default canvas on your
screen. Think about this for a second. To make it easier to wander
through a maze, where the user will often back up and then go forward
again, it would serve you well to use a Navigation Controller inside your
Navigation Controller as you’ve done in the past. Remember, doing so
gives you the ability to push and pop views. Select the view on the
Storyboard and choose Editor ➤ Embed In ➤ Navigation Controller as

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Single View #3: wanderBoard Part I 491

shown in Figure 9-9. Now you’ll see by looking at the Storyboard that
you’ve taken your Single View, selected it, and embedded it inside the
Navigation Controller so that everything begins from the Navigation
Controller.

Figure 9-10. Setting up metrics

2. To set the metrics, click your View Controller (the one on the
right-hand side) and open the Attributes Inspector. Navigate to
the Simulated Metrics section, where you want to make sure
that the size is iPad Full Screen and the orientation will stay
Landscape. Leave everything else as Inferred as shown in
Figure 9-10.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Single View #3: wanderBoard Part I 492

Figure 9-11. Drag in an image view from the Library.

3. Leave the View Controller you just set up in step 10 right there,
because you’ll be adding labels and buttons and things any
project heavy with graphics would have. Start by bringing in an
Image View from the Library. It will automatically size to the
correct dimensions as shown in Figure 9-11. Once that
happens, drop it into your view.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Single View #3: wanderBoard Part I 493

Figure 9-12. Make sure the image is configured to automatically resize.

4. You’ll soon be taking out the Navigation Bar because you want
your user to have the full-screen experience on the iPad. For our
image to resize itself as we insert or take objects out of the
view, we need to make sure now while we are creating this first
scene that the Image View is set to automatically resize. Go to
the Size Inspector and make sure the Autosizing option is
configured as shown in Figure 9-12. While you’re there, note
that Interface Builder has resized the Image View to the size it
needs to be with the Navigation Bar there. The x and y positions
show that it’s positioned in the upper left-hand corner which is
correct.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Single View #3: wanderBoard Part I 494

Figure 9-13. Setting your first image.

5. You’re now able to set your first image. With the Image View still
selected, in the Attributes Inspector select the image that shows
the view from camera 1. This step is necessary because you
may want to make sure, if you design a game with a 3D
landscape, that you identify in your image filename, which
camera number the view is coming from. Here, you’re selecting
camera view number 1, named wanderBoard-cam01.png from the
drop-down menu as shown in Figure 9-13. If the filename of the
image you want to show isn’t visible in the list of images, you
may need to scroll down to see more names.

Awesome! You’re now standing at the entrance to the maze.
You’re now going to use Storyboarding and Xcode to walk a
user through this maze, and that is a really cool concept.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Single View #3: wanderBoard Part I 495

Figure 9-14. Make a multi-line welcome label.

6. You want to have a welcome label that greets users as they
enter the maze. Grab a label from the Library, drag to the upper
portion of the right-hand wall, and enlarge it a little. In the
Attributes Inspector you’re going to do something interesting
that you may not have come across yet: make a multi-line label.
You have to use a special key to make a soft return: In the Label
text box, enter Welcome and press Option+Return to create the
new line as shown in Figure 9-14. On the new line enter to our,
create another new line, and enter Maze! as shown in Figure 9-
15. Next you have to adjust the Lines count from 1 to 3 (as
shown) before the label will show all three lines. Choose Mocha
as the text color by selecting it in the crayon box color selection
(Mocha is the left-most crayon in the 2nd row from the top).
Also choose light grey for the shadow color, with the shadow
offsets at a distance of 1 for Horizontal and 1 for Vertical.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Single View #3: wanderBoard Part I 496

Figure 9-15. Change the font style.

7. While in the Attributes Inspector, with the font selected change
the font to Noteworthy Bold by clicking the T icon in the drop-
down menu and selecting Noteworthy. Select Bold for Style and
40 (points) for Size as shown in the left-hand image in Figure 9-
15. In the Size Inspector make the x, y position 700, 80. Set the
Width of the text box to 250 and the Height to 200 as shown on
the right in Figure 9-15.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Single View #3: wanderBoard Part I 497

Figure 9-16. Bring in the first button.

8. To navigate from screen to screen, you’d like to use buttons,
but you don’t really want the user to see the buttons because
that would give away which way to go. You’ll use the Size
Inspector to set the sizes and positions of buttons correctly.
Then in the Attributes Inspector you’ll make it invisible by
changing it to Custom, which by default sets it to transparent.

Drag in a button from your Library and place it about where you
see ours in Figure 9-16. In the Size Inspector set the x-position
to 530, y-position to 80, Width to 140, and Height to 450.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Single View #3: wanderBoard Part I 498

Figure 9-17. Make the button invisible.

9. To make the button transparent, in the Attributes Inspector
select Custom for Type. The button will become transparent as
shown in Figure 9-17.

Figure 9-18. Allow users to see when they tap the button.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Single View #3: wanderBoard Part I 499

10. You’ve made the button transparent, but you need to let users
see when they’ve tapped it. Put a check mark next to the
Drawing attribute Shows Touch On Highlight so that when the
user taps the button it creates a little flash that tells the user
when the button got hit. This is shown in Figure 9-18.

Figure 9-19. Naming the buttons

11. Even in this small 18-scene maze, each scene will have two to
three options for where to go next, which could add up to 40
buttons. You need a naming system so you can easily identify
buttons in your document outline just by name. This button
you’ve selected allows the user to go to the right, so with the
button still selected, in the Identity Inspector label it Button -
Right as shown in Figure 9-19.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Single View #3: wanderBoard Part I 500

Figure 9-20. Check the status.

12. This is a critical step, so let’s be overly cautious that this aspect
of the project is working perfectly before moving on. First check
it in the Document Outline and then run it. Open the Document
Outline Panel in Storyboard if it’s not already open and go to the
View Controller Scene. Under View, if you open it up, you
should see Image View…, Label - Welcome to our Maze!, and
Button - Right as shown in Figure 9-20. Let’s move on and build
it. If it builds correctly, run it.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9: Single View #3: wanderBoard Part I 501

Figure 9-21. Click the transparent (invisible) button and see the flash!

13. When the iPad Simulator appears, click where you know the
transparent button is. You should see a flash indicator as shown
in Figure 9-21. Note that wherever you click, it will still show the
flash. That’s important because different people may choose
different segments of the button. You’ve accomplished an
important part of creating the app. Good job!

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

503

10
Chapter

Single View #3:
wanderBoard Part II
You’ve now set up the first scene. In this chapter, you’ll add code to the View
Controller’s header and implementation files in Step 3. That sets you up for Step
4, in which you efficiently create 17 more scenes! Step 4 is divided into two
parts. The first part, Step 4a, concludes this chapter, and for that step you will
still receive assistance and guidance from us. Then in Chapter 11, we have you
work on Step 4b, which comes with much less assistance.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 504

Step 3: Finish the ViewController Header
and Implementation Files

Figure 10-1. Drag in the property and action method signature.

1. Make sure you’ve opened up DemoMonkey and placed it in your
favorite spot so you can access it while you code. Open the
ViewController.m file and then open the Assistant Editor so that
it opens up its header file in the right-hand pane. From
DemoMonkey, drag in the first snippet ‘‘01 ViewController.h ---
add new property and action signature’’ and drop it at the end of
the @interface line of code in the header file as shown in Figure
10-1 and as follows:

#import <UIKit/UIKit.h>

@interface ViewController : UIViewController {
}

@property (weak, nonatomic) IBOutlet UIButton *btnReverse;

(IBAction)onReversePress:(id)sender;

@end

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 505

All you’re doing to the View Controller is adding a new property and
an action method signature. You’re setting up the ability for users to
communicate that they need to back up in the maze when they get
to a dead-end. They accomplish that with your reverse button
(*btnReverse) which, upon being tapped, invokes this IBAction
method. This is all you’ll be doing to the header file, so it’s time to
on to the implementation file.

Figure 10-2. Import viewWillAppear method code.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 506

2. Switching back to the Standard Editor (or simply working now in
the implementation file on the left), you want to establish access
to your custom segue object because, as shown earlier, you
don’t want to use custom segues. The custom segues, as you
will see, are completely data-driven, meaning that data drives
the behavior of the code. Put yet another way, the code looks at
the view data and based on what it sees, it makes a decision on
how to act. So go to DemoMonkey and drag in the ‘‘02
ViewController.m ---- add import of customSegue Object’’ and
drop it after the #import ViewController.h. Now that in your
public interface you’ve declared a property for a reverse button,
you also need to tell the compiler to synthesize the reverse
button property setter and getter code. To do this, drag in the
‘‘03 ViewController.m ---- add property synthesis,’’ placing it
immediately after the @implementation line.

As you can see in the implementation file, Xcode has, by
default, instantiated the methods - (void)viewDidLoad and -
(void)viewDidUnload. But when the view appears, you want to
hide the Navigation Bar. So add a -(void)viewWillAppear
method to do this. Drag in ‘‘04 ViewController.m ---- add viewWill
Appear’’ and drop it in between the - (void)viewDidLoad and -
(void)viewDidUnload methods as shown in Figure 10-2 and as
follows:

#import "ViewController.h"
#import "MovementSegue.h"
@interface ViewController ()
@end
@implementation ViewController
@synthesize btnReverse;
- (void)viewDidLoad{ … }
-(void)viewWillAppear:(BOOL)animated {
 [super viewWillAppear:animated];
 [self.navigationController setNavigationBarHidden:YES];
 BOOL bIsMovToParent = [self isMovingToParentViewController];

 if(bIsMovToParent && self.btnReverse.tag == 1)
 { self.btnReverse.hidden = YES;}
 else if(self.btnReverse.tag == 1)
{self.btnReverse.hidden = NO;} }
- (void)viewDidUnload { …

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 507

NOTE: To save space we deleted the comments in the preceding code.

From the code you can see that you’re letting the super class do
what it needs to do on viewWillAppear with [super
viewWillAppear:animated];. Then you hide the Navigation Bar
with [self.navigationController
setNavigationBarHidden:YES]; and deal with how you arrived
at this view. You want to know if you’re heading toward a dead-
end or backing out of a dead-end. The call [self
isMovingToParentViewController] tells you part of the answer.
You can see in the comments in the code (not shown in the
preceding code) that for our non-terminal dead-end screens,
you’ve given the reverse button a tag=1. Conversely, the dead-
end end screens are given a tag=0. But if you arrived at this
screen while heading toward the dead-end, then you hide the
reverse button with self.btnReverse.hidden = YES. Finally, if
the user returned to this point via a reverse button tap (backing
out of the dead-end), then you do want to display the reverse
button in this scene with self.btnReverse.hidden = NO; (if there
is a reverse button in this scene).

Figure 10-3. Replace code with code that allows both Landscape orientations.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 508

3. You now need to release the reverse button by dragging in ‘‘05
ViewController.m --- add release button (inviewDid Unload)’’ and
dropping it into ViewDidUnload right above [super
viewDidUnload]; as shown in Figure 10-3 and as follows:

- (void)viewDidUnload
{
 [self setBtnReverse:nil];
 [super viewDidUnload];
}
(BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)interfaceOr
ientation
{
 return UIInterfaceOrientationIsLandscape(interfaceOrientation);
}

The next thing to do is constrain view rotation to Landscape.
Rather than say you support any orientation, you’ll use a macro
to ask whether you’re in a Landscape orientation or not. To do
this, drag in ‘‘06 ViewController.m --- in ‘shouldAutorotate …’
replace’’ and drop it inside the
shouldAutorotateToInterfaceOrientation as shown in Figure
10-3. It should replace the return YES; line that’s already
present in this method. You may need to remove this line after
the insert of the new lines.

Instead of simply returning YES to all orientations, you now use
the macro to determining if you’re in a landscape orientation,
UIInterfaceOrientationIsLandscape, and return its result.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 509

Figure 10-4. Bring in the prepareForSegue:sender: and onReversePress: methods.

4. You’ve spent some time creating transparent buttons to have
your user navigate through the maze using your custom segues.
You now have to bring in code that will respond to taps on
these buttons. Drag in ‘‘07 ViewController.m --- add
prepareForSegue sender and onReversePress methods’’ and
drop it in between the
shouldAutorotateToInterfaceOrientation method and the @end
statement as shown in Figure 10-4. You can see how you’re
looking for the user to choose to go left, right, or forward and
you record this choice in the views ‘‘tag.’’ If the user is instead
trying to back out of a dead-end by tapping the back button,
you execute a pop with popViewControllerAnimated:YES. Now
do a build, and it should all build correctly.

Congratulations! You’ve finished all the code for this app. Yes, the
aforementioned code is the sum of all the code you’ll employ in this app. Now
do a run and see what you have. You’ll notice that now your beginning point
looks like Chapter 9’s Figure 9-0A in the sense that the Navigation Bar is no
longer there, as it was in Figure 9-21.

From this point on, you’ll be making the maze paths.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 510

Step 4a: Create the Next Eight Scenes
with Assistance
So far you’ve set up your app with its images and created the Storyboard and
the code for the first scene. That’s very often the case when you create a game
with many scenes. At the University of Colorado at Colorado Springs Computer
Science Department, we offer a Bachelor of Science in Gaming. It’s often
interesting to see how students panic when they realize that halfway through the
semester they’ve yet to complete the code for the first scene, nor all the
characters. The trick is to have the first scene and characters down so well that
it makes creating the rest of the game a breeze.

Here, you have everything set up so you’ll be as efficient as you can as you
repeat the steps necessary to create each of the remaining 17 scenes.

NOTE: You’ll be using a 4-step process to create each new scene. We begin by
explaining each step. As we move through and continue to repeat, we let the leash
loosen a little by not always explaining each step and all its intricacies but merely
reminding you to do it as you did previously.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 511

Figure 10-5. Set the Title of first scene’s View Controller.

1. Before you begin our repeating methodology to efficiently create
your remaining 17 scenes, you need to do a little house cleaning.
The naming of scenes and entities is critical. Start by going back
to the Storyboard. After clicking the View Controller’s scene dock
(the bar at the bottom of the scene on the canvas) and going to
the Attributes Inspector, name it by setting the Title to Opening
Scene as shown in Figure 10-5.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 512

Figure 10-6. Name the Navigator.

2. Click the Navigation Controller scene dock. You can just call this
Navigation as shown in Figure 10-6.

Scene 2
You’re finished cleaning up loose ends and can now focus on the steps you’ll
repeat and grind through 17 more times. At a very high level, you’ll be repeating
four steps:

 Scene #: Copy an existing scene.

 Scene #: Rename.

 Scene #: Organize graphics.

 Scene #: Make connections.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 513

NOTE: We’ll indicate the current step or sub-step in bold so that you’ll instantly
know where you are in terms of the broader view.

Figure 10-7. Starting your first duplication, click Opening Scene’s dock.

1. You’ll begin with step 1 for Scene 2: Copy an existing scene.
You only have one existing scene to choose from, so go ahead
and click the View Controller’s scene dock and press +D to
duplicate as shown in Figure 10-7. Immediately you’ll see that it
looks a little bit thicker. That’s because the duplicated item is
now sitting on top of the original scene.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 514

Figure 10-8. Change the Title of the new scene.

 Scene 2: Copy an existing scene.

 Scene 2: Rename.

 Scene 2: Change the Title.

 Scene 2: Organize graphics.

 Scene 2: Make connections.

2. Select the duplicated scene and drag it to the right of the original
scene. In the Attributes Inspector change the Title to Scene 2 as
shown in Figure 10-8.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 515

Figure 10-9. Make the transparent button visible.

 Scene 2: Copy an existing scene.

 Scene 2: Rename.

 Scene 2: Change the Title.

 Scene 2: Organize graphics.

 Scene 2: Hide inapplicable elements.

 Scene 2: Edit buttons.

 Scene 2: Make buttons visible.

 Scene 2: Replace image with new image.

 Scene 2: Make connections.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 516

3. Scene 2 doesn’t have a welcome label, so select it and delete it.
(Note that in all future scenes you create, you’ll be hiding
elements------in this case, you’re deleting the label because it’s
unnecessary for any future scenes.) Scene 2 does have buttons in
it, so you need to first make the transparent button visible so you
can edit it. Select the transparent button still in place from scene
1 and, with it selected, in the Attributes Inspector make it visible
by choosing Rounded Rect as shown in Figure 10-9.

Figure 10-10. Replace Image with correct image for Scene 2.

 Scene 2: Copy an existing scene.

 Scene 2: Rename.

 Scene 2: Organize graphics.

 Scene 2: Hide inapplicable elements.

 Scene 2: Edit buttons.

 Scene 2: Make buttons visible

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 517

 Scene 2: Replace Image with new image.

 Scene 2: Make connections.

4. You now need to get rid of the image background wanderboard-
cam01.png and replace it with Scene 2’s image wanderboard-
cam02.png. To do this, select the view and with it still selected, in
the Attributes Inspector change the Image name to wanderboard-
cam02.png from the drop-down menu as shown in Figure 10-10.

NOTE: See how the existing button from Scene 1 is still showing in Figure 10-10?
This is correct. You want this. Editing the buttons is a two-step process.

First: Make sure you have the correct buttons to transfer over to the new scene. Do
that by making visible the existing buttons in the original scene (Organize graphics
Edit buttons Make buttons visible) and/or hiding buttons (Hide inapplicable
elements). So far, you haven’t had to hide a button.

Second: Change the dimensions and positions of the buttons so they’re placed and
fit correctly into the new scene. Then make them invisible again.

Figure 10-11. Move duplicated button to left side of scene.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 518

 Scene 2: Copy an existing scene.

 Scene 2: Rename.

 Scene 2: Organize graphics.

 Scene 2: Hide inapplicable elements.

 Scene 2: Edit buttons

 Scene 2: Replace image with new image.

 Scene 2: Configure new buttons.

 Scene 2: Duplicate buttons.

 Scene 2: Reset parameters.

 Scene 2: Make connections.

5. In the new scene you can see that your user has two options
here: go left or right. To accommodate this, you need to offer two
buttons, one for each direction. Click the right-hand visible button
and press +D to duplicate. Now move it roughly to the left-hand
side of the scene as shown in Figure 10-11.

Figure 10-12. Set the position and size of the original (right-most) button.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 519

 Scene 2: Copy an existing scene.

 Scene 2: Rename.

 Scene 2: Organize graphics.

 Scene 2: Hide inapplicable elements.

 Scene 2: Edit buttons.

 Scene 2: Replace image with new image.

 Scene 2: Configure new buttons.

 Scene 2: Duplicate buttons.

 Scene 2: Reset parameters of buttons.

 Scene 2: Button Right.

 Scene 2: Button Left.

 Scene 2: Make connections.

6. Make sure these two buttons are correctly placed and sized so it
makes sense to the user. With the original button selected, in the
Size Inspector enter the attributes. You’ll be doing this a lot, so
we’ll give you the x and y coordinates that place the button on
the scene, and then the vertical and horizontal dimensions of the
button so that it fits snugly into position. We’ll do this all in one
set of numbers-----we’ll simply state: 590,90,80,450, and that
means that the x-position is 590, the y-position is 90, the width of
the button is 80 and the height is 450. We won’t remind you that
you need to select the button and go to the Size Inspector. 590,
90,80,450 means you go to the Size Inspector and enter the
values as shown in Figure 10-12.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 520

Figure 10-13. Set the position and size of the new (left-most) button.

 Scene 2: Copy an existing scene.

 Scene 2: Rename.

 Scene 2: Organize graphics.

 Scene 2: Hide inapplicable elements.

 Scene 2: Edit buttons.

 Scene 2: Replace image with new image.

 Scene 2: Configure new buttons.

 Scene 2: Duplicate buttons.

 Scene 2: Reset parameters of buttons.

 Scene 2: Button --- Right.

 Scene 2: Button --- Left.

 Scene 2: Make connections.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 521

7. Before setting the new button’s parameters, you need to always
rename it because right now it has the name of the duplicated
button. Select the new button and in the Identity Inspector, in the
Label box rename it from Button --- Right to Button --- Left. Back in
the Size Inspector set the parameters to 150,85,100,600 as
shown in Figure 10-13.

Figure 10-14. Make all buttons transparent again.

 Scene 2: Copy an existing scene.

 Scene 2: Rename.

 Scene 2: Organize graphics.

 Scene 2: Hide inapplicable elements.

 Scene 2: Edit buttons.

 Scene 2: Replace image with new image.

 Scene 2: Configure new buttons.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 522

 Scene 2: Duplicate buttons.

 Scene 2: Reset parameters of buttons.

 Scene 2: Make all buttons transparent again.

 Scene 2: Make connections.

8. The last thing you’ll always do after configuring the buttons of a
new scene is make sure you make them transparent. Remember,
you don’t want to give clues away to the user. Select a button
and in the Attributes Inspector choose Custom. We first
performed this on the new button and then changed the second
button to Custom as shown in Figure 10-14.

Figure 10-15. Correcting the bug: make sure to set Shows Touch On Highlight.

 Scene 2: Copy an existing scene.

 Scene 2: Rename.

 Scene 2: Organize graphics.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 523

 Scene 2: Hide inapplicable elements.

 Scene 2: Edit buttons.

 Scene 2: Replace image with new image.

 Scene 2: Configure new buttons.

 Scene 2: Duplicate buttons.

 Scene 2: Reset parameters of buttons.

 Scene 2: Make all buttons transparent again.

 Scene 2: Correct bug if necessary.

 Scene 2: Make connections.

NOTE: By the time this book comes out, a new version of Xcode will most likely have
corrected the bug you’re about to read about. We’ve alerted Apple and brought this to
their attention. But this is the bug as it stands right now.

9. Notice that you duplicated a view where Shows Touch On
Highlight was set for each button. but the duplicated buttons
didn’t have this value set correctly. Sometimes, for no apparent
reason, the setting of this attribute isn’t copied correctly, and
because it’s not consistent, that means there’s a bug here. What
you need to do is check that these buttons are going to show the
touch on highlight. Select each button and change to Shows
Touch On Highlight. We first corrected the right-hand button and
then corrected the left-hand button as shown in Figure 10-15.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 524

Figure 10-16. Connect Opening Scene: Button – Right to Scene 2.

 Scene 2: Copy an existing scene.

 Scene 2: Rename.

 Scene 2: Organize graphics.

 Scene 2: Make connections.

 Scene 2: Control-drag from button to new scene.

10. The way the user gets to Scene 2 is by tapping on the right-hand
button-----in other words, selecting the right-hand portal in the
maze. You’re going to have to connect the right-hand button to
the Scene 2 with a segue. If your Document Outline isn’t open,
open it, select Button ---Right in View Controller --- Opening Scene,
and then Control-drag from it to View Controller --- Scene 2 as
shown in Figure 10-16.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 525

Figure 10-17. Select the Custom segue type.

 Scene 2: Copy an existing scene.

 Scene 2: Rename.

 Scene 2: Organize graphics.

 Scene 2: Make connections.

 Scene 2: Control-drag from button to new scene.

 Scene 2: Select Custom segue.

11. Once you’ve dropped the Control-drag over the View Controller ---
Opening Scene, select Custom from the Style menu as shown in
Figure 10-17.

NOTE: We won’t repeat this Select custom segue step because you’ll always use a
custom segue. From here on, we’ll simply say Control-drag from button (name) to
new scene (name). You’ll then automatically select the Custom segue option.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 526

Figure 10-18. Edit the new segues attributes.

 Scene 2: Copy an existing scene.

 Scene 2: Rename.

 Scene 2: Organize graphics.

 Scene 2: Make connections.

 Scene 2: Control-drag from button to new scene.

 Scene 2: Edit the segue attributes.

12. You’ll now see a new custom segue linking the two views. You
can see that it’s custom because it has the {} inside the segue
linking the two views as shown in Figure 10-39. You need to
associate the correct class with the new view. To do this, select
the segue, in the Attributes Inspector name the Segue class
MovementSegue, keep the Style as Custom, and change the
Identifier to Right as shown in Figure 10-18.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 527

NOTE: Regarding the Identifier: you’ll want to note that this is a right transition. By
setting the Identifier value to Right, the Custom Segue class can look at the identifier,
know that it’s going right, left, or forward, and choose the appropriate animation to
do so. Remember when we mentioned that your segues are data-driven? The Right
value is the data that “drives” the selection of the correct animation.

Figure 10-19. Zoomed-out view of what you’ve just done

13. Before you get too lost in the forest, zoom out for a second. You
can see in Figure 10-19 that you have an opening scene and
Scene 2. Scene 2 is the next location in the maze, and you used
four essential steps to create Scene 2. Now you’ll do Scene 3
with a little less hand-holding and explanation.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 528

Scene 3

Figure 10-20. Duplicate Scene 2 to create Scene 3.

 Scene 3: Copy an existing scene.

 Scene 3: Rename

 Scene 3: Organize graphics

 Scene 3: Make connections

1. Similar to what you did in Figure 10-7, click Scene 2’s dock,
press +D to duplicate it, and then drag the duplicate to the right
as shown in Figure 10-20.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 529

Figure 10-21. Scene 3: select the correct image.

 Scene 3: Copy an existing scene.

 Scene 3: Place above or below previous scene.

 Scene 3: Rename.

 Scene 3: Change the Title.

 Scene 3: Change the Image.

 Scene 3: Organize graphics.

 Scene 3: Make connections.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 530

2. Now you’re going to start a new convention. You can go left or
right. Let’s position the right scene on the bottom and the left
scene on the top (left destination scene is above the right
destination). So, from here on put the right turn on the bottom
and the left turn on top. This way you can tell, just by looking at
the Storyboard, that you’re going to the right or left, travelling
horizontally. As you did in Figure 10-8, you need to change the
title-----change the Title from Scene 2 to Scene 3 so you can
remember what it is.

While you’re here, change Image to wanderBoard-cam03.png, just
as you did in Figure 10-10. This is shown in Figure 10-21.

Figure 10-22. Scene 3: Hide inapplicable elements: select Button – Left.

 Scene 3: Copy an existing scene.

 Scene 3: Rename.

 Scene 3: Organize graphics.

 Scene 3: Hide inapplicable elements.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 531

 Scene 3: Make connections.

3. Select Button --- Left as shown in Figure 10-22 so you can hide it.

Figure 10-23. Scene 3: Mark selected Button – Left as Hidden.

 Scene 3: Copy an existing scene.

 Scene 3: Rename.

 Scene 3: Organize graphics.

 Scene 3: Hide inapplicable elements.

 Scene 3: Make connections.

4. After you’ve selected Button --- Left, check the Hidden option to
hide it as shown in Figure 10-23.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 532

Figure 10-24. Scene 3: Edit the right button position and size.

 Scene 3: Copy an existing scene.

 Scene 3: Rename.

 Scene 3: Organize graphics.

 Scene 3: Hide inapplicable elements.

 Scene 3: Edit buttons.

 Scene 3: Make button visible.

 Scene 3: Replace image with new image (done).

 Scene 3: Configure new buttons.

 Scene 3: Duplicate buttons.

 Scene 3: Reset parameters of buttons.

 Scene 3: Button --- Right.

 Scene 3: Make transparent again.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 533

 Scene 3: Correct bug.

 Scene 3: Make connections.

5. Now select Button --- Right and make it visible as you did in Figure
10-9. For the next step you need to make the right button fit
appropriately into this scene. Select it and make it 680,80,80,605
as shown in Figure 10-24. Make it transparent again as you did in
Figure 10-35. And lastly, as you did in Figure 10-15, correct the
bug by setting it to Shows Touch On Highlight.

NOTE: When there is no need to perform a step, I strike it through.

Figure 10-25. Connect Scene 2: Button – Right to Scene 3.

 Scene 3: Copy an existing scene.

 Scene 3: Rename.

 Scene 3: Organize graphics.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 534

 Scene 3: Make connections.

 Scene 3: Control-drag from button to new scene.

6. Connect Button --- Right in Scene 2 to the View Controller Scene 3
as shown in Figure 10-25.

Figure 10-26. Edit the new segue’s attributes.

 Scene 3: Copy an existing scene.

 Scene 3: Rename.

 Scene 3: Organize graphics.

 Scene 3: Make connections.

 Scene 3: Control-drag from button to new scene.

 Scene 3: Edit the segue’s attributes.

7. Similar to Figure 10-18, select the segue, in the Attributes
Inspector name the Segue class MovementSegue, keep the Style
as Custom, and change the Identifier to Right as shown in
Figure 10-26.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 535

Figure 10-27. Scene 3: Adding a new reverse button: drag Round Rect button onto the view.

 Scene 3: Copy an existing scene.

 Scene 3: Rename.

 Scene 3: Organize graphics.

 Scene 3: Make connections.

 Scene 3: Control-drag from button to new scene.

 Scene 3: Edit the segue’s attributes.

 Scene 3: If dead-end, make button.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 536

8. Now you’re going to do something new. You may not know it yet,
but you’re heading down a dead-end. You’ll need to repeat these
steps each time you head down a dead-end. Essentially, you
have to deal with the reverse buttons showing up so that once
users get to the dead-end, they can backtrack. You undoubtedly
remember all the code you did to enable this. You handle this by
first dragging a new Round Rect button onto the canvas as
shown in Figure 10-27.

Figure 10-28. Scene 3: Set Image of the new reverse button.

 Scene 3: Copy an existing scene.

 Scene 3: Rename.

 Scene 3: Organize graphics.

 Scene 3: Make connections.

 Scene 3: Control-drag from button to new scene.

 Scene 3: Edit the segue’s attributes.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 537

 Scene 3: If dead-end, make reverse button.

9. This reverse button is a custom button, and you have an image
for it. In the Attributes Inspector, make it Custom and select
back001.png for the Image as shown in Figure 10-28. Finally, set
it up as 295,680,389,68.

Figure 10-29. Scene 3: Set Tag field value of 1 for new reverse button.

 Scene 3: Copy an existing scene.

 Scene 3: Rename.

 Scene 3: Organize graphics.

 Scene 3: Make connections.

 Scene 3: Control-drag from button to new scene.

 Scene 3: Edit the segue’s attributes.

 Scene 3: If dead-end, make reverse button.

 Scene 3: Edit Tag field.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 538

 Scene 3: Title the button.

10. You’re also going to set up the tag for the reverse button using
the second case of data being set. Nearly all objects in
Storyboard have a Tag field. Set the Tag field to 1 in the view
section of the Attributes Inspector as shown in Figure 10-29.
You’re going to use the tag of your red reverse button here so
that when you head into a dead-end it has a Tag field of 0. As
shown in the code, the button is hidden when the tag is 0 and is
visible when the tag is 1. That way, users don’t see the reverse
button as they head into the dead-end. But upon hitting the
dead-end they see the button, because now it’s set to 1, and can
navigate back out.

You also need to title the button. With it selected in the Identity
Inspector’s Identity section, enter Button - Reverse in the Label
box. Now you're ready to move on to Scene 4.

Scene 4

Figure 10-30. Duplicate Scene 3 to create Scene 4 and drag it to right of Scene 3.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 539

 Scene 4: Copy an existing scene.

 Scene 4: Place above or below previous scene.

 Scene 4: Rename.

 Scene 4: Change the Title.

 Scene 4: Change the Image.

 Scene 4: Organize graphics.

 Scene 4: Make connections.

1. This one is similar to what you did in Figure 10-20. Click Scene
3’s dock and press +D to duplicate and then move the new
scene to the right of Scene 3. Also change the Title to Scene 4 as
shown in Figure 10-30. Select the image and change it to
wanderBoard-cam04.png, just as you did in Figure 10-21.

Figure 10-31. Hide inapplicable elements: select Button – Left.

 Scene 4: Copy an existing scene.

 Scene 4: Rename.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 540

 Scene 4: Organize graphics.

 Scene 4: Hide inapplicable elements.

 Scene 4: Make connections.

2. This is a dead-end, so you want to hide the right and left buttons,
just as you did in Figure 10-22. See Figure 10-31.

Figure 10-32. Connect Scene 3: Button – Right to Scene 4.

 Scene 4: Copy an existing scene.

 Scene 4: Rename.

 Scene 4: Organize graphics.

 Scene 4: Make connections.

 Scene 4: Control-drag from button to new scene.

3. In View Controller --- Scene 3 Scene, connect Button --- Right to
the View Controller --- Scene 4 Scene as shown in Figure 10-32.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 541

Figure 10-33. Select the segue by clicking the segue icon between the two scenes.

 Scene 4: Copy an existing scene.

 Scene 4: Rename.

 Scene 4: Organize graphics.

 Scene 4: Make connections.

 Scene 4: Control-drag from button to new scene.

 Scene 4: Edit the segue’s attributes.

4. You know this is a right-hand turn from the button label, so select
the segue as shown in Figure 10-33. In the Attributes Inspector
name the Segue class MovementSegue, keep the Style as Custom,
and change the Identifier to Right. Yup, you will be repeating this
a lot! Notice how when you click the segue, it shows you what
button is selected! This ends up being very helpful as things get
complex.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 542

Figure 10-34. Scene 4: Set the reverse button’s Tag field to 0 (zero).

 Scene 4: Copy an existing scene.

 Scene 4: Rename.

 Scene 4: Organize graphics.

 Scene 4: Make connections.

 Scene 4: Control-drag from button to new scene.

 Scene 4: Edit the segue’s attributes.

 Scene 4: If dead-end: Make reverse button.

 Scene 4: Edit Tag field.

5. You want this reverse button here at the dead-end to be shown
all the time, so set its Tag to 0 as shown in Figure 10-34.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 543

Build and run and see what you have. Upon running it, you will
see that the reverse buttons don’t seem to be working. It’s
critical that you can debug at this point, and that’s why you’ve
named your buttons within scenes. Let’s go and debug now.

Figure 10-35. Debugging Scene 3: connect the reverse button to its property.

6. Go back into Storyboard, select the reverse button, open the
Assistant Editor, and make sure your ViewController.h file
appears in the right-hand side. You’ll find you haven’t set up what
the button is and what action happens when you tap it (yup the
stuff you did in helloWorld!). So here in your first view, View
Controller --- Scene 3 Scene, Control-drag from the reverse button
to the header file btnReverse property as shown in Figure 10-35.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 544

Figure 10-36. Debugging Scene 3: connect the reverse button to the action method.

7. You also need to set up the action you’re going to take. Select
the reverse button again and Control-drag out to the action
method signature in the header file. The circle to the left of it
that’s empty in Figure 10-36 will now be full.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 545

Figure 10-37. Debugging Scene 4: connect the reverse button to the action method.

8. In Scene 4 select the reverse button again, repeat part 1 as you
did in Figure 10-35, and then part 2 as shown in Figure 10-37. As
you can see, you’re using the same ViewController object
instantiated for each view. So, even though it says they have
been hooked up once, you need to rehook them up for each
view. That’s what we ‘‘forgot’’ so we could really, really make this
point.

Run it and you’ll see when you go into the dead-end that the
reverse buttons only show up once you get there, and that they
now work to get you out.

Very good. You’ve accomplished a lot getting into and out of
your first dead-end. You now have all the tools to fly through the
construction of the rest of the maze.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 546

Scene 5

Figure 10-38. Duplicate Scene 2 to create Scene 5.

 Scene 5: Copy an existing scene.

 Scene 5: Place above or below previous scene.

 Scene 5: Rename.

 Scene 5: Change the Title.

 Scene 5: Change the Image.

 Scene 5: Organize graphics.

 Scene 5: Make connections.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 547

1. Up to this point you’ve taken, from the entrance, the right-hand
path of the maze. Now you want to take care of the left-hand
path. Switch back to Standard Editor mode. Start by selecting
Scene 2 and duplicating it with +D as shown in Figure 10-38.
Now move the duplicate above and to the right of Scene 2 and
change the Title to Scene 5 just as you did in Figure 10-8.

NOTE: We used Scene 2 as Scenes 3 and 4 have reverse buttons, which we don’t
need for Scene 5.

Figure 10-39. Connect Scene 2: Button – Left to Scene 5.

 Scene 5: Copy an existing scene.

 Scene 5: Rename.

 Scene 5: Organize graphics.

 Scene 5: Make connections.

 Scene 5: Control-drag from button to new scene.

 Scene 5: Edit the segue’s attributes.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 548

2. Control-drag from the left button in Scene 2 to Scene 5’s View
Controller as shown in Figure 10-39, just as you did in Figure 10-
16. Select the created segue, in the Attributes Inspector name the
Segue class MovementSegue, keep the Style as Custom, and
change the Identifier to Left.

Figure 10-40. Scene 5: Change the Image.

 Scene 5: Copy an existing scene.

 Scene 5: Rename.

 Scene 5: Change the Title.

 Scene 5: Change the Image.

 Scene 5: Organize graphics.

 Scene 5: Make connections.

3. We went a l ittle out o f sequence here-----change the Image to
wanderBoard-cam05.png as shown in Figure 10-40.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 549

Figure 10-41. Scene 5: Hide the left button.

 Scene 5: Copy an existing scene.

 Scene 5: Rename.

 Scene 5: Organize graphics.

 Scene 5: Hide inapplicable elements.

 Scene 5: Make connections.

4. For the buttons for Scene 5, you don’t have a left outlet, so select
Button --- Left and hide it as shown in Figure 10-41.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 550

Figure 10-42. Scene 5: Edit the right button.

 Scene 5: Copy an existing scene.

 Scene 5: Rename.

 Scene 5: Organize graphics.

 Scene 5: Hide inapplicable elements.

 Scene 5: Edit buttons.

 Scene 5: Make button visible.

 Scene 5: Replace image with new image (done).

 Scene 5: Configure new buttons.

 Scene 5: Duplicate buttons.

 Scene 5: Reset parameters of buttons.

 Scene 5: Button --- Right.

 Scene 5: Make transparent again.

 Scene 5: Correct bug.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 551

 Scene 5: Make connections.

5. You do have a right-hand button. And you know the drill now.
Make it visible and set it at 685,40,220,675 as shown in Figure
10-42. Now correct the bug by setting it to Shows Touch On
Highlight. Now let’s move on to Scene 6.

Scene 6

Figure 10-43. Duplicate Scene 5 to create Scene 6.

 Scene 6: Copy an existing scene.

 Scene 6: Place above or below previous scene.

 Scene 6: Rename.

 Scene 6: Change the Title.

 Scene 6: Change the Image.

 Scene 6: Organize graphics.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 552

 Scene 6: Make connections.

1. You know this is a right exit and that you have nothing special
going on, so just duplicate the last one you made. Click Scene
5’s dock and duplicate it with +D as shown in Figure 10-43.
Change the Title to Scene 6 and the image to wanderBoard-
cam06.png.

Figure 10-44. Connect Scene 5: Button – Right to Scene 6.

 Scene 6: Copy an existing scene.

 Scene 6: Rename.

 Scene 6: Organize graphics.

 Scene 6: Make connections.

 Scene 6: Control-drag from button to new scene.

 Scene 6: Edit the segue’s attributes.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 553

2. You need to make a segue to the right to get to Scene 6. Control-
drag from the right button of Scene 5’s View Controller of Scene
6 as shown in Figure 10-44. With this done, select the created
segue, in the Attributes Inspector name the Segue class
MovementSegue, keep the Style as Custom, and change the
Identifier to Right.

Figure 10-45. Scene 6: Edit Button – Left.

 Scene 6: Copy an existing scene.

 Scene 6: Rename.

 Scene 6: Organize graphics.

 Scene 6: Hide inapplicable elements.

 Scene 6: Edit buttons.

 Scene 6: Make button visible.

 Scene 6: Replace image with new image (done).

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 554

 Scene 6: Configure new buttons.

 Scene 6: Duplicate buttons.

 Scene 6: Reset parameters of buttons.

 Scene 6: Button --- Right.

 Scene 6: Make transparent again.

 Scene 6: Correct bug.

 Scene 6: Make connections

3. In Scene 6 select the right button, make it visible, and set it at
720,85,110,630. Correct the bug by setting it to Shows Touch On
Highlight. Select the left button, make it visible, and set it at
20,20,270,710 as shown in Figure 10-45. Correct the bug by also
setting it to Shows Touch On Highlight. Make both buttons
transparent, and let’s move on to Scene 7.

Scene 7

Figure 10-46. Duplicate Scene 3 to create Scene 7.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 555

 Scene 7: Copy an existing mid dead-end scene.

 Scene 7: Place above or below previous scene.

 Scene 7: Rename.

 Scene 7: Change the Title.

 Scene 7: Change the Image.

 Scene 7: Organize graphics.

 Scene 7: Make connections.

1. The left turn goes down another dead-end. This next scene will
be a mid-dead-end scene, meaning en route to the dead-end.
You want to duplicate the one existing mid-dead-end scene,
which is View Controller --- Scene 3. Select Scene 3 and duplicate
it with +D as shown in Figure 10-46. Place it to the right of and
slightly above Scene 6. Change the Title to Scene 7.

Figure 10-47. Connect Scene 6: Button – Left to Scene 7.

 Scene 7: Copy an existing scene.

 Scene 7: Rename.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 556

 Scene 7: Organize graphics.

 Scene 7: Make connections.

 Scene 7: Control-drag from button to new scene.

 Scene 7: Edit the segue’s attributes.

2. You’ll connect the left button of Scene 6 to this new view. Let’s
do it in a slightly different way this time, just for fun. Control-drag
from Scene 6’s left button to the scene dock of View Controller ----
Scene 7 as shown in Figure 10-47. Select the created segue, in
the Attributes Inspector name the Segue class MovementSegue,
keep the Style as Custom, and change the Identifier to Left.

Figure 10-48. Scene 7: Change the Image.

 Scene 7: Copy an existing scene.

 Scene 7: Place above or below previous scene.

 Scene 7: Rename.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 557

 Scene 7: Change the Title.

 Scene 7: Change the Image.

 Scene 7: Organize graphics.

 Scene 7: Make connections.

3. Select the image and in the Attributes Inspector change Image to
wanderBoard-cam07.png as shown in Figure 10-48.

Figure 10-49. Scene 7: Edit Button – Right.

 Scene 7: Copy an existing scene.

 Scene 7: Rename.

 Scene 7: Organize graphics.

 Scene 7: Hide inapplicable elements.

 Scene 7: Edit buttons.

 Scene 7: Make button visible.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 558

 Scene 7: Replace image with new image (done).

 Scene 7: Configure new buttons.

 Scene 7: Duplicate buttons.

 Scene 7: Reset parameters of buttons.

 Scene 7: Button --- Right.

 Scene 7: Make transparent again.

 Scene 7: Correct bug.

 Scene 7: Make connections.

 Scene 7: Control-drag from button to new scene.

 Scene 7: Edit the segue’s attributes.

 Scene 7: If dead-end, make reverse button.

 Scene 7: Edit Tag field.

4. Select the right button in Scene 7 and make it visible. Then select
the left button and make sure it’s hidden. The reverse button, of
course, will be shown. Go back to the right button, select it, and
set it to 510,65,155,620 as shown in Figure 10-49. Correct the
bug by setting it to Shows Touch On Highlight and make it
transparent. Don’t forget to also click the reverse button and,
keeping in mind it’s an intermediate reverse button, set its Tag to
1. Time to move on to Scene 8.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 559

Scene 8

Figure 10-50. Duplicate Scene 4 to create Scene 8.

 Scene 8: Copy an existing dead-end scene.

 Scene 8: Place above or below previous scene.

 Scene 8: Rename.

 Scene 8: Organize graphics.

 Scene 8: Make connections.

1. This time you need to duplicate a dead-end scene. Select the
scene dock of View Controller --- Scene 4 and duplicate it with
+D as shown in Figure 10-50. Place it to the right of Scene 7.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 560

Figure 10-51. Scene 8: Change the Title.

 Scene 8: Copy an existing dead-end scene.

 Scene 8: Rename.

 Scene 8: Change the Title.

 Scene 8: Organize graphics.

 Scene 8: Make connections.

2. Change the Title to Scene 8 as shown in Figure 10-51.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 561

Figure 10-52. Connect Scene 7: Button – Right to Scene 8.

 Scene 8: Copy an existing scene.

 Scene 8: Rename.

 Scene 8: Change the Title.

 Scene 8: Change the Image.

 Scene 8: Organize graphics.

 Scene 8: Make connections.

 Scene 8: Control-drag from button to new scene.

 Scene 8: Edit the segue’s attributes.

3. The right button from Scene 7 is your segue point, so Control-
drag from it to the View Controller of Scene 8 as shown in Figure
10-52. Select the created segue, in the Attributes Inspector name
the Segue class MovementSegue, keep the Style as Custom, and
change the Identifier to Right. Select the Image and change it to
wanderBoard-cam08.png. Now we can move on to Scene 9.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 562

Scene 9

Figure 10-53. Duplicate Scene 6 to create Scene 9 and place it just below Scene 7.

 Scene 9: Copy an existing scene.

 Scene 9: Place above or below previous scene.

 Scene 9: Rename.

 Scene 9: Organize graphics.

 Scene 9: Make connections.

1. To create the right side, duplicate Scene 6 and drag it to the right
and slightly underneath Scene 6 as shown in Figure 10-53.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 563

Figure 10-54. Scene 9: Change the Title.

 Scene 9: Copy an existing scene.

 Scene 9: Rename.

 Scene 9: Change the Title.

 Scene 9: Organize graphics.

 Scene 9: Make connections.

2. Change the Title to Scene 9 as shown in Figure 10-54.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 564

Figure 10-55. Scene 9: Change the Image.

 Scene 9: Copy an existing scene.

 Scene 9: Rename.

 Scene 9: Change the Title.

 Scene 9: Change the Image.

 Scene 9: Organize graphics.

 Scene 9: Make connections.

3. Change the Image to wanderBoard-cam09.png as shown in Figure
10-55.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 565

Figure 10-56. Connect Scene 6: Button Right to Scene 9.

 Scene 9: Copy an existing scene.

 Scene 9: Rename.

 Scene 9: Organize graphics.

 Scene 9: Make connections.

 Scene 9: Control-drag from button to new scene.

 Scene 9: Edit the segue’s attributes.

4. The segue to Scene 9 starts at Scene 6’s right button. Control-
drag from it to Scene 9 as shown in Figure 10-56. Select the
created segue, in the Attributes Inspector name the Segue class
MovementSegue, keep the Style as Custom, and change the
Identifier to Right.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 566

Figure 10-57. Scene 9: Edit size and position of Button – Right.

 Scene 9: Copy an existing scene.

 Scene 9: Rename.

 Scene 9: Organize graphics.

 Scene 9: Hide inapplicable elements.

 Scene 9: Edit buttons.

 Scene 9: Make button visible.

 Scene 9: Replace image with new image (done).

 Scene 9: Configure new buttons.

 Scene 9: Duplicate buttons.

 Scene 9: Reset parameters of buttons.

 Scene 9: Button ---- Right.

 Scene 9: Make transparent again.

-

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10: Single View #3: wanderBoard Part II 567

 Scene 9: Correct bug.

 Scene 9: Make connections.

5. In this case, you do have two options for direction, so keep both
buttons. First show the left button and then the right button so
they’re both visible. Change the right button from 875,45,100,680
as shown in Figure 10-57 to 875,45,100,680 and make the left
button 20,20,100,710. Change them back to transparent and
make sure they both Show Touch On Highlight.

You’ve reached the end of Step 4a and the end of this chapter. You’ve
completed all the code for wanderBoard and have finished the implementation
of the first nine scenes. Good job!

In the next chapter you’ll finish the remaining scenes, making a few repairs
along the way. By the end of the next chapter you’ll be testing and running the
completed wanderBoard application. You ready? Then read on!

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

569

11
Chapter

Single View #3:
wanderBoard Part III
At this point you've now created nine scenes and completed the code. In this
final chapter you're going to complete the remaining scenes for the
wanderBoard application.

Step 4b: Create the Final Nine Scenes
We think you’ve done this enough now that you just need a limited amount of
instructions, such as a client, boss, or skilled co-worker/mentor may give you.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Single View #3: wanderBoard Part III 570

Figure 11-1. Duplicate Scene 8 to create Scene 10.

 Scene 10: Copy an existing dead-end scene.

 Scene 10: Place above or below previous scene.

 Scene 10: Rename.

 Scene 10: Change the Title.

 Scene 10: Organize graphics.

 Scene 10: Make connections.

1. This time you need to duplicate the dead-end scene. Select the
scene dock of the View Controller --- Scene 8 and duplicate it by
pressing +D as shown in Figure 11-1. Place it to the right and
slightly below Scene 9 and change the Title to Scene 10.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Single View #3: wanderBoard Part III 571

Figure 11-2. Scene 10: Set the desired image.

 Scene 10: Copy an existing dead-end scene.

 Scene 10: Place above or below previous scene.

 Scene 10: Rename.

 Scene 10: Change the Title.

 Scene 10: Change the Image.

 Scene 10: Organize graphics.

 Scene 10: Make connections.

2. Change the image to wanderBoard-cam10.png as shown in Figure
11-2. Here you’re creating another dead-end. You didn't
complete the wiring up of the reverse button for the previous
dead-end, so let’s fix up Scenes 7 and 8 before we finish
Scene 10.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Single View #3: wanderBoard Part III 572

Figure 11-3. Select Scene 7 so you can finish some missed steps.

3. Remember when you ran your last test and had to go back and
connect the red button to the code? Let’s not repeat that
mistake. Let’s do that here. Select Scene 7 as shown in
Figure 11-3.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Single View #3: wanderBoard Part III 573

Figure 11-4. Connect the Scene 7 reverse button to its property.

4. Open the Assistant Editor and make sure your header file is on
the right. Control-drag from the button to the header file as
shown in Figure 11-4 to connect the button to its property.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Single View #3: wanderBoard Part III 574

Figure 11-5. Connect the Scene 7 reverse button to its action method.

5. Control-drag from the button in scene 7 to the header file to
connect the button to the action method as shown in
Figure 11-5.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Single View #3: wanderBoard Part III 575

Figure 11-6. Connect the Scene 8 reverse button to the property.

6. Now do the same for Scene 8. After selecting Scene 8, Control-
drag from the button to its property in the header file as shown
in Figure 11-6.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Single View #3: wanderBoard Part III 576

Figure 11-7. Connect the Scene 8 reverse button to its action method.

7. Control-drag from the button in Scene 8 to the header file to
connect to the action method as shown in Figure 11-7.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Single View #3: wanderBoard Part III 577

Figure 11-8. Connect the Scene 10 reverse button to its property.

8. Now, back to Scene 10. Select Scene 10 and Control-drag from
the button to the header file as shown in Figure 11-8,
establishing the connection to the property.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Single View #3: wanderBoard Part III 578

Figure 11-9. Connect the Scene 10 button to its action method.

9. Control-drag from the button in Scene 10 to the header file to
connect the action method as shown in Figure 11-9.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Single View #3: wanderBoard Part III 579

Figure 11-10. Create the segue from Scene 9: Button - Right to Scene 10.

 Scene 10: Copy an existing scene.

 Scene 10: Rename.

 Scene 10: Organize graphics.

 Scene 10: Make connections.

 Scene 10: Control-drag from button to new scene.

 Scene 10: Edit the segue’s attributes.

10. As discussed, you need to go from the right button in Scene 9
to Scene 10, as shown in Figure 11-10. You can switch off the
Assistant Editor, select the created segue, go to the Attributes
Inspector, name the Segue class MovementSegue, keep the Style
as Custom, and change the Identifier to Right.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Single View #3: wanderBoard Part III 580

Figure 11-11. Duplicate Scene 9 to create Scene 11.

 Scene 11: Copy an existing dead-end scene.

 Scene 11: Place above or below previous scene.

 Scene 11: Rename.

 Scene 11: Change the Title.

 Scene 11: Organize graphics.

 Scene 11: Make connections.

11. Scene 11 is not going to be a dead-end, so take Scene 9 and
duplicate it as shown in Figure 11-11. Drag over to the right and
top o f Scene 9-----you’ll notice it doesn’t fit. Zoom out and move
the upper run of views higher to make some space. Now
change the Title to Scene 11.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Single View #3: wanderBoard Part III 581

Figure 11-12. Change the Image of Scene 11.

 Scene 11: Copy an existing dead-end scene.

 Scene 11: Place above or below previous scene.

 Scene 11: Rename.

 Scene 11: Change the Title.

 Scene 11: Change the Image.

 Scene 11: Organize graphics.

 Scene 11: Make connections.

12. Change the Image of Scene 11 to wanderBoard-cam11.png as
shown in Figure 11-12.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Single View #3: wanderBoard Part III 582

Figure 11-13. Make the segue from Scene 10: Button - Left to Scene 11.

 Scene 11: Copy an existing scene.

 Scene 11: Rename.

 Scene 11: Organize graphics.

 Scene 11: Make connections.

 Scene 11: Control-drag from button to new scene.

 Scene 11: Edit the segue’s attributes.

13. Connect the left button in Scene 9 to Scene 11 as shown in
Figure 11-13. Now select the created segue, in the Attributes
Inspector name the segue class MovementSegue, keep the Style
as Custom, and change the Identifier to Left.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Single View #3: wanderBoard Part III 583

Figure 11-14. Scene 11: Setting size and location of Button - Left.

 Scene 11: Copy an existing scene.

 Scene 11: Rename.

 Scene 11: Organize graphics.

 Scene 11: Delete inapplicable elements.

 Scene 11: Edit buttons.

 Scene 11: Make button visible.

 Scene 11: Replace Image with new image (done).

 Scene 11: Configure new buttons.

 Scene 11: Duplicate buttons (done).

 Scene 11: Reset parameters of buttons.

 Scene 11: Button-Right.

 Scene 11: Make transparent again.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Single View #3: wanderBoard Part III 584

 Scene 11: Correct bug.

 Scene 11: Make connections.

14. Select Scene 11’s two buttons and make them visible. Set the
right button to 585,40,420,90 and the left button to
295,40,240,680 as shown in Figure 11-14. Now change them
back to transparent and make sure they both show Touch on
Highlight.

NOTE: As you move on to Scenes 12–17 you’ll no longer use the steps. We’ll simply
talk to you in prose, and you should be able to follow along at this point.

Figure 11-15. Duplicate Scene 7 to create Scene 12.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Single View #3: wanderBoard Part III 585

15. Scene 12 i s going to be another dead-end-----specifically, an
intermediate dead-end. So duplicate Scene 7 as shown in
Figure 11-15 and place it to the upper-right side of Scene 11.
Change the Title to Scene 12 and change the Image to
wanderBoard-cam12.png.

Figure 11-16. Scene 12: Configure the buttons.

16. For Scene 12 you can go reverse, and left but not right. So hide
right and make left shown and visible at 85,45,180,680 as
shown in Figure 11-16. Now make it transparent again and
make sure it shows Touch on Highlight. Set the reverse button’s
tag to the intermediate l evel-----so set it at 1. Remember to
connect the reverse button to both the property and the action
method!

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Single View #3: wanderBoard Part III 586

Figure 11-17. Connect Scene 11: Button - Left to Scene 12.

17. Connect Scene 11’s left button to Scene 12 as shown in Figure
11-17. Now select the created segue, in the Attributes Inspector
name the Segue class MovementSegue, keep the Style as
Custom, and change the Identifier to Left.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Single View #3: wanderBoard Part III 587

Figure 11-18. Duplicate Scene 8 to create Scene 13.

18. You know that after the intermediate dead-end of Scene 12
comes the real dead-end, and that will be Scene 13. So
duplicate Scene 8 as shown in Figure 11-18. Place it to the right
of Scene 12. Change the Title to Scene 13.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Single View #3: wanderBoard Part III 588

Figure 11-19. Connect scene 12: Button - Left to Scene 13.

19. Connect the left button in Scene 12 to Scene 13 as shown in
Figure 11-19. Select the created segue, in the Attributes
Inspector name the Segue class MovementSegue, keep the Style
as Custom, and change the Identifier to Left. Change the Image
to wanderBoard-cam13.png.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Single View #3: wanderBoard Part III 589

Figure 11-20. Scene 13: Configure the buttons.

20. Make sure the right button is hidden, the left button is hidden,
and the reverse button is tagged at 0 as shown in Figure 11-20.
Also, don't forget to hook up the reverse button to the property
and the action method!

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Single View #3: wanderBoard Part III 590

Figure 11-21. Duplicate Scene 11 to create Scene 14.

21. You’re not going down a dead-end anymore, so duplicate
Scene 11 as shown in Figure 11-21. Place it to the right and
slightly under Scene 11.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Single View #3: wanderBoard Part III 591

Figure 11-22. Set the Scene 14 title.

22. Set the Title to Scene 14 as shown in Figure 11-22.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Single View #3: wanderBoard Part III 592

Figure 11-23. Connect Scene 11: Button - Right to Scene 14.

23. You need a segue from the right button of Scene 11 to Scene
14 as shown in Figure 11-23. Select the created segue, in the
Attributes Inspector name the Segue class MovementSegue, keep
the Style as Custom, and change the Identifier to Right. Change
the Image to wanderBoard-cam14.png.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Single View #3: wanderBoard Part III 593

Figure 11-24. Configure the Scene 14 buttons.

24. You only have a single place to go, and that is left. So make the
right button hidden. Make the left visible and then set it to
20,20,420,720 as shown in Figure 11-24. Then make it
transparent and Touches with Highlight.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Single View #3: wanderBoard Part III 594

Figure 11-25. Duplicate Scene 14 to create Scene 15.

25. Duplicate Scene 14 as shown in Figure 11-25 and place it to the
left of Scene 14.

Figure 11-26. Connect Scene 14: Button - Left to Scene 15.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Single View #3: wanderBoard Part III 595

26. Change the Title to Scene 15. Because it can only go left,
connect Scene 14’s left button to Scene 15 as shown in Figure
11-26. Select the created segue, in the Attributes Inspector
name the Segue class MovementSegue, keep the Style as
Custom, and change the Identifier to Left. Change the Image to
wanderBoard-cam15.png.

Figure 11-27. Scene 15: Duplicate Button - Right to make a new forward button.

27. You need to create a forward button. Duplicate the right button
and then move it up as shown in Figure 11-27.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Single View #3: wanderBoard Part III 596

Figure 11-28. Scene 15: Name the new forward button.

28. Name the forward button Button-Forward as shown in
Figure 11-28.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Single View #3: wanderBoard Part III 597

Figure 11-29. Configure the Scene 15 forward button.

29. Make sure that right and left are hidden and make the forward
button be 270,30,450,690 as shown in Figure 11-29.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Single View #3: wanderBoard Part III 598

Figure 11-30. Duplicate Scene 14 to create Scene 16.

30. You don’t need a forward button anymore, so just duplicate
Scene 14 as shown in Figure 11-30. Place it to the right of
Scene 15. Change the Title to Scene 16.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Single View #3: wanderBoard Part III 599

Figure 11-31. Scene 16: Select Image View and change name.

31. Sometimes it's easier to select the Image View in the side bar as
shown in Figure 11-31 than try to pick things around the
buttons. So select it and change the Image to wanderBoard-
cam16.png. Also, because you copied this scene, your Button -
Left may already be in the correct location, but please check
that it’s 20,20,420,710, not hidden, and that it’s set to show
Touch on Highlight.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Single View #3: wanderBoard Part III 600

Figure 11-32. Connect Scene 15: Button - Forward to Scene 16.

32. Your segue goes from the special forward button you just made
to Scene 16 here. So, connect them as shown in Figure 11-32.
Select the created segue, in the Attributes Inspector name the
Segue class MovementSegue, keep the Style as Custom, and
change the Identifier to Forward.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Single View #3: wanderBoard Part III 601

Figure 11-33. Duplicate Scene 16 to create Scene 17.

33. Duplicate Scene 16 as shown in Figure 11-33 and make it
Scene 17. Place it to the right of Scene 16. Set the Title to
Scene 17 and set the Image to wanderBoard-cam17.png.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Single View #3: wanderBoard Part III 602

Figure 11-34. Connect Scene 16: Button - Left to Scene 17.

34. Connect Scene 16’s left button to Scene 17 as shown in Figure
11-34. Select the created segue, in the Attributes Inspector
name the Segue class MovementSegue, keep the Style as
Custom, and change the Identifier to Left.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Single View #3: wanderBoard Part III 603

Figure 11-35. Configure Scene 17 buttons.

35. Back in the new Scene 17, let's configure the buttons. Ensure
that your Button - Left is hidden (because you’re not using it).
Ensure that Button - Right is visible and change it from
414,20,552,708 as shown in Figure 11-35. Make it transparent
and make sure it shows Touches on Highlight.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Single View #3: wanderBoard Part III 604

Figure 11-36. Duplicate Scene 17 to create the Final Scene (Scene 18).

36. Duplicate Scene 17 as shown in Figure 11-36. Place it to the
right of Scene 17.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Single View #3: wanderBoard Part III 605

Figure 11-37. Scene 18: Set the final Title.

37. Change the Title to Scene 18 (end) as shown in Figure 11-37.

Figure 11-38. Connect Scene 17: Button - Right to Scene 18.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Single View #3: wanderBoard Part III 606

38. Connect the right button in Scene 17 to the final scene as
shown in Figure 11-38. Select the created segue, in the
Attributes Inspector name the Segue class MovementSegue, keep
the Style as Custom, and change the Identifier to Right. You
have no buttons on this one, so hide all the buttons by changing
them to hidden.

Figure 11-39. Scene 18: Change the last image.

39. You have finally reached the end of the maze! Change the
Image to wanderBoard-cam18.png.as shown in Figure 11-39.
Let’s build it and run it. Uh-oh, we have some errors, with
buttons not working.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Single View #3: wanderBoard Part III 607

Figure 11-40. Debug: Find and fix last problems (Scene 6, the first to find and fix).

40. Our left button in Scene 6 wasn’t working, so we select it as
shown in Figure 11-40, and sure enough it was still hidden.
Uncheck the hidden check box.

41. Repeat the same steps for the left button in Scene 9.

42. Repeat the same steps for the left button in Scene 11.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11: Single View #3: wanderBoard Part III 608

Figure 11-41. It works!

43. Run it and … Congratulations! It works (Figure 11-41)!

Congratulations on completing the wanderBoard app! In this application you’ve
seen that with very little code and a bit of Storyboard content, you can create a
rather fun but simple application. You’ve experienced the power of duplicating
views on the Storyboard canvas when there are common components you want
in each of the views. Duplicating really saves time compared to creating each
view piece-by-piece from the ground up. The speed in which we were able to
create this application really surprised us. We hope we've shared some of this
surprise along with the fun of creating this app with you.

www.it-ebooks.info

http://www.it-ebooks.info/

609

12
Chapter

How Far You’ve Come
This journey through Storyboards and iOS has covered the four fundamental
concepts of Storyboards:

 Easily create transitions between views with little to no code.

 Pass information back from a Secondary View to a Main View.

 Send information to a Secondary View from a Main View.

 Transition between views with user-created visual effects.

You built applications that demonstrated these concepts. In fact, if you were
working along with the book you’ve now written code yourself that had you
exercising all four Storyboarding concepts. At this point you should feel very
comfortable using Storyboards in your own applications.

How cool, right?!

Final Thoughts
As we were putting this book together, a few more aspects of Storyboarding
came up in discussions we had with other developers and our online research:

 The ability to use multiple Storyboard files in a single
application

 The effect that putting all the views/View Controllers in one
Storyboard file (instead of many .xib files) has on team
development

 The fact that not all scenes can be placed in Storyboard files

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12: How Far You’ve Come 610

The first two of these topics are somewhat related. Let’s look as each in a bit
more detail.

Multiple Storyboard Files in One Application
Actually, using multiple Storyboard files in a single application is fairly easy to
do. You’ll want to review the class documentation for UIStoryboard, paying
particular attention to two methods:

 The class method: +storyboardWithName:bundle:

 The instance method: -instantiateInitialViewController

The first establishes connection to your next Storyboard file, and the second (as
its name implies) loads the initial scene as identified within your next Storyboard
file. Sounds simple, but why would you want to create multiple Storyboard files?

The main reason to split up an application’s scenes across multiple Storyboard
files is probably best understood by looking at a hypothetical example. Let’s say
you have a main menu from which you can enter four independent regions of
the application:

 Player selection with player configuration

 Game settings

 Scores for past games

 Help, which contains text-based help, image-based help, and
a video tutorial

Each of these sections stands on its own, without the others, and each has a
single entry point scene which one arrives at after choosing the appropriate
menu item. In this example app, each of these sections could easily be its own
Storyboard file. Keeping them in separate files does a number of good things for
you. If you want to change the order of the help scenes (for example), or add
one, and so on, you can simply edit the one Storyboard file that contains the
help subsystem. It only contains help screens, so you can quickly rearrange
things to get a new screen in place. And you know that, having only modified
the help Storyboard file, it won’t break or cause problems with any of the other
Storyboards. In effect you reduce the numbers of scenes you have to wade
through to get the fix in place, and you’ve isolated changes to only the help
subsystem scenes. Make sense?

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12: How Far You’ve Come 611

Having All .xib Files in One Storyboard Basket
This is really only a larger issue that often comes up when many developers
work on a single application. If two developers both want to make changes to a
single file, then changes have to be somehow later combined so that both sets
of changes are delivered in the next release. We call this merging the changes.
There are tools to help you merge text files, but there are no tools as of this
writing that can help you merge Storyboard files. The only way to merge these
files is to recreate the changes of one file into the second file. Of course, this
inability to merge files isn’t unique to Storyboard files. Think of any non-text file
you have in a project (XML, HTML, CoreData object model diagrams/data,
videos, and so forth)-----these are all file types that make changes difficult to
merge, if it’s possible at all.

The software engineering community has developed a number of ways to deal
with this need to merge changes. The simplest solution is to avoid the need to
merge at all. In practice, this means that you don’t allow two or more engineers
to modify the same file if at all possible. Here are three ideas that can help you
work around this problem:

 Assign engineers to work on different areas of the same
application so their changes don’t affect the same files.

 Make different changes in different releases, so that only one
is being made for the next outgoing release.

 Separate functional areas within the application into separate
files so that when changes are being made, the likelihood of
overlap is lower.

As for the effect this has on Storyboard files, consider the transition from .xib
files to the use o f a S toryboard f ile-----effectively, you’re rolling up all the .xibs
into this Storyboard file. It wonderfully increases your ability to see the overall
shape of the application on one canvas and makes it so much easier to specify
transitions between scenes on the canvas, but this transition also has the
undesirable effect of focusing all your visual changes on this one Storyboard file.
Multiple engineers now have to all work in this one file! Here is where these two
topics are related: the best mitigation of this effect is to break up the Storyboard
scenes into separate, but related, groups of scenes and placing each group into
one Storyboard file.

Having more Storyboard files helps prevent changes from needing to occur in
the same file because now you have more than just the one file. As our example
tried to show, it can be fairly easy to find regions of related scenes in an

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12: How Far You’ve Come 612

application, and therefore it can be fairly easy to break an application into
multiple Storyboard files.

What Do You Mean, Not All Scenes Are
Appropriately Placed in Storyboard Files?
All through this book you’ve been seeing scenes segueing to other scenes.
You’ve seen user actions cause a scene to change to another scene (by row
selection or button press, for example), and you’ve specified which type of
transition will occur when the new scene is presented. In fact, there is a
requirement that all scenes within a Storyboard file are arrived at from other
scenes in the same Storyboard file, except for the initial scene (the one that has
the arrow pointing into it coming from nowhere).

However, it’s not too hard to find types of scenes that don’t come from a single
point in the main flow from scene to scene. Think of messages like Networking
error, Invalid user name, or Failed to load page, for example. These messages
aren’t generated from the main flow of an application; they often happen
asynchronously to the application flow. You can also think of these messages as
needing to be sent to the d isplay f rom your code-----not from user action in the
application interface.

In the end, you’ll find it to be a bit more effort and rather unnatural to use
Storyboards for showing scenes whose display is caused by code, such as
scenes showing custom alert views, custom pickers, or custom action sheets.
You can place custom scenes each in their own Storyboard file and then show
them from the code. And you can create visual effects and placement onscreen
so that these custom scenes look and behave l ike their built-in counterparts-----
but as we said, it’s a bit more effort.

Hey, I Have Questions!
If you have more questions about these final topics or, of course, about anything
in this book, please visit our forums. We’ll be glad to answer your questions.
See you on the forums!

www.it-ebooks.info

http://www.it-ebooks.info/

613

Index

 A
AuthorsViewController

assistant editor, 460
authors (slight variation), 466–

467
class, 460
connect outlets, 461–462
creation, 456
CustomCell, 462
delete authors snippet, 458
detailLabel1, 464
edit button, 469
final connections, 465
IBAction, 468
imports, categories and author

display, 457
mainLabel outlet, 463
prepareForSegue method, 468
_tableView, 461
table view, 459

Automated Reference Counting
(ARC), 215

 B
Back end coding

AddBookViewController
attributes, 405
author and category, 415–416
cancel button, 420
connect, 419
creation, 402

delegate, 408
description text, 406
IBActions, 417–418
implementation file, 404
interface, 409
mutable dictionary, 411
outlets, 403
prepareForSegue method,

414–415
set up text fields , 406–407
synthesize, 410
text field delegate methods,

412
text view delegate methods,

413
AuthorsViewController

assistant editor, 460
authors (slight variation),

466–467
class, 460
connect outlets, 461–462
creation, 456
CustomCell, 462
delete authors snippet, 458
detailLabel1, 464
edit button, 469
final connections, 465
IBAction, 468
imports, categories and author

display, 457
mainLabel outlet, 463
prepareForSegue method, 468

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 614

Back end coding,
AuthorsViewController (cont.)

_tableView, 461
table view, 459

BooksViewController
class field, 427
_countLabel outlet, 429
control-drag, 430
creation, 421
dataSource, 431
delegate method, 440
detailLabel1, 424
detailLabel2, 425
edit button, 441
editing mode, 437
IBAction, 441
IBOutlets, 426
implementation file, 428
import header files, 433–434
leftImageView outlet, 422
mainLabel, 423
prepareForSegue method,

438–439
properties, 432
table view-display books,

435–436
CategoriesViewController

add new category, 451–452
_categories array, 448
class, 445
creation, 443
delete, 450
display items, 449–450
edit button, 453–454
imports and array, 443
outlet _tableView, 447
prepareForSegue method,

452–453
sent actions, 454–455
table view creation, 446
View Controller–Categories,

444
detail view controller

assistant editor, 388
book details scene, 387
book image, 392
configureView method, 395–

396
control-drag, 389
description, 393
DetailViewController.m file,

394
labels, 391
outlet connection, 390

SelectionViewController
code replace, 398–399
creation, 397
protocol methods, 400–401
scene and associate, 402
synthesize and import, 399–

400
UITableViewCell subclas

custom cell prototypes, 383–
384

outlets, 385–386
subclass, 385
synthesize, 386–387

wrapping up and loading test
data

add categories, 475
categories, 471
dataSource, 470–471
run it and test, 473
table view connection, 470
test data, 472
three views working, 474

BooksViewController
class field, 427
_countLabel outlet, 429
control-drag, 430
creation, 421
dataSource, 431
delegate method, 440
detailLabel1, 424
detailLabel2, 425
edit button, 441

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 615

editing mode, 437
IBAction, 441
IBOutlets, 426
implementation file, 428
import header files, 433–434
leftImageView outlet, 422
mainLabel, 423
prepareForSegue method, 438–

439
properties, 432
table view-display books, 435–

436

 C
CategoriesViewController

add new category, 451–452
_categories array, 448
class, 445
creation, 443
delete, 450
display items, 449–450
edit button, 453–454
imports and array, 443
outlet _tableView, 447
prepareForSegue method, 452–

453
sent actions, 454–455
table view creation, 446
View Controller–Categories, 444

 D, E
DataViewController

add delegates, 255
add private methods, 264
class variables, 261
*DataLabel, 255
DataViewController.h, 255
default settings, 256
delegate property, 259
header file, 257
implementing, 264–265
ivPageImage, 258

landscapes, 263
opening, 254
opening storyboard, 256
override setting, 261
pageobject, 262
shouldAutorotateToInterfaceOrien

tation, 264
UIImageView, 257
viewWillAppear, 262
Xcode implementation, 260

DataViewControllerDelegate, 255
Detail view controller

assistant editor, 388
book details scene, 387
book image, 392
configureView method, 395–396
control-drag, 389
description, 393
DetailViewController.m file, 394
labels, 391
outlet connection, 390

DemoMonkey
applications folder, 24–25
context menu, 23–24
definition, 16
download sample code, 21–22
installation, 21
snippets, 241
Xcode project, 22–23

Damodar Valley Corporation (DVC),
270

 F, G, H
FlipsideViewController

array, 190
assistant editor, 182
audio player delegate method,

206–207
button appears, 208–209
code additions, 201–202
connection, IBOutlet, 187–188
datasets and delegates, 200

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 616

FlipsideViewController (cont.)
delegate, 200
DemoMonkey snippets, 183–184
header file, MainViewController,

193–194
hook up, 198
IBOulet tvScaleTable, 186–187
implementation files, 181, 188,

201
ivBackground, 197
mainView interface file, 194–195
MainViewController.h file, 196
navigation bar title, 199
niTitle, 199
play buttons, 208, 210
PlayButtonDelegate methods, 208
private interface, 189–190
scale selection, 205–206, 208–

209
Storyboard, 184–185, 195
synthesis, 202
TableView, 185–186
UITableView delegate code, 192–

193
viewDidLoad method, 203
viewDidUnload method, 203–204
viewWillAppear method, 191, 204–

205
vwButtonPlace, 198

flickrPhotoMap
annotation callout

background color, 130–131
ForSegue method, 139
image view-scene, 129
initial view controller, 122–

123
label-scene and adjust, 130–

131
MapView Controller-

navigation, 123–124
MapView Controller-view

controller, 126–28
MapViewController, 140

MKMapViewDelegate protocol
methods, 136–138

navigation controller, 121–122
photoAnnotation property,

134–135
PhotoViewController, 133–134
Push segue creation, 126–128
rootViewController

relationship, 123–124
segue’s identifier, 126–128
Storyboard, 125–126
translucent black navigation

bar, 125
UIViewController subclass,

132
view controller class-

PhotoViewController, 132–
133

view controller title, 126–128
viewDidLoad implementation,

135–136
data connection and geotagged

photo displays
activity indicator, 101–102
add MapKit and CoreLocation

frameworks, 96
app running, 108
application template, 94–95
code selection, 109
control-drag, 103
copy option, 96, 98
Flickr JSON response, 115–

116
IBOutlet creation, 103–104
image dragging, 96–97
implementation, 112
import header files, 104
main scene,MapView, 100–

101
MapViewController, 98–99
methods placeholders, 106–

107
moving files, 96–97

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 617

objective-C class, 98–99
populateMapWithPhotoAnnotat

ion method, 120
private declaration section,

105–106
program, build and run, 120–

121
replacing code, 110–111
saveData method, 116–118
saveGeoCodeData method,

119
searchFlickrPhotos method,

113
URL string, 114
view controller icon, 100
viewDidLoad code, 107–108
web browser’s address bar,

114–115
Xcode, 105

model scene creation
adjust and position cell

elements, 142–143
getter method, 151
images and text, 143–144
mapView:calloutAccessoryCon

trolTapped method, 154
mapView:viewForAnnotation

method, 153–154
mapView and

didSelectAnnotationView
method, 151–152

MapView controller-table view
controller, 145–146

Objective-C protocol, 147
onLeftCalloutAccessoryViewTo

uched method, 152
output screens, 156–157
PhotoAnnotation.h file, 150
PinSelectionDelegate Protocol

method, 155–156
PinSelectionDelegateProtocol.

h, 148

PinSelectionDelegateProtocol.
h-MapViewController.h, 155

PinSelectionViewController
class interface, 149

PinSelectionViewController-
table view controller, 146–
147

prepareForSegue method, 153
prototype cell, 141–142
section properties, 143–144
segue attributes, 145–146
table view controller-

Storyboard, 140–141
table view properties, 143
TableViewDelegate and

TableViewDataSource
methods, 150

phases, 92
steps, 94
videos, files and code, 93

futureTravel
canvasing Xcode, 239
DataViewController, 254

add delegates, 255
add private methods, 264
class variables, 261
*DataLabel, 255
DataViewController, 255
default settings, 256
delegate property, 259
header file, 257
implementing, 264–265
ivPageImage, 258
landscapes, 263
opening, 254
opening storyboard, 256
override setting, 261
pageobject, 262
shouldAutorotateToInterfaceOr

ientation, 264
UIImageView, 257
viewWillAppear, 262
Xcode implementation, 260

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 618

futureTravel (cont.)
indexOfViewController, 251
ModelController

array positioning, 245–246
calculation in reverse, 251
classes, 237
code pointing, 247
copying nObjectIdx, 249
Debug area, 238
DemoMonkey, 239, 241
destinationNumber, 240
editors, 242
enumeration, 243
implementation file, 242
inserting reverse calculations,

251
interface, 240
ModelController.h, 241
ModelController.m, 243–246
Navigator, 238
new array interaction, 248
old data model, 244
opening and setting the stage,

238
page definition, 244
pasting MAX_PAGES, 252
pasting nObjectIdx, 250
replacing old data model, 245
selecting MAX_PAGES, 252
snippet, DemoMonkey, 240
utilities pane, 238

RootViewController
add views, 272
adjusting PageViewController,

268
communicating, 265
delegate response, 270
finalised PageViewController,

269
implementing, 266
landscape support, 267
navigating pages, 271
splashing, 271

storyboard preparation
adjusting instances, 228
attributes and text align, 228
autoResizingmask, 232
color changing, 234
color change -frames, 227
Data View Controller, 226
final edit view, image, 233
frames, 226
instances, 226
label and image view, 233
launch image, 235
navigation, 225
positioning view, 231
replace and delete view, 230
Root View Controller, 226
size inspector pane, 228
text color property, 228
view scales, 232
Xcode output, 236

templates
automated reference counting,

215
copying startups, 217
data model class, 222
files copying, 223
group, Xcode, 221
iBooks, 213
image dragging, 219
ModelPageData.h, 222
ModelPageData.m, 223
monor bugs, 224
naming and deselecting, 215
navigation tree, 224
Retina iPad, 216
root directory, 216
startup images, 220
working of Xcode, 224
Xcode, 214, 218

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 619

 I
Integrated Development Environment

(IDE), 15, 18–19
iPhone and iPad

DemoMonkey
applications folder, 24–25
context menu, 23–24
download sample code, 21–22
installation, 21
Xcode project, 22–23

necessities and accessories
Mac application, 2–3
OS X, 4–6
steps, 1–2

project
IDE screen, 18–19
project templates, 17
run option, 19–20
test drive, 17–18, 20–21

SDK
developer option, 6
Xcode, 7–16

 J, K, L
JavaScript Object Notation (JSON), 91

 M
MapView

flickrPhotoMap
annotation callout, 121–140
data connection and

geotagged photo displays,
94–121

model scene creation, 140–
157

phases, 92
steps, 94
videos, files and code, 93

screenshot, 91–92
Master-detail application. See also

Storyboard

bookManager
author and categories, 275–

277
categories, 275
My Library, 274–275

core data setup
.demoMonkey file, 290
.pch file, 289
add (+) button, 282
assets folder, 280
attributes, 295
bookManager, 279
checking, 298
classes, 297
copy items, 281
Core Data-Data Model

template, 294
CoreData.framework, 284
data model, 293
DBAuthor and DBBook, 295
DBAuthor.h, 302
DBAuthor.m, 302–303
DBBook.h, 299
DBBook.m, 300
DBCategory.h, 300–301
DBCategory.m, 301
entities, 294
frameworks, 281–282
header and implementation,

297
library/framework, 291
MagicalRecord, 285–286
MagicalRecord folder, 288
persistence store, 292
ProcessPCH, 289
project navigator, 285
search field, 283
SQLite database, 291
unzip and navigate, 287
Xcode, 278

designing flows, 305
preliminaries, 277
tutorials, 274

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 620

ModelController
array positioning, 245–246
calculation in reverse, 251
canvasing Xcode, 239
classes, 237
code pointing, 247
debug area, 238
DemoMonkey, 239
destinationNumber, 240
editors, 242
enumeration, 243
implementation file, 242
indexOfViewController, 251
inserting reverse calculations,

251
interface, 240
ModelController.h, 241
ModelController.m, 243–246
navigator, 238
new array interaction, 248
nObjectIdx, 249
opening and setting the stage,

238
old data model, 244
page definition, 244
pasting MAX_PAGES, 252
pasting nObjectIdx, 250
replacing old data model, 245
selecting MAX_PAGES, 252
snippet, DemoMonkey, 240, 241
utilities pane, 238

 N, O, P, Q
NSArray, 267

 R
RootViewController

added views, 272
adjusting PageViewController,

268
communicating, 265
delegate response, 270

finalised PageViewController, 269
implementing, 266
landscape support, 267
navigating pages, 271
RootViewController.m, 267
splashing, 271

 S, T
Scene 2, wanderBoard

bug correction, 522–523
button transparent, 521–522
custom segue type, 525
move duplication, 517–518
open scene dock, 513
replace image, 517
right-hand button, 524
segues attributes, 526
set-left button, 518–519
set-right button, 520–521
steps, 512
title change, 514
transparent button visible, 516
zoom out view, 527

Scene 3, wanderBoard
change Image, 530
connect button–right, 534
duplicate scene 2, 528
edit button–right, 532–533
hidden option, 531
reverse buttons, 536
select button–left, 531
select segue, 534
set image-reverse button, 537
tag-reverse button, 537–538

Scene 4, wanderBoard
connect button–right, 540
connect reverse button, 543
debugging scene 3, 544
debugging scene 4, 545
duplicate scene 3, 539
hide-right and left buttons, 540
select segue, 541

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 621

set-reverse button, 542
Scene 5, wanderBoard

change image, 548
connect left button, 548
duplicate scene 2, 547
hide-left button, 549
right-hand button, 551

Scene 6, wanderBoard
connect right button, 553
duplicate scene 5, 552
edit left button, 553–554

Scene 7, wanderBoard
change image, 557
connect-left button, 556
duplicate scene 3, 554–555
edit-right button, 557–558

Scene 8, wanderBoard
change-title, 560
connect-right button, 561
duplicate scene 4, 559

Scene 9, wanderBoard
change image, 564
change-title, 563
duplicate Scene 6, 562
edit-right button, 566–567
right button, 565

SelectionViewController
code replace, 398–399
creation, 397
protocol methods, 400–401
scene and associate, 402
synthesize and import, 399–400

shouldAutorotateToInterfaceOrientati
on, 264

Software Development Kit (SDK)
developer option, 6
Xcode

account creation, 8–9
continue button, 7–8
developer page, 13–14
downloads link, 12–13
enroll button, 7
IDE, 15–16

individual option, 9–10
iOS development page, 11–12
Mac App Store button, 14–15
standard program, 10–11

spineLocationForInterfaceOrientation
, 269

*startingViewController, 267
Storyboarding application, 211, 609.

See also Back end coding,
MapView

applications, 609
appropriation of scenes, 612
Add Book scene

another section, 354
author header, 356
bar button item, 373
content type, 352
creation, 348–349, 364
description section, 360
document outline, 353
embedding, 362
header attribute, 353
modal scene, 372
modification, 355
Navigation Controller, 363
rearrange sections exercise,

358–359
section, 357
segue, 365–366
select-new section, 359
select author cell, 370
Select category cell, 369
selection, Table View, 352
table view, 351
Table View cell-Static Table

View, 349
Table View Controller, 368
text field, 350
text view, 361
transition type, 367
view title, 371

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 622

Storyboarding application (cont.)
authors scene

Authors cell-Master View
Controller, 325

background, 322
categories scene, copy and

paste, 321
modifications, 327
push segue, 326
static cell, 324
View Controller, 328
zoom out and reorganize, 323

baskets, 611
book scene

All books cell, 335
Author name cell, 336
categories title, 338
category name prototype, 334
copy and paste, 330
count label, 340
custom cell, 329
image, 333
labels, 340
modification, author cell, 339
subview, 331
temporary text, 332
UIImageView, 330
unique identifiers, 337

categories scene
add new cell, 317
basic style, 314
categories, 318–19
duplicate, 316
edit bar button item, 320
identifier and accessory

attributes, 315–316
identifier option, 319
row height, 315
table view, 312–313
text color, 318
view controller, 311

cells, 180
*dataLabel, 255

detail veiw
connect-book list, 346
finish off, 344
identifier, 348
labels, 342
paste and align, 343
selected book, 341
text view, 345
UIImageView, 343–344
view title, 347

editor, opening, 256
fundamentals, 609
futureTravel, 212

DataViewController, 254–65
ModelController, 236–53
RootViewController, 265–72
storyboard preparation, 225–

36
templates, creating from,

213–24
flipside view controller, 176–177
ideas and problems, 611
image view, 173
info button, 172–173
initial image, 175–176
main and flipside View, 171
main menus, 610
master scene

@end and @implementation,
310

content type, 309
data model, 306
dynamic table views, 309
hierarchical tree, 310
My Library, 307
static table, 311
table view, 308
utilities view, 308

multiple files-one application,
610

navigation bar and done button,
177–178

non-text files, 611

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 623

play buttons, 174
preparation

adjusting instances, 228
attributes and text align, 228
autoResizingMask, 232
change of colors, 234
color change to frames, 227
Data View Controller, 226
final edit view, image, 233
labelling, 233
launching the image, 235
navigating files, 225
output of Xcode, 236
positioning the view, 231
replace and delete view, 230
text color property, 229
view scales, 232

TableView, 179
title bar, 172
tweaks

actual View Controller, 376
app’s story and logical flow,

374
book detail scene, 378
control-drag, 377
delete, 375
segues, 379
works and navigates, 381

UITableView, 171
view selection, 174
.xib files, 611

 U
UIImageView, 212, 257
UITableViewCell subclas

custom cell prototypes, 383–384
outlets, 385–386
subclass, 385
synthesize, 386–387

Utility application
FilpsideViewController

array, 190

assistant editor, 182
audio player delegate method,

206–207
button appears, 208–209
code additions, 201–202
connect, image view, 196–197
connection, IBOutlet, 187–188
datasets and delegates, 200
DemoMonkey snippets, 183–

184
hook up, 198
IBOulet tvScaleTable, 186–187
implementation files, 181,

188, 201
ivBackground, 197
mainView interface file, 194–

195
MainViewController, 193–194
MainViewController.h file, 196
navigation bar title, 199
niTitle, 199
play buttons, 208, 210
PlayButtonDelegate methods,

208
private interface, 189–190
scale selection, 205–206,

208–209
Storyboard, 184–185, 195
synthesis, 202
TableView, 185–186
UITableView delegate code,

192–193
viewDidLoad method, 203
viewDidUnload method, 203–

204
viewWillAppear method, 191,

204–205
vwButtonPlace, 198

overview, 159
phases, 161
preliminaries, 161–162

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 624

Utility application (cont.)
setup

AudioToolbox.framework,
168–169

AVFoundation.framework,
169–170

class files, 167
copy items and create groups,

165–166
file structure, 166
folder details, 168
frameworks folder, 170
images, 164–165
portrait and upside down

options, 163–164
utilityScales project, 162–163

Storyboard
cells, 180
flipside view controller, 176–

177
image view, 173
info button, 172–173
initial image, 175–176
main and flipside View, 171
navigation bar and done

button, 177–178
play buttons, 174
TableView, 179
title bar, 172
UIImageView image, 171
view selection, 174

utilityScales design, 160–161
weather app, 159–160

 V
*viewControllers, 267
ViewController header and

implementation files
landscape orientations, 507
prepareForSegue sender and

onReversePress methods,
509

property and action method, 504
viewWillAppear method, 505–507

viewDidUnload, 260
viewWillAppear, 262

 W
Wrapping up and loading test data

add categories, 475
categories, 471
dataSource, 470–471
run it and test, 473
table view connection, 470
test data, 472
three views working, 474

wanderBoard application
assistance, eight scenes. See

also Scene 2, wanderBoard
introduction, 510
Navigation Controller, 512
scene 3, 528–538
scene 4, 538–545
scene 5, 546–551
scene 6, 551–554
scene 7, 554–558
scene 8, 559–561
scene 9, 562–567

3D landscape, 481–482
files, project settings and assets

app icons slots, 485
builds, 489–490
compile source, 488
icon files, 489
images folder, 486
landscape images, 484
segue code, 487
single view application, 483

final nine scene
action method, 574
configuration, Scene 12, 585
connect, 573
connect Scene 10, 578
Connect Scene 11, 586

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 625

Connect Scene 16, 602
Connect Scene 17, 605–606
Connect Scene 8, 575
debug, 607
duplicate Scene, 569–570
duplicate Scene 11, 590
duplicate Scene 14, 594, 598
duplicate Scene 16, 601
duplicate Scene 17, 604
duplicate Scene 7, 585
duplicate Scene 8, 587
duplicate Scene 9, 580
forward button, 595, 596
forward button to Scene 16,

600
header file, 576
image, 571
left button, Scene 11, 582
reverse button, 589
right button to Scene 14, 592
run it, 608
Scene 10, Segue class, 579
Scene 11, 581
Scene 12 to Scene 13, 588
Scene 14 buttons, 593
Scene 14 title, 591
Scene 15 forward button, 597
Scene 16 Image View, 599
Scene 17 buttons, 603
Scene 18 image, 606
Scene 18 title, 605
Select Scene 10, 577
Select Scene 11, 583–584
Select Scene 7, 572
Title to Scene 15, 594–595

preliminaries, 480
4-step process, 510

single-view app
18 scenes, 479–480
iPad Landscape layout, 478–

479
maze, 477–478
professional-level

architectural designs, 479
Storyboard

button transparent, 498
drag button, 497
font style, 496
identify buttons, 498
image view, 492
metrics, 491
multi-line label, 495
Navigation Controller, 490–

491
resize, 493
set first image, 494
status, 500
taps, 499
transparent button, 498–499,

501
ViewController header and

implementation files
landscape orientations, 507
prepareForSegue sender and

onReversePress methods,
509

property and action method,
504

viewWillAppear method, 505–
507

 X, Y, Z
Xcode 4, 213

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

	Lewis_FM
	ch01_BeforeWeStart
	ch02_06_Fundamentals
	ch03_PhotoMap
	ch04_4utilityScales
	ch05_timeTravel_EDITED_Yulia
	Chapter 6_bookManager_7.27_Rory and Yulia
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Lewis_Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

