
M A N N I N G

Bruce Snyder
Dejan Bosanac
Rob Davies

www.it-ebooks.info

http://www.it-ebooks.info/

ActiveMQ in Action
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

ActiveMQ in Action
BRUCE SNYDER

DEJAN BOSANAC
ROB DAVIES

M A N N I N G
Greenwich

(74° w. long.)
www.it-ebooks.info

http://www.it-ebooks.info/

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
180 Broad St.
Suite 1323
Stamford, CT 06901
Email: orders@manning.com

©2011 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine

Manning Publications Co. Development editor: Jeff Bleiel
180 Broad St. Copyeditor: Benjamin Berg
Suite 1323 Proofreader: Katie Tennant
Stamford, CT 06901 Typesetter: Dottie Marsico

Cover designer: Marija Tudor

ISBN 978-1-933988-94-8
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 16 15 14 13 12 11
www.it-ebooks.info

http://www.it-ebooks.info/

brief contents

PART 1 AN INTRODUCTION TO MESSAGING
AND ACTIVEMQ ... 1

1 ■ Introduction to Apache ActiveMQ 3

2 ■ Understanding message-oriented middleware and JMS 17

3 ■ The ActiveMQ in Action examples 42

PART 2 CONFIGURING STANDARD
ACTIVEMQ COMPONENTS .. 55

4 ■ Connecting to ActiveMQ 57

5 ■ ActiveMQ message storage 96

6 ■ Securing ActiveMQ 117

PART 3 USING ACTIVEMQ TO BUILD
MESSAGING APPLICATIONS 143

7 ■ Creating Java applications with ActiveMQ 145

8 ■ Integrating ActiveMQ with application servers 174

9 ■ ActiveMQ messaging for other languages 221
v

www.it-ebooks.info

http://www.it-ebooks.info/

BRIEF CONTENTSvi
PART 4 ADVANCED FEATURES IN ACTIVEMQ 255

10 ■ Deploying ActiveMQ in the enterprise 257

11 ■ ActiveMQ broker features in action 277

12 ■ Advanced client options 295

13 ■ Tuning ActiveMQ for performance 312

14 ■ Administering and monitoring ActiveMQ 331
www.it-ebooks.info

http://www.it-ebooks.info/

contents
preface xv
acknowledgments xvii
about this book xix

PART 1 AN INTRODUCTION TO MESSAGING
AND ACTIVEMQ ...1

1 Introduction to Apache ActiveMQ 3
1.1 ActiveMQ features 4
1.2 Using ActiveMQ: why and when? 6

Loose coupling and ActiveMQ 6 ■ When to use ActiveMQ 8

1.3 Getting started with ActiveMQ 10
Downloading and installing the Java SE 10 ■ Downloading
ActiveMQ 11 ■ Examining the ActiveMQ directory 11
Starting up ActiveMQ 12

1.4 Running your first examples with ActiveMQ 14
1.5 Summary 16

2 Understanding message-oriented middleware and JMS 17
2.1 Introduction to enterprise messaging 18
2.2 What’s message-oriented middleware? 20
vii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTSviii
2.3 What’s the Java Message Service? 21
2.4 The JMS specification 23

JMS clients 23 ■ Non-JMS clients 25 ■ The JMS provider 25
The JMS message 25 ■ JMS message internals 25 ■ Message
selectors 29 ■ JMS domains 32 ■ Administered objects 35

2.5 Using the JMS APIs to create JMS applications 35
A simple JMS application 36 ■ Message-driven beans 39

2.6 Summary 41

3 The ActiveMQ in Action examples 42
3.1 Downloading Maven and compiling the examples 43
3.2 Use case one: the stock portfolio example 45

Running the stock portfolio example 46

3.3 Use case two: the job queue example 50
Running the job queue example 51

3.4 Summary 53

PART 2 CONFIGURING STANDARD
ACTIVEMQ COMPONENTS...................................55

4 Connecting to ActiveMQ 57
4.1 Understanding connector URIs 58
4.2 Transport connectors 60

Configuring transport connectors 60 ■ Adapting the stock
portfolio example 61

4.3 Connecting to ActiveMQ over the network 63
Transmission Control Protocol (TCP) 64 ■ New I/O API
protocol (NIO) 66 ■ User Datagram Protocol (UDP) 68
Secure Sockets Layer Protocol (SSL) 70 ■ Hypertext Transfer
Protocol (HTTP/HTTPS) 77

4.4 Connecting to ActiveMQ inside the virtual machine
(VM connector) 79

4.5 Network connectors 81
Static networks 83 ■ Dynamic networks 88

4.6 Summary 94
www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS ix
5 ActiveMQ message storage 96
5.1 How are messages stored by ActiveMQ? 97
5.2 The KahaDB message store 98

The KahaDB message store internals 99 ■ The KahaDB message
store directory structure 100 ■ Configuring the KahaDB message
store 101

5.3 The AMQ message store 103
The AMQ message store internals 103 ■ The AMQ message store
directory structure 104 ■ Configuring the AMQ message store 105

5.4 The JDBC message store 107
Databases supported by the JDBC message store 107 ■ The JDBC
message store schema 108 ■ Configuring the JDBC message
store 109 ■ Using the JDBC message store with the ActiveMQ
journal 111

5.5 The memory message store 111
Configuring the memory store 112

5.6 Caching messages in the broker for consumers 113
How message caching for consumers works 113 ■ The ActiveMQ
subscription recovery policies 114 ■ Configuring the subscription
recovery policy 115

5.7 Summary 116

6 Securing ActiveMQ 117
6.1 Authentication 118

Configuring the simple authentication plug-in 118
Configuring the JAAS plug-in 121

6.2 Authorization 123
Destination-level authorization 124 ■ Message-level
authorization 127

6.3 Building a custom security plug-in 131
Implementing the plug-in 132 ■ Configuring the plug-in 133
Testing the plug-in 134

6.4 Certificate-based security 135
Preparing certificates 136 ■ Creating a truststore 136
Configuring the broker 138 ■ Authorization explained 139
Testing it out 139

6.5 Summary 142
www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTSx
PART 3 USING ACTIVEMQ TO BUILD
MESSAGING APPLICATIONS143

7 Creating Java applications with ActiveMQ 145
7.1 Embedding ActiveMQ using Java 146

Embedding ActiveMQ using the BrokerService 147
Embedding ActiveMQ using the BrokerFactory 149

7.2 Embedding ActiveMQ using Spring 150
Pure Spring XML 151 ■ Using the BrokerFactoryBean 153
Using Apache XBean with Spring 154 ■ Using a custom XML
namespace with Spring 156

7.3 Implementing request/reply with JMS 158
Implementing the server and the worker 160 ■ Implementing the
client 162 ■ Running the request/reply example 164

7.4 Writing JMS clients using Spring 165
Configuring JMS connections 166 ■ Configuring JMS
destinations 167 ■ Creating JMS consumers 167
Creating JMS producers 168 ■ Putting it all together 171

7.5 Summary 172

8 Integrating ActiveMQ with application servers 174
8.1 The sample web application 176
8.2 Integrating with Apache Tomcat 181

Using local JNDI to integrate ActiveMQ with Tomcat 182
Using global JNDI to integrate ActiveMQ with Tomcat 184

8.3 Integrating with Jetty 187
Using local JNDI to integrate ActiveMQ with Jetty 187
Using global JNDI to integrate ActiveMQ with Jetty 189

8.4 Integrating with Apache Geronimo 192
Installing Geronimo and configuring the ActiveMQ plug-in
in Geronimo 192 ■ Configuring the ActiveMQ JMS resources in
Geronimo 196 ■ Preparing the sample application for deployment
in Geronimo 202 ■ Deploying and verifying the sample
application in Geronimo 205

8.5 Integrating with JBoss 208
Installing JBoss and configuring the ActiveMQ resource adapter
in JBoss 209 ■ Configuring the ActiveMQ JMS resources in
JBoss 212 ■ Preparing the sample application for deployment
www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS xi
in JBoss 212 ■ Deploying and verifying the sample application
in JBoss 215

8.6 ActiveMQ and JNDI 217
Client-side JNDI configuration 217

8.7 Summary 220

9 ActiveMQ messaging for other languages 221
9.1 Adapting the stock portfolio example 222
9.2 Messaging for scripting languages 224

STOMP protocol basics 224 ■ Configuring STOMP
transport 226 ■ Ruby STOMP consumer 227 ■ Python
STOMP consumer 229 ■ PHP STOMP consumer 233
Perl STOMP consumer 234 ■ Advanced messaging with
STOMP 236

9.3 Messaging for compiled languages 241
Writing a C# consumer (using the NMS API) 242
Writing a C++ consumer (using the CMS API) 244

9.4 Messaging on the web with ActiveMQ 247
Using the ActiveMQ REST API 248 ■ Using the ActiveMQ
Ajax API 250

9.5 Summary 254

PART 4 ADVANCED FEATURES IN ACTIVEMQ255

10 Deploying ActiveMQ in the enterprise 257
10.1 Configuring ActiveMQ for high availability 258

Shared nothing master/slave 258 ■ Shared storage
master/slave 261

10.2 How ActiveMQ passes messages across a network
of brokers 263
Store and forward 264 ■ Network discovery 266
Network configuration 268

10.3 Deploying ActiveMQ for large numbers
of concurrent applications 272
Vertical scaling 272 ■ Horizontal scaling 275
Traffic partitioning 275

10.4 Summary 276
www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTSxii
11 ActiveMQ broker features in action 277
11.1 Wildcards and composite destinations 278

Consume from multiple destinations using wildcards 278
Sending a message to multiple destinations 279

11.2 Advisory messages 280
11.3 Supercharge JMS topics by going virtual 284
11.4 Retroactive consumers 286
11.5 Message redelivery and dead-letter queues 287
11.6 Extending functionality with interceptor plug-ins 288

Visualization 288 ■ Enhanced logging 290 ■ Central
timestamp messages with the timestamp interceptor plug-in 291
Statistics 291

11.7 Routing engine with Apache Camel framework 292
11.8 Summary 294

12 Advanced client options 295
12.1 Exclusive consumers 296

Selecting an exclusive message consumer 296 ■ Using exclusive
consumers to provide a distributed lock 297

12.2 Message groups 298
12.3 ActiveMQ streams 301
12.4 Blob messages 303
12.5 Surviving network or broker failure

with the failover protocol 305
12.6 Scheduling messages to be delivered

by ActiveMQ in the future 309
12.7 Summary 311

13 Tuning ActiveMQ for performance 312
13.1 General techniques 313

Persistent versus nonpersistent messages 313
Transactions 314 ■ Embedding brokers 315 ■ Tuning the
OpenWire protocol 318 ■ Tuning the TCP transport 319

13.2 Optimizing message producers 319
Asynchronous send 319 ■ Producer flow control 320

13.3 Optimizing message consumers 323
www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS xiii
Prefetch limit 323 ■ Delivery and acknowledgment of
messages 325 ■ Asynchronous dispatch 326

13.4 Tuning in action 327
13.5 Summary 330

14 Administering and monitoring ActiveMQ 331
14.1 The JMX API and ActiveMQ 332

Local vs. remote JMX access 332 ■ Exposing the JMX MBeans for
ActiveMQ 334 ■ Exploring broker properties using the JMX
API 336 ■ Advanced JMX configuration 339 ■ Restricting
JMX access to a specific host 340 ■ Configuring JMX password
authentication 341

14.2 Monitoring ActiveMQ with advisory messages 344
Configuring advisory support 344 ■ Using advisory
messages 345 ■ Conclusion 350

14.3 Tools for ActiveMQ administration 350
Command-line tools 350 ■ Command agent 355
JConsole 357 ■ Web console 359

14.4 Configuring ActiveMQ logging 360
Broker logging 361 ■ Client logging 362 ■ Internal broker
event logging 365

14.5 Summary 366

index 367
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

preface
To this day, enterprise message queuing is a concept that is not well understood by
most software developers. Commercial message-oriented middleware (MOM) did not
help to encourage adoption of the process; most of the MOMs on the market were
closed source, were costly to buy and support, and required trained system administra-
tors for proper installation. ActiveMQ was developed to provide an open source alter-
native: its central theme is to put the power in the hands of developers. To date, the
ActiveMQ project has been successful in this endeavor by creating a MOM that is easy
to install, administer, and utilize, while providing a large number of unique features.

 Today, six or seven years after ActiveMQ was originally created, it’s surprising how
far and widely it is being used. ActiveMQ is a crucial component in many applications.
Used by small businesses and very large enterprises alike, ActiveMQ is deployed
throughout a wide variety of industries around the world including manufacturing,
government, retail, healthcare, finance, military, telecom, and many more. The versa-
tility of not only ActiveMQ but also event-based systems has appealed to a very large
audience of users and that appeal continues to grow.

 In writing a book about ActiveMQ, our intent was to provide a comprehensive
guide for its features and how to use them. Although ActiveMQ implements the JMS
specification, which has not moved in many years, ActiveMQ provides many features
beyond this spec and it has not stopped innovating. As is always the case, authoring a
book about software is a game of chase; as the software evolves, so must the book that
is still being written. We did our best to keep this book up to date with ActiveMQ 5.4.1.

 We hope that, by reading this book, you will come to appreciate not only ActiveMQ
but the concepts surrounding event-based systems. After all, some of the largest sys-
tems in the world are designed using events and message queuing.
xv

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

acknowledgments
The authors would collectively like to thank the following individuals:

 Jeff Bleiel, our development editor, for his work liaising with Manning—without
Jeff’s input, the book would not be what it is today; Gary Tully for his tireless technical
reviews of the entire book; the Manning staff for their arduous work on the book; Filip
Hanik for his assistance with Tomcat; Jan Bartel and Greg Wilkins for their assistance
with Jetty; David Jencks and Kevan Miller for their assistance with Geronimo; and
Jaikiran Pai for his assistance with JBoss.

 We would also like to thank the following reviewers, who read the manuscript at
different stages of its development, for their invaluable feedback: Jeff Davis, Deepak
Vohra, Robert Hanson, Davide Piazza, David Strong, Tijs Rademakers, Prasad A.
Chodavarapu, John Merryman, Jeroen Benckhuijsen, Pratik Patel, Scott Dawson,
Jason Kolter, Rod Biresch, and Roberto Rojas.

 Finally, thanks to the many readers of Manning’s Early Access Program (MEAP) for
their comments and input on early drafts of the manuscript posted in the Author
Online forum.

BRUCE SNYDER

I would like to thank my incredible wife Janene for her patience and understanding
during another book project, and my girls Bailey and Jade for reminding me what
really matters in life.
xvii

www.it-ebooks.info

http://www.it-ebooks.info/

ACKNOWLEDGMENTSxviii
DEJAN BOSANAC

I would like to thank my lovely wife for supporting me through yet another book
project.

ROB DAVIES

I would like to thank my wife Karen for editing and proofreading my chapters; my
children Chris, Connor, and Michael for keeping the zombies at bay; and my dog Rex
for forcing me to go on walks in the snow and the rain.
www.it-ebooks.info

http://www.it-ebooks.info/

about this book
ActiveMQ in Action is for software architects, developers, and integrators interested in
enterprise message queuing in general and ActiveMQ in particular. This book is
designed to serve as part introduction and part reference for both beginners and
experienced application developers. It begins with an introduction to ActiveMQ and a
high-level overview of JMS, followed by a progressively deeper dive into ActiveMQ as
the book advances.

 The concepts discussed throughout this book assume that the reader possesses
enough knowledge of Java EE to design and develop applications. Though such
knowledge is not a strict requirement, it will make it easier to grasp many of the con-
cepts touched upon throughout the chapters. Chapter 9 even discusses using
ActiveMQ with languages other than Java, including C++, C#, JavaScript, Perl, PHP,
Python, and Ruby.

Roadmap

This book is divided into four parts:

Part 1 provides an introduction to ActiveMQ, a high-level overview of JMS, and a brief
discussion of the examples used throughout the book. Chapter 1 introduces ActiveMQ
at a high level and discusses why and when to use ActiveMQ. It also demonstrates how
to download and install ActiveMQ and how to run the examples that come with
ActiveMQ in Action.

 Chapter 2 introduces enterprise messaging, message-oriented middleware (MOM)
and the JMS specification.

 Chapter 3 introduces the examples to be used throughout ActiveMQ in Action.
xix

www.it-ebooks.info

http://www.it-ebooks.info/

ABOUT THIS BOOKxx
Part 2 focuses on the three standard components in ActiveMQ including connectivity
into the message broker, message persistence, and message broker security.

 Chapter 4 covers all the connectivity options for ActiveMQ. It discusses ActiveMQ
URIs and all the transport connectors for both client-to-broker and broker-to-broker
communications including TCP, NIO, STOMP, failover, SSL, HTTP/S, and much more.

 Chapter 5 discusses message persistence in ActiveMQ; how messages are stored for
queues and topics, the four styles of message stores available, and message caching.

 Chapter 6 introduces and elaborates on security in ActiveMQ. It covers authentica-
tion, authorization, and certificate-based security, as well as how to create a custom
security plug-in.

The theme of part 3 is using ActiveMQ to build applications using technologies such
as the Spring Framework, leading open source application servers, and numerous
applications beyond just Java.

 Chapter 7 deals with creating Java applications using ActiveMQ. It shows some
options for embedding ActiveMQ in Java applications, developing a request/reply
application, and writing JMS clients using Spring.

 Chapter 8 is all about integrating ActiveMQ with some popular open source appli-
cation servers including Tomcat, Jetty, Geronimo, and JBoss. It also discusses the
client-side JNDI support provided by ActiveMQ.

 Chapter 9 discusses messaging with ActiveMQ using languages other than Java
including C++, C#, JavaScript, Perl, PHP, Python, and Ruby.

Part 4 discusses advanced features in ActiveMQ such as high availability, scalability,
many advanced broker and client features, performance tuning, and administration
of ActiveMQ.

 Chapter 10 discusses concepts around deploying ActiveMQ for production systems.
Topics in this chapter are focused on high availability and scalability.

 Chapter 11 presents advanced features provided by ActiveMQ such as wildcards
and composite destinations, advisory messages, virtual topics, some info about
ActiveMQ plug-ins, and an introduction to message routing with Apache Camel.

 Chapter 12 covers advanced ActiveMQ client features including exclusive consum-
ers, message groups, ActiveMQ streams and large objects, the failover transport, and
message scheduling.

 Chapter 13 deals with ActiveMQ performance tuning. It presents some general
tuning techniques covering such topics as persistent versus nonpersistent messages,
transactions, embedded brokers, tuning the wire level protocol, tuning the TCP trans-
port, and some optimizations for message producers and message consumers.

 Chapter 14 finishes up by discussing the administration and monitoring of
ActiveMQ. It shows how to configure ActiveMQ for JMX monitoring and demonstrates
this using JConsole. It also discusses and demonstrates the use of advisory messages
for monitoring ActiveMQ. There is also coverage of command-line tools, the com-
mand agent, use of XMPP, JConsole, and the web console. The discussion then moves
on to broker- and client-level logging.
www.it-ebooks.info

http://www.it-ebooks.info/

ABOUT THIS BOOK xxi
CODE CONVENTIONS AND DOWNLOADS

This book contains many code examples in many different programming languages,
all of which are presented using a fixed-width font like this to set it apart from the
regular text. Many code listings are annotated to point out important items, and the
listings are discussed by the surrounding text.

 The full source code that is presented in the book is freely available for download
from the publisher’s website at http://manning.com/ActiveMQinAction.

AUTHORS’ NOTE

This book was authored using DocBook XML and was processed using the Docbkx
Tools Maven plug-in on Mac OS X. Other items that became part of the book-writing
process include MacBook Pros, Google Docs, GMail, Foonz (until it shut down), Free-
ConferenceCall.com, barking dogs during conference calls, company acquisitions,
lots and lots of music, loud construction next door, sleepless nights, too much work
on airplanes, and plain old exhaustion.

Author Online
Purchase of ActiveMQ in Action includes free access to a private web forum run by Man-
ning Publications where you can make comments about the book, ask technical ques-
tions, and receive help from the authors and from other users. To access the forum
and subscribe to it, point your web browser to www.manning.com/ActiveMQinAction.
This page provides information on how to get on the forum once you are registered,
what kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the authors can take
place. It is not a commitment to any specific amount of participation on the part of
the authors, whose contribution to the book’s forum remains voluntary (and unpaid).
We suggest you try asking them some challenging questions lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

About the cover illustration
The figure on the cover of ActiveMQ in Action is taken from a French travel book, Ency-
clopédie Des Voyages by J. G. De Saint-Sauveur, published in 1796. Travel for pleasure was
a relatively new phenomenon at the time and travel guides such as this one were pop-
ular, introducing both the tourist as well as the armchair traveler to the inhabitants of
other regions of France and abroad.

 The diversity of the drawings in the Encyclopédie Des Voyages speaks vividly of the
uniqueness and individuality of the world’s towns and provinces just 200 years ago.
This was a time when the dress codes of two regions separated by a few dozen miles
identified people uniquely as belonging to one or the other. The travel guide brings
to life a sense of isolation and distance of that period and of every other historic
period except our own hyperkinetic present.
www.it-ebooks.info

http://www.it-ebooks.info/

ABOUT THIS BOOKxxii
 Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now often hard to tell the inhabitant of one continent from
another. Perhaps, trying to view it optimistically, we have traded a cultural and visual
diversity for a more varied personal life, or a more varied and interesting intellectual
and technical life.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the com-
puter business with book covers based on the rich diversity of regional life two centu-
ries ago brought back to life by the pictures from this travel guide.
www.it-ebooks.info

http://www.it-ebooks.info/

Part 1

An introduction
to messaging

and ActiveMQ

Apache ActiveMQ is a message broker for remote communication
between systems using the JMS (Java Message Service) specification. Although
ActiveMQ is written in Java, APIs for many languages other than Java are pro-
vided, including C/C++, .NET, Perl, PHP, Python, Ruby, and many more. This
book provides the information you need to understand, configure, and use
ActiveMQ successfully to meet the requirements of many business applications.

 In part 1, you’ll be introduced to ActiveMQ briefly to get you up and running.
We’ll discuss the concepts surrounding message-oriented middleware and JMS so
that you have an adequate background on how enterprise messaging came to be
what it is today. We’ll also introduce the examples for the book, including their
use cases and how to run each example. We’ll use these examples throughout
the book, so it’s important to understand them before they’re applied through
the chapters. The chapters in part 1 provide a good base set of knowledge that
prepares you for the rest of the book.
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction
to Apache ActiveMQ
Enterprise messaging software has been in existence since the late 1980s. Not only
is messaging a style of communication between applications, it’s also a style of inte-
gration. Therefore, messaging fulfills the need for both notification as well as inter-
operation among applications. But open source solutions have only emerged in the
last 10 years. Apache ActiveMQ is one such solution, providing the ability for appli-
cations to communicate in an asynchronous, loosely coupled manner. This chapter
will introduce you to ActiveMQ.

 ActiveMQ is an open source, Java Message Service (JMS) 1.1–compliant, mes-
sage-oriented middleware (MOM) from the Apache Software Foundation that pro-
vides high availability, performance, scalability, reliability, and security for
enterprise messaging. ActiveMQ is licensed using the Apache License, one of the

This chapter covers
 A high-level overview of ActiveMQ features and uses

 Downloading and installing ActiveMQ

 Understanding the ActiveMQ directory structure

 Running examples that come with ActiveMQ
3

www.it-ebooks.info

http://www.it-ebooks.info/

4 CHAPTER 1 Introduction to Apache ActiveMQ
most liberal and business-friendly Open Source Initiative (OSI)–approved licenses
available. Because of the Apache License, anyone can use or modify ActiveMQ without
any repercussions for the redistribution of changes. This is a critical point for busi-
nesses who use ActiveMQ in a strategic manner. As described later in chapter 2, the job
of a MOM is to mediate events and messages among distributed applications, guaran-
teeing that they reach their intended recipients. So it’s vital that a MOM be highly
available, performant, and scalable.

 The goal of ActiveMQ is to provide standards-based, message-oriented application
integration across as many languages and platforms as possible. ActiveMQ implements
the JMS spec and offers dozens of additional features and value on top of this spec.
These additional features will be introduced and discussed in detail throughout this
book.

 Your first steps with ActiveMQ are important to your success in using it for your
own work. To the novice user, ActiveMQ may appear to be daunting, and yet to the sea-
soned hacker, it might be easier to understand. This chapter will walk you through the
task of becoming familiar with ActiveMQ in a simple manner. You’ll not only gain a
high-level understanding of the ActiveMQ feature set, but you’ll also be taken through
a discussion of why and where to use ActiveMQ in your application development.
Then you’ll be prepared enough to install and begin using ActiveMQ.

1.1 ActiveMQ features
ActiveMQ provides an abundance of features created through hundreds of man-years
of effort. The chapters in this book break down ActiveMQ into sets of features to focus
on describing many of them. The following is a high-level list of some of the features
that will be discussed throughout this book:

 JMS compliance—A good starting point for understanding the features in
ActiveMQ is that ActiveMQ is an implementation of the JMS 1.1 spec. As dis-
cussed later in this chapter, the JMS spec provides important benefits and guar-
antees, including synchronous or asynchronous message delivery, once-and-
only-once message delivery, message durability for subscribers, and much more.
Adhering to the JMS spec for such features means that no matter what JMS pro-
vider is used, the same base set of features will be made available.

 Connectivity—ActiveMQ provides a wide range of connectivity options, including
support for protocols such as HTTP/S, IP multicast, SSL, STOMP, TCP, UDP,
XMPP, and more. Support for such a wide range of protocols equates to more
flexibility. Many existing systems utilize a particular protocol and don’t have the
option to change, so a messaging platform that supports many protocols lowers
the barrier to adoption. Though connectivity is important, the ability to closely
integrate with other containers is also important. Chapter 4 addresses both the
transport connectors and the network connectors in ActiveMQ.

 Pluggable persistence and security—ActiveMQ provides multiple flavors of persis-
tence and you can choose between them. Also, security in ActiveMQ can be
www.it-ebooks.info

http://www.it-ebooks.info/

5ActiveMQ features
completely customized for the type of authentication and authorization that’s
best for your needs. For example, ActiveMQ offers its own style of ultra-fast mes-
sage persistence via KahaDB, but also supports standard JDBC-accessible data-
bases. ActiveMQ also supports its own simple style of authentication and
authorization using properties files as well as standard JAAS login modules.
These two topics are discussed in chapters 5 and 6.

 Building messaging applications with Java—The most common route with
ActiveMQ is with Java applications for sending and receiving messages. This task
entails use of the JMS spec APIs with ActiveMQ and is covered in chapter 7.

 Integration with application servers—It’s common to integrate ActiveMQ with a
Java application server. Chapter 8 provides examples of integrating with some
of the most popular application servers, including Apache Tomcat, Jetty,
Apache Geronimo, and JBoss.

 Client APIs—ActiveMQ provides client APIs for many languages besides just Java,
including C/C++, .NET, Perl, PHP, Python, Ruby, and more. This opens the door
to opportunities where ActiveMQ can be utilized outside of the Java world.
Many other languages also have access to all of the features and benefits pro-
vided by ActiveMQ through these various client APIs. Of course, the ActiveMQ
broker still runs in a Java VM, but the clients can be written using any of the sup-
ported languages. Client connectivity to ActiveMQ is covered in chapter 9.

 Broker clustering—Many ActiveMQ brokers can work together as a federated net-
work of brokers for scalability purposes. This is known as a network of brokers and
can support many different topologies. This topic is covered in chapter 10.

 Many advanced broker features and client options—ActiveMQ provides many sophis-
ticated features for both the broker and the clients connecting to the broker.
ActiveMQ also supports the use of Apache Camel within the broker’s XML con-
figuration file. These features are discussed in chapters 11 and 12.

 Dramatically simplified administration—ActiveMQ is designed with developers in
mind. As such, it doesn’t require a dedicated administrator because it provides
easy-to-use yet powerful administration features. There are many ways to moni-
tor different aspects of ActiveMQ, including via JMX using tools such as JCon-
sole or the ActiveMQ web console, by processing the ActiveMQ advisory
messages, by using command-line scripts, and even by monitoring various types
of logging. This is all covered in chapter 14.

This is just a taste of the features offered by ActiveMQ. As you can see, these topics will
be addressed through the rest of the chapters of the book. For demonstration pur-
poses, a couple of simple examples will be carried throughout and these examples will
be introduced in chapter 3. But before we take a look at the examples, and given the
fact that you’ve been presented with numerous different features, we’re sure you have
some questions about why you might use ActiveMQ.
www.it-ebooks.info

http://www.it-ebooks.info/

6 CHAPTER 1 Introduction to Apache ActiveMQ
1.2 Using ActiveMQ: why and when?
Back around 2003, a group of open source developers got together to form Apache
Geronimo. In doing so, they discovered that there was no good message broker avail-
able that utilized a BSD-style license. Geronimo needed a JMS implementation for rea-
sons of Java EE compatibility, so a few of the developers starting discussing the
possibilities. Possessing vast experience with commercial MOMs and even having built
a few MOMs themselves previously, these developers set out to create the next great
open source message broker. Additional inspiration for ActiveMQ came from the fact
that most of the MOMs in the market were commercial, closed source, and were costly
to buy and support. The commercial MOMs were popular with businesses, but some
businesses couldn’t afford the steep costs required. This further increased the motiva-
tion to build an open source alternative. There was clearly a market available for an
open source MOM using an Apache License. What evolved over time is Apache
ActiveMQ.

 ActiveMQ was meant to be used as the JMS spec intended, for remote communica-
tions between distributed applications. To better understand what this means, the best
thing to do is look at a few of the ideas behind distributed application design, specifi-
cally communications.

1.2.1 Loose coupling and ActiveMQ

ActiveMQ provides the benefits of loose coupling for application architecture. Loose
coupling is commonly introduced into an architecture to mitigate the classic tight
coupling of Remote Procedure Calls (RPC). Such a loosely coupled design is consid-
ered to be asynchronous, where the calls from either application have no bearing on
one another; there’s no interdependence or timing requirements. The applications
can rely upon ActiveMQ’s ability to guarantee message delivery. Because of this, it’s
often said that applications sending messages just fire-and-forget—they send the mes-
sage to ActiveMQ and aren’t concerned with how or when the message is delivered. In
the same manner, the consuming applications have no concern with where the mes-
sages originated or how they were sent to ActiveMQ. This is an especially powerful
benefit in heterogeneous environments, allowing clients to be written using different
languages and even possibly different wire protocols. ActiveMQ acts as the middle-
man, allowing heterogeneous integration and interaction in an asynchronous man-
ner. More on this in the next section.

 When considering distributed application design, coupling is important. Coupling
refers to the interdependence of two or more applications or systems. An easy way to
think about coupling is to consider the effect of changes to any application in the sys-
tem: the implications across the other applications in the architecture as features are
added. Do changes to one application force changes to other applications involved? If
the answer is yes, then those applications are tightly coupled. But if one application
can be changed without affecting other applications, then those applications are
more loosely coupled. The overall lesson here is that tightly coupled applications are
www.it-ebooks.info

http://www.it-ebooks.info/

7Using ActiveMQ: why and when?
more difficult to maintain compared to loosely coupled applications. Said another
way, loosely coupled applications can easily deal with unforeseen changes.

 Technologies such as those discussed in chapter 2 (COM, CORBA, DCE, and EJB)
using RPC are considered to be tightly coupled. Using RPC, when one application calls
another application, the caller is blocked until the callee returns control to the caller.
The diagram in figure 1.1 depicts this concept.

 The caller (application one) in figure 1.1 is blocked until the callee (application
two) returns control. Many system architectures use RPC and are successful. But there
are numerous disadvantages to such a tightly coupled design: most notable is the
higher amount of maintenance required, since even small changes ripple throughout
the system architecture. Correct timing between the two applications is a necessity.
Both applications must be available at the same time for the request from application
one to reach application two B, and for the response to travel from application two
to application one C. Such timing requirements can be cumbersome, causing the
application to be fragile. Compare such a tightly coupled design with a design where
two applications are completely unaware of one another such as that depicted in
figure 1.2.

 Application one in figure 1.2 sends a message to the MOM in a one-way fashion.
Then, possibly sometime later, application two receives a message from the MOM, in a
one-way fashion. Neither application has any knowledge that the other even exists,
and there’s no timing between the two applications. This one-way style of interaction
results in much lower maintenance because changes in one application have little to
no effect on the other application. For these reasons, loosely coupled applications
offer big advantages over tightly coupled architectures when considering distributed
application design. This is where ActiveMQ enters the picture.

 Consider the changes necessary when an application must move to a new location.
This can happen when new hardware is introduced or the application needs to be
moved. With a tightly coupled system design, such movement is difficult because all
segments of the application must experience an outage. With an application designed
using loose coupling, different segments of the system can be moved independent of
one another. Consider a scenario where there are multiple instances of application A
and multiple instances of application B, where each instance resides on a different
machine. ActiveMQ is installed on still another machine independent of either

Application
twoNetworkApplication

one

Blocking remote procedural call

1

2
Figure 1.1 Two tightly
coupled applications
using remote procedure
calls to communicate
www.it-ebooks.info

http://www.it-ebooks.info/

8 CHAPTER 1 Introduction to Apache ActiveMQ
application A or application B. In this scenario, any one of the application A or appli-
cation B instances can be moved around without affecting one another. In fact, multi-
ple instances of ActiveMQ could be used in what’s known as a network of brokers
configuration. This would allow the ActiveMQ instances to be moved around without
affecting either application A or application B. This means that any segment of this
architecture can be taken down for maintenance at any time without taking down the
entire system. More details about this are available in chapter 10.

 So ActiveMQ provides an incredible amount of flexibility in application architec-
ture, allowing the concepts surrounding loose coupling to become a reality. ActiveMQ
also supports the request/reply paradigm of messaging if a completely asynchronous
style of messaging isn’t possible for a given use case. But when should ActiveMQ be
used to introduce these benefits?

1.2.2 When to use ActiveMQ

There are many occasions where ActiveMQ and asynchronous messaging can have a
meaningful impact on a system architecture. Here are just a few example scenarios:

 Heterogeneous application integration—The ActiveMQ broker is written using the
Java language, so naturally a Java client API is provided. But ActiveMQ also pro-
vides clients for C/C++, .NET, Perl, PHP, Python, Ruby, and a few other lan-
guages. This is a huge advantage when considering how you might integrate
applications written in different languages on different platforms. In cases such
as this, the various client APIs make it possible to send and receive messages via
ActiveMQ no matter what language is used. In addition to the cross-language
capabilities provided by ActiveMQ, the ability to integrate such applications
without the use of RPC is definitely a big benefit because messaging truly helps
to decouple the applications.

Sending a message

Receiving a message

Message-oriented
middleware

Application
one

Message-oriented
middleware

Application
twoFigure 1.2 Two loosely

coupled applications
using JMS messaging to
communicate
www.it-ebooks.info

http://www.it-ebooks.info/

9Using ActiveMQ: why and when?
 As a replacement for RPC—Applications using RPC-style synchronous calls are
widespread. Consider that the vast majority of client-server applications use
RPC including ATMs, most web applications, credit card systems, point-of-sale
systems, and more. Even though many of these systems are successful, conver-
sion to the use of asynchronous messaging can bring about benefits without
giving up the guarantee of a response. Systems that rely upon synchronous
requests typically have a limited ability to scale because eventually requests will
begin to back up, thereby slowing the whole system. Instead of experiencing
this type of a slowdown, using asynchronous messaging, additional message
receivers can be easily added so that messages are consumed concurrently and
therefore handled faster. This, of course, assumes that your applications can
be decoupled.

 To loosen the coupling between applications—As already discussed, tightly coupled
architectures can be problematic for many reasons, especially if they’re distrib-
uted. Loosely coupled architectures, on the other hand, exhibit fewer depen-
dencies, making them better at handling unforeseen changes. Not only will a
change to one component in the system not ripple across the entire system, but
component interaction is also dramatically simplified. Instead of using a syn-
chronous scheme for component interaction (where one method calls another
and the caller waits for a response from the callee), components utilize asyn-
chronous communications (where they simply send a message without waiting
for a response—also known as fire-and-forget). Such loose coupling throughout a
system can lead to what’s known as an event-driven architecture (EDA).

 As the backbone of an event-driven architecture—The decoupled, asynchronous style
of architecture described in the previous point allows the broker itself to scale
much further and handle considerably more clients via tuning, additional
memory allocation, and so on (known as vertical scalability) instead of only rely-
ing upon the ability of the number of broker nodes to be increased to handle
many more clients (known as horizontal scalability). Consider an incredibly high-
traffic e-commerce site such as Amazon. When a user makes a purchase on
Amazon, there are quite a few separate stages through which that order must
travel including order placement, invoice creation, payment processing, order
fulfillment, shipping, and more. But when a user actually places an order, the
user is immediately taken to a page stating, “Thanks for your order.” Not only
that, but without delay, the user also receives an email stating that the order was
received. The order placement process that’s employed by Amazon is a good
example of the first stage in a much larger set of asynchronous processes. Each
stage of the order is handled discretely by a separate service. When the user
places the order, there’s a synchronous call to submit the order, but the entire
order process doesn’t take place behind a synchronous call via the web browser.
Instead, the order is accepted and acknowledged immediately. The rest of the
steps in the process are handled asynchronously. If a problem occurs that
www.it-ebooks.info

http://www.it-ebooks.info/

10 CHAPTER 1 Introduction to Apache ActiveMQ
prevents the process from proceeding, the user is notified via email. Such asyn-
chronous processes are what afford massive scalability and high availability.

 To improve application scalability—Many applications utilize an event-driven
architecture in order to provide massive scalability including such domains as
e-commerce, government, manufacturing, and online gaming, just to name a
few. By separating an application along lines in the business domain using
asynchronous messaging, many other possibilities begin to emerge. Consider
the ability to design an application using a service for a specific task. This is the
backbone of service-oriented architecture (SOA). Each service fulfills a discrete
function and only that function. Then applications are built through the com-
position of these services, and the communication among services is achieved
using asynchronous messaging and eventual consistency. This style of applica-
tion design makes it possible to introduce such concepts as complex event process-
ing (CEP). Using CEP, the interactions among the components in a system are
tracked for further analysis. Such possibilities are truly endless when you con-
sider that asynchronous messaging is simply adding a level of indirection
between components in a system.

Now that you’ve been offered some examples of where to use ActiveMQ, it’s time to
install ActiveMQ and begin using it.

1.3 Getting started with ActiveMQ
Getting started with ActiveMQ isn’t difficult. You simply need to start up the broker
and make sure that it’s capable of accepting connections and sending messages.
ActiveMQ comes with some simple examples that will help you with this task, but first
we need to install Java and download ActiveMQ.

 In this section, you’ll download and install the Java SE, download and install
ActiveMQ, examine the ActiveMQ directory, and start up ActiveMQ for the first time.

1.3.1 Downloading and installing the Java SE

ActiveMQ requires a minimum of the Sun Java SE 1.5, though 1.6 is preferred. This
must be installed prior to attempting this section. If you don’t have the Sun J2SE
installed and you’re using Linux, Solaris, or Windows, download and install it from
the following URL: http://www.oracle.com/technetwork/java/javase/downloads/
index.html.

 If you’re using Mac OS X, you should already have Java installed. But just in case
you don’t, you can grab it from the following URL: http://developer.apple.com/java/
download/.

 Once you have the Java SE installed, you’ll need to test that it is set up correctly. To
do this, open a terminal or command line and enter the command shown in the fol-
lowing listing.
www.it-ebooks.info

http://www.it-ebooks.info/

11Getting started with ActiveMQ
[~]$ java version "1.6.0_20"
Java(TM) SE Runtime Environment (build 1.6.0_20-b02-279-10M3065)
Java HotSpot(TM) 64-Bit Server VM (build 16.3-b01-279, mixed mode)

Your output may be slightly different depending on the operating system you’re using,
but the important part is that there’s output from the Java SE. The command tells us
two things: that the J2SE is installed correctly and that Java version 1.6 is being used. If
you don’t see similar output, then you’ll need to rectify this situation before moving
on to the next section.

1.3.2 Downloading ActiveMQ

ActiveMQ is available from the Apache ActiveMQ website at the following URL: http://
activemq.apache.org/download.html.

 Click on the link to the 5.4.1 release and you’ll find both tarball and zip formats
available (the tarball is for Linux and Unix; the zip is for Windows). Once you’ve
downloaded one of the archives, expand it and you’re ready to move along. Once you
get to this point, you should have the Java SE all set up and working correctly, and
you’re ready to take a peek at the ActiveMQ directory.

1.3.3 Examining the ActiveMQ directory

From the command line, move into the apache-activemq-5.4.1 directory and enter the
command shown here.

[apache-activemq-5.4.1]$ ls -1
LICENSE
NOTICE

Listing 1.1 Check the Java version

Listing 1.2 List the contents of the ActiveMQ directory

Downloading and Installing Ant
Ant will be used to build and run the examples that ship with ActiveMQ. Ant is avail-
able from the Apache Ant website at the following URL: http://ant.apache.org/
bindownload.cgi.

Click on the link to the appropriate archive for your operating system (the tarballs are
for Linux and Unix; the zip is for Windows). Please follow the instructions for intalling
Ant at this URL: http://ant.apache.org/manual/install.html. Make sure to set up the
$ANT_HOME environment variable and to put $ANT_HOME/bin in the $PATH environ-
ment variable. Once Ant is properly installed, you should be able to run the following
command from a terminal to see the Ant version:
$ ant -version
Apache Ant version 1.8.1 compiled on April 30 2010

You may be using a slightly different version of Ant, but that shouldn't matter. Once
Ant outputs its version as shown above, you know that both the Java SE and Ant have
been installed properly.
www.it-ebooks.info

http://www.it-ebooks.info/

12 CHAPTER 1 Introduction to Apache ActiveMQ
README.txt
WebConsole-README.txt
activemq-all-5.4.1.jar
bin
conf
data
docs
example
lib
user-guide.html
webapps

The contents of the directory are fairly straightforward:

 LICENSE—A file required by the Apache Software Foundation (ASF) for legal
purposes; contains the licenses of all libraries used by ActiveMQ.

 NOTICE—Another ASF-required file for legal purposes; it contains copyright
information of all libraries used by ActiveMQ.

 README.txt—A file containing some URLs to documentation to get new users
started with ActiveMQ.

 WebConsole-README.txt—Contains information about using the ActiveMQ web
console.

 activemq-all-5.4.1.jar—A jar file that contains all of ActiveMQ; it’s placed here for
convenience if you need to grab it and use it.

 bin—The bin directory contains binary/executable files for ActiveMQ; the
startup scripts live in this directory.

 conf—The conf directory holds all the configuration information for ActiveMQ.

 data—The data directory is where the log files and message persistence data is
stored.

 docs—Contains a simple index.html file referring to the ActiveMQ website.
 example—The ActiveMQ examples; these are what we’ll use shortly to test out

ActiveMQ quickly.
 lib—The lib directory holds all the libraries needed by ActiveMQ.

 user-guide.html—A brief guide to starting up ActiveMQ and running the
examples.

 webapps—The webapps directory holds the ActiveMQ web console and some
other web-related demos.

The next task is to start up ActiveMQ and verify it using the examples.

1.3.4 Starting up ActiveMQ

After downloading and expanding the archive, ActiveMQ is ready for use. The binary
distribution provides a basic configuration to get you started easily and that’s what
we’ll use in the examples. So start up ActiveMQ now as shown next.
www.it-ebooks.info

http://www.it-ebooks.info/

13Getting started with ActiveMQ
$./bin/activemq console
INFO: Using default configuration
(you can configure options in one of these file: /etc/default/activemq
/Users/bsnyder/.activemqrc)
INFO: Invoke the following command to create a configuration file
./bin/activemq setup [/etc/default/activemq | /Users/bsnyder/.activemqrc]
INFO: Using java '/System/Library/Frameworks/JavaVM.framework/Home/bin/java'
INFO: Starting in foreground, this is just for debugging purposes
(stop process by pressing CTRL+C)
Java Runtime: Apple Inc. 1.6.0_20
/System/Library/Frameworks/JavaVM.framework/Versions/1.6.0/Home
Heap sizes: current=258880k free=253105k max=258880k
JVM args: -Xms256M -Xmx256M
-Dorg.apache.activemq.UseDedicatedTaskRunner=true
-Djava.util.logging.config.file=logging.properties
-Dcom.sun.management.jmxremote
-Dactivemq.classpath=/Users/bsnyder/amq/apache-activemq-5.4.1/conf;
-Dactivemq.home=/Users/bsnyder/amq/apache-activemq-5.4.1
-Dactivemq.base=/Users/bsnyder/amq/apache-activemq-5.4.1
ACTIVEMQ_HOME: /Users/bsnyder/amq/apache-activemq-5.4.1
ACTIVEMQ_BASE: /Users/bsnyder/amq/apache-activemq-5.4.1
Loading message broker from: xbean:activemq.xml
WARN | destroyApplicationContextOnStop parameter is deprecated,
please use shutdown hooks instead
INFO | PListStore:/Users/bsnyder/amq/apache-activemq-5.4.1/data/localhost/
tmp_storage started INFO | Using Persistence Adapter:
KahaDBPersistenceAdapter[/Users/bsnyder/amq/apache-activemq-5.4.1/data/

kahadb]
INFO | KahaDB is version 2
INFO | Recovering from the journal ...
INFO | Recovery replayed 1 operations from the journal in 0.029 seconds.
INFO | ActiveMQ 5.4.1 JMS Message Broker (localhost) is starting
...
INFO | ActiveMQ Console at http://0.0.0.0:8161/admin
INFO | Initializing Spring root WebApplicationContext
INFO | Connector vm://localhost Started
INFO | Camel Console at http://0.0.0.0:8161/camel
INFO | ActiveMQ Web Demos at http://0.0.0.0:8161/demo
INFO | RESTful file access application at http://0.0.0.0:8161/fileserver
INFO | Started SelectChannelConnector@0.0.0.0:8161

NOTE The examples in the listings in this book were developed on Mac
OS X, a Unix operating system. For readers who are using Windows, sim-
ply do not use the 'console' argument from any of the examples. To run
the example command shown in Listing 1.3 above on Windows, use the
following command from the command prompt:
C:\apache-activemq-5.4.1>bin\activemq

Please note that the command used to start up ActiveMQ on Windows
should not contain the 'console' argument. This applies to all the exam-
ple listings in the book.

Listing 1.3 Start up ActiveMQ
www.it-ebooks.info

http://www.it-ebooks.info/

14 CHAPTER 1 Introduction to Apache ActiveMQ
This command starts up the ActiveMQ broker and some of its connectors to expose it
to clients via a few protocols, namely, TCP, SSL, STOMP, and XMPP. Just be aware that
ActiveMQ has started and is available to clients via TCP on port 61616. This is all con-
figurable and will be discussed later in chapter 4. For now, the preceding output tells
you that ActiveMQ is up and running and ready for use. Now it’s ready to begin han-
dling some messages. The best way to begin sending and receiving messages is by
using some of the examples that come with ActiveMQ. The next section walks you
through this in a step-by-step manner.

1.4 Running your first examples with ActiveMQ
The previous section walked you through starting up ActiveMQ in one terminal. For
verification of this, you should open two more terminals to run the ActiveMQ exam-
ples. In the second terminal, move into the example directory and look at its contents
as shown in the following listing.

[apache-activemq-5.4.1]$ cd ./example/
bsnyder@mongoose [example]$ ls -1
build.xml
conf
perfharness
ruby
src
transactions

The example directory contains a few different items. Here’s a quick description of
each item in that directory:

 build.xml—An Ant build configuration for use with the Java examples.
 conf—The conf directory holds configuration information for use with the Java

examples.
 perfharness—The perfharness directory contains a script for running the IBM

JMS performance harness against ActiveMQ.

 ruby—The ruby directory contains some examples of using ActiveMQ with Ruby
and the STOMP connector.

 src—The src directory is where the Java examples live; this directory is used by
the build.xml.

 transactions —The transactions directory holds an ActiveMQ implementation of
the TransactedExample from Sun’s JMS Tutorial.

Using the second terminal, start up a JMS consumer as shown here.

[example]$ ant consumer
Buildfile: build.xml

init:

Listing 1.4 List the contents of the ActiveMQ example directory

Listing 1.5 Start up the ActiveMQ consumer example
www.it-ebooks.info

http://www.it-ebooks.info/

15Running your first examples with ActiveMQ
compile:

consumer:
[echo] Running consumer against server at $url =

tcp://localhost:61616 for subject $subject = TEST.FOO
[java] Connecting to URL: tcp://localhost:61616
[java] Consuming queue: TEST.FOO
[java] Using a non-durable subscription
[java] Running 1 parallel threads
[java] [Thread-2] We are about to wait until we consume:

2000 message(s) then we will shutdown

The command compiles the Java examples and starts up a simple JMS consumer. As
you can see from the output, this consumer is

 Connecting to the broker using the TCP protocol (tcp://localhost:61616)
 Watching a queue named TEST.FOO

 Using nondurable subscription
 Waiting to receive 2000 messages before shutting down

Basically, the JMS consumer is connected to ActiveMQ and waiting for messages. Now
you can send some messages to the TEST.FOO destination.

 In the third terminal, move into the example directory and start up a JMS pro-
ducer as shown below. This will immediately begin to send messages.

[example]$ ant producer
Buildfile: build.xml

init:

compile:

producer:
[echo] Running producer against server at $url =

tcp://localhost:61616 for subject $subject = TEST.FOO
[java] Connecting to URL: tcp://localhost:61616
[java] Publishing a Message with size 1000 to queue: TEST.FOO
[java] Using non-persistent messages
[java] Sleeping between publish 0 ms
[java] Running 1 parallel threads
[java] [Thread-2] Sending message: 'Message: 0 sent at: Thu Oct 14

21:24:07 MDT 2010 ...'
[java] [Thread-2] Sending message: 'Message: 1 sent at: Thu Oct 14

21:24:07 MDT 2010 ...'
[java] [Thread-2] Sending message: 'Message: 2 sent at: Thu Oct 14

21:24:07 MDT 2010 ...'

Although the output has been truncated for readability, the command starts up a sim-
ple JMS producer and you can see from the output that it

 Connects to the broker using the TCP connector (tcp://localhost:61616)
 Publishes messages to a queue named TEST.FOO

 Uses nonpersistent messages
 Doesn’t sleep between publishing messages

Listing 1.6 Start up the ActiveMQ producer example
www.it-ebooks.info

http://www.it-ebooks.info/

16 CHAPTER 1 Introduction to Apache ActiveMQ
Once the JMS producer is connected, it then sends 2,000 messages and shuts down.
This is the number of messages the consumer is waiting to consume before it shuts
down. So as the messages are being sent by the producer in terminal three, flip back
to terminal two and watch the JMS consumer as it consumes those messages. Here’s
the output you’ll see in terminal two:

[java] [Thread-2] Received: 'Message: 0 sent at: Thu Oct 14 21:23:56
MDT 2010 ...' (length 1000)

[java] [Thread-2] Received: 'Message: 1 sent at: Thu Oct 14 21:23:56
MDT 2010 ...' (length 1000)

[java] [Thread-2] Received: 'Message: 2 sent at: Thu Oct 14 21:23:56
MDT 2010 ...' (length 1000)
...

[java] [Thread-2] Received: 'Message: 1999 sent at: Thu Oct 14 21:23:56
MDT 2010 ...' (length 1000)

Again, the output has been truncated for brevity but this doesn’t change the fact that
the consumer received 2,000 messages and shut itself down. At this time, both the
consumer and the producer should be shut down, but the ActiveMQ broker is still run-
ning in the first terminal. Take a look at the first terminal again and you’ll see that
ActiveMQ appears to not have budged at all. This is because the default logging con-
figuration doesn’t output anything beyond what’s absolutely necessary. If you’d like to
tweak the logging configuration to output more information as messages are sent and
received, you can do so. Logging will be covered further in chapter 14.

 So what did you learn here? Through the use of the Java examples that come with
ActiveMQ, it has been proven that the broker is up and running and can mediate mes-
sages. This doesn’t seem like much but it’s an important first step. If you were able to
successfully run the Java examples, then you know that you have no networking prob-
lems on the machine you’re using and you know that ActiveMQ is behaving properly.
If you were unable to successfully run the Java examples, then you’ll need to trouble-
shoot the situation. If you need some help, heading over to the ActiveMQ mailing lists
is the best way to find help. These examples are just to get you started but can be used
to test many scenarios. Throughout the rest of the book, some different examples sur-
rounding a couple of common use cases will be used to demonstrate ActiveMQ and its
features. These examples are explained further in chapter 3.

1.5 Summary
ActiveMQ is a versatile, easy-to-use messaging middleware. You learned about some of
the ActiveMQ features that will be covered throughout this book and about some sce-
narios where ActiveMQ can be applied. The scenarios introduced in this chapter are
real-world use cases that are deployed in businesses throughout the world. The JMS
spec was designed for use in business applications with these scenarios in mind. For
those who aren’t familiar with the JMS spec, or even those who’d like a refresher on
the topic, the next chapter covers enterprise messaging and provides an overview of
JMS. If you’re already fluent in these two topics, you can skip ahead to chapter 3 to
explore the examples for the book.
www.it-ebooks.info

http://www.it-ebooks.info/

Understanding
message-oriented

middleware and JMS
To help you better understand the ideas behind ActiveMQ, it’s important to have
some background and history on enterprise messaging in general. After discussing
enterprise messaging, you’ll be prepared for a brief introduction to JMS followed by
some small examples of its use. The purpose of this chapter is to briefly review
enterprise messaging and the JMS specification. If you’re already familiar with these
topics, you can skip ahead to the next chapter.

 At one time or another, every software developer needs to communicate between
applications or transfer data from one system to another. Not only are there various

This chapter covers
 Enterprise messaging and message-oriented middleware

 Understanding the Java Message Service (JMS)

 Using the JMS APIs for sending and receiving messages

 An example of a message-driven bean
17

www.it-ebooks.info

http://www.it-ebooks.info/

18 CHAPTER 2 Understanding message-oriented middleware and JMS
solutions to this sort of problem, but depending on your constraints and requirements,
deciding how to go about such a task can be a big decision. Business requirements
often place restrictions on items that directly impact such a decision including perfor-
mance, scalability, reliability, and more. There are numerous applications that we use
every day that impose such requirements including ATMs, airline reservation systems,
credit card systems, point-of-sale systems, and telecommunications, to name a few.
Where would we be without most of these applications in our daily lives?

 For a moment, think about how these types of services have made your life easier.
These applications and others like them are made possible because of their reliable
and secure nature. Behind the scenes of these applications, just about all of them are
composed of many applications, usually distributed, communicating by passing events
or messages back and forth. Even the most sophisticated financial trading systems are
integrated in this manner, operating completely through the sending and receipt of
business information among all the necessary systems using messaging.

 Many products provide messaging for various purposes. Necessity is the mother of
invention, and this is how messaging middleware was born. A form of software became
necessary for communication and data transfer capabilities that could more easily
manage the disparity among data formats, operating systems, protocols, and even pro-
gramming languages. Additionally, capabilities such as sophisticated message routing
and transformation began to emerge as part of or in conjunction with these solutions.
Such systems came to be known as message-oriented middleware (MOM).

 ActiveMQ is a MOM product that provides asynchronous messaging for such busi-
ness systems. By providing a MOM that utilizes the JMS spec, ActiveMQ facilitates appli-
cation architectures that support such reliability and scalability.

2.1 Introduction to enterprise messaging
Most systems like those mentioned previously were built using mainframe computers
and many still use them today. So how can these applications work in such a reliable
manner? To answer this and other questions, let’s briefly explore some of the history
behind such solutions and how enterprise messaging was born.

 Starting in the 1960s, large organizations invested in mainframes for critical appli-
cations to facilitate functions such as data processing, financial processing, statistical
analysis, and much more. Mainframes provided appreciable benefits including high
availability, redundancy, reliability and scalability, upgradability without service inter-
ruption, and many other critical features required by business. Although these systems
were extremely powerful, access to such systems was restricted, as input options were
few. Also, interconnectivity among systems hadn’t yet been invented, meaning that
parallel processing wasn’t yet possible.

 Figure 2.1 shows a diagram demonstrating how terminals connect to a mainframe.
In the 1970s, users began to access mainframes through terminals, which dramatically
expanded the use of these systems by allowing thousands of concurrent users. It was
during this period that computer networks were invented and connectivity among
www.it-ebooks.info

http://www.it-ebooks.info/

19Introduction to enterprise messaging
mainframes themselves now became
possible. By the 1980s, not only were
graphical terminals available, but PCs
were also invented and terminal
emulation software quickly became
common. Interconnectivity became
even more important because appli-
cations needing access to the main-
frame were being developed to run
on PCs and workstations. Figure 2.2
shows these various types of connec-
tivity to the mainframe. Note how
this expanded connectivity intro-
duced additional platforms and pro-
tocols, posing a new set of problems
to be addressed.

 Connecting a source system and a target system wasn’t easy since each data format,
each piece of hardware, and each protocol required a different type of adapter. As the
list of adapters grew, so did the versions of each, causing them to become difficult to
maintain. Soon the effort required to maintain the adapters outweighed that of the
systems themselves. This is where enterprise messaging entered the picture.

 The purpose of enterprise messaging was to transfer data among disparate systems
by sending messages from one system to another. There have been numerous technol-
ogies for various forms of messaging through the years, including the following list:

Mainframe

Windows
application

Unix
application

OS/2
application

Protocol Y

Protocol Z

Protocol W

Terminal

Terminal

Terminal

Figure 2.2 Standalone terminals and
applications connecting to a mainframe
using many protocols.

Mainframe

Terminal

Terminal

Terminal

Figure 2.1 Standalone terminals connecting to a
mainframe using a single protocol
www.it-ebooks.info

http://www.it-ebooks.info/

20 CHAPTER 2 Understanding message-oriented middleware and JMS
 Solutions for remote procedure calls (RPC) such as COM, CORBA, DCE, and EJB

 Solutions for event notification, inter-process communication, and message
queuing that are baked into operating systems such as FIFO buffers, message
queues, pipes, signals, sockets, and others

 Solutions for a category of middleware that provides asynchronous, reliable
message queuing such as IBM WebSphere MQ, SonicMQ, TIBCO Rendezvous,
and Apache ActiveMQ, commonly used for Enterprise Application Integration
(EAI) purposes

The last category of messaging middleware products is what we’ll discuss here. So
what exactly is message-oriented middleware?

2.2 What’s message-oriented middleware?
Message-oriented middleware (MOM) is best described as a category of software for
communication in an asynchronous, loosely-coupled, reliable, scalable, and secure
manner among distributed applications or systems. MOMs were an important concept
in the distributed computing world. They allowed application-to-application commu-
nication using APIs provided by each vendor, and began to deal with many issues in
the distributed system space.

 The overall idea behind a MOM is that it acts as a message mediator between mes-
sage senders and message receivers. This mediation provides a whole new level of
loose coupling. Figure 2.3 demonstrates how a MOM is used to mediate connectivity
and messaging not only between each application and the mainframe but also from
application to application.

Mainframe

Unix
application

Terminal

OS/2
application

Terminal

Windows
application

Message-
oriented

middleware

Figure 2.3 Message-oriented middleware mediates
messages to the mainframe and guarantees
message delivery.
www.it-ebooks.info

http://www.it-ebooks.info/

21What’s the Java Message Service?
At a high level, messages are a unit of business information that’s sent from one appli-
cation to another via the MOM. Applications send and receive messages via the MOM
using what are known as destinations. Messages are addressed to and delivered to
receivers that connect or subscribe to the destinations. This is the mechanism that
allows for loose coupling between senders and receivers, as there’s no requirement for
each to be connected to the MOM at the same time for sending and receiving mes-
sages. Senders know nothing about receivers and receivers know nothing about send-
ers. This is known as asynchronous messaging.

MOMs added welcome additional features to enterprise messaging that weren’t
previously possible when systems were tightly coupled—features such as message per-
sistence, robust communication over slow or unreliable connections, complex mes-
sage routing, message transformation, and much more. Message persistence helps to
mitigate slow or unreliable connections made by senders and receivers; or in a situa-
tion where a receiver simply fails, it won’t affect the state of the sender. Complex mes-
sage routing opens up a huge number of possibilities, including delivering a single
message to many receivers, message routing based on properties or the content of a
message, and so forth. Message transformation allows two applications that don’t han-
dle the same message format to now communicate via a custom message format that’s
transformed on the fly.

 Additionally, many MOMs on the market today provide support for a diverse set of
protocols for connectivity. Some commonly supported protocols include HTTP/S,
multicast, SSL, TCP/IP, UDP, and more. Some vendors even provide support for multi-
ple languages, further lowering the barrier to using MOMs in a wide variety of environ-
ments. ActiveMQ provides exactly these types of features and more.

 Furthermore, it’s typical for a MOM to provide an API for sending and receiving
messages and otherwise interacting with the MOM. For years, all MOM vendors pro-
vided their own proprietary APIs for whatever languages they chose. That is, until the
Java Message Service (JMS) came along.

2.3 What’s the Java Message Service?
The Java Message Service (JMS) moved beyond vender-centric MOM APIs to provide an
API for enterprise messaging. JMS aims to provide a standardized API to send and
receive messages using the Java programming language in a vendor-neutral manner.
The JMS API minimizes the amount of enterprise messaging knowledge a Java program-
mer is required to possess in order to develop complex messaging applications, while
still maintaining a certain amount of portability across JMS provider implementations.

JMS isn’t itself a MOM. It’s an API that abstracts the interaction between messaging
clients and MOMs in the same manner that JDBC abstracts communication with rela-
tional databases. Figure 2.4 shows at a high level how JMS provides an API used by mes-
saging clients to interact with MOM-specific JMS providers, which handle interaction
with the vendor-specific MOM. The JMS API lowers the barrier to creating enterprise
messaging applications. It also eases the portability to other JMS providers.
www.it-ebooks.info

http://www.it-ebooks.info/

22 CHAPTER 2 Understanding message-oriented middleware and JMS
Originally created by Sun in conjunction with a group of companies from the enter-
prise messaging industry, the first version of the JMS spec was released in 1998. The
latest release was in 2002 and offered some necessary improvements. The JMS 1.1
release unified the two sets of APIs for working with the two messaging domains, so
working with both messaging domains now only requires a single common API. This
was a dramatic change that improved the APIs. Backward compatibility with the old
APIs is still supported.

 In standardizing the API, JMS formally defined many concepts and artifacts from
the world of messaging:

 JMS client —An application is written using 100% pure Java to send and receive
messages.

 Non-JMS client —An application is written using the JMS provider’s native client
API to send and receive messages instead of JMS.

 JMS producer —A client application that creates and sends JMS messages.
 JMS consumer—A client application that receives and processes JMS messages.
 JMS provider—The implementation of the JMS interfaces, which is ideally written

in 100% pure Java.
 JMS message—The most fundamental concept of JMS; sent and received by JMS

clients.
 JMS domains—The two styles of messaging that include point-to-point and pub-

lish/subscribe.
 Administered objects —Preconfigured JMS objects that contain provider-specific

configuration data for use by clients. These objects are typically accessible by cli-
ents via JNDI.

 Connection factory—Clients use a connection factory to create connections to the
JMS provider.

 Destination—An object to which messages are addressed and sent and from
which messages are received.

TIBCO
provider

SonicMQ
provider

WMQ
provider

ActiveMQ
provider

Messaging
client

JMS
API

WebSphere MQ

Apache
ActiveMQ

TIBCO

SonicMQ

Figure 2.4 JMS allows a single client to easily connect to many JMS providers.
www.it-ebooks.info

http://www.it-ebooks.info/

23The JMS specification
Besides these concepts, others are also important. The next few sections will dive
deeper into these concepts and focus on describing these building blocks of JMS.

2.4 The JMS specification
As mentioned in the previous section, the JMS spec defines two types of clients—JMS
clients and non-JMS clients. The differences are worth a brief discussion, so let’s
address them.

2.4.1 JMS clients

JMS clients utilize the JMS API for interacting with the JMS provider. Similar in concept
to using the JDBC API to access data in relational databases, JMS clients use the JMS API
for standardized access to the messaging service. Many JMS providers (including
ActiveMQ) include features beyond those required by JMS. It’s worth noting that a
100% pure JMS client would only use the JMS APIs and would avoid using such addi-
tional features. But the choice to use a particular JMS provider is often driven by the
additional features offered. If a JMS client uses such additional features, this client
may not be portable to another JMS provider without a refactoring effort.

JMS clients utilize the MessageProducer and MessageConsumer interfaces in some
way. It’s the responsibility of the JMS provider to furnish an implementation of each of
these interfaces. A JMS client that sends messages is known as a producer and a JMS cli-
ent that receives messages is known as a consumer. It’s possible for a JMS client to han-
dle both the sending and receiving of messages.

JMS PRODUCERS

JMS clients use the JMS MessageProducer class for sending messages to a destination.
The default destination for a given producer is set when the producer is created using
the Session.createProducer() method. But this can be overridden for individual
messages by using the MessageProducer.send() method. The MessageProducer
interface is shown here.

public interface MessageProducer {
void setDisableMessageID(boolean value) throws JMSException;

boolean getDisableMessageID() throws JMSException;

void setDisableMessageTimestamp(boolean value) throws JMSException;

boolean getDisableMessageTimestamp() throws JMSException;

void setDeliveryMode(int deliveryMode) throws JMSException;

int getDeliveryMode() throws JMSException;

void setPriority(int defaultPriority) throws JMSException;

int getPriority() throws JMSException;

void setTimeToLive(long timeToLive) throws JMSException;

long getTimeToLive() throws JMSException;

Listing 2.1 The MessageProducer interface
www.it-ebooks.info

http://www.it-ebooks.info/

24 CHAPTER 2 Understanding message-oriented middleware and JMS
Destination getDestination() throws JMSException;

void close() throws JMSException;

void send(Message message) throws JMSException;

void send(Message message, int deliveryMode, int priority,
long timeToLive)

throws JMSException;

void send(Destination destination, Message message)
throws JMSException;

void send(
Destination destination,
Message message,
int deliveryMode,
int priority,
long timeToLive)
throws JMSException;

}

The MessageProducer provides methods not only for sending messages but also for
setting various message headers including the JMSDeliveryMode, the JMSPriority, the
JMSExpiration (via the get/setTimeToLive() method), as well as a utility send()
method for setting all three of these at once. These message headers are discussed in
section 2.4.5.

JMS CONSUMERS

JMS clients use the JMS MessageConsumer class for consuming messages from a desti-
nation. The MessageConsumer can consume messages either synchronously by using
one of the receive() methods or asynchronously by providing a MessageListener
implementation to the consumer. The MessageListener.onMessage() method is
invoked as messages arrive on the destination. The MessageConsumer interface is
shown next.

public interface MessageConsumer {
String getMessageSelector() throws JMSException;

MessageListener getMessageListener() throws JMSException;

void setMessageListener(MessageListener listener) throws JMSException;

Message receive() throws JMSException;

Message receive(long timeout) throws JMSException;

Message receiveNoWait() throws JMSException;

void close() throws JMSException;
}

There’s no method for setting the destination on the MessageConsumer. Instead the
destination is set when the consumer is created using the Session.createConsumer()
method.

Listing 2.2 The JMS MessageConsumer interface
www.it-ebooks.info

http://www.it-ebooks.info/

25The JMS specification
2.4.2 Non-JMS clients

As noted earlier, a non-JMS client uses a JMS provider’s native client API instead of the
JMS API. This is an important distinction because native client APIs might offer some
different features than the JMS API. Such non-JMS APIs could consist of utilizing the
CORBA IIOP protocol or some other native protocol beyond Java RMI. Messaging pro-
viders that predate the JMS spec commonly have a native client API, but many JMS pro-
viders also provide a non-JMS client API.

2.4.3 The JMS provider

The JMS provider is the vendor-specific MOM that implements the JMS API. Such an
implementation provides access to the MOM via the standardized JMS API (remember
the analogy to JDBC).

2.4.4 The JMS message

The JMS message is the most important concept in the JMS specification. Every con-
cept in the JMS spec is built around handling a JMS message because it’s how business
data and events are transmitted. A JMS message allows anything to be sent as part of
the message, including text and binary data as well as information in the headers. As
depicted in figure 2.5, JMS messages contain two parts, including headers and a pay-
load. The headers provide metadata about the message used by both clients and JMS
providers. The payload is the actual body of the message and can hold both textual
and binary data via the various message types.

 The JMS message is designed to be easy to understand and flexible. All the com-
plexity of the JMS message resides in the headers.

2.4.5 JMS message internals

As mentioned previously, the complexity of a JMS mes-
sage lies in the details provided by the headers. There
are actually two types of headers, which are basically
the same logical concept but differ semantically.
Whereas a standard list of headers and methods to
work with them are provided by the JMS spec, properties
are designed to facilitate custom headers based on
primitive Java types. Both are referred to generically
as headers.

JMS MESSAGE HEADERS

As shown in figure 2.5, JMS messages support a stan-
dard lists of headers and the JMS API provides meth-
ods for working with them. Many of the headers are
automatically assigned. The following list describes
each of these headers, and how they are assigned to
the message.

Headers

Payload

JMSCorrelationID
JMSDeliveryMode
JMSDestination
JMSExpiration
JMSMessageID
JMSPriority
JMSRedelivered
JMSReployTo
JMSTimestamp
JMSType
. . .

Figure 2.5 A graphical represen-
tation of a JMS message
www.it-ebooks.info

http://www.it-ebooks.info/

26 CHAPTER 2 Understanding message-oriented middleware and JMS
 Headers set automatically by the client’s send() method:

 JMSDestination—The destination to which the message is being sent. This is valu-
able for clients who consume messages from more than one destination.

 JMSDeliveryMode—JMS supports two types of delivery modes for messages: persis-
tent and nonpersistent. The default delivery mode is persistent. Each delivery
mode incurs its own overhead and implies a particular level of reliability.

* Persistent—Advises the JMS provider to persist the message so it’s not lost if
the provider fails. A JMS provider must deliver a persistent message once
and only once. In other words, if the JMS provider fails, the message won’t be
lost and won’t be delivered more than once. Persistent messages incur
more overhead due to the need to store the message, and value reliability
over performance.

* Nonpersistent—Instructs the JMS provider not to persist the message. A JMS
provider must deliver a nonpersistent message at most once. In other words,
if the JMS provider fails, the message may be lost, but it won’t be delivered
twice. Nonpersistent messages incur less overhead and value performance
over reliability.

The delivery mode is set on the producer and is applied to all messages sent from
that producer. But the delivery mode can be overridden for individual messages.

 JMSExpiration—The time that a message will expire. This header is used to pre-
vent delivery of a message after it has expired. The expiration value for mes-
sages can be set using either the MessageProducer.setTimeToLive() method
to set the time-to-live globally for all messages sent from that producer, or using
one of the MessageProducer.send() methods to set the time-to-live locally for
each message that is sent. Calling any of these methods sets the default length
of time in milliseconds that a message should be considered usable, although
the MessageProducer.send() methods take precedence.

The JMSExpiration message header is calculated by adding the time-to-live to
the current time in GMT. By default the time-to-live is zero, meaning that the
message won’t expire. If a time-to-live isn’t specified, the default value is used
and the message won’t expire. If the time-to-live is explicitly specified as zero,
then the same is true and the message will not expire.

This header can be valuable for time-sensitive messages. But be aware that
JMS providers shouldn’t deliver messages that have expired, and JMS clients
should be written so as to not process messages that have expired.

 JMSMessageID —A string that uniquely identifies a message that’s assigned by the
JMS provider and must begin with ID. The message ID can be used for message
processing or for historical purposes in a message storage mechanism. Because
message IDs can cause the JMS provider to incur some overhead, the producer
can advise the JMS provider that the JMS application doesn’t depend on the
value of this header via the MessageProducer.setDisableMessageID() method.
If the JMS provider accepts this advice, the message ID must be set to null. Be
aware that a JMS provider may ignore this call and assign a message ID anyway.
www.it-ebooks.info

http://www.it-ebooks.info/

27The JMS specification
 JMSPriority—Used to assign a level of importance to a message. This header is
also set on the message producer. Once the priority is set on a producer, it
applies to all messages sent from that producer. The priority can be overridden
for individual messages. JMS defines 10 levels of message priority, ranging from
0 (the lowest) to 9 (the highest):

* Priorities 0–4—These priorities are finer granularities of the normal priority.
* Priorities 5–9—These priorities are finer granularities of expedited priority.

JMS providers aren’t required to implement message ordering, although most
do. They should simply attempt to deliver higher-priority messages before
lower-priority messages.

 JMSTimestamp—This header denotes the time the message was sent by the pro-
ducer to the JMS provider. The value of this header uses the standard Java millis
time value. Similar to the JMSMessageID header, the producer may advise the
JMS provider that the JMSTimestamp header isn’t needed via the Message-
Producer.setDisableMessageTimestamp() method. If the JMS provider
accepts this advice, it must set the JMSTimestamp to zero.

Header set optionally by the client:

 JMSCorrelationID—Used to associate the current message with a previous mes-
sage. This header is commonly used to associate a response message with a
request message. The value of the JMSCorrelationID can be one of the following:

* A provider-specific message ID
* An application-specific String
* A provider-native byte[] value

The provider-specific message ID will begin with the ID: prefix, whereas the
application-specific String must not start with the ID: prefix. If a JMS provider
supports the concept of a native correlation ID, a JMS client may need to assign
a specific JMSCorrelationID value to match that expected by non-JMS clients, but
this isn’t a requirement.

 JMSReplyTo —Used to specify a destination where a reply should be sent. This
header is commonly used for request/reply style of messaging. Messages sent
with this header populated typically expect a response, but it’s actually optional.
The client must make the decision to respond or not.

 JMSType—Used to semantically identify the message type. This header is used by
few vendors and has nothing to do with the payload Java type of the message.

Headers set optionally by the JMS provider:

 JMSRedelivered—Used to indicate the liklihood that a message was previously
delivered but not acknowledged. This can happen if a consumer fails to
acknowledge delivery, or if the JMS provider hasn’t been notified of delivery
such as an exception being thrown that prevents the acknowledgement from
reaching the provider.
www.it-ebooks.info

http://www.it-ebooks.info/

28 CHAPTER 2 Understanding message-oriented middleware and JMS
JMS MESSAGE PROPERTIES

Properties are simply additional headers that can be specified on a message. JMS pro-
vides the ability to set custom headers using generic methods. Methods are provided
for working with many primitive Java types for header values including Boolean, byte,
short, int, long, float, double, and also the String object type. Examples of these meth-
ods can be seen in the next listing, taken from the Message interface.

public interface Message {
...

boolean getBooleanProperty(String name) throws JMSException;
byte getByteProperty(String name) throws JMSException;
short getShortProperty(String name) throws JMSException;
int getIntProperty(String name) throws JMSException;
long getLongProperty(String name) throws JMSException;
float getFloatProperty(String name) throws JMSException;
double getDoubleProperty(String name) throws JMSException;
String getStringProperty(String name) throws JMSException;
Object getObjectProperty(String name) throws JMSException;

...
Enumeration getPropertyNames() throws JMSException;
boolean propertyExists(String name) throws JMSException;

...
void setBooleanProperty(String name, boolean value) throws JMSException;
void setByteProperty(String name, byte value) throws JMSException;
void setShortProperty(String name, short value) throws JMSException;
void setIntProperty(String name, int value) throws JMSException;
void setLongProperty(String name, long value) throws JMSException;
void setFloatProperty(String name, float value) throws JMSException;
void setDoubleProperty(String name, double value) throws JMSException;
void setStringProperty(String name, String value) throws JMSException;
void setObjectProperty(String name, Object value) throws JMSException;

.. }

Also note the two convenience methods for working with generic properties on a
message—the getPropertyNames() method and the propertyExists() method. The
getPropertyNames() method returns an Enumeration of all the properties on a given
message to easily iterate through all of them. The propertyExists() method is for
testing whether a given property exists on a message. Note that the JMS-specific head-
ers aren’t considered generic properties and aren’t included in the Enumeration re-
turned by the getPropertyNames() method.

 There are three types of properties: custom properties, JMS defined properties,
and provider-specific properties.

CUSTOM PROPERTIES

Custom properties are arbitrary and are defined by a JMS application. Developers of
JMS applications can freely define any properties using any Java types necessary, by
using the generic methods shown in the previous section (getBooleanProperty()/
setBooleanProperty(), getStringProperty()/setStringProperty(), and so on).

Listing 2.3 The JMS Message interface
www.it-ebooks.info

http://www.it-ebooks.info/

29The JMS specification
JMS-DEFINED PROPERTIES

The JMS spec reserves the JMSX property name prefix for JMS-defined properties, and
support for these properties is optional:

 JMSXAppID—Identifies the application sending the message
 JMSXConsumerTXID —The transaction identifier for the transaction within which

this message was consumed
 JMSXDeliveryCount—The number of message delivery attempts
 JMSXGroupID—The message group of which this message is a part
 JMSXGroupSeq—The sequence number of this message within the group
 JMSXProducerTXID—The transaction identifier for the transaction within which

this message was produced
 JMSXRcvTimestamp —The time the JMS provider delivered the message to the

consumer
 JMSXState—Used to define a provider-specific state
 JMSXUserID —Identifies the user sending the message

The only recommendation provided by the spec for use of these properties is for the
JMSXGroupID and JMSXGroupSeq properties, and that these properties should be used
by clients when grouping messages and/or grouping messages in a particular order.

PROVIDER-SPECIFIC PROPERTIES
The JMS spec reserves the JMS_<vendor-name> property name prefix for provider-
specific properties. Each provider defines its own value for the <vendor-name> place-
holder. These are most typically used for provider-specific non-JMS clients and
shouldn’t be used for JMS-to-JMS messaging.

 Now that JMS headers and properties on messages have been discussed, for what
exactly are they used? Headers and properties are important when it comes to filter-
ing the messages received by a client subscribed to a destination.

2.4.6 Message selectors

There are times when a JMS client is subscribed to a given destination, but it may want
to filter the types of messages it receives. This is exactly where headers and properties
can be used. For example, if a consumer registered to receive messages from a queue
is only interested in messages about a particular stock symbol, this is easy as long as
each message contains a property that identifies the stock symbol of interest. The JMS
client can utilize JMS message selectors to tell the JMS provider that it only wants to
receive messages containing a particular value in a particular property.

 Message selectors allow a JMS client to specify which messages it wants to receive
from a destination based on values in message headers. Selectors are conditional
expressions defined using a subset of SQL92. Using Boolean logic, message selectors use
message headers and properties as criteria for simple Boolean evaluation. Messages not
matching these expressions aren’t delivered to the client. Message selectors can’t ref-
erence a message payload, only the message headers and properties.
www.it-ebooks.info

http://www.it-ebooks.info/

30 CHAPTER 2 Understanding message-oriented middleware and JMS
 Selectors use conditional expressions for selectors that are passed as String argu-
ments using some of the creation methods in the javax.jms.Session object. The syn-
tax of these expressions uses various identifiers, literals, and operators taken directly
from the SQL92 syntax and are defined in table 2.1.

The items shown in table 2.1 are used to create queries against message headers and
properties. Consider the message defined in the next listing. This message defines two
properties that will be used for filtering messages in the example that follows.

public void sendStockMessage(Session session,
MessageProducer producer,
Destination destination,
String payload,
String symbol,
double price)

throws JMSException {

TextMessage textMessage = session.createTextMessage();
textMessage.setText(payload);
textMessage.setStringProperty("SYMBOL", symbol);
textMessage.setDoubleProperty("PRICE", price);
producer.send(destination, textMessage);

}

Now let’s look at some examples of filtering messages via message selectors using the
preceding message.

...
String selector = "SYMBOL = 'AAPL'";

MessageConsumer consumer =
session.createConsumer(destination, selector);

...

Listing 2.5 defines a selector to match messages for Apple, Inc. This consumer
receives only messages matching the query defined in the selector.

Table 2.1 JMS selector syntax

Item Values

Literals Booleans TRUE/FALSE; numbers such as 5, -10, +34; numbers with decimal or
scientific notation such as 43.3E7, +10.5239

Identifiers A header or property field

Operators AND, OR, LIKE, BETWEEN, =, <>, <, >, <=, =>, +, -, *, /, IS NULL, IS NOT NULL

Listing 2.4 A JMS message with custom properties

Listing 2.5 Filter messages using the SYMBOL header

Custom Double property
added to message
www.it-ebooks.info

http://www.it-ebooks.info/

31The JMS specification
...
String selector = "SYMBOL = 'AAPL' AND PRICE > "

+ getPreviousPrice();

MessageConsumer consumer =
session.createConsumer(destination, selector);

...

This example specifies a selector to match messages for Apple, Inc. whose price is
greater than the previous price. This selector will show stock messages whose price is
increasing. But what if you want to take into account the timeliness of stock messages
in addition to the price and symbol? Consider the next example.

...
String selector = "SYMBOL IN ('AAPL', 'CSCO') AND PRICE > "

+ getPreviousPrice() + " AND PE_RATIO < "
+ getCurrentAcceptedPriceToEarningsRatioThreshold();

MessageConsumer consumer =
session.createConsumer(destination, selector);

...

The last example of message selectors in listing 2.7 defines a more complex selector to
match messages for Apple, Inc., and Cisco Systems, Inc., whose price is increasing and
whose price-to-earnings ratio is less than the currently accepted threshold.

 These examples should be enough for you to begin using message selectors. But if
you want more in-depth information, see the Javadoc for the JMS Message type.

MESSAGE BODY

JMS defines six Java types for the message body, also known as the payload. Through
the use of these objects, data and information can be sent via the message payload.

 Message —The base message type. Used to send a message with no payload, only
headers and properties. Typically used for simple event notification.

 TextMessage —A message whose payload is a String. Commonly used to send sim-
ple textual and XML data.

 MapMessage —Uses a set of name/value pairs as its payload. The names are of
type String and the values are a Java primitive type.

 BytesMessage —Used to contain an array of uninterpreted bytes as the payload.
 StreamMessage—A message with a payload containing a stream of primitive Java

types that’s filled and read sequentially.
 ObjectMessage—Used to hold a serializable Java object as its payload. Usually

used for complex Java objects. Also supports Java collections.

Listing 2.6 Filter messages using both the SYMBOL and PRICE headers

Listing 2.7 Filter messages using headers
www.it-ebooks.info

http://www.it-ebooks.info/

32 CHAPTER 2 Understanding message-oriented middleware and JMS
2.4.7 JMS domains

As noted earlier, the creation of JMS was a group effort, and the group contained ven-
dors of messaging implementations. It was the influence of existing messaging imple-
mentations that resulted in JMS identifying two styles of messaging (or domains as
they’re referred to in the spec)—point-to-point and publish/subscribe. Most MOMs already
supported both of these messaging styles, so it only made sense that the JMS API sup-
port both. Let’s examine each of these messaging styles to better understand them.

THE POINT-TO-POINT DOMAIN

The point-to-point (PTP) messaging domain uses destinations known as queues.
Through the use of queues, messages are sent and received either synchronously or
asynchronously. Each message received on the queue is delivered once and only
once to a single consumer. This is similar to a person-to-person email sent through a
mail server. Consumers receive messages from the queue either synchronously using
the MessageConsumer.receive() method or asynchronously by registering a
MessageListener implementation using the MessageConsumer.setMessage-

Listener() method. The queue stores all messages until they’re delivered or until
they expire.

 Multiple consumers can be registered on a single queue as shown in figure 2.6, but
only one consumer will receive a given message and then it’s up to that consumer to
acknowledge the message. Note that the message in figure 2.6 is sent from a single
producer and is delivered to a single consumer, not all consumers. As mentioned ear-
lier, the JMS provider guarantees the delivery of a message once and only once to the
next available registered consumer. In this regard, the JMS provider is distributing the
messages in a sort of round-robin style across all the registered consumers.

Producer

Producer

Producer

Consumer

Consumer

Consumer

Consumer

Consumer

Queue

Figure 2.6 Point-to-point messaging uses a
one-to-one messaging paradigm.
www.it-ebooks.info

http://www.it-ebooks.info/

33The JMS specification
THE PUBLISH/SUBSCRIBE DOMAIN

The publish/subscribe (pub/sub) messaging domain uses destinations known as
topics. Publishers send messages to the topic and subscribers register to receive mes-
sages from the topic. Any messages sent to the topic are automatically delivered to all
subscribers. This messaging domain is similar to subscribing to a mailing list where all
subscribers will receive all messages sent to the mailing list in a one-to-many paradigm.
The pub/sub domain is depicted in figure 2.7.

 Much the same as PTP messaging in the previous section, subscribers register to
receive messages from the topic either synchronously using the Message-

Consumer.receive() method or asynchronously by registering a MessageListener
implementation using the MessageConsumer.setMessageListener() method. Topics
don’t hold messages unless explicitly instructed to do so. This can be achieved via the
use of a durable subscription. Using a durable subscription, when a subscriber discon-
nects from the JMS provider, it’s the responsibility of the JMS provider to store mes-
sages for the subscriber. Upon reconnecting, the durable subscriber will receive all
unexpired messages from the JMS provider. Durable subscriptions allow for subscriber
disconnection without missing any messages.

DISTINGUISHING MESSAGE DURABILITY FROM MESSAGE PERSISTENCE
Two points within JMS that are often confused are message durability and message
persistence. Though they’re similar, there are some semantic differences between
them and each has its specific purpose. Message durability can only be achieved with
the pub/sub domain. When clients connect to a topic, they can do so using a durable
or a nondurable subscription. Consider the differences between the two:

 Durable subscription—A durable subscription is infinite. It’s registered with the
topic subscription to tell the JMS provider to preserve the subscription state in
the event that the subscriber disconnects. If a durable subscriber disconnects,

Publisher

Publisher

Publisher

Subscriber

Subscriber

Subscriber

Subscriber

Subscriber

Topic

Figure 2.7 Publish/subscribe uses a one-to-many
messaging paradigm.
www.it-ebooks.info

http://www.it-ebooks.info/

34 CHAPTER 2 Understanding message-oriented middleware and JMS
the JMS provider will hold all messages until that subscriber connects again or
until the subscriber explicitly unsubscribes from the topic.

 Nondurable subscription—A nondurable subscription is finite. It’s registered with
the topic subscription to tell the JMS provider to not preserve the subscription
state in the event that the subscriber disconnects. If a subscriber disconnects,
the JMS provider won’t hold any messages during the disconnection period.

Message persistence is independent of the message domain. Message persistence is a
quality of service property used to indicate the JMS application’s ability to handle
missing messages in the event of a JMS provider failure. As discussed previously, this
quality of service is specified on the message producer’s setDeliveryMode method
using one of the JMSDeliveryMode class’s PERSISTENT or NON-PERSISTENT properties
as an argument.

Request/reply messaging in JMS applications
Although the JMS spec doesn’t define request/reply messaging as a formal messag-
ing domain, it does provide some message headers and a couple of convenience
classes for handling basic request/reply messaging. Request/reply messaging is an
asynchronous back-and-forth conversational pattern utilizing either the PTP domain or
the pub/sub domain through a combination of the JMSReplyTo and JMSCorrelationID
message headers and temporary destinations. The JMSReplyTo specifies the desti-
nation where a reply should be sent, and the JMSCorrelationID in the reply message
specifies the JMSMessageID of the request message. These headers are used to
link the reply message(s) to the original request message. Temporary destinations
are those that are created only for the duration of a connection and can only be con-
sumed from by the connection that created them. These restrictions make temporary
destinations useful for request/reply.

The convenience classes for handling basic request/reply are the QueueRequestor
and the TopicRequestor. These classes provide a request() method that sends a
request message and waits for a reply message through the creation of a temporary
destination where only one reply per request is expected. These classes are useful
only for this most basic form of request/reply, as shown in figure 2.8—one reply per
request.

Requestor Receiver

Queue

Queue

1 2

34

Figure 2.8 The steps involved in
basic request/reply messaging
www.it-ebooks.info

http://www.it-ebooks.info/

35Using the JMS APIs to create JMS applications
2.4.8 Administered objects

Administered objects contain provider-specific JMS configuration information and are
supposed to be created by a JMS administrator; hence, the name. Administered
objects are used by JMS clients. They’re used to hide provider-specific details from the
clients and to abstract the JMS provider’s administration tasks. It’s common to look up
administered objects via JNDI, but not required. This is most common when the JMS
provider is hosted in a Java EE container. The JMS spec defines two types of adminis-
tered objects: ConnectionFactory and Destination.

CONNECTIONFACTORY

JMS clients use the ConnectionFactory object to create connections to a JMS provider.
Connections typically represent an open TCP socket between a client and the JMS pro-
vider, so the overhead for a connection is large. It’s a good idea to use an implementa-
tion that pools connections if possible. A connection to a JMS provider is similar to a
JDBC connection to a relational database, in that it’s used by clients to interact with the
database. JMS connections are used by JMS clients to create javax.jms.Session objects
that represent an interaction with the JMS provider.

DESTINATION

The Destination object encapsulates the provider-specific address to which messages
are sent and from which messages are consumed. Although destinations are created
using the Session object, their lifetime matches the connection from which the ses-
sion was created.

 Temporary destinations are unique to the connection that was used to create
them. They’ll only live as long as the connection that created them and only the con-
nection that created them can create consumers for them. As mentioned previously,
temporary destinations are commonly used for request/reply messaging.

2.5 Using the JMS APIs to create JMS applications
JMS applications can be as simple or as complex as necessary to suit the business
requirements. Just as with other APIs such as JDBC, JNDI, EJBs, and so on, it’s common
to abstract the use of JMS APIs so as to not intermingle the JMS code with the business
logic. This concept won’t be demonstrated here, as this is a much lengthier exercise
involving patterns and full application infrastructure. Here the simplest example will
be demonstrated to show a minimalist use of the JMS APIs.

(continued)
Figure 2.8 depicts the basic request/reply style of messaging between two end-
points. This is commonly achieved using the JMSReplyTo message header and a tem-
porary queue where the reply message is sent by the receiver and consumed by the
requestor. As stated previously, the QueueRequestor and the TopicRequestor can
handle basic request/reply but aren’t designed to handle more complex cases of
request/reply, such as a single request and multiple replies from many receivers.
Such a sophisticated use case requires you to develop a custom JMS application.
www.it-ebooks.info

http://www.it-ebooks.info/

36 CHAPTER 2 Understanding message-oriented middleware and JMS
2.5.1 A simple JMS application

A JMS application is written using the Java programming language and composed of
many parts for handling different aspects of working with JMS. These parts were iden-
tified earlier in the chapter via the list of JMS artifacts in section 2.3. A simple JMS
application will utilize the following steps:

1 Acquire a JMS connection factory
2 Create a JMS connection using the connection factory
3 Start the JMS connection
4 Create a JMS session from the connection
5 Acquire a JMS destination
6 Create a JMS producer, OR

a Create a JMS producer
b Create a JMS message and address it to a destination

7 Create a JMS consumer

a Create a JMS consumer
b Optionally register a JMS message listener

8 Send or receive JMS message(s)
9 Close all JMS resources (connection, session, producer, consumer, and so forth)

These steps are meant to be abstract in order to demonstrate the overall simplicity of
working with JMS. Using a minimal amount of code, the following listing demon-
strates the steps for creating a JMS producer to send a message.

public class MyMessageProducer {
...

ConnectionFactory connectionFactory;
Connection connection;
Session session;
Destination destination;
MessageProducer producer;
Message message;
boolean useTransaction = false;
try {

Context ctx = new InitialContext();
connectionFactory =

(ConnectionFactory) ctx.lookup("ConnectionFactoryName");
connection = connectionFactory.createConnection();
connection.start();
session = connection.createSession(useTransaction,

Session.AUTO_ACKNOWLEDGE);
destination = session.createQueue("TEST.QUEUE");
producer = session.createProducer(destination);
message = session.createTextMessage("this is a test");
producer.send(message);

} catch (JMSException jmsEx) {

Listing 2.8 Sending a JMS message
www.it-ebooks.info

http://www.it-ebooks.info/

37Using the JMS APIs to create JMS applications
...
} finally {

producer.close();
session.close();
connection.close();

}
}

In listing 2.8, first an initial context is created. Most typically, the context is fetched
from a provider using a JNDI path. This one is for demonstration purposes only. Using
the initial context, a JMS connection factory is acquired using the unique name to iden-
tify it. Using the connection factory, a JMS connection is created and started. This is a
requirement so that the JMS client begins to communicate with the broker. Using the
JMS connection, a JMS session is created and the example uses auto-acknowledgement
of messages. A JMS queue is then created via the JMS session object. Next, a JMS mes-
sage producer is created using the session and the destination. Then a simple text mes-
sage is created via the session and sent via the message producer. The last action taken
in this example is to close all the objects that were being used.

 The example in listing 2.8 demonstrates the simplest steps to create a JMS pro-
ducer and send a message to a destination. Note that there’s no concern whether a
JMS consumer is on the other end waiting for the message. This mediation of mes-
sages between producers and consumers is what MOMs provide and is a big benefit
when creating JMS applications. There was no special consideration to achieve this
result either. The JMS APIs make this task simple. Now that the message has been sent
to the destination, a consumer can receive the message. The following listing demon-
strates the steps for creating a JMS consumer and receiving the message.

public class MySyncMessageConsumer {
...

ConnectionFactory connectionFactory;
Connection connection;
Session session;
Destination destination;
MessageConsumer consumer;
Message message;
boolean useTransaction = false;
try {

Context ctx = new InitialContext();
connectionFactory =

(ConnectionFactory) ctx.lookup("ConnectionFactoryName");
connection = connectionFactory.createConnection();
connection.start();
session = connection.createSession(useTransaction,

Session.AUTO_ACKNOWLEDGE);
destination = session.createQueue("TEST.QUEUE");
consumer = session.createConsumer(destination);
message = (TextMessage) consumer.receive(1000);
System.out.println("Received message: " + message);

Listing 2.9 Receiving a JMS message synchronously
www.it-ebooks.info

http://www.it-ebooks.info/

38 CHAPTER 2 Understanding message-oriented middleware and JMS
} catch (JMSException jmsEx) {
...

} finally {
producer.close();
session.close();
connection.close();

}
}

The example in listing 2.9 is similar to listing 2.8 because both need the same setup
up until the creation of the JMS message consumer. After that step, the consumer is
used to receive the message that was sent to the destination in the previous example
and the message is printed out. The last action is to close all the objects that were
being used. Again, note that no timing consideration was needed to make sure that
the producer is there sending a message. All mediation and temporary storage of the
message is the job of the JMS provider implementation. Listing 2.9 demonstrates the
synchronous consumption of messages. This means that the JMS consumer sends a
request to the JMS provider to receive a message and waits for a response for the given
amount of time. The consumer must poll for messages over and over again in a loop.
Consuming messages using synchronous polling of a destination isn’t the only flavor
of message consumption in JMS.

 The JMS API also provides the ability to asynchronously receive messages. The JMS
provider will push messages to the consumer. A simple example of asynchronous mes-
sage consumption follows.

public class MyAsyncMessageConsumer implements MessageListener {
...

ConnectionFactory connectionFactory;
Connection connection;
Session session;
Destination destination;
MessageProducer producer;
Message message;
boolean useTransaction = false;
try {

Context ctx = new InitialContext();
connectionFactory =

(ConnectionFactory) ctx.lookup("ConnectionFactoryName");
connection = connectionFactory.createConnection();
connection.start();
session = connection.createSession(useTransaction,

Session.AUTO_ACKNOWLEDGE);
destination = session.createQueue("TEST.QUEUE");
consumer = session.createConsumer(destination);
consumer.setMessageListener(this);

} catch (JMSException jmsEx) {
...

} finally {
producer.close();

Listing 2.10 Receiving a JMS message asynchronously
www.it-ebooks.info

http://www.it-ebooks.info/

39Using the JMS APIs to create JMS applications
session.close();
connection.close();

}

public void onMessage(Message message) {
if (message instanceof TextMessage) {

System.out.println("Received message: " + message);
}

}
}

The difference between listings 2.9 and 2.10 is the implementation of the onMessage
method from the MessageListener interface and the registration of the implementa-
tion with the JMS provider. Asynchronously receiving messages as shown in listing 2.10
is extremely powerful. It means that the consumer no longer needs to manually poll
for messages repeatedly. Instead, the MessageListener implementation is registered
with the JMS provider to act as a sort of callback where the message will be delivered
automatically to the onMessage method in an asynchronous manner.

There’s one additional aspect to the JMS APIs for consuming messages. It involves
asynchronous message consumption but concerns the EJB API known as message-
driven beans.

2.5.2 Message-driven beans

Message-driven beans (MDBs) were born out of the EJB 2.0 spec. The motivation was to
allow simple JMS integration into EJBs, making asynchronous message consumption
by EJBs almost as easy as using the standard JMS APIs. Through the use of a JMS
MessageListener interface, the EJB automatically receives messages from the JMS pro-
vider in a push style. An example of a simple MDB is shown here.

import javax.ejb.EJBException;
import javax.ejb.MessageDrivenBean;
import javax.ejb.MessageDrivenContext;
import javax.jms.Message;
import javax.jms.MessageListener;

public class MyMessageProcessor
implements MessageDrivenBean, MessageListener {

Listing 2.11 A simple message-driven bean example

A note on multithreading in JMS applications
The JMS spec specifically defines concurrency for various objects in the JMS API and
requires that only a few objects support concurrent access. The ConnectionFactory,
Connection, and Destination objects are required to support concurrent access,
whereas the Session, MessageProducer, and MessageConsumer objects don’t sup-
port concurrent access. The point is that the Session, MessageProducer, and
MessageConsumer objects shouldn’t be shared across threads in a Java application.
www.it-ebooks.info

http://www.it-ebooks.info/

40 CHAPTER 2 Understanding message-oriented middleware and JMS
public void onMessage(Message message) {
TextMessage textMessage = null;

try {
if (message instanceof TextMessage) {

textMessage = (TextMessage) message;
System.out.println("Received message: " + msg.getText());
processMessage(textMessage);

} else {
System.out.println("Incorrect message type: " +

message.getClass().getName());
}

} catch (JMSException jmsEx) {
jmsEx.printStackTrace();

}
}

public void ejbRemove() throws EJBException {
// This method is called by the EJB container

}

public void setMessageDrivenContext(MessageDrivenContext ctx)
throws EJBException {
// This method is called by the EJB container

}

private void processMessage(TextMessage textMessage) {
// Do some important processing of the message here

}
}

Note that the MyMessageProcessor class in listing 2.11 implements both the Message-
DrivenBean interface and the MessageListener interface. The MessageDrivenBean
interface requires an implementation of the setMessageDrivenContext() method
and the ejbRemove() method. Each of these methods is invoked by the EJB container
for the purposes of creation and destruction of the MDB. The MessageListener inter-
face contains only a single method named onMessage(). The onMessage() method is
invoked automatically by the JMS provider when a message arrives in a destination on
which the MDB is registered.

 In addition to allowing the EJB container to manage all necessary resources includ-
ing Java EE resources (such as JDBC, JMS, and JCA connections), security, transactions,
and even JMS message acknowledgement, one of the biggest advantages of MDBs is
that they can process messages concurrently. Not only do typical JMS clients need to
manually manage their own resources and environment, but they’re usually built for
processing messages serially—one at a time (unless they’re specifically built with con-
currency in mind). Instead of processing messages one at a time, MDBs can process
multiple messages at the same time because the EJB container can create as many
instances of the MDBs as are allowed by the EJB’s deployment descriptor. Such config-
uration is typically specific to the Java EE container. If you’re using a Java EE container
for this, consult the documentation for the container on how this is configured in the
EJB deployment descriptor.
www.it-ebooks.info

http://www.it-ebooks.info/

41Summary
 A disadvantage of MDBs is their requirement of a full Java EE container. Just about
every EJB container available today can support MDBs only if the entire Java EE con-
tainer is used. MDBs are extremely useful when using a full Java EE container, but
there’s an alternative that doesn’t require the full Java EE container. Using the Spring
Framework’s JMS APIs makes developing message-driven POJOs (MDPs) easy. These are
Plain Old Java Objects (POJOs) that act as if they’re message driven. This style of devel-
opment has become popular in the Java development community because it avoids
the overhead of using a full Java EE container. Such development with the Spring
Framework will be discussed in further detail in chapter 7.

2.6 Summary
The impact of enterprise messaging on the business world has been significant. Enter-
prise messaging and the concepts surrounding it have influenced the development of
many additional technologies and concepts. Without enterprise messaging, develop-
ers wouldn’t have an option beyond synchronous calls for application development,
and the concept of decoupling an application design wouldn’t exist in nearly the
same form. SOA, CEP, and many other higher-level concepts built on top of enterprise
messaging wouldn’t have come about. Furthermore, the JMS spec wouldn’t exist today
without enterprise messaging.

 The JMS spec has had a tremendous effect on the Java world, making messaging a
first-class citizen and making it available to all Java developers. This was an important
step in allowing Java to join the business of mission-critical applications, because it
provides a standardized manner to utilize messaging. The examples provided in this
chapter are admittedly short and simple in order to get your feet wet with JMS. As you
move though the rest of the book, richer examples will be discussed and made avail-
able for download.

 Now that you have a basic understanding of JMS and what it provides, the next step
is to review the samples for the book. Chapter 3 provides an introduction to the sam-
ple applications that will be used throughout the rest of the book.

Not every EJB container requires a full Java EE container—try OpenEJB
At the time of this writing, nearly all EJB containers on the market require a full Java EE
container to support MDBs. The exception to this rule is Apache OpenEJB (http://
openejb.apache.org/). OpenEJB supports MDBs from the EJB 1.1 spec, the EJB 2
spec, and the EJB 3 spec in OpenEJB’s embedded mode as well as in its standalone
mode. OpenEJB can be embedded inside of Apache Geronimo (http://geronimo.
apache.org/), Apache Tomcat (http://tomcat.apache.org/), or your own Java applica-
tion and will still provide support for MDBs.
www.it-ebooks.info

http://www.it-ebooks.info/

The ActiveMQ
in Action examples
ActiveMQ provides all the features from the JMS specification and adds many more
powerful features on top of that. This is depicted in figure 3.1 and these features
will be discussed through the rest of the book. In order to best demonstrate these
features, two new examples have been created that are modeled after real business
domains. Compared to the example that’s part of the ActiveMQ distribution, these
examples lend themselves to demonstrating the features in ActiveMQ in a more
complete and easy manner.

 One of the examples is based on a stock portfolio and the other is based on a
job queue. These two examples are more extensive than the examples that come
with ActiveMQ. The use case for each of these examples is introduced briefly, fol-
lowed by a deeper discussion of how to use them. You can refer back to this chapter
at any time throughout the book if you need a refresher on the examples.

This chapter covers
 Introduction to the use case for each of the book examples

 Use of Maven for compiling and running the examples

 How to use the example applications with ActiveMQ
42

www.it-ebooks.info

http://www.it-ebooks.info/

43Downloading Maven and compiling the examples
 The stock portfolio demonstrates the pub-
lish/subscribe messaging domain. Publishers
broadcast stock price messages to many inter-
ested subscribers. Messages are published to a
JMS destination called a topic and clients with
active subscriptions receive messages. Using this
model, the broker delivers messages to each
subscriber without the need to poll for mes-
sages. Every active subscriber receives its own
copy of each message published to the topic.
Publishers are decoupled from subscribers via
the topic. Unless durable subscriptions are
used, subscribers must be active in order to
receive messages sent by publishers to the topic. A copy of each message on a given
destination is delivered to all topic subscribers using the pub/sub domain.

 The job queue demonstrates the point-to-point (PTP) messaging domain. Message
producers send job messages to a JMS queue, from which message consumers receive
the job messages for processing. There’s no timing requirement for the producers
and consumers to be online at the same time with the point-to-point domain. The
queue holds messages until consumers are available to receive them. As consumers
are available, messages are delivered to all consumers, but no two consumers receive
the same message. Messages on a given destination are delivered to queue consumers
in a round-robin fashion using the PTP domain.

 Not only is each example focused on a different messaging domain, but each is
also focused on a separate use case. Additionally, although the diagrams depicted later
in this chapter for each example look nearly the same at first glance, the important
difference between the two lies in the two messaging domains. The stock portfolio
example uses topics for pub/sub messaging, whereas the job queue example uses
queues for point-to-point messaging. The source for these examples is readily avail-
able and can be downloaded from the Manning website via the following URL: http://
manning.com/snyder/activemq-in-action-examples-src.zip.

 In this chapter, first we’ll download Maven and install it in order to compile and
run the examples. After this is complete, we’ll review each example and demonstrate
how each one should behave. After the completion of these exercises, you’ll be famil-
iar enough with the examples to recognize them throughout the book and see how
they’re used to demonstrate the features in ActiveMQ.

3.1 Downloading Maven and compiling the examples
Here are the steps to download and install Maven:

1 Download Maven from the Apache Software Foundation: http://maven.
apache.org/.

Maven is provided in both tarball and zip format, depending on your operat-
ing system.

JMS spec features

ActiveMQ
broker features

ActiveMQ
client features

ActiveMQ

Figure 3.1 ActiveMQ implements all the
features from the JMS specification, as
well as many additional features.
www.it-ebooks.info

http://www.it-ebooks.info/

44 CHAPTER 3 The ActiveMQ in Action examples
2 Expand the downloaded archive to a permanent location on your computer.
3 Create an environment variable named M2_HOME that points to the Maven

directory.
4 On Unix, add the $M2_HOME/bin directory to the PATH environment variable

(on Windows, add the %M2_HOME%\bin directory to the %PATH% environ-
ment variable).

5 Verify the Maven installation by running the following command from the com-
mand line:
$ mvn -version
Apache Maven 2.2.1 (r801777; 2009-08-06 13:16:01-0600)
Java version: 1.5.0_19
Java home: /System/Library/Frameworks/JavaVM.framework/Versions/1.5.0/
Home
Default locale: en_US, platform encoding: MacRoman
OS name: "mac os x" version: "10.6.2" arch: "i386" Family: "unix"

You should see similar output which indicates that Maven is properly installed.
If you don’t see similar output, you’ll need to rectify this before proceeding. See
the Maven installation instructions for more information: http://
maven.apache.org/download.html#Installation.

YOU NEED AN INTERNET CONNECTION To use the examples in this book, you’ll
need a broadband connection to the Internet. This is so that Maven can
download the necessary dependencies for the examples.

If you’ve successfully installed Maven, the examples need to be unzipped and com-
piled. After expanding the zip file containing the example source code, you’ll be ready
to compile the examples. To do so, move into the amq-in-action-example-src directory
and run the command shown next. For the convenience of recognizing the actual
command apart from the rest of the output, the command itself is listed in bold.

[amq-in-action-example-src] $ mvn clean install
[INFO] Scanning for projects...
[INFO] ---

[INFO] Building ActiveMQ in Action Examples
[INFO] task-segment: [clean, install]
[INFO] ---

Downloading: http://localhost:8081/nexus/content/groups/public/org/apache/
maven/plugins/maven-clean-plugin/2.2/maven-clean-plugin-2.2.pom
3K downloaded (maven-clean-plugin-2.2.pom)
...
[INFO] [install:install {execution: default-install}]
[INFO] Installing /private/tmp/amq-in-action-example-src/target/
activemq-in-action-examples.jar to /Users/bsnyder/.m2/repository/org/
apache/activemq/book/activemq-in-action-examples/1.0-SNAPSHOT/

Listing 3.1 Compile the examples
www.it-ebooks.info

http://www.it-ebooks.info/

45Use case one: the stock portfolio example
activemq-in-action-examples-1.0-SNAPSHOT.jar
[INFO] Installing /private/tmp/amq-in-action-example-src/target/
activemq-in-action-examples-src.zip to /Users/bsnyder/.m2/repository/org/
apache/activemq/book/activemq-in-action-examples/1.0-SNAPSHOT/
activemq-in-action-examples-1.0-SNAPSHOT-src.zip
[INFO] ---

[INFO] BUILD SUCCESSFUL
[INFO] ---

[INFO] Total time: 57 seconds
[INFO] Finished at: Fri Dec 04 22:35:57 MST 2009
[INFO] Final Memory: 24M/44M
[INFO] ---

Much of the output from the compilation of the examples has been elided for brevity.
Suffice it to say that this output represents a successful compilation. As long as you see
the BUILD SUCCESSFUL message, you’re ready to move on to the next section. If, on
the other hand, you see the BUILD FAILURE message, you’ll need to troubleshoot and
correct the situation before proceeding.

3.2 Use case one: the stock portfolio example
As mentioned earlier in the chapter, the first use case revolves around a stock portfo-
lio use case for demonstrating publish/subscribe messaging. This example is simple
and utilizes a Publisher class for sending stock price messages to a topic, as well as a
Consumer class for registering a Listener class to consume messages from topics in
an asynchronous manner. These three classes embody the functionality of generat-
ing ever-changing stock prices that are published to topics on which the consumer is
subscribed.

 In this example, stock prices are published to an arbitrary number of topics. The
number of topics is based on the number of arguments sent to the Publisher and the
Consumer on the command line. Each class will dynamically send and receive to/from
the topics (an example is provided next). Take a look at figures 3.2 and 3.3 to see at a
high level what the examples seek to achieve.

 For the sake of this demonstration, two topics will be used. The Publisher class
uses a single JMS MessageProducer to send 1,000 fictitious stock price messages in
blocks of 10, randomly distributed across the topics named in the command-line argu-
ment. After it sends 1,000 messages, it shuts down. The Consumer class creates one JMS
MessageConsumer per topic and registers a JMS MessageListener for each topic.
Because this example demonstrates publish/subscribe, the Consumers must be online
to consume messages being sent by the Publisher, because durable consumers aren’t
used in the basic stock portfolio example. The next step is to actually run the example
so that you can see them in action.
www.it-ebooks.info

http://www.it-ebooks.info/

46 CHAPTER 3 The ActiveMQ in Action examples
3.2.1 Running the stock portfolio example

There are three basic steps to running this example:

1 Start up ActiveMQ

2 Run the Consumer class
3 Run the Publisher class

These steps appear to be simple, and they are. The only item of note is that the Con-
sumer should be started before the Publisher, in order to receive all messages that are
published. This is because this example demonstrates pub/sub messaging and topics
won’t hold messages unless the consumer makes a durable subscription, and we’re
not using durable subscriptions here. So let’s get started with the stock portfolio
example.

 The first task is to open a terminal or command line and execute ActiveMQ. This
only requires a single command as demonstrated in the following listing.

[apache-activemq-5.4.1] $./bin/activemq console
INFO: Using default configuration
(you can configure options in one of these file:
/etc/default/activemq /Users/bsnyder/.activemqrc)

INFO: Invoke the following command to create a configuration file
./bin/activemq setup [/etc/default/activemq | /Users/bsnyder/.activemqrc]

INFO: Using java
'/System/Library/Frameworks/JavaVM.framework/Home/bin/java'
INFO: Starting in foreground, this is just for debugging purposes
(stop process by pressing CTRL+C)
Java Runtime: Apple Inc. 1.6.0_20
/System/Library/Frameworks/JavaVM.framework/Versions/1.6.0/Home

Heap sizes: current=258880k free=253105k max=258880k
JVM args: -Xms256M -Xmx256M

Listing 3.2 Start up ActiveMQ

Publisher

Topic Consumer LIstener

ActiveMQ
broker

Topic Consumer LIstener

Figure 3.2 The stock portfolio example uses topics to deliver every message to every
consumer on a destination.
www.it-ebooks.info

http://www.it-ebooks.info/

47Use case one: the stock portfolio example
-Dorg.apache.activemq.UseDedicatedTaskRunner=true
-Djava.util.logging.config.file=logging.properties
-Dcom.sun.management.jmxremote
-Dactivemq.classpath=/Users/bsnyder/amq/apache-activemq-5.4.1/conf;
-Dactivemq.home=/Users/bsnyder/amq/apache-activemq-5.4.1
-Dactivemq.base=/Users/bsnyder/amq/apache-activemq-5.4.1
ACTIVEMQ_HOME: /Users/bsnyder/amq/apache-activemq-5.4.1
ACTIVEMQ_BASE: /Users/bsnyder/amq/apache-activemq-5.4.1
Loading message broker from: xbean:activemq.xml
...
INFO | Started SelectChannelConnector@0.0.0.0:8161

The next task is to open a second terminal or command line to execute the Consumer
class. The Consumer is executed using the maven-exec-plugin (http://mng.bz/bf7g)
by passing it some system properties as arguments using the exec.args property. An
example of running the Consumer is shown next.

[amq-in-action-example-src] $ mvn exec:java \ -
Dexec.mainClass=org.apache.activemq.book.ch3.portfolio.Consumer \ -
Dexec.args="CSCO ORCL"

[INFO] Scanning for projects...
[INFO] Searching repository for plugin with prefix: 'exec'.
[INFO] org.apache.maven.plugins: checking for updates from central
[INFO] org.codehaus.mojo: checking for updates from central
[INFO] artifact org.codehaus.mojo:exec-maven-plugin: checking for
updates from central
[INFO] snapshot org.codehaus.mojo:exec-maven-plugin:1.1.2-SNAPSHOT:
checking for updates from public-snapshots
[INFO] snapshot org.codehaus.mojo:exec-maven-plugin:1.1.2-SNAPSHOT:
checking for updates from central
Downloading:
http://localhost:8081/nexus/content/groups/public/org/codehaus/mojo/
exec-maven-plugin/1.1.2-SNAPSHOT/
exec-maven-plugin-1.1.2-20091120.114446-3.pom
4K downloaded (exec-maven-plugin-1.1.2-20091120.114446-3.pom)
Downloading:
http://localhost:8081/nexus/content/groups/public/org/codehaus/mojo/
mojo-parent/22/mojo-parent-22.pom
18K downloaded (mojo-parent-22.pom)
Downloading:
http://localhost:8081/nexus/content/groups/public-snapshots/org/codehaus/
mojo/exec-maven-plugin/1.1.2-SNAPSHOT/
exec-maven-plugin-1.1.2-20091120.114446-3.jar
36K downloaded (exec-maven-plugin-1.1.2-20091120.114446-3.jar)
[INFO] ---

[INFO] Building ActiveMQ in Action Examples
[INFO] task-segment: [exec:java]
[INFO] ---

[INFO] Preparing exec:java
[INFO] No goals needed for project - skipping

Listing 3.3 Run the stock portfolio consumer
www.it-ebooks.info

http://www.it-ebooks.info/

48 CHAPTER 3 The ActiveMQ in Action examples
[WARNING] POM for 'woodstox:wstx-asl:pom:3.2.7:compile' is invalid.

Its dependencies (if any) will NOT be available to the current build.
Downloading:
http://localhost:8081/nexus/content/groups/public/org/apache/commons/
commons-exec/1.0.1/commons-exec-1.0.1.pom
7K downloaded (commons-exec-1.0.1.pom)
Downloading:
http://localhost:8081/nexus/content/groups/public/org/apache/commons/
commons-exec/1.0.1/commons-exec-1.0.1.jar
48K downloaded (commons-exec-1.0.1.jar)
[INFO] [exec:java {execution: default-cli}]

You can see in listing 3.3 that Maven downloads the necessary artifacts it needs to run
the examples. Once this has completed, the Publisher can start up and begin pub-
lishing stock prices to the two topics named on the command line, CSCO and ORCL.
These two topic names were picked at random and can be replaced with any Strings
you desire. The important part is that the same arguments be used for both the
Consumer and the Publisher (the Publisher is shown next) via the system property
exec.args.

BUILD ERRORS WHEN RUNNING THE CONSUMER If you receive a BUILD ERROR
while attempting to run the consumer class, you’ll need to compile the source
code before running it. To compile all the source, run the following command:
$ mvn clean install

This command will compile and package the source so that it’s ready to be
run. After this command completes, you can go back and run the command
consumer using the command shown earlier.

Note that the output just seems to stop as the Consumer hangs there. This behavior is
correct because it’s waiting for messages to arrive in the topics to be consumed. When
the Publisher begins sending messages, the Consumer will begin to consume them.

Why are all the artifacts being downloaded from the localhost
in the output shown?
As long as Maven was set up correctly in section 3.1, then Maven will download all
the necessary artifacts it needs to run the examples. You can see it downloading arti-
facts in the first portion of the output. Note that all the artifacts are being downloaded
from the localhost instead of from a remote Maven repository. This is because the
example is being run with Maven, which is configured to use a Maven repository man-
ager named Nexus on the local computer. Nexus provides many benefits, one of
which is a proxy to remote Maven repositories with a local cache of all downloaded
artifacts. After Maven downloads artifacts the first time via Nexus, they’re held in a
local cache. During successive builds, Nexus provides the artifacts from the local
cache instead of checking a remote repository, and this speeds up the build time
quite dramatically. For more information about Nexus and to discover more about its
features, see: http://nexus.sonatype.org/.
www.it-ebooks.info

http://www.it-ebooks.info/

49Use case one: the stock portfolio example
The next task is to open a third terminal or command line to execute the Publisher
class. Note that the same arguments are used in exec.args that were used for execut-
ing the Consumer class earlier, because the maven-exec-plugin is used to execute the
Publisher class as well. An example of running Publisher is shown here.

[amq-in-action-example-src] $ mvn exec:java \
 -Dexec.mainClass=org.apache.activemq.book.ch3.portfolio.Publisher \
 -Dexec.args="CSCO ORCL"
[INFO] Scanning for projects...
[INFO] Searching repository for plugin with prefix: 'exec'.
[INFO] ---

[INFO] Building ActiveMQ in Action Examples
[INFO] task-segment: [exec:java]
[INFO] ---

[INFO] Preparing exec:java
[INFO] No goals needed for project - skipping
[WARNING] POM for 'woodstox:wstx-asl:pom:3.2.7:compile' is invalid.

Its dependencies (if any) will NOT be available to the current build.
[INFO] [exec:java {execution: default-cli}]
Sending: {offer=62.6861410176471, price=62.62351750014696, up=true,
stock=ORCL} on destination: topic://STOCKS.ORCL
Sending: {offer=55.508573596887715, price=55.45312047641131, up=true,
stock=CSCO} on destination: topic://STOCKS.CSCO
Sending: {offer=62.527946513790205, price=62.46548103275745, up=false,
stock=ORCL} on destination: topic://STOCKS.ORCL
Sending: {offer=55.78778713074073, price=55.73205507566507, up=true,
stock=CSCO} on destination: topic://STOCKS.CSCO
Sending: {offer=55.593918646251986, price=55.53838026598601, up=false,
stock=CSCO} on destination: topic://STOCKS.CSCO
Sending: {offer=55.83360390719586, price=55.777826081114746, up=true,
stock=CSCO} on destination: topic://STOCKS.CSCO
Sending: {offer=55.99233608275527, price=55.93639968307221, up=true,
stock=CSCO} on destination: topic://STOCKS.CSCO
Sending: {offer=62.006501598331475, price=61.94455704129019, up=false,
stock=ORCL} on destination: topic://STOCKS.ORCL
Sending: {offer=55.53698948617822, price=55.48150797820003, up=false,
stock=CSCO} on destination: topic://STOCKS.CSCO
Sending: {offer=61.43866500377897, price=61.377287716062916, up=false,
stock=ORCL} on destination: topic://STOCKS.ORCL
Published '10' of '10' price messages
Sending: {offer=55.466945358331216, price=55.41153382450671, up=false,
stock=CSCO} on destination: topic://STOCKS.CSCO
Sending: {offer=61.27694222131968, price=61.215726494824864, up=false,
stock=ORCL} on destination: topic://STOCKS.ORCL
...
Published '10' of '30' price messages
...

Listing 3.4 Running the stock portfolio publisher
www.it-ebooks.info

http://www.it-ebooks.info/

50 CHAPTER 3 The ActiveMQ in Action examples
When executing the Publisher class, Maven already has all the necessary dependen-
cies from the earlier execution of the Consumer class, so nothing should be down-
loaded. The lower portion of the output shows the stock price messages being sent to
the two topics in blocks of 10. The example output is truncated for space, so just know
that the Publisher will run until it sends a total of 1,000 messages.

 After running the Publisher, if you switch back to the second terminal where the
Consumer was started, you should see that it’s now consuming messages from the topics:

...
[INFO] [exec:java {execution: default-cli}]
ORCL 62.62 62.69 up
CSCO 55.45 55.51 up
ORCL 62.47 62.53 down
CSCO 55.73 55.79 up
CSCO 55.94 55.99 up
CSCO 55.41 55.47 down
ORCL 61.22 61.28 down
ORCL 61.42 61.48 up
...

The preceding output comes from the Listener class that’s registered by the
Consumer on the two topics named ORCL and CSCO. This output shows the consump-
tion of the stock price messages from the same two topics to which the Publisher is
sending messages. Once the Publisher reaches 1,000 messages sent, it’ll shut down.
But the Consumer will continue to run and just hang there waiting for more messages
to arrive on those two topics. You can press CTRL-C in the second terminal to shut
down the Consumer at this point.

 Now that you’ve seen how ActiveMQ works well in a pub/sub messaging scenario,
the following section will explore how it works in point-to-point messaging.

3.3 Use case two: the job queue example
The second use case focuses on job queues to illustrate point-to-point messaging. This
example uses a Producer class to send job messages to a job queue and a Consumer
class for registering a Listener class to consume messages from queues in an asyn-
chronous manner. These three classes provide the functionality necessary to show
how JMS point-to-point messaging should work. The classes in this example are
extremely similar to those used in the stock portfolio example. The difference
between the two examples is the JMS messaging domain that each uses.

 The Producer class in this example sends messages to the JOBS.suspend and
JOBS.delete queues and the Consumer class consumes. Figure 3.3 contains a high-level
diagram of the job queue example’s functionality.

 The Producer class uses a single JMS MessageProducer to send 1,000 job messages
in blocks of 10 randomly across the two queues. After sending 1,000 messages total,
it’ll shut down. The Consumer class uses one JMS MessageConsumer per queue and reg-
isters a JMS MessageListener on each queue to utilize the message and output its con-
tents.
www.it-ebooks.info

http://www.it-ebooks.info/

51Use case two: the job queue example
3.3.1 Running the job queue example

The steps for executing the job queues example are nearly identical to the previous
example:

1 Start up ActiveMQ

2 Run the Producer class
3 Run the Consumer class

Again, these steps are simple, but there’s one exception to note. When using PTP mes-
saging, queues will hold messages until they’re consumed or the messages expire. So
the Producer can be started before the Consumer and the Consumer won’t miss any
messages.

 Just as in the stock portfolio example, the first task is to start up ActiveMQ. You’ll
be spared the output from this task, as it’s the same as shown in section1.6 and none
of the default configuration has been changed.

 Next, open a second terminal or command line to execute the Producer as shown
here.

[amq-in-action-example-src] $ mvn exec:java \
 -Dexec.mainClass=org.apache.activemq.book.ch3.jobs.Publisher
[INFO] Scanning for projects...
[INFO] Searching repository for plugin with prefix: 'exec'.
[INFO] ---

[INFO] Building ActiveMQ in Action Examples
[INFO] task-segment: [exec:java]
[INFO] ---

[INFO] Preparing exec:java
[INFO] No goals needed for project - skipping
[WARNING] POM for 'woodstox:wstx-asl:pom:3.2.7:compile' is invalid.

Listing 3.5 Running the job queue publisher

Producer

Queue Consumer LIstener

ActiveMQ
broker

Queue Consumer LIstener

Figure 3.3 The job queue example uses queues to deliver one message to each consumer
on a destination in a round-robin fashion.
www.it-ebooks.info

http://www.it-ebooks.info/

52 CHAPTER 3 The ActiveMQ in Action examples
Its dependencies (if any) will NOT be available to the current build.
[INFO] [exec:java {execution: default-cli}]
Sending: id: 1000000 on queue: queue://JOBS.delete
Sending: id: 1000001 on queue: queue://JOBS.delete
Sending: id: 1000002 on queue: queue://JOBS.delete
Sending: id: 1000003 on queue: queue://JOBS.delete
Sending: id: 1000004 on queue: queue://JOBS.delete
Sending: id: 1000005 on queue: queue://JOBS.delete
Sending: id: 1000006 on queue: queue://JOBS.delete
Sending: id: 1000007 on queue: queue://JOBS.delete
Sending: id: 1000008 on queue: queue://JOBS.delete
Sending: id: 1000009 on queue: queue://JOBS.delete
Published '10' of '10' job messages
Sending: id: 1000010 on queue: queue://JOBS.delete
Sending: id: 1000011 on queue: queue://JOBS.suspend
...
Published '10' of '30' job messages
...

Note that no arguments are necessary to execute the Producer in listing 3.5. The
Publisher class contains two queues to which it publishes named delete and suspend;
hence, the use of those words in the output. The Producer will continue until it sends
a total of 1,000 messages to the two queues and then it’ll shut down.

 The third task is to open another terminal or command line and execute the Con-
sumer to consume the messages from the two queues. This command is shown next.

[amq-in-action-example-src] $ mvn exec:java \
 -Dexec.mainClass=org.apache.activemq.book.ch3.jobs.Consumer
[INFO] Scanning for projects...
[INFO] Searching repository for plugin with prefix: 'exec'.
[INFO] ---

[INFO] Building ActiveMQ in Action Examples
[INFO] task-segment: [exec:java]
[INFO] ---

[INFO] Preparing exec:java
[INFO] No goals needed for project - skipping
[WARNING] POM for 'woodstox:wstx-asl:pom:3.2.7:compile' is invalid.

Its dependencies (if any) will NOT be available to the current build.
[INFO] [exec:java {execution: default-cli}]
suspend id:1000003
suspend id:1000010
suspend id:1000012
suspend id:1000013
suspend id:1000015
suspend id:1000022
suspend id:1000025
suspend id:1000027
delete id:1000000
delete id:1000001

Listing 3.6 Running the job queue consumer
www.it-ebooks.info

http://www.it-ebooks.info/

53Summary
delete id:1000002
delete id:1000004
delete id:1000005
...

The Consumer will run fast at first, consuming all the messages already on the queues.
When it catches up to where the Producer is in sending the 1,000 messages, the
Consumer slows down and keeps up with the Publisher until it completes. When all
the messages have been sent and the Producer shuts itself down, you’ll need to press
CTRL-C in the third terminal where the Consumer is running to shut it down.

 This concludes the job queue example. Now you’ve seen how well ActiveMQ works
in a point-to-point messaging scenario.

3.4 Summary
This brief introduction to the book examples is meant to be just that—quick and
focused. The jobs and portfolio use cases are common in the business world, but
they’re only two use cases of many available for using messaging. Although these two
use cases are meant to demonstrate the two JMS messaging domains at a high level,
that doesn’t mean that they can’t do more. Using the features available in ActiveMQ,
these two examples will be changed and adapted as the book progresses. So you’ll see
much more of these examples throughout the chapters, just with slight variations.

 Part 1 of the book took you through an introduction to ActiveMQ, where you
gained a quick high-level understanding of ActiveMQ. Then the focus shifted to
understanding message-oriented middleware and the JMS spec. Although these topics
aren’t strictly about only ActiveMQ, each is important when it comes to understanding
ActiveMQ. You also walked through the examples that will be used throughout the rest
of the book. The subjects in this first part of the book are meant to be a warm-up for
diving deeper into ActiveMQ. In part 2, you’ll learn about configuring various aspects
of ActiveMQ for connectivity, message persistence, and security.
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Part 2

Configuring standard
ActiveMQ components

Out of the box, so to speak, using ActiveMQ is straightforward: start it
up, send some messages, receive some messages. What you don’t see in such a
use case are the details behind ActiveMQ. Understanding these details and
how to customize the configuration is a requirement for more advanced situa-
tions. Although ActiveMQ provides a vast set of configuration options, under-
standing a core set of these options is necessary for the most basic of broker
configurations.

 Part 2 dives into the critical configuration options in ActiveMQ, including
connectivity into the broker, message persistence, and security. These three
main topics are the first points of configuration that you’ll encounter with
ActiveMQ so it’s important that you understand them first.
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Connecting to ActiveMQ
The main role of a JMS broker such as ActiveMQ is to provide a communication
infrastructure for client applications. For that reason, ActiveMQ provides connectors,
a connectivity mechanism that provides client-to-broker communications (using
transport connectors) as well as broker-to-broker communications (using network
connectors). ActiveMQ allows client applications to connect using a variety of pro-
tocols, but also allows other brokers to create communication channels and to
build complex networks of ActiveMQ brokers.

 We start this chapter by explaining connector URIs, which are used to address the
broker. After that, we’ll dig into transport connectors and explain what protocols cli-
ents can use to connect to the ActiveMQ broker.

NOTE We use the terms connector and protocol interchangeably. Protocols
are general-purpose concepts and connectors are ActiveMQ-specific mech-
anisms, but every ActiveMQ connector, as you’ll see, implements a specific
protocol and is named after it. It should be clear from the context whether
we’re talking about a protocol in general or a specific ActiveMQ connector.

This chapter covers
 A description and demonstration of ActiveMQ connector URIs

 How to connect your clients to ActiveMQ using transport
connectors

 How to create a cluster of ActiveMQ message brokers using
network connectors
57

www.it-ebooks.info

http://www.it-ebooks.info/

58 CHAPTER 4 Connecting to ActiveMQ
We’ll first explain how to configure transport connectors and demonstrate it by adapt-
ing the stock portfolio example for use over different connectors, so we can demon-
strate them later on. Then we’ll be ready to move on to specific connectors. The
various transport connectors that allow you to connect to ActiveMQ will be discussed
including TCP, SSL, and HTTP. Next, embedded brokers using the VM protocol will be
introduced.

 Finally some basic concepts of ActiveMQ clustering using network connectors will be
covered. We’ll demonstrate how you can create static networks of brokers using the
static protocol and how clients can reliably connect to the network of brokers using
the failover protocol. Dynamic networks using such protocols as multicast and discovery
will also be covered. This section will only introduce basic concepts and protocols
used for networks of brokers, whereas more information on them can be found in
chapter 10.

4.1 Understanding connector URIs
Before discussing the details of connectors and their role in the overall ActiveMQ
architecture, it’s important to understand connector URIs. Uniform resource identifiers
(URIs), as a concept, aren’t new, and you’ve probably used them over and over again
without realizing it. URIs were first introduced for addressing resources on the World
Wide Web. The specification (http://mng.bz/8iPP) defines the URI as “a compact
string of characters for identifying an abstract or physical resource.” Because of the
simplicity and flexibility of the URI concept, they found their place in numerous inter-
net services. Web URLs and email addresses we use every day are just some common
examples of URIs in practice.

 Without going too deep into discussing URIs, let’s briefly summarize the URI struc-
ture. This will serve as an ideal introduction to URI usage in ActiveMQ in regard to
connectors.

 Basically, every URI has the following string format:

<scheme>:<scheme-specific-part>

Consider the following URI:

mailto:users@activemq.apache.org

Note that the mailto scheme is used, followed by an email address to uniquely iden-
tify both the service we’re going to use and the particular resource within that service.

 The most common form of URIs are hierarchical URIs, which take the following
form:

<scheme>://<authority><path><?query>

This kind of URI is used by web browsers to identify websites. It’s a type of URI known
as a URL (Uniform Resource Locator). Below is an example:

http://www.nabble.com/forum/NewTopic.jtp?forum=2356
www.it-ebooks.info

http://www.it-ebooks.info/

59Understanding connector URIs
This URL uses the http scheme and contains both path and query elements which are
used to specify additional parameters.

 Because of their flexibility and simplicity, URIs are used in ActiveMQ to address spe-
cific brokers through different types of connectors. If we go back to the examples dis-
cussed in chapter 3, you can see that the following URI was used to create a
connection to the broker:

tcp://localhost:61616

This is a typical hierarchical URI used in ActiveMQ, which translates to “create a TCP
connection to the localhost on port 61616.”

 ActiveMQ connectors using this kind of simple hierarchical URI pattern are some-
times referred to as low-level connectors and are used to implement basic network com-
munication protocols. Connector URIs use the scheme part to identify the underlying
network protocol, the path element to identify a network resource (usually host and
port), and the query element to specify additional configuration parameters for the
connector. The anatomy of a URI is shown in fig-
ure 4.1. This URI extends the previous example
by also telling the broker to log all commands
sent over this connector (the trace=true part).
This is just one example of an option that’s avail-
able on the TCP transport.

 The failover transport in ActiveMQ supports automatic reconnection as well as the
ability to connect to another broker just in case the broker to which a client is currently
connected becomes unavailable. As will be discussed in chapter 10, ActiveMQ makes
this easy to use and configure through the use of composite URIs. These composite URIs
are used to configure such automatic reconnection. In figure 4.2, you can see an exam-
ple of a typical composite URI.

 Note that the scheme part or the URI
now identifies the protocol being used (the
static protocol will be described later in
this chapter) and the scheme-specific part
contains one or more low-level URIs that
will be used to create a connection. Of
course, every low-level URI and the larger
composite URI can contain the query part
providing specific configuration options
for the particular connector.

NOTE Since composite URIs tend to be complex, users are often tempted to
insert white spaces to make them more readable. Such white space is not
allowed, since the URI specification (and its standard Java implementation)
doesn’t allow it. This is a common ActiveMQ configuration mistake, so be
careful not to put white space in your URIs.

tcp://localhost:61616?trace=true

scheme path query

Figure 4.1 Anatomy of a URI

static:(tcp://host1:61616,tcp://host2:61616)

scheme path1 path2

Composite URI

Figure 4.2 A composite URI
www.it-ebooks.info

http://www.it-ebooks.info/

60 CHAPTER 4 Connecting to ActiveMQ
Now that you have some familiarity with ActiveMQ URI basics, let’s move on to discuss
various connectors supported by ActiveMQ. In the rest of this chapter, we’ll discuss
transport connectors and network connectors and how to configure them.

4.2 Transport connectors
In order to exchange messages, producers and consumers (clients) need to connect to
the broker. This client-to-broker communication is performed through transport con-
nectors. ActiveMQ provides an impressive list of protocols clients can use to exchange
messages. The requirements of ActiveMQ users in terms of connectivity are diverse.
Some users focus on performance, others on security, and so on. ActiveMQ tries to
cover all these aspects and provide a connector for every use case.

 In this section you’ll learn how transport connectors are configured in the
ActiveMQ configuration files and adapt the stock portfolio example to demonstrate
various connectors. In the following sections, we’ll go through protocols available for
connecting to the broker over the network, as well as introduce the concept of the
embedded broker and Virtual Machine Protocol used for communicating with brokers
inside your application (a topic that will be continued in chapter 7).

4.2.1 Configuring transport connectors

From the broker’s perspective, the transport connector is a mechanism used to accept
and listen to connections from clients. If you take a look at the ActiveMQ demo config-
uration file (conf/activemq-demo.xml), you’ll see the configuration snippet for trans-
port connectors similar to the following example:

<transportConnectors>
<transportConnector name="openwire" uri="tcp://localhost:61616"

discoveryUri="multicast://default"/>
<transportConnector name="ssl" uri="ssl://localhost:61617"/>
<transportConnector name="stomp" uri="stomp://localhost:61613"/>
<transportConnector name="xmpp" uri="xmpp://localhost:61222"/>

</transportConnectors>

As you can see, transport connectors are defined within the <transportConnectors>
element. You define particular connectors with the appropriate nested <transport-
Connector> element. ActiveMQ simultaneously supports many protocols listening on
different ports. The configuration for a connector must uniquely define the name
and the URI attributes. In this case, the URI defines the network protocol and optional
parameters through which ActiveMQ will be exposed for connectivity. The
discoveryUri attribute as shown on the OpenWire connector is optional and will be
discussed further in section 4.3.1.

 The preceding snippet defines four transport connectors. Upon starting up
ActiveMQ using such a configuration file, you’ll see the following log in the console as
these connectors start up:

INFO TransportServerThreadSupport - Listening for connections at:
tcp://localhost:61616
www.it-ebooks.info

http://www.it-ebooks.info/

61Transport connectors
INFO TransportConnector - Connector openwire Started
INFO TransportServerThreadSupport - Listening for connections at:

ssl://localhost:61617
INFO TransportConnector - Connector ssl Started
INFO TransportServerThreadSupport - Listening for connections at:

stomp://localhost:61613
INFO TransportConnector - Connector stomp Started
INFO TransportServerThreadSupport - Listening for connections at:

xmpp://localhost:61222
INFO TransportConnector - Connector xmpp Started

From the client’s perspective, the transport connector URI is used to create a connec-
tion to the broker in order to send and receive messages. Sending and receiving mes-
sages will be discussed in detail in chapter 7, but the following code snippet should be
enough to demonstrate the usage of the transport connector URIs in Java applications:

ActiveMQConnectionFactory factory =
new ActiveMQConnectionFactory("tcp://localhost:61616");

Connection connection = factory.createConnection();
connection.start();
Session session =

connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

Note in the preceding example that the transport connector URIs defined in
ActiveMQ configuration are used by the client application to create a connection to
the broker. In this case, the URI for the TCP transport is used and is shown in bold
text.

NOTE The important thing to know is that we can use the query part of the
URI to configure connection parameters both on the server and client sides.
Usually most of the parameters apply both for client and server sides of the
connection, but some of them are specific to one or the other, so be sure you
check the protocol reference before using the particular query parameter.

With this basic understanding of configuring transport connectors, it’s important to
become aware of and understand the available transport connectors in ActiveMQ. But
before we start explaining particular connectors, we must first adapt our stock portfo-
lio example so it can be used with different transport connectors.

4.2.2 Adapting the stock portfolio example

Chapter 3 introduced a stock portfolio example that uses ActiveMQ to publish and
consume stock exchange data. There, we used the fixed standard connector URI since
we wanted to make those introductory examples as simple as possible. In this chapter,
we’ll explain all protocols and demonstrate them by running the stock portfolio
example using each of them. For that reason, we need to modify the stock portfolio
example so it will work using any of the protocols.

 Listing 4.1 is a modified version of the main() method from the stock portfolio
publisher.
www.it-ebooks.info

http://www.it-ebooks.info/

62 CHAPTER 4 Connecting to ActiveMQ
public static void main(String[] args) throws JMSException {
if (args.length == 0) {
System.err.println("Please define a connection URI!");
return;

}

Publisher publisher = new Publisher(args[0]);

String[] topics = new String[args.length - 1];
System.arraycopy(args, 1, topics, 0, args.length - 1);

while (total < 1000) {
for (int i = 0; i < count; i++) {

publisher.sendMessage(topics);
}
total += count;
System.out.println(

"Published '" + count + "' of '"
+ total + "' price messages"

);
try {

Thread.sleep(1000);
} catch (InterruptedException x) {
}

}
publisher.close();

}

The preceding code ensures that the connector URI is passed as the first argument
and extracts topic names from the rest of the arguments passed to the application.
Now the stock portfolio publisher can be run with the following command:

$ mvn exec:java -Dexec.mainClass=org.apache.activemq.book.ch4.Publisher \
-Dexec.args="tcp://localhost:61616 CSCO ORCL"

...

Sending: {price=65.713356601409, stock=JAVA, offer=65.779069958011,
up=true}

on destination: topic://STOCKS.JAVA
Sending: {price=66.071605671946, stock=JAVA, offer=66.137677277617,
up=true}

on destination: topic://STOCKS.JAVA
Sending: {price=65.929035001620, stock=JAVA, offer=65.994964036622,
up=false}

on destination: topic://STOCKS.JAVA

...

Note that one more argument has been added to the publisher: the URL to be used to
connect to the appropriate broker.

 The same principle can be used to modify the stock portfolio consumer. In the fol-
lowing listing, you’ll find the stock portfolio consumer’s main() method modified to
accept the connection URI as a first parameter.

Listing 4.1 Modifying stock portfolio publisher to support various connector URIs

Define
connection URI

Create
array for
topic
namesExtract

topics from
arguments
www.it-ebooks.info

http://www.it-ebooks.info/

63Connecting to ActiveMQ over the network
public static void main(String[] args) throws JMSException {
if (args.length == 0) {
System.err.println("Please define connection URI!");
return;

}

Consumer consumer = new Consumer(args[0]);

String[] topics = new String[args.length - 1];
System.arraycopy(args, 1, topics, 0, args.length - 1);
for (String stock : topics) {
Destination destination =

consumer.getSession().createTopic("STOCKS." + stock);
MessageConsumer messageConsumer =

consumer.getSession().createConsumer(destination);
messageConsumer.setMessageListener(new Listener());

}
}

In order to achieve the same functionality as in the chapter 3 example, you should
run the consumer with an extra URI argument. The following example shows how to
do this:

$ mvn exec:java -Dexec.mainClass=org.apache.activemq.book.ch4.Consumer \
-Dexec.args="tcp://localhost:61616 CSCO ORCL"

...

ORCL 65.71 65.78 up
ORCL 66.07 66.14 up
ORCL 65.93 65.99 down
CSCO 23.30 23.33 up

...

Note that the message flow between the producer and the consumer is the same as in
the original example. With these changes, the examples are now ready to be run using
a variety of supported protocols. Let’s now dig into the particular transport connec-
tors. In the following section we’ll see what options you have if you want to connect to
the broker over the network.

4.3 Connecting to ActiveMQ over the network
The most common usage scenario is to run ActiveMQ as a standalone Java application.
This implies that clients (producer and consumer applications) will use some of the
network protocols to access the broker’s destinations. In this section, we’ll describe
available network protocols you can use to achieve client-to-broker communication.

 We’ll start with default TCP connector, which is most widely used and provides opti-
mal performance. Next we’ll dig into the NIO connector, which also uses TCP network
protocol underneath, but additionally provides a bit better scalability than TCP con-
nector since it uses the NIO Java API. The UDP network protocol is often used on the

Listing 4.2 Modifying stock portfolio consumer to support various connector URIs

Extract
topics from
rest of
arguments
www.it-ebooks.info

http://www.it-ebooks.info/

64 CHAPTER 4 Connecting to ActiveMQ
internet, so UDP connector is next on our list. UDP protocol introduces some perfor-
mance advantages, sacrificing reliability compared to the TCP protocol. The same
applies to appropriate ActiveMQ connectors, so a UDP connector can offer some per-
formance advantages over the TCP connector, but it’s still not often used because of
the unreliability it introduces (as explained in more detail later). The SSL connector
can be used to establish a secure connection to the broker, and finally we’ll show you
how to communicate with the broker using HTTP. Of course, in every section we’ll
discuss the pros and cons of every protocol. Therefore, you may want to consider
reading just the subsections that interest you at the moment and then move along to
other chapters. Table 4.1 contains a summarization of the connectors with a brief
description.

 Now, let’s start with the default TCP protocol.

4.3.1 Transmission Control Protocol (TCP)

Transmission Control Protocol (TCP) is today probably as important to humans as elec-
tricity. As one of the fundamental internet protocols, we use it for almost all of our
online communication. It’s used as an underlying network protocol for a wide range
of internet services such as email and the web, for example.

 Hopefully you are already familiar with the basics of TCP, but let’s start our discus-
sion of TCP by quoting from the specification, RFC 793 (http://mng.bz/Bns2):

 The Transmission Control Protocol (TCP) is intended for use as a highly reliable host-to-
host protocol between hosts in packet-switched computer communication networks, and in
interconnected systems of such networks.

Since the broker and client applications are network hosts trying to communicate in a
reliable manner, it’s easy to see why TCP is an ideal network protocol for a JMS imple-
mentation. So it shouldn’t come as a surprise that the TCP transport connector is the
most frequently used ActiveMQ connector.

Table 4.1 Summary of network protocols used for client-broker communication

Protocol Description

TCP Default network protocol for most use cases.

NIO Consider NIO protocol if you need to provide better scalability for connections from produc-
ers and consumers to the broker.

UDP Consider UDP protocol when you need to deal with the firewall between clients and the
broker.

SSL Consider SSL when you want to secure communication between clients and the broker.

HTTP(S) Consider HTTP(S) when you need to deal with the firewall between clients and the broker.

VM Although not a network protocol per se, consider VM protocol when your broker and clients
communicate with a broker that is embedded in the same Java Virtual Machine (JVM).
www.it-ebooks.info

http://www.it-ebooks.info/

65Connecting to ActiveMQ over the network
 Before exchanging messages over the network, we need to serialize them to a suit-
able form. Messages must be serialized in and out of a byte sequence to be sent over
the wire using what’s known as a wire protocol. The default wire protocol used in
ActiveMQ is called OpenWire. The protocol specification can be found on the
ActiveMQ website (http://mng.bz/u2eT). The OpenWire protocol isn’t specific to
the TCP network transport and can be used with other network protocols. Its main
purpose is to be efficient and allow fast exchange of messages over the network. Fur-
thermore, a standardized and open protocol such as OpenWire allows native
ActiveMQ clients to be developed for various programming environments. This topic
and a description of other wire level protocols available for ActiveMQ are covered in
chapter 9.

 As we’ve seen in previous sections, a default broker configuration starts the TCP
transport listening for client connections on port 61616. The TCP connector URI uses
the following syntax:

tcp://hostname:port?key=value&key=value

Please note that the bold portion of the URI denotes the required part. Any key/value
pairs to the right of the question mark are optional and separated by an ampersand.

 We won’t discuss all transport options for appropriate protocols in this section or
the sections that follow. This kind of material is best presented via the online refer-
ence pages. An up-to-date reference for the TCP connector can be found on the
ActiveMQ website (http://mng.bz/ngU2).

 The following configuration snippet provides an example of using the TCP con-
nector in the ActiveMQ configuration file:

<transportConnectors>
<transportConnector name="tcp"

uri="tcp://localhost:61616?trace=true"/>
</transportConnectors>

Note that the trace option has been added to the transport connector URI. This
option instructs the broker to log all commands sent over this connector and can be
helpful for debugging purposes. We have it here as an example of a transport tuning
feature using a transport option. For more information on using the trace option for
debugging, see chapter 14.

IMPORTANT After changing the configuration file, ActiveMQ must be
restarted for the changes to take effect.

The previous section outlined the use of this protocol in the client applications to
connect to the broker. Just for reference, the following example shows how to run the
consumer using the TCP transport connector:

$ mvn exec:java -Dexec.mainClass=org.apache.activemq.book.ch4.Consumer \
-Dexec.args="tcp://localhost:61616 CSCO ORCL"

...
www.it-ebooks.info

http://www.it-ebooks.info/

66 CHAPTER 4 Connecting to ActiveMQ
ORCL 65.71 65.78 up
ORCL 66.07 66.14 up
ORCL 65.93 65.99 down
CSCO 23.30 23.33 up

...

Some of the benefits of the TCP transport connector include the following:

 Efficiency—Since this connector uses the OpenWire protocol to convert mes-
sages to a stream of bytes (and back), it’s very efficient in terms of network
usage and performance.

 Availability—TCP is one of the most widespread network protocols and has been
supported in Java from the early days, so it’s almost certainly supported on your
platform of choice.

 Reliability—The TCP protocol ensures that messages won’t be lost on the net-
work (due to glitches, for example).

Now let’s explore some alternatives to the TCP transport connector.

4.3.2 New I/O API protocol (NIO)

The New I/O (NIO) API was introduced in Java SE 1.4 to supplement the existing (stan-
dard) I/O API used in Java until then. Despite the prefix new in its name, NIO was never
meant to be a replacement for the traditional Java I/O API. Its purpose was to provide
an alternative approach to network programming and access to some low-level I/O
operations of modern operating systems. The most prominent features of NIO are
selectors and nonblocking I/O programming, allowing developers to use the same
resources to handle more network clients and generally heavier loads on their servers.

 From a client perspective, the NIO transport connector is practically the same as the
standard TCP connector, in terms of its use of TCP as the underlying network protocol
and OpenWire as the message serialization protocol. The only difference is under the
covers with the implementation of the transport, where the NIO transport connector
is implemented using the NIO API. This makes the NIO transport connector more suit-
able in situations where

 You have a large number of clients you want to connect to the broker—Generally, the
number of clients that can connect to the broker is limited by the number of
threads supported by the operating system. Since the NIO connector
implementation starts fewer threads per client than the TCP connector, you
should consider using NIO in case TCP doesn’t meet your needs.

 You have a heavy network traffic to the broker—Again, the NIO connector generally
offers better performance than the TCP connector (in terms of using less
resources on the broker side), so you can consider using it when you find that
the TCP connector doesn’t meet your needs.

At this point it’s important to note that performance tuning of ActiveMQ isn’t just
related to choosing the right connector. Many other aspects of ActiveMQ can be
www.it-ebooks.info

http://www.it-ebooks.info/

67Connecting to ActiveMQ over the network
tuned, including the use of a network of brokers topology (see chapter 10) and setting
various options for brokers, producers, and consumers (see chapter 13).

 The URI syntax for the NIO connector is practically the same as that of the TCP
connector URI syntax. The only difference is the use of the nio scheme instead of tcp,
as shown:

nio://hostname:port?key=value

Now take a look at the configuration snippet. The NIO part is in bold.

<transportConnectors>
<transportConnector

name="tcp"
uri="tcp://localhost:61616?trace=true" />

 <transportConnector
 name="nio"
 uri="nio:localhost:61618?trace=true" />
</transportConnectors>

Now run the stock portfolio example, but this time you’ll connect the publisher and
consumer using different transport connectors. As figure 4.3 shows, the publisher will
send messages using the NIO transport connector, whereas the consumer will receive
those messages using the TCP transport connector.

 To achieve this, the stock portfolio publisher should be run using the following
command:

$ mvn exec:java -Dexec.mainClass=org.apache.activemq.book.ch4.Publisher \
-Dexec.args="nio://localhost:61618 CSCO ORCL"

...

Sending: {price=65.713356601409, stock=JAVA, offer=65.779069958011, up=true}
on destination: topic://STOCKS.JAVA

Sending: {price=66.071605671946, stock=JAVA, offer=66.137677277617, up=true}

Listing 4.3 Configuring the NIO transport connector

nio connector
listens on port 61618

Broker

tcpnio

ConsumerProducer

Consumer receives
messages using tcp

transport

Producer sends
messages using nio

transport

Figure 4.3 Producer sends
messages using nio transport,
consumer receives them using
tcp transport
www.it-ebooks.info

http://www.it-ebooks.info/

68 CHAPTER 4 Connecting to ActiveMQ
on destination: topic://STOCKS.JAVA
Sending: {price=65.929035001620, stock=JAVA, offer=65.994964036622, up=false}

on destination: topic://STOCKS.JAVA

...

Note that the nio scheme is used in the connection URI to specify the NIO connector.
 The consumer should use the TCP connector as shown below:

$ mvn exec:java -Dexec.mainClass=org.apache.activemq.book.ch4.Consumer \
-Dexec.args="tcp://localhost:61616 CSCO ORCL"

...

ORCL 65.71 65.78 up
ORCL 66.07 66.14 up
ORCL 65.93 65.99 down
CSCO 23.30 23.33 up

...

After both the consumer and producer are started, you’ll notice that messages are
exchanged between applications as expected. The fact that they are using different
connectors to communicate with the broker plays no role in this exchange.

4.3.3 User Datagram Protocol (UDP)

User Datagram Protocol (UDP) along with TCP make up the core of internet protocols.
The purpose of these two protocols is identical—to send and receive data packets
(datagrams) over the network. But there are two main differences between them:

 TCP is a stream-oriented protocol, which means that the order of data packets is
guaranteed. There’s no chance for data packets to be duplicated or arrive out
of order. UDP, on the other hand, doesn’t guarantee packet ordering, so a
receiver can expect data packets to be duplicated or arrive out of order.

 TCP also guarantees reliability of packet delivery, meaning that packets won’t be lost
during the transport. This is ensured by maintaining an active connection
between the sender and receiver. On the contrary, UDP is a connectionless pro-
tocol, so it can’t make such guarantees.

As a result of these differences, TCP is used in applications that require reliability
(such as email), whereas UDP usually finds it place in applications that require fast
data transfers and can handle occasional packet loss (such as VoIP or online gaming).

 You can use the UDP protocol to connect to ActiveMQ by using the UDP transport
connector. The URI syntax of this connector is pretty much the same as for the TCP
connector. The only difference is the use of the udp scheme, as shown in the following
snippet:

udp://hostname:port?key=value

The complete reference of the UDP protocol can be found at the ActiveMQ website
(http://mng.bz/1i4g).
www.it-ebooks.info

http://www.it-ebooks.info/

69Connecting to ActiveMQ over the network
Now let’s configure ActiveMQ to use both TCP and UDP transports on different ports.
Here’s an example of such a configuration; the UDP part is in bold:

<transportConnectors>
<transportConnector

name="tcp"
uri="tcp://localhost:61616?trace=true"/>

 <transportConnector
 name="udp"
 uri="udp://localhost:61618?trace=true" />
</transportConnectors>

Note that there are two separate transport connectors on different ports.
 To run a stock portfolio publisher using the UDP protocol, use the following

command:

$ mvn exec:java -Dexec.mainClass=org.apache.activemq.book.ch4.Publisher \
-Dexec.args="udp://localhost:61618 CSCO ORCL"

...

Sending: {price=65.713356601409, stock=JAVA, offer=65.779069958011, up=true}
on destination: topic://STOCKS.JAVA

Sending: {price=66.071605671946, stock=JAVA, offer=66.137677277617, up=true}
on destination: topic://STOCKS.JAVA

Sending: {price=65.929035001620, stock=JAVA, offer=65.994964036622, up=false}
on destination: topic://STOCKS.JAVA

...

The consumer can be run using the TCP protocol with the following command:

$ mvn exec:java -Dexec.mainClass=org.apache.activemq.book.ch4.Consumer \
-Dexec.args="tcp://localhost:61616 CSCO ORCL"

Comparing the TCP and UDP transports
When considering the TCP and the UDP transports, questions arise that compare
these two protocols. When should you use the UDP transport instead of the TCP
transport? There are basically two such situations where the UDP transport offers an
advantage:

 The broker is located behind a firewall that you don’t control and you can
access it only over UDP ports.

 You’re using time-sensitive messages and you want to eliminate network trans-
port delay as much as possible.

But there are also a couple of pitfalls regarding the UDP connector:

 Since UDP is unreliable, you can end up losing some of the messages, so your
application should know how to deal with this situation.

 Network packets transmitted between clients and brokers aren’t just mes-
sages, but can also contain so-called control commands. If some of these
control commands are lost due to UDP unreliability, the JMS connection
could be endangered.
www.it-ebooks.info

http://www.it-ebooks.info/

70 CHAPTER 4 Connecting to ActiveMQ
...

ORCL 65.71 65.78 up
ORCL 66.07 66.14 up
ORCL 65.93 65.99 down
CSCO 23.30 23.33 up

...

As expected, the behavior of the overall system is the same as it was in the original
example when only the TCP transport connector was used. This is due to the fact
that the reliability of a local network is typically very good and there is generally no
packet loss.

4.3.4 Secure Sockets Layer Protocol (SSL)

Imagine yourself in a situation where you need to expose the broker over an unse-
cured network and you need data privacy. The same requirement emerged when the
web outgrew its academic roots and was considered for corporate usage. Sending
plain data over TCP became unacceptable, and a solution had to be found. The solu-
tion for secure data transfers was the Secure Sockets Layer (SSL), a protocol designed to
transmit encrypted data over the TCP network protocol. It uses a pair of keys (one pri-
vate and one public) to ensure a secure communication channel. ActiveMQ provides
the SSL transport connector, which adds an SSL layer over the TCP communication chan-
nel, providing encrypted communication between brokers and clients. As always with
SSL, keys and certificates are involved in configuring it, so this section is longer, as
we’ll dig into this configuration in detail.

 The URI syntax for this protocol is

ssl://hostname:port?key=value

Since the SSL transport is based on the TCP transport, configuration options are the
same. More information for using the SSL connector is available on the ActiveMQ web-
site (http://mng.bz/s8I2).

 ActiveMQ uses the Java Secure Socket Extension (JSSE) to implement its SSL function-
ality. Since its detailed description is out of the scope of this book, please refer to the
online information for JSSE (http://mng.bz/7TYe) before proceeding to the rest of
this section.

 To configure the ActiveMQ broker to use the SSL transport, the first thing to do is
configure the ActiveMQ SSL transport.

 Change the <transportConnectors> element in the ${ACTIVEMQ_HOME}/conf/
activemq.xml file as shown:

<transportConnectors>
<transportConnector name="ssl" uri="ssl://localhost:61617?trace=true" />

</transportConnectors>

But the SSL transport needs a few more items in order to work properly. Such
required items include SSL certificates for successful SSL communication. Basically,
JSSE defines two types of files for storing keys and certificates. The first are so-called
www.it-ebooks.info

http://www.it-ebooks.info/

71Connecting to ActiveMQ over the network
keystores, which hold your own private certificates with their corresponding private
keys. Trusted certificates of other entities (applications) are stored in truststores. To
actually get the SSL transport working properly, the additional required items are dis-
cussed in detail in the next two sections.

For more information on configuring SSL, see chapter 6.
 Now that you understand all the necessary elements needed for successful SSL

communication, it’s time to connect to the secured transport. First, you’ll connect to
the broker that’s secured with its default certificate. Next, you’ll walk through the pro-
cedure for creating your own certificates and running a broker and clients with them.

USING SSL

First a small experiment to see what happens when you try to connect to a broker
using SSL and without providing any other SSL-related parameters. Connecting the
stock portfolio consumer by changing the transport to use SSL without creating the
proper stores will cause errors. Here’s an example of simply changing the transport:

$ mvn exec:java -Dexec.mainClass=org.apache.activemq.book.ch4.Consumer \
-Dexec.args="ssl://localhost:61617 CSCO ORCL"

Without creating and denoting the proper keystore and truststore, you can expect to
see the following exceptions:

WARNING: Async exception with no exception listener:
javax.net.ssl.SSLHandshakeException:

sun.security.validator.ValidatorException: PKIX path building failed:
sun.security.provider.certpath.SunCertPathBuilderException:

unable to find valid certification path to requested target
javax.net.ssl.SSLHandshakeException:

sun.security.validator.ValidatorException:
PKIX path building failed:

sun.security.provider.certpath.SunCertPathBuilderException:
unable to find valid certification path to requested target

Also, in the broker’s log you’ll see the following error:

ERROR TransportConnector
- Could not accept connection : Received fatal alert: certificate_unknown

A note about the default keystores and truststores in ActiveMQ
The default keystores and truststores that are distributed with ActiveMQ are located
in the ${ACTIVEMQ_HOME}/conf/directory. In that directory, you’ll find a keystore
containing a default broker certificate (broker.ks) as well as a truststore used by the
broker to hold trusted client certificates (broker.ts). By default, ActiveMQ will use bro-
ker.ks and broker.ts for the SSL transport connector. Please note that the default key-
store and truststore are for demonstration purposes only and shouldn’t be used for the
production deployment of ActiveMQ. For production use, it’s highly recommended that
you create your own keystore and truststore.
www.it-ebooks.info

http://www.it-ebooks.info/

72 CHAPTER 4 Connecting to ActiveMQ
These errors mean that the SSL connection couldn’t be established. This is a generic
error all clients will receive when trying to connect to the untrusted broker (without
the proper keystore and truststore).

 When using JSSE, you must provide some SSL parameters using the appropriate sys-
tem properties. In order to successfully connect to the broker via SSL, we must provide
the keystore, the keystore password, and the truststore to be used. This is accom-
plished using the following system properties:

 javax.net.ssl.keyStore—Defines which keystore the client should use
 javax.net.ssl.keyStorePassword—Defines an appropriate password for the

keystore
 javax.net.ssl.trustStore—Defines an appropriate truststore the client

should use

Now take a look at the following example of starting the stock portfolio publisher
using the default client certificate stores distributed with ActiveMQ:

$ mvn \
-Djavax.net.ssl.keyStore=${ACTIVEMQ_HOME}/conf/client.ks \

 -Djavax.net.ssl.keyStorePassword=password \
 -Djavax.net.ssl.trustStore=${ACTIVEMQ_HOME}/conf/client.ts \
exec:java -Dexec.mainClass=org.apache.activemq.book.ch4.Publisher \
-Dexec.args="ssl://localhost:61617 CSCO ORCL"

...

Sending: {price=65.713356601409, stock=JAVA, offer=65.779069958011, up=true}
on destination: topic://STOCKS.JAVA

Sending: {price=66.071605671946, stock=JAVA, offer=66.137677277617, up=true}
on destination: topic://STOCKS.JAVA

Sending: {price=65.929035001620, stock=JAVA, offer=65.994964036622, up=false}
on destination: topic://STOCKS.JAVA

...

Note the use of the JSSE system properties in bold. These properties provide the nec-
essary keystore, keystore password, and truststore. After providing these necessary SSL-
related parameters, the publisher will connect successfully to the broker as intended
without error. Of course, if the client isn’t located on the same computer as your bro-
ker, you’ll need to copy these files and adapt the paths appropriately.

 Similarly, the consumer can be run using the following command:

$ mvn \
-Djavax.net.ssl.keyStore=${ACTIVEMQ_HOME}/conf/client.ks \

 -Djavax.net.ssl.keyStorePassword=password \
 -Djavax.net.ssl.trustStore=${ACTIVEMQ_HOME}/conf/client.ts \
exec:java -Dexec.mainClass=org.apache.activemq.book.ch4.Consumer \
-Dexec.args="ssl://localhost:61617 CSCO ORCL"

...

ORCL 65.71 65.78 up
ORCL 66.07 66.14 up
www.it-ebooks.info

http://www.it-ebooks.info/

73Connecting to ActiveMQ over the network
ORCL 65.93 65.99 down
CSCO 23.30 23.33 up

...

Again, note the use of the JSSE system properties in bold. Now both clients can com-
municate with the broker using the encrypted network channels provided by the SSL
transport connector.

 Working with the default certificate, keystore, and truststore is okay for develop-
ment purposes, but for a production system, it’s highly recommended that you create
and use your own certificates. You can even disable ciphers that you may not be using.
In most cases, you’ll need to purchase an appropriate SSL certificate from the trusted
certificate authority.

CREATING YOUR OWN SSL RESOURCES

For development purposes, you’ll want to create your own self-signed certificates. The
rest of this section will lead you through the process of creating and sharing self-
signed certificates. For that purpose the keytool will be used—the command-line tool
for managing keystores that’s distributed with Java.

 First, you must create a keystore and a certificate for the broker. Here’s an example
of this using the keytool that comes with the JDK:

$ keytool -genkey -alias broker -keyalg RSA -keystore mybroker.ks
Enter keystore password: test123
What is your first and last name?

[Unknown]: Dejan Bosanac
What is the name of your organizational unit?

[Unknown]: Chapter 4
What is the name of your organization?

[Unknown]: ActiveMQ in Action
What is the name of your City or Locality?

[Unknown]: Belgrade
What is the name of your State or Province?

[Unknown]:
What is the two-letter country code for this unit?

[Unknown]: RS
Is CN=Dejan Bosanac, OU=Chapter 3, O=ActiveMQ in Action,

L=Belgrade, ST=Unknown, C=RS correct?
[no]: yes

Enter key password for <broker>
(RETURN if same as keystore password):

The keytool application prompts you to enter certificate data and create a keystore
with the certificate in it. In this case we’ve created a keystore file named mybroker.ks
with the password test123.

 The next step is to export this certificate from the keystore, so it can be shared with
the broker’s clients. This is done using the following command:

$ keytool -export -alias broker -keystore mybroker.ks -file mybroker_cert
Enter keystore password: test123
Certificate stored in file <mybroker_cert>
www.it-ebooks.info

http://www.it-ebooks.info/

74 CHAPTER 4 Connecting to ActiveMQ
This step creates a file named mybroker_cert, containing a broker certificate.
 Now you must create a client keystore with the appropriate certificate using a com-

mand similar to the one that was used previously to create the broker’s keystore:

$ keytool -genkey -alias client -keyalg RSA -keystore myclient.ks
What is your first and last name?

[Unknown]: Dejan Bosanac
What is the name of your organizational unit?

[Unknown]: Chapter 4
What is the name of your organization?

[Unknown]: ActiveMQ in Action
What is the name of your City or Locality?

[Unknown]: Belgrade
What is the name of your State or Province?

[Unknown]:
What is the two-letter country code for this unit?

[Unknown]: RS
Is CN=Dejan Bosanac, OU=Chapter 3, O=ActiveMQ in Action,

L=Belgrade, ST=Unknown, C=RS correct?
[no]: yes

Enter key password for <client>
(RETURN if same as keystore password):

The result of this command is the myclient.ks file with the appropriate certificate for
the client side. Finally, the client truststore must be created and the broker’s certifi-
cate must be imported into it. Again, keytool is used to achieve this with the following
command:

$ keytool -import -alias broker -keystore myclient.ts -file mybroker_cert
Enter keystore password: test123
Owner: CN=Dejan Bosanac, OU=Chapter 3, O=ActiveMQ in Action,

L=Belgrade, ST=Unknown, C=RS
Issuer: CN=Dejan Bosanac, OU=Chapter 3, O=ActiveMQ in Action,

L=Belgrade, ST=Unknown, C=RS
Serial number: 484fdc8a
Valid from: Wed Jun 11 16:09:14 CEST 2008 until: Tue Sep 09 16:09:14 CEST 2008
Certificate fingerprints:

MD5: 04:66:F2:AA:71:3A:9E:0A:3C:1B:83:C0:23:DC:EC:6F
SHA1: FB:FA:BB:45:DC:05:9D:AE:C3:BE:5D:86:86:0F:76:84:43:C7:36:D3

Trust this certificate? [no]: yes
Certificate was added to keystore

With this step, all the necessary stores were created and the broker certificate was
imported into the keystore. Now the stock portfolio example can use them.

 Remember to start the broker using the newly created certificate. One way to do
this is to replace the default keystore files and the broker cert in the conf directory
with the ones that were just created. For example, if you want to use certificates that
come with the example source code, you’d do something like this:

$ cp src/main/resources/org/apache/activemq/book/ch4/mybroker.ks \
${ACTIVEMQ_HOME}/conf/broker.ks

$ cp src/main/resources/org/apache/activemq/book/ch4/myclient.ks \
www.it-ebooks.info

http://www.it-ebooks.info/

75Connecting to ActiveMQ over the network
${ACTIVEMQ_HOME}/conf/client.ks
$ cp src/main/resources/org/apache/activemq/book/ch4/myclient.ts \

${ACTIVEMQ_HOME}/conf/client.ts

Another way is to pass the SSL-related system properties to the command used to start
our broker. For that we need first to copy certificates with their original names (with
prefix my in the name) to the conf/ directory

$ cp src/main/resources/org/apache/activemq/book/ch4/mybroker.ks \
${ACTIVEMQ_HOME}/conf/

$ cp src/main/resources/org/apache/activemq/book/ch4/myclient.ks \
${ACTIVEMQ_HOME}/conf/

$ cp src/main/resources/org/apache/activemq/book/ch4/myclient.ts \
${ACTIVEMQ_HOME}/conf/

So now we can pass the system property and use a keystore other than default one:

${ACTIVEMQ_HOME}/bin/activemq console \
-Djavax.net.ssl.keyStorePassword=test123 \
-Djavax.net.ssl.keyStore=${ACTIVEMQ_HOME}/conf/mybroker.ks

Finally, we can achieve the same thing with the <sslContext/> element in the
ActiveMQ configuration file, as shown here:

 <broker xmlns="http://activemq.apache.org/schema/core"
 brokerName="localhost"
 dataDirectory="${activemq.base}/data">
 <sslContext>
 <sslContext
 keyStore="file:${activemq.base}/conf/mybroker.ks"
 keyStorePassword="test123"/>
 </sslContext>
 <transportConnectors>
 <transportConnector name="ssl"
 uri="ssl://localhost:61617" />
 </transportConnectors>
 </broker>

and start the broker in the usual manner:

${ACTIVEMQ_HOME}/bin/activemq console
xbean:src/main/resources/org/apache/activemq/book/ch4/activemq-ssl.xml

...
Loading message broker from:
xbean:src/main/resources/org/apache/activemq/book/ch4/activemq-ssl.xml
INFO | Using Persistence Adapter:
AMQPersistenceAdapter(/workspace/apache-activemq-5.3.0/data/localhost)

INFO | AMQStore starting using directory:
/workspace/apache-activemq-5.3.0/data/localhost

INFO | Kaha Store using data directory
/workspace/apache-activemq-5.3.0/data/localhost/kr-store/state

INFO | Active data files: []
INFO | ActiveMQ 5.3.0 JMS Message Broker (localhost) is starting
INFO | For help or more information please see: http://activemq.apache.org/
INFO | Kaha Store using data directory
/workspace/apache-activemq-5.3.0/data/localhost/kr-store/data
www.it-ebooks.info

http://www.it-ebooks.info/

76 CHAPTER 4 Connecting to ActiveMQ
INFO | JMX consoles can connect to
service:jmx:rmi:///jndi/rmi://localhost:1099/jmxrmi

INFO | Listening for connections at: ssl://localhost:61617
INFO | Connector ssl Started
INFO | ActiveMQ JMS Message Broker
(localhost, ID:dejan-bosanacs-macbook-pro.local-52935-1265550444721-0:0)
started

...

Now let’s see how to reflect these same changes to the clients. If you try to run the cli-
ent applications with the old certificate file, you’ll get the unknown_certificate excep-
tion, just as when the client attempted to access the broker without using any
certificate. So you’ll have to update the command like the following:

$ mvn \
-Djavax.net.ssl.keyStore=${ACTIVEMQ_HOME}/conf/myclient.ks \
-Djavax.net.ssl.keyStorePassword=test123 \
-Djavax.net.ssl.trustStore=${ACTIVEMQ_HOME}/conf/myclient.ts \
exec:java -Dexec.mainClass=org.apache.activemq.book.ch4.Publisher \
-Dexec.args="ssl://localhost:61617 CSCO ORCL"

...

Sending: {price=65.713356601409, stock=JAVA, offer=65.779069958011, up=true}
on destination: topic://STOCKS.JAVA

Sending: {price=66.071605671946, stock=JAVA, offer=66.137677277617, up=true}
on destination: topic://STOCKS.JAVA

Sending: {price=65.929035001620, stock=JAVA, offer=65.994964036622, up=false}
on destination: topic://STOCKS.JAVA

...

The command instructs the publisher to use the newly created client stores. After
these changes, the stock portfolio application works again.

ENABLING AND DISABLING SSL CIPHERS

The SSL cipher suites for the ActiveMQ SSL transport are provided by the JVM. For spe-
cific information about these cipher suites, see the documentation on the Sun JSSE
provider (http://mng.bz/7TYe). The Sun JSSE provider supports a long list of cipher
suites, and these are utilized in their default preference order. In some situations,
there can be a need to disable certain ciphers. Examples of such situations include the
discovery of a vulnerability in a particular cipher or a requirement to support only
certain ciphers. To make it easy to enable/disable cipher suites, starting in ActiveMQ
5.4.0, a new option for the SSL transport named transport.enabledCipherSuites is
available. Here’s an example of this new option:

<transportConnectors>
 <transportConnector
 name="ssl"
 uri="ssl://localhost:61617?
 transport.enabledCipherSuites=SSL_RSA_WITH_RC4_128_SHA" />
</transportConnectors>
www.it-ebooks.info

http://www.it-ebooks.info/

77Connecting to ActiveMQ over the network
Please note that the uri attribute shown here has been split into two lines for the pur-
pose of readability. This is only for readability and will cause the configuration to
break if left in this manner. If you use the configuration example, make sure to com-
bine the two lines that are held within the quotes.

 In the preceding example, the SSL_RSA_WITH_RC4_128_SHA cipher suite is the
only one that’s been enabled on the ActiveMQ SSL transport. Additional cipher suites
can be enabled using a comma-separated list. The purpose of this new option is for
added security as it allows only certain cipher suites to be enabled. This can be handy
in environments that consider some cipher suites too weak to leave them enabled,
such as the Payment Card Industry (PCI).

NOTE To test which cipher suites are enabled, a Perl script named ssl-cipher-
check.pl is available (http://mng.bz/Ko7k). This script was inspired by the
Payment Card Industry Data Security Standard (PCI DSS) for preventing
credit card fraud (see http://mng.bz/8cYo). The script is easy to use and
makes performing a check for weak ciphers extremely easy.

Not everyone will need to disable SSL cipher suites, but if you do, this new option for
the SSL transport will make the task easy.

4.3.5 Hypertext Transfer Protocol (HTTP/HTTPS)

In many environments, firewalls are configured to allow only basic services such as
web access and email. So how can ActiveMQ be used in such an environment? This is
where the HTTP transport comes into play.

 Hypertext Transfer Protocol (HTTP) was originally designed to transmit hypertext
(HTML) pages over the web. It uses TCP as an underlying network protocol and adds
some additional logic for communication between browsers and web servers. After the
first boom of the internet, web infrastructure and the HTTP protocol in particular
found a new role in supporting web services, commonly used these days to exchange
information between applications. The main difference is that in the case of web ser-
vices, XML-formatted data is transmitted using the HTTP protocol rather than HTML
data.

 ActiveMQ implements the HTTP transport connector, which provides for the
exchange of XML-formatted messages with the broker using the HTTP protocol. This
is what allows ActiveMQ to bypass strict firewall rules. By using the HTTP protocol that
runs on the standard web port number (80), ActiveMQ can use an existing hole in the
firewall, so to speak.

 The URI syntax of this transport connector is as follows:

http://hostname:port?key=value

Secure HTTP (HTTP over SSL or HTTPS) is also supported by this transport:

https://hostname:port?key=value
www.it-ebooks.info

http://www.it-ebooks.info/

78 CHAPTER 4 Connecting to ActiveMQ
Note the slight difference in the scheme used by the two examples based on whether
SSL is needed. Let’s walk through an example configuration to see how to run the
examples using the HTTP transport. The transport connectors section of the XML
configuration in this case looks similar to those used in previous sections, but with the
HTTP scheme:

<transportConnectors>
 <transportConnector name="tcp"
 uri="tcp://localhost:61616?trace=true"/>
 <transportConnector name="http"
 uri="http://localhost:8080?trace=true" />
</transportConnectors>

Note that there are two transports configured here: one for the TCP transport and
one for the HTTP transport, which listens to port 8080.

 In order to run the clients using the HTTP transport protocol, one dependency
must be added to the classpath. The HTTP transport is located in the ActiveMQ
optional module, so you’ll have to add it to the application’s classpath (along with
appropriate dependencies). Using Maven, you’ll need to add the following depen-
dency to the pom.xml file:

<dependency>
<groupId>org.apache.activemq</groupId>
<artifactId>activemq-optional</artifactId>
<version>5.4.1</version>

</dependency>

This will include activemq-optional module and all its dependencies to the class-
path. In case you don’t use Maven to manage your classpath, be sure to include all of
these JARs into your classpath:

$ACTIVEMQ_HOME/lib/optional/activemq-optional-<version>.jar
$ACTIVEMQ_HOME/lib/optional/commons-httpclient-<version>.jar
$ACTIVEMQ_HOME/lib/optional/xstream-<version>.jar
$ACTIVEMQ_HOME/lib/optional/xmlpull-<version>.jar

Finally, the stock portfolio publisher is ready to be run using the HTTP transport:

$ mvn exec:java -Dexec.mainClass=org.apache.activemq.book.ch4.Publisher \
-Dexec.args="http://localhost:8080 CSCO ORCL"

...

Sending: {price=65.713356601409, stock=JAVA, offer=65.779069958011, up=true}
on destination: topic://STOCKS.JAVA

Sending: {price=66.071605671946, stock=JAVA, offer=66.137677277617, up=true}
on destination: topic://STOCKS.JAVA

Sending: {price=65.929035001620, stock=JAVA, offer=65.994964036622, up=false}
on destination: topic://STOCKS.JAVA

...

As stated previously, when using the HTTP transport, all broker-to-client communica-
tion is performed by sending XML messages. This type of communication can have an
www.it-ebooks.info

http://www.it-ebooks.info/

79Connecting to ActiveMQ inside the virtual machine (VM connector)
impact on the overall system performance compared to the use of the TCP transport
with the OpenWire protocol (which is tuned specifically for messaging purposes). So
if performance is a concern, you’re best to stick to the TCP transport and find some
other workaround for the firewall issues.

 So far this chapter has covered protocols used to connect brokers and clients using
the network stack in the operating system. As an alternative, ActiveMQ was designed to
be embedded in a Java application. This allows client-to-broker communication to take
place locally in the JVM, instead of via the network. In order to support this kind of intra-
VM communication, ActiveMQ provides a special protocol named the VM protocol.

4.4 Connecting to ActiveMQ inside the virtual machine
(VM connector)
The VM transport connector is used by Java applications to launch an embedded broker
and connect to it. Use of the VM transport means that no network connections are
created between clients and the embedded broker. Communication is performed
through direct method invocations of the broker object. Because the network stack
isn’t employed, performance improves significantly. The broker is started when the
first connection is created using the VM protocol. All subsequent VM transport con-
nections from the same virtual machine will connect to the same broker.

 A broker created using the VM protocol doesn’t lack any of the standard ActiveMQ
features. So, for example, the broker can be configured with other transport connec-
tors as well. When all clients that use the VM transport to the broker close their con-
nections, the broker will automatically shut down.

 The URI syntax for the VM transport is as follows:

vm://brokerName?key=value

The broker name plays an important role in the VM transport connector URI by
uniquely identifying the broker. For example, you can create two different embedded
brokers by specifying different broker names. This is the only required difference.

 Transport options are set using the query part of the URI, the same as the previ-
ously discussed transports. The complete reference for this connector can be found at
the ActiveMQ website (http://mng.bz/716b).

 The important thing about options for the VM transport protocol is that you can
use them to configure the broker to some extent. Options whose name begins with
the prefix broker. are used to tune the broker. For example, the following URI starts
up a broker with persistence disabled (message persistence is explained in chapter 5):

vm://broker1?marshal=false&broker.persistent=false

There’s also an alternative URI syntax that can be used to configure an embedded
broker:

vm:broker:(transportURI,network:networkURI)/brokerName?key=value
www.it-ebooks.info

http://www.it-ebooks.info/

80 CHAPTER 4 Connecting to ActiveMQ
The complete reference of the broker URI can be found at the ActiveMQ website
(http://mng.bz/FNos).

 As you can see, this kind of URI can be used to configure additional transport con-
nectors. Take a look at the following URI, for example:

vm:broker:(tcp://localhost:6000)?brokerName=embeddedbroker&persistent=false

Here, we’ve defined an embedded broker named embeddedBroker and also config-
ured a TCP transport connector that listens for connections on port 6000. Finally, per-
sistence is also disabled in this broker. Figure 4.4 can help you better visualize this
example configuration. This figure demonstrates that clients connecting to the bro-
ker from within the application that embeds the broker will use the VM transport,
whereas external applications connect to that embedded broker using the TCP con-
nector, just as they would in the case of any standalone broker.

 An embedded broker using an external configuration file can be achieved using
the brokerConfig transport option and by specifying the URI for the activemq.xml
file. Here’s an example:

vm://localhost?brokerConfig=xbean:activemq.xml

The example will locate the activemq.xml file in the classpath using the xbean: proto-
col. Using this approach, an embedded broker can be configured just like a stand-
alone broker using the XML configuration.

 Now the stock portfolio publisher can be started with an embedded broker using
the following command:

$ mvn exec:java -Dexec.mainClass=org.apache.activemq.book.ch4.Publisher \
-Dexec.args="vm://localhost CSCO ORCL"

...

Sending: {price=65.713356601409, stock=JAVA, offer=65.779069958011, up=true}
on destination: topic://STOCKS.JAVA

Java application

Broker

vm://

 Java applications
tcp://

Other applications
exchange messages

 with broker using
tcp transport

Figure 4.4 Application
exchanges messages with
embedded broker using vm
transport
www.it-ebooks.info

http://www.it-ebooks.info/

81Network connectors
Sending: {price=66.071605671946, stock=JAVA, offer=66.137677277617, up=true}
on destination: topic://STOCKS.JAVA

Sending: {price=65.929035001620, stock=JAVA, offer=65.994964036622, up=false}
on destination: topic://STOCKS.JAVA

...

Note that the publisher works just fine without having to start an external broker.
 One obvious advantage of the VM transport is improved performance for client-to-

broker communication. Also, you’ll have only one Java application to run (one JVM)
instead of two, which can ease your deployment process. This also means that there’s
one fewer Java process to manage. So, if you plan to use the broker mainly from one
application, maybe you should consider using the embedded broker. Embedding
ActiveMQ is covered in detail in chapter 8.

 On the other hand, if too many Java applications that use embedded brokers exist,
maintenance problems may arise when trying to consistently configure each broker as
well as back up the data. In such situations, it’s always easier to create a small cluster of
standalone brokers instead of using embedded brokers.

 Having one ActiveMQ broker to serve all your application needs works well for
most situations. But some environments need advanced features, such as high avail-
ability and larger scalability. This is typically achieved using what’s known as a network
of brokers. In the following section you’ll learn about networks of brokers and network
connectors used to configure those networks.

4.5 Network connectors
A network of brokers creates a cluster composed of multiple ActiveMQ instances that
are interconnected to meet more advanced messaging scenarios. Various topologies
for broker networks, their purpose, and their configuration details are explained in
detail in chapter 10. The previous section discussed transport connectors that provide
client-to-broker communications, whereas this section will discuss network connectors
that provide broker-to-broker communications.

 Network connectors are channels that are configured between brokers so that
those brokers can communicate with one another. A network connector is a
unidirectional channel by default. A given broker communicates in one direction by
only forwarding messages it receives to the brokers on the other side of the connec-
tion. This setup is commonly referred to as a forwarding bridge. In some situations, you
may want to create a bidirectional communication channel between brokers—a chan-
nel that communicates not only outward to the brokers on the other side of the con-
nection, but also receives messages from other brokers on that same channel.
ActiveMQ supports this kind of bidirectional connector, which is usually referred to as
a duplex connector. Figure 4.5 shows one example of a network of brokers that contains
both a forwarding bridge and duplex connectors.
www.it-ebooks.info

http://www.it-ebooks.info/

82 CHAPTER 4 Connecting to ActiveMQ
Network connectors are configured through the ActiveMQ XML configuration file in a
fashion similar to the configuration of transport connectors. Let’s take a look at an
example configuration:

<networkConnectors>
<networkConnector name="default-nc" uri="multicast://default"/>

</networkConnectors>

As you can see, networks of brokers are configured using the <networkConnectors>
element. This element contains the configuration for one or more connectors using
the <networkConnector> element. As was the case with transport connectors, the
mandatory attributes for the <networkConnector> element are the name and the uri.
All other attributes are optional and are used to configure additional features on the
connector, as you’ll see in a moment.

 In the rest of this chapter, various ActiveMQ protocols and techniques that are
used to configure and connect to a network of brokers will be presented and dis-
cussed. But before we dive in, there’s one more important ActiveMQ concept we

Broker 2Broker 1

Broker 3

Producer/
Consumer

Producer/
Consumer

Consumer

Network of brokers

Broker 1 and Broker 3
exchange messages

(duplex)

Broker 1
forwards messages to Broker 2

(forwarding bridge)

Figure 4.5 An example of a complex network of brokers topology
www.it-ebooks.info

http://www.it-ebooks.info/

83Network connectors
should explain known as discovery. In general, discovery is a process of detecting
remote broker services. Clients usually want to discover all available brokers. Brokers,
on the other hand, usually want to find other available brokers so they can establish a
network of brokers.

 When you want to configure a network of brokers, the first obvious question is, do
you know the exact network address of each broker in the network? If the answer is
yes, then you can proceed configuring your network statically and also connect your
clients to predefined broker URIs. This situation is more often seen in production
environments where you want to have total control of all resources. Section 4.5.1
explains how you can set up and use static networks. It starts with explaining the static
protocol used to connect multiple brokers together. Then, we’ll explain a failover pro-
tocol that allows clients to connect to one of the brokers in the network and also uti-
lize reconnection logic.

 In case clients and brokers don’t know each other’s network addresses, they must
use some kind of a discovery mechanism to dynamically locate the available brokers.
This kind of setup is more often found in development environments, as it’s much
easier to set up and maintain. Discovery agents and the protocols they use are
explained in section 4.5.2. You’ll learn how IP multicast is used by brokers to advertise
their services and locate other available brokers, using the multicast connector. Also,
we’ll see how clients use the multicast connector to discover brokers using a discovery
connector.

 We’ll also dive into the peer connector, which makes creating a network of embed-
ded brokers a very simple task. Finally, we’ll see how the fanout connector enables cli-
ents to send messages to multiple brokers. Let’s begin with static networks.

4.5.1 Static networks

The first approach to configuring and connecting to a network of brokers is through
the use of statically configured URIs—configuring a list of broker URIs available for
connection. The only prerequisite is that you know the addresses of all the brokers you
want to use. Once you have these URIs, you need to know how to use them in a config-
uration. So let’s look at the connector available to create a static networks of brokers.

STATIC CONNECTOR

The static network connector is used to create a static configuration of multiple brokers
in a network. This protocol uses a composite URI—a URI that contains other URIs. A
composite URI consists of multiple broker addresses or URIs that are on the other end
of the network connection.

 Here’s the URI syntax for the static protocol:

static:(uri1,uri2,uri3,...)?key=value

You can find the complete reference for this transport at the ActiveMQ website
(http://mng.bz/r74v).

 Now take a look at the following configuration example:
www.it-ebooks.info

http://www.it-ebooks.info/

84 CHAPTER 4 Connecting to ActiveMQ
<networkConnectors>
<networkConnector name="local network"

uri="static://(tcp://remotehost1:61616,tcp://remotehost2:61616)"/>
</networkConnectors>

Assuming that this configuration is for the broker on the localhost and that brokers
on hosts remotehost1 and remotehost2 are up and running, you’ll notice the follow-
ing messages when you start the local broker:

...
INFO DiscoveryNetworkConnector - Establishing network connection between

from vm://localhost to tcp://remotehost1:61616
INFO TransportConnector - Connector vm://localhost Started
INFO DiscoveryNetworkConnector - Establishing network connection between

from vm://localhost to tcp://host2:61616
INFO DemandForwardingBridge - Network connection between vm://

localhost#0
and tcp://remotehost1:61616 has been established.

INFO DemandForwardingBridge - Network connection between vm://
localhost#2
and tcp://remotehost2:61616 has been established.

...

The output indicates that the broker on the localhost has successfully configured a
forwarding bridge with two other brokers running on two remote hosts. In other words,
messages sent to the local broker will be forwarded to brokers running on
remotehost1 and remotehost2, but only if there’s demand for those messages from a
consumer.

 The best way to understand this is to walk through the use of static networks using
the stock portfolio example with a network of brokers. Figure 4.6 provides a perspec-
tive of the broker topology used in this example.

 In the diagram, the two brokers are networked. The brokers utilize a network con-
nector with a URI using the static protocol. A consumer is attached to a destination on
BrokerB, which creates demand for messages across the network connector. When the
producer sends messages to the same destination on BrokerA, they’ll be forwarded to
the broker where there’s demand. In this case, BrokerA forwards messages to Bro-
kerB. The following example will walk through this basic use case.

Producer Consumer

BrokerA BrokerB

(tcp://localhost:61616) (tcp://localhost:61617)

Network connector

Producer sends messages
to BrokerA

Consumer receives
messages from BrokerB

Figure 4.6
Two applications
exchange messages
using two brokers in
a static network.
www.it-ebooks.info

http://www.it-ebooks.info/

85Network connectors
 To make this example work, first we need to start these two networked brokers.
Let’s start with BrokerB:

<broker xmlns="http://activemq.apache.org/schema/core"
brokerName="BrokerB"
dataDirectory="${activemq.base}/data">

<transportConnectors>
<transportConnector name="openwire" uri="tcp://localhost:61617" />

</transportConnectors>

</broker>

This simple configuration starts a broker that listens on port 61617. We can start this
broker with the following command:

${ACTIVEMQ_HOME}/bin/activemq console \
xbean:src/main/resources/org/apache/activemq/book/ch4/brokerA.xml

Now it's time to configure BrokerA:

<broker xmlns="http://activemq.apache.org/schema/core"
brokerName="BrokerA"
dataDirectory="${activemq.base}/data">

<transportConnectors>
<transportConnector name="openwire" uri="tcp://localhost:61616" />

</transportConnectors>
<networkConnectors>

<networkConnector uri="static:(tcp://localhost:61617)" />
</networkConnectors>

</broker>

Besides the transport connector listening on port 61616, it defines a network connec-
tor that connects to BrokerB. In a separate console window, you can start this broker
like this:

${ACTIVEMQ_HOME}/bin/activemq console \
xbean:src/main/resources/org/apache/activemq/book/ch4/brokerB.xml

Now that we have both brokers up and running, let’s run the stock portfolio example.
First we’ll start our publisher and connect it to BrokerA:

$ mvn exec:java -Dexec.mainClass=org.apache.activemq.book.ch4.Publisher \
-Dexec.args="tcp://localhost:61616 CSCO ORCL"

...

Sending: {price=65.713356601409, stock=JAVA, offer=65.779069958011, up=true}
on destination: topic://STOCKS.JAVA

Sending: {price=66.071605671946, stock=JAVA, offer=66.137677277617, up=true}
on destination: topic://STOCKS.JAVA

Sending: {price=65.929035001620, stock=JAVA, offer=65.994964036622, up=false}
on destination: topic://STOCKS.JAVA

...
www.it-ebooks.info

http://www.it-ebooks.info/

86 CHAPTER 4 Connecting to ActiveMQ
This is practically the same command was used with the earlier TCP connector exam-
ple. Now start the consumer and connect it to BrokerB:

$ mvn exec:java -Dexec.mainClass=org.apache.activemq.book.ch4.Consumer \
-Dexec.args="tcp://localhost:61617 CSCO ORCL"

...

ORCL 65.71 65.78 up
ORCL 66.07 66.14 up
ORCL 65.93 65.99 down
CSCO 23.30 23.33 up

...

Using this setup, messages are published to BrokerA. These messages are then for-
warded to BrokerB, where they’re received by the consumer. The overall functionality
of this example hasn’t been changed and both the publisher and the consumer
behave the same as the previous single broker example. The only difference is that the
publisher and the consumer are now connecting to different brokers that are net-
worked using the static protocol.

 From this simple example you can conclude that this particular configuration can
help you in situations when you need your distributed clients to benefit from the per-
formance advantages of communicating with the local broker instead of a remote
one.

EXAMPLE USE OF THE STATIC PROTOCOL

Configuring broker networks can be difficult depending on the situation. Use of the
static protocol allows for an explicit notation that a network should exist. Consider a
situation where clients in remote offices are connecting to a broker in the home
office. Depending on the number of clients in each remote office, you may wind up
with far too many wide area network connections into the home office. This can cause
an unnecessary burden on the network. To minimize connections, you may want to
place a broker in each remote office and allow a static network connection between
the remote office broker and the home office broker. Not only will this minimize the
number of network connections between the remote offices and the home office, but
it’ll allow the client applications in the remote offices to operate more efficiently. The
removal of the long haul connection over the wide area network means less latency
and therefore less waiting for the client application.

FAILOVER PROTOCOL

In all the examples so far, the clients have been configured to connect to only one
specific broker. But what should you do in case you can’t connect to the desired bro-
ker or your connection fails at the later stage? Your clients have two options: either
they’ll die gracefully or try to connect to the same or some other broker and resume
their work. As you can probably guess, the stock portfolio example runs using the
protocols described thus far and aren’t immune to network problems and unavail-
able brokers. That’s where protocols such as failover come in to implement automatic
reconnection. Similar to the case with the network connectors, there are two ways to
www.it-ebooks.info

http://www.it-ebooks.info/

87Network connectors
provide a list of suitable brokers to which the client can connect. In the first case, you
provide a static list of available brokers. This is the approach used by the failover trans-
port connector. In the second case, dynamic discovery of the available brokers is used.
This will be explained later in the chapter. This section will examine the failover
transport connector.

 The URI syntax for the failover connector is similar to the previous static network
connector URI. There are actually two available forms to the failover URI:

failover:(uri1,...,uriN)?key=value

or

failover:uri1,...,uriN

The complete reference of this protocol can be found at the ActiveMQ website (http:/
/mng.bz/u58s).

 By default, this protocol uses a random algorithm to choose one of the underlying
connectors. If the connection fails (both on startup or at a later stage), the transport
will pick another URI and try to make a connection. A default configuration also
implements reconnection delay logic, meaning that the transport will start with a 10ms
delay for the first reconnection attempt and double this time for any subsequent
attempt up to 30000ms. Also, the reconnection logic will try to reconnect indefinitely.
Of course, all reconnection parameters can be reconfigured according to your needs
using the appropriate transport options.

 Recall the theoretical static network of brokers that was defined in the previous
section. In that example, all messages sent to the local broker could be forwarded to
the brokers located on remotehost1 and remotehost2. Because all messages could be
sent to both of these brokers, those messages can be consumed from either broker.
The same is true here. The only difference is that the failover transport will automati-
cally attempt a reconnect in the event of a broker failover. To experience the use of
this transport, run the stock portfolio consumer and configure it to connect to the
brokers using the failover connector:

$ mvn exec:java -Dexec.mainClass=org.apache.activemq.book.ch4.Consumer \
-Dexec.args="failover:(tcp://remotehost1:61616,tcp://

remotehost2:61616) CSCO ORCL"

The beauty of this solution is that it requires no changes to the application in order to
add support for automatic reconnection in the event of a broker failure.

 Now let’s see the failover connector at work. Imagine that the random algorithm in
the failover transport has chosen to connect the consumer to the broker on host1.
You can expect that the consumer will print the following log message during the
startup:

org.apache.activemq.transport.failover.FailoverTransport$1 iterate INFO: \
Successfully reconnected to tcp://host1:61616

As we already said, all messages sent by the publisher to the local broker will be for-
warded to the broker on host1 and received by the consumer. Now try to simulate a
www.it-ebooks.info

http://www.it-ebooks.info/

88 CHAPTER 4 Connecting to ActiveMQ
broker failure by shutting down the broker on host1. The consumer will print the fol-
lowing log message:

org.apache.activemq.transport.failover.FailoverTransport handleTransportFailu
re

WARNING: Transport failed,
attempting to automatically reconnect due to: java.io.EOFException

java.io.EOFException
at java.io.DataInputStream.readInt(DataInputStream.java:375)
at org.apache.activemq.openwire.OpenWireFormat.unmarshal(

OpenWireFormat.java:268
)
at org.apache.activemq.transport.tcp.TcpTransport.readCommand(

TcpTransport.java:192
)
at org.apache.activemq.transport.tcp.TcpTransport.doRun(

TcpTransport.java:184
)
at org.apache.activemq.transport.tcp.TcpTransport.run(

TcpTransport.java:172
)
at java.lang.Thread.run(Thread.java:619)

org.apache.activemq.transport.failover.FailoverTransport$1 iterate
INFO: Successfully reconnected to tcp://host2:61616

Notice the initial exception noting the failure, followed by the log message about
reconnecting to another broker. This means that the consumer has successfully con-
nected to the other broker and you can see that it resumed its normal operation with-
out any assistance.

EXAMPLE USE OF THE FAILOVER PROTOCOL

Due to its reconnection capabilities, it’s highly advisable that you use the failover pro-
tocol for all clients, even if a client will only be connecting to a single broker. For
example, the following URI will try to reestablish a connection to the same broker in
the event that the broker shuts down for any reason:

failover:(tcp://localhost:61616)

The advantage of this is that clients don’t need to be manually restarted in the case of
a broker failure (or maintenance, and so forth). As soon as the broker becomes
available again the client will automatically reconnect. This means far more robust-
ness for your applications by simply utilizing a feature of ActiveMQ.

 The failover transport connector plays an important role in achieving advanced
functionalities such as high availability and load balancing as will be explained in
chapter 12.

4.5.2 Dynamic networks

Thus far we’ve seen how to set up broker networks and connect to them by explicitly
specifying broker URIs (both transport and network connectors). As you’ll see in this
section, ActiveMQ implements several mechanisms that can be used by brokers and
clients to find each other and establish necessary connections.
www.it-ebooks.info

http://www.it-ebooks.info/

89Network connectors
MULTICAST CONNECTOR

IP multicast is a network technique used for easy transmission of data from one source
to a group of interested receivers (one-to-many communications) over an IP network.
One of the fundamental concepts of IP multicast is the so-called group address. The
group address is an IP address in the range of 224.0.0.0 to 239.255.255.255 used by
both sources and receivers. Sources use this address as a destination for their data,
whereas receivers use it to express their interest in data from that group.

 When IP multicast is configured, ActiveMQ brokers use the multicast protocol to
advertise their services and locate the services of other brokers for the purpose of cre-
ating networks of brokers. Clients, on the other hand, use multicast to locate brokers
and establish a connection with them. This section discusses how brokers use multi-
cast; the use of multicast by a client will be discussed later.

 The URI syntax for the multicast protocol is as follows:

multicast://ipadaddress:port?key=value

This is no different than the previous URIs with the exception of the scheme portion.
 Here’s a snippet from the default ActiveMQ configuration that makes use of

multicast:

<broker xmlns="http://activemq.apache.org/schema/
core" brokerName="multicast"

dataDirectory="${activemq.base}/data">

<networkConnectors>
<networkConnector name="default-nc" uri="multicast://default"/>

</networkConnectors>

<transportConnectors>
<transportConnector name="openwire" uri="tcp://localhost:61616"

discoveryUri="multicast://default"/>
</transportConnectors>

</broker>

In the example, the group name default is used instead of a specific IP address. There
are two important things achieved with this configuration snippet. First, the transport
connector’s discoveryUri attribute is used to advertise this transport’s URI on the
default group. All clients interested in finding an available broker would use this con-
nector. This will be demonstrated in the following section.

 Next, the uri attribute of the network connector is used to search for available
brokers and to create a network with them. In this case, the broker acts like a client
and uses multicast for lookup purposes. You can find a complete reference of this pro-
tocol at the ActiveMQ website (http://mng.bz/14yJ).

 Now that you know how to configure discovery on the broker side, I’m sure you’re
wondering where you might use this protocol.

EXAMPLE USE OF THE MULTICAST PROTOCOL

The multicast protocol is somewhat different from the TCP protocol. The difference is
the automatic discovery of other brokers instead of using a static list of brokers. Use of
www.it-ebooks.info

http://www.it-ebooks.info/

90 CHAPTER 4 Connecting to ActiveMQ
the multicast protocol is common where brokers are added and removed frequently,
and in cases where brokers may have their IP addresses changed frequently. In these
cases, instead of reconfiguring each broker manually for every change, it’s often easier
to utilize a discovery protocol.

Preventing automatic broker discovery
When developing in a team environment it’s possible (and quite probable) that two
or more ActiveMQ instances will automatically connect to one another and begin con-
suming one another’s messages. Here are some recommendations for preventing
this situation from occurring:

1 Remove the discoveryUri portion of the openwire transport connector—The trans-
port connector whose name is openwire is configured by default to advertise the
broker’s TCP transport using multicast. This allows other brokers to automati-
cally discover it and connect to it if necessary.

Here’s the OpenWire transport connector definition from the conf/activemq.xml
configuration file:

<transportConnector name="openwire" uri="tcp://localhost:61616"
discoveryUri="multicast://default"/>

To stop the broker from advertising the TCP transport URI via multicast, change
the definition to remove the discoveryUri attribute so it looks like this:
<transportConnector name="openwire" uri="tcp://localhost:61616" />

2 Comment out/remove the default-nc network connector—The network connector
named default-nc utilizes the multicast transport to automatically and dynamically
discover other brokers. To stop this behavior, comment out/remove the default-nc
network connector so that it won’t automatically discover other brokers.

Here’s the default-nc network connector definition from the conf/activemq.xml
configuration file:
<networkConnector name="default-nc" uri="multicast://default"/>

To disable this network connector, comment it out so it looks like this:
<!--networkConnector name="default-nc" uri="multicast://default"/-->

3 Give the broker a unique name—The default configuration for ActiveMQ in the
conf/activemq.xml file provides a broker name of localhost as shown:
<broker xmlns="http://acti vemq.apache.org/schema/core"

brokerName="localhost"
dataDirectory="${activemq.base}/data">

In order to uniquely identify your broker instance, change the brokerName attri-
bute from localhost to something unique such as in the following example:
<broker xmlns="http://activemq.apache.org/schema/core"

brokerName="broker1234"
dataDirectory="${activemq.base}/data">

This is especially handy when searching through log files to see which brokers are
taking certain actions.
www.it-ebooks.info

http://www.it-ebooks.info/

91Network connectors
 One disadvantage to using the multicast protocol is that discovery is automatic. If
there are brokers that you don’t want to be automatically added to a given group, you
must be careful in setting up the initial configuration of the broker network. Careful
segmentation of broker networks is important, as you don’t want messages to wind up
in a broker network where they don’t belong. Another disadvantage of the multicast
protocol is that it can be excessively chatty on the network. For this reason, many net-
work administrators won’t allow its use. Please check with your network administrator
before taking the time to configure a network using the multicast protocol.

 As IP multicast can be used for discovery on the broker side, there’s a similar dis-
covery protocol for the client side.

DISCOVERY PROTOCOL

The discovery transport connector is on the client side of the ActiveMQ multicast func-
tionality. This protocol is basically the same as the failover protocol in its behavior.
The only difference is that it’ll use multicast to discover available brokers and ran-
domly choose one to connect to.

 The syntax of this protocol is

discovery:(discoveryAgentURI)?key=value

Its complete reference could be found at the ActiveMQ website (http://mng.bz/
96wI).

 Using the multicast broker configuration explained earlier, you can run the broker
with the following command:

${ACTIVEMQ_HOME}/bin/activemq console \
xbean:src/main/resources/org/apache/activemq/book/ch4/
activemq-multicast.xml

Once the broker is started, run the stock portfolio publisher with the following
command:

$ mvn -e exec:java \
-Dexec.mainClass=org.apache.activemq.book.ch4.Publisher \
-Dexec.args="discovery:(multicast://default) CSCO ORCL"

You’ll notice the following log messages at the application startup:

Jun 18, 2008 2:13:18 PM
org.apache.activemq.transport.discovery.DiscoveryTransport onServiceAdd
INFO: Adding new broker connection URL: tcp://localhost:61616

Jun 18, 2008 2:13:19 PM
org.apache.activemq.transport.failover.FailoverTransport doReconnect
INFO: Successfully connected to tcp://localhost:61616

...

Sending: {price=65.713356601409, stock=JAVA, offer=65.779069958011, up=true}
on destination: topic://STOCKS.JAVA

Sending: {price=66.071605671946, stock=JAVA, offer=66.137677277617, up=true}
on destination: topic://STOCKS.JAVA

Sending: {price=65.929035001620, stock=JAVA, offer=65.994964036622, up=false}
on destination: topic://STOCKS.JAVA

...
www.it-ebooks.info

http://www.it-ebooks.info/

92 CHAPTER 4 Connecting to ActiveMQ
These messages tell you that the publisher client has successfully used multicast to dis-
cover and connect to the local broker.

PEER PROTOCOL

As we’ve seen before, networks of brokers and embedded brokers are useful concepts
that allow you to fit brokers to your infrastructure needs. Of course, it’s theoretically
possible to create networks of embedded brokers, but this would be quite cumber-
some to configure manually. This is why ActiveMQ provides the peer transport connector,
as it allows you to more easily network embedded brokers. The peer connector is a
utility transport that is a superset of a VM connector that creates a peer-to-peer network
of embedded brokers.

 The URI syntax of this protocol is as follows:

peer://peergroup/brokerName?key=value

You can find its complete reference at the ActiveMQ website (http://mng.bz/bIaH).
 When started with the peer protocol URI, the application will automatically start an

embedded broker (just as was the case with the VM protocol), but will also configure
the broker to establish network connections to other brokers in the local network with
the same group name.

 Let’s walk through a demonstration of this using the stock portfolio example with
the peer protocol. In this case, both the publisher and the consumer will use their
own embedded brokers that will be networked automatically. Figure 4.7 provides a
better perspective of this solution.

 Advise the stock portfolio publisher to create its own embedded broker using
group1 like this:

$ mvn -e exec:java -Dexec.mainClass=org.apache.activemq.book.ch4.Publisher \
-Dexec.args="peer://group1 CSCO ORCL"

...

Sending: {price=65.713356601409, stock=JAVA, offer=65.779069958011, up=true}
on destination: topic://STOCKS.JAVA

Sending: {price=66.071605671946, stock=JAVA, offer=66.137677277617, up=true}
on destination: topic://STOCKS.JAVA

Sending: {price=65.929035001620, stock=JAVA, offer=65.994964036622, up=false}
on destination: topic://STOCKS.JAVA

...

Publisher
application

Consumer
application

Broker Broker

vm:// vm://

Network connector

Producer sends messages
to an embedded broker

Consumer receives
messages from an embedded

broker

Figure 4.7
Two applications
communicating using
embedded brokers
over peer protocol
www.it-ebooks.info

http://www.it-ebooks.info/

93Network connectors
Also advise the stock portfolio consumer to create its own embedded broker using
group1 like this:

$ mvn -e exec:java -Dexec.mainClass=org.apache.activemq.book.ch4.Consumer \
-Dexec.args="peer://group1 CSCO ORCL"

...

ORCL 65.71 65.78 up
ORCL 66.07 66.14 up
ORCL 65.93 65.99 down
CSCO 23.30 23.33 up

...

The two commands start two embedded brokers (one for each application) and cre-
ate a peer-to-peer broker network named group1 between these two brokers. All mes-
sages sent to one broker will be available in the other broker as well as any other
brokers that might join group1. Note that the overall system operates as if these two
applications were using the same centralized broker.

EXAMPLE USE OF THE PEER PROTOCOL

Consider an application that resides on the laptop of a field sales representative who
often disconnects from the company network but still needs the application to run
successfully in a disconnected mode. This is a common scenario where the client
application needs to continue working regardless of whether the network is available.
This is a case where the peer protocol can be utilized for an embedded broker to
allow the application on the laptop to keep running successfully. In reality, while in
disconnected mode, the application is simply sending messages to the local broker,
where they’re queued up to be sent at a later time when the network is available again.
The sales rep can still log client calls, visits, and so on while the laptop is disconnected
from the network. When the laptop is again connected to the network, all of the
queued messages will be sent along based on the demand from consuming clients.

FANOUT CONNECTOR

Fanout is another utility connector used by clients to simultaneously connect to multi-
ple brokers and replicate operations to those brokers. The URI syntax of this protocol
is as follows:

fanout:(fanoutURI)?key=value

You can find its complete reference at the ActiveMQ website (http://mng.bz/J7i0).
 The fanoutURI can utilize either a static URI or a multicast URI. Consider the fol-

lowing example:

fanout:(static:(tcp://host1:61616,tcp://host2:61616,tcp://host3:61616))

In figure 4.8, the client will try to connect to three brokers statically defined using the
static protocol

 The same effect could be accomplished by simply using the following URI:

fanout:(multicast://default)
www.it-ebooks.info

http://www.it-ebooks.info/

94 CHAPTER 4 Connecting to ActiveMQ
This assumes that the brokers are configured to use
multicast to advertise their transport connectors.

 By default, the fanout protocol will wait until it
connects to at least two brokers and won’t repli-
cate commands to queues (only topics). Both of
these features are, of course, configurable with
appropriate transport options.

 Finally, there are a couple of things you should
be aware of if you plan to use the fanout protocol.
First of all, it’s not recommended for consuming
messages. Its only purpose is to produce messages
to multiple brokers. Also, if the brokers you’re
using are in the same network of brokers, it’s likely
that certain consumers will receive duplicate mes-
sages. So basically, the fanout protocol is only rec-
ommended for publishing messages to multiple
nonconnected brokers.

 With the fanout protocol, we come to the end of the discussion on networks of
brokers and network connectors. For reference purposes, table 4.2 provides a sum-
mary of all the protocols covered in this section.

In this section we saw that ActiveMQ isn’t just a standalone message broker; it can be
used to create complex networks and thus allow you to achieve good scalability and
availability of your messaging infrastructure.

4.6 Summary
Connectivity options for ActiveMQ are extremely important, and one of the first items
that users encounter. The format of ActiveMQ URIs is designed to be easy to under-
stand and it dramatically simplifies connectivity. This connectivity extends not only to

Table 4.2 Summary of protocols used to network brokers

Protocol Description

Static Used for defining networks of brokers with known addresses

Failover Used to provide reconnection logic for clients to the network of brokers or a single broker

Multicast Used for defining dynamic networks of brokers (broker addresses are not statically
defined)

Discovery Used by clients to connect to dynamic network of brokers

Peer Used to easily connect multiple embedded brokers

Fanout Used to produce messages to multiple unconnected brokers

Producer

Broker 3

Broker 2

Producer sends messages to Broker 1
multiple brokers
simultaneously

Figure 4.8 Producer sends messages
to multiple brokers using the fanout
protocol
www.it-ebooks.info

http://www.it-ebooks.info/

95Summary
clients via transport connectors, but also to other brokers via network connectors.
Embedded brokers and networks of brokers were briefly introduced and will be dis-
cussed in detail in chapters 8 and 10. Also of importance are the reconnection proto-
cols and discovery agents that demonstrate the true power of ActiveMQ connectivity
options. Knowing the types of connectors and the essence of particular protocols is
important when you choose the overall topology of your messaging system. Another
important feature in ActiveMQ is message persistence, which will be discussed in the
next chapter.
www.it-ebooks.info

http://www.it-ebooks.info/

ActiveMQ
message storage
The JMS specification supports two types of message delivery: persistent and non-
persistent. A message delivered with the persistent delivery property must be
logged to stable storage. For nonpersistent messages, a JMS provider must make
best efforts to deliver the message, but it won’t be logged to stable storage.

 ActiveMQ supports both of these types of message delivery and can also be con-
figured to support message recovery, an in-between state where messages are
cached in memory. ActiveMQ supports a pluggable strategy for message storage and
provides storage options for in-memory, file-based, and relational databases.

 Persistent messages are used if you want messages to always be available to a
message consumer after they’ve been delivered to the broker, even if that con-
sumer isn’t running when the message was sent. Once a message has been

This chapter covers
 How messages are stored in ActiveMQ for both queues

and topics

 The four styles of message stores provided with ActiveMQ

 How ActiveMQ caches messages for consumers

 How to control message caching using subscription
recovery policies
96

www.it-ebooks.info

http://www.it-ebooks.info/

97How are messages stored by ActiveMQ?
consumed and acknowledged by a message consumer, it’s typically deleted from the
broker’s message store.

 Nonpersistent messages are typically used for sending notifications or real-time
data. You should use nonpersistent messages when performance is critical and guar-
anteed delivery of the message isn’t required.

 This chapter will first examine why messages are stored differently for queues and
topics. We’ll then look at all four different message stores available to ActiveMQ, and
why and when to use them for your application. Finally we’ll look at how ActiveMQ
can be configured to temporarily cache messages for retrieval by message consumers
at a later point in time. The flexibility offered by ActiveMQ for caching messages is
unique, allowing fine control of message retrieval for your application.

 This chapter will provide a detailed guide to message persistence. In order to lay the
groundwork for this, first we’ll examine the storage of messages for JMS destinations.

5.1 How are messages stored by ActiveMQ?
It’s important to gain some basic knowledge of the storage mechanisms for messages
in an ActiveMQ message store. This will aid in configuration and provide an awareness
of what takes place in the ActiveMQ broker during the delivery of persistent messages.
Messages sent to queues and topics are stored differently, because there are some stor-
age optimizations that can be made with topics that don’t make sense with queues, as
we’ll explain.

 Storage for queues is straightforward—messages are basically stored in first in, first
out order (FIFO). See figure 5.1 for a depiction of this. One message is dispatched to a
single consumer at a time. Only when that message has been consumed and acknowl-
edged can it be deleted from the broker’s message store.

 For durable subscribers to a topic, each consumer gets a copy of the message. In
order to save storage space, only one copy of a message is stored by the broker. A dura-
ble subscriber object in the store maintains a pointer to its next stored message and
dispatches a copy of it to its consumer as shown in figure 5.2. The message store is
implemented in this manner because each durable subscriber could be consuming
messages at different rates or they may not all be running at the same time. Also,

FIFO queue

Message in

Message out
Figure 5.1 First in, first out
message storage for queues
www.it-ebooks.info

http://www.it-ebooks.info/

98 CHAPTER 5 ActiveMQ message storage
because every message can potentially have many consumers, a message can’t be
deleted from the store until it’s been successfully delivered to every interested durable
subscriber.

 Every message store implementation for ActiveMQ supports storing messages for
both queues and topics, though obviously the implementation differs between storage
types. For example, the memory store holds all messages in memory.

 Throughout the rest of this chapter, more details about configuring the different
ActiveMQ message stores and their advantages and disadvantages will be explained.

5.2 The KahaDB message store
The recommended message store for general-purpose messages since ActiveMQ ver-
sion 5.3 is KahaDB. This is a file-based message store that combines a transactional jour-
nal, for reliable message storage and recovery, with good performance and scalability.

 The KahaDB store is a file-based, transactional store that’s been tuned and designed
for the fast storage of messages. The aim of the KahaDB store is to be easy to use and as
fast as possible. Its use of a file-based message database means there’s no prerequisite
for a third-party database. This message store enables ActiveMQ to be downloaded and
running in literally minutes. In addition, the structure of the KahaDB store has been
streamlined especially for the requirements of a message broker.

 The KahaDB message store uses a transactional log for its indexes and only uses
one index file for all its destinations. It’s been used in production environments with
10,000 active connections, each connection having a separate queue. The configu-
rability of the KahaDB store means that it can be tuned for most usage scenarios, from
high throughput applications (for example, trading platforms), to storing large
amounts of messages (for example, GPS tracking).

 To enable the KahaDB store for ActiveMQ, you need to configure the
<persistenceAdapter> element in the activemq.xml configuration file. Here’s a min-
imal configuration for the KahaDB message store:

<broker brokerName="broker" persistent="true" useShutdownHook="false">
...

Topic

Message in Messages out

Durable
subscriber

Durable
subscriber

Durable
subscriberFigure 5.2 Messages stored for durable

subscribers to topics use message pointers.
www.it-ebooks.info

http://www.it-ebooks.info/

99The KahaDB message store
<persistenceAdapter>
 <kahaDB directory="activemq-data" journalMaxFileLength="16mb"/>
 </persistenceAdapter>
...
</broker>

If you want to embed an ActiveMQ broker inside an application, the message store can
also be configured programmatically. Here’s an example of a programmatic configu-
ration for KahaDB:

public class EmbeddedBrokerUsingAMQStoreExample {

BrokerService createEmbeddedBroker() throws Exception {

BrokerService broker = new BrokerService();
File dataFileDir = new File("target/amq-in-action/kahadb");

KahaDBStore kaha = new KahaDBStore();
kaha.setDirectory(dataFileDir);

// Using a bigger journal file
kaha.setJournalMaxFileLength(1024*100);

// small batch means more frequent and smaller writes
kaha.setIndexWriteBatchSize(100);
// do the index write in a separate thread
kaha.setEnableIndexWriteAsync(true);

broker.setPersistenceAdapter(kaha);
//create a transport connector
broker.addConnector("tcp://localhost:61616");
//start the broker
broker.start();

return broker;
}

}

Although the example seems small, it’s enough to create an ActiveMQ broker using
the KahaDB message store and listen for ActiveMQ clients connecting over TCP. For
more information about embedding ActiveMQ, see chapter 8.

 In order to better understand its use and configuration, it’s important to examine
the internals of the KahaDB message store.

5.2.1 The KahaDB message store internals

The KahaDB message store is the fastest of all the provided message store implemen-
tations. Its speed is the result of the combination of a fast transactional journal com-
prised of data log files, the highly optimized indexing of message IDs, and in-
memory message caching. Figure 5.3 provides a high-level diagram of the KahaDB
message store.

 The diagram provides a view of the three distinct parts of the KahaDB message
store including the following:

Create instance
of KahaDB
message store

Create transport
connector to expose
broker to clientsStart broker
www.it-ebooks.info

http://www.it-ebooks.info/

100 CHAPTER 5 ActiveMQ message storage
 The data logs act as a message
journal, which consists of a roll-
ing log of messages and com-
mands (such as transactional
boundaries and message dele-
tions) stored in data files of a
certain length. When the maxi-
mum length of the currently
used data file has been reached,
a new data file is created. All the
messages in a data file are refer-
ence counted, so that once every
message in that data file is no
longer required, the data file
can be removed or archived. In
the data logs, messages are only
appended to the end of the cur-
rent data file, so storage is fast.

 The cache holds messages tempo-
rarily if there are active con-
sumer(s) for the messages. If
there are active consumers, messages are dispatched at the same time they’re
scheduled to be stored. If messages are acknowledged in time, they don’t need
to be written to disk.

 The BTree indexes hold references to the messages in the data logs that are
indexed by their message ID. The indexes maintain the FIFO data structure for
queues and the durable subscriber pointers to their topic messages. The redo
log is used only if the ActiveMQ broker hasn’t shut down cleanly, and are used
to insure the integrity of the BTree index is maintained.

The KahaDB uses different files on disk for its data logs and indexes, so in the next
section we’ll show a typical KahaDB directory structure.

5.2.2 The KahaDB message store directory structure

When you start an ActiveMQ broker configured to use a KahaDB store, a directory will
automatically be created in which the persistent messages are stored. This directory
structure is shown in figure 5.4.

 Inside of the KahaDB directory, the following directory and file structures can be
found:

 db log files—KahaDB stores messages into data log files named db-<Number>.log of
a predefined size. When a data log is full, a new one will be created, and the log
number incremented. When there are no more references to any of the mes-
sages in the data log file, it’ll be deleted or archived.

Data logs

BTree indexes

Checkpoint

Cache

Redo log

Cache

Figure 5.3 In KahaDB messages are stored in
indexed log files and cached for performance.
www.it-ebooks.info

http://www.it-ebooks.info/

101The KahaDB message store
 archive directory—This exists only
if archiving is enabled. The
archive is used to store data logs
that are no longer needed by
KahaDB, making it possible to
replay messages from the
archived data logs at a later
point. If archiving isn’t enabled
(the default), data logs that are
no longer in use are deleted
from the file system.

 db.data —This file contains the
persistent BTree indexes to the
messages held in the message
data logs.

 db.redo —This is the redo file, used for recovering the BTree indexes if the
KahaDB message store starts after a hard stop.

Now that we’ve covered the basics of the KahaDB store, the next step is to review its
configuration.

5.2.3 Configuring the KahaDB message store

The KahaDB message store can be configured in the activemq.xml file. Its configura-
tion options control the different tuning parameters, as described in table 5.1.

Table 5.1 Configuration options available for the KahaDB message store

Property name Default value Description

directory activemq-data Directory path used by KahaDB

indexWriteBatchSize 1000 Number of index pages to write in a
batch to disk

indexCacheSize 10000 Number of index pages cached in mem-
ory

enableIndexWriteAsync false If set, will asynchronously write indexes

journalMaxFileLength 32mb A hint to set the maximum size of each
of the message data logs

enableJournalDiskSyncs true Ensures every nontransactional journal
write is followed by a disk sync (JMS
durability requirement)

cleanupInterval 30000 Time (ms) before checking for and dis-
carding/moving message data logs
that are no longer used

archive

db-1.log

db-2.log

db-3.log

db-5.log

db-4.log

db.redo

db.data

KahaDB
directory

Figure 5.4 The KahaDB message store directory
structure
www.it-ebooks.info

http://www.it-ebooks.info/

102 CHAPTER 5 ActiveMQ message storage
ActiveMQ provides a pluggable API for message stores, and there are three additional
implementations to KahaDB that are shipped with ActiveMQ:

 The AMQ message store—A file-based message store designed for performance
 The JDBC message store—A message store based on JDBC

 The Memory message store—A memory-based message store

We’ll look at the use cases and configuration for these additional message stores in the
next three sections. We’ll start with the AMQ message store, which like the KahaDB
message store is a file-based implementation. It predates KahaDB, but because of its

checkpointInterval 5000 Time (ms) before checkpointing the
journal

ignoreMissingJournalfiles false If enabled, will ignore a missing mes-
sage log file

checkForCorruptJournalFiles false If enabled, on startup will validate that
the message data logs haven’t been
corrupted.

checksumJournalFiles false If enabled, will provide a checksum for
each message data log

archiveDataLogs false If enabled, will move a message data
log to the archive directory instead of
deleting it

directoryArchive null Defines the directory to move data logs
to when all the messages they contain
have been consumed

databaseLockedWaitDelay 10000 Time (ms) before trying to acquire the
database lock (used by shared master/
slave)

maxAsyncJobs 10000 Maximum number of asynchronous
messages that will be queued
awaiting storage (should be the
same as the number of concurrent
MessageProducers)

concurrentStoreAndDispatchTransactions true Enables the dispatching of messages
to interested clients to happen concur-
rently with transaction storage

concurrentStoreAndDispatchTopics true Enables the dispatching of topic mes-
sages to interested clients to happen
concurrently with message storage

concurrentStoreAndDispatchQueues true Enables the dispatching of queue mes-
sages to interested clients to happen
concurrently with message storage

Table 5.1 Configuration options available for the KahaDB message store (continued)

Property name Default value Description
www.it-ebooks.info

http://www.it-ebooks.info/

103The AMQ message store
performance characteristics, it can make sense to use the AMQ store instead of
KahaDB, provided the number of persistent destinations is relatively low.

5.3 The AMQ message store
The AMQ message store, like KahaDB, is a combination of a transactional journal for
reliable persistence (to survive system crashes) and high-performance indexes, which
makes this store the best option when message throughput is the main requirement
for an application. But because it uses two separate files for every index, and there’s
an index per destination, the AMQ message store shouldn’t be used if you intend to
use thousands of queues per broker. Also, recovery can be slow if the ActiveMQ broker
isn’t shut down cleanly. This is because all the indexes need to be rebuilt, which
requires the broker to traverse all its data logs to accurately build the indexes again.

 In the next section, we’ll briefly examine the internals of the AMQ message store,
which are similar to the components of KahaDB.

5.3.1 The AMQ message store internals

The main components of the AMQ message store are similar to that of the KahaDB
message store, in that there’s a cache, message data logs, and a reference store for
accessing the data logs in order. Figure 5.5 provides a high-level diagram of the AMQ
message store.

 The diagram provides a view of the three distinct parts of the AMQ message store:

 The data logs—These act as a message journal.
 The cache —This holds messages for fast retrieval in memory after they’ve been

written to the data logs.
 The reference store —This holds references to the messages in the journal that are

indexed by their message ID.

Data logs

Reference store
indexes

Cache
Checkpoint

Figure 5.5 In the AMQ store
messages are stored in
referenced log files and cached
for performance.
www.it-ebooks.info

http://www.it-ebooks.info/

104 CHAPTER 5 ActiveMQ message storage
It’s important to understand the file-based directory structure used by the ActiveMQ
message store. This will help with the configuration and also with problem identifica-
tion when using ActiveMQ.

5.3.2 The AMQ message store directory structure

When you start ActiveMQ with the AMQ message store configured, a directory will
automatically be created in which the persistent messages are held. The AMQ message
store directory contains subdirectories for all the brokers that are running on the
machine. For this reason it’s strongly recommended that each broker use a unique
name. In the default configuration for ActiveMQ, the broker name is localhost, which
needs to changed to something unique. This directory structure is represented in
figure 5.6—the AMQ store directory structure.

The following directories and files can be found inside the data directory of an
ActiveMQ broker:

 A lock file—Ensures that only one broker can access this data at any given time.
The lock is commonly used for hot standby purposes where more than one bro-
ker with the same name will exist on the same system.

 A temp-storage directory—Used for storing nonpersistent messages that can no
longer be stored in broker memory. These messages are typically awaiting deliv-
ery to a slow consumer.

 The kr-store—The directory structure used by the reference (index) part of the
AMQ message store. It uses the Kaha reference store by default (Kaha is part of

activemq-
data

broker name

lock

tmp-storage

kr-store

data

state

journal data-3

data-4

data-...

data-control

archive

data-3

data-4

data-...

Figure 5.6 The AMQ message
store directory structure
www.it-ebooks.info

http://www.it-ebooks.info/

105The AMQ message store
the ActiveMQ core library) to index and store references to messages in the
data logs. There are two distinct parts to the kr-store:

* The data directory—Contains the indexes and collections used to reference
the messages held in the data logs. This data directory is deleted and rebuilt
as part of recovery, if the broker hasn’t shut down cleanly. You can force
recovery by manually deleting this directory before starting the broker.

* The state directory—Holds information about durable topic consumers. The
journal itself doesn’t hold information about consumers, so when it’s
recovered it has to retrieve information about the durable subscribers first
to accurately rebuild its database.

 The journal directory—Contains the data files for the data logs, and a data-control
file that holds some meta information. The data files are reference counted, so
when all the contained messages are delivered, a data file can be deleted or
archived.

 The archive directory—Exists only if archiving is enabled. Its default location can
be found next to the journal. It makes sense to use a separate partition or disk.
The archive is used to store data logs from the journal directory, which are
moved here instead of being deleted. This makes it possible to replay messages
from the archive at a later point. To replay messages, move the archived data logs
(or a subset) to a new journal directory and start a new broker pointed to the
location of this directory. It’ll automatically replay the data logs in the journal.

Now that the basics of the AMQ message store have been covered, the next step is to
review its configuration.

5.3.3 Configuring the AMQ message store

The AMQ store configuration allows the user to change its basic behaviour around
indexing, checkpoint intervals, and the size of the journal data files. These items and
many more can be customized through the use of properties. The key properties for
the AMQ store are shown in table 5.2.

Table 5.2 Configuration properties for the AMQ message store

Property name Default value Description

directory activemq-data The directory path used by the AMQ message store.

useNIO true NIO provides faster write-through to the systems disks.

syncOnWrite false Syncs every write to disk.

syncOnTransaction true Syncs every transaction to disk.

maxFileLength 32mb The maximum size of the message journal data files
before a new one is used.
www.it-ebooks.info

http://www.it-ebooks.info/

106 CHAPTER 5 ActiveMQ message storage
Here’s an example of using the properties from table 5.2 in an ActiveMQ XML config-
uration file:

<?xml version="1.0" encoding="UTF-8"?>
<beans>

<broker xmlns="http://activemq.apache.org/schema/core">
<persistenceAdapter>

<amqPersistenceAdapter
directory="target/Broker2-data/activemq-data"
syncOnWrite="true"
indexPageSize="16kb"
indexMaxBinSize="100"
maxFileLength="10mb" />

</persistenceAdapter>
</broker>
</beans>

This is but a small example of a customized configuration for the AMQ store using the
available properties.

 The AMQ store, like the KahaDB store, enables users to get up and running
quickly, as there are no external dependencies on other databases. But when you want
to run an ActiveMQ broker and use an already established relational database, you
need to use a JDBC message store.

persistentIndex true Persistent indexes are used. If false, an in-memory
HashMap is used.

maxCheckpointMessageAddSize 4kb The maximum memory used for a transaction before
writing to disk.

cleanupInterval 3000(ms) Time before checking which journal data files are still
required.

checkpointInterval 20000(ms) Time before moving cached message IDs to the refer-
ence store indexes.

indexBinSize 1024 The initial number of hash bins to use for indexes.

indexMaxBinSize 16384 The maximum number of hash bins to use.

directoryArchive archive The directory path used by the AMQ message store to
place archived journal files.

archiveDataLogs false If true, journal files are moved to the archive instead of
being deleted.

recoverReferenceStore true Recovers the reference store if the broker isn’t shut
down cleanly; this errs on the side of extreme caution.

forceRecoverReferenceStore false Forces a recovery of the reference store.

Table 5.2 Configuration properties for the AMQ message store (continued)

Property name Default value Description
www.it-ebooks.info

http://www.it-ebooks.info/

107The JDBC message store
5.4 The JDBC message store
The flexibility of the ActiveMQ pluggable message store API allows for many different
implementation choices. The oldest and more common store implementation uses
JDBC for messaging persistence.

 The most common reason why so many organizations choose the JDBC message
store is because they already have expertise administering relational databases. JDBC
persistence is definitely not superior in performance to the aforementioned message
store implementations. The fact of the matter is that many businesses have invested in
the use of relational databases so they prefer to make full use of them.

 But the use of a shared database is particularly useful for making a redundant mas-
ter/slave topology out of multiple brokers. When a group of ActiveMQ brokers is con-
figured to use a shared database, they’ll all try to connect and grab a lock in the lock
table, but only one will succeed and become the master. The remaining brokers will
be slaves, and will be in a wait state, not accepting client connections until the master
fails. This is a common deployment scenario for ActiveMQ, which will be covered in
more detail in chapter 10.

 When using the JDBC message store, the
default JDBC driver used in ActiveMQ is Apache
Derby. But many other relational databases are
supported.

5.4.1 Databases supported by the
JDBC message store

Just about any database with a JDBC driver can
be used. Though this isn’t an exhaustive list, the
JDBC store has been shown to operate with the
following relational databases:

 Apache Derby
 MySQL
 PostgreSQL
 Oracle
 SQL Server
 Sybase
 Informix
 MaxDB

Some users prefer to use a relational database
for message persistence simply because of the
ability to query the database to examine
messages. The following sections will discuss
this topic.

Using Apache Derby
ActiveMQ
As mentioned, Apache Derby is
the default database used with
the JDBC store. Not only is it
written in 100% Java, but it’s
also designed to be embed-
dable. Derby offers a full fea-
ture set, performs well, and
provides a small footprint. But
there’s one caveat with the use
of Derby that should be passed
along to ActiveMQ users. Derby
can be tough on the garbage
collector in the JVM. Because
so much churn takes place with
the storing and deleting of mes-
sages in the database, experi-
ence has proven that putting
Derby in its own JVM instance
allows ActiveMQ to perform
much better. The reason for
this comes down to the fact
that ActiveMQ and Derby will
no longer be competing for the
same JVM resources.
www.it-ebooks.info

http://www.it-ebooks.info/

108 CHAPTER 5 ActiveMQ message storage
5.4.2 The JDBC message store schema

The JDBC message store uses a schema consisting of three tables. Two of the tables are
used to hold messages, and the third is used as a lock table to ensure that only one
ActiveMQ broker can access the database at one time. Here’s a detailed breakdown of
these tables.

 The message table, shown in table 5.3, is by default named ACTIVEMQ_MSGS and is
defined as follows.

Messages are broken down and stored into the ACTIVEMQ_MSGS table for both
queues and topics.

 There’s a separate table for holding durable subscriber information and an ID to
the last message the durable subscriber received. This information is held in the
ACTIVEMQ_ACKS table, which is shown in table 5.4.

For durable subscribers, the LAST_ACKED_ID sequence is used as a simple pointer into
the ACTIVEMQ_MSGS and enables messages for a particular durable subscriber to be
easily selected from the ACTIVEMQ_MSGS table.

Table 5.3 The columns of the ACTIVEMQ_MSGS SQL table

Column name Default type Description

ID INTEGER The sequence ID used to retrieve the message.

CONTAINER VARCHAR(250) The destination of the message.

MSGID_PROD VARCHAR(250) The ID of the message producer.

MSGID_SEQ INTEGER The producer sequence number for the message. This
together with the MSGID_PROD is equivalent to the JMS-
MessageID.

EXPIRATION BIGINT The time in milliseconds when the message will expire.

MSG BLOB The serialized message itself.

Table 5.4 The columns of the ACTIVEMQ_ACKS SQL table

Column name Default type Description

CONTAINER VARCHAR(250) The destination of the message

SUB_DEST VARCHAR(250) The destination of the durable subscriber (can be different
from the container if using wildcards)

CLIENT_ID VARCHAR(250) The client ID of the durable subscriber

SUB_NAME VARCHAR(250) The subscriber name of the durable subscriber

SELECTOR VARCHAR(250) The selector of the durable subscriber

LAST_ACKED_ID Integer The sequence ID of last message received by this subscriber
www.it-ebooks.info

http://www.it-ebooks.info/

109The JDBC message store
 The lock table, called ACTIVEMQ_LOCK, is used to ensure that only one ActiveMQ
broker instance can access the database at one time. If an ActiveMQ broker can’t grab
the database lock, that broker won’t initialize fully, and will wait until the lock
becomes free, or it’s shut down. The table structure of the lock table is defined in
table 5.5.

Now that we’ve explained the structure of the database tables used by the JDBC store,
we can walk through some examples of configuring JDBC message stores, which we
look at in the next section.

5.4.3 Configuring the JDBC message store

Configuring the default JDBC message store is straightforward. As stated previously,
the default JDBC store uses Apache Derby in the broker configuration as shown:

<beans>
<broker brokerName="test-broker"

persistent="true"
xmlns="http://activemq.apache.org/schema/core">

<persistenceAdapter>
<jdbcPersistenceAdapter dataDirectory="activemq-data"/>

</persistenceAdapter>

</broker>
</beans>

The preceding configuration sets the persistence adaptor for the ActiveMQ broker to
be the JDBC message store (which uses Apache Derby by default) and sets the data
directory to be used by the embedded Apache Derby instance.

 One of the key properties on the JDBC persistence adapter (the interface onto the
JDBC message store) is the dataSource property. This property defines a factory from
which connections to a relational database are created. Configuring the dataSource
object enables the JDBC persistence adaptor to use physical databases other than the
default. Here’s an example of an ActiveMQ configuration for the JDBC message store
using the MySQL database:

<?xml version="1.0" encoding="UTF-8"?>
<beans>

<broker brokerName="test-broker"
persistent="true"
xmlns="http://activemq.apache.org/schema/core">

<persistenceAdapter>

Table 5.5 The columns of the ACTIVEMQ_LOCK SQL table

Column name Default type Description

ID INTEGER A unique ID for the lock

Broker Name VARCHAR(250) The name of the ActiveMQ broker that has the lock
www.it-ebooks.info

http://www.it-ebooks.info/

110 CHAPTER 5 ActiveMQ message storage
<jdbcPersistenceAdapter dataSource="#mysql-ds"/>
</persistenceAdapter>

</broker>

<bean id="mysql-ds"
class="org.apache.commons.dbcp.BasicDataSource"
destroy-method="close">

<property name="driverClassName" value="com.mysql.jdbc.Driver"/>
<property name="url"

value="jdbc:mysql://localhost/activemq?relaxAutoCommit=true"/>
<property name="username" value="activemq"/>
<property name="password" value="activemq"/>
<property name="maxActive" value="200"/>
<property name="poolPreparedStatements" value="true"/>

</bean>

</beans>

The preceding example uses the Apache Commons DBCP BasicDataSource to wrap
the MySQL JDBC driver for connection pooling. In the example, the driverClassName
is the name of the JDBC driver to use. Some properties that you can configure are
passed directly to the database driver itself. For example, maxActive is a property for
the MySQL database connector, which tells the database how many active connections
to hold open at one time.

 Just as a point of comparison, here’s an example of a configuration to use the Ora-
cle database:

<?xml version="1.0" encoding="UTF-8"?>
<beans>

<broker brokerName="test-broker"
persistent=true
xmlns="http://activemq.apache.org/schema/core">

<persistenceAdapter>
<jdbcPersistenceAdapter dataSource="#oracle-ds"/>

</persistenceAdapter>
</broker>

<bean id="oracle-ds" class="org.apache.commons.dbcp.BasicDataSource"
destroy-method="close">
<property name="driverClassName"

value="oracle.jdbc.driver.OracleDriver"/>
<property name="url" value="jdbc:oracle:thin:@localhost:1521:AMQDB"/>
<property name="username" value="scott"/>
<property name="password" value="tiger"/>
<property name="maxActive" value="200"/>
<property name="poolPreparedStatements" value="true"/>

</bean>

</beans>

This example uses the Apache Commons DBCP BasicDataSource to wrap the Oracle
JDBC driver for connection pooling.

 Now that some example configurations for the JDBC message store have been
shown, you might ask, when is it best to use this type of persistence?
www.it-ebooks.info

http://www.it-ebooks.info/

111The memory message store
5.4.4 Using the JDBC message store with the ActiveMQ journal

Though the performance of the JDBC message store isn’t wonderful, it can be
improved through the use of the ActiveMQ journal. The journal ensures the consis-
tency of JMS transactions. Because it incorporates fast message writes with caching
technology, it can significantly improve the performance of the ActiveMQ broker.

 Here’s an example configuration using the journal with JDBC (aka journaled
JDBC). In this case, Apache Derby is being used.

<?xml version="1.0" encoding="UTF-8"?>
<beans>

<broker brokerName="test-broker"
xmlns="http://activemq.apache.org/schema/core">

<persistenceFactory>
<journalPersistenceAdapterFactory
journalLogFiles="4"
journalLogFileSize="32768"
useJournal="true"
useQuickJournal="true"
dataSource="#derby-ds"
dataDirectory="activemq-data" />

</persistenceFactory>

</broker>

<bean id="derby-ds" class="org.apache.derby.jdbc.EmbeddedDataSource">
<property name="databaseName" value="derbydb"/>
<property name="createDatabase" value="create"/>

</bean>

</beans>

The journal can be used with any JDBC datasource, but it’s important to know when it
should and shouldn’t be used.

 The journal offers considerable performance advantages over the use of a stan-
dard JDBC message store, especially when the JDBC database is co-located on the same
machine as the ActiveMQ broker. The only time when it’s not possible to use the jour-
nal is in a shared database master/slave configuration. Because messages from the
master may be stored locally in the journal before they’ve been committed to the data-
base, using the journal in this configuration could lead to lost messages if the master
failed because the journal isn’t replicated.

 We’ve covered message storage in relational databases with some example config-
urations. In the next section we’ll look at the memory store, which doesn’t persist
messages.

5.5 The memory message store
The memory message store holds all persistent messages in memory. No active cach-
ing is involved, so you have to be careful that both the JVM and the memory limits you
set for the broker are large enough to accommodate all the messages that may exist in
this message store at one time.
www.it-ebooks.info

http://www.it-ebooks.info/

112 CHAPTER 5 ActiveMQ message storage
 The memory message store can be useful if you know that the broker will only
store a finite amount of messages, which will typically be consumed quickly. But it
really comes into its own for small test cases, where you want to prove interaction with
a JMS broker, but don’t want to incur the cost of a message store start time, or the has-
sle of cleaning up the message store after the test has finished.

5.5.1 Configuring the memory store

Configuring the memory store is simple. The memory store is the implementation
used when the broker property named persistent is set to false (the default is true).
Here’s an example of configuration which enables use of the ActiveMQ message store:

<?xml version="1.0" encoding="UTF-8"?>
<beans>

<broker brokerName="test-broker"
persistent="false"
xmlns="http://activemq.apache.org/schema/core">

<transportConnectors>
<transportConnector uri="tcp://localhost:61635"/>

</transportConnectors>
</broker>

</beans>

By setting the persistent attribute on the broker element to false, this effectively tells
the broker not to persist messages to long-term storage. Instead, the ActiveMQ broker
will hold messages in memory until the messages are either consumed or the
ActiveMQ broker is shut down.

 Embedding an ActiveMQ broker with the memory store is easy. The following
example starts a broker with the memory store:

import org.apache.activemq.broker.BrokerService;

public void createEmbeddedBroker() throws Exception {

BrokerService broker = new BrokerService();
//configure the broker to use the Memory Store
broker.setPersistent(false);

//Add a transport connector
broker.addConnector("tcp://localhost:61616");

//now start the broker
broker.start();

}

Note the bold text that sets persistence to false on the broker object. This is equivalent
to the previous XML configuration example.

 There are currently no utilities to change from one type of ActiveMQ message
store to another. If you want to change message stores for an application, it’s recom-
mended that you only do so on a new ActiveMQ broker, or wait until your application
has consumed all the messages sent, then close down the ActiveMQ broker, reconfig-
ure it for a new message store, and restart it.
www.it-ebooks.info

http://www.it-ebooks.info/

113Caching messages in the broker for consumers
 This concludes the discussion of the various message store implementations for
message persistent in ActiveMQ. Another topic that bears some discussion regarding
message persistence is a more specialized case for caching messages in the ActiveMQ
broker for nondurable topic subscribers.

5.6 Caching messages in the broker for consumers
Although one of the most important aspects of message persistence is that the mes-
sages will survive in long-term storage, there are a number of cases where messages are
required to be available for consumers that were disconnected from the broker, but
persisting the messages in a database is too slow. Real-time data delivery of pricing
information for a trading platform is a good example. But typically real-time data
applications use messages that are only valid for a finite amount of time, often less
than a minute. So it’s pointless to persist them to survive a system outage because new
messages will arrive soon.

 ActiveMQ supports the caching of messages for these types of systems using mes-
sage caching in the broker by using something called a subscription recovery policy. This
configurable policy is used for deciding which types of messages should be cached,
how many, and for how long. In the rest of this section we’ll explain how message
caching works in ActiveMQ and how to configure the different types of subscription
recovery policies that are available.

5.6.1 How message caching for consumers works

The ActiveMQ message broker caches messages in memory for every topic that’s used.
The only types of topics that aren’t supported are temporary topics and ActiveMQ
advisory topics. Caching of messages in this way isn’t handled for queues, as the nor-
mal operation of a queue is to hold every message sent to it.

 Messages that are cached by the broker are only dispatched to a topic consumer if
the consumer is retroactive, and never to durable topic subscribers.

 Topic consumers are marked as being retroactive by a property set on the destina-
tion when the topic consumer is created. Here’s an example:

import org.apache.activemq.ActiveMQConnectionFactory;
import javax.jms.Connection;
import javax.jms.ConnectionFactory;
import javax.jms.MessageConsumer;
import javax.jms.Session;
import javax.jms.Topic;

public void createRetroactiveConsumer() throws JMSException{

ConnectionFactory fac = new ActiveMQConnectionFactory();
Connection connection = fac.createConnection();
connection.start();

Session session =
connection.createSession(false,Session.AUTO_ACKNOWLEDGE);

Topic topic =
session.createTopic("TEST.TOPIC?consumer.retroactive=true");

Mark consumers
to be retroactive
www.it-ebooks.info

http://www.it-ebooks.info/

114 CHAPTER 5 ActiveMQ message storage
MessageConsumer consumer = session.createConsumer(topic);
}

On the broker side, the message caching is controlled by a destination policy called a
subscriptionRecoveryPolicy. The default subscription recovery policy used in the
broker is a FixedSizeSubscriptionRecoveryPolicy. Let’s walk through the different
subscription recovery policies that are available.

5.6.2 The ActiveMQ subscription recovery policies

There are a number of different policies that allow for fine-tuning the duration and
type of messages that are cached for nondurable topic consumers. Each policy type is
explained here.

THE ACTIVEMQ FIXED SIZE SUBSCRIPTION RECOVERY POLICY

This policy limits the number of messages cached for the topic based on the amount
of memory they use. This is the default subscription recovery policy in ActiveMQ. You
can choose to have the cache limit applied to all topics, or on a topic-by-topic basis.
The properties available are shown in table 5.6.

THE ACTIVEMQ FIXED COUNT SUBSCRIPTION RECOVERY POLICY

This policy limits the number of messages cached by the topic based on a static count.
Only one property is available, as listed in table 5.7.

THE ACTIVEMQ QUERY-BASED SUBSCRIPTION RECOVERY POLICY

This policy limits the number of messages cached based on a JMS property selector that’s
applied to each message. Only one property is available, as shown in table 5.8.

Table 5.6 Configuration properties for a fixed size subscription recovery policy

Property name Default value Description

maximumSize 6553600 The memory size in bytes for this cache

useSharedBuffer true If true, the amount of memory allocated will be used across
all topics

Table 5.7 Configuration properties for a fixed count subscription recovery policy

Property name Default value Description

maximumSize 100 The number of messages allowed in the topics cache

Table 5.8 Configuration properties for a query-based subscription recovery policy

Property name Default value Description

query null Caches only messages that match the query
www.it-ebooks.info

http://www.it-ebooks.info/

115Caching messages in the broker for consumers
THE ACTIVEMQ TIMED SUBSCRIPTION RECOVERY POLICY

This policy limits the number of messages cached by the topic based on an expiration
time that’s applied to each message. Note that the expiration time on a message is
independent from the timeToLive that’s set by the MessageProducer. The configura-
tion properties for a timed subscription policy are shown in table 5.9.

THE ACTIVEMQ LAST IMAGE SUBSCRIPTION RECOVERY POLICY

This policy holds only the last message sent to a topic. It can be useful for real-time
pricing information—where a price per topic is used, you might only want the last
price that’s sent to that topic. There are no configuration properties for this policy.

THE ACTIVEMQ NO SUBSCRIPTION RECOVERY POLICY

This policy disables message caching for topics. There are no properties to configure
for this policy.

5.6.3 Configuring the subscription recovery policy

You can configure the subscriptionRecoveryPolicy for either individual topics, or
you can use wildcards, in the ActiveMQ broker configuration. An example configura-
tion is shown here:

<?xml version="1.0" encoding="UTF-8"?>
<beans>

<broker brokerName="test-broker"
persistent="true"
useShutdownHook="false"
deleteAllMessagesOnStartup="true"
xmlns="http://activemq.apache.org/schema/core">

<transportConnectors>
<transportConnector uri="tcp://localhost:61635"/>

</transportConnectors>
<destinationPolicy>

<policyMap>
<policyEntries>

<policyEntry topic="Topic.FixedSizedSubs.>">
<subscriptionRecoveryPolicy>

<fixedSizeSubscriptionRecoveryPolicy maximumSize="2000000"
useSharedBuffer="false"/>

</subscriptionRecoveryPolicy>
</policyEntry>

<policyEntry topic="Topic.LastImageSubs.>">
<subscriptionRecoveryPolicy>

<lastImageSubscriptionRecoveryPolicy/>
</subscriptionRecoveryPolicy>

</policyEntry>

Table 5.9 Configuration properties for a timed subscription recovery policy

Property name Default value Description

recoverDuration 60000 The time in milliseconds to keep messages in the cache

Last image recovery for
Topic.LastImageSubs.>
www.it-ebooks.info

http://www.it-ebooks.info/

116 CHAPTER 5 ActiveMQ message storage
<policyEntry topic="Topic.NoSubs.>">
<subscriptionRecoveryPolicy>

<noSubscriptionRecoveryPolicy/>
</subscriptionRecoveryPolicy>

</policyEntry>

<policyEntry topic="Topic.TimedSubs.>">
<subscriptionRecoveryPolicy>

<timedSubscriptionRecoveryPolicy recoverDuration="25000"/>
</subscriptionRecoveryPolicy>

</policyEntry>

</policyEntries>
</policyMap>

</destinationPolicy>
</broker>

</beans>

5.7 Summary
This chapter began by discussing how messages are stored differently for queues and
topics. Then the various message store implementations were explained and dis-
cussed, including their configuration and when to use each. You should have a good
understanding about the two types of file-based message stores that you can use with
ActiveMQ—the AMQ message store and the KahaDB message store—and their trade-
offs between performance and scalability. We also covered the JDBC message store,
which is an option if you want to use an existing relational database and the ActiveMQ
memory message store.

 Finally we discussed the special case for caching messages in the broker for nondu-
rable topic consumers. This section explained why caching is required, when it makes
sense to use this feature, and the flexibility ActiveMQ provides in configuring the mes-
sage caches.

 In the next chapter, we’ll look at authentication of users of ActiveMQ and how to
restrict access to destinations using authorization.

Time limited
recovery policy for
Topic.TimedSubs.>
www.it-ebooks.info

http://www.it-ebooks.info/

Securing ActiveMQ
Securing access to the message broker and its destinations is a common concern.
For this reason, ActiveMQ provides a flexible and customizable security model that
can be adapted to the security mechanisms used in your environment.

 Before we begin our discussion about security with ActiveMQ, a brief review of
some basic terms related to security and how they fit into the ActiveMQ security
model is in order.

Authentication is the process used to verify the integrity of an entity or a user
that’s requesting access to a secured resource. Some common forms of authentica-
tion include plain-text passwords, one-time password devices, smart cards, or Ker-
beros, just to name a few. ActiveMQ provides simple authentication and JAAS (Java
Authentication and Authorization Service) authentication, as well as an API for
writing custom authentication plug-ins. Upon successful authentication, access to
the system is granted, but access to perform operations using the system resources
may require specific authorization.

This chapter covers
 How to use authentication in ActiveMQ

 How to use authorization in ActiveMQ

 How to create a custom security plug-in for ActiveMQ

 Using certificate-based security with ActiveMQ
117

www.it-ebooks.info

http://www.it-ebooks.info/

118 CHAPTER 6 Securing ActiveMQ
Authorization is the process used to determine the access rights of a user or an
entity to a secured resource. Authorization depends upon authentication to prevent
unauthorized users from entering the system, but authorization determines whether a
user has the privileges to perform certain actions. For example, does user X have the
necessary permissions to execute program Y on system Z? Such privileges are often
referred to as access control lists (ACLs) and determine who or what can access a given
resource to perform a given operation. In ActiveMQ, authentication involves restrict-
ing access to various operations including the ability to publish to a destination, to
consume from a destination, to create a destination, or to delete a destination.

 We’ll start this chapter by describing authentication plug-ins. We’ll see how we can
set authentication directly in XML configuration by using the simple authentication plug-
in or by using the JAAS API. Next, it’s time to deal with authorization. We’ll cover the
authorization plug-in, which in conjunction with the authentication plug-ins allows us to
define a fine-grained security access to broker clients. Besides this standard per-client
authorization, ActiveMQ allows you to do authorization on the message level, as we’ll
see next. If none of these built-in security mechanisms works for you, you can always
build your own. We’ll demonstrate this process by building a custom security plug-in
that authenticates the clients based on their IP address. The final section of this chap-
ter will deal with certificate-based security. We’ll expand on our SSL example used in
chapter 4 and see how you can authenticate and authorize clients based on their SSL
certificates.

 So, after reading this chapter, you’ll be able to secure the broker and integrate it
fully with your existing security infrastructure. Now let’s look at some practical exam-
ples of ActiveMQ security configurations.

6.1 Authentication
All security concepts in ActiveMQ are implemented as plug-ins. This allows for easy
configuration and customization via the <plugin> element of the ActiveMQ XML con-
figuration file. Two plug-ins are available in ActiveMQ to authenticate users:

 Simple authentication plug-in—Handles credentials directly in the XML configura-
tion file or in a properties file

 JAAS authentication plug-in—Implements the JAAS API and provides a more pow-
erful and customizable authentication solution

Let’s review these two authentication plug-ins.

6.1.1 Configuring the simple authentication plug-in

The easiest way to secure the broker is through the use of authentication credentials
placed directly in the broker’s XML configuration file. Such functionality is provided
by the simple authentication plug-in that’s part of ActiveMQ. The following listing pro-
vides an example of using this plug-in.
www.it-ebooks.info

http://www.it-ebooks.info/

119Authentication
<broker ...>

<plugins>
<simpleAuthenticationPlugin>

<users>
<authenticationUser username="admin" password="password"

groups="admins,publishers,consumers"/>
<authenticationUser username="publisher" password="password"

groups="publishers,consumers"/>
<authenticationUser username="consumer" password="password"

groups="consumers"/>
<authenticationUser username="guest" password="password"

groups="guests"/>
</users>

</simpleAuthenticationPlugin>
</plugins>

</broker>

By using this simple configuration snippet, four users can now access ActiveMQ. Obvi-
ously, for authentication purposes, each user must have a username and a password.
Additionally, the groups attribute provides a comma-separated list of groups to which
the user belongs. This information is used for authorization purposes, as will be seen
shortly.

 The best way to understand this configuration is to use it with the stock portfolio
example. First, the broker must be started using the configuration file defined earlier:

${ACTIVEMQ_HOME}/bin/activemq console \
xbean:src/main/resources/org/apache/activemq/book/ch6/activemq-simple.xml

Now run the stock publisher and you should see the following exception:

$ mvn exec:java \
-Dexec.mainClass=org.apache.activemq.book.ch3.portfolio.Publisher \
-Dexec.args="CSCO ORCL"
...
Exception in thread "main"
javax.jms.JMSException: User name or password is invalid.
...

The preceding exception is expected because a security plug-in is activated but the
authentication credentials haven’t yet been defined in the publisher client. To fix this
exception, modify the publisher to add a username and password. The following snip-
pet provides an example of this:

private String username = "publisher";
private String password = "password";

public Publisher() throws JMSException {
factory = new ActiveMQConnectionFactory(brokerURL);
connection = factory.createConnection(username, password);
connection.start();

Listing 6.1 Configuring the simple authentication plug-in

Four authentication
users with their groups
www.it-ebooks.info

http://www.it-ebooks.info/

120 CHAPTER 6 Securing ActiveMQ
session = connection.createSession(false,
Session.AUTO_ACKNOWLEDGE);
producer = session.createProducer(null);

}

As the preceding snippet shows, the only necessary change is to define a username
and a password that are then used as parameters to the call to the create-
Connection() method. Compiling and running the modified publisher will now yield
the proper behavior, as shown in the following output:

$ mvn exec:java \
-Dexec.mainClass=org.apache.activemq.book.ch6.Publisher
-Dexec.args="CSCO ORCL"
...
Sending: {price=35.25020234334, stock=ORCL, offer=35.28545254568,
up=true} on destination: topic://STOCKS.ORCL
Sending: {price=35.018408299624, stock=ORCL, offer=35.053426707924,
up=false} on destination: topic://STOCKS.ORCL
Sending: {price=34.722966908601, stock=ORCL, offer=34.75768987551,
up=false} on destination: topic://STOCKS.ORCL
Sending: {price=1.651542629939308, stock=CSCO, offer=1.653194172569,
up=true} on destination: topic://STOCKS.CSCO
Sending: {price=34.598719623046, stock=ORCL, offer=34.63331834266,
up=false} on destination:topic://STOCKS.ORCL
Sending: {price=34.43900856142, stock=ORCL, offer=34.47344756998,
up=false} on destination: topic://STOCKS.ORCL
Sending: {price=1.6580787335090, stock=CSCO, offer=1.659736812242,
up=true} on destination: topic://STOCKS.CSCO
Sending: {price=34.458768559093, stock=ORCL, offer=34.49322732765,
up=true} on destination: topic://STOCKS.ORCL
Sending: {price=1.6547727745488, stock=CSCO, offer=1.6564275473233,
up=false} on destination:topic://STOCKS.CSCO
Sending: {price=1.665375738897, stock=CSCO, offer=1.6670411146368,
up=true} on destination: topic://STOCKS.CSCO
Published '10' of '10' price messages
...

Note in the output that our producer successfully connects to the broker and sends
messages.

 Unfortunately, with the simple authentication plug-in, passwords are stored (and
transferred) as clear text, which impacts the security of the broker. But even plain-text
passwords prevent unauthorized clients from interacting with the broker, and in some
environments this is all that’s needed. Additionally, you can consider using the simple
authentication plug-in in combination with the SSL transport, which will at least solve
the problem of sending plain passwords over the network.

 For environments that need a more secure installation and/or for environments
that already have an existing security infrastructure with which ActiveMQ will need to
integrate, the JAAS plug-in may be more appropriate.
www.it-ebooks.info

http://www.it-ebooks.info/

121Authentication
6.1.2 Configuring the JAAS plug-in

A detailed explanation of JAAS is beyond the scope of this book. Instead, this section will
briefly introduce JAAS basic concepts and demonstrate how to create a Properties-
LoginModule that can be used to achieve the same functionality as the simple security
plug-in using JAAS. For more detailed information about JAAS, please refer to the JAAS
documentation (http://mng.bz/BvvB).

JAAS provides pluggable authentication, which means ActiveMQ will use the same
authentication API regardless of the technique used to verify user credentials (a text
file, a relational database, LDAP, and so on). All that’s required is an implementation
of the javax.security.auth.spi.LoginModule interface (http://mng.bz/8zLV) and
a configuration change to ActiveMQ. Fortunately, ActiveMQ comes with implementa-
tions of some modules that can authenticate users using properties files, LDAP, and
SSL certificates, which will be enough for many use cases. Because JAAS login modules
follow a specification, one advantage of them is that they’re relatively straightforward
to configure. The best way to understand a login module is by walking through a con-
figuration. For this task, the login module that works with properties files will be used.

 The first step in this task is to identify the PropertiesLoginModule so that
ActiveMQ is made aware of it. To do so, you must create a file named login.config that
contains a standardized format for configuring JAAS users and groups (http://
mng.bz/IIEB). Here are the contents of the file:

activemq-domain {
org.apache.activemq.jaas.PropertiesLoginModule required

debug=true
org.apache.activemq.jaas.properties.user="users.properties"
org.apache.activemq.jaas.properties.group="groups.properties";

};

The login.config file shown here contains a few different items for configuring a JAAS
module. The activemq-domain is the predominant item in this file and it contains all
the configuration for the login module. First is the fully qualified name of the
PropertiesLoginModule and the trailing notation identifying it as required. This
means that the authentication can’t continue without this login module. Second is a
line to enable debug logging for the login module; this is optional. Third is the
org.apache.activemq.jaas.properties.user property, which points to the users.
properties file. Fourth is the org.apache.activemq.jaas.properties.group prop-
erty, which points to the groups.properties file. Once this is all defined, the two prop-
erties files must be created.

NOTE The PropertiesLoginModule used in this section is an implementa-
tion of a JAAS login module, and it comes with ActiveMQ.

Defining user credentials in the properties files is simple. The users.properties file
defines each user in a line-delimited manner along with its password, as shown:

admin=password
publisher=password
www.it-ebooks.info

http://www.it-ebooks.info/

122 CHAPTER 6 Securing ActiveMQ
consumer=password
guest=password

The groups.properties file defines group names in a line-delimited manner as well.
But each group contains a comma-separated list of its users as shown:

admins=admin
publishers=admin,publisher
consumers=admin,publisher,consumer
guests=guest

Once these files are created, the JAAS plug-in must be defined in the ActiveMQ XML
configuration file. The following is an example of this necessary change:

...
<plugins>

<jaasAuthenticationPlugin configuration="activemq-domain" />
</plugins>
...

The example is shortened for readability and only shows the necessary change to
enable the JAAS login module. As you can see, the JAAS plug-in only needs the name
of the JAAS domain in the login.config file. ActiveMQ will locate the login.config file
on the classpath (an alternative to this is to use the java.security.auth.login.
config system property for the location of the login.config file). To test out the JAAS
login module that was just created, start up ActiveMQ using these changes. Here’s the
command to use:

${ACTIVEMQ_HOME}/bin/activemq console \
-Djava.security.auth.login.config=\
src/main/resources/org/apache/activemq/book/ch6/login.config \
xbean:src/main/resources/org/apache/activemq/book/ch6/activemq-jaas.xml
...
Loading message broker from:
xbean:src/main/resources/org/apache/activemq/book/ch6/activemq-jaas.xml
INFO | PListStore:

/Users/bsnyder/amq/apache-activemq-5.4.1/data/localhost/tmp_storage
started
INFO | Using Persistence Adapter: KahaDBPersistenceAdapter

[/Users/bsnyder/amq/apache-activemq-5.4.1/data/localhost/KahaDB]
INFO | JMX consoles can connect to service:
jmx:rmi:///jndi/rmi://localhost:1099/jmxrmi
INFO | ActiveMQ 5.4.1 JMS Message Broker (localhost) is starting
INFO | For help or more information please see:

http://activemq.apache.org/
INFO | Scheduler using directory:

/Users/bsnyder/amq/apache-activemq-5.4.1/data/localhost/scheduler
INFO | JobSchedulerStore:

/Users/bsnyder/amq/apache-activemq-5.4.1/data/localhost/scheduler
started
INFO | Listening for connections at: tcp://localhost:61616
INFO | Connector openwire Started
INFO | ActiveMQ JMS Message Broker

(localhost, ID:mongoose.local-61955-1289966951514-0:0) started
www.it-ebooks.info

http://www.it-ebooks.info/

123Authorization
The broker has been secured just like the previous section where simple authentica-
tion was used, only now the JAAS standard was used. Now we can start our stock portfo-
lio publisher that uses proper credentials and expect it to be able to access the broker:

mvn exec:java \
-Dexec.mainClass=org.apache.activemq.book.ch6.Publisher \
-Dexec.args="CSCO ORCL"
...
Sending: {price=44.84266119470, stock=ORCL, offer=44.88750385590,
up=true} on destination: topic://STOCKS.ORCL
Sending: {price=44.5575471806, stock=ORCL, offer=44.60210472778,
up=false} on destination: topic://STOCKS.ORCL
Sending: {price=44.49794307251, stock=ORCL, offer=44.54244101559,
up=false} on destination: topic://STOCKS.ORCL
Sending: {price=44.48574009628, stock=ORCL, offer=44.530225836380,
up=false} on destination: topic://STOCKS.ORCL
Sending: {price=55.89763705357, stock=CSCO, offer=55.953534690630,
up=true} on destination: topic://STOCKS.CSCO
Sending: {price=44.09643970531, stock=ORCL, offer=44.140536145020,
up=false} on destination: topic://STOCKS.ORCL
Sending: {price=44.20879151845, stock=ORCL, offer=44.25300030997,
up=true} on destination: topic://STOCKS.ORCL
Sending: {price=44.38257378288, stock=ORCL, offer=44.426956356664,
up=true} on destination: topic://STOCKS.ORCL
Sending: {price=44.660334580924, stock=ORCL, offer=44.704994915505,
up=true} on destination: topic://STOCKS.ORCL
Sending: {price=44.77852477644, stock=ORCL, offer=44.8233033012,
up=true} on destination: topic://STOCKS.ORCL
Published '10' of '10' price messages
...

As we can see, the JAAS plug-in provides exactly the same functionality as the simple
authentication plug-in. But it does so using the standardized Java mechanism, meaning
you can use it to plug in any existing security policies you use inside your organization.

 In addition to the ability to authenticate access to the broker services, ActiveMQ
also provides the ability to authorize specific operations at a fine-grained level. The
next section explores this topic thoroughly.

6.2 Authorization
To build upon authentication, consider a use case requiring more fine-grained con-
trol over clients to authorize certain tasks. In most stock trading applications, only spe-
cific applications can write to a given destination. After all, you wouldn’t want any old
application publishing stock prices to the STOCKS.* destinations. Only an authenti-
cated and authorized application should have this ability.

 For this reason, ActiveMQ provides two levels of authorization: operation-level
authorization and message-level authorization. These two types of authorization pro-
vide a more detailed level of control than simple authentication. This section dis-
cusses these two types of authorization and walks through some examples to
demonstrate each.
www.it-ebooks.info

http://www.it-ebooks.info/

124 CHAPTER 6 Securing ActiveMQ
6.2.1 Destination-level authorization

There are three types of user-level operations with JMS destinations:

 Read—The ability to receive messages from the destination
 Write—The ability to send messages to the destination
 Admin—The ability to administer the destination

Through these well-known operations, you can control the ability to perform the
operations. Using the ActiveMQ XML configuration file, such authorization can be
easily defined. Take a look at the following listing to add some operation-specific
authorization to some destinations.

...
<plugins>

<jaasAuthenticationPlugin
configuration="activemq-domain" />

<authorizationPlugin>
<map>

<authorizationMap>
<authorizationEntries>

<authorizationEntry topic=">"
read="admins" write="admins" admin="admins" />

<authorizationEntry topic="STOCKS.>"
read="consumers" write="publishers"
admin="publishers" />

<authorizationEntry topic="STOCKS.ORCL"
read="guests" />

<authorizationEntry topic="ActiveMQ.Advisory.>"
read="admins,publishers,consumers,guests"
write="admins,publishers,consumers,guests"
admin="admins,publishers,consumers,guests" />

</authorizationEntries>
</authorizationMap>

</map>
</authorizationPlugin>

</plugins>
...

In the listing, the JAAS authorization plug-in has been defined and pointed at the
activemq-domain configuration in the login.config file. It has also been provided with
a map of authorization entries. When configuring the map of authorization entries,
the first task is to define the destination to be secured. This is achieved through the
use of either a topic or a queue attribute on the entry. The next task is to declare
which users and/or groups have privileges for operations on that destination.

 A handy feature is the ability to define the destination value using wildcards. For
example, STOCKS.> means the entry applies to all destinations in the STOCKS path
recursively. You can find more information on wildcards in chapter 11. Also, the
authorization operations will accept either a single group or a comma-separated list of
groups as a value.

Listing 6.2 Configuring destination-level authorization

Authorization entry for
STOCKS.> destinations
www.it-ebooks.info

http://www.it-ebooks.info/

125Authorization
 Considering this explanation, the configuration used in the previous example can
be translated as follows:

 Users from the admins group have full access to all topics
 Consumers can consume and publishers can publish to the destinations in the

STOCKS path
 Guests can only consume from the STOCKS.ORCL topic

The previous example uses an additive model, where all operations on a topic have
been restricted to administrators only. Beyond this, specific operations on specific des-
tinations are added as needed.

 In order to start the broker to test out both the JAAS authentication plug-in as well
as the authorization entries, use the following command to start the broker:

${ACTIVEMQ_HOME}/bin/activemq console \
-Djava.security.auth.login.config=\
src/main/resources/org/apache/activemq/book/ch6/login.config
xbean:src/main/resources/org/apache/activemq/book/ch6/\
activemq-authorization.xml
...
xbean:src/main/resources/org/apache/activemq/book/ch6/\
activemq-authorization.xml
INFO | PListStore:

/Users/bsnyder/amq/apache-activemq-5.4.1/data/localhost/tmp_storage
started
INFO | Using Persistence Adapter: KahaDBPersistenceAdapter

[/Users/bsnyder/amq/apache-activemq-5.4.1/data/localhost/KahaDB]
INFO | JMX consoles can connect to service:

jmx:rmi:///jndi/rmi://localhost:1099/jmxrmi
INFO | ActiveMQ 5.4.1 JMS Message Broker (localhost) is starting
INFO | For help or more information please see:

http://activemq.apache.org/
INFO | Scheduler using directory:

/Users/bsnyder/amq/apache-activemq-5.4.1/data/localhost/scheduler
INFO | JobSchedulerStore:

/Users/bsnyder/amq/apache-activemq-5.4.1/data/localhost/scheduler
started
INFO | Listening for connections at: tcp://localhost:61616
INFO | Connector openwire Started
INFO | ActiveMQ JMS Message Broker

(localhost, ID:mongoose.local-62861-1289968271876-0:0) started

Note the use of the java.security.auth.login.config system property to point to
the login.config file. This ensures that ActiveMQ can locate the file for its use.

 Now let’s see how introduction of authorization affects JMS clients. We’ll demon-
strate our authorization setup by trying to consume from the stock topics. As we were
doing for the publisher example in the previous section, we’ll modify our original
stock portfolio consumer and make it pass an appropriate connection username and
password. For example, in order to try consuming from the STOCKS.ORCL topic as
guest, we should add the following to the consumer (marked as bold):
www.it-ebooks.info

http://www.it-ebooks.info/

126 CHAPTER 6 Securing ActiveMQ
... private String username = "guest";
private String password = "password";

public Consumer() throws JMSException {
factory = new ActiveMQConnectionFactory(brokerURL);
connection = factory.createConnection(username, password);
connection.start();
session =

connection.createSession(false,Session.AUTO_ACKNOWLEDGE);
}
...

Credentials have been added so that the consumer can create a connection to the bro-
ker using an appropriate username and password. The modified consumer can be
found in the org.apache.activemq.book.ch6.Consumer class. Now we can run our
example and see how authorization configuration at the broker affects the client. First
start the publisher using the following command:

$ mvn exec:java \
-Dexec.mainClass=org.apache.activemq.book.ch6.Publisher \
-Dexec.args="CSCO ORCL"
...
Sending: {price=24.07337784180, stock=ORCL, offer=24.0974512196,
up=true} on destination: topic://STOCKS.ORCL
Sending: {price=73.49647952723, stock=CSCO, offer=73.5699760067,
up=false} on destination: topic://STOCKS.CSCO
Sending: {price=24.282731805343, stock=ORCL, offer=24.307014537149,
up=true} on destination: topic://STOCKS.ORCL
Sending: {price=74.1916498091, stock=CSCO, offer=74.265841458,
up=true} on destination: topic://STOCKS.CSCO
Sending: {price=24.350683304888, stock=ORCL, offer=24.375033988192,
up=true} on destination: topic://STOCKS.ORCL
Sending: {price=24.46113711010, stock=ORCL, offer=24.485598247216,
up=true} on destination: topic://STOCKS.ORCL
Sending: {price=24.219079287873, stock=ORCL, offer=24.243298367160,
up=false} on destination: topic://STOCKS.ORCL
Sending: {price=24.282977831328, stock=ORCL, offer=24.307260809160,
up=true} on destination: topic://STOCKS.ORCL
Sending: {price=24.33344653108, stock=ORCL, offer=24.35777997761,
up=true} on destination: topic://STOCKS.ORCL
Sending: {price=73.86498266780, stock=CSCO, offer=73.93884765047,
up=false} on destination: topic://STOCKS.CSCO
Published '10' of '10' price messages
...

Now let’s see what happens when we try to access different destinations with guest user
credentials. For example, if you instruct it to consume messages from STOCKS.CSCO
topic, you’ll see the following exception:

$ mvn exec:java \
-Dexec.mainClass=org.apache.activemq.book.ch6.Consumer \
-Dexec.args="STOCKS.CSCO"
...
Exception in thread "main"
javax.jms.JMSException: User guest is not authorized to read from:
topic://STOCKS.CSCO ...
www.it-ebooks.info

http://www.it-ebooks.info/

127Authorization
This is exactly what we expected to happen. Consuming from the STOCKS.CSCO topic
is restricted due to the authorization settings in listing 6.2. But the authorization con-
figuration does allow guests to consume from the STOCKS.ORCL topic as shown in the
following example:

$ mvn exec:java \
-Dexec.mainClass=org.apache.activemq.book.ch6.Consumer \
-Dexec.args="STOCKS.ORCL"
...
ORCL 9.66 9.67 down
ORCL 9.70 9.71 up
ORCL 9.80 9.81 up
ORCL 9.83 9.84 up
ORCL 9.80 9.81 down
ORCL 9.75 9.76 down
ORCL 9.81 9.82 up
ORCL 9.88 9.89 up
ORCL 9.80 9.81 down
ORCL 9.84 9.85 up
ORCL 9.84 9.85 up
ORCL 9.86 9.87 up
ORCL 9.95 9.96 up
ORCL 10.03 10.04 up
ORCL 10.03 10.04 down
...

As you can see, the authorization settings allowed only read access to the STOCKS.ORCL
topic for users that belong to the guests group.

 These simple examples demonstrate how easy it is to secure ActiveMQ destinations
and assign different security levels to various users and groups. But what if defining
the access levels per destination isn’t enough for your application’s needs? Luckily,
ActiveMQ allows you to do a message-based authorization as well.

6.2.2 Message-level authorization

So far in this chapter, we’ve covered broker-level authentication and authorization.
But as you can see, authorization was granted or denied in the process of creating a
connection to the broker. In some situations you might want to authorize access to
only particular messages in a destination. In this section, we’ll examine such message-
level authorization.

 We’ll implement a simple authorization plug-in that allows only applications run-
ning on the same host as the broker (the localhost) to consume messages. The first
thing we need to do is to create an implementation of the org.apache.activemq.
security.MessageAuthorizationPolicy interface, as shown in the following listing.

public class AuthorizationPolicy implements MessageAuthorizationPolicy {

private static final Log LOG =
LogFactory.getLog(AuthorizationPolicy.class);

public boolean isAllowedToConsume(ConnectionContext context,

Listing 6.3 Implementation of MessageAuthorizationPolicy interface
www.it-ebooks.info

http://www.it-ebooks.info/

128 CHAPTER 6 Securing ActiveMQ
Message message) {
LOG.info(context.getConnection().getRemoteAddress());
String remoteAddress = context.getConnection().getRemoteAddress();

if (remoteAddress.startsWith("/127.0.0.1")) {
LOG.info("Permission to consume granted");
return true;

} else {
LOG.info("Permission to consume denied");
return false;

}
}

}

As you can see, the MessageAuthorizationPolicy interface is simple and defines only
one method named isAllowedToConsume(). This method has access to the message
in question and the context of the connection in which the message will be con-
sumed. In this example, the remote address property for a connection is used (via the
call to the Connection.getRemoteAddress() method) to distinguish a remote con-
sumer from a local consumer. The isAllowedToConsume() method then determines
whether the read operation is allowed for the given consumer. Of course, this imple-
mentation is arbitrary. You can use any message property or even some message con-
tent to make the determination. The implementation of this method is meant to be a
simple example.

 Now this policy must be installed and configured in the ActiveMQ broker. The first
and most obvious step is to compile this class and package it in an appropriate JAR.
Place this JAR into the lib/ directory of the ActiveMQ distribution and the policy is
ready to be used. You can do that by building and copying the book examples JAR:

$ mvn clean install
...
$ cp target/activemq-in-action-examples.jar ${ACTIVEMQ_HOME}/lib/

Second, the policy must be configured to create an instance of the Authorization-
Policy class in the ActiveMQ XML configuration file. Using the Spring beans–style
XML inside the <messageAuthorizationPolicy> element, the AuthorizationPolicy
class is instantiated when the broker starts up. Here’s an example of this configuration:

...
<messageAuthorizationPolicy>

<bean
class="org.apache.activemq.book.ch6.AuthorizationPolicy"
xmlns="http://www.springframework.org/schema/beans" />

</messageAuthorizationPolicy>
...

The only step left is to start up ActiveMQ and test out the new policy. Here’s the com-
mand to start up the broker using the appropriate configuration file:

${ACTIVEMQ_HOME}/bin/activemq console\
xbean:src/main/resources/org/apache/activemq/book/ch6/activemq-policy.xml
...

Method for message-
level authentication
www.it-ebooks.info

http://www.it-ebooks.info/

129Authorization
Loading message broker from:
xbean:src/main/resources/org/apache/activemq/book/ch6/activemq-policy.xml
...
22:19:23,532 | INFO | PListStore:
/Users/bsnyder/amq/apache-activemq-5.4.1/data/localhost/tmp_storage
started
22:19:23,692 | INFO | JMX consoles can connect to service:
jmx:rmi:///jndi/rmi://localhost:1099/jmxrmi
22:19:23,717 | INFO | Using Persistence Adapter: KahaDBPersistenceAdapter
[/Users/bsnyder/amq/apache-activemq-5.4.1/data/localhost/KahaDB]
22:19:23,815 | DEBUG | loading
22:19:23,847 | INFO | ActiveMQ 5.4.1 JMS Message Broker (localhost) is
starting
22:19:23,848 | INFO | For help or more information please see:
http://activemq.apache.org/
22:19:23,990 | INFO | Scheduler using directory:
/Users/bsnyder/amq/apache-activemq-5.4.1/data/localhost/scheduler
22:19:24,037 | DEBUG | loading
22:19:24,039 | DEBUG | loading
22:19:24,041 | INFO | JobSchedulerStore:
/Users/bsnyder/amq/apache-activemq-5.4.1/data/localhost/scheduler started
22:19:24,081 | INFO | Listening for connections at: tcp://localhost:61616
22:19:24,081 | INFO | Connector openwire Started
22:19:24,083 | INFO | ActiveMQ JMS Message Broker
(localhost, ID:mongoose.local-64256-1289971163870-0:0) started
...

If you run the examples from chapter 3 now on the host on which your broker is run-
ning, you’ll see that everything works in the same manner as it did with the original
configuration. The producer produces messages:

$ mvn exec:java \
-Dexec.mainClass=org.apache.activemq.book.ch3.portfolio.Publisher \
-Dexec.args="CSCO ORCL"
...
Sending: {price=94.51516220513759, stock=ORCL, offer=94.60967736734271,
up=true} on destination: topic://STOCKS.ORCL
Sending: {price=94.12582896629408, stock=ORCL, offer=94.21995479526036,
up=false} on destination: topic://STOCKS.ORCL
Sending: {price=52.82279394171494, stock=CSCO, offer=52.87561673565665,
up=false} on destination: topic://STOCKS.CSCO
Sending: {price=93.30370880341836, stock=ORCL, offer=93.39701251222176,
up=false} on destination: topic://STOCKS.ORCL
Sending: {price=94.0890269658999, stock=ORCL, offer=94.1831159928658,
up=true} on destination: topic://STOCKS.ORCL
Sending: {price=52.50790406130471, stock=CSCO, offer=52.56041196536601,
up=false} on destination: topic://STOCKS.CSCO
Sending: {price=94.11072880595002, stock=ORCL, offer=94.20483953475596,
up=true} on destination: topic://STOCKS.ORCL
Sending: {price=52.947263764976896, stock=CSCO, offer=53.000211028741866,
up=true} on destination: topic://STOCKS.CSCO
Sending: {price=94.40912590172766, stock=ORCL, offer=94.50353502762938,
up=true} on destination: topic://STOCKS.ORCL
Sending: {price=95.0802935408136, stock=ORCL, offer=95.1753738343544,
up=true} on destination: topic://STOCKS.ORCL
Published '10' of '10' price messages
...
www.it-ebooks.info

http://www.it-ebooks.info/

130 CHAPTER 6 Securing ActiveMQ
And the consumer receives these stock messages:

$ mvn exec:java \
-Dexec.mainClass=org.apache.activemq.book.ch3.portfolio.Consumer \
-Dexec.args="CSCO ORCL"
...
ORCL 94.52 94.61 up
ORCL 94.13 94.22 down
CSCO 52.82 52.88 down
ORCL 93.30 93.40 down
ORCL 94.09 94.18 up
CSCO 52.51 52.56 down
ORCL 94.11 94.20 up
CSCO 52.95 53.00 up
ORCL 94.41 94.50 up
ORCL 95.08 95.18 up
CSCO 52.90 52.96 down
ORCL 95.62 95.71 up
CSCO 53.32 53.37 up
ORCL 95.45 95.55 down
CSCO 53.59 53.64 up
...

You can also notice log messages from the policy in the broker’s console:

INFO | /127.0.0.1:50930
INFO | Permission to consume granted
INFO | /127.0.0.1:50930
INFO | Permission to consume granted
INFO | /127.0.0.1:50930
INFO | Permission to consume granted
INFO | /127.0.0.1:50930
INFO | Permission to consume granted
INFO | /127.0.0.1:50930
INFO | Permission to consume granted
INFO | /127.0.0.1:50930
INFO | Permission to consume granted

But, when run from another host (for example, 192.168.10.10), the consumer won’t
be able to consume messages, as our policy will deny the access. And you’ll notice log
messages similar to these in the broker’s console:

INFO | /192.168.10.10:50930
INFO | Permission to consume denied
INFO | /192.168.10.10:50930
INFO | Permission to consume denied
INFO | /192.168.10.10:50930
INFO | Permission to consume denied
INFO | /192.168.10.10:50930
INFO | Permission to consume denied
INFO | /192.168.10.10:50930
INFO | Permission to consume denied
INFO | /192.168.10.10:50930
INFO | Permission to consume denied
www.it-ebooks.info

http://www.it-ebooks.info/

131Building a custom security plug-in
In this way, we verified that our message-based policy works and enables message con-
sumption only from the local host.

 Message-level authorization provides some powerful functionality with endless pos-
sibilities. Although a simple example was used here, you can adapt it to any security
mechanism used in your project. Just bear in mind that a message authorization pol-
icy is executed for every message that flows through the broker. So be careful not to
add functionality that could possibly slow down the flow of messages.

 In addition to authorization, ActiveMQ provides a special class for tighter control
over broker-level operations that’s even more powerful. The next section examines
and demonstrates just such an example.

6.3 Building a custom security plug-in
So far this chapter has focused on the built-in security features in ActiveMQ. Though
these features should provide enough functionality for the majority of users, an even
more powerful feature is available. As stated previously, the ActiveMQ plug-in API is
extremely flexible and the possibilities are endless. The flexibility in this functionality
comes from the BrokerFilter class. This class provides the ability to intercept many
of the available broker-level operations. Broker operations include such items as add-
ing consumers and producers to the broker, committing transactions in the broker,
and adding and removing connections to the broker, to name a few. Custom function-
ality can be added by extending the BrokerFilter class and overriding a method for a
given operation.

 Though the ActiveMQ plug-in API isn’t concerned solely with security, implement-
ing a class whose main purpose is to handle a custom security feature is achievable. So
if you have security requirements that can’t be met using the previous security fea-
tures, you may want to consider developing a custom solution for your needs. Depend-
ing on your needs, two choices are available:

 Implement a JAAS login module—There’s a good chance that you’re already using
JAAS in your Java applications. In this case, it’s only natural that you’ll try to
reuse all that work for securing the ActiveMQ broker, too. Since JAAS isn’t the
main topic of this book, we won’t dive any deeper into this topic than we
already have.

 Implement a custom plug-in for handling security—ActiveMQ provides a flexible
generic plug-in mechanism. You can create your own custom plug-ins for just
about anything, including custom security plug-ins. So if you have requirements
that can’t be met by implementing a JAAS module, writing a custom plug-in is
the way to go.

In this section we’ll describe how to write a simple security plug-in that authorizes bro-
ker connections only from a certain set of IP addresses. The concept isn’t complex but
is good enough to give you a taste of the BrokerFilter with an angle toward security.
www.it-ebooks.info

http://www.it-ebooks.info/

132 CHAPTER 6 Securing ActiveMQ
6.3.1 Implementing the plug-in

In order to limit connectivity to the broker based on IP address, we’ll create a class
named IPAuthenticationBroker to override the BrokerFilter.addConnection()
method. The implementation of this method will perform a simple check of the IP
address using a regular expression to determine the ability to connect. The following
listing shows the implementation of the IPAuthenticationBroker class.

public class IPAuthenticationBroker extends BrokerFilter {

List<String> allowedIPAddresses;
Pattern pattern = Pattern.compile("^/([0-9\\.]*):(.*)");
public IPAuthenticationBroker(Broker next, List<String>

allowedIPAddresses) {
super(next);
this.allowedIPAddresses = allowedIPAddresses;

}

public void addConnection(ConnectionContext
context, ConnectionInfo info) throws Exception {

String remoteAddress = context.getConnection().getRemoteAddress();
Matcher matcher = pattern.matcher(remoteAddress);

if (matcher.matches()) {
String ip = matcher.group(1);
if (!allowedIPAddresses.contains(ip)) {

throw new SecurityException("Connecting from IP address "
+ ip + " is not allowed");

}
} else {

throw new SecurityException("Invalid remote address "
+ remoteAddress);

}

super.addConnection(context, info);
}

}

The BrokerFilter class defines methods that intercept broker operations such as add-
ing a connection, removing a subscriber, and so forth. In the IPAuthenticationBro-
ker class, the addConnection() method is overridden to create some logic that checks
whether the address of a connecting client falls within a list of IP addresses that are
allowed to connect. If that IP address is allowed to connect, the call is delegated to the
BrokerFilter. addConnection() method. If that IP address isn’t allowed to connect,
an exception is thrown.

 One additional item of note in the IPAuthenticationBroker class is that its con-
structor calls the BrokerFilter’s constructor. This call serves to set up the chain of
interceptors so that the proper cascading will take place through the chain. Don’t for-
get to do this if you create your own BrokerFilter implementation.

Listing 6.4 IPAuthenticationBroker class—custom broker implementation

Filter
connections
based on IP
address
www.it-ebooks.info

http://www.it-ebooks.info/

133Building a custom security plug-in
 After the actual plug-in logic has been implemented, the plug-in must be config-
ured and installed. For this purpose, an implementation of the BrokerPlugin will be
created. The BrokerPlugin is used to expose the configuration of a plug-in and also
to install the plug-in into the ActiveMQ broker. In order to configure and install the
IPAuthenticationBroker, the IPAuthenticationPlugin class is created as shown in
the following listing.

public class IPAuthenticationPlugin implements BrokerPlugin {

List<String> allowedIPAddresses;

public Broker installPlugin(Broker broker) throws Exception {

return new IPAuthenticationBroker(broker, allowedIPAddresses);
}

public List<String> getAllowedIPAddresses() {
return allowedIPAddresses;

}

public void setAllowedIPAddresses(List<String> allowedIPAddresses) {
this.allowedIPAddresses = allowedIPAddresses;

}
}

The IPAuthenticationBroker.installPlugin() method is used to instantiate the
plug-in and return a new intercepted broker for the next plug-in in the chain. Note
that the IPAuthenticationPlugin class also contains getter and setter methods used
to configure the IPAuthenticationBroker. These setter and getter methods are then
available via a Spring beans–style XML configuration in the ActiveMQ XML configura-
tion file (as you’ll see in a moment).

6.3.2 Configuring the plug-in

Now that we’ve implemented the plug-in, let’s see how we can configure it using
the ActiveMQ XML configuration file. The following listing shows how the
IPAuthenticationPlugin class is used in configuration.

<broker xmlns="http://activemq.apache.org/schema/core"
brokerName="localhost" dataDirectory="${activemq.base}/data">

<plugins>
<bean xmlns="http://www.springframework.org/schema/beans"

id="ipAuthenticationPlugin"
class="org.apache.activemq.book.ch6.IPAuthenticationPlugin">

<property name="allowedIPAddresses">
<list>

<value>127.0.0.1</value>
</list>

</property>

Listing 6.5 IPAuthenticationPlugin class—custom plug-in implementation

Listing 6.6 Configuring the custom plug-in

Create
instance
of custom
class
www.it-ebooks.info

http://www.it-ebooks.info/

134 CHAPTER 6 Securing ActiveMQ
</bean>
</plugins>

<transportConnectors>
<transportConnector name="openwire"

uri="tcp://localhost:61616" />
</transportConnectors>

</broker>

The <broker> element provides the plugins element for declaring plug-ins. Using
the IPAuthenticationPlugin, only those clients connecting from the IP address
127.0.0.1 (the localhost) can actually connect to the broker.

6.3.3 Testing the plug-in

All that needs to be done now is to test the plug-in. Here’s the command to copy the
examples JAR file into place (because it contains the plug-in) and the command to
start up ActiveMQ using the IPAuthenticationPlugin and the IPAuthentication-
Broker:

$ cp target/activemq-in-action-examples.jar ${ACTIVEMQ_HOME}/lib/
$ {ACTIVEMQ_HOME}/bin/activemq console \
xbean:src/main/resources/org/apache/activemq/book/ch6/activemq-custom.xml
...
Loading message broker from:
xbean:src/main/resources/org/apache/activemq/book/ch6/activemq-custom.xml
...
23:22:46,982 | INFO | PListStore:
/Users/bsnyder/amq/apache-activemq-5.4.1/data/localhost/tmp_storage
started
23:22:47,156 | INFO | JMX consoles can connect to service:
jmx:rmi:///jndi/rmi://localhost:1099/jmxrmi
23:22:47,159 | INFO | Using Persistence Adapter: KahaDBPersistenceAdapter
[/Users/bsnyder/amq/apache-activemq-5.4.1/data/localhost/KahaDB]
23:22:48,033 | INFO | KahaDB is version 2
23:22:48,083 | INFO | ActiveMQ 5.4.1 JMS Message Broker (localhost) is
starting
23:22:48,084 | INFO | For help or more information please see:
http://activemq.apache.org/
23:22:48,234 | INFO | Scheduler using directory:
/Users/bsnyder/amq/apache-activemq-5.4.1/data/localhost/scheduler
23:22:48,275 | INFO | JobSchedulerStore:
/Users/bsnyder/amq/apache-activemq-5.4.1/data/localhost/scheduler
started
23:22:48,317 | INFO | Listening for connections at: tcp://localhost:61616
23:22:48,317 | INFO | Connector openwire Started
23:22:48,319 | INFO | ActiveMQ JMS Message Broker
(localhost, ID:mongoose.local-49947-1289974968106-0:0) started
...

Now run the client to connect to ActiveMQ from the localhost and everything should
be working fine. See the following output:

$ mvn exec:java \
-Dexec.mainClass=org.apache.activemq.book.ch3.portfolio.Publisher \

Spring beans–style
configuration
www.it-ebooks.info

http://www.it-ebooks.info/

135Certificate-based security
-Dexec.args="CSCO ORCL"
...
Sending: {price=0.7137712112409276, stock=ORCL, offer=0.7144849824521684,
up=true} on destination: topic://STOCKS.ORCL
Sending: {price=0.7127548328743109, stock=ORCL, offer=0.7134675877071851,
up=false} on destination: topic://STOCKS.ORCL
Sending: {price=0.710497871629952, stock=ORCL, offer=0.711208369501582,
up=false} on destination: topic://STOCKS.ORCL
Sending: {price=0.7167766362460622, stock=ORCL, offer=0.7174934128823083,
up=true} on destination: topic://STOCKS.ORCL
Sending: {price=54.586310464064766, stock=CSCO, offer=54.64089677452883,
up=false} on destination: topic://STOCKS.CSCO
Sending: {price=54.45678231194236, stock=CSCO, offer=54.5112390942543,
up=false} on destination: topic://STOCKS.CSCO
Sending: {price=0.7134830573922482, stock=ORCL, offer=0.7141965404496403,
up=false} on destination: topic://STOCKS.ORCL
Sending: {price=0.7125898470778729, stock=ORCL, offer=0.7133024369249507,
up=false} on destination: topic://STOCKS.ORCL
Sending: {price=0.7106363691848542, stock=ORCL, offer=0.711347005554039,
up=false} on destination: topic://STOCKS.ORCL
Sending: {price=54.99339386523512, stock=CSCO, offer=55.04838725910035,
up=true} on destination: topic://STOCKS.CSCO
Published '10' of '10' price messages
...

If a connection attempt is made from any host other than the localhost, you can
expect to see the following output including the exception:

$ mvn exec:java \
-Dexec.mainClass=org.apache.activemq.book.ch3.portfolio.Publisher \
-Dexec.args="CSCO ORCL"
...
Exception in thread "main"
javax.jms.JMSException: Connecting from IP address 192.168.10.10 is not
allowed
...

Although this example was more complex, it serves as a good demonstration of the
power provided by the BrokerFilter class. Just imagine how flexible this plug-in
mechanism is for integrating with existing custom security requirements. This exam-
ple was focused on a security example, but many other operations can be customized
by using the pattern illustrated here.

6.4 Certificate-based security
Earlier in this chapter, we described ActiveMQ plug-ins used to secure the broker by
authenticating the clients and authorizing the access to destinations. These plug-ins
do their work properly, but they store client credentials using plain user names and
passwords. Though this is sufficient for most users and use cases, some organizations
prefer to implement security using SSL certificates. We’ve already discussed the SSL
transport and how it uses certificates in chapter 4. In this section we’ll expand on that
material and show you how the SSL transport (along with supporting plug-in) can be
used to secure the broker. We’ll see how we can authenticate clients using their
www.it-ebooks.info

http://www.it-ebooks.info/

136 CHAPTER 6 Securing ActiveMQ
certificates, but also how we can give those clients different access rights based on the
certificate they use to connect to the broker.

 For the example in this section we’ll use our stock portfolio publisher and con-
sumer. Just this time, they’ll use different certificates which will identify them and give
them access to publish and consume from broker destinations.

6.4.1 Preparing certificates

Let’s start by creating appropriate certificates. The procedure here is similar to the
one we used in chapter 4 for the basic SSL transport setup. We’ve provided all these
certificates in the examples that comes with the book, so you can use them to run the
example.

 We’ll create two certificates: one named producer and contained in the mypro-
ducer.ks keystore:

$ keytool -genkey -alias producer -keyalg RSA -keystore myproducer.ks
Enter keystore password: test123
Re-enter new password: test123
What is your first and last name? [Unknown]: producer
What is the name of your organizational unit? [Unknown]:
Chapter 6
What is the name of your organization? [Unknown]: ActiveMQ in Action
What is the name of your City or Locality? [Unknown]: Belgrade
What is the name of your State or Province? [Unknown]:
What is the two-letter country filename for this unit? [Unknown]: RS
Is CN=producer, OU=Chapter 6, O=ActiveMQ in Action,
L=Belgrade, ST=Unknown, C=RS correct? [no]: yes
Enter key password for <producer> (RETURN if same as keystore password):

and another called consumer and stored in the myconsumer.ks keystore:

$ keytool -genkey -alias consumer -keyalg RSA -keystore myconsumer.ks
Enter keystore password: test123
What is your first and last name? [Unknown]: consumer
What is the name of your organizational unit? [Unknown]: Chapter 6
What is the name of your organization? [Unknown]: ActiveMQ in Action
What is the name of your City or Locality? [Unknown]: Belgrade
What is the name of your State or Province? [Unknown]:
What is the two-letter country code for this unit? [Unknown]: RS
Is CN=consumer, OU=Chapter 6, O=ActiveMQ in Action,
L=Belgrade, ST=Unknown, C=RS correct? [no]: yes
Enter key password for <client> (RETURN if same as keystore password):

Note the info of the certificates we create, as we’ll use it to grant or deny access to the
broker later. Of course, in production environments you should consider keeping cer-
tificates in secure locations to provide better security of the whole system.

6.4.2 Creating a truststore

The next thing we need to do is import these certificates into the broker's truststore.
But first we need to export them from their keystores. Use the following command to
export the producer keystore:
www.it-ebooks.info

http://www.it-ebooks.info/

137Certificate-based security
$ keytool -export -alias producer -keystore myproducer.ks \
-file producer_cert
Enter keystore password: test123
Certificate stored in file <producer_cert>

as well as the following command to export the consumer keystore:

$ keytool -export -alias consumer -keystore myconsumer.ks \
-file consumer_cert
Enter keystore password: test123
Certificate stored in file <consumer_cert>

Now that the JMS client certificates have been exported, the broker truststore must be
created.

 Creating a broker truststore and importing producer and consumer certificates is
a rather straightforward task. First import the producer certificate into the broker
truststore:

$ keytool -import -alias producer -keystore mybroker.ts \
-file producer_cert
Enter keystore password:
Re-enter new password:
Owner: CN=producer, OU=Chapter 6, O=ActiveMQ in Action,
L=Belgrade, ST=Unknown, C=RS Issuer: CN=producer, OU=Chapter 6,
O=ActiveMQ in Action, L=Belgrade, ST=Unknown, C=RS
Serial number: 4b6f0cf0
Valid from: Sun Feb 07 19:56:48 CET 2010 until: Sat May 08
20:56:48 CEST 2010
Certificate fingerprints: MD5:
9A:8C:02:17:0D:B1:11:CB:4E:14:63:37:03:F3:31:AD SHA1:
21:3B:A8:15:B8:67:39:28:9C:1B:23:35:E9:9F:30:2C:4C:8D:16:85 Signature
algorithm name: SHA1withRSA Version: 3
Trust this certificate? [no]: yes
Certificate was added to keystore

Then import the consumer certificate into the broker truststore:

$ keytool -import -alias consumer -keystore mybroker.ts \
-file consumer_cert
Enter keystore password:
Owner: CN=consumer, OU=Chapter 6, O=ActiveMQ in Action,
L=Belgrade, ST=Unknown, C=RS Issuer: CN=consumer, OU=Chapter 6,
O=ActiveMQ in Action, L=Belgrade, ST=Unknown, C=RS
Serial number: 4b6f0ed4
Valid from: Sun Feb 07 20:04:52 CET 2010 until: Sat May 08
21:04:52 CEST 2010 Certificate fingerprints: MD5:
6D:C9:AF:3C:AB:1D:E3:8A:C1:5D:70:71:DE:17:CE:95 SHA1:
73:F6:7B:E9:42:5C:90:EB:6F:4F:8C:CB:9E:DB:59:66:B0:EF:02:2E Signature
algorithm name: SHA1withRSA Version: 3
Trust this certificate? [no]:yes
Certificate was added to keystore

After the broker truststore is ready, we need to place it somewhere where we can refer-
ence it from the configuration file. This is usually the ${ACTIVEMQ_HOME}/conf/
folder, where all other configuration resources reside. We’ve provided this truststore
with the examples, so all you have to do is to copy it to the right place:
www.it-ebooks.info

http://www.it-ebooks.info/

138 CHAPTER 6 Securing ActiveMQ
$ cp src/main/resources/org/apache/activemq/book/ch6/mybroker.ts \
${ACTIVEMQ_HOME}/conf/

Now let’s focus on the configuration file and how we can use this truststore to config-
ure ActiveMQ security.

6.4.3 Configuring the broker

The XML configuration file shown in the following listing uses the provided truststore
to instruct the SSL transport which clients are allowed to connect to the broker, and
then uses jaasCertificateAuthenticationPlugin (shown in bold) to authorize
their access to broker resources.

...
<broker xmlns="http://activemq.apache.org/schema/core"

brokerName="localhost"
dataDirectory="${activemq.base}/data">
<plugins>

 <jaasCertificateAuthenticationPlugin configuration="activemq-certificate" />
<authorizationPlugin>

<map>
<authorizationMap>

<authorizationEntries>
<authorizationEntry topic=">"

read="admins" write="admins" admin="admins" />
<authorizationEntry topic="STOCKS.>"

read="consumers"
write="publishers" admin="publishers" />

<authorizationEntry topic="STOCKS.ORCL"
read="guests" />

<authorizationEntry topic="ActiveMQ.Advisory.>"
read="admins,publishers,consumers,guests"
write="admins,publishers,consumers,guests"
admin="admins,publishers,consumers,guests" />

</authorizationEntries>
</authorizationMap>

</map>
</authorizationPlugin>

</plugins>
<sslContext>

<sslContext keyStore="file:${activemq.base}/conf/mybroker.ks"
keyStorePassword="test123"
trustStore="file:${activemq.base}/conf/mybroker.ts"

 trustStorePassword="test123"/>
</sslContext>
<transportConnectors>

<transportConnector name="openwire" uri="tcp://localhost:61616"/>
<transportConnector name="ssl"

uri="ssl://localhost:61617?needClientAuth=true" />
</transportConnectors>

</broker>
...

Listing 6.7 Configuring certificate-based security
www.it-ebooks.info

http://www.it-ebooks.info/

139Certificate-based security
A few things are worth noting in this configuration file, as shown in bold. First of all,
we added the trustStore and trustStorePassword properties to the <sslContext>
configuration, which allows us to use our previously defined broker truststore. Next,
we set the needClientAuth parameter in the SSL transport URI, which instructs the
broker to check connecting client certificates and allow access only to those that are
found in the truststore.

6.4.4 Authorization explained

Now that we’ve covered authentication with certificates, it’s time to take care of autho-
rization, and that’s why we use jaasCertificateAuthenticationPlugin. This plug-in
is similar to the JAAS plug-in we used earlier in this chapter. We now configure it to look
at activemq-certificate configuration in login.config, which should look like this:

activemq-certificate {
 org.apache.activemq.jaas.TextFileCertificateLoginModule
 required debug=true
 org.apache.activemq.jaas.textfiledn.user="users.properties"
 org.apache.activemq.jaas.textfiledn.group="groups.properties";
};

The login.config file is now different in that it uses TextFileCertificateLoginModule
instead of PropertiesLoginModule, configured using the appropriate properties.

 Now it’s time to see what the user.properties file looks like:

admin=password
publisher=password
consumer=password
guest=password
sslconsumer=CN=consumer, OU=Chapter 6, O=ActiveMQ in Action, L=Belgrade,
ST=Unknown, C=RS
sslpublisher=CN=producer, OU=Chapter 6,
O=ActiveMQ in Action, L=Belgrade, ST=Unknown, C=RS

As you can see, we added our two certificates as sslconsumer and sslpublisher users.
You may notice that the user.properties file is the place where you map your certifi-
cate to a certain username, and we used the appropriate info of the certificate to map
it to the desired username. Now that we have a username, we can put it in the certain
group using groups.properties file:

admins=admin
publishers=admin,publisher,sslpublisher
consumers=admin,publisher,consumer,sslconsumer
guests=guest

Once we have our users in their groups, the authorizationPlugin kicks in and autho-
rizes the access to broker’s destinations.

6.4.5 Testing it out

Now let’s start the broker using the configuration and login.config file from earlier:
www.it-ebooks.info

http://www.it-ebooks.info/

140 CHAPTER 6 Securing ActiveMQ
${ACTIVEMQ_HOME}/bin/activemq console \
-Djava.security.auth.login.config=\
src/main/resources/org/apache/activemq/book/ch6/login.config \
xbean:src/main/resources/org/apache/activemq/book/ch6/activemq-ssl.xml
...
Loading message broker from:
xbean:src/main/resources/org/apache/activemq/book/ch6/activemq-ssl.xml
...
00:15:26,144 | INFO | PListStore:
/Users/bsnyder/amq/apache-activemq-5.4.1/data/localhost/tmp_storage started
00:15:26,312 | INFO | Using Persistence Adapter: KahaDBPersistenceAdapter
[/Users/bsnyder/amq/apache-activemq-5.4.1/data/localhost/KahaDB]
00:15:26,387 | INFO | JMX consoles can connect to service:
jmx:rmi:///jndi/rmi://localhost:1099/jmxrmi
00:15:26,882 | INFO | KahaDB is version 2
00:15:26,905 | INFO | ActiveMQ 5.4.1 JMS Message Broker (localhost) is
starting
00:15:26,906 | INFO | For help or more information please see:
http://activemq.apache.org/
00:15:27,044 | INFO | Scheduler using directory:
/Users/bsnyder/amq/apache-activemq-5.4.1/data/localhost/scheduler
00:15:27,086 | INFO | JobSchedulerStore:
/Users/bsnyder/amq/apache-activemq-5.4.1/data/localhost/scheduler started
00:15:27,113 | INFO | Listening for connections at: tcp://localhost:61616
00:15:27,114 | INFO | Connector openwire Started
00:15:27,810 | INFO | Listening for connections at:
ssl://localhost:61617?needClientAuth=true
00:15:27,811 | INFO | Connector ssl Started
00:15:27,820 | INFO | ActiveMQ JMS Message Broker
(localhost, ID:mongoose.local-51704-1289978126925-0:0) started
...

The broker is ready, so let’s now see how clients behave depending on which certifi-
cate they use. For example, if we try to access the broker with the original certificate
used in chapter 4, we can expect that access will be denied, as that certificate isn’t in
the broker’s truststore.

$ mvn -Djavax.net.ssl.keyStore=\
src/main/resources/org/apache/activemq/book/ch4/myclient.ks \
-Djavax.net.ssl.keyStorePassword=test123 \
-Djavax.net.ssl.trustStore=${ACTIVEMQ_HOME}/conf/myclient.ts \
-Djavax.net.ssl.trustStorePassword=test123 exec:java
-Dexec.mainClass=org.apache.activemq.book.ch4.Publisher \
-Dexec.args="ssl://localhost:61617 CSCO ORCL"
...
No user for client certificate: CN=Dejan Bosanac,
OU=Chapter 4, O=ActiveMQ in Action, L=Belgrade, ST=Unknown,
C=RS
...

Note that we’re using the client truststore from the original SSL example here, since
nothing has changed regarding certificates on the broker side.

 Now let’s start it with the appropriate certificate and see how it works:
www.it-ebooks.info

http://www.it-ebooks.info/

141Certificate-based security
$ mvn -Djavax.net.ssl.keyStore=\
src/main/resources/org/apache/activemq/book/ch6/myproducer.ks \
-Djavax.net.ssl.keyStorePassword=test123 \
-Djavax.net.ssl.trustStore=${ACTIVEMQ_HOME}/conf/myclient.ts \
-Djavax.net.ssl.trustStorePassword=test123 exec:java \
-Dexec.mainClass=org.apache.activemq.book.ch4.Publisher \
-Dexec.args="ssl://localhost:61617 CSCO ORCL"
...
Sending: {price=22.67337141688392, stock=ORCL, offer=22.696044788300803,
up=true} on destination: topic://STOCKS.ORCL
Sending: {price=22.783456638853973, stock=ORCL, offer=22.806240095492825,
up=true} on destination: topic://STOCKS.ORCL
Sending: {price=35.92652907541019, stock=CSCO, offer=35.96245560448559,
up=false} on destination: topic://STOCKS.CSCO
Sending: {price=35.81608910812595, stock=CSCO, offer=35.851905197234075,
up=false} on destination: topic://STOCKS.CSCO
Sending: {price=35.49430393012775, stock=CSCO, offer=35.52979823405787,
up=false} on destination: topic://STOCKS.CSCO
Sending: {price=22.613210876407855, stock=ORCL, offer=22.63582408728426,
up=false} on destination: topic://STOCKS.ORCL
Sending: {price=22.584893337535, stock=ORCL, offer=22.607478230872534,
up=false} on destination: topic://STOCKS.ORCL
Sending: {price=35.81521985692496, stock=CSCO, offer=35.85103507678188,
up=true} on destination: topic://STOCKS.CSCO
Sending: {price=35.8020033885887, stock=CSCO, offer=35.837805391977284,
up=false} on destination: topic://STOCKS.CSCO
Sending: {price=22.570064862430183, stock=ORCL, offer=22.59263492729261,
up=false} on destination: topic://STOCKS.ORCL
Published '10' of '10' price messages
...

As expected, the publisher successfully sends stock portfolio updates to the broker in
this case. Now let’s see how to start a consumer with a proper certificate:

$ mvn -Djavax.net.ssl.keyStore=\
src/main/resources/org/apache/activemq/book/ch6/myconsumer.ks \
-Djavax.net.ssl.keyStorePassword=test123 \
-Djavax.net.ssl.trustStor${ACTIVEMQ_HOME}/conf/myclient.ts \
-Djavax.net.ssl.trustStorePassword=test123 exec:java \
-Dexec.mainClass=org.apache.activemq.book.ch4.Consumer \
-Dexec.args="ssl://localhost:61617 CSCO ORCL"
...
ORCL 82.20 82.28 up
CSCO 88.52 88.61 down
CSCO 89.10 89.19 up
ORCL 81.90 81.98 down
ORCL 81.16 81.24 down
CSCO 89.84 89.93 up
ORCL 81.19 81.27 up
ORCL 81.38 81.46 up
CSCO 90.14 90.23 up
ORCL 81.03 81.12 down
ORCL 80.71 80.79 down
ORCL 80.01 80.09 down
ORCL 79.51 79.59 down
CSCO 90.52 90.61 up
www.it-ebooks.info

http://www.it-ebooks.info/

142 CHAPTER 6 Securing ActiveMQ
ORCL 79.52 79.60 up
ORCL 78.77 78.85 down
...

Finally, we can test that our authorization settings work fine. As you can see from our
broker configuration, consumers shouldn’t be allowed to send messages to our stock-
related topics. So if you try to do it, the operation should fail:

$ mvn -Djavax.net.ssl.keyStore=\
src/main/resources/org/apache/activemq/book/ch6/myconsumer.ks \
-Djavax.net.ssl.keyStorePassword=test123 \
-Djavax.net.ssl.trustStore=${ACTIVEMQ_HOME}/conf/myclient.ts \
-Djavax.net.ssl.trustStorePassword=test123 exec:java \
-Dexec.mainClass=org.apache.activemq.book.ch4.Publisher \
-Dexec.args="ssl://localhost:61617 CSCO ORCL"
...
role="bold">User CN=consumer, OU=Chapter 6, O=ActiveMQ in Action,
L=Belgrade, ST=Unknown, C=RS is not authorized to write to:
topic://STOCKS.CSCO
...

In this section, we learned how to leverage what we knew about the SSL transport (and
configuring certificates) and with a bit of work configured certificate-based security
for the ActiveMQ broker. This brings ActiveMQ security to an entirely new level and
makes it a perfect fit for organizations with tight security requirements.

6.5 Summary
In this chapter, the ActiveMQ broker was secured from non-authenticated and non-
authorized access. For the most simple purposes, you can use the ActiveMQ simple
authentication plug-in, allowing you to define security credentials directly into the
configuration file. The ActiveMQ JAAS plug-ins provide the ability to utilize the stan-
dardized Java login modules via simple configuration, allowing you to authenticate
users from various sources, such as LDAP, properties files, and so on. Additionally, cus-
tom JAAS login modules can be created for use with other authentication or authoriza-
tion schemes such as Kerberos, NTLM, NIS, and so forth.

 Operation-level authorization was also demonstrated for more fine-grained control
over destinations. Next we demonstrated message-level authorization by creating a cus-
tom policy to control consumption of a given message. Then we demonstrated the
ActiveMQ plug-in mechanism through the customized IP-based authentication exam-
ple. Finally, we demonstrated how to configure the broker for certificate-based security.

 ActiveMQ provides some powerful security mechanisms, as seen in this chapter.
Hopefully the process for utilizing these solutions is more clear after walking through
the examples.

 With this chapter, we’ve finished the first part of the book that explained ActiveMQ
basics and various concepts regarding configuring the broker. In the following part of
the book, we’ll concentrate more on how to write applications that utilize ActiveMQ. In
particular, the following chapter focuses on topics such as embedding ActiveMQ in your
Java applications and using the Spring framework to write JMS-oriented applications.
www.it-ebooks.info

http://www.it-ebooks.info/

Part 3

Using ActiveMQ to build
messaging applications

Now that you have the basics under your belt, it’s time to start building
applications that utilize ActiveMQ. The asynchronous nature of messaging tends
to be foreign to most developers because they’re used to using synchronous calls
in the applications they build. Using asynchronous calls in your applications
requires a different style of thinking and a different set of APIs.

 Part 3 explores the topic-building applications that utilize messaging with
ActiveMQ. Building applications using the Spring Framework is popular in the
Java community, and this is the first topic we cover. We quickly follow up with
integrating ActiveMQ with application servers. This section covers the use of
ActiveMQ with Tomcat, Jetty, Geronimo, and JBoss application servers. Not only
do we explore Java development in part 3, but other languages as well, including
Ruby, Python, Perl, PHP, C#, C/C++, and more.
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

 Creating Java applications
with ActiveMQ
Thus far the book has concentrated on ActiveMQ as a software application. Most of
the information we’ve presented has concerned the internal structure of ActiveMQ
and how its components can be configured. But apart from basic JMS examples,
using ActiveMQ in your applications hasn’t been discussed. This chapter is dedi-
cated to explaining how to create applications with ActiveMQ.

 One of the things you might want to do with ActiveMQ is to embed it into your
application. Since ActiveMQ is written in Java, it can naturally be integrated in
another Java application. As you’ll see, you can configure the broker using either
Java code or XML (via the Spring Framework). A fully configured broker can serve
clients from the same application (using the VM protocol) as well as clients from
remote applications to exchange messages over the network. This scenario is
depicted in figure 7.1.

This chapter covers
 Embedding ActiveMQ in Java applications

 Embedding ActiveMQ using Spring

 Creating request/reply applications

 Writing JMS clients using Spring
145

www.it-ebooks.info

http://www.it-ebooks.info/

146 CHAPTER 7 Creating Java applications with ActiveMQ
The first section of this chapter will explore various techniques available for embed-
ding ActiveMQ in your Java applications. The second section will explain how to
embed ActiveMQ using Spring. You’ll see how to configure ActiveMQ using both pure
Spring XML and custom namespaces, as well as the standard ActiveMQ XML via
Apache XBean (http://mng.bz/EAfX). This will be followed by a discussion of some
advanced programming techniques that include ActiveMQ. This is a vast topic and
we’ll dig into two common use cases. We’ll also take a look at how to create a request/
reply system using JMS and ActiveMQ. We’ll discuss advantages of such a system over
the traditional client-server architecture.

 Finally, you’ll learn about using Spring JMS to simplify the creation of JMS clients
with ActiveMQ. Using the stock portfolio sample application, we’ll use Spring JMS to
set up connections, consumers, and producers in a quick manner. To begin, let’s dis-
cuss embedding ActiveMQ in your applications. There’s no single correct way to
embed ActiveMQ. The method you choose will probably depend on your application
design.

7.1 Embedding ActiveMQ using Java
Although most developers today use some kind of framework for composing their
applications, it’s always good to start with plain old Java. In this section we’ll initialize
and configure ActiveMQ using its Java APIs. You’ll see how to use the BrokerService
class to configure a broker using nothing but pure Java code.

 Next, we’ll describe how you can configure your broker using custom configura-
tion XML files. We’ll use the BrokerFactory class to achieve this and you’ll learn how
you can use regular configuration files to embed the broker in your Java applications.
After this section you’ll be able to embed ActiveMQ with any configuration in your
Java applications.

Java application

Broker

vm://

 Java applications
tcp://

Other applications
exchange messages

 with broker using
tcp transport

Figure 7.1 Local and
remote applications
exchange messages with
an embedded broker.
www.it-ebooks.info

http://www.it-ebooks.info/

147Embedding ActiveMQ using Java
7.1.1 Embedding ActiveMQ using the BrokerService

When using plain old Java to set up your broker, the org.apache.activemq.broker.
BrokerService class is one starting point. This class is used to configure the broker
and manage its entire lifecycle. The best way to demonstrate the usage of the Broker-
Service class is with an appropriate example. Let’s start with a broker configuration
we used in chapter 6 to configure a simple authentication plug-in and see how we can
achieve the same functionality with plain old Java code. For starters, let’s take a look at
the well-known XML configuration example shown here.

<broker xmlns="http://activemq.apache.org/schema/core"
brokerName="myBroker"
dataDirectory="${activemq.base}/data">

<transportConnectors>
<transportConnector name="openwire"
uri="tcp://localhost:61616" />

</transportConnectors>

<plugins>
<simpleAuthenticationPlugin>

<users>
<authenticationUser username="admin"

password="password"
groups="admins,publishers,consumers"/>

<authenticationUser username="publisher"
password="password"
groups="publishers,consumers"/>

<authenticationUser username="consumer"
password="password"
groups="consumers"/>

<authenticationUser username="guest"
password="password"
groups="guests"/>

</users>
</simpleAuthenticationPlugin>

</plugins>
</broker>

Listing 7.1 uses the standard ActiveMQ XML to define a broker instance with a name
and data directory, as well as one transport connector and one plug-in. Now look at the
same configuration using plain old Java and the BrokerService as shown next.

public static void main(String[] args) throws Exception {

BrokerService broker = new BrokerService();
broker.setBrokerName("myBroker");
broker.setDataDirectory("data/");

SimpleAuthenticationPlugin authentication =
new SimpleAuthenticationPlugin();

Listing 7.1 Configure ActiveMQ with security plug-ins using XML

Listing 7.2 Configure ActiveMQ with security plug-ins using Java

Instantiate
and configure
BrokerService
www.it-ebooks.info

http://www.it-ebooks.info/

148 CHAPTER 7 Creating Java applications with ActiveMQ
List<AuthenticationUser> users =
new ArrayList<AuthenticationUser>();

users.add(new AuthenticationUser("admin",
"password",
"admins,publishers,consumers"));

users.add(new AuthenticationUser("publisher",
"password",
"publishers,consumers"));

users.add(new AuthenticationUser("consumer",
"password",
"consumers"));

users.add(new AuthenticationUser("guest",
"password",
"guests"));

authentication.setUsers(users);

broker.setPlugins(new BrokerPlugin[]{authentication});
broker.addConnector("tcp://localhost:61616");
broker.start();

System.out.println();
System.out.println("Press any key to stop the broker");
System.out.println();

System.in.read();
}

As you can see, listing 7.2 instantiates the BrokerService and configures the broker-
Name and dataDirectory properties. Next the SimpleAuthenticationPlugin is added
to the BrokerService via the setPlugins() method. Then a transport connector is
added to the BrokerService via the addConnector() method. Finally the start()
method is used to start the BrokerService instance. Now your broker is fully initial-
ized using just plain old Java code; no XML configuration files were used. To see this
class in action, execute it as shown in this listing.

$ mvn exec:java \
-Dexec.mainClass=org.apache.activemq.book.ch7.broker.Broker \
-Dlog4j.configuration=file:src/main/java/log4j.properties

...
[INFO] [exec:java {execution: default-cli}]
INFO | Using Persistence Adapter: AMQPersistenceAdapter(data/localhost)
INFO | AMQStore starting using directory: data/localhost
INFO | Kaha Store using data directory data/localhost/kr-store/state
INFO | AMQPersistenceAdapter - Active data files: []
INFO | ActiveMQ 5.4.1 JMS Message Broker (localhost) is starting
INFO | For help or more information please see: http://activemq.apache.org/
INFO | Kaha Store using data directory data/localhost/kr-store/data
INFO | Listening for connections at: tcp://localhost:61616
INFO | Connector tcp://localhost:61616 Started
INFO | JMX consoles can connect to

service:jmx:rmi:///jndi/rmi://localhost:1099/jmxrmi

Listing 7.3 Run the pure Java example of the BrokerService

Add transport
connector

Start broker
www.it-ebooks.info

http://www.it-ebooks.info/

149Embedding ActiveMQ using Java
INFO | ActiveMQ JMS Message Broker
(localhost, ID:dejanb-63935-1269536159457-0:0) started

Press any key to stop the broker
...

One important thing to note in listing 7.3 is that you should always add your plug-ins
before connectors; otherwise they won’t be initialized. Also, any connectors added
after the broker has been started won’t be properly started either.

 The BrokerService class is useful when you want to use plain old Java for the bro-
ker configuration. This method is useful for many situations where you don’t need an
externally customizable configuration. In many applications, you’ll want to be able to
initialize the broker using the same configuration files used to configure standalone
instances of the ActiveMQ broker. For that purpose ActiveMQ provides the utility
org.apache.activemq.broker.BrokerFactory class.

7.1.2 Embedding ActiveMQ using the BrokerFactory

The BrokerFactory class is a utility that makes it easy to create a broker instance sim-
ply using an ActiveMQ URI. Depending on the broker URI scheme, the BrokerFactory
locates the appropriate factory and uses it to create an instance of the BrokerService
class. The most widely used factory is the XBeanBrokerFactory class and is configured
by simply passing the XBean-style of URI. An example of an XBean broker URI is
shown next:

xbean:/path/to/activemq.xml

This example URI tells the BrokerFactory to use the XBeanBrokerFactory and the
path following the colon to create the broker instance.

 Now, let’s look at the following listing. The BrokerFactory can instantiate the
BrokerService class using the standard ActiveMQ XML configuration file as shown.

public class Factory {

public static void main(String[] args) throws Exception {
System.setProperty("activemq.base", System.getProperty("user.dir"));

String configUri =
"xbean:target/classes/org/apache/activemq/book/ch6/activemq-simple.xml"

URI brokerUri = new URI(configUri);

BrokerService broker = BrokerFactory.createBroker(brokerUri);
broker.start();

System.out.println();
System.out.println("Press any key to stop the broker");
System.out.println();

System.in.read();
}

}

Listing 7.4 Using the BrokerFactory with an XML configuration
www.it-ebooks.info

http://www.it-ebooks.info/

150 CHAPTER 7 Creating Java applications with ActiveMQ
As you can see in listing 7.4, the BrokerFactory.createBroker() method uses a con-
figuration URI to create the BrokerService instance. Note that the configuration URI
used in listing 7.4 is the xbean: URI scheme. This tells the broker factory to search for
the given XML configuration file in the classpath or somewhere on the file system. To
illustrate this example in action, the following listing shows how to execute it.

$ mvn exec:java \
-Dexec.mainClass=org.apache.activemq.book.ch7.broker.Factory \
-Dlog4j.configuration=file:src/main/java/log4j.properties

...
[INFO] [exec:java {execution: default-cli}]
INFO | Using Persistence Adapter: AMQPersistenceAdapter(data/localhost)
INFO | AMQStore starting using directory: data/localhost
INFO | Kaha Store using data directory data/localhost/kr-store/state
INFO | Active data files: []
INFO | ActiveMQ 5.4.1 JMS Message Broker (localhost) is starting
INFO | For help or more information please see: http://activemq.apache.org/
INFO | Kaha Store using data directory data/localhost/kr-store/data
INFO | Listening for connections at: tcp://localhost:61616
INFO | Connector openwire Started
INFO | ActiveMQ JMS Message Broker

(localhost, ID:dejanb-65001-1269594442403-0:0) started

Press any key to stop the broker
...

You can also use the broker: URI scheme for simple broker configuration performed
completely via the configuration URI. See the following example URI:

broker:(tcp://localhost:61616,network:static:tcp://remotehost:61616)
?persistent=false&useJmx=true

This single URI contains enough configuration to start up a broker, including both
network and transport connectors; persistence has been disabled and JMX has been
explicitly enabled. For more information, see the complete URI reference on the
ActiveMQ website (http://mng.bz/FNos).

 As mentioned earlier, most Java developers use some kind of framework to com-
pose their applications. Since the Spring Framework (http://www.springframework.
org/) is the most popular framework used today, let’s examine how to configure and
use ActiveMQ as a component in a Spring application.

7.2 Embedding ActiveMQ using Spring
ActiveMQ is developed with Spring in mind. In fact, ActiveMQ uses a Spring XML con-
figuration file by default. This makes it easy to embed an ActiveMQ broker in Spring-
enabled applications. This section will explore numerous methods for utilizing
ActiveMQ with Spring. Although there are advantages and disadvantages to some
methods, and some are recommended more than others, no single method is the best
one. The decision on which method to use typically can be made by considering your

Listing 7.5 Run the example of the BrokerFactory
www.it-ebooks.info

http://www.it-ebooks.info/

151Embedding ActiveMQ using Spring
application and system architecture, the skill set of your developers, and the difficulty
to maintain the solution once it’s deployed to your production systems.

7.2.1 Pure Spring XML

The first style of Spring configuration to examine is what’s known as a pure Spring con-
figuration. A pure Spring configuration is characterized by the style of the XML. It uses
the standard Spring <bean id="..." class="..."> style of XML in the configuration
file. This style of XML is widely known because Spring is so ubiquitous and it’s easy to
understand.

 Using a pure Spring XML syntax is easy to do with ActiveMQ. All you have to do is
define the BrokerService as a bean and any dependencies in the Spring configura-
tion file. The following listing shows the same broker configuration that was shown in
listing 7.2.

<beans>
<bean id="admins" class="org.apache.activemq.security.AuthenticationUser">

<constructor-arg index="0" value="admin" />
<constructor-arg index="1" value="password" />
<constructor-arg index="2" value="admins,publisher,consumers" />

</bean>

<bean id="publishers"
class="org.apache.activemq.security.AuthenticationUser">
<constructor-arg index="0" value="publisher" />
<constructor-arg index="1" value="password" />
<constructor-arg index="2" value="publisher,consumers" />

</bean>

<bean id="consumers"
class="org.apache.activemq.security.AuthenticationUser">
<constructor-arg index="0" value="consumer" />
<constructor-arg index="1" value="password" />
<constructor-arg index="2" value="consumers" />

</bean>

<bean id="guests" class="org.apache.activemq.security.AuthenticationUser">
<constructor-arg index="0" value="guest" />
<constructor-arg index="1" value="password" />
<constructor-arg index="2" value="guests" />

</bean>

<bean id="simpleAuthPlugin"
class="org.apache.activemq.security.SimpleAuthenticationPlugin">
<property name="users">

<util:list>
<ref bean="admins" />
<ref bean="publishers" />
<ref bean="consumers" />
<ref bean="guests" />

</util:list>
</property>

Listing 7.6 A pure Spring configuration for ActiveMQ
www.it-ebooks.info

http://www.it-ebooks.info/

152 CHAPTER 7 Creating Java applications with ActiveMQ
</bean>

<bean id="broker" class="org.apache.activemq.broker.BrokerService"
init-method="start" destroy-method="stop">
<property name="brokerName" value="myBroker" />
<property name="persistent" value="false" />
<property name="transportConnectorURIs">

<list>
<value>tcp://localhost:61616</value>

</list>
</property>
<property name="plugins">

<list>
<ref bean="simpleAuthPlugin"/>

</list>
</property>

</bean>

</beans>

As noted, the broker configuration in listing 7.6 follows exactly the same broker con-
figuration that was shown in listing 7.2. The difference between these two configura-
tions is that listing 7.2 directly makes use of the ActiveMQ Java API, and listing 7.6
indirectly uses the ActiveMQ Java API by way of the Spring container and a pure Spring
style of XML. There’s no distinct advantage necessarily; this is just another available
option. Even if you use the standard ActiveMQ XML in the config file, you can still use
the standard Spring XML syntax in that file as well.

 To start up ActiveMQ using this style of configuration, use the SpringConfig class
as shown next.

$ mvn exec:java \
-Dexec.mainClass=org.apache.activemq.book.ch7.broker.SpringConfig
...
13:27:42,125 | INFO | Loading XML bean definitions from class path
resource [org/apache/activemq/book/ch7/pure-spring.xml]
13:27:42,366 | INFO | Bean factory for application context
[org.springframework.context.support.
ClassPathXmlApplicationContext@20edbca8]:
org.springframework.beans.factory.support.
DefaultListableBeanFactory@7c959fa1
13:27:42,418 | INFO | Pre-instantiating singletons in
org.springframework.beans.factory.support.
DefaultListableBeanFactory@7c959fa1:
defining beans
[admins,publishers,consumers,guests,simpleAuthPlugin,broker];
root of factory hierarchy
13:27:42,719 | INFO | Using Persistence Adapter: MemoryPersistenceAdapter
13:27:42,721 | INFO | ActiveMQ 5.4.1 JMS Message Broker (myBroker) is
starting
13:27:42,721 | INFO | For help or more information please see:
http://activemq.apache.org/

Listing 7.7 Start ActiveMQ using a pure Spring XML syntax
www.it-ebooks.info

http://www.it-ebooks.info/

153Embedding ActiveMQ using Spring
13:27:43,224 | INFO | Listening for connections at:
tcp://mongoose.local:61616
13:27:43,225 | INFO | Connector tcp://mongoose.local:61616 Started
13:27:43,227 | INFO | ActiveMQ JMS Message Broker
(myBroker, ID:mongoose.local-50630-1282246062743-0:0) started

Press any key to stop the broker

The SpringConfig class is a simple class that uses the Spring ClassPathXml-
ApplicationContext (http://mng.bz/71U2) in a main method to read in the pure
Spring config and start the ActiveMQ broker. A slight variation on this style of startup
is to use the BrokerFactoryBean that’s provided with ActiveMQ.

7.2.2 Using the BrokerFactoryBean

It’s common in enterprise Java development to use Spring factory beans (http://
mng.bz/h0OJ) to expose beans that are themselves factories. The purpose of Spring
factory beans is to instantiate a factory that requires a complex configuration. The use
of the factory bean replaces writing a bunch of complex XML, and it hooks right into
the Spring container. The org.apache.activemq.xbean.BrokerFactoryBean class
does this job for ActiveMQ. Using the BrokerFactoryBean is easier than creating and
maintaining your own class for this purpose. An ActiveMQ broker can be started up
using the BrokerFactoryBean class as shown next.

<beans>
<bean id="broker"
class="org.apache.activemq.xbean.BrokerFactoryBean">
<property name="config"
value="org/apache/activemq/book/ch6/activemq-simple.xml"/>

<property name="start" value="true" />
</bean>

</beans>

Note in listing 7.8 that the XML to configure the BrokerFactoryBean is minimal. It
uses a property named config to point to the standard ActiveMQ XML configuration
file that was described in earlier chapters and a property named start to instruct
Spring to invoke the start method on the factory bean after it’s initialized (this starts
up the ActiveMQ broker instance). You can also disable this feature and simply start
the broker manually if you wish. To execute this example, see the following listing.

$ mvn exec:java \
-Dexec.mainClass=\
org.apache.activemq.book.ch7.spring.BrokerFactoryBeanExample \
-Dlog4j.configuration=file:src/main/java/log4j.properties \
-Dexec.args="src/main/resources/org/apache/activemq/book/ch7/spring-1.0.xml"
...
[INFO] [exec:java {execution: default-cli}]

Listing 7.8 ActiveMQ XML configuration for projects using Spring syntax

Listing 7.9 Start ActiveMQ using the BrokerFactoryBean

Decide whether to
start a broker
www.it-ebooks.info

http://www.it-ebooks.info/

154 CHAPTER 7 Creating Java applications with ActiveMQ
Starting broker with the following configuration:
src/main/resources/org/apache/activemq/book/ch7/spring-1.0.xml

INFO | Using Persistence Adapter:
AMQPersistenceAdapter(data/localhost)

INFO | AMQStore starting using directory:
data/localhost

INFO | Kaha Store using data directory
data/localhost/kr-store/state

INFO | Active data files: []
INFO | ActiveMQ 5.4.1 JMS Message Broker (localhost) is starting
INFO | For help or more information please see:
http://activemq.apache.org/
INFO | Kaha Store using data directory
data/localhost/kr-store/data

INFO ManagementContext - JMX consoles can connect to
service:jmx:rmi:///jndi/rmi://localhost:1099/jmxrmi

INFO | Listening for connections at: tcp://localhost:61616
INFO | Connector openwire Started
INFO |ActiveMQ JMS Message Broker
(localhost, ID:wfh-dejanb-65076-1269595139615-0:0) started

Sending: {price=22.74502068626, stock=JAVA, offer=22.767765706954,
up=true}
on destination: topic://STOCKS.JAVA

Sending: {price=65.23301909637, stock=IONA, offer=65.29825211547,
up=true}
on destination: topic://STOCKS.IONA

Sending: {price=65.09672311118, stock=IONA, offer=65.16181983429,
up=false}
on destination: topic://STOCKS.IONA

Sending: {price=64.84016157839, stock=IONA, offer=64.90500173997,
up=false}
on destination: topic://STOCKS.IONA

Sending: {price=22.560415476111, stock=JAVA, offer=22.582975891587,
up=false}
on destination: topic://STOCKS.JAVA

Sending: {price=64.43834994393, stock=IONA, offer=64.50278829387,
up=false}
on destination: topic://STOCKS.IONA

Sending: {price=22.583510723322, stock=JAVA, offer=22.606094234045,
up=true}
on destination: topic://STOCKS.JAVA

...

In listing 7.9, you should see that the broker is started using the BrokerFactoryBean
via the Spring configuration and stock price messages are being sent to the broker.

 In addition to the BrokerFactoryBean, you can also use XBean with Spring.

7.2.3 Using Apache XBean with Spring

By default, ActiveMQ uses Spring and Apache XBean (http://mng.bz/EAfX) for its
internal configuration purposes. Therefore all activemq.xml files we used in previous
chapters to configure various features of ActiveMQ are basically Spring configuration
files, powered by an XBean custom XML schema. XBean provides the ability to define
www.it-ebooks.info

http://www.it-ebooks.info/

155Embedding ActiveMQ using Spring
and use a custom XML syntax that’s much more compact than the standard Spring
XML syntax. Although Spring provides the ability to do this now, such features weren’t
available when ActiveMQ was created (Spring only supported DTDs at the time).

 The following listing shows an example of a simple Java application using Spring
and XBean.

package org.apache.activemq.book.ch7.xbean;

import org.apache.activemq.book.ch6.Publisher;
import org.apache.xbean.spring.context.FileSystemXmlApplicationContext;

public class XBeanBroker {

public static void main(String[] args) throws Exception {
if (args.length == 0) {
System.err.println("Please define a configuration file!");
return;

}
String config = args[0];
System.out.println(

"Starting broker with the following configuration: " + config
);
System.setProperty("activemq.base",

System.getProperty("user.dir"));
FileSystemXmlApplicationContext

context = new FileSystemXmlApplicationContext(config);

Publisher publisher = new Publisher();
for (int i = 0; i < 100; i++) {

publisher.sendMessage(new String[]{"JAVA", "IONA"});
}

}

}

Listing 7.10 accepts an argument for the path to the XML configuration file, sets the
activemq.base system property, and instantiates a Spring application context using
the XML configuration file. Then the publisher is instantiated and used to send a sim-
ple message 100 times. That’s the entire application. Everything else that’s needed is
handled by ActiveMQ and the Spring Framework. Please note that the application
context class used in this example is from XBean, not the Spring Framework. This
example can be run using the command shown in the following listing.

$ mvn exec:java \
-Dexec.mainClass=org.apache.activemq.book.ch7.xbean.XBeanBroker \
-Dlog4j.configuration=file:src/main/java/log4j.properties \
-Dexec.args= \
"src/main/resources/org/apache/activemq/book/ch6/activemq-simple.xml"
...

Listing 7.10 The XBeanBroker class

Listing 7.11 Start ActiveMQ Using XBean with Spring

Set base
property

Initialize
application
context

Send
messages
www.it-ebooks.info

http://www.it-ebooks.info/

156 CHAPTER 7 Creating Java applications with ActiveMQ
[INFO] [exec:java {execution: default-cli}]
Starting broker with the following configuration:
src/main/resources/org/apache/activemq/book/ch6/activemq-simple.xml

INFO | Using Persistence Adapter:
AMQPersistenceAdapter(data/localhost)

INFO | AMQStore starting using directory: data/localhost
INFO | Kaha Store using data directory data/localhost/kr-store/state
INFO | Active data files: []
INFO | ActiveMQ 5.4.1 JMS Message Broker (localhost) is starting
INFO | For help or more information please see:
http://activemq.apache.org/
INFO | Kaha Store using data directory data/localhost/kr-store/data
INFO | JMX consoles can connect to
service:jmx:rmi:///jndi/rmi://localhost:1099/jmxrmi

INFO | Listening for connections at: tcp://localhost:61616
INFO | Connector openwire Started
INFO | ActiveMQ JMS Message Broker
(localhost, ID:dejanb-65363-1269596340878-0:0) started

Sending: {price=53.794098159875, stock=IONA, offer=53.847892258035,
up=false}
on destination: topic://STOCKS.IONA

Sending: {price=53.489740886575, stock=IONA, offer=53.543230627461,
up=false}
on destination: topic://STOCKS.IONA

Sending: {price=53.5342708859, stock=IONA, offer=53.58780515680,
up=true}
on destination: topic://STOCKS.IONA

Sending: {price=53.86122035252, stock=IONA, offer=53.91508157288,
up=true}
on destination: topic://STOCKS.IONA

Sending: {price=54.15343454330, stock=IONA, offer=54.207587977851,
up=true}
on destination: topic://STOCKS.IONA

Sending: {price=49.27384513708, stock=JAVA, offer=49.323118982218,
up=false}
on destination: topic://STOCKS.JAVA

Sending: {price=53.83373859262, stock=IONA, offer=53.8875723312,
up=false}
on destination: topic://STOCKS.IONA

Sending: {price=53.933391780045, stock=IONA, offer=53.98732517182,
up=true}
on destination: topic://STOCKS.IONA

...

The broker that’s started behaves the same as the previously defined examples.
 In addition to the compact XML syntax provided by XBean, Spring also support

XML namespaces.

7.2.4 Using a custom XML namespace with Spring

All recent versions of the Spring Framework allow developers to utilize a custom XML
schema. ActiveMQ provides a custom XML schema to configure ActiveMQ via the
Spring configuration file. The following listing demonstrates how to configure
ActiveMQ using its custom Spring schema via an XML namespace.
www.it-ebooks.info

http://www.it-ebooks.info/

157Embedding ActiveMQ using Spring
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:amq="http://activemq.apache.org/schema/core"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://activemq.apache.org/schema/core
http://activemq.apache.org/schema/core/activemq-core.xsd">

<amq:broker
brokerName="localhost" dataDirectory="${activemq.base}/data">

<amq:transportConnectors>
<amq:transportConnector name="openwire"
uri="tcp://localhost:61616" />

</amq:transportConnectors>
<amq:plugins>
<amq:simpleAuthenticationPlugin>
<amq:users>
<amq:authenticationUser username="admin"

password="password"
groups="admins,publishers,consumers"/>

<amq:authenticationUser username="publisher"
password="password"
groups="publishers,consumers"/>

<amq:authenticationUser username="consumer"
password="password"
groups="consumers"/>

<amq:authenticationUser username="guest"
password="password"
groups="guests"/>

</amq:users>
</amq:simpleAuthenticationPlugin>

</amq:plugins>
</amq:broker>

</beans>

As you can see in listing 7.12, first a prefix is declared that will be used throughout the
XML document to reference element types from the custom schema. The prefix that’s
commonly used for ActiveMQ is amq. Second is the URI to the right of the prefix,
which in this case is http://activemq.apache.org/schema/core. The prefix is used to
reference the URI from within the XML document. Third, the URI is used as an identi-
fier to point to the actual location of the XML schema document (XSD) via the
schemaLocation attribute. For example, when the <amq:broker> element is used, the
amq prefix serves as an alias to the URI and the URI points to the XSD where the broker
element can be found.

 Once the XML namespace is declared, we’re free to define our broker-related
beans using the custom XML syntax. In this particular example we’ve configured the
broker as it was configured in our previously used chapter 6 example, with the simple
authentication plug-in. Now the Spring broker can be started as shown next.

Listing 7.12 ActiveMQ XML configuration using Spring 2.x (and newer)

Define URI and
location of XSD
www.it-ebooks.info

http://www.it-ebooks.info/

158 CHAPTER 7 Creating Java applications with ActiveMQ
$ mvn -e exec:java \
-Dexec.mainClass=org.apache.activemq.book.ch7.spring.SpringBroker \
-Dlog4j.configuration=file:src/main/java/log4j.properties \
-Dexec.args=\
src/main/resources/org/apache/activemq/book/ch7/spring-2.0.xml
...
[INFO] [exec:java {execution: default-cli}]
Starting broker with the following configuration:
src/main/resources/org/apache/activemq/book/ch7/spring-2.0.xml

INFO | Using Persistence Adapter:
AMQPersistenceAdapter(${activemq.base}/data/localhost)

INFO | AMQStore starting using directory: data/localhost
INFO | Kaha Store using data directory data/localhost/kr-store/state
INFO | Active data files: []
INFO | ActiveMQ 5.4.1 JMS Message Broker (localhost) is starting
INFO | For help or more information please see: http://activemq.apache.org/
INFO | Kaha Store using data directory data/localhost/kr-store/data
INFO | JMX consoles can connect
to service:jmx:rmi:///jndi/rmi://localhost:1099/jmxrmi

INFO | Listening for connections at: tcp://localhost:61616
INFO | Connector openwire Started
INFO | ActiveMQ JMS Message Broker
(localhost, ID:dejanb-65324-1269595874364-0:0) started

Sending: {price=83.53568740848, stock=IONA, offer=83.61922309589, up=true}
on destination: topic://STOCKS.IONA

Sending: {price=84.15670625187, stock=IONA, offer=84.24086295812, up=true}
on destination: topic://STOCKS.IONA

Sending: {price=83.64752134809, stock=IONA, offer=83.7311688694, up=false}
on destination: topic://STOCKS.IONA

Sending: {price=83.33023218494, stock=IONA, offer=83.41356241712, up=false}
on destination: topic://STOCKS.IONA

Sending: {price=84.05476877613, stock=IONA, offer=84.13882354490, up=true}
on destination: topic://STOCKS.IONA

Sending: {price=57.75764610250, stock=JAVA, offer=57.815403748606, up=true}
on destination: topic://STOCKS.JAVA

Sending: {price=84.3813034823, stock=IONA, offer=84.46568478585, up=true}
on destination: topic://STOCKS.IONA

Sending: {price=84.77874758495, stock=IONA, offer=84.86352633253, up=true}
on destination: topic://STOCKS.IONA

...

The example shown in listing 7.13 uses the most common type of XML configuration
file. So although this is nothing new, it’s something that many developers don’t fully
understand.

 Now that we’ve examined and demonstrated various styles of configuration exam-
ples for ActiveMQ, it’s time to shift gears a bit to look at a common use of ActiveMQ:
creating an application that uses a common JMS paradigm known as request/reply.

7.3 Implementing request/reply with JMS
As described in earlier chapters, messaging is all about the decoupling of senders from
receivers. Messages are sent by one process to a broker, and messages are received from

Listing 7.13 Start ActiveMQ using a configuration with a custom XML namespace
www.it-ebooks.info

http://www.it-ebooks.info/

159Implementing request/reply with JMS
a broker by a different process in an asynchronous manner. One style of system archi-
tecture that can be implemented using JMS is known as request/reply. From a high level,
a request/reply scenario involves an application that sends a message (the request)
and expects to receive a message in return (the reply). Traditionally, such a system
design was implemented using a client-server architecture, with the server and the cli-
ent communicating in a synchronous manner across a network transport (TCP, UDP,
and so on). This style of architecture certainly has scalability limitations, and it’s diffi-
cult to distribute it further. That’s where messaging enters the picture—to provide the
ability to design a system that can easily scale much further via a messaging-based
request/reply design. Some of the most scalable systems in the world are implemented
using asynchronous processing like that being demonstrated in this example.

 The diagram shown in figure 7.2 depicts an overview of the request/reply para-
digm. Note that the client consists of both a producer and a consumer, and the
worker also consists of both a producer and a consumer. These two entities are both
explained next.

 First, the producer creates a request in the form of a JMS message and sets a couple
of important properties on the message—the correlation ID (set via the JMS-
CorrelationID message property) and the reply destination (set via the JMSReplyTo
message property). The correlation ID is important, as it allows requests to be corre-
lated with replies if there are multiple outstanding requests. The reply destination is
where the reply is expected to be delivered (usually a temporary JMS destination since
it’s much more resource friendly). The client then configures a consumer to listen on
the reply destination.

 Second, a worker receives the request, processes it, and sends a reply message
using the destination named in the JMSReplyTo property of the request message. The
reply message must also set JMSCorrelationID using the correlation ID from the orig-

ActiveMQ
broker

Request
queue

Response
queue

Client

Producer

Consumer

Worker

Producer

Consumer
JMSCorrelationID

JMSCorrelationID JMSCorrelationID

JMSCorrelationID

Worker

Worker

Client

Client

Figure 7.2 Overview of a request/reply
implementation using JMS
www.it-ebooks.info

http://www.it-ebooks.info/

160 CHAPTER 7 Creating Java applications with ActiveMQ
inal request. When the client receives this reply message, it can then properly associ-
ate it with the original request.

 Now comes the interesting part—to demonstrate how this architecture can be
highly scalable. Imagine that a single worker isn’t enough to handle the load of
incoming requests. No problem: just add additional workers to handle the load.
Those workers can even be distributed across multiple hosts—this is the most impor-
tant aspect of scaling this design. Because the workers aren’t contending for the same
resources on the same host, the only limit is the maximum throughput of messages
through the broker, which is much higher than you can achieve with any classic client-
server setup. Furthermore, ActiveMQ can be scaled both vertically and horizontally, as
discussed in part 4. Let’s now take a look at a simple implementation of request/reply.

7.3.1 Implementing the server and the worker

The first piece of the system on which to focus is the message broker. Get the broker
up and running so that it’s ready for connections when both sides are started up. An
embedded broker will be used for this example because it’s easy to demonstrate. The
second piece of the system to get running is the worker. The worker is composed of a
message listener that consumes the message and sends a response. Even though this is
a simple implementation, it’ll provide you enough information to use it with your sys-
tems. So take a look at the server implementation.

...
public void start() throws Exception {
createBroker();
setupConsumer();

}

private void createBroker() throws Exception {
broker = new BrokerService();
broker.setPersistent(false);
broker.setUseJmx(false);
broker.addConnector(brokerUrl);
broker.start();

}

private void setupConsumer() throws JMSException {
ActiveMQConnectionFactory connectionFactory

= new ActiveMQConnectionFactory(brokerUrl);

Connection connection;
connection = connectionFactory.createConnection();
connection.start();
session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);
Destination adminQueue = session.createQueue(requestQueue);

producer = session.createProducer(null);
producer.setDeliveryMode(DeliveryMode.NON_PERSISTENT);

consumer = session.createConsumer(adminQueue);

Listing 7.14 Create a broker, a consumer, and a producer for the request/reply example

Start broker

Set up consumer
www.it-ebooks.info

http://www.it-ebooks.info/

161Implementing request/reply with JMS
consumer.setMessageListener(this);
}

public void stop() throws Exception {
producer.close();
consumer.close();
session.close();
broker.stop();

}
...

As you can see, the start() method calls one method to create and start an embed-
ded broker, and another method to create and start up the worker. The create-
Broker() method uses the BrokerService class to create an embedded broker. The
setupConsumer() method creates all the necessary JMS objects for receiving and send-
ing messages including a connection, a session, a destination, a consumer, and a pro-
ducer. The producer is created without a default destination, because it’ll send
messages to destinations that are specified in each message’s JMSReplyTo property .

 Taking a closer look at the listener, note how it handles the consumption of each
request as shown next.

...
public void onMessage(Message message) {
try {
TextMessage response = this.session.createTextMessage();
if (message instanceof TextMessage) {
TextMessage txtMsg = (TextMessage) message;
String messageText = txtMsg.getText();
response.setText(handleRequest(messageText));

}

response.setJMSCorrelationID(message.getJMSCorrelationID());

producer.send(message.getJMSReplyTo(), response);
} catch (JMSException e) {
e.printStackTrace();

}
}

public String handleRequest(String messageText) {
return "Response to '" + messageText + "'";

}
...

The listener creates a new message, assigns the appropriate correlation ID, and sends
a message to the reply-to queue. Simple stuff, but still important. Although this mes-
sage listener isn’t earth shattering in its implementation, it demonstrates the basic
steps necessary to complete the task of the worker. Any amount of extra processing or
database access could be added to the listener in your systems depending on the
requirements.

Listing 7.15 The message listener for the request/reply example

Stop server

Handle request

Assign
correlation
ID

Send response
www.it-ebooks.info

http://www.it-ebooks.info/

162 CHAPTER 7 Creating Java applications with ActiveMQ
 Starting the server is rather obvious: create an instance of it and call the start()
method. All of the server functionality is housed in the main method, as shown in the
following listing.

...
public static void main(String[] args) throws Exception {
Server server = new Server();
server.start();

System.out.println();
System.out.println("Press any key to stop the server");
System.out.println();

System.in.read();

server.stop();
}

...

Once the server is started and the worker is running, everything is ready to accept
requests from the client.

7.3.2 Implementing the client

The job of the client is to initiate requests to the broker. This is where the whole
request/reply process begins, and is typically triggered by one of your business pro-
cesses. This process could be to accept an order, fulfill an order, integrate various busi-
ness systems, or buy or sell a financial position. Whatever the case may be, request-
reply begins by sending a message.

 Sending a message to the broker requires the standard connection, session, desti-
nation, and producer which are all created in the client by the start() method. This
is all shown in the following listing.

...
public void start() throws JMSException {
ActiveMQConnectionFactory connectionFactory =

new ActiveMQConnectionFactory(brokerUrl);
connection = connectionFactory.createConnection();
connection.start();
session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);
Destination adminQueue = session.createQueue(requestQueue);

producer = session.createProducer(adminQueue);
producer.setDeliveryMode(DeliveryMode.NON_PERSISTENT);

tempDest = session.createTemporaryQueue();
consumer = session.createConsumer(tempDest);

consumer.setMessageListener(this);
}

Listing 7.16 Starting the server for the request-reply example

Listing 7.17 Methods for starting and stopping the request/reply client
www.it-ebooks.info

http://www.it-ebooks.info/

163Implementing request/reply with JMS
public void stop() throws JMSException {
producer.close();
consumer.close();
session.close();
connection.close();

}
...

The producer sends a message to the request queue and then the consumer listens on
the newly created temporary queue. Now it’s time to implement an actual logic for the
client, as shown next.

...
public void request(String request) throws JMSException {

System.out.println("Requesting: " + request);
TextMessage txtMessage = session.createTextMessage();
txtMessage.setText(request);

txtMessage.setJMSReplyTo(tempDest);

String correlationId = UUID.randomUUID().toString();
txtMessage.setJMSCorrelationID(correlationId);
this.producer.send(txtMessage);

}

public void onMessage(Message message) {
try {
System.out.println("Received response for: "

+ ((TextMessage) message).getText());
} catch (JMSException e) {
e.printStackTrace();

}
}

...

The request() method shown in listing 7.18 creates a message with the request con-
tent, sets the JMSReplyTo property to the temporary queue, and sets the correlation
ID—these three items are important. Although the correlation ID in this case uses a
random UUID, just about any ID generator can be used. Now we’re ready to send a
request.

 Just like starting the server was a simple main method, the same is true of the client
as shown in the next listing.

...
public static void main(String[] args) throws Exception {
Client client = new Client();
client.start();
int i = 0;
while (i++ < 10) {
client.request("REQUEST-" + i);

}

Listing 7.18 Implementation of logic for request/reply client

Listing 7.19 Starting the request/reply client

Send request

Wait for reply
www.it-ebooks.info

http://www.it-ebooks.info/

164 CHAPTER 7 Creating Java applications with ActiveMQ
Thread.sleep(3000); //wait for replies
client.stop();

}
...

As explained earlier, this is a simple implementation. So upon starting up the client,
10 requests are sent to the broker. Now it’s time to actually run the example.

7.3.3 Running the request/reply example

Running the example requires two terminals: one for the server and one for the cli-
ent. The server needs to be started first. The server is implemented in a class named
Server and the client is implemented in a class named Client. Because each of these
classes is initiated via a main method, it’s easy to start each one. The following listing
demonstrates starting up the server class.

$ mvn exec:java -Dexec.mainClass=org.apache.activemq.book.ch7.sync.Server
...
INFO | Using Persistence Adapter: MemoryPersistenceAdapter
INFO | ActiveMQ 5.4.1 JMS Message Broker (localhost) is starting
INFO | For help or more information please see:

http://activemq.apache.org/
INFO | Listening for connections at:

tcp://dejan-bosanacs-macbook-pro.local:61616
INFO | Connector tcp://dejan-bosanacs-macbook-pro.local:61616 Started
INFO | ActiveMQ JMS Message Broker

(localhost, ID:dejanb-57522-1271170284460-0:0) started

Press any key to stop the server

INFO | ActiveMQ Message Broker
(localhost, ID:dejanb-57522-1271170284460-0:0) is shutting down

INFO | Connector tcp://dejan-bosanacs-macbook-pro.local:61616 Stopped
INFO | ActiveMQ JMS Message Broker

(localhost, ID:dejanb-57522-1271170284460-0:0) stopped
...

When the server is started up, then it’s time to start up the client and begin sending
requests. The following listing shows how to start up the client.

$ mvn exec:java -Dexec.mainClass=org.apache.activemq.book.ch7.sync.Client
...
Requesting: REQUEST-1
Requesting: REQUEST-2
Requesting: REQUEST-3
Requesting: REQUEST-4
Requesting: REQUEST-5
Requesting: REQUEST-6
Requesting: REQUEST-7
Requesting: REQUEST-8
Requesting: REQUEST-9

Listing 7.20 Start up the server for the request/reply example

Listing 7.21 Start up the client for the request/reply example
www.it-ebooks.info

http://www.it-ebooks.info/

165Writing JMS clients using Spring
Requesting: REQUEST-10
Received response for: Response to 'REQUEST-1'
Received response for: Response to 'REQUEST-2'
Received response for: Response to 'REQUEST-3'
Received response for: Response to 'REQUEST-4'
Received response for: Response to 'REQUEST-5'
Received response for: Response to 'REQUEST-6'
Received response for: Response to 'REQUEST-7'
Received response for: Response to 'REQUEST-8'
Received response for: Response to 'REQUEST-9'
Received response for: Response to 'REQUEST-10'
...

Note that when the client is started, 10 requests are sent to initiate the request/reply
process and 10 replies are received back from the worker. Although it’s not glorious,
the power in this simple request/reply example will become evident when you apply it
to your own business processes.

 Using the request/reply pattern, envision that there are thousands of requests
entering the broker every second from many clients, all distributed across many hosts.
In a production system, more than just a single broker instance would be used for the
purposes of redundancy, failover, and load balancing. These brokers would also be
distributed across many hosts. The only way to handle this many requests would be to
use many workers. Producers can always send messages much faster than a consumer
can receive and process them, so lots of workers would be needed, all of them spread
out across many hosts as well. The advantage of using many workers is that each one
can go up and down at will, and the overall system itself isn’t affected. The producers
and workers would continue to process messages, and even if one of them crashed, it
wouldn’t affect the system. This is exactly how many large-scale systems can handle
such a tremendous load—through the use of asynchronous messaging like that dem-
onstrated by the request/reply pattern.

 The JMS API can be tedious, as it requires you to write a lot of code for initializing
all the necessary JMS objects such as connections, sessions, producers, consumers, and
so forth. This is where the Spring Framework provides a lot of benefit. It helps you to
remove such boilerplate code by supplying a more cogent API and by simplifying the
overall configuration.

7.4 Writing JMS clients using Spring
ActiveMQ uses the Spring Framework to ease the various aspects of client-to-broker
communication, but the Spring Framework goes much further, with its API and con-
tainer designed specifically for JMS messaging. Together, ActiveMQ and Spring make
an excellent JMS development platform, making many common tasks extremely easy
to accomplish. Some of the tasks to be covered in this section include

 Configuring JMS connections—ActiveMQ provides classes that can be used to
configure URLs and other parameters of connections to brokers. The connec-
tion factory could later be used by your application to get the appropriate
connection.
www.it-ebooks.info

http://www.it-ebooks.info/

166 CHAPTER 7 Creating Java applications with ActiveMQ
 Configuring JMS destinations—ActiveMQ destination objects can be configured
simply as beans representing JMS destinations used by your producers and
consumers.

 Defining JMS consumers—Spring provides helper classes that allow you to easily
configure a message listener container and hook message listeners to it.

 Implementing JMS producers—Spring also provides helper bean classes for creat-
ing new producers.

In the following sections, these tasks will be demonstrated and the portfolio applica-
tion will be changed to use all benefits of the ActiveMQ and Spring integration.

7.4.1 Configuring JMS connections

As seen in the previous examples, the first step in creating a JMS application is to cre-
ate a connection to the ActiveMQ broker. The ActiveMQConnectionFactory is a fac-
tory that creates an ActiveMQConnection, both of which can be easily used with
Spring. The following snippet shows how to define an ActiveMQConnectionFactory
using a Spring XML config:

<bean id="jmsConnectionFactory"
class="org.apache.activemq.ActiveMQConnectionFactory">

<property name="brokerURL" value="tcp://localhost:61616" />
<property name="userName" value="admin" />
<property name="password" value="password" />

</bean>

In the snippet, note the properties that are configured on the ActiveMQConnection-
Factory.

 In some use cases a pool of connections is necessary in order to achieve a desired
performance. For this purpose, ActiveMQ provides the PooledConnectionFactory
class, which maintains a pool of JMS connections and sessions. Here’s an example
Spring XML configuration for the PooledConnectionFactory:

<bean id="pooledJmsConnectionFactory"
class="org.apache.activemq.pool.PooledConnectionFactory"
destroy-method="stop">

<property name="connectionFactory" ref="jmsConnectionFactory" />
</bean>

Only one property is configured on the PooledConnectionFactory in this case—the
connectionFactory property. The connectionFactory property is used to define the
underlying connection factory to the ActiveMQ broker that’ll be used by the pooled
connection factory. In this case we’ve used our previously defined jmsConnection-
Factory bean.

 Since the pooled connection factory has a dependency on the Apache Commons
Pool project (http://mng.bz/j3PV), you’ll need to add the JAR to the classpath. Or, if
you use Maven for your project management, just add the following dependency to
the pom.xml file:
www.it-ebooks.info

http://www.it-ebooks.info/

167Writing JMS clients using Spring
<dependency>
<groupId>commons-pool</groupId>
<artifactId>commons-pool</artifactId>
<version>1.4</version>

</dependency>

The preceding XML defines a Maven dependency on the commons-pool-1.4.jar file,
and even fetches it for you automatically.

 Once the JMS connection has been defined, you can move on to defining the JMS
destinations, producers, and consumers.

7.4.2 Configuring JMS destinations

JMS destinations can be predefined in the activemq.xml file using the ActiveMQTopic
and ActiveMQQueue classes. The following snippet contains two new topic definitions
to be used in the portfolio example:

<bean id="cscoDest" class="org.apache.activemq.command.ActiveMQTopic">
<constructor-arg value="STOCKS.CSCO" />

</bean>

<bean id="orclDest" class="org.apache.activemq.command.ActiveMQTopic">
<constructor-arg value="STOCKS.ORCL" />

</bean>

As you can see, these classes use constructor injection for setting a desired destination
name on the ActiveMQTopic class. Predefining topics isn’t required in ActiveMQ, but
it can be handy for environments where the broker requires clients to authenticate for
various operations. For more information about client authentication, see chapter 6.
Now that a connection and a couple of destinations exist, you can begin sending and
receiving messages.

7.4.3 Creating JMS consumers

The next two sections touch upon basic use of Spring JMS (http://mng.bz/I0Pe) for
creating consumers and producers, as it makes creating JMS consumers and produc-
ers incredibly easy. Although Spring JMS provides some powerful features, these two
sections won’t dive into deep details, since this is outside of the scope of this book.
Instead, we’ll show some of the basic concepts to get you up and running quickly with
the portfolio example. For more information on Spring JMS, consult the Spring
documentation.

 The basic abstraction for receiving messages in Spring is the message listener
container (MLC: see http://mng.bz/LJti). The MLC design provides an intermedi-
ary between your message listener and broker to handle connections, threading, and
more, leaving you to worry only about your business logic that lives in the listener. In
the following listing, the portfolio message listener from chapter 3 is used by two
message listener containers for the two destinations that were defined in the previ-
ous section.
www.it-ebooks.info

http://www.it-ebooks.info/

168 CHAPTER 7 Creating Java applications with ActiveMQ
<!-- The message listener -->
<bean id="portfolioListener"

class="org.apache.activemq.book.ch3.portfolio.Listener">
</bean>

<!-- Spring DMLC -->
<bean id="cscoConsumer"
class="org.springframework.jms.listener.DefaultMessageListenerContainer">

<property name="connectionFactory" ref="jmsConnectionFactory" />
<property name="destination" ref="cscoDest" />
<property name="messageListener" ref="portfolioListener" />

</bean>

<!-- Spring DMLC -->
<bean id="orclConsumer"
class="org.springframework.jms.listener.DefaultMessageListenerContainer">

<property name="connectionFactory" ref="jmsConnectionFactory" />
<property name="destination" ref="orclDest" />
<property name="messageListener" ref="portfolioListener" />

</bean>

Each MLC instance in listing 7.22 requires a connection factory, a destination, and a
message listener. So all you have to do is to implement a message listener bean and
leave everything else to the Spring MLC. Note that in this example we’ve used the
plain (not pooled) connection factory. This is because no connection pooling is
needed for this simple example. This example uses the Spring DefaultMessage-
ListenerContainer (DMLC), which is the most commonly used MLC. Although
numerous other properties on the DMLC can be configured, this example is using
only the basics. When these two DMLC instances start up, they’ll be ready to receive
messages and hand them off to the message listener.

 Now let’s send some messages to ActiveMQ.

7.4.4 Creating JMS producers

As was the case for receiving messages, Spring also provides conveniences for sending
messages. The crucial abstraction for sending messages is the Spring JmsTemplate
class. The JmsTemplate follows the standard template pattern to provide a conve-
nience class for sending messages.

 One of the most common ways to send a message using Spring is by implementing
the Spring MessageCreator interface and utilizing it with the appropriate send()
method of the JmsTemplate class. The following listing demonstrates this by imple-
menting all message creation logic borrowing the stock portfolio publisher from
chapter 3.

public class StockMessageCreator
implements MessageCreator {

private int MAX_DELTA_PERCENT = 1;

Listing 7.22 Defining two Spring message listener containers and a message listener

Listing 7.23 Implementation of a MessageCreator for sending messages using Spring
www.it-ebooks.info

http://www.it-ebooks.info/

169Writing JMS clients using Spring
private Map<Destination, Double> LAST_PRICES
= new Hashtable<Destination, Double>();

Destination stock;

public StockMessageCreator(Destination stock) {
this.stock = stock;

}

public Message createMessage(Session session) throws JMSException {
Double value = LAST_PRICES.get(stock);
if (value == null) {
value = new Double(Math.random() * 100);

}

// lets mutate the value by some percentage
double oldPrice = value.doubleValue();
value = new Double(mutatePrice(oldPrice));
LAST_PRICES.put(stock, value);
double price = value.doubleValue();

double offer = price * 1.001;

boolean up = (price > oldPrice);
MapMessage message = session.createMapMessage();
message.setString("stock", stock.toString());
message.setDouble("price", price);
message.setDouble("offer", offer);
message.setBoolean("up", up);
System.out.println(

"Sending: " + ((ActiveMQMapMessage)message).getContentMap()
+ " on destination: " + stock

);
return message;

}

protected double mutatePrice(double price) {
double percentChange = (2 * Math.random() * MAX_DELTA_PERCENT)

- MAX_DELTA_PERCENT;

return price * (100 + percentChange) / 100;
}

}

The MessageCreator interface defines only the createMessage() method, which
returns a JMS message. Here, we’ve implemented some logic for creating random
stock prices, and we’re creating an appropriate JMS map message to hold all of the rel-
evant data. To send the message, the JmsTemplate’s send() method will utilize the
StockMessageCreator as shown next.

public class SpringPublisher {

private JmsTemplate template;
private int count = 10;
private int total;
private Destination[] destinations;

Listing 7.24 JMS publisher implementation in Spring
www.it-ebooks.info

http://www.it-ebooks.info/

170 CHAPTER 7 Creating Java applications with ActiveMQ
private HashMap<Destination,StockMessageCreator>
creators = new HashMap<Destination,StockMessageCreator>();

public void start() {
while (total < 1000) {
for (int i = 0; i < count; i++) {
sendMessage();

}
total += count;
System.out.println("Published '" + count + "' of '"

+ total + "' price messages");
try {
Thread.sleep(1000);
} catch (InterruptedException x) {
}

}
}

protected void sendMessage() {
int idx = 0;
while (true) {
idx = (int)Math.round(destinations.length * Math.random());
if (idx < destinations.length) {
break;

}
}
Destination destination = destinations[idx];
template.send(destination, getStockMessageCreator(destination));

}

private StockMessageCreator getStockMessageCreator(Destination dest) {
if (creators.containsKey(dest)) {
return creators.get(dest);

} else {
StockMessageCreator creator = new StockMessageCreator(dest);
creators.put(dest, creator);
return creator;

}
}

// getters and setters goes here
}

The important thing to note in listing 7.24 is how the send() method uses the mes-
sage creator. Everything else in this example is the same as in the original stock portfo-
lio publisher from chapter 3. Now you have all the necessary components to publish
messages to ActiveMQ using Spring. All that’s left to be done is to configure it properly
as demonstrated in the following listing.

<!-- Spring JMS Template -->
<bean id="jmsTemplate" class="org.springframework.jms.core.JmsTemplate">

<property name="connectionFactory" ref="pooledJmsConnectionFactory" />
</bean>

Listing 7.25 JMS publisher configuration in Spring

Send with
JmsTemplate
www.it-ebooks.info

http://www.it-ebooks.info/

171Writing JMS clients using Spring
<bean id="stockPublisher"
class="org.apache.activemq.book.ch7.spring.SpringPublisher">
<property name="template" ref="jmsTemplate" />
<property name="destinations">

<list>
<ref local="cscoDest" />
<ref local="orclDest" />

</list>
</property>

</bean>

The snippet in listing 7.25 shows an instance of the Spring JmsTemplate and the pub-
lisher. The publisher simply needs a reference to the JMS destinations being used, and
the JmsTemplate requires a connection factory.

NOTE The pooled connection factory is used with the JmsTemplate. This is
important because the JmsTemplate is designed for use with Java EE contain-
ers in mind, which typically provide connection pooling capabilities as
required by the Java EE specifications. Every call to the JmsTemplate.send()
method creates and destroys all the JMS resources (connections, consumers,
and producers). So if you’re not using a Java EE container, make sure to use a
pooled connection factory for sending messages with the JmsTemplate.

The connections and destinations are defined; the consumers and producer have
been created. Now let’s run the example.

7.4.5 Putting it all together

After implementing all pieces of the example, the application should be ready to run.
Take a look at the following listing to see the main method that will execute the
example.

public class SpringClient {

public static void main(String[] args) {
BrokerService broker = new BrokerService();
broker.addConnector("tcp://localhost:61616");
broker.setPersistent(false);
broker.start();

FileSystemXmlApplicationContext context =
new FileSystemXmlApplicationContext(

"src/main/resources/org/apache/activemq/book/ch7/spring-client.xml"
);

SpringPublisher publisher =
(SpringPublisher)context.getBean("stockPublisher");

publisher.start();
}

}

Listing 7.26 The main method for the Spring example

Initialize Spring clients
www.it-ebooks.info

http://www.it-ebooks.info/

172 CHAPTER 7 Creating Java applications with ActiveMQ
This simple class starts a minimal ActiveMQ broker configuration and initializes the
Spring application context to start the JMS clients.

 The example can be run from the command line using the following command.

$ mvn exec:java \
-Dexec.mainClass=org.apache.activemq.book.ch7.spring.SpringClient \
-Dlog4j.configuration=file:src/main/java/log4j.properties
...
Sending: {price=65.958996694, stock=CSCO, offer=66.0249556914, up=false}

on destination: topic://STOCKS.CSCO
topic://STOCKS.IONA 79.97 80.05 down
Sending: {price=80.67595675108, stock=ORCL, offer=80.7566327078, up=true}

on destination: topic://STOCKS.ORCL
topic://STOCKS.JAVA 65.96 66.02 down
Sending: {price=65.63333898492, stock=CSCO, offer=65.69897232391, up=false}

on destination: topic://STOCKS.CSCO
topic://STOCKS.IONA 80.68 80.76 up
Sending: {price=80.50525969261, stock=ORCL, offer=80.58576495231, up=false}

on destination: topic://STOCKS.ORCL
topic://STOCKS.JAVA 65.63 65.70 down
Sending: {price=81.2186806051, stock=ORCL, offer=81.29989928577, up=true}

on destination: topic://STOCKS.ORCL
topic://STOCKS.IONA 80.51 80.59 down
Sending: {price=65.48960846536, stock=CSCO, offer=65.5550980738, up=false}

on destination: topic://CSCO
topic://STOCKS.IONA 81.22 81.30 up
topic://STOCKS.JAVA 65.49 65.56 down
...

As you can see, both producer and consumer print their messages to standard output
as the example runs.

 In this section, you used Spring to augment the stock portfolio example applica-
tion from chapter 3. You were able to reuse most of the original logic, but this time
you used some Spring utilities to simplify the example a lot. As stated previously, this
example simply touched on the basics of using Spring JMS. If you’d like more informa-
tion about Spring JMS, see the documentation (http://mng.bz/I0Pe).

7.5 Summary
In this chapter, you’ve seen how ActiveMQ can be viewed not only as a separate Java
infrastructure application, but also as a Java module that can be easily integrated in
your Java applications. Offering a wide range of flexibility, ActiveMQ can be config-
ured with plain Java code or by using XML configuration files.

 You’ve also seen how ActiveMQ can play well with the Spring Framework, both in
terms of integrating brokers in Java applications and simplifying the implementation
of JMS clients.

Listing 7.27 Run the Spring example
www.it-ebooks.info

http://www.it-ebooks.info/

173Summary
 We covered some advanced programming techniques with ActiveMQ as well. The
request/reply pattern was explained in terms of the benefits it brings to your applica-
tion’s architecture and how to implement it using ActiveMQ. Lastly, we revisited the
portfolio example from chapter 3 in order to refactor it to use Spring JMS. Though
only the basics of Spring JMS were demonstrated here, its capabilities are powerful
and incredibly streamlined, and we encourage you to read more about it for your
applications.

 The next chapter focuses on ActiveMQ integration options with various Java EE con-
tainers. You’ll see how ActiveMQ can be used in conjunction with Java application serv-
ers such as Apache Geronimo and Apache Tomcat, for example, and how to use JNDI.
www.it-ebooks.info

http://www.it-ebooks.info/

Integrating ActiveMQ
 with application servers
Up to this point, most of the examples in the book have utilized a standalone
instance of ActiveMQ: ActiveMQ was started up in its own JVM. Then chapter 7 dem-
onstrated multiple ways to embed ActiveMQ inside a Java application, including the
use of the ActiveMQ Java APIs as well as using a Spring Framework XML configura-
tion. This style of integration is common, but the aim of this chapter is different.
The goal of this chapter is to demonstrate the use of an application server’s fea-
tures for integrating third-party middleware.

 The term application server is overloaded, but in the most general sense, applica-
tion servers provide a container architecture that accepts the deployment of an
application and provides an environment in which it can run. This chapter focuses

This chapter covers
 Integrating ActiveMQ with Apache Tomcat

 Integrating ActiveMQ with Jetty

 Integrating ActiveMQ with Apache Geronimo

 Integrating ActiveMQ with JBoss

 Understanding ActiveMQ and JNDI
174

www.it-ebooks.info

http://www.it-ebooks.info/

175
on Java application servers, of which there are two types. The first type of application
server implements the Java Servlet specification (http://mng.bz/cmMj) and is known
as a web container. Apache Tomcat and Jetty both fall into the category of web contain-
ers. The second type of application server implements the Java EE family of specifica-
tions (http://mng.bz/NTSk) and is known as a Java EE container. Apache Geronimo
and JBoss both fall into the category of Java EE containers. We chose these four appli-
cation servers for this chapter because they’re popular and freely available. ActiveMQ
can also be integrated with commercial application servers such as WebLogic and
WebSphere using the same strategies used in this chapter.

 When deploying ActiveMQ to an application server, two major tasks need to be
completed—starting the broker and providing access to the JMS destinations. There
are different approaches to solving both of these problems. One option to handle
both tasks is to use the Spring Framework. The strategy used in chapter 7 demon-
strated that Spring can be used to start ActiveMQ and to provide access to the JMS des-
tinations. But since we already demonstrated that approach, a different approach will
be used this chapter.

 ActiveMQ provides a unique feature that allows a broker to be created via the
ActiveMQ JMS connection factory. By creating an ActiveMQ connection factory using a
URI for a broker that doesn’t yet exist, the JMS connection will create an instance of
the broker. So this means that the creation of the broker is dependent upon the abil-
ity to create the ActiveMQ connection. JMS connections are created from a connection
factory that’s registered with the application server. For this purpose, Java application
servers provide a JNDI (Java Naming and Directory Interface) implementation that
can be used to expose objects to be used by applications deployed to the container.
Objects such as JDBC drivers, JMS resources, transaction managers, and so forth can be
configured to be accessed using the JNDI API. This is the approach that will be used
with the web containers.

 Both Apache Tomcat and Jetty support two different styles of configuration for
objects in JNDI: local JNDI and global JNDI. Local JNDI is used to configure objects that
will only be exposed to a specific application, whereas global JNDI is used to expose
objects to any application in the entire web container. We’ll use each style of JNDI con-
figuration to demonstrate the creation of the JMS resources. To situate these differ-
ences in JNDI configuration and to demonstrate the use of each in Tomcat and Jetty,
there are two different flavors of the sample web application. These are available in
the example source code and are named jms-webapp-local and jms-webapp-global.

 Both Apache Geronimo and JBoss support JNDI, but this will only be used to regis-
ter the JMS resources. The ActiveMQ broker won’t be started by the creation of a JMS
connection. To start up the ActiveMQ broker and integrate it with Geronimo and
JBoss, this chapter will utilize a J2EE Connector Architecture (http://mng.bz/fXU9)
resource adapter, also known as JCA. To situate the difference in integration details
between the two Java EE containers reviewed here, two different flavors of the sample
web application are available in the example source code and are named jms-
webapp-geronimo and jms-webapp-jboss.
www.it-ebooks.info

http://www.it-ebooks.info/

176 CHAPTER 8 Integrating ActiveMQ with application servers
 Although four sample web application projects are used in this chapter, the core of
each application is exactly the same. The reason why there are four copies of the same
application is to support the different deployment styles being used. Before proceed-
ing with the actual integrations, it’s a good idea to take a high-level look at the sample
web application.

8.1 The sample web application
To demonstrate the sample integrations in this chapter, a simple web application is
used to prove that each integration is successful. There are four copies of this web
application that are each customized for various environments. Each web application
is small and utilizes only the ActiveMQ bro-
ker, a JMS connection factory, and a JMS
queue. Figure 8.1 provides a look at the
directory structure for the sample web
application.

 As you can see, the structure of this is
fairly standard for a Maven-based Java web
application. Though the screenshot in fig-
ure 8.1 shows the project structure for the
jms-webapp-local application, the direc-
tory structure for the other instances of the
application is only slightly different. Each
web application uses the Spring Frame-
work’s web framework features, which
reduces the complexity of building a web
application. To understand how the web
application works, it’s best to examine
some of the major items found in a stan-
dard Java web application.

 The relevant portions of the web appli-
cation that are pertinent to the exercises in
this chapter are the web.xml file, the Spring
application context, and the JmsMessage-
SenderService class. The following listing
shows the relevant portion of the web.xml
file.

...
<resource-ref>

<description>JMS Connection</description>
<res-ref-name>jms/ConnectionFactory</res-ref-name>
<res-type>org.apache.activemq.ActiveMQConnectionFactory</res-type>

Listing 8.1 The web.xml file

Figure 8.1 The project structure for the sample
web application that demonstrates local JNDI
configuration
www.it-ebooks.info

http://www.it-ebooks.info/

177The sample web application
<res-auth>Container</res-auth>
</resource-ref>

<resource-ref>
<res-ref-name>jms/FooQueue</res-ref-name>
<res-type>javax.jms.Queue</res-type>
<res-auth>Container</res-auth>

</resource-ref>
...

The <resource-ref> elements in the web.xml reference the JNDI resources that are
registered with the application server. This configuration makes those resources avail-
able to the web application. This configuration will only change for the Geronimo
integration, which uses the standard <message-destination-ref> element instead of
a <resource-ref> for the JMS queue.

 The other relevant configuration file from the web application is the Spring appli-
cation context, shown next.

...
<jee:jndi-lookup id="connectionFactory"

jndi-name="java:comp/env/jms/ConnectionFactory"
cache="true"
resource-ref="true"
lookup-on-startup="true"
expected-type="org.apache.activemq.ActiveMQConnectionFactory"
proxy-interface="javax.jms.ConnectionFactory" />

<jee:jndi-lookup id="fooQueue"
jndi-name="java:comp/env/jms/FooQueue"
cache="true"
resource-ref="true"
lookup-on-startup="true"
expected-type="org.apache.activemq.command.ActiveMQQueue"
proxy-interface="javax.jms.Queue" />

<bean id="jmsMessageBean"
class="org.apache.activemq.book.ch8.jms.domain.JmsMessage" />

<bean id="messageSenderService"
class="org.apache.activemq.book.ch8.jms.service.JmsMessageSenderService"
p:connectionFactory-ref="connectionFactory"
p:queue-ref="fooQueue" />

...

The Spring application context shown in listing 8.2 is an XML configuration file for
the Spring Framework: see http://www.springframework.org. (Please also note that
Spring’s p-namespace http://mng.bz/dLT9 is being used in the configuration.) The
<jee:jndi-lookup> elements utilize Spring to perform a JNDI lookup of the noted
resources. These resources are then injected into the messageSenderService Java
bean (the values are inserted via setter methods) after it’s instantiated by Spring. The

Listing 8.2 The Spring application context file
www.it-ebooks.info

http://www.it-ebooks.info/

178 CHAPTER 8 Integrating ActiveMQ with application servers
messageSenderService is then used by the web application to send a JMS message.
Listing 8.3 shows the source code for the JmsMessageSenderService bean.

public class JmsMessageSenderService {

private JmsTemplate jmsTemplate;

public void sendMessage(final JmsMessage bean)
throws JMSException {

if (bean.isPersistent()) {
jmsTemplate.setDeliveryPersistent(bean.isPersistent());

}

if (0 != bean.getTimeToLive()) {
jmsTemplate.setTimeToLive(bean.getTimeToLive());

}

jmsTemplate.send(new MessageCreator() {
public Message createMessage(Session session)

throws JMSException {

TextMessage message =
session.createTextMessage(bean.getMessagePayload());

if (bean.getReplyTo() != null &&
!bean.getReplyTo().equals("")) {
ActiveMQQueue replyToQueue =

new ActiveMQQueue(bean.getReplyTo());
message.setJMSReplyTo(replyToQueue);

}
return message;

}
});

}

public void setJmsTemplate(JmsTemplate jmsTemplate) {
this.jmsTemplate = jmsTemplate;

}

}

The JmsMessageSenderService bean is kept simple so that it only focuses on the task
of sending the JMS message. This class uses the Spring JmsTemplate and an anony-
mous MessageCreator to easily send the JMS message.

 There’s only one web page in this web application and it’s deliberately uncompli-
cated. This is because the web application is only necessary to test the integration and
nothing more. To add further detail to it would only complicate matters and detract
from the real purpose of the chapter.

 To better understand the flow of a JMS message through these classes, take a look
at figure 8.2.

Listing 8.3 The JmsMessageSenderService class
www.it-ebooks.info

http://www.it-ebooks.info/

179The sample web application
Here’s a brief explanation of the illustrated steps:

Step 1 The JmsMessageSenderService imple-
ments an anonymous Spring Message-

Creator to create the message.
Step 2 The JmsMessageSenderService uses the

Spring JmsTemplate to send the message
to ActiveMQ.

Step 3 The Spring DefaultMessageListener-

Container consumes the message and
hands it off to the JmsMessageDelegate.

Step 4 The JmsMessageDelegate bean processes
the message (it outputs the message pay-
load).

The JmsMessageSenderService is completely iso-
lated from the Spring DefaultMessageListener-
Container and the JmsMessageDelegate bean. Any
messages sent to ActiveMQ by the JmsMessage-
SenderService have no bearing on whether the
DefaultMessageListenerContainer is actually
online and ready to consume. In fact, the Jms-
MessageSenderService and the Spring Default-
MessageListenerContainer could easily be split
out of this application so as to reside in completely
different processes and it wouldn’t change the func-
tionality of this application. This is a perfect albeit
small example of the asynchronous messaging pro-
vided by ActiveMQ.

 The steps in figure 8.2 are all hid-
den behind the scenes of the single
page in the sample web application
shown in 8.3.

 When sending a message using the
page shown in figure 8.3, a small mes-
sage appears briefly on the page and
then fades away quickly to indicate that
the message was sent. This is just a san-
ity check to show some activity in the
web application. These are the only visi-
ble features in the web application.
Everything else happens behind the
scenes.

JmsMessageSenderService

JmsTemplate

ActiveMQ

DefaultMessageListenerContainer

JmsMessageDelegate

Figure 8.2 The flow of a message
through the classes in the sample
web application

Figure 8.3 A screenshot of the only page in the
web application demonstrates that it’s
intentionally simplistic.
www.it-ebooks.info

http://www.it-ebooks.info/

180 CHAPTER 8 Integrating ActiveMQ with application servers
 These are only the portions of the web application that are apropos to the integra-
tion of ActiveMQ with application servers. To get a better look at the details of this
sample web application, and to actually deploy it yourself to test your own integrations
as you work through the examples, download the example source code for the book.

 The four versions of the sample web application for this chapter are

 jms-webapp-geronimo—Used to demonstrate ActiveMQ integration with
Geronimo

 jms-webapp-global—Used to demonstrate ActiveMQ integration with Tomcat and
Jetty using global JNDI

 jms-webapp-jboss—Used to demonstrate ActiveMQ configuration and deployment
with JBoss

 jms-webapp-local—Used to demonstrate ActiveMQ integration with Tomcat and
Jetty using local JNDI

NOTE The local JNDI configuration example and the global JNDI configura-
tion example can’t be deployed at the same time. This will cause classloader
issues and will prevent ActiveMQ from being deployed correctly. Make sure to
only deploy one style of configuration at a time.

Before proceeding with this chapter, you need to build all four of these examples.
This can be achieved using the Maven command shown next.

[amq-in-action-example-src] $ cd chapter8/
[chapter8] $ mvn clean install
[INFO] Scanning for projects...
[INFO] Reactor build order:
[INFO] jms-webapp-geronimo
[INFO] jms-webapp-global
[INFO] jms-webapp-jboss
[INFO] jms-webapp-local
[INFO] ActiveMQ In Action Examples Chapter 8
...
[INFO]
[INFO]
[INFO] ---

[INFO] Reactor Summary:
[INFO] ---

[INFO] jms-webapp-geronimo
SUCCESS [4.787s]
[INFO] jms-webapp-global
SUCCESS [1.265s]
[INFO] jms-webapp-jboss
SUCCESS [8.278s]
[INFO] jms-webapp-local
SUCCESS [2.359s]
[INFO] ActiveMQ In Action Examples Chapter 8

Listing 8.4 Build the examples
www.it-ebooks.info

http://www.it-ebooks.info/

181Integrating with Apache Tomcat
SUCCESS [1.911s]
[INFO] ---

[INFO] ---

[INFO] BUILD SUCCESSFUL
[INFO] ---

[INFO] Total time: 18 seconds
[INFO] Finished at: Mon Apr 26 13:24:31 MDT 2010
[INFO] Final Memory: 19M/35M
[INFO] ---

Note that the output in listing 8.4 has been elided slightly. As long as you see the BUILD
SUCCESSFUL message, the examples were built correctly and a WAR file for each one
should now exist in each project’s target directory. This WAR file can then be deployed
to the appropriate application server and used to test the ActiveMQ integration.

NOTE Although this chapter describes in detail the changes necessary for
each application server, all of these changes have already been made in each
of the projects. Just make sure to download the source code for the book to
get these example projects.

Now that you have an overview of the sample applications, you’re ready to walk
through the integrations. The first application server with which to integrate
ActiveMQ is Apache Tomcat.

8.2 Integrating with Apache Tomcat
Apache Tomcat is arguably the most widely used Java web container available today.
Tomcat is used for both development and production throughout the world because
it’s extremely robust, highly configurable, and commercially supported by a number
of companies. Because of its widespread use, Tomcat provides facilities for integrating
third-party resources such as JDBC data sources, JMS connection factories, and so on,
and making them JNDI accessible. In this section, we’ll show you how to integrate
ActiveMQ with Apache Tomcat. You’ll need to download Apache Tomcat 6.0.26
(http://mng.bz/75qc) and expand it on your computer.

 Tomcat offers two styles of configuration for JNDI resources: local JNDI context and
global JNDI context. Configuring a local JNDI resource means that the resource is only
available to a particular web application deployed to Tomcat. Configuring a resource
in the global JNDI context means that the resource is available to any web application
deployed to Tomcat. The configuration for each type of JNDI style is different, so let’s
review both.

NOTE The sample applications for the local JNDI configuration and the
global JNDI configuration can’t be deployed at the same time. This will cause
classloader issues and will prevent ActiveMQ from being deployed correctly.
Make sure to only deploy one of the sample applications at a time.
www.it-ebooks.info

http://www.it-ebooks.info/

182 CHAPTER 8 Integrating ActiveMQ with application servers
8.2.1 Using local JNDI to integrate ActiveMQ with Tomcat

The local JNDI configuration restricts the availability of resources to the application
where they’re defined. With this style of configuration for Tomcat, the JNDI resources
are defined in a file named META-INF/context.xml. The following listing shows the
context.xml file.

<Context reloadable="true">
<Resource auth="Container"

name="jms/ConnectionFactory"
type="org.apache.activemq.ActiveMQConnectionFactory"
description="JMS Connection Factory"
factory="org.apache.activemq.jndi.JNDIReferenceFactory"
brokerURL="vm://localhost?brokerConfig=xbean:activemq.xml"
brokerName="MyActiveMQBroker"/>

<Resource auth="Container"
name="jms/FooQueue"
type="org.apache.activemq.command.ActiveMQQueue"
description="JMS queue"
factory="org.apache.activemq.jndi.JNDIReferenceFactory"
physicalName="FOO.QUEUE"/>

</Context>

Listing 8.5 is specific to Tomcat. The first element is named jms/Connection-
Factory—it defines an ActiveMQ connection factory and takes advantage of features
in ActiveMQ to start an instance of the broker via the connection factory. The second
element named jms/FooQueue defines a JMS queue in ActiveMQ. This configuration
file lives with the web application and is automatically picked up by Tomcat to config-
ure the resources. Tomcat makes them available via a standard JNDI lookup to the
sample web application.

NOTE The $TOMCAT_HOME variable is being used to generically reference the
Tomcat installation directory. This isn’t something that you must set in your
environment.

To test the local JNDI resources, use the following steps:

Step 1 Copy the jms-webapp-local/target/jms-webapp.war file to the $TOMCAT_
HOME/ webapps directory.

Step 2 Start up Tomcat:
$ cd $TOMCAT_HOME
$./bin/catalina.sh run
Using CATALINA_BASE: /opt/apache-tomcat-6.0.26
Using CATALINA_HOME: /opt/apache-tomcat-6.0.26
Using CATALINA_TMPDIR: /opt/apache-tomcat-6.0.26/temp
Using JRE_HOME:
/System/Library/Frameworks/JavaVM.framework/Versions/
CurrentJDK/Home
Using CLASSPATH: /opt/apache-tomcat-6.0.26/bin/bootstrap.jar
...

Listing 8.5 The Tomcat context.xml file
www.it-ebooks.info

http://www.it-ebooks.info/

183Integrating with Apache Tomcat
INFO - BrokerService - ActiveMQ 5.4.1 JMS Message
Broker (FooBroker) is starting
...
Apr 8, 2010 9:03:03 PM org.apache.catalina.startup.Catalina start
INFO: Server startup in 3542 ms

You can see in the output that ActiveMQ is actually using the activemq.xml configura-
tion file because the brokerName FooBroker is being used. Passing the run argument to
the catalina.sh script will cause Tomcat to start up so that its output will appear in the
terminal. The ability to see the output is helpful as noted earlier, and will also help you
to verify the message receipt in a few steps.

As noted at the beginning of the chap-
ter, this configuration takes advantage of
a unique feature in ActiveMQ. This fea-
ture allows an ActiveMQ broker to be
started simply by creating a connection
factory and passing it a broker URI. The
connection factory attempts to connect to
a broker at the URI, and if one doesn’t
exist, it’ll start one up. As you can see, this
is a handy feature in ActiveMQ.

Step 3 Visit http://localhost:8080/jms-
webapp and use the web page to
send a message. See figure 8.4 for
an example of what you should see.

Step 4 To verify the message send, check
the terminal to see that the con-
sumer received the message. See
the following output:

...
INFO: Server startup in 3306 ms
INFO - SingleConnectionFactory - Established shared
JMS Connection:
ActiveMQConnection {id=ID:mongoose.local-55759-1270249165283-2:1,
clientId=null,
started=false}
INFO - JmsMessageDelegate - Consumed message with payload:
This is a test message

Note the output from the terminal—specifically, the final line that’s a log message
from the JmsMessageDelegate bean. This line indicates that the message has been
consumed, and you see the message payload is being output.

The local configuration of the ActiveMQ resources is a great approach because these
resources are contained with the web application. Nothing in Tomcat itself needs to
be changed or configured, which is different from the way that resources are config-
ured for global JNDI.

Figure 8.4 Upon sending a JMS message using
the web application, a message appears in the
web application and then fades away to let you
know that the message was sent successfully.
www.it-ebooks.info

http://www.it-ebooks.info/

184 CHAPTER 8 Integrating ActiveMQ with application servers
8.2.2 Using global JNDI to integrate ActiveMQ with Tomcat

The global JNDI configuration in Tomcat is also easy to use. It just requires a bit of
additional configuration and copying some JARs into the Tomcat lib directory. The
advantage of global JNDI is that the resources are available to any web applications
that are deployed to Tomcat. In this style of configuration, the JNDI resources are
defined in configuration files that live with the Tomcat application server named
conf/server.xml and conf/context.xml. The following listing shows the relevant por-
tion of the server.xml file.

<GlobalNamingResources>
...

<Resource auth="Container"
name="jms/ConnectionFactory"
type="org.apache.activemq.ActiveMQConnectionFactory"
description="JMS Connection Factory"
factory="org.apache.activemq.jndi.JNDIReferenceFactory"
brokerURL="vm://localhost?brokerConfig=xbean:conf/activemq.xml"
brokerName="MyActiveMQBroker"/>

<Resource auth="Container"
name="jms/FooQueue"
type="org.apache.activemq.command.ActiveMQQueue"
description="A sample queue"
factory="org.apache.activemq.jndi.JNDIReferenceFactory"
physicalName="FOO.QUEUE"/>

...
</GlobalNamingResources>

The <Resource> elements in the server.xml file shown in listing 8.6 register the
JNDIReferenceFactory object with Tomcat for creating the noted object types—the
ActiveMQConnectionFactory and the ActiveMQQueue. Again, ActiveMQ is unique in
the fact that a full broker instance can be created by creating an ActiveMQ-
ConnectionFactory. The brokerURL attribute is used to pass the broker URI, which
allows any of the supported transports (TCP, VM, and so forth) to be used. It also sup-
ports the optional brokerConfig parameter used to point to a configuration file for
the ActiveMQ instance that’s being started.

 The next file to be changed is the context.xml file; the relevant additions are
shown next.

<Context>
...

<ResourceLink global="jms/ConnectionFactory"
name="jms/ConnectionFactory" />

<ResourceLink global="jms/FooQueue"
name="jms/FooQueue" />

...
</Context>

Listing 8.6 The Tomcat server.xml file

Listing 8.7 The Tomcat context.xml file
www.it-ebooks.info

http://www.it-ebooks.info/

185Integrating with Apache Tomcat
The <ResourceLink> elements define a link to the resources that are defined in the
global JNDI context and expose these resources to all web applications deployed in
this instance of Tomcat.

 To test the global JNDI resource configurations, use the following steps:

Step 1 Copy the following JARs into the $TOMCAT_HOME/lib directory:

 activemq-all-5.4.1.jar spring-beans-2.5.6.jar
 aopalliance-1.0.jar spring-context-2.5.6.jar
 commons-logging-1.1.1.jar spring-context-support-2.5.6.jar
 geronimo-j2ee-management_1.0_spec-1.0.jar spring-core-2.5.6.jar
 geronimo-jms_1.1_spec-1.1.1.jar spring-jms-2.5.6.jar
 geronimo-jta_1.0.1B_spec-1.1.1.jar spring-tx-2.5.6.jar
 log4j-1.2.14.jar spring-web-2.5.6.jar
 org.osgi.core-4.1.0.jar spring-webmvc-2.5.6.jar
 spring-aop-2.5.6.jar

The easiest place to get these JARs is from the jms-webapp-local project that was used
for the local JNDI configuration after that project is built. After running the Maven
command to build the jms-webapp-local project, take a look in the jms-webapp-
local/target/jms-webapp/WEB-INF/lib/ directory for these JARs. Simply copy the JARs
from that directory into the $TOMCAT_HOME/lib directory.

Step 2 After making changes to the configuration files as noted, they must be
included in the WAR file. To build the jms-webapp-global project and create
a new WAR file, from the command line, run the following Maven command:

$ cd jms-webapp-global
$ mvn clean install
...
[INFO] Scanning for projects...
[INFO] ---

[INFO] Building jms-webapp-global
[INFO] task-segment: [clean, install]
[INFO] ---

...
[INFO] ---

[INFO] BUILD SUCCESSFUL
[INFO] ---

...

After running this command, a WAR file will exist in the target directory.

Step 3 Copy the jms-webapp-global/activemq.xml file to $TOMCAT_HOME/conf/
activemq.xml. This makes the ActiveMQ configuration file available on the
classpath.
www.it-ebooks.info

http://www.it-ebooks.info/

186 CHAPTER 8 Integrating ActiveMQ with application servers
Step 4 Copy the jms-webapp-global/target/jms-webapp.war to the $TOMCAT_HOME/
webapps directory. This deploys the example web application.

Step 5 Start up Tomcat using the following command:

$ cd $TOMCAT_HOME
$./bin/catalina.sh run
Using CATALINA_BASE: /opt/apache-tomcat-6.0.26
Using CATALINA_HOME: /opt/apache-tomcat-6.0.26
Using CATALINA_TMPDIR: /opt/apache-tomcat-6.0.26/temp
Using JRE_HOME:
/System/Library/Frameworks/JavaVM.framework/Versions/CurrentJDK/Home
Using CLASSPATH:
/opt/apache-tomcat-6.0.26/bin/bootstrap.jar
...
INFO - BrokerService - ActiveMQ 5.4.1 JMS Message
Broker (FooBroker) is starting
...
Apr 9, 2010 8:54:59 PM org.apache.catalina.startup.Catalina start
INFO: Server startup in 3365 ms

Again, you can see that ActiveMQ is using the activemq.xml configuration file based
on the output stating that the FooBroker is starting.

Step 6 Visit http://localhost:8080/jms-webapp and send a message.
Step 7 To confirm a successful message send, check the terminal for the following

output:

...
INFO: Server startup in 3365 ms
INFO - SingleConnectionFactory - Established shared
JMS Connection:
ActiveMQConnection {id=ID:mongoose.local-49429-1270868098091-2:1,
clientId=null,started=false}
INFO - JmsMessageDelegate - Consumed message with payload:
This is a test message

In the output shown, note that the last line of output from the JmsMessageDelegate
bean shows the message payload that was consumed by the JmsMessageDelegate
bean.

For some projects, configuring ActiveMQ to use the Tomcat global JNDI context is
appropriate because there may be multiple projects that need access to those
resources. In some situations, it makes sense to control ActiveMQ from within the
Tomcat process. The disadvantage is that Tomcat and ActiveMQ are now contending
for the same resources inside of the same JVM. For some projects, this isn’t a problem,
and is therefore an acceptable trade-off.

 But Tomcat isn’t the only viable open source web container. Jetty is a formidable
alternative.
www.it-ebooks.info

http://www.it-ebooks.info/

187Integrating with Jetty
8.3 Integrating with Jetty
The Jetty web container has been around for a long time and is reliable. It’s small, fast,
and has an active community of developers. Jetty provides many of the same features
as Tomcat because they’re both based on the Java Servlet spec, but the implementa-
tion of each is unique.

 Jetty is essentially a toolkit for building a web container and it can be customized in
many ways. Out of the box, Jetty is bare-bones, but it comes with a handful of configu-
ration files so that many different combinations of services can be started in Jetty. This
level of customization is intentional and allows for extreme flexibility. Jetty Hightide is
one distribution of Jetty, with a set of services enabled by default. Jetty Hightide is best
described by its documentation:

 Hightide is an optimized, versioned distribution of the Jetty open source web container. It
comes pre-integrated with a number of services usually only found in J2EE application
servers, or which you would otherwise have to craft together yourself: JNDI, an XA trans-
action service, a JMS message fabric, and a JDBC accessible database. Thanks to Jetty’s
lightweight, pluggable architecture, Hightide allows you to easily choose which of these
services you want to use, or even replace them with others.

In this section, ActiveMQ will be integrated with Jetty Hightide using both a local JNDI
configuration and a global JNDI configuration. Download Jetty Hightide
7.0.2.v20100331 (http://mng.bz/Sk6u) from the Codehaus for this section and
expand it on your computer.

 Jetty offers three styles of configuration for JNDI resources: local, global to all
applications deployed in Jetty, and global to all applications deployed in the JVM.
There are differences in these styles of JNDI configuration, some of which can be con-
trolled via a Jetty feature that provides the ability to scope JNDI resources to a specific
context. Jetty’s JNDI scoping is powerful and will be used in this section, but only min-
imally. For a deeper understanding of Jetty’s ability to scope JNDI resources, see the
Jetty global JNDI information (http://mng.bz/x67C). The two styles of JNDI configu-
ration that we’ll demonstrate here are local JNDI and global JNDI. These two styles of
JNDI configuration are similar to those in Tomcat, but the configuration format is
unique to Jetty.

NOTE The sample applications for the local JNDI configuration and the
global JNDI configuration can’t be deployed at the same time. This will cause
classloader issues and will prevent ActiveMQ from being deployed correctly.
Please make sure to only deploy one of the sample applications at a time.

8.3.1 Using local JNDI to integrate ActiveMQ with Jetty

Jetty’s local JNDI configuration also limits the availability of those resources to the
application where they’re defined. The JNDI resources are defined in a file that lives
with the web application named WEB-INF/jetty-env.xml, which is shown next.
www.it-ebooks.info

http://www.it-ebooks.info/

188 CHAPTER 8 Integrating ActiveMQ with application servers
<Configure id='jms-webapp-wac'
class="org.foo.mortbay.jetty.webapp.WebAppContext">

<New id="connectionFactory"
class="org.mortbay.jetty.plus.naming.Resource">
<Arg>

<Ref id='jms-webapp-wac' />
</Arg>
<Arg>jms/ConnectionFactory</Arg>
<Arg>

<New class="org.apache.activemq.ActiveMQConnectionFactory">
<Arg>vm://localhost?brokerConfig=xbean:activemq.xml</Arg>

</New>
</Arg>

</New>

<New id="fooQueue" class="org.mortbay.jetty.plus.naming.Resource">
<Arg>jms/FooQueue</Arg>
<Arg>

<New class="org.apache.activemq.command.ActiveMQQueue">
<Arg>FOO.QUEUE</Arg>

</New>
</Arg>

</New>

</Configure>

The configuration in listing 8.8 is specific to Jetty, and it tells Jetty to make the three
resources available via a standard JNDI lookup from the sample web application. Note
that listing 8.8 contains the ActiveMQ connection factory definition and an ActiveMQ
queue definition. The reference to the jms-webapp-wac context identifier limits the
availability of these resources to this web app context (the local context).

NOTE The $JETTY_HOME variable is being used to generically reference the
Jetty Hightide installation directory. This isn’t something that you must set in
your environment.

To test the local JNDI resource configuration in Jetty, use the following steps:

Step 1 Copy the jms-webapp-local/target/jms-webapp.war file to the $JETTY_HOME/
webapps directory.

Step 2 Start up Jetty Hightide using the following command:

$ cd $JETTY_HOME
$ java -jar ./start.jar
2010-04-08 21:06:51.994:INFO::Logging to StdErrLog::DEBUG=false via
org.eclipse.jetty.util.log.StdErrLog
...
INFO - BrokerService - ActiveMQ 5.4.1 JMS Message
Broker (FooBroker) is starting
...
2010-04-08 21:07:01.995:INFO::Started SelectChannelConnector@0.0.0.0:8080

Listing 8.8 The Jetty jetty-env.xml file
www.it-ebooks.info

http://www.it-ebooks.info/

189Integrating with Jetty
The output indicates that ActiveMQ is using the activemq.xml configuration file
because the brokerName FooBroker is specified in that file. Again, as noted at the
beginning of the chapter, this configuration is taking advantage of a unique feature in
ActiveMQ. This feature allows an ActiveMQ broker to be started by creating a connec-
tion factory and passing it a broker URI. The connection factory attempts to connect
to a broker at the URI and if one doesn’t exist, it’ll start one up.

Step 3 Visit http://localhost:8080/jms-webapp and use the web page shown in figure
8.4 to send a message.

Step 4 Confirm that the message is sent successfully by checking the terminal to see
the output shown:

...
2010-04-08 21:07:01.995:INFO::Started SelectChannelConnector@0.0.0.0:8080
INFO - SingleConnectionFactory - Established shared JMS Connection:
ActiveMQConnection {id=ID:mongoose.local-61512-1270782421187-2:1,
clientId=null,started=false}
INFO - JmsMessageDelegate - Consumed message with payload:
This is a test message

Note the output from Jetty. The log message from the JmsMessageDelegateListener
bean indicates that the message was consumed and the message payload is being
logged.

This demonstrates that configuring a local JNDI context for the ActiveMQ resources is
also supported by Jetty. Nothing in the Jetty application server requires any changes,
because the configuration is housed with the sample web application. The alternative
to the local JNDI context is a global JNDI context.

8.3.2 Using global JNDI to integrate ActiveMQ with Jetty

Jetty’s global JNDI configuration requires a different configuration, but the configura-
tion XML is nearly the same as the local JNDI configuration XML. The difference is
that it must reside in a different location. For this demonstration, the global JNDI con-
figuration has been placed in the etc/jetty.xml file as shown next.

...
<New id="connectionFactory"

class="org.eclipse.jetty.plus.jndi.Resource">
<Arg>

<Ref id="Server"/>
</Arg>
<Arg>jms/ConnectionFactory</Arg>
<Arg>

<New class="org.apache.activemq.ActiveMQConnectionFactory">
<Arg>vm://localhost?brokerConfig=xbean:etc/activemq.xml</Arg>

</New>
</Arg>

</New>

Listing 8.9 The Jetty jetty.xml file
www.it-ebooks.info

http://www.it-ebooks.info/

190 CHAPTER 8 Integrating ActiveMQ with application servers
<New id="fooQueue" class="org.eclipse.jetty.plus.jndi.Resource">
<Arg>jms/FooQueue</Arg>
<Arg>

<New class="org.apache.activemq.command.ActiveMQQueue">
<Arg>FOO.QUEUE</Arg>

</New>
</Arg>

</New>

<New id="fooTopic" class="org.eclipse.jetty.plus.jndi.Resource">
<Arg>jms/FooTopic</Arg>
<Arg>

<New class="org.apache.activemq.command.ActiveMQTopic">
<Arg>FOO.TOPIC</Arg>

</New>
</Arg>

</New>
...

Note that listing 8.9 is only slightly different than the XML for the local JNDI configu-
ration in Jetty. The difference is the first <Arg> element that references Server—the
entire Jetty server. This is an example of Jetty’s scoping feature that tells Jetty to
expose this resource to the Server object—the entire server (which is defined in the
same file).

 To validate the definition of the global JNDI resources in Jetty, use the following
steps:

Step 1 Create the following new directory: $JETTY_HOME/lib/ext/activemq.
Step 2 Copy the following list of JARs into the directory that you created in step 1:

 activemq-all-5.4.1.jar spring-context-2.5.6.jar
 aopalliance-1.0.jar spring-context-support-2.5.6.jar
 commons-logging-1.1.1.jar spring-core-2.5.6.jar
 geronimo-j2ee-management_1.0_spec-1.0.jar spring-jms-2.5.6.jar
 geronimo-jms_1.1_spec-1.1.1.jar spring-tx-2.5.6.jar
 log4j-1.2.14.jar spring-web-2.5.6.jar
 org.osgi.core-4.1.0.jar spring-webmvc-2.5.6.jar
 spring-aop-2.5.6.jar xbean-spring-3.4.3.jar
 spring-beans-2.5.6.jar

Again, the quickest way to grab these JARs is from the jms-webapp-local project after
it’s built. After building the project with Maven, you’ll be able to find the JARs in the
jms-webapp-local/target/jms-webapp/WEB-INF/lib/ directory. Just copy them to the
$JETTY_HOME/lib/ext/activemq directory.

Step 3 To build the jms-webapp-global project and create the WAR file, from the
command line, run the following Maven command:

$ mvn clean install
...
[INFO] Scanning for projects...
www.it-ebooks.info

http://www.it-ebooks.info/

191Integrating with Jetty
[INFO] --

[INFO] Building jms-webapp-global
[INFO] task-segment: [clean, install]
[INFO] --

...
[INFO] --

[INFO] BUILD SUCCESSFUL
[INFO] --

...

After running this command, a WAR file will exist in the target directory.

Step 4 Copy the jms-webapp-global/activemq.xml file to $JETTY_HOME/etc/
activemq.xml to make it available on the classpath.

Step 5 Copy the jms-webapp-global/target/jms-webapp.war to $JETTY_HOME/
webapps. This will deploy the example web application.

Step 6 Start up Jetty using the following command:

$ java -jar start.jar
2010-04-11 21:41:23.253:INFO::Logging to StdErrLog::DEBUG=false
via org.eclipse.jetty.util.log.StdErrLog
...
INFO - BrokerService - ActiveMQ 5.4.1 JMS Message
Broker (FooBroker) is starting
...
2010-04-11 21:41:33.116:INFO::Started SelectChannelConnector@0.0.0.0:8080

You can see from the output of the broker startup above that ActiveMQ is using the
activemq.xml configuration file because the brokerName FooBroker is specified in
that file.

Step 7 Visit http://localhost:8080/jms-webapp and use the page shown in figure 8.4
to send a message.

Step 8 Verify that the message is sent and consumed successfully by checking the ter-
minal to see the following output:

...
2010-04-11 21:41:33.116:INFO::Started SelectChannelConnector@0.0.0.0:8080
INFO - SingleConnectionFactory - Established shared JMS Connection:
ActiveMQConnection {id=ID:mongoose.local-61512-1270782421187-2:1,
clientId=null,started=false}
INFO - JmsMessageDelegate - Consumed message with payload:
This is a test message

Again, note the output from where Jetty is running. The output from the Jms-
MessageDelegateListener bean demonstrates that the message was consumed.

The global JNDI configuration for Jetty offers the same advantages provided by Tom-
cat. If multiple applications deployed to a single Jetty instance need access to the JNDI
resources, this is a good option.
www.it-ebooks.info

http://www.it-ebooks.info/

192 CHAPTER 8 Integrating ActiveMQ with application servers
 Tomcat and Jetty are two examples of web containers with which ActiveMQ inte-
grates well. Beyond web containers are full-fledged Java EE application servers such as
Apache Geronimo and JBoss.

8.4 Integrating with Apache Geronimo
The Apache Geronimo application server is a fully certified Java EE 5 runtime that
uses many leading open source projects for various aspects of the application server.
In fact, Geronimo is more of a toolkit for creating a customized application server dis-
tribution with only the components you need.

 By default, there are three different distributions of Geronimo depending on your
needs:

1 Java EE Certified—A fully certified Java EE 5 distribution utilizing the two major
open source web containers:
 Geronimo with Jetty 7
 Geronimo with Tomcat 6

2 Little-G —A distribution that provides a web container and a subset of Geron-
imo modules:
 Geronimo with Jetty 7
 Geronimo with Tomcat 6

3 Micro-G —A distribution that allows you to build your own custom application
server from the ground up. You decide what components to include via the
Geronimo deployer.

Geronimo offers a wide variety of options, but we’ll use Little-G 2.2 with Tomcat 6 for
this chapter because it doesn’t have ActiveMQ already installed (whereas the Java EE
certified runtime does include ActiveMQ). So download Little-G 2.2 with Tomcat 6
from the Geronimo downloads page (http://mng.bz/DaoR) and expand it on your
computer.

 In this section, we’ll deploy the ActiveMQ plug-in for Geronimo and register the
ActiveMQ JMS resources with the Geronimo JNDI provider using the Geronimo web
console. After these steps are complete, the sample application for Geronimo (the
jms-webapp-geronimo project) can be deployed.

8.4.1 Installing Geronimo and configuring the ActiveMQ plug-in
in Geronimo

After expanding the archive, move into the directory that’s created and start up
Geronimo as shown in the following listing.

$ cd ./geronimo-tomcat6-minimal-2.2
$./bin/start-server
Launching Geronimo Server...
Booting Geronimo Kernel (in Java 1.6.0_15)...
...

Listing 8.10 Start up Geronimo
www.it-ebooks.info

http://www.it-ebooks.info/

193Integrating with Apache Geronimo
Startup completed in 6.431s seconds
Listening on Ports:

1099 0.0.0.0 RMI Naming
8009 0.0.0.0 Tomcat Connector AJP TomcatAJPConnector
8080 0.0.0.0 Tomcat Connector HTTP BIO TomcatWebConnector
8443 0.0.0.0 Tomcat Connector HTTPS BIO TomcatWebSSLConnector
9999 0.0.0.0 JMX Remoting Connector

Geronimo Server started in 0:00:08.787

Started Application Modules:
WAR: org.apache.geronimo.configs/remote-deploy-tomcat/2.2/car

Web Applications:
/remote-deploy

Geronimo Application Server started

As Geronimo starts up, it displays output to show what components are being started.
These are all components that are included with Little-G by default. Note that
ActiveMQ isn’t included in the output. Now it’s time to use the Geronimo deployer to
install ActiveMQ.

 The Geronimo deployer is a command-line tool for querying and installing Geron-
imo plug-ins. Start the Geronimo deployer and use its search-plugins function to
view a list of all the available plug-ins.

$./bin/deploy.sh --user system --password manager \
search-plugins http://geronimo.apache.org/plugins/geronimo-2.2

Using GERONIMO_HOME: /opt/geronimo-tomcat6-minimal-2.2
Using GERONIMO_TMPDIR: var/temp
Using JRE_HOME:
<no category>

1: ActiveMQ web console on Jetty (2.2)
2: ActiveMQ web console on Tomcat (2.2)
3: Geronimo Plugins, Clustering :: Plugin Farm Datasource (2.2)
4: Geronimo Plugins, UDDI : Database (2.2)

Administration
5: Geronimo Plugins, Console :: Debug Views (Jetty) (2.2)

...
12: Geronimo Plugins, Console :: System Database (Jetty) (2.2)
13: Geronimo Plugins, Console :: System Database (Tomcat) (2.2)
14: Geronimo Plugins, Console :: Tomcat (2.2)
15: Geronimo Plugins, OpenEJB :: Jetty (2.2)

JMS
 88: Geronimo Plugins, ActiveMQ v5 :: Broker (2.2)
 89: Geronimo Plugins, ActiveMQ v5 :: Console (Jetty) (2.2)
 90: Geronimo Plugins, ActiveMQ v5 :: Console (Tomcat) (2.2)
 91: Geronimo Plugins, ActiveMQ v5 :: Resource Adapter (2.2)
JavaEE

92: Geronimo Framework, Configs :: JavaEE Specs (2.2)
...

Install Services [enter a comma separated list of numbers or 'q' to quit]:
www.it-ebooks.info

http://www.it-ebooks.info/

194 CHAPTER 8 Integrating ActiveMQ with application servers
NOTE When the Geronimo deployer is started, it requires a username and a
password. The default username is system and the default password is manager.
Note that these are passed in as arguments to the deployer.

Although much of the output from the deployer has been elided to save space, you
can see by the list of 142 different plug-ins that there’s a large choice. But the only
plug-ins needed for this chapter are in bold—plug-ins 14, 88, and 91. Plug-in 14 is the
Geronimo console, a web-based console for managing Geronimo. The Geronimo con-
sole will make it easy to set up the JMS resources. Plug-in 88 is the ActiveMQ message
broker. Plug-in 91 is the ActiveMQ resource adapter, which allows ActiveMQ to inte-
grate with a Java EE server.

 Note that the last line of output from the deployer is actually a prompt that allows
you to enter a comma-separated list of plug-ins (by number) to install. At the prompt,
type 14,88,91 and press Enter. Here’s the output that you’ll see when you do this:

...
Install Services [enter a comma separated list of numbers or
'q' to quit]: 14,88,91
Checking for status every 1000ms:
Downloading org.apache.geronimo.plugins/console-tomcat/2.2/car (40%)
Downloading org.apache.pluto/pluto-portal-driver/1.1.6/jar
Downloading org.apache.pluto/pluto-container/1.1.6/jar
Downloading org.apache.pluto/pluto-descriptor-impl/1.1.6/jar
Downloading commons-beanutils/commons-beanutils/1.7.0/jar

Figure 8.5 The Geronimo console simplifies the configuration and management of Geronimo.
www.it-ebooks.info

http://www.it-ebooks.info/

195Integrating with Apache Geronimo
Downloading org.apache.portals/portlet-api_1.0_spec/1.0/jar
Downloading org.springframework/spring-core/2.5.6/jar
Downloading org.springframework/spring-context/2.5.6/jar
...

**** Installation Complete!
...
Downloaded 22983 kB in 52s (441 kB/s)

The output has been truncated, but as long as you see the Installation Complete! mes-
sage, that means that the three ActiveMQ plug-ins have been installed successfully.
The easiest way to check this is to open a browser and visit http://localhost:8080/
console to view the Geronimo console. You should see the page shown in figure 8.5.

 To log in, use the same credentials that were used with the Geronimo deployer
(the default username is system and the password is manager). Upon logging in to the
Geronimo console, you’ll see the page shown in figure 8.6.

Figure 8.6 The Geronimo console provides the ability to manage ActiveMQ (the JMS
Server) and the ActiveMQ resources (JMS Resources).
www.it-ebooks.info

http://www.it-ebooks.info/

196 CHAPTER 8 Integrating ActiveMQ with application servers
Note the links on right side of figure 8.6. The figure named JMS Server allows you to
manage the ActiveMQ configuration, as shown in 8.7.

 Although the Geronimo console makes managing the ActiveMQ configuration
easy, for this chapter it’s easiest to utilize the default configuration for the broker. But
the default configuration for the JMS resources in Geronimo is a different story.

8.4.2 Configuring the ActiveMQ JMS resources in Geronimo

The JMS resources for ActiveMQ (the JMS connection and the JMS destination) need
to be customized to match the resources that are configured in the sample applica-
tion. To do this, click on the link in the web console named JMS Resources and you’ll
see the page displayed in figure 8.8.

Figure 8.7 The Geronimo console simplifies the management of the ActiveMQ configuration.
www.it-ebooks.info

http://www.it-ebooks.info/

197Integrating with Apache Geronimo
As you can see, a default JMS resource group is already configured. The default JMS
resources in Geronimo aren’t named in a manner that’s compatible with the sample
application, so you’ll need to create a new resource group. To do this, click on the link
named For ActiveMQ. You’ll be presented with the page shown in figure 8.9. Enter a
name for the resource group. For this example, the resource group is named Foo-
Group. Then just scroll to the bottom of that page and click the Next button.

 The next page allows you to create JMS connection factories and JMS destinations.
This page is shown in figure 8.10.

Figure 8.8 The Geronimo console also simplifies the management of JMS resources.
www.it-ebooks.info

http://www.it-ebooks.info/

198 CHAPTER 8 Integrating ActiveMQ with application servers
Figure 8.9 Accept the default values when configuring the ActiveMQ resource adapter’s
server connection.

Figure 8.10 Use the Geronimo console to create a JMS connection factory and a
JMS destination for ActiveMQ.
www.it-ebooks.info

http://www.it-ebooks.info/

199Integrating with Apache Geronimo
Click the Add Connection Factory button. In the next page, leave the default type of
javax.jms.ConnectionFactory as shown in figure 8.11 and click the Next button.

 The next page allows for some customizations of the JMS connection factory as
shown in figure 8.12.

Figure 8.11 Easily create a JMS connection factory for ActiveMQ via the Geronimo console.

Figure 8.12 Use the Geronimo console to configure the connection factory.
www.it-ebooks.info

http://www.it-ebooks.info/

200 CHAPTER 8 Integrating ActiveMQ with application servers
Make sure to name the connection factory ConnectionFactory and set the transac-
tion support to None. Then click the Next button. This will take you back to the page
that allows you to create JMS resources. But now the new connection factory should be
listed, as shown in figure 8.13.

 Now click the Add Destination button to create a JMS destination. This will show a
page that allows the choice of destination type, as shown in figure 8.14. Make sure that
javax.jms.Queue is selected, and click the Next button to customize the queue.

Figure 8.13 The connection factory has been created successfully.

Figure 8.14 Create a JMS destination that’s of type javax.jms.Queue.
www.it-ebooks.info

http://www.it-ebooks.info/

201Integrating with Apache Geronimo
On the next page, make sure to enter FooQueue in the Message Destination Name
field and FOO.QUEUE in the Physical Name field, as shown in figure 8.15.

 The queue will be fetched from the JNDI context as FooQueue, but the actual
name of the queue that will be used by the sample web application is FOO.QUEUE. Now
click the Next button. This will take you back to the page that allows you to create JMS
resources again. Only now the new connection factory and the new queue should be
listed, as shown in figure 8.16.

 Now the JMS resource group is ready to be deployed. To do this, click the Deploy
Now button. Geronimo will deploy the ActiveMQ resource adapter and take you back
to the initial JMS resource group page. The difference now is that the FooGroup
resource group is listed, as shown in figure 8.17.

Figure 8.15 Customize the destination using the Geronimo console.

Figure 8.16 Now the connection factory and the destination have been created and are
ready to be deployed.
www.it-ebooks.info

http://www.it-ebooks.info/

202 CHAPTER 8 Integrating ActiveMQ with application servers
Now that the JMS resources have been created, you can move on to deploying the sam-
ple web application to test them out.

8.4.3 Preparing the sample application for deployment in Geronimo

For this deployment example, a copy of the jms-webapp-local project will be used
that’s named jms-webapp-geronimo. Java EE application servers provide different
environments in which to deploy applications, so some tweaks to support this environ-
ment are necessary:

Step 1 Create a file named src/main/webapp/WEB-INF/geronimo-web.xml as shown
next.

<web-app xmlns="http://geronimo.apache.org/xml/ns/j2ee/web-2.0.1">

<environment>
<moduleId>

<groupId>org.apache.activemq.book</groupId>
<artifactId>jms-webapp</artifactId>
<version>1.0-SNAPSHOT</version>
<type>war</type>

</moduleId>
<dependencies>
<!-- Depend upon the custom JMS resources group -->

<dependency>
<groupId>console.jms</groupId>

Listing 8.11 The geronimo-web.xml file

Figure 8.17 Now the FooGroup JMS resource group has been created and deployed.
www.it-ebooks.info

http://www.it-ebooks.info/

203Integrating with Apache Geronimo
<artifactId>FooGroup</artifactId>
<version>1.0</version>
<type>car</type>

</dependency>
</dependencies>
<!-- Filter out the following items from the parent classloader -->
<hidden-classes>

<filter>org.springframework.</filter>
<filter>META-INF/spring</filter>

</hidden-classes>
</environment>

<context-root>/jms-webapp</context-root>

</web-app>

The geronimo-web.xml file is specific to Geronimo. It provides some specific instruc-
tions to Geronimo. The <moduleId> element is used to identify the WAR file that’s
being deployed to Geronimo. The <dependency> element tells Geronimo that it
requires the JMS resources group that was created earlier in this section. Without the
connection factory and the destination that were created as part of that resources
group, the sample application won’t function properly. The <hidden-classes> ele-
ment tells Geronimo not to expose any classes in the packages listed, because they
may already exist in the classloader of the application server that’s exposed to the web
application. This is something that should happen automatically and will probably be
corrected in the near term based on a JIRA issue that was created to point this out.
Once this is fixed, the <hidden-classes> element will no longer be needed to hide
the Spring classes that are part of the activemq-broker Geronimo plug-in.

Step 2 Instead of using the <resource-ref> element to define the JMS queue in the
web.xml file, Geronimo requires that the <message-destination-ref> ele-
ment be used. The <message-destination-ref> element is defined in the
DTD for the web.xml. The following listing shows the change necessary to the
jms-webapp-geronimo/src/main/webapp/WEB-INF/web.xml file.

...
<message-destination-ref>

<message-destination-ref-name>jms/FooQueue</message-destination-ref-name>
<message-destination-type>javax.jms.Queue</message-destination-type>
<message-destination-usage>Produces</message-destination-usage>
<message-destination-link>jms/FooQueue</message-destination-link>

</message-destination-ref>

<!--
<resource-ref>

<res-ref-name>jms/FooQueue</res-ref-name>
<res-type>javax.jms.Queue</res-type>
<res-auth>Container</res-auth>
<res-sharing-scope>Shareable</res-sharing-scope>

</resource-ref>
-->

...

Listing 8.12 Change to the web.xml file for Geronimo
www.it-ebooks.info

http://www.it-ebooks.info/

204 CHAPTER 8 Integrating ActiveMQ with application servers
Step 3 Because ActiveMQ is made available by the activemq-broker Geronimo plug-
in, jms-webapp-geronimo doesn’t package the ActiveMQ JAR or its dependen-
cies in the WAR file. To prevent the ActiveMQ dependencies from being
included in the WAR file by the Maven build process, in the pom.xml file, add
the <scope>provided</scope> element to the ActiveMQ dependency, the
XBean dependency, and the Log4J dependency, as shown in bold in the fol-
lowing listing.

...
<dependency>
<groupId>org.apache.activemq</groupId>
<artifactId>activemq-core</artifactId>
<version>${activemq-version}</version>
<scope>provided</scope>
<exclusions>

<exclusion>
<groupId>org.apache.activemq</groupId>
<artifactId>activeio-core</artifactId>

</exclusion>
<exclusion>

<groupId>org.apache.camel</groupId>
<artifactId>camel-core</artifactId>

</exclusion>
<exclusion>

<artifactId>activemq-protobuf</artifactId>
<groupId>org.apache.activemq.protobuf</groupId>

</exclusion>
<exclusion>

<artifactId>commons-net</artifactId>
<groupId>commons-net</groupId>

</exclusion>
</exclusions>

</dependency>
<dependency>

<groupId>org.apache.xbean</groupId>
<artifactId>xbean-spring</artifactId>
<version>3.4.3</version>
<scope>provided</scope>

</dependency>
<dependency>

<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
<version>1.2.14</version>
<scope>provided</scope>

</dependency>
...

Note the <scope>provided</scope> element in bold in listing 8.13. Excluding these
JARs from inclusion in the WAR file prevents any classloader clashes that may result if
those dependencies were included.

Listing 8.13 Maven dependency changes for Geronimo
www.it-ebooks.info

http://www.it-ebooks.info/

205Integrating with Apache Geronimo
Step 4 The last thing you need to change in the sample web application is the type
on the connection factory in the Spring configuration file. Edit the jms-
webapp-geronimo/src/main/webapp/WEB-INF/spring/jms-context.xml file
to change the connection factory type from org.apache.activemq.Active-
MQConnectionFactory to org.apache.activemq.ra.ActiveMQConnection-

Factory. This is needed because the connection factory that’s being used
here is from the ActiveMQ resource adapter, not the standard connection
factory.

All of the application-specific changes already exist in the jms-webapp-geronimo proj-
ect. Make sure to download the example source code for the book to see this sample
project.

8.4.4 Deploying and verifying the sample application in Geronimo

To validate the definition of the JNDI resources in Geronimo using the jms-webapp-
geronimo project, follow these steps:

Step 1 To build the project and create the WAR file, from the command line, run the
following Maven command:

$ cd jms-webapp-geronimo
$ mvn clean install
...
[INFO] Scanning for projects...
[INFO] --

[INFO] Building jms-webapp-global
[INFO] task-segment: [clean, install]
[INFO] --

...
[INFO] --

[INFO] BUILD SUCCESSFUL
[INFO] --

...

Step 2 In one terminal, start up Geronimo using the following command:

$ cd $GERONIMO_HOME
$./bin/start-server
Launching Geronimo Server...
Booting Geronimo Kernel (in Java 1.6.0_15)...
...
Module 33/36 org.apache.geronimo.configs/activemq-broker/2.2/car
started in 1.248s
Module 34/36 org.apache.geronimo.configs/activemq-ra/2.2/car
started in .350s
Module 35/36 org.apache.geronimo.plugins/activemq-console-tomcat/2.2/car
started in .264s
www.it-ebooks.info

http://www.it-ebooks.info/

206 CHAPTER 8 Integrating ActiveMQ with application servers
Module 36/36 console.jms/FooGroup/1.0/car
started in .111s
Startup completed in 17.753s seconds

Listening on Ports:
1099 0.0.0.0 RMI Naming
1527 0.0.0.0 Derby Connector
8009 0.0.0.0 Tomcat Connector AJP TomcatAJPConnector
8080 0.0.0.0 Tomcat Connector HTTP BIO TomcatWebConnector
8443 0.0.0.0 Tomcat Connector HTTPS BIO TomcatWebSSLConnector
9999 0.0.0.0 JMX Remoting Connector

61616 0.0.0.0 ActiveMQ Transport Connector

Started Application Modules:
EAR: org.apache.geronimo.plugins/console-tomcat/2.2/car
RAR: console.jms/FooGroup/1.0/car
RAR: org.apache.geronimo.configs/activemq-ra/2.2/car
RAR: org.apache.geronimo.configs/system-database/2.2/car
WAR: org.apache.geronimo.configs/remote-deploy-tomcat/2.2/car

Web Applications:
/console
/console-base
/remote-deploy

Geronimo Application Server started
Geronimo Server started in 0:00:21.997

Although some output has been eliminated to save space, the FooGroup that holds
the JMS resources is deployed, and the necessary ActiveMQ plug-ins for Geronimo are
deployed.

Step 3 In a second terminal, deploy the jms-webapp-geronimo/target/jms-webapp.
war using the command-line deployer as shown:

$ $GERONIMO_HOME/bin/deploy.sh --user system --password manager deploy \
/path/to/jms-webapp-global/target/jms-webapp.war
Using GERONIMO_HOME: /opt/geronimo-tomcat6-minimal-2.2
Using GERONIMO_TMPDIR: var/temp
Using JRE_HOME:

Deployed org.apache.activemq.book/jms-webapp/1.0-SNAPSHOT/war @
/jms-webapp

NOTE The $GERONIMO_HOME variable is being used to generically reference
the Geronimo installation directory. This isn’t something that you must set in
your environment.

Note the output from Geronimo letting you know that the WAR file has been success-
fully deployed. Go back to the terminal where Geronimo was started, and you should
see the following output beyond the server startup:

...
INFO - ContextLoader - Root WebApplicationContext:
initialization started
INFO - XmlWebApplicationContext - Refreshing
org.springframework.web.context.support.
XmlWebApplicationContext@6156ee8e: display name [Root
www.it-ebooks.info

http://www.it-ebooks.info/

207Integrating with Apache Geronimo
WebApplicationContext]; startup date [Sun Apr 25 11:04:23
MDT 2010]; root of context hierarchy
INFO - XmlBeanDefinitionReader - Loading XML bean definitions
from ServletContext resource [/WEB-INF/spring/jms-context.xml]
INFO - XmlWebApplicationContext - Bean factory for application
context [org.springframework.web.context.support.
XmlWebApplicationContext@6156ee8e]:
org.springframework.beans.factory.support.
DefaultListableBeanFactory@21606a56
INFO - DefaultListableBeanFactory - Pre-instantiating singletons
in org.springframework.beans.factory.support.
DefaultListableBeanFactory@21606a56: defining beans
[connectionFactory,fooQueue,singleConnectionFactory,jmsTemplate,
messageSenderService,jmsMessageDelegate,myMessageListener,
org.springframework.jms.listener.DefaultMessageListenerContainer#0];
root of factory hierarchy
INFO - ContextLoader - Root WebApplicationContext:
initialization completed in 379 ms
INFO - DispatcherServlet - FrameworkServlet 'jms-webapp':
initialization started
INFO - XmlWebApplicationContext - Refreshing
org.springframework.web.context.support.
XmlWebApplicationContext@6c164690: display name [WebApplicationContext
for namespace 'jms-webapp-servlet']; startup date [Sun Apr 25 11:04:23
MDT 2010]; parent: org.springframework.web.context.support.
XmlWebApplicationContext@6156ee8e
INFO - XmlBeanDefinitionReader - Loading XML bean definitions
from ServletContext resource [/WEB-INF/jms-webapp-servlet.xml]
INFO - XmlWebApplicationContext - Bean factory for application
context [org.springframework.web.context.support.
XmlWebApplicationContext@6c164690]:
org.springframework.beans.factory.support.
DefaultListableBeanFactory@39fe9830
INFO - DefaultListableBeanFactory - Pre-instantiating singletons
in org.springframework.beans.factory.support.
DefaultListableBeanFactory@39fe9830: defining beans
[jmsMessageSenderController,org.springframework.context.annotation.
internalCommonAnnotationProcessor,org.springframework.context.
annotation.internalAutowiredAnnotationProcessor,org.springframework.
context.annotation.internalRequiredAnnotationProcessor,
org.springframework.web.servlet.mvc.annotation.
AnnotationMethodHandlerAdapter#0,org.springframework.web.servlet.
view.InternalResourceViewResolver#0]; parent: org.springframework.
beans.factory.support.DefaultListableBeanFactory@21606a56
INFO - DispatcherServlet - FrameworkServlet
'jms-webapp': initialization completed in 203 ms

The output shown is the initialization of the jms-webapp-geronimo project web appli-
cation, including the startup of the Spring application context.

You can also check the deployment via the Geronimo console as shown in figure
8.18. You can see that the sample web application has been deployed and is the first
item listed in the Component Name column.
www.it-ebooks.info

http://www.it-ebooks.info/

208 CHAPTER 8 Integrating ActiveMQ with application servers
Step 4 Visit http://localhost:8080/jms-webapp and use the page shown in figure 8.4
to send a message.

Step 5 Verify that you can send a message from the sample web application and that it’s
consumed successfully by checking the terminal to see the following output:

...
INFO - SingleConnectionFactory - Established shared JMS Connection:
org.apache.activemq.ra.ManagedConnectionProxy@7f1a594c
INFO - JmsMessageDelegate - Consumed message with payload:
This is a test message

As you can see, deploying ActiveMQ to Geronimo is rather straightforward. This is due
to the ease of using the Geronimo console, which provides a nice UI for creating the
JMS resources instead of hacking an XML file with which you may not be familiar.

 But Geronimo isn’t the only open source application server available today. JBoss
has been around for more than 10 years and is also widely used.

8.5 Integrating with JBoss
The JBoss application server is also a Java EE–certified application server. In fact, JBoss
was the first widely used open source Java application server. JBoss (the company) has
come a long way and offers many more projects than just the application server today,
including projects around the web interface, different programming models, myriad
services, application servers, management, the cloud, and many different tools.

Figure 8.18 Note that the information provided in the <moduleId> element is used to identify
the web application when it’s deployed to Geronimo.
www.it-ebooks.info

http://www.it-ebooks.info/

209Integrating with JBoss
 You need to download two items for this section:

 JBoss 5.1.0 GA can be downloaded from the JBoss application server downloads
page (http://mng.bz/172k). Download and expand the archive.

 The ActiveMQ JCA resource adapter can be downloaded using the following
URL: http://mng.bz/JTHl.

In this section, we’ll configure the ActiveMQ JCA resource adapter to be started by
JBoss, and customize the sample web application so that it can be deployed to JBoss.

8.5.1 Installing JBoss and configuring the ActiveMQ
resource adapter in JBoss

Installing JBoss is simple: download and expand the JBoss zip file. This will create a
directory for JBoss that contains everything needed to run it. Once this is complete,
you need to configure the ActiveMQ resource adapter.

 The ActiveMQ resource adapter is a JCA resource adapter implementation that’s
needed in order to integrate ActiveMQ with JBoss. After downloading the ActiveMQ
resource adapter using the URL shown earlier, move into the JBoss deploy directory to
expand it as shown:

$ cd $JBOSS_HOME/server/default/deploy
$ mkdir ./activemq-ra.rar
$ cd ./activemq-ra.rar
$ jar xf /path/to/activemq-ra-5.4.1.jar
$ $ ls -1
META-INF
activeio-core-3.1.2.jar
activemq-core-5.4.1.jar
activemq-protobuf-1.0.jar
activemq-ra-5.4.1.jar
aopalliance-1.0.jar
broker-config.xml
commons-logging-1.1.jar
commons-logging-api-1.1.jar
commons-net-2.0.jar
derby-10.1.3.1.jar
geronimo-j2ee-management_1.0_spec-1.0.jar
geronimo-j2ee-management_1.1_spec-1.0.1.jar
kahadb-5.4.1.jar
log4j-1.2.14.jar
log4j.properties
org.osgi.core-4.1.0.jar
spring-beans-2.5.6.jar
spring-context-2.5.6.jar
spring-core-2.5.6.jar
spring-osgi-core-1.2.1.jar
spring-osgi-io-1.2.1.jar
xbean-spring-3.6.jar
www.it-ebooks.info

http://www.it-ebooks.info/

210 CHAPTER 8 Integrating ActiveMQ with application servers
Expanding the ActiveMQ resource adapter into this directory will allow it to be more
easily customized. Once the resource adapter customization is completed, you can JAR
up the directory so that it’s ready for production deployment.

NOTE The $JBOSS_HOME variable is being used to generically reference the
JBoss installation directory. This isn’t something that you must set in your
environment.

To begin customizing the ActiveMQ resource adapter to start up an embedded
ActiveMQ instance, you need to make some changes to META-INF/ra.xml as shown in
the following steps:

Step 1 Change the ServerUrl from using the TCP transport URI (tcp://localhost:
61616) to use the VM transport URI (vm://localhost). Note that the VM trans-
port is right beneath the TCP transport, but it’s commented out. Swap the
comment between the two transports as shown next.

<config-property>
<description>

The URL to the ActiveMQ server that you want this connection to
connect to. If using an embedded broker, this value should be
'vm://localhost'.

</description>
<config-property-name>ServerUrl</config-property-name>
<config-property-type>java.lang.String</config-property-type>
<!--<config-property-value>tcp://localhost:61616</config-property-value>-->

<config-property-value>vm://localhost</config-property-value>
</config-property>

Since ActiveMQ will be embedded inside the same JVM process as JBoss, it’s more effi-
cient to use the VM transport than the TCP transport.

Step 2 Further down in the ra.xml file, you’ll find the BrokerXmlConfig. Because the
ActiveMQ resource adapter is embedding the broker within JBoss, it’s logical
to provide a configuration file for the broker. For this integration example,
the easiest way to do this to use the xbean factory to load the broker-config.
xml file from the classpath. Add the xbean:broker-config.xml line to the
empty <config-property-value> element as shown.

<config-property>
<description>

Sets the XML configuration file used to configure the embedded
ActiveMQ broker via Spring if using embedded mode.

BrokerXmlConfig is the filename which is assumed to be on the
classpath unless a URL is specified. So a value of foo/bar.xml
would be assumed to be on the classpath whereas file:dir/file.xml

Listing 8.14 Change the ServerUrl in the ra.xml file

Listing 8.15 Change the BrokerXmlConfig in the ra.xml file
www.it-ebooks.info

http://www.it-ebooks.info/

211Integrating with JBoss
would use the file system. Any valid URL string is supported.

</description>
<config-property-name>BrokerXmlConfig</config-property-name>
<config-property-type>java.lang.String</config-property-type>
<config-property-value>xbean:broker-config.xml</config-property-value>
<!--
To use the broker-config.xml from the root for the RAR

<config-property-value>
xbean:broker-config.xml

</config-property-value>
To use an external file or url location

<config-property-value>
xbean:file:///amq/config/jee/broker-config.xml

</config-property-value>
-->

</config-property>

Now that the ActiveMQ resource adapter has been told to load the broker-config.xml
file, this file needs to be customized.

Step 3 The broker-config.xml is just another name for the ActiveMQ XML configura-
tion file. A basic one is already provided in the activemq-ra directory. You can
customize this to your liking, but the one used for this section is shown next.

<beans xmlns="http://activemq.apache.org/schema/core">

<!-- shutdown hook is disabled as RAR classloader may be gone at
shutdown -->
<broker brokerName="FooBroker" useJmx="true" useShutdownHook="false">

<managementContext>
<!-- use appserver provided context instead of creating one,

for jboss use: -Djboss.platform.mbeanserver -->
<managementContext createConnector="false"/>

</managementContext>

<persistenceAdapter>
<kahaDB directory="/var/activemq/activemq-data/kahadb"/>

</persistenceAdapter>

<transportConnectors>
<transportConnector uri="tcp://0.0.0.0:61616"/>

</transportConnectors>

</broker>
</beans>

Notice the change to the broker-config.xml file to add the brokerName attribute to the
<broker> element to uniquely identify the broker.

Although many other options may be configured in the ActiveMQ resource adapter
for further customization, these changes will suffice for the sample web application to
be deployed.

Listing 8.16 The broker-config.xml
www.it-ebooks.info

http://www.it-ebooks.info/

212 CHAPTER 8 Integrating ActiveMQ with application servers
8.5.2 Configuring the ActiveMQ JMS resources in JBoss

A JBoss-specific resource adapter deployment descriptor needs to be configured to
register the ActiveMQ resources in JNDI. The loading of the ActiveMQ resource
adapter and registration of the JMS resources in JNDI take place in a file that has been
named activemq-ds.xml. This file is shown in the following listing.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE connection-factories
PUBLIC "-//JBoss//DTD JBOSS JCA Config 1.5//EN"
"http://www.jboss.org/j2ee/dtd/jboss-ds_1_5.dtd">

<connection-factories>

<tx-connection-factory>
<jndi-name>jms/ConnectionFactory</jndi-name>
<xa-transaction/>
<track-connection-by-tx/>
<rar-name>activemq-ra.rar</rar-name>
<connection-definition>

javax.jms.ConnectionFactory
</connection-definition>
<ServerUrl>vm://localhost</ServerUrl>
<min-pool-size>1</min-pool-size>
<max-pool-size>10</max-pool-size>
<blocking-timeout-millis>30000</blocking-timeout-millis>
<idle-timeout-minutes>3</idle-timeout-minutes>

</tx-connection-factory>

<mbean code="org.jboss.resource.deployment.AdminObject"
name="activemq.queue:name=fooQueue">
<attribute name="JNDIName">jms/FooQueue</attribute>
<depends optional-attribute-name="RARName">

jboss.jca:service=RARDeployment,name='activemq-ra.rar'
</depends>
<attribute name="Type">javax.jms.Queue</attribute>
<attribute name="Properties">PhysicalName=FOO.QUEUE</attribute>

</mbean>

</connection-factories>

JBoss automatically loads any file whose name is *-ds.xml from the deploy directory at
startup. In the case of the activemq-ds.xml file, the JMS resources (the JMS connection
factory and the JMS destination) are configured and each one is linked to activemq.ra.
This file needs to live in the $JBOSS_HOME/server/default/deploy directory so that it
will be loaded when JBoss starts up.

8.5.3 Preparing the sample application for deployment in JBoss

Now it’s time to make some changes to the sample web application so that it can be
deployed to JBoss. For this, we’ll use a copy of the jms-webapp-local project named
jms-webapp-jboss.

Listing 8.17 The activemq-ds.xml file
www.it-ebooks.info

http://www.it-ebooks.info/

213Integrating with JBoss
Step 1 Begin by adding a new jms-webapp-jboss/src/main/webapp/WEB-INF/jboss-
web.xml file to the sample application as shown next.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE jboss-web PUBLIC "-//JBoss//DTD Web Application 5.0//EN"
"http://www.jboss.org/j2ee/dtd/jboss-web_5_0.dtd">

<jboss-web>
<context-root>/jms-webapp</context-root>

<resource-ref>
<res-ref-name>jms/ConnectionFactory</res-ref-name>
<jndi-name>java:jms/ConnectionFactory</jndi-name>

</resource-ref>

<resource-ref>
<res-ref-name>jms/FooQueue</res-ref-name>
<jndi-name>jms/FooQueue</jndi-name>

</resource-ref>
</jboss-web>

This is a file that is specific to JBoss and is needed to map the JMS resources to the
proper JNDI context. Once this file is in place, one additional change needs to be
made to the sample web application.

Step 2 Evidently there’s a clash between the JBoss Log4J configuration and a Log4J
configuration in any application that’s deployed to JBoss. You’ll need to create
a Log4J RepositorySelector implementation. This is easy enough because a
sample is provided in the JBoss wiki. Take a look at Log4jRepositorySelector
(http://mng.bz/Fd16) to get a copy of the class. Create the org.jboss.reposito-
ryselectorexample package and create the sample class in there by literally cut-
ting/pasting the example. Without this custom Log4J RepositorySelector,
the jms-webapp will begin to start up and then throw the following error:

09:08:48,345 INFO [TomcatDeployment] deploy, ctxPath=/jms-webapp
09:08:48,740 INFO [[/jms-webapp]] Set web app root system property:
'webapp.root' = [/opt/jboss-5.1.0.GA/server/default/tmp/
5c4o039-9vh4op-g8hfa3el-1-g8hfb8we-9r/jms-webapp.war/]
09:08:48,745 INFO [[/jms-webapp]] Initializing log4j from
[/opt/jboss-5.1.0.GA/server/default/tmp/
5c4o039-9vh4op-g8hfa3el-1-g8hfb8we-9r/jms-webapp.war/WEB-INF/classes/
log4j.xml]
ERROR: invalid console appender config detected,
console stream is looping

By adding the custom Log4J RepositorySelector to the application, you’ll avoid this
error.

Step 3 Now you need to make sure to change the sample web application’s connection
factory type. Edit the jms-webapp-jboss/src/main/webapp/WEB-INF/spring/jms-
context.xml file to change the connection factory type from org.apache.

Listing 8.18 The jboss-web.xml file
www.it-ebooks.info

http://www.it-ebooks.info/

214 CHAPTER 8 Integrating ActiveMQ with application servers
activemq.ActiveMQConnectionFactory to org.apache.activemq.ra.Active-
MQConnectionFactory. Again, this is needed because the connection factory
that’s being used here is from the ActiveMQ resource adapter, not the standard
connection factory.

Step 4 In order to work with the JBoss <tx-connection-factory> used in the
activemq-ds.xml file, you’ll need to enable support for transactions in the
Spring configuration file for the sample web application. To do this, edit the
jms-webapp-jboss/src/main/webapp/WEB-INF/spring/jms-context.xml file to
add the following items in bold:

...
<tx:jta-transaction-manager />

<jms:listener-container
container-type="default"
connection-factory="singleConnectionFactory"
acknowledge="auto"
transaction-manager="transactionManager">
<jms:listener destination="FOO.QUEUE" ref="myMessageListener" />

</jms:listener-container>
...

Note that the JTA transaction manager has been added and a reference to it has been
added to the listener-container. This allows the sample application to play nicely
with the JBoss resource adapter configuration that uses transactions.

Step 5 The sample web application utilizes the Spring Framework to load a Spring
application context. Evidently there’s an incompatibility between the Spring
Framework and the JBoss Virtual File System (VFS). The Spring Framework
can load an application context from a file system without issue, but loading it
from the JBoss Virtual File System presents a problem. To work around this
issue, JBoss created a project named Snowdrop (http://mng.bz/pkx6). To use
Snowdrop to work around this problem, follow the instructions in section 2.1,
“The VFS-supporting application contexts,” at http://mng.bz/wyob. The nec-
essary changes that are already available in the jms-webapp-jboss/src/main/
webapp/WEB-INF/web.xml file are shown here in bold:

...

<context-param>
<param-name>contextClass</param-name>

 <param-value>
 org.jboss.spring.vfs.context.VFSXmlWebApplicationContext
 </param-value>
 </context-param>

<listener>
<listener-class>

org.springframework.web.context.ContextLoaderListener
</listener-class>

</listener>

<servlet>
www.it-ebooks.info

http://www.it-ebooks.info/

215Integrating with JBoss
<servlet-name>jms-webapp</servlet-name>
<servlet-class>

org.springframework.web.servlet.DispatcherServlet
</servlet-class>
<init-param>

 <param-name>contextClass</param-name>
 <param-value>
 org.jboss.spring.vfs.context.VFSXmlWebApplicationContext
 </param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>

</servlet>
...

The Snowdrop JAR also needs to be added to the pom.xml file. This change already
exists in the jms-webapp-jboss/pom.xml file, as shown here:

...
<dependency>

<groupId>org.jboss.snowdrop</groupId>
<artifactId>snowdrop-vfs</artifactId>
<version>1.0.0-GA</version>

</dependency>
...

Please note that all of the changes described in this section already exist in the jms-
webapp-jboss sample web application so that it can be successfully deployed to JBoss.
Download the example source code for the book to see this example.

8.5.4 Deploying and verifying the sample application in JBoss

To validate the deployment of the sample application in JBoss using the jms-webapp-
jboss project, follow these steps:

Step 1 Build the project and create the WAR file, using the following Maven com-
mand from the command line:

$ mvn clean install
...
[INFO] Scanning for projects...
[INFO] --

[INFO] Building jms-webapp-global
[INFO] task-segment: [clean, install]
[INFO] --

...
[INFO] --

[INFO] BUILD SUCCESSFUL
[INFO] --

...

After running this command, a WAR file will exist in the target directory.
www.it-ebooks.info

http://www.it-ebooks.info/

216 CHAPTER 8 Integrating ActiveMQ with application servers
Step 2 Copy the jms-webapp-jboss/target/jms-webapp.jar file to the JBoss deploy
directory:

$ cp jms-webapp-jboss/target/jms-webapp.jar \
$JBOSS_HOME/server/default/deploy/

Step 3 Start up JBoss using the following command:
$ $./bin/run.sh
===

JBoss Bootstrap Environment

JBOSS_HOME: /opt/jboss-5.1.0.GA

JAVA: java

JAVA_OPTS: -Dprogram.name=run.sh -Xms128m -Xmx512m
-XX:MaxPermSize=256m -Dorg.jboss.resolver.warning=true
-Dsun.rmi.dgc.client.gcInterval=3600000
-Dsun.rmi.dgc.server.gcInterval=3600000

CLASSPATH: /opt/jboss-5.1.0.GA/bin/run.jar

===

12:11:02,699 INFO [ServerImpl] Starting JBoss (Microcontainer)...
...
[5.1.0.GA (build: SVNTag=JBoss_5_1_0_GA date=200905221634)]
Started in 2m:6s:566ms

Some of the output here has been elided to save space, but the important part is
toward the end where the sample web application is started up.

Step 4 Visit http://localhost:8080/jms-webapp and use the page shown in figure 8.4
to send a message.

Step 5 Now you just need to verify that a message can be sent from the sample web
application and that it’s consumed by checking the terminal to see the follow-
ing output:

12:13:22,372 INFO [JmsMessageDelegate] Consumed message with payload:
This is a test message

As long as you see your test message in the terminal output, you know it worked as it
should.

Integrating ActiveMQ with JBoss is also easy to do when you know the steps to take. The
real difference is that you’re required to manually edit XML configuration files instead
of working through the configuration via a nice web UI. Also, deploying the sample
web application to JBoss requires some additional customization to the application.
This is common when working with a Java EE application server, since each one
requires its own custom configuration file and possibly more deployment descriptors.

 One last topic that’s typically of concern when using ActiveMQ with Java EE con-
tainers is JNDI. The next section covers this topic in its entirety.
www.it-ebooks.info

http://www.it-ebooks.info/

217ActiveMQ and JNDI
8.6 ActiveMQ and JNDI
So far this chapter has demonstrated how to configure the ActiveMQ administrative
objects (the ConnectionFactory and Destination objects) for each container that
was covered. This entailed a style of configuration for the ConnectionFactory and
Destination objects that was specific to each container so that they were made accessible
via JNDI to the sample web application. The sample web application then used Spring
to look up those objects via JNDI in order to interact with ActiveMQ. The following list-
ing shows an example of the Spring JNDI lookup.

...
<jee:jndi-lookup id="connectionFactory"

jndi-name="java:comp/env/jms/ConnectionFactory"
cache="true"
resource-ref="true"
lookup-on-startup="true"
expected-type="org.apache.activemq.ActiveMQConnectionFactory"
proxy-interface="javax.jms.ConnectionFactory">

</jee:jndi-lookup>

<jee:jndi-lookup id="fooQueue"
jndi-name="java:comp/env/jms/FooQueue"
cache="true"
resource-ref="true"
lookup-on-startup="true"
expected-type="org.apache.activemq.command.ActiveMQQueue"
proxy-interface="javax.jms.Queue">

</jee:jndi-lookup>
...

The configuration in listing 8.19 uses the Spring framework to perform a JNDI lookup
of the ConnectionFactory and the Destination objects. Because the JNDI provider
for each application server has already been configured (see the earlier sections
related to the different application servers), this simple Spring configuration is power-
ful—it makes easy work of performing JNDI lookups. And the sample web application
was always deployed locally to the application server where the JNDI provider is run-
ning, making the JNDI lookup a local call. But what if the JMS client isn’t deployed
locally to an application server?

8.6.1 Client-side JNDI configuration

Although the example in this chapter didn’t make use of it, ActiveMQ also provides
the ability to configure a locally accessible, client-side JNDI context for retrieving JMS
administrative objects. This isn’t required to be used, but is provided because JNDI is
so commonly used.

 An important point to understand about ActiveMQ and JNDI is that ActiveMQ
doesn’t provide a remotely accessible JNDI provider—a JNDI provider where the JMS
administered objects are configured on the server side and made available for remote

Listing 8.19 Spring JNDI lookup from sample web app
www.it-ebooks.info

http://www.it-ebooks.info/

218 CHAPTER 8 Integrating ActiveMQ with application servers
lookup by an application running on a different host. Instead, ActiveMQ provides a
simple in-memory JNDI context over a simple hash map. To configure a remotely
accessible JNDI, you’ll need to use a third-party JNDI provider, for example, a Java EE
container’s JNDI provider (which was shown throughout this chapter).

ACTIVEMQ JNDI SUPPORT

ActiveMQ provides support for a locally accessible JNDI context on the client side.
With this style of configuration, the client-side JNDI configuration makes use of a URI
to access a remote ActiveMQ broker when the connection factory is created. The best
way to understand this style of configuration is to review an example.

 If an ActiveMQ instance is running on host A and a Java client application is run-
ning on host B, and you want to look up a connection factory via JNDI to access the
remote ActiveMQ instance from the Java application, then you need to configure a
JNDI context in the Java application. An example jndi.properties file is shown next.

This is an example jndi.properties file for use with ActiveMQ. To make use of
the locally available ActiveMQ JNDI provider place this file in the classpath
of the client application.
#

The java.naming.factory.initial property is a standard JNDI system
property
(http://java.sun.com/products/jndi/tutorial/beyond/env/context.html)
that is used to specify the InitialContextFactory implementation to
use. In this instance, the ActiveMQInitialContextFactory is used to
provide a locally available context factory.

java.naming.factory.initial = \
org.apache.activemq.jndi.ActiveMQInitialContextFactory

The JNDI names for the connection factories to be registered in JNDI.
These are the name that should be used to lookup the connection
factories in JNDI.

connectionFactoryNames = remotePublisherConnectionFactory, \
remoteConsumerConnectionFactory

Configure the connection factory for publishers. For more information
on available properties, see the ActiveMQConnectionFactory class.

connection.remotePublisherConnectionFactory.brokerURL = tcp://hostA:61616
connection.remotePublisherConnectionFactory.username = publisher
connection.remotePublisherConnectionFactory.username = password

Configure the connection factory for consumers. For more information
on available properties, see the ActiveMQConnectionFactory class.
#

Listing 8.20 An example jndi.properties file
www.it-ebooks.info

http://www.it-ebooks.info/

219ActiveMQ and JNDI
connection.remoteConsumerConnectionFactory.username = tcp://hostA:61616
connection.remoteConsumerConnectionFactory.username = consumer
connection.remoteConsumerConnectionFactory.username = password

Define a JMS queue destination to be registered in JNDI. The format
for specifying JMS queue is queue.<logical name> = <physical name>
where <logical name> is whatever you like and <physical name> is the
actual queue name referenced by ActiveMQ.

queue.MyTestQueue = TEST.FOO

Define a JMS topic destination to be registered in JNDI. The format for
specifying a JMS topic is topic.<logical name> = <physical name> where
<logical name> is whatever you like and <physical name> is the actual
topic name referenced by ActiveMQ.

topic.someTopicName = GREEN.DEMO.TOPIC

To use the jndi.properties file shown in listing 8.20, it must be placed in the classpath
of the client application. The first property defined is the standard java.naming.
factory.initial property. This is a standard system property for configuring JNDI. It’s
used to note the implementation of the InitialContextFactory interface to use. The
example is using the ActiveMQInitialContextFactory, so that class must be available
on the classpath.

 The connectionFactoryNames property is used to specify the names of the connec-
tion factories that will be created and placed in the JNDI tree. In listing 8.20, the
names remotePublisherConnectionFactory and remoteConsumerConnection-

Factory were used. This means that to resolve either one of these connection facto-
ries, these two names would be used in a JNDI lookup. Here’s a snippet of the code to
be used to look up one of them:

...
Context ctx = new InitialContext();
ConnectionFactory factory = (ConnectionFactory)

ctx.lookup("remotePublisherConnectionFactory");
...

Each connection factory can also be configured in the jndi.properties file by specifying
the property name to be set. In listing 8.20, the brokerURL, the username, and the
password are being set. Numerous other properties can be set on a connection factory,
so take a look at the properties available in the ActiveMQConnectionFactory class.

 The last items to be specified in listing 8.20 are a couple JMS destinations. The for-
mat for defining destinations is shown in the example. As you can see, the logical
name has no bearing on the physical name; it’s an alias to the destination to be used
when performing a JNDI lookup of the destination. Here’s a snippet demonstrating a
JNDI lookup for the queue destination:

...
Context ctx = new InitialContext();
www.it-ebooks.info

http://www.it-ebooks.info/

220 CHAPTER 8 Integrating ActiveMQ with application servers
Queue myTestQueue = (Queue) ctx.lookup("MyTestQueue");
...

And here’s an example JNDI lookup for the topic destination:

...
Context ctx = new InitialContext();
Topic myTopic = (Topic) ctx.lookup("someTopicName");
...

This client-side configuration of the locally accessible InitialContextFactory pro-
vided by ActiveMQ is powerful and useful. Its major unique quality is that it’s not
remotely accessible. This is one reason why all of the previous examples utilized the
JNDI provider supplied by each application server. The other reason that the applica-
tion server's JNDI provider was used is because it is a best practice to have a single sys-
tem of record for the JNDI configuration.

8.7 Summary
Though deployment to an application server requires more initial configuration than
simply starting up a standalone ActiveMQ broker, in some environments the long-
term benefit of allowing ActiveMQ to be managed in the same JVM process is a better
trade-off. And ActiveMQ isn’t limited to integration with open source application
servers. In the interest of saving space for this chapter, we didn’t include integration
with commercial application servers. Make no mistake, integrating ActiveMQ with
commercial application servers is not only possible, it’s popular. The most common
form of deploying ActiveMQ to commercial Java EE servers is through the use of the
ActiveMQ resource adapter, as shown in this chapter when configuring both Geron-
imo and JBoss.

 Also, JNDI is widely used for the storage of preconfigured JMS administrative
objects. Most of the examples in this chapter use the JNDI provider that’s supplied by
the application server. The last section of this chapter briefly reviewed the ActiveMQ
client-side JNDI configuration.

 No matter whether you’re running a standalone ActiveMQ broker or one that’s
embedded in a Java application or even an application server, managing ActiveMQ is
still possible via a JMX tool such as JConsole. ActiveMQ can use an existing MBean
server or even create its own if necessary. In deploying the sample web application
throughout this chapter, the ActiveMQ JMX capabilities were left enabled (the default
setting) and were accessible via JConsole. For more information on administration
and monitoring of ActiveMQ, see chapter 14.

 Now that you’ve seen how to integrate ActiveMQ with various application servers,
the next chapter will transition to a new topic: using ActiveMQ with programming lan-
guages other than Java.
www.it-ebooks.info

http://www.it-ebooks.info/

ActiveMQ messaging
for other languages
Thus far we’ve been focused on ActiveMQ as a JMS broker and explored various
ways of using it in Java environment. But ActiveMQ is more than just a JMS broker.
It provides an extensive list of connectivity options, so it can be seen as a general
messaging solution for a variety of development platforms. In this chapter we’ll
cover all ActiveMQ aspects related to providing messaging services to different plat-
forms. We’ll start by exploring the STOMP (Streaming Text Orientated Messaging Proto-
col) protocol, which due to its simplicity plays an important role in messaging for
scripting languages. Examples in Ruby, Python, PHP, and Perl will demonstrate the
ease of messaging with STOMP and ActiveMQ. Next, we’ll focus on writing clients
for C++ and .NET platforms with appropriate examples. Finally, we’ll see how

This chapter covers
 Using scripting languages via STOMP

 Exploring ActiveMQ NMS with C#

 Exploring ActiveMQ CMS with C++

 Using the ActiveMQ REST API

 Using the ActiveMQ Ajax API
221

www.it-ebooks.info

http://www.it-ebooks.info/

222 CHAPTER 9 ActiveMQ messaging for other languages
ActiveMQ could be used in the Web environment through its REST and Ajax APIs. By
the end of this chapter, you’ll see that ActiveMQ isn’t just another Java message bro-
ker, but rather a general messaging platform for various environments. Before we go
into details on specific platforms, we have to define the examples we’ll be using
throughout this chapter.

9.1 Adapting the stock portfolio example
In chapter 3, we defined a stock portfolio example that uses map messages to
exchange data between producers and consumers. For the purpose of this chapter,
we’ll modify this original example and make it a better fit for environments described
here. Instead of map messages, we’ll exchange XML data in text messages, as that’s the
more natural way of communication in some of these environments, such as dynamic
languages. So we’ll create a Java message producer that sends text messages with
appropriate XML data. Through the rest of the chapter, we’ll implement appropriate
consumers for each of the platforms described, which will show us how to connect the
specified platform with Java in an asynchronous way.

 For starters, we have to modify our publisher to send XML data in text messages
instead of map messages. The only thing we have to change from our original pub-
lisher is the createStockMessage() method. Listing 9.1 shows the method that cre-
ates an appropriate XML representation of desired data and creates a TextMessage
instance out of it.

protected Message createStockMessage(String stock, Session session)
throws JMSException, XMLStreamException {

Double value = LAST_PRICES.get(stock);
if (value == null) {

value = new Double(Math.random() * 100);
}

// lets mutate the value by some percentage
double oldPrice = value.doubleValue();
value = new Double(mutatePrice(oldPrice));
LAST_PRICES.put(stock, value);
double price = value.doubleValue();

double offer = price * 1.001;

boolean up = (price > oldPrice);

StringWriter res = new StringWriter();
 XMLStreamWriter writer =

XMLOutputFactory.newInstance().createXMLStreamWriter(res);
writer.writeStartDocument();
writer.writeStartElement("stock");
writer.writeAttribute("name", stock);
writer.writeStartElement("price");
writer.writeCharacters(String.valueOf(price));
writer.writeEndElement();

Listing 9.1 Modified stock portfolio publisher that sends messages as XML payloads

Create XML data
www.it-ebooks.info

http://www.it-ebooks.info/

223Adapting the stock portfolio example
writer.writeStartElement("offer");
writer.writeCharacters(String.valueOf(offer));
writer.writeEndElement();

writer.writeStartElement("up");
writer.writeCharacters(String.valueOf(up));
writer.writeEndElement();
writer.writeEndElement();
writer.writeEndDocument();

TextMessage message = session.createTextMessage();
message.setText(res.toString());
return message;

}

As you can see, we’ve used a simple StAX API (http://mng.bz/0S2s) to create an XML
representation of our stock data. Next, we created a text message and used the set-
Text() method to associate this XML to the message.

 Now we can start our publisher in the standard manner:

$ mvn exec:java -Dexec.mainClass=org.apache.activemq.book.ch9.Publisher \
-Dexec.args="IONA JAVA"

and expect the following output:

Sending: <?xml version="1.0" ?>
<stock name="JAVA">

<price>81.987225215383</price><offer>82.069212440599</offer>
<up>false</up>

</stock>
on destination: topic://STOCKS.JAVA
Sending: <?xml version="1.0" ?><stock name="IONA">

<price>16.2205230479432</price><offer>16.236743570991</offer>
<up>false</up>

</stock>
on destination: topic://STOCKS.IONA
Sending: <?xml version="1.0" ?><stock name="JAVA">

<price>82.70353458512</price><offer>82.786238119706</offer><up>true</up>
</stock>
on destination: topic://STOCKS.JAVA
Sending: <?xml version="1.0" ?><stock name="IONA">

<price>16.264366325962</price><offer>16.280630692288</offer><up>true</up>
</stock>
on destination: topic://STOCKS.IONA
Sending: <?xml version="1.0" ?><stock name="JAVA">

<price>83.341791666986</price><offer>83.425133458653</offer><up>true</up>
</stock>
on destination: topic://STOCKS.JAVA
Sending: <?xml version="1.0" ?><stock name="JAVA">

<price>83.891272205115</price><offer>83.975163477321</offer><up>true</up>
</stock>
on destination: topic://STOCKS.JAVA

As expected, the publisher sends a series of XML-formatted text messages to different
ActiveMQ topics. As they’re ready to be consumed, it’s time to see how we can con-
sume them using different programming languages and platforms.

Create text
message
www.it-ebooks.info

http://www.it-ebooks.info/

224 CHAPTER 9 ActiveMQ messaging for other languages
9.2 Messaging for scripting languages
In chapter 3, we explained various network protocols used for communication
between ActiveMQ and clients. But what we didn't discuss there is that choosing the
right network protocol is just one side of the story. An equally important aspect of com-
munication is finding the right way to serialize your messages over the network, or
picking the wire protocol. ActiveMQ can support different wire protocols, and comes
with two of them implemented by default. This makes messaging with ActiveMQ adapt-
able to various programming environments, as we’ll see in the rest of this chapter.

 For all transport connectors we covered thus far, ActiveMQ uses the OpenWire
(http://mng.bz/u2eT) protocol to exchange messages between brokers and clients.
OpenWire is designed to be an efficient binary protocol in terms of network band-
width and performance. This makes it an ideal choice for communication with so-
called native clients usually written in Java, C, or C#. But all this efficiency comes at a
cost, and in this case it’s the complexity of implementation.

STOMP (Streaming Text Oriented Messaging Protocol), on the other hand, is
designed with entirely different requirements in mind. It’s a simple text-oriented pro-
tocol, similar to HTTP. You can see it as HTTP adapted to the messaging realm. This
implies that it’s easy to implement the STOMP client in an arbitrary programming lan-
guage. It’s even possible to communicate with the broker through the telnet session
using STOMP, as we’ll see in a moment.

 In the following section we’ll cover the basics of STOMP to give you an idea of how
it works and what you can expect from it. After that, we’ll write stock portfolio con-
sumers in some of the most popular scripting (dynamic) languages used today, such as
Ruby and Python. It’s a long section, but after reading it you’ll be fully ready to use
asynchronous messaging in almost any programming language. Of course, after read-
ing the basics, you can jump to the language of your choice.

 We won’t explain the STOMP protocol in detail here, and you’re advised to take a
look at the protocol specification (http://mng.bz/JAUH) if you’re interested in this
topic. But let’s walk through some basics, just to get a feel for what’s happening under
the hood.

9.2.1 STOMP protocol basics

Clients and brokers communicate with each other by exchanging frames, textual rep-
resentation of messages. Frames could be delivered over any underlying network pro-
tocol, but it’s usually TCP. Every frame consists of three basic elements: command,
headers, and body, as shown in the following snippet:

SEND
destination:/queue/a

hello queue a
^@

The command part of the frame identifies what kind of operation should take place. In
this example, the SEND frame is used to send a message to the broker, but you can also
www.it-ebooks.info

http://www.it-ebooks.info/

225Messaging for scripting languages
 CONNECT or DISCONNECT from the broker
 SUBSCRIBE or UNSUBSCRIBE from a destination
 BEGIN, COMMIT, or ABORT a transaction
 ACK (acknowledge) messages

These commands are self-explanatory and represent common functionalities
expected to be found in any messaging system. We’ll see them in action through
examples in the coming sections.

 Headers are used to specify additional properties for each command, such as the
destination where a message is sent in the preceding example. Headers are basically
key-value pairs, separated by a colon (:) character. Every header should be written in a
separate line (of course, our example contains only one header).

 The blank line indicates the end of the headers section and start of an optional
body section. In case of the SEND command, the body section contains an actual mes-
sage we want to send. Finally the frame is ended by the ASCII null character (^@).

 After explaining the basic structure of frames, let’s go to STOMP sessions. The fol-
lowing shows how easy it is to create a regular telnet session and use it to send and
receive messages from the command line.

$ telnet localhost 61613
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
CONNECT
login:system
passcode:manager

^@
CONNECTED
session:ID:dejan-laptop-36961-1221552914772-4:0

SEND
destination:/queue/a

hello queue a
^@

SUBSCRIBE
destination:/queue/a

^@
MESSAGE
message-id:ID:dejan-laptop-36961-1221552914772-4:0:-1:1:1
destination:/queue/a
timestamp:1221553047204
expires:0
priority:0

hello queue a

Listing 9.2 Using ActiveMQ via telnet and STOMP
www.it-ebooks.info

http://www.it-ebooks.info/

226 CHAPTER 9 ActiveMQ messaging for other languages
UNSUBSCRIBE
destination:/queue/a

^@

DISCONNECT

^@
Connection closed by foreign host

As you can see, the usual session starts by connecting to the broker (with appropriate
credentials provided). The broker will acknowledge successful connection by sending
the CONNECTED frame back to the client. After creating a successful connection, the cli-
ent can send messages using the SEND frame similar to the one we just described. If it
wants to receive messages, it should subscribe to the desired destination. From that
moment on, messages from the subscribed destination will be pushed asynchronously
to the client. When the client is finished with consuming messages, it should unsub-
scribe from the destination. Finally, the client should disconnect from the broker to
terminate the session.

 You’ve probably noticed that we started the destination name with the /queue/
prefix, which naturally suggests that the desired destination is a message queue.
STOMP doesn’t define any semantics regarding destination names, and specifies it
only as a string value that’s specific to the server implementation. ActiveMQ imple-
ments the syntax we’ve seen in our example, where prefixes /queue/ or /topic/
define the type of the destination, while the rest is interpreted as the destination
name. So the value /queue/a used in the previous example interprets as “queue
named a.” Having said all this, we can conclude that you should be careful when deal-
ing with destination names starting with the / character. For example, you should use
value /queue//a if you want to access the queue named /a.

9.2.2 Configuring STOMP transport

Now that we’ve learned the basics of the STOMP protocol, let’s see how we can config-
ure ActiveMQ to enable this kind of communication with its clients. The configuration
shown in the following listing defines two transport connectors: one that allows con-
nections over the TCP connector (and uses OpenWire wire protocol) and another one
that uses STOMP.

<broker xmlns="http://activemq.apache.org/schema/core"
brokerName="localhost" dataDirectory="${activemq.base}/data">

<transportConnectors>
<transportConnector name="openwire"
uri="tcp://localhost:61616" />

<transportConnector name="stomp"
uri="stomp://localhost:61613" />

</transportConnectors>

</broker>

Listing 9.3 Configure STOMP and TCP transport connectors used in examples
www.it-ebooks.info

http://www.it-ebooks.info/

227Messaging for scripting languages
So all you have to do to is to define a transport connector with the stomp keyword for
a URI schema and you’re ready to go.

 Now let’s see how to implement consumers of our stock portfolio data in some of
the most popular scripting languages. Figure 9.1 illustrates examples we’ll build in the
rest of this section.

9.2.3 Ruby STOMP consumer

We all witnessed the rising popularity of Ruby on Rails web development framework,
which marked Ruby as one of the most popular dynamic languages today. The asyn-
chronous messaging with STOMP and ActiveMQ brings one more tool to the Ruby
and Rails developers’ toolbox, making it possible to tackle a whole new range of prob-
lems. More information on how to install the STOMP client for Ruby can be found at
http://mng.bz/605u. Once you’ve installed and configured your Ruby environment,
you can write the stock portfolio consumer as shown next.

#!/usr/bin/ruby

require 'rubygems'
require 'stomp'
require 'xmlsimple'

@conn = Stomp::Connection.open '', '', 'localhost', 61613, false
@count = 0

@conn.subscribe "/topic/STOCKS.JAVA", { :ack =>"auto" }
@conn.subscribe "/topic/STOCKS.IONA", { :ack =>"auto" }
while @count < 100
@msg = @conn.receive
@count = @count + 1
if @msg.command == "MESSAGE"

Listing 9.4 Stock portfolio consumer written in Ruby

Broker

stomptcp

ConsumerProducer

Java producer sends
messages using OpenWire

protocol

Ruby/Python/PHP/Perl
consumers receive

messages using STOMP
protocol

Figure 9.1 Producer sends
messages using OpenWire
protocol; consumers receive
messages using STOMP
protocol.

Subscribe

Receive message
www.it-ebooks.info

http://www.it-ebooks.info/

228 CHAPTER 9 ActiveMQ messaging for other languages
@xml = XmlSimple.xml_in(@msg.body)
$stdout.print "#{@xml['name']}\t"
$stdout.print "#{'%.2f' % @xml['price']}\t"
$stdout.print "#{'%.2f' % @xml['offer']}\t"
$stdout.print "#{@xml['up'].to_s == 'true'?'up':'down'}\n"

else
$stdout.print "#{@msg.command}: #{@msg.body}\n"

end
end
@conn.disconnect

Basically, all STOMP clients provide wrapper functions (methods) for creating basic
STOMP frames and sending to (or reading from) TCP sockets. Let’s explain it in
detail with some Ruby examples. All examples that follow in other languages are
structured similarly to this example (and any new concepts will be described as they
are introduced).

 In this example, we first created a connection with a broker using the open()
method. This is equivalent to opening a TCP socket and sending the CONNECT frame to
the broker. Besides the usual connection parameters, such as username, password,
host, and port, we’ve provided one extra argument at the end of this method call. This
parameter specifies whether the client will be reliable —will it try to reconnect until it
successfully connects to the broker? In this example, we set the reliable parameter to
false, which means it will raise an exception in case of a connection failure.

 After the connection is created, we can subscribe to desired topics, using the
subscribe() method. In this example, note that we’ve passed the additional ack
header, which defines the way messages are acknowledged. The STOMP protocol
defines two acknowledgment modes:

 auto—The broker will mark the message as delivered right after the client con-
sumes it.

 client—The broker will consider the message delivered only after the client
explicitly acknowledges it with an ACK frame.

The auto mode is the default and you don’t have to include any headers if you plan to
use it. In this example, we’ve specifically used it for demonstration purposes. The cli-
ent acknowledgment mode is explained later in section 9.7.

 Now let’s receive some messages. We can do this using the receive() method,
which reads frames from the TCP socket and parses them. As you can see, we don’t
have any logic implemented to acknowledge messages, as we’re using the auto-
acknowledgment mode.

 The rest of the code is dedicated to XML parsing and printing. Now you can run
the code and expect the following output (of course, the publisher described at the
start of the chapter should be running):

ruby consumer.rb
IONA 34.53 34.57 up
JAVA 37.61 37.65 down
JAVA 37.55 37.59 down
JAVA 37.56 37.60 up
www.it-ebooks.info

http://www.it-ebooks.info/

229Messaging for scripting languages
IONA 34.84 34.88 up
JAVA 37.83 37.87 up
JAVA 37.83 37.87 up
JAVA 38.05 38.09 up
JAVA 38.14 38.18 up
IONA 35.06 35.10 up
JAVA 38.03 38.07 down
JAVA 37.68 37.72 down
JAVA 37.55 37.59 down
JAVA 37.59 37.62 up
IONA 35.21 35.25 up
IONA 35.12 35.15 down
JAVA 37.26 37.30 down

If you like Rails-like frameworks, you can also check out the ActiveMessaging project
(http://mng.bz/5f80), which attempts to “bring simplicity and elegance of Rails
development to messaging.”

 Now let’s see how to implement the same stock portfolio data consumer in Python.

9.2.4 Python STOMP consumer

Python is another extremely popular and powerful dynamic language, often used in a
wide range of software projects. As you can see from the list of STOMP Python clients
(http://mng.bz/Qnl6), you can use a variety of libraries in your projects. For the
basic implementation of our stock portfolio consumer we’ve chosen the stomp.py
implementation you can find at the following web address: http://mng.bz/d0t2.

 For starters we’ll create a helper script, called book.py, which will contain helper
classes and methods for all our Python examples as shown next.

from xml.etree.ElementTree import XML

def printXml(text):
xml = XML(text)

print "%s\t%.2f\t%.2f\t%s" % (
xml.get("name"),
eval(xml.find("price").text),
eval(xml.find("offer").text),
"up" if xml.find("up").text == "True" else "down"
)

For now, this script only contains one method (called printXml()), which parses and
prints our stock portfolio XML data.

 The following listing shows a Python script that receives XML-formatted stock data
and uses the printXml() function to parse and print it on the screen.

#!/usr/bin/env python

import time, sys
from elementtree.ElementTree import ElementTree, XML

Listing 9.5 Python helper script containing useful functions

Listing 9.6 Stock portfolio consumer written in Python
www.it-ebooks.info

http://www.it-ebooks.info/

230 CHAPTER 9 ActiveMQ messaging for other languages
from book import printXml

import stomp

class MyListener(object):
def on_error(self, headers, message):

print 'received an error %s' % message

def on_message(self, headers, message):
printXml(message)

conn = stomp.Connection()

conn.add_listener(MyListener())
conn.start()
conn.connect()

conn.subscribe(destination='/topic/STOCKS.JAVA', ack='auto')
conn.subscribe(destination='/topic/STOCKS.IONA', ack='auto')

time.sleep(60);

conn.disconnect()

As you can see, the Python client implements an asynchronous JMS-like API with mes-
sage listeners, rather than using synchronous message receiving philosophy used by
other STOMP clients. This code sample defines a simple message listener that parses
the XML text message (using our printXml() function) and prints the desired data on
the standard output. Then, similar to the Java examples, it creates a connection, adds
a listener, starts a connection, and finally subscribes to the desired destinations.

 When started, this example will produce output similar to the following:

python consumer.py
IONA 52.21 52.26 down
JAVA 91.88 91.97 down
IONA 52.09 52.14 down
JAVA 92.16 92.25 up
JAVA 91.44 91.53 down
IONA 52.17 52.22 up
JAVA 90.81 90.90 down
JAVA 91.46 91.55 up
JAVA 90.69 90.78 down
IONA 52.33 52.38 up
JAVA 90.45 90.54 down
JAVA 90.51 90.60 up
JAVA 91.00 91.09 up

This is consistent with what we had for the Ruby client.

MESSAGING WITH PYACTIVEMQ

As we said before, a few other Python clients can exchange messages with ActiveMQ.
One specially interesting client is the pyactivemq project (http://mng.bz/ErKS), which
we’ll cover in this section. The interesting thing about this project is that it’s basically a
Python wrapper around the ActiveMQ C++ library (described a bit later) which sup-
ports both STOMP and OpenWire protocols and provides excellent performance for

Message listener

Add listener

Subscribe to
destination
www.it-ebooks.info

http://www.it-ebooks.info/

231Messaging for scripting languages
your Python applications. Since it wraps the ActiveMQ C++ library, it requires a special
installation procedure, so be sure to check the project site for information relevant to
your platform.

 Let’s now create a full stock portfolio example using pyactivemq and see how it can
be used over the STOMP and OpenWire protocols. For starters, we need to add a few
more helper functions to our helper script, as shown next.

import random
from xml.etree.ElementTree import Element, SubElement, XML, tostring

def printXml(text):
xml = XML(text)

print "%s\t%.2f\t%.2f\t%s" % (
xml.get("name"),
eval(xml.find("price").text),
eval(xml.find("offer").text),
"up" if xml.find("up").text == "True" else "down"
)

def mutatePrice(price):
MAX_DELTA_PERCENT = 1
percentChange = (2 * random.random()

* MAX_DELTA_PERCENT) - MAX_DELTA_PERCENT

return price * (100 + percentChange) / 100;

def createXml(oldPrice, price):
stock = Element("stock")
stock.set("name", "JAVA")
priceElem = SubElement(stock, "price")
priceElem.text = str(price)

offer = SubElement(stock, "offer")
offer.text = str(price * 1.001)

up = SubElement(stock, "up")
up.text = str(oldPrice > price)

return stock

As you can see, there are two new functions which are basically the same as those in
our original Java stock portfolio producer example. Now, let’s put it all together.

import pyactivemq, time, sys, random
from pyactivemq import ActiveMQConnectionFactory
from book import mutatePrice, printXml, createXml
from xml.etree.ElementTree import Element, SubElement, XML, tostring

class MessageListener(pyactivemq.MessageListener):

def onMessage(self, message):
printXml(message.text)

Listing 9.7 Extending helper script for pyactivemq usage

Listing 9.8 Stock portfolio producer written with pyactivemq

Mutates price

Formats stock
data as XML
www.it-ebooks.info

http://www.it-ebooks.info/

232 CHAPTER 9 ActiveMQ messaging for other languages
nmessages = 100

brokerUrl = 'tcp://localhost:61616?wireFormat=openwire'

if(len(sys.argv) == 2 and sys.argv[1] == 'stomp'):
brokerUrl = 'tcp://localhost:61613?wireFormat=stomp'

print 'connecting to: ', brokerUrl

f = ActiveMQConnectionFactory(brokerUrl)
conn = f.createConnection()

session = conn.createSession()
topic = session.createQueue('stocks')
producer = session.createProducer(topic

consumer = session.createConsumer(topic)
consumer.messageListener = MessageListener()

conn.start()

textMessage = session.createTextMessage()
price = random.uniform(1, 100)

for i in xrange(nmessages):
oldPrice = price
price = mutatePrice(price)

textMessage.text = tostring(createXml(oldPrice, price))
producer.send(textMessage)

time.sleep(5)

conn.close()

The CMS API (described later in this chapter) defines an API similar to JMS, and since
the pyactivemq is just a wrapper around a CMS API implementation, we can expect a
JMS-like API for Python. So in this example, we’ve defined a broker URL, created a
connection using a connection factory, and created a session. Next, we create a pro-
ducer and consumer with an appropriate message listener. Finally, we can create stock
portfolio data (with the help of previously defined functions) and send them to the
broker.

 Now if we run this example, we’ll get output similar to the following:

$ python stocks.py
connecting to: tcp://localhost:61616?wireFormat=openwire
JAVA 92.26 92.35 up
JAVA 91.99 92.08 up
JAVA 92.19 92.29 down
JAVA 92.28 92.37 down
JAVA 91.36 91.45 up
JAVA 91.88 91.97 down
JAVA 91.52 91.61 up
JAVA 91.22 91.31 up

Note the URL we’re connecting to. You can see that we’re passing a wireFormat
parameter, and in this case it configures the client to use the OpenWire protocol to
exchange messages. We can change this by passing a stomp argument when executing
the script.

Define
broker URL

Create
consumer

Send
message
www.it-ebooks.info

http://www.it-ebooks.info/

233Messaging for scripting languages
$ python stocks.py stomp
connecting to: tcp://localhost:61613?wireFormat=stomp
JAVA 19.55 19.57 up
JAVA 19.58 19.60 down
JAVA 19.76 19.78 down
JAVA 19.95 19.97 down
JAVA 20.13 20.15 down
JAVA 20.09 20.11 up
JAVA 20.28 20.30 down
JAVA 20.26 20.28 up
JAVA 20.19 20.21 up
JAVA 20.28 20.30 down

Now the wireFormat parameter value in our connection URL has changed, configur-
ing the producer and consumer to use STOMP. This shows how easy it is to use both
OpenWire and STOMP with just a slight change to the connection URL parameter.

 After showing Ruby and Python examples, it’s time to focus on old-school scripting
languages, such as PHP and Perl, and their STOMP clients.

9.2.5 PHP STOMP consumer

Despite the tremendous competition in the web development platform arena, PHP (in
combination with Apache web server) is still one of the most frequently used tools for
developing web-based applications. The stompcli library (http://mng.bz/sgBE) pro-
vides an easy way to use asynchronous messaging in PHP applications. The following
listing demonstrates how to create a stock portfolio data consumer in PHP.

<?

require_once('Stomp.php');

$stomp = new Stomp("tcp://localhost:61613");

$stomp->connect('system', 'manager');

$stomp->subscribe("/topic/STOCKS.JAVA");
$stomp->subscribe("/topic/STOCKS.IONA");

$i = 0;
while($i++ < 100) {

$frame = $stomp->readFrame();
$xml = new SimpleXMLElement($frame->body);
echo $xml->attributes()->name

. "\t" . number_format($xml->price,2)

. "\t" . number_format($xml->offer,2)

. "\t" . ($xml->up == "true"?"up":"down") . "\n";
$stomp->ack($frame);

}

$stomp->disconnect();

?>

Listing 9.9 Stock portfolio consumer written in PHP

Read messages

Acknowledge
messages

Disconnect
www.it-ebooks.info

http://www.it-ebooks.info/

234 CHAPTER 9 ActiveMQ messaging for other languages
Practically, all STOMP examples look alike; the only thing that differs is the language
syntax used to write a particular one. So here we have all the basic elements found in
the STOMP examples: creating a connection, subscribing to destinations, reading mes-
sages, and finally disconnecting. But we have one slight modification over the previ-
ous examples. Here, we’ve used the client acknowledgment of messages, which means
that messages will be considered consumed only after the client explicitly acknowl-
edges them. For that purpose we’ve called the ack() method upon processing of each
message.

 Now we can run the previous script and expect the following result:

php consumer.php
JAVA 50.64 50.69 down
JAVA 50.65 50.70 up
JAVA 50.85 50.90 up
JAVA 50.62 50.67 down
JAVA 50.39 50.44 down
JAVA 50.08 50.13 down
JAVA 49.72 49.77 down
IONA 11.45 11.46 up
JAVA 49.24 49.29 down
IONA 11.48 11.49 up
JAVA 49.22 49.27 down
JAVA 48.99 49.04 down
JAVA 48.88 48.92 down
JAVA 48.49 48.54 down
IONA 11.42 11.43 down

As we expected, the script produces output similar to what we’ve seen in our previous
examples. The following section explains a similar example written in another popu-
lar old-school scripting language, Perl.

9.2.6 Perl STOMP consumer

Perl is one of the first powerful dynamic languages, and as such has a large commu-
nity of users. The range of development tasks Perl is used for is wide, but it’s probably
best known as an “ultimate system administrator tool.” Therefore, an introduction to
asynchronous messaging for Perl gives developers one more powerful tool in their
toolbox.

 An implementation of the STOMP protocol in Perl can be found in the CPAN
Net::Stomp module (http://mng.bz/RA5k). The following listing contains an imple-
mentation of the stock portfolio consumer in Perl.

use Net::Stomp;
use XML::Simple;

my $stomp =
Net::Stomp->new({ hostname => 'localhost', port => '61613' });

Listing 9.10 Stock portfolio consumer written in Perl
www.it-ebooks.info

http://www.it-ebooks.info/

235Messaging for scripting languages
$stomp->connect({ login => 'system', passcode => 'manager' });

$stomp->subscribe(
{ destination => '/topic/STOCKS.JAVA',

'ack' => 'client',
'activemq.prefetchSize' => 1

}
);
$stomp->subscribe(

{ destination => '/topic/STOCKS.IONA',
'ack' => 'client',
'activemq.prefetchSize' => 1

}
);

my $count = 0;

while ($count++ < 100) {
my $frame = $stomp->receive_frame;
my $xml = XMLin($frame->body);
print $xml->{name} . "\t" . sprintf("%.2f", $xml->{price}) . "\t";
print sprintf("%.2f", $xml->{offer}) . "\t";
print ($xml->{up} eq 'true' ? 'up' : 'down') . "\n";

$stomp->ack({ frame => $frame });
}

$stomp->disconnect;

The example is practically the same as all our previous examples (especially the PHP
one, since the syntax is almost the same). But we’ve added one feature to this example:
the usage of the activemq.prefetchSize value when subscribing to the destination.

 ActiveMQ uses a prefetch limit to determine the number of messages it will pre-send
to consumers, so that network is used optimally. This option is explained in more
detail in chapter 13, but basically this means that the broker will try to send 1,000 mes-
sages to be buffered on the client side. Once the consumer buffer is full, no more
messages are sent before some of the existing messages in the buffer get consumed
(acknowledged). Though this technique works great for Java consumers, STOMP con-
sumers (and libraries) are usually simple scripts and don’t implement any buffers on
the client side, so certain problems (such as undelivered messages) could be intro-
duced by this feature. Thus, it’s advisable to set the prefetch size to 1 (by providing a
specialized activemq.prefetchSize header to the SUBSCRIBE command frame) and
instruct the broker to send one message at a time.

 Now that we have it all explained, let’s run our example:

$ perl consumer.pl
IONA 69.22 69.29 down
JAVA 22.20 22.22 down
IONA 69.74 69.81 up
JAVA 22.05 22.08 down
IONA 69.92 69.99 up
JAVA 21.91 21.93 down

Prefetch size
www.it-ebooks.info

http://www.it-ebooks.info/

236 CHAPTER 9 ActiveMQ messaging for other languages
JAVA 22.10 22.12 up
JAVA 21.95 21.97 down
JAVA 21.84 21.86 down
JAVA 21.67 21.69 down
IONA 70.60 70.67 up
JAVA 21.70 21.72 up
IONA 70.40 70.47 down
JAVA 21.50 21.52 down
IONA 70.55 70.62 up
JAVA 21.69 21.71 up

As you can see, the behavior is the same as with all our other STOMP examples.
 With Perl, we conclude our demonstration of STOMP clients and exchanging mes-

sages with ActiveMQ using different scripting languages. But STOMP (especially com-
bined with ActiveMQ) is more capable than simply sending and receiving messages. In
the following section, we’ll go through advanced messaging concepts that makes
STOMP and ActiveMQ a powerful combination.

9.2.7 Advanced messaging with STOMP

Sending and receiving messages one by one is more than enough for most use cases.
But even if you write your clients in scripting languages, you may want to use some
advanced messaging concepts. In this section we’ll learn how to use STOMP transactions
and how you can create ActiveMQ durable topic subscribers using your STOMP clients.

UNDERSTANDING STOMP TRANSACTIONS

Besides sending and acknowledging messages one by one, STOMP introduces the con-
cept of transactions, which group multiple SEND and ACK commands. Transactions are
well known from SQL and JMS, and we’re sure you’re familiar with the with atomicity
they introduce, as well as transaction-related operations, such as commit and rollback
(abort).

 So if you want to start a transaction, you need to send a BEGIN frame to the broker,
along with the transaction header that contains a transaction ID. For example, the fol-
lowing frame will start a transaction named tx1:

BEGIN
transaction:tx1

^@

After you’re finished with the transaction, you can either commit it or abort it by send-
ing the appropriate frame (COMMIT or ABORT), of course with the transaction ID passed
as the transaction header. So the following frame will commit the previously started
tx1 transaction and mark the successful send and acknowledgment of all messages in
the transaction:

COMMIT
transaction:tx1

^@
www.it-ebooks.info

http://www.it-ebooks.info/

237Messaging for scripting languages
One more important thing is how you send and acknowledge messages in the transac-
tion. In order to mark that the message is sent or acknowledged in the transaction, you
need to add a transaction header to SEND and ACK frames that are sent to the broker.
Of course, the value of this header must match the valid (started) transaction ID.

 So, for example, the following frame states that the appropriate message has been
acknowledged in transaction tx1:

ACK
destination:/queue/transactions
transaction:tx1
message-id:ID:dejanb.local-62217-1249899600449-6:0:-1:1:3

^@

The important thing to note here is that transactions in STOMP are only related to
sending SEND and ACK frames. So there’s no concept such as receiving messages in a
transaction as we have in JMS. This basically means that you can only roll back message
acknowledgment, but not the message itself, so the message won’t be redelivered to
the client. The client application (or STOMP client) is responsible for trying to process
those messages again and acknowledging them when they do so.

 The following listing demonstrates sending and acknowledging messages using
transactions. First we’ll send some messages in a transaction.

<?
require_once("Stomp.php");

$con = new Stomp("tcp://localhost:61613");
$con->connect();

$con->begin("tx1");
for ($i = 1; $i < 3; $i++) {

$con->send("/queue/transactions", $i,
 array("transaction" => "tx1"));
}
$con->abort("tx1");

$con->begin("tx2");
echo "Sent messages {\n";
for ($i = 1; $i < 5; $i++) {
$con->send("/queue/transactions", $i,

 array("transaction" => "tx2"));
echo "\t$i\n";

}
echo "}\n";

$con->commit("tx2");
?>

As you can see, we tried first to send two messages in transaction tx1. Note that we’re
passing an additional header to the send() method in order to send a message in the
transaction. But as we aborted transaction tx1, those messages weren’t sent to the

Listing 9.11 Example of sending messages in a transaction

Begin transaction

Commit transaction
www.it-ebooks.info

http://www.it-ebooks.info/

238 CHAPTER 9 ActiveMQ messaging for other languages
broker. Then we started another transaction tx2 and sent four messages in it. Finally,
we committed transaction tx2 and thus told the broker to accept those messages. If
you execute this script, you can expect output similar to this:

php transactions_send.php
Sent messages {

1
2
3
4

}

We should now expect to have four messages in the queue. Now let’s try to consume
those messages using transactions, as shown next.

<?php
require_once("Stomp.php");

$con = new Stomp("tcp://localhost:61613");
$con->connect();
$con->setReadTimeout(1);

$con->subscribe("/queue/transactions",
array('ack' => 'client','activemq.prefetchSize' => 1));

$con->begin("tx3");
$messages = array();
for ($i = 1; $i < 3; $i++) {

$msg = $con->readFrame();
array_push($messages, $msg);
$con->ack($msg, "tx3");

}

$con->abort("tx3");

$con->begin("tx4");
if (count($messages) != 0) {

foreach($messages as $msg) {
$con->ack($msg, "tx4");

}
}
for ($i = 1; $i < 3; $i++) {

$msg = $con->readFrame();
$con->ack($msg, "tx4");
array_push($messages, $msg);

}
$con->commit("tx4");

echo "Processed messages {\n";
foreach($messages as $msg) {

echo "\t$msg->body\n";
}
echo "}\n";

Listing 9.12 Example of consuming (and acknowledging) messages in transactions

Subscribe
to queue

Abort transaction

Begin new transaction

Acknowledge
more messages

Commit
transaction
www.it-ebooks.info

http://www.it-ebooks.info/

239Messaging for scripting languages
$frame = $con->readFrame();

if ($frame === false) {
echo "No more messages in the queue\n";

} else {
echo "Warning: some messages still in the queue: $frame\n";

}

$con->disconnect();

In this script, we’ve first subscribed to the queue using prefetch size 1 and client
acknowledgment. Next we’re trying to consume two messages and acknowledge them
in a transaction tx3. Note that we’re now passing another parameter to the ack()
method that identifies the transaction in use. Let’s now try to abort the transaction
and see what happens. Those two messages won’t be marked as received by the broker,
and since we’re using prefetch size 1, the broker won’t send any other messages until
we consume these two. So when we start a new transaction tx4, we need first to
acknowledge already-received messages before we can start consuming the rest of
them. Finally, we’re ready to commit the transaction and mark all messages con-
sumed. At the end we can verify there are no more messages left in the queue.

 If you run the example, you can expect the following output:

$ php transactions_receive.php
Processed messages {

1
2
3
4

}
No more messages in the queue

As you can see, transactions enable us to send and acknowledge messages in atomic
operations, which is a crucial requirement for many use cases. Now let’s see how
ActiveMQ enhances the core Stomp protocol and allows you to use durable topic
subscribers.

WORKING WITH DURABLE TOPIC SUBSCRIBERS

As you already know, topic consumers receive messages from the topic while they’re
subscribed. So if they disconnect and connect again, they’ll miss all the messages sent
to the topic in the meantime. ActiveMQ’s way of dealing with this is by using durable
topic subscribers, which can receive all messages retroactively. As STOMP has no
notion of queues and topics (and especially durable ones), this is a pure ActiveMQ fea-
ture, and an example of STOMP enhancement by ActiveMQ.

 In order to create a durable subscriber, we need to do two things. First we need to
pass the client ID of the durable subscriber while we’re connecting to the broker. We
can do that by passing a client-id header in the CONNECT frame, like this:

CONNECT
login:
passcode:client-id:test

Verify no more
messages in queue
www.it-ebooks.info

http://www.it-ebooks.info/

240 CHAPTER 9 ActiveMQ messaging for other languages
Next, we need to pass the same client ID to the SUBSCRIBE header, but this time using
the activemq.subcriptionName header. The following snippet shows the example
frame:

SUBSCRIBE
destination:/topic/test
ack:client
activemq.subcriptionName:test
activemq.prefetchSize:1

Now let’s create a durable topic subscriber example. Take a look at the following.

<?php
require_once("Stomp.php");

$producer = new Stomp("tcp://localhost:61613");
$consumer = new Stomp("tcp://localhost:61613");
$consumer->setReadTimeout(1);
$consumer->clientId = "test";

$producer->connect();
$consumer->connect();
$consumer->subscribe("/topic/test");

sleep(1);

$producer->send("/topic/test", "test",
array('persistent'=>'true'));

echo "Message 'test' sent to topic\n";

$msg = $consumer->readFrame();

if ($msg != null) {
echo "Message '$msg->body' received from topic\n";
$consumer->ack($msg);

} else {
echo "Failed to receive a message\n";

}

sleep(1);

$consumer->unsubscribe("/topic/test");
$consumer->disconnect();
echo "Disconnecting consumer\n";

$producer->send("/topic/test", "test1",
array('persistent'=>'true'));
echo "Message 'test1' sent to topic\n";

$consumer = new Stomp("tcp://localhost:61613");
$consumer->clientId = "test";
$consumer->connect();
$consumer->subscribe("/topic/test");
echo "Reconnecting consumer\n";

$msg = $consumer->readFrame();

Listing 9.13 Example of using durable topic subscriber with STOMP

Receive message

Unsubscribe
from topic

Receive message
sent while
consumer was offline
www.it-ebooks.info

http://www.it-ebooks.info/

241Messaging for compiled languages
if ($msg != null) {
echo "Message '$msg->body' received from topic\n";
$consumer->ack($msg);

} else {
echo "Failed to receive a message\n";

}

$consumer->unsubscribe("/topic/test");
$consumer->disconnect();
$producer->disconnect();
?>

First of all, we create a producer and consumer. Note that we set the clientId property
to the consumer. If set, this property will be passed to both CONNECT and SUBSCRIBE
frames. Next, we subscribe to the topic and send a message to it. As expected, the mes-
sage is received by the consumer. Now we can unsubscribe the durable consumer and
send another message while the consumer is offline. After subscribing again, the con-
sumer will receive the message even if it was offline while the message was sent.

 If you run this example, you can expect the following output:

$ php durable.php
Message 'test' sent to topic
Message 'test' received from topic
Disconnecting consumer
Message 'test1' sent to topic
Reconnecting consumer
Message 'test1' received from topic

With durable topic subscribers, we’re coming to the end of the STOMP section. As
we’ve seen, STOMP is designed to be simple to implement and thus easily usable from
scripting languages, such as Ruby or PHP. We also said that ActiveMQ Java clients use
the optimized binary OpenWire protocol, which provides better performance than
STOMP. So it’s not surprising to see that clients are more powerful because they can
also make use of the OpenWire protocol. These clients will be the focus of the follow-
ing two sections.

9.3 Messaging for compiled languages
The simplicity of STOMP, explained in the previous section, allows us to communicate
with the broker from a wide range of scripting languages. But in compiled environ-
ments that more resemble the Java platform, you can create complex clients with full
use of the OpenWire protocol. In this section we’ll cover two APIs similar to JMS:

 NMS (.NET Message Service)
 CMS (C++ Message Service)

We’ll dig into the NMS API by writing a stock portfolio consumer in C# and showing
how you can run it on the Mono platform. For the CMS API, we’ll explain the process
of writing message consumers in C++ using one of the examples that come with the
ActiveMQ-CPP library, a default implementation of the CMS API. Now let’s start with
the NMS API.
www.it-ebooks.info

http://www.it-ebooks.info/

242 CHAPTER 9 ActiveMQ messaging for other languages
9.3.1 Writing a C# consumer (using the NMS API)

Scripting languages covered in previous sections are mostly used for creating server-
side software and internet applications on Unix-like systems. Developers who target
the Windows platform, on the other hand, usually choose the .NET Framework as
their development environment. The ability to use a JMS-like API (and ActiveMQ in
particular) to asynchronously send and receive messages can bring a big advantage for
.NET developers. The NMS API (.Net Message Service API), an ActiveMQ subproject
(http://mng.bz/gVn3), provides a standard C# interface to messaging systems. The
idea behind NMS is to create a unified messaging API for C#, similar to what JMS API
represents to the Java world. Currently, it only supports ActiveMQ and the OpenWire
protocol, but providers for other messaging brokers could be easily implemented.

 In the rest of this section we’re going to implement a stock portfolio consumer in
C# and show you how to compile and run it using the Mono project (http://
www.mono-project.com/). You can run this example on a standard Windows imple-
mentation of .NET as well. For information on how to obtain (and optionally build)
the NMS project, please refer to the NMS project site.

 Now, let’s take a look at the stock portfolio consumer written in C#, shown next.

System;
using Apache.NMS;
using Apache.NMS.Util;
using Apache.NMS.ActiveMQ;

namespace Apache.NMS.ActiveMQ.Book.Ch8
{

public class Consumer
{

public static void Main(string[] args)
{

NMSConnectionFactory NMSFactory =
new NMSConnectionFactory("tcp://localhost:61616");

IConnection connection = NMSFactory.CreateConnection();
ISession session =

connection.
CreateSession(AcknowledgementMode.AutoAcknowledge);

IDestination destination =
session.GetTopic("STOCKS.JAVA");

IMessageConsumer consumer =
session.CreateConsumer(destination);

consumer.Listener += new MessageListener(OnMessage);
connection.Start();
Console.WriteLine("Press any key to quit.");
Console.ReadKey();

}

protected static void OnMessage(IMessage message)
{

ITextMessage TextMessage = message as ITextMessage;

Listing 9.14 Stock portfolio consumer written in C#

Get destination
Create
consumer

Assign
message
listener

Start connection

Message listener
www.it-ebooks.info

http://www.it-ebooks.info/

243Messaging for compiled languages
Console.WriteLine(TextMessage.Text);
}

}
}

As you can see, the NMS API is practically identical to the JMS API, which can greatly
simplify developing and porting message-based applications. First, we created the
appropriate connection and session objects. Then we used the session to get the
desired destination and created an appropriate consumer. Finally, we’re ready to
assign a listener to the consumer and start the connection. In this example, we left the
listener as simple as possible, so it’ll just print XML data we receive in a message.

 To compile this example on the Mono platform, you have to use Mono C# com-
piler gmcs (the one that targets the 2.0 runtime). Run the following command:

$ gmcs -r:Apache.NMS.ActiveMQ.dll -r:Apache.NMS.dll Consumer.cs

Assuming that you have appropriate NMS DLLs, the preceding command should
produce the Consumer.exe binary. We can run this application with the following
command:

mono Consumer.exe
Press any key to quit.
<?xml version="1.0" ?><stock name="JAVA">

<price>43.013618508808</price><offer>43.056632127317</offer>
<up>false</up>
</stock>
<?xml version="1.0" ?><stock name="JAVA">

<price>43.393728710927</price><offer>43.437122439637</offer>
<up>true</up>
</stock>
<?xml version="1.0" ?><stock name="JAVA">

<price>43.312535068644</price><offer>43.355847603713</offer>
<up>false</up>
</stock>
<?xml version="1.0" ?><stock name="JAVA">

<price>43.5794191622893</price><offer>43.622998581451</offer>
<up>true</up>
</stock>
<?xml version="1.0" ?><stock name="JAVA">

<price>43.2687194039433</price><offer>43.3119881233472</offer>
<up>false</up>
</stock>
<?xml version="1.0" ?><stock name="JAVA">

<price>43.035150760515</price><offer>43.078185911276</offer>
<up>false</up>
</stock>
<?xml version="1.0" ?><stock name="JAVA">

<price>42.756790699982</price><offer>42.7995474906824</offer>
<up>false</up>
</stock>

As this simple example showed, connecting to ActiveMQ from C# is as simple (and
practically the same) as from Java. Now let’s see what options C++ developers have if
they want to use messaging with ActiveMQ.
www.it-ebooks.info

http://www.it-ebooks.info/

244 CHAPTER 9 ActiveMQ messaging for other languages
9.3.2 Writing a C++ consumer (using the CMS API)

Although the focus of software developers in recent years has primarily been on lan-
guages with virtual machines (such as Java and C#) and dynamic languages (Ruby, for
example), a lot of development is still done in “native” C and C++ languages. Similar
to NMS, CMS (C++ Messaging Service) represents a standard C++ interface for communi-
cating with messaging systems.

 ActiveMQ-CPP, the current implementation of the CMS interface, supports both
OpenWire and STOMP. Although having STOMP in a toolbox could be useful in some
use cases, we believe most C++ developers will take the OpenWire route for its better
performances.

CMS is also one of the ActiveMQ subprojects, and you can find more info on how to
obtain and build it on its homepage: http://mng.bz/X8UZ. In the rest of this section,
we’ll focus on the simple asynchronous consumer example that comes with the distri-
bution. You can find the original example in the following file: src/examples/con-
sumers/SimpleAsyncConsumer.cpp. We’ll modify it to listen and consume messages
from one of our stock portfolio topics. Since the overall example is too long for the
book format, we’ll divide it into a few code listings and explain it section by section.

 First of all, our SimpleAsyncConsumer class implements two interfaces:

 MessageListener—Used to receive asynchronously delivered messages
 ExceptionListener—Used to handle connection exceptions

class SimpleAsyncConsumer : public ExceptionListener,
public MessageListener

The MessageListener interface defines the onMessage() method, which handles
received messages. In our example, it boils down to printing and acknowledging the
message, as shown next.

virtual void onMessage(const Message* message){

static int count = 0;

try
{

count++;
const TextMessage* textMessage =

dynamic_cast< const TextMessage* >(message);
string text = "";

if(textMessage != NULL) {
text = textMessage->getText();

} else {
text = "NOT A TEXTMESSAGE!";

}

if(clientAck) {
message->acknowledge();

}

Listing 9.15 Implementation of message listener in C++
www.it-ebooks.info

http://www.it-ebooks.info/

245Messaging for compiled languages
printf("Message #%d Received: %s\n", count, text.c_str());
} catch (CMSException& e) {

e.printStackTrace();
}

}

The ExceptionListener interface defines the onException() method called when
connection problems are detected:

virtual void onException(const CMSException& ex AMQCPP_UNUSED) {
printf("CMS Exception occurred. Shutting down client.\n");

}

As you can see, thus far CMS mimics the JMS API completely, which is great for devel-
opers who want to create cross-platform solutions.

 The complete code related to creating and running a consumer is located in the
runConsumer() method. Here, we have all the classic elements of creating a consumer
with the appropriate message listener as we’ve seen in our Java examples. We create
connection, session, and destination objects first, and then instantiate a consumer
and add this object as a message listener. Take a look at the following listing.

void runConsumer() {

try {

ActiveMQConnectionFactory* connectionFactory =
new ActiveMQConnectionFactory(brokerURI);

connection = connectionFactory->createConnection();
delete connectionFactory;
connection->start();

connection->setExceptionListener(this);

if(clientAck) {
session = connection->createSession(Session::CLIENT_ACKNOWLEDGE);

} else {
session = connection->createSession(Session::AUTO_ACKNOWLEDGE);

}

if(useTopic) {
destination = session->createTopic(destURI);

} else {
destination = session->createQueue(destURI);

}

consumer = session-
>createConsumer(destination);

consumer->setMessageListener(this);

} catch (CMSException& e) {
e.printStackTrace();

}
}

Listing 9.16 Creating message consumer in C++

Create connection

Start connection

Create
session

Create destination

Create
consumer

Add message
listener
www.it-ebooks.info

http://www.it-ebooks.info/

246 CHAPTER 9 ActiveMQ messaging for other languages
All that’s left to be done is to initialize everything and run the application as shown
next.

int main(int argc AMQCPP_UNUSED, char* argv[] AMQCPP_UNUSED) {

std::cout << "===\n";
std::cout << "Starting the example:" << std::endl;
std::cout << "---\n";

std::string brokerURI =
"tcp://127.0.0.1:61616"
"?wireFormat=openwire"
"&transport.useAsyncSend=true"
"&wireFormat.tightEncodingEnabled=true";

std::string destURI = "STOCKS.JAVA";

bool useTopics = true;

bool clientAck = false;

SimpleAsyncConsumer consumer(brokerURI, destURI, useTopics,
clientAck);

consumer.runConsumer();

std::cout << "Press 'q' to quit" << std::endl;
while(std::cin.get() != 'q') {}

std::cout << "---\n";
std::cout << "Finished with the example." << std::endl;
std::cout << "===\n";

As you can see, we’ve used the OpenWire protocol in this example. Additionally, you
can see that we’ve configured it to listen on our stock portfolio topics. If you want to
try the STOMP connector, just change the value of the wireFormat query parameter to
stomp.

 Now, we can rebuild the project with

$ make

and run the example with

$ src/examples/simple_async_consumer
===
Starting the example:

Press 'q' to quit
Message #1 Received: <?xml version="1.0" ?><stock name="JAVA">

<price>54.330145466802</price><offer>54.384475612269</offer>
<up>false</up>
</stock>
Message #2 Received: <?xml version="1.0" ?><stock name="JAVA">

<price>54.6389203072939</price><offer>54.693559227601</offer>
<up>true</up>
</stock>

Listing 9.17 Implementation of C++ example's main method

Use stock portfolio
example topic
www.it-ebooks.info

http://www.it-ebooks.info/

247Messaging on the web with ActiveMQ
Message #3 Received: <?xml version="1.0" ?><stock name="JAVA">
<price>54.8289342706613</price><offer>54.883763204931</offer>

<up>true</up>
</stock>
Message #4 Received: <?xml version="1.0" ?><stock name="JAVA">

<price>54.419095885291</price><offer>54.473514981176</offer>
<up>false</up>
</stock>
Message #5 Received: <?xml version="1.0" ?><stock name="JAVA">

<price>53.955955907643</price><offer>54.009911863551</offer>
<up>false</up>
</stock>
Message #6 Received: <?xml version="1.0" ?><stock name="JAVA">

<price>53.740940545121</price><offer>53.794681485666</offer>
<up>false</up>
</stock>
Message #7 Received: <?xml version="1.0" ?><stock name="JAVA">

<price>54.244855189889</price><offer>54.2991000450797</offer>
<up>true</up>
</stock>
Message #8 Received: <?xml version="1.0" ?><stock name="JAVA">

<price>53.724159915599</price><offer>53.777884075514</offer>
<up>false</up>
</stock>
Message #9 Received: <?xml version="1.0" ?><stock name="JAVA">

<price>54.0915041625709</price><offer>54.14559566673</offer>
<up>true</up>
</stock>
Message #10 Received: <?xml version="1.0" ?><stock name="JAVA">

<price>53.9600727853630</price><offer>54.014032858148</offer>
<up>false</up>
</stock>

Thus far we’ve seen how STOMP can be used to create simple messaging clients for
practically any programming language. We’ve also seen how NMS and CMS subprojects
help create more complex, JMS-like APIs for environments that deserve this kind of
support. Now let’s focus on another important development platform—the web. We’ll
explore the APIs ActiveMQ provides to web developers, and how they can be used to
create next-generation web applications.

9.4 Messaging on the web with ActiveMQ
In the last few years we witnessed the rebirth of the web, usually called Web 2.0. The
transformation is taking place in two particular aspects of software development:

 Service-oriented architecture (SOA and web services play an increasingly important
role for many software projects. Users demand that software functionality be
exposed through some kind of web service interface. One way to achieve this is
to introduce RESTful principles to your application architecture, which allows
you to expose your application resources over HTTP. ActiveMQ follows these
principles by exposing its resources through its REST API, as we’ll see in a
moment.
www.it-ebooks.info

http://www.it-ebooks.info/

248 CHAPTER 9 ActiveMQ messaging for other languages
 It’s easy to say that Asynchronous JavaScript and XML (Ajax) revolutionized web
development as we knew it. The possibility of achieving asynchronous commu-
nication between the browser and the server (without page reloading) opened
many doors for web developers, and provided a way for web applications to
become much more interactive. Naturally, you can use ActiveMQ Ajax API to
communicate directly with the broker from your web browser, which adds even
more asynchronous communication possibilities between clients (JavaScript
browser code) and servers (back-end server applications).

So with REST and Ajax APIs in its toolbox, ActiveMQ is well suited to be a good player in
the web arena. Using asynchronous messaging with standard web tools provides whole
new programming concepts to web developers. In the rest of this section we’ll explore
REST and Ajax APIs. We’ll see how you can send and receive messages from the command
line by issuing GET and POST HTTP calls. We’ll also describe the Ajax stock portfolio con-
sumer that comes with the ActiveMQ distribution, which shows how asynchronous mes-
saging and Ajax can be used together to provide real-time updates in web pages.

9.4.1 Using the ActiveMQ REST API

As you probably know, the term REST first appeared in Roy T. Fielding’s PhD thesis
Architectural Styles and the Design of Network-based Software Architectures (http://mng.bz/
2Xa4). In this work, Fielding explains a collection of network architecture principles
that define how to address and manage resources (in general) over the network. In
simpler terms, if an application implements a RESTful architecture, it usually means
that it exposes its resources using HTTP protocol and in a similar philosophy to those
used on the World Wide Web.

 The web is designed as a system for accessing documents over the internet. Every
resource on the web (HTML page, image, video, and so forth) has a unique address
defined by its URL (uniform resource locator). Resources are mutually interlinked
and transferred between clients and servers using the HTTP protocol. The HTTP GET
method is used to obtain the representation of the resource, and shouldn’t be used to
make any modifications to it. The POST method, on the other hand, is used to send
data to be processed by the server. Apply these principles to your application’s
resources (destinations and messages in case of a JMS broker), and you’ve defined a
RESTful API. Now let’s see how ActiveMQ implements its REST API and how you can
use it to send and receive messages from the broker. Figure 9.2 shows how you can
connect a Java producer (sending messages using the OpenWire protocol) with
almost any consumer that can use standard HTTP connections.

 ActiveMQ comes with an embedded web server that starts at the same time your bro-
ker starts. This web server is used to provide all necessary web infrastructure for the
ActiveMQ broker, including the REST API. By default, the demo application is started at

http://localhost:8161/demo

and it’s also configured to expose the REST API at the following URL:

http://localhost:8161/demo/message
www.it-ebooks.info

http://www.it-ebooks.info/

249Messaging on the web with ActiveMQ
The API is implemented by the org.apache.activemq.web.MessageServlet servlet, and
if you wish to configure an arbitrary servlet container to expose the ActiveMQ REST
API, you have to define and map this servlet in an appropriate web.xml file (of course,
all necessary dependencies should be in your classpath). The following example
shows how to configure and map this servlet to the /message path as it is done in the
demo application:

<servlet>
<servlet-name>MessageServlet</servlet-name>
<servlet-class>org.apache.activemq.web.MessageServlet</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>MessageServlet</servlet-name>
<url-pattern>/message/*</url-pattern>

</servlet-mapping>

When configured like this, broker destinations are exposed as relative paths under the
defined URI. For example, the STOCKS.JAVA topic is mapped to the following URI:

http://localhost:8161/demo/message/STOCKS/JAVA?type=topic

As you can see, a path translation is in place, so destination name path elements (sep-
arated with .) are adjusted to the web URI philosophy where / is used as a separator.
Also, we used the type parameter to define whether we want to access a queue or a topic.

 Now we can use GET and POST requests to receive and send messages to destina-
tions (retrospectively). We’ll run some simple examples to demonstrate how you can
use the REST API to communicate with your broker from the command line. For that
we’ll use two popular programs that can make HTTP GET and POST method requests
from the command line. First we’ll use GNU Wget (http://mng.bz/DMf6), a popular
tool for retrieving files using HTTP, to subscribe to the desired destination:

Broker

Web
server

tcp

ConsumerProducer

Java producer sends
messages using OpenWire

protocol

Rest client receives
messages using HTTP

protocol

Figure 9.2 Send messages
from Java and consume them
using REST API
www.it-ebooks.info

http://www.it-ebooks.info/

250 CHAPTER 9 ActiveMQ messaging for other languages
$ wget -O message.txt \
--save-cookies cookies.txt --load-cookies cookies.txt \
--keep-session-cookies \
http://localhost:8161/demo/message/STOCKS/JAVA?type=topic

With this command, we instructed wget to receive the next available message from the
STOCKS.JAVA topic and to save it to the message.txt file. You may also notice that we
keep the HTTP sessions alive between wget calls by saving and sending cookies back to
the server. This is important because the actual consumer API used by the Message-
Servlet is stored in the session. So if you try to receive every message using a new ses-
sion, you’ll spawn a lot of consumers unnecessarily and your requests will probably be
left hanging. Also, if you plan to use multiple REST consumers, it’s advisable to set the
prefetch size to 1, just as we did with STOMP consumers. To do that, you have to set
the consumer.prefetchSize initialization parameter value of your message servlet.
The following example shows how to achieve that:

<servlet>
<servlet-name>MessageServlet</servlet-name>
<servlet-class>

org.apache.activemq.web.MessageServlet
</servlet-class>
<load-on-startup>1</load-on-startup>
<init-param>

<param-name>destinationOptions</param-name>
<param-value>consumer.prefetchSize=1</param-value>

</init-param>
</servlet>

Now, it’s time to send some messages to our topic. For that we’ll use cUrl (http://
curl.haxx.se/), a popular command-line tool for transferring files using the HTTP
POST method. Take a look at the following command:

$ curl -d "body=message" \
http://localhost:8161/demo/message/STOCKS/JAVA?type=topic

Here we’ve used the -d switch to specify that we want to POST data to the server. As
you can see, the actual content of the message is passed as the body parameter. The
sent message should be received by our previously run consumer.

 This simple example shows how easy it is to use the REST API to do asynchronous
messaging even from the command line. But generally, you should give STOMP a try
(if it’s available for your platform) before falling back to the REST API, because it
allows you more flexibility and is much more messaging-oriented.

9.4.2 Using the ActiveMQ Ajax API

As we said earlier, the option to communicate with the web server asynchronously
changed how developers thought about web applications. In this section we’ll see how
web developers can embrace asynchronous programming even further, by communi-
cating with message brokers directly from JavaScript.
www.it-ebooks.info

http://www.it-ebooks.info/

251Messaging on the web with ActiveMQ
 First of all, we should configure our web server to support the ActiveMQ Ajax API.
Similar to the MessageServlet class used for implementing the REST API, ActiveMQ
provides an AjaxServlet that implements Ajax support. Figure 9.3 shows how the
AjaxServlet serves as a mediator between the web browser and the broker. So the
JavaScript clients communicate with the servlet, which connects to the broker as a
standard JMS client.

 The following example shows how to configure it in your web application’s WEB-
INF/web.xml file:

<servlet>
<servlet-name>AjaxServlet</servlet-name>
<servlet-class>org.apache.activemq.web.AjaxServlet</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>AjaxServlet</servlet-name>
<url-pattern>/amq/*</url-pattern>

</servlet-mapping>

Of course, in order to make it work properly you have to put ActiveMQ in your web
application’s classpath. Now that we have a server side configured and a servlet listen-
ing to the requests submitted to the URIs starting with /amq/, we can proceed to
implementing the client side of our Ajax application.

 First of all, we have to include the amq.js script, which includes all necessary
JavaScript libraries for us. Also, we have to point the amq.uri variable to the URI our
Ajax servlet listens to. The following snippet shows how to achieve this:

<script type="text/javascript" src="amq/amq.js"></script>
<script type="text/javascript">amq.uri='/amq';</script>

Web application

Ajax
servlet

Web
browser

Broker

Web page exchanges
messages with web

application using Ajax

Ajax servlet exchanges
messages with broker using

JMS

Figure 9.3 Ajax servlet serves
as a proxy between the browser
and broker
www.it-ebooks.info

http://www.it-ebooks.info/

252 CHAPTER 9 ActiveMQ messaging for other languages
The amq.js script defines a JavaScript object named amq, which provides an API for us
to send messages and subscribe to ActiveMQ destinations. The following example
shows how to send a simple message from our Ajax application:

amq.sendMessage("topic://TEST", "message");

It can’t be much simpler than this: all you have to do is call a sendMessage() method
and provide a destination and the text of the message to be sent.

 If you wish to subscribe to a certain destination (or multiple destinations), you
have to register a callback function that will be called every time a new message is
available. This is done with the addListener() method of the amq object, which in
addition to a callback function accepts a destination to subscribe to and ID that makes
further handling of this listener possible.

 The ActiveMQ demo application comes with the stock portfolio example we’ve
used throughout the book, adopted to the web environment. The example contains a
servlet that publishes market data and a web page that uses the Ajax API to consume
that data. Using this example, we’ll show how to consume messages using the Ajax
API. Let’s take a look at the code shown in the following listing.

var priceHandler =
{

_price: function(message)
{

if (message != null) {

var price = parseFloat(message.getAttribute('bid'))
var symbol = message.getAttribute('stock')
var movement = message.getAttribute('movement')
if (movement == null) {

movement = 'up'
}

var row = document.getElementById(symbol)
if (row) {
// perform portfolio calculations
var value = asFloat(find(row, 'amount')) * price
var pl = value - asFloat(find(row, 'cost'))

// now let’s update the HTML DOM
find(row, 'price').innerHTML = fixedDigits(price, 2)
find(row, 'value').innerHTML = fixedDigits(value, 2)
find(row, 'pl').innerHTML = fixedDigits(pl, 2)
find(row, 'price').className = movement
find(row, 'pl').className = pl >= 0 ? 'up' : 'down'
}

}
}

};

Listing 9.18 Consume messages from JavaScript using Ajax API

Define poll
handler function
www.it-ebooks.info

http://www.it-ebooks.info/

253Messaging on the web with ActiveMQ
function portfolioPoll(first)
{

if (first)
{

amq.addListener('stocks','topic://STOCKS.*',
priceHandler._price);

}
}

amq.addPollHandler(portfolioPoll);

For starters, we’ve defined a JavaScript object named priceHandler with the _price()
function we’ll use to handle messages. This function finds an appropriate page ele-
ment and updates its value (or changes its class to show whether it’s a positive or nega-
tive change). Now we have to register this function to listen to the stock topics. As you
can see, we’ve named our listener stocks, set it to listen to all topics in the STOCKS
name hierarchy, and defined _price() as a callback function. You can later remove
this subscription (if you wish) by calling the removeListener() function of the amq
object and providing the specified ID (stocks in this case).

 Now we’re ready to run this example. First we’re going to start the portfolio pub-
lisher servlet by entering the following URL in the browser:

http://localhost:8161/demo/portfolioPublish?count=1&refresh=2
&stocks=IBMW&stocks=BEAS&stocks=MSFT&stocks=SUNW

The Ajax consumer example is located at the following address:

http://localhost:8161/demo/portfolio/portfolio.html

After starting it, you can expect a page that looks similar to the one shown in figure 9.4.
 The page will dynamically update as messages come to the broker. This simple

example shows how Ajax applications can benefit from asynchronous messaging, thus
taking dynamic web pages to a whole new level.

Register poll
handler function

Figure 9.4 Sample output of the Ajax API demo: the look of the web page after
a while. Different colors indicate stock movement.
www.it-ebooks.info

http://www.it-ebooks.info/

254 CHAPTER 9 ActiveMQ messaging for other languages
9.5 Summary
In this chapter we covered a wide range of technologies (protocols and APIs) which
allow developers to connect to ActiveMQ from practically any development platform
used today. This implies that ActiveMQ can be seen not only as a JMS broker, but as a
whole development platform as well, especially when you add Enterprise Integration
Patterns (EIP) to the mix (as we’ll see in chapter 13). This wide range of connectivity
options makes ActiveMQ an excellent tool for integrating applications written on dif-
ferent platforms in an asynchronous way.

 With this chapter, we’ve finished part 3 of the book, in which we described how
you can employ ActiveMQ in your projects. The final part of the book is called
“Advanced Features in ActiveMQ” and will dive into a wide range of topics, such as
broker topologies, performance tuning, monitoring, and so on. Now that you know
all the basics of ActiveMQ, this final part should teach you how to use your ActiveMQ
broker instances to the maximum.

 We’ll start by continuing our discussion started in chapter 3 regarding network
connectors. The following chapter discusses various broker topologies and how they
can help you implement functionalities such as load balancing and high availability.
www.it-ebooks.info

http://www.it-ebooks.info/

Part 4

Advanced features
in ActiveMQ

In some environments, it’s necessary to utilize multiple brokers in a feder-
ated manner. This requires that we understand the various topologies supported
by ActiveMQ. And when building applications that utilize messaging, it quickly
becomes evident that more advanced features are needed, such as various
administrative capabilities, tuning to support larger scale, and monitoring of dif-
ferent aspects of ActiveMQ.

 Part 4 presents the enterprise features in ActiveMQ including high availabil-
ity, networks of ActiveMQ brokers, and scalability, as well as many advanced bro-
ker and client features, all of which become necessary in larger enterprise
applications. We then move on to discuss performance tuning with ActiveMQ,
including the optimization of message producers and consumers. We finish this
part with a chapter dedicated to administration and monitoring techniques for
ActiveMQ.
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Deploying ActiveMQ
in the enterprise
The first three parts of this book covered how to use ActiveMQ as a messaging and
integration platform. This chapter is the first to cover advanced ActiveMQ configu-
ration, so if you’re new to messaging or ActiveMQ, you should read the first three
parts before reading this chapter.

 This chapter will focus on the enterprise deployment of ActiveMQ message bro-
kers, the type of deployments that are used in production environments where
applications need to be available without message loss at a 24/7 service level. This
chapter will demonstrate how to configure ActiveMQ for high availability so that an
ActiveMQ deployment can survive machine or network loss.

 For many organizations, application deployment is global, spanning multiple
offices across large geographical areas. So we’ll show you how ActiveMQ can be

This chapter covers
 Configuring ActiveMQ for high availability

 Understanding networks of brokers

 Scaling the ActiveMQ via configuration
257

www.it-ebooks.info

http://www.it-ebooks.info/

258 CHAPTER 10 Deploying ActiveMQ in the enterprise
used as a reliable global information conduit by using the technique of store and for-
ward to pass messages from one geographic location to another.

 Finally, we’ll examine deploying ActiveMQ for massively concurrent applications,
where large numbers of concurrent connections and queues are a requirement. We’ll
examine the different configuration and deployment options of ActiveMQ and look at
the pros and cons for each one.

10.1 Configuring ActiveMQ for high availability
When an application is deployed into a production environment, it’s important to
plan for disaster scenarios—network failures, hardware failures, software failures, or
power outages. ActiveMQ can be deployed defensively, to prevent such failures from
inhibiting your application in production. Typically you need to run multiple
ActiveMQ brokers on different machines, so that if one machine or one ActiveMQ bro-
ker fails, a secondary one can take over. Using ActiveMQ terminology, such deploy-
ments are known as master/slave, where one broker takes the role of the primary or
master and there are one or more slave brokers that wait for the master to fail, at
which point one will take over to become the new master. The ActiveMQ Java and C++
clients provide a built-in failover transfer, so that they’ll automatically switch over from
the failed master to the new master without message loss.

 ActiveMQ currently supports two different types of master/slave configurations:
shared nothing, where each ActiveMQ broker has its own unique message storage, and
shared storage, where multiple ActiveMQ brokers can connect to the shared message
store (a relational database or a shared file system) but only one broker will be active
at a time. We’ll discuss these deployment scenarios in this section.

10.1.1 Shared nothing master/slave

A shared nothing master/slave refers to a deployment where both the master and the
slave have their own message storage. This is probably the easiest option to use for
providing high availability of message bro-
kers. A slave is configured to connect to the
master broker. Whereas the slave needs a spe-
cial configuration denoting its special state,
the master broker needs no special configura-
tion. There is some optional configuration
for the master, which we’ll cover at the end of
this section.

 All message commands (messages,
acknowledgements, subscriptions, transac-
tions, and so on) are replicated from the mas-
ter to the slave as depicted in figure 10.1.
Such replication takes place before the master
acts upon any command it receives.

All state is replicated to
the slave from the master

Master
broker

Store

Slave
broker

Store

Figure 10.1 A shared nothing master/slave
ActiveMQ broker deployment
www.it-ebooks.info

http://www.it-ebooks.info/

259Configuring ActiveMQ for high availability
 A slave broker will connect to the master at startup, so ideally the master should be
running first. The slave broker won’t start any transports (so it can’t accept any client
or network connections) and won’t itself initiate any network connections unless the
master fails. A failure of the master is detected by loss of connectivity from the slave to
the master.

 A shared nothing master/slave configuration does impose some extra overhead on
message processing, but this overhead is small considering the benefit that it provides.
When a message producer sends a persistent message to the master, it’ll wait for a
receipt from the master until it can send the next message. The master won’t send the
receipt until it has replicated the message to the slave, and in turn wait for the slave to
finish its processing of the message (which will typically involve the slave persisting it
to storage). The master will then process the message (persist it to storage and dis-
patch it to any interested consumers) before sending back a receipt to the message
producer that it has successfully processed the message.

 When a master broker fails, the slave has two choices:

 Shut itself down—Hence, it’s only acting to preserve the state of the master. In this
scenario, an administrator will typically have to manually configure the slave to
be the master, and configure a new message broker to take the role of the slave.

 Start up its transports and initiate any network connections—Hence, the slave auto-
matically becomes the new master.

If the slave broker takes over the role of the master broker, all clients using the failover
transport will fail over to the new master. For JMS clients to ActiveMQ, the default
transport used by the client’s connection is the failover transport and is typically con-
figured to be able to connect to both the master and the slave, as shown:

 failover://(tcp://masterhost:61616,tcp://slavehost:61616)?randomize=false

ActiveMQ’s shared nothing master/slave configuration has some limitations. A master
will only replicate its active state from the time the slave connects to it. So if a client is
using the master before the slave is attached, any messages or acknowledgements that
have been processed by the master before the slave has attached itself can potentially
be lost if the master then fails. You can avoid this by setting the waitForSlave property
on the master configuration. This property forces the master to not accept any client
connections until a slave broker has attached to it. Other limitations are that a master
is allowed to have only one slave, and that a slave itself can’t have another slave.

 If you already have a running broker that you want to use in a shared nothing mas-
ter/slave configuration, it’s recommended that you first stop that broker, copy all mes-
sage store files (usually in the data directory) to the slave machine, and, after
configuring, restart the master broker and the slave broker. You also need to do the
same when introducing a new slave after a master has failed. The shared nothing bro-
ker configuration should only be used when you want to ensure that you don’t lose
messages for your application, but you can afford to have some down time to attach a
new slave after the master has failed and the old slave has become the master.
www.it-ebooks.info

http://www.it-ebooks.info/

260 CHAPTER 10 Deploying ActiveMQ in the enterprise
WHEN TO USE SHARED NOTHING MASTER/SLAVE

You should use a shared nothing master/slave configuration in production environ-
ments when some down time on failure is acceptable. Manual intervention by an
administrator will be necessary after a master fails, as it would be advisable to set up
and configure a new slave for the new master after the old master has failed.

 Having covered the theory, let’s look at how to configure a shared nothing master/
slave.

CONFIGURING SHARED NOTHING MASTER/SLAVE

Designating that a broker is a slave is straightforward. You configure a master-
Connector service that accepts the following parameters:

 remoteURI —The URI on which the master broker is listening
 userName—Optional username if the master has authentication configured
 password—Optional password if the master has authentication configured

The following example of slave configuration shows how to configure the slave broker
with a masterConnector:

<services>
<masterConnector remoteURI="tcp://remotehost:62001"

userName="Rob" password="Davies"/>
</services>

You’d normally configure the slave to have duplicate transport and network configu-
rations as the master broker.

 One additional optional property can be useful for a slave in a shared nothing con-
figuration: the shutdownOnMasterFailure property. When this property is enabled,
the slave will safely shut down, ensuring no message loss, allowing an administrator to
manual set up a new slave. The slave broker properties are shown in table 10.1.

You can designate a broker to be a master without any additional configuration; some
optional properties may be useful. The master broker properties are shown in table 10.2.

Table 10.1 Slave broker properties

Property name Default value Description

shutdownOnMasterFailure false The slave will shut down when the master does.

Table 10.2 Master broker properties

Property name Default value Description

waitForSlave false The master won’t allow any client or network con-
nections until a slave has attached itself.

shutdownOnSlaveFailure false If true, the master will shut down if a slave
becomes detached. This ensures that a slave is
only ever in sync with the master.
www.it-ebooks.info

http://www.it-ebooks.info/

261Configuring ActiveMQ for high availability
In addition to the shared nothing master/slave configuration, ActiveMQ also offers a
shared storage master/slave configuration.

10.1.2 Shared storage master/slave

Whereas the shared nothing master/slave offers the ability for brokers to remain inde-
pendent of one another, the shared storage master/slave allows many brokers to share the
storage mechanism, but only one broker can be live at any given time. Using a shared
resource storage will ensure that in the event of a master broker failure, no manual
intervention will be required to maintain the integrity of your application in the event
of an additional failure. Another benefit is that there’s no limitation on the number of
slave brokers that can be active at one time with shared storage master/slave.

 The ActiveMQ shared storage master/slave configuration comes in two flavors: a
relational database or a file system–based storage.

SHARED DATABASE MASTER/SLAVE

If you’re already using a relational database for message storage, then providing bro-
ker high availability is extremely straightforward. When an ActiveMQ message broker
uses a relational database, it grabs an exclusive lock on a table to ensure that no other
ActiveMQ broker can access the database at the same time. This is due to the fact that
the state of a broker is held in the storage mechanism and is only designed to be used
by a single broker at a time. The shared database master/slave configuration is
depicted in figure 10.2.

 If you’re running more than one broker that’s trying to access the same data-
base, only the first broker to connect will grab the lock. Any subsequent brokers will

Master
le lock)

ActiveMQ
client

Slave

Slave polls to get lock

Client can only connect to a
master

Enterprise database

Slave

Slave not active unless it
le lock

Figure 10.2 Using a shared relational
database for ActiveMQ master/slave
high availability
www.it-ebooks.info

http://www.it-ebooks.info/

262 CHAPTER 10 Deploying ActiveMQ in the enterprise
poll until they can get access to the lock. While in this polling state, the ActiveMQ
broker assumes that it’s a slave, so it won’t start any transport connections or net-
work connections.

 You can run multiple brokers, and only one broker will ever be the master at any
given time. All the brokers in this configuration can use the same configuration file,
which makes setup easy. If a master broker fails, a slave broker will be able to grab the
lock on the database and will then take over as the new master broker. Since all the
ActiveMQ brokers are using the same shared database, no additional manual interven-
tion is required to introduce new brokers or remove existing ones.

WHEN TO USE SHARED DATABASE MASTER/SLAVE

Shared database master/slave is an ideal configuration if you’re already using an
enterprise relational database. Although generally slower than a shared nothing con-
figuration, it requires no additional configuration, and there are no limitations on the
number of slave brokers that can be run or when they can be run.

 If access to an enterprise database isn’t an option, or performance is a consider-
ation, you can use a shared file system instead, where conceptually ActiveMQ brokers
can be set up in the same way as the shared database.

SHARED FILE SYSTEM MASTER/SLAVE

An alternative to using a shared database is to use a shared file system. The setup is
similar to the shared database master/slave, in that no additional configuration of an
ActiveMQ broker is required. Also, there are no limitations on the number of slaves
that can be run or when they can be introduced into the system. It’s recommended
that you use the KahaDB message store, but use an underlying shared file system for
the message storage. When the KahaDB message store starts, it’ll attempt to grab a file
lock, to prevent any other broker from accessing the file-based message store at the
same time. The shared file system master/slave configuration is shown in figure 10.3.

 Just like the shared database master/slave configuration, there’s no restriction on
the number of slaves that can be started. The first broker to get the lock on the file
store automatically becomes the master, and any brokers that try to connect after that
automatically become slaves.

 There are some technical restrictions regarding where you can run a shared file
system master/slave configuration. The shared file system requires the semantics of a
distributed shared file lock. So if you’re not using a storage area network (SAN), there
are some alternatives such as Network File System (NFS)—available on Mac OS X,
OpenVMS, Microsoft Windows (from third parties), Solaris, and AS/400. If you’re
using Fedora or RedHat Enterprise (5.3 and above), it’s recommended you use the
Global File System (GFS) 2, which requires a cluster locking protocol, such as dlm, the
distributed lock manager, which is a Linux kernel module.

WHEN TO USE SHARED FILE SYSTEM MASTER/SLAVE

Using a shared file system is probably the best solution for providing high availability
for ActiveMQ to date. It combines the high throughput of KahaDB and the simplicity
that you get from using a shared resource. KahaDB is only limited by the performance
www.it-ebooks.info

http://www.it-ebooks.info/

263How ActiveMQ passes messages across a network of brokers
of the underlying shared file system. The only caveat is that you’re restricted to envi-
ronments that support distributed locking on a shared file system.

 So ActiveMQ provides features to make it resilient to failures in production using
the shared nothing master/slave and the shared storage master/slave configurations.
You should now have a good understanding of the different ActiveMQ high availability
options and be able to choose the best configuration for your application’s needs.

 The next section will examine how to use ActiveMQ to reliably pass messages from
broker to broker to support applications that need to use messaging to communicate
across geographically distributed locations.

10.2 How ActiveMQ passes messages
across a network of brokers
ActiveMQ supports the concept of linking ActiveMQ message brokers together into
different topologies, or networks of brokers as they’re known. Often it’s a requirement
that geographically dispersed applications need to communicate in a reliable way.
This is a situation where having a centralized broker architecture into which all the cli-
ents connect isn’t the optimal messaging paradigm.

 Through the rest of this section, the ActiveMQ store and forward concept will be
examined in detail. We’ll look at how brokers discover each other in a network and
how to configure an ActiveMQ broker to cooperate in a network.

ActiveMQ
client

Slave

Slave polls to get lock

Client can only connect to a
master

Shared file system
or SAN

Slave

Slave not active unless it
has file lock

Master
le lock)

Figure 10.3 Using a shared file system for
ActiveMQ master/slave high availability
www.it-ebooks.info

http://www.it-ebooks.info/

264 CHAPTER 10 Deploying ActiveMQ in the enterprise
10.2.1 Store and forward

ActiveMQ networks use the concept of store and
forward, whereby messages are always stored in
the local broker before being forwarded across
the network to another broker. This means that
if messages can’t be delivered due to connectiv-
ity issues, when the connection is reestablished,
a broker will be able to send any undelivered
messages across the network connection to the
remote broker. By default, a network only oper-
ates in a unidirectional manner and logically
pushes messages across its network connection,
as shown in figure 10.4.

 When a network is established from a local broker to a remote broker, the remote
broker will pass information containing all its durable and active consumers’ destina-
tions to the local broker. The local broker uses this information to determine what
messages the remote broker is interested in and forward them to the remote broker.
It’s possible to define filters on the network connection and to always include or
exclude messages for a particular destination—we’ll cover this in the configuration
section later in this chapter.

 Having networks operate in one direction allows for networks to be configured for
message passing in a one-way fashion. If you want networks to be bidirectional, you
can either configure the remote broker with a network connector to point to the local
broker, or configure a network connector to be duplex so it sends messages in both
directions.

 Suppose you have a deployment scenario where you have many supermarkets that
need to connect to a back office order system. It would be hard to configure new
supermarkets and inflexible for the broker(s) at the back office to be aware of all the
remote brokers in each new supermarket. Typically the back office brokers would be
located behind a firewall with only a limited number of ports open to accept connec-
tions inward, as depicted in figure 10.5.

Supermarket
broker

Store Store

Firewall

Back office

Figure 10.5 Supermarket
communicates to its back
office using an ActiveMQ
bidirectional network

Local
broker

Store

Remote
broker

Store

Local broker logically pushes
messages to remote broker

Figure 10.4 Passing messages between
ActiveMQ brokers using store and forward
www.it-ebooks.info

http://www.it-ebooks.info/

265How ActiveMQ passes messages across a network of brokers
The diagram of the supermarket broker in figure 10.5 requires that the network con-
nector be configured in duplex mode. The single network connection, established
from the supermarket broker to the back office, would be able to pass messages in
both directions and would behave in the same way as if the back office broker had
established a normal network connection back to the supermarket broker.

 The configuration for the supermarket broker would include configuration for the
network connector that would look something like the following.

<networkConnectors>
<networkConnector uri="static://(tcp://backoffice:61617)"

name="bridge"
duplex="true"
conduitSubscriptions="true"
decreaseNetworkConsumerPriority="false">

</networkConnector>
</networkConnectors>

Please be aware that the order in which you specify the network connections and the
persistence you use in the ActiveMQ broker configuration is important. Always config-
ure networks, persistence, and transports in the following order:

1 Networks—They need to be established before the message store.
2 Message store—Should be configured before transports.
3 Transports—Should be the last in the broker configuration.

An example broker configuration in the correct order is shown next.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://activemq.apache.org/schema/core">

<broker brokerName="receiver" persistent="true" useJmx="true">
<networkConnectors>
<networkConnector uri="static:(tcp://backoffice:61617)"/>

</networkConnectors>

<persistenceAdapter>
<kahaDB directory = "activemq-data"/>

</persistenceAdapter>

<transportConnectors>
<transportConnector uri="tcp://localhost:62002"/>

</transportConnectors>
</broker>

</beans>

In large deployment scenarios, it makes sense to combine high availability and net-
work configurations, as shown in figure 10.6.

Listing 10.1 Configuring a store network broker

Listing 10.2 An example of the correct broker configuration order
www.it-ebooks.info

http://www.it-ebooks.info/

266 CHAPTER 10 Deploying ActiveMQ in the enterprise
In this scenario, the local master and slave brokers both need to be configured to cre-
ate network connections to both the remote master and the slave to cater to the possi-
bility of the remote master failing. Only when a slave becomes active (becomes the
new master) will it start its transports and network connections.

 If a network can’t establish a connection to a remote broker (as in the case of a
remote slave), or the network connection fails, the network will poll the connection
until it can establish a connection.

 In this section you’ve seen how store and forward works, as well as message passing
over networks, with an example use case of supermarkets communicating with their
back office systems. In the next section, we’ll look at how brokers in a network dis-
cover each other.

10.2.2 Network discovery

When a network connection is established to a remote broker, that connection uses a
discovery agent to locate the remote broker and (re-)establish that connection. Two
main types of network discovery are provided with ActiveMQ:

1 Dynamic—Searches for brokers using multicast or rendezvous
2 Static—Configured with list of broker URLs with which to establish a connection

Remote
master

DB

Remote
slave

Network connection

Local
master

DB

Local
slave

Network connection on failure

Figure 10.6 Combining high availability
and networks for an enterprise
deployment of ActiveMQ
www.it-ebooks.info

http://www.it-ebooks.info/

267How ActiveMQ passes messages across a network of brokers
Using multicast discovery to create network connections is straightforward. When you
start an ActiveMQ broker with a multicast transport on a network connector, it will
search for another broker using IP multicast and establish a connection. A network
configuration for multicast discovery is shown in the following listing.

<networkConnectors>
<networkConnector uri="multicast://default"/>

</networkConnectors>

The default name in the multicast:// URI denotes the group to which the broker
belongs. When using multicast discovery, it’s strongly recommended that you use a
unique group name so that your brokers don’t connect to other application brokers
unbeknownst to you. Not only can this lead to surprising results, but you can spend a
great deal of time chasing a red herring!

 There are a couple of limitations with multicast discovery, including the ability to
control which brokers are discovered, and the fact that it’s usually restricted to the dis-
covery of brokers on the local network segment. This is because IP multicast doesn’t
extend through routers.

 Most of the example configurations used previous to this chapter have used static
discovery for establishing networks. Although they require a little more configuration
and they wouldn’t be suitable for a large number of networks, they’re typically used
for most deployments. Static discovery accepts a list of broker URIs and will try to con-
nect to the remote brokers in the order they’re determined in the list.

 For example, to configure the local master broker and the local slave broker to
connect to the remote master, but fail over to the remote slave (see figure 10.6), you’d
configure the local brokers as shown next.

<networkConnectors>
<networkConnector

uri="static:(tcp://remote-master:61617,tcp://remote-slave:61617)"/>
</networkConnectors>

The static network discovery agent can be configured to control which frequency it
will try to reestablish a connection with on failure. The configuration properties for
the static transport are shown in table 10.3.

Listing 10.3 A network connector using multicast

Listing 10.4 An example network connector

Table 10.3 Configuration properties for a static transport

Property name Default value Description

initialReconnectDelay 1000 The time in milliseconds before attempting to
reconnect the network. This is only used if
useExponentialBackOff isn’t enabled.
www.it-ebooks.info

http://www.it-ebooks.info/

268 CHAPTER 10 Deploying ActiveMQ in the enterprise
A network connection will always try to establish a connection to a remote broker, so
there’s no concept of just giving up! You can set the configuration options for the static
transport as part of the URI. An example of this is provided in the following listing.

<networkConnectors>
<networkConnector

uri="static:(tcp://remote:61617)?useExponentialBackOff=false"/>
</networkConnectors>

The multicast and the static discovery mechanisms are shown here, along with some
of the trade-offs between them. Many configuration options are available when setting
up networks in ActiveMQ; these will be reviewed in more detail in the next section.

10.2.3 Network configuration

Networks by default rely on the remote broker to inform them when the broker is
interested in their local messages. For existing active and new message consumers, the
destination to which the message consumer is listening is propagated to the local bro-
ker’s network connection. The local network connection will then subscribe on behalf
of the remote broker’s message consumers for messages to be forwarded across the
network. In order for networks to function properly in a dynamic environment, the
broker property advisorySupport needs to be enabled (it’s possible to have a stati-
cally configured network without enabling advisories). ActiveMQ uses advisory mes-
sages to communicate state between brokers (more on this in chapter 14). Because of
this, advisory messages are used to forward information about changing message con-
sumers across broker networks as well as clients.

 There may not be any active durable subscribers or consumers for an existing des-
tination on the remote broker. So when the network connection is initialized to the
remote broker, the remote broker will read through its message store for existing des-
tinations and pass those to the local broker. Then the local broker can forward mes-
sages for those destinations as well.

maxReconnectDelay 30000 The maximum time in milliseconds that the net-
work will wait before trying to establish a connec-
tion after failure. This is only used if use-
ExponentialBackOff is enabled.

useExponentialBackOff true If this is enabled, the network will increase the
time to wait between each failed attempt to estab-
lish a connection.

backOffMultiplier 2 Used in conjunction with useExponential-
BackOff, the multiplier to use to increase the
time to wait between each new attempt to estab-
lish a network connection.

Listing 10.5 An example of configuring the static transport

Table 10.3 Configuration properties for a static transport (continued)

Property name Default value Description
www.it-ebooks.info

http://www.it-ebooks.info/

269How ActiveMQ passes messages across a network of brokers
 It’s important to note that a network will use the name of the broker to create a
unique durable subscription proxy on behalf of a remote broker. Hence, if at a later
point in time you change the name of the broker, you could lose messages over net-
works for durable topic subscribers. To avoid this, make sure to use a unique name for
the brokerName attribute on the <broker> element. See the following for a brief
example.

<broker xmlns="http://activemq.apache.org/schema/core"
brokerName="brokerA"
dataDirectory="${activemq.base}/data">

...
<networkConnectors>

<networkConnector
name="brokerA-to-brokerB" uri="tcp://remotehost:61616" />

</networkConnectors>
</broker>

With a basic understanding of how networks operate, you’ll be able to comprehend
some of the side effects if you change the default network configuration. A network
has several important configuration properties, in addition to the duplex property.

NETWORK PROPERTY: DYNAMICONLY

All networks are dynamic only in the sense that they depend on advisories. The
dynamicOnly option configures whether inactive durable subs are networked on a
restart; with dynamicOnly=true, a networked durable sub will not be enabled till it is
again activated. The dynamicOnly property is false by default.

NETWORK PROPERTY: PREFETCHSIZE

The prefetchSize effects message dispatch to forwarding consumers, but message
acknowledgement always uses INDIVIDUAL_ACK mode on each message receipt. The
default value for this property is 1000.

NETWORK PROPERTY: CONDUITSUBSCRIPTIONS

An ActiveMQ message broker will send a copy of a message to every interested con-
sumer of which it’s aware, even across networks. But this can be a problem, as the
remote broker will send every message it receives to any of its interested consumers.
So it’s possible to end up with duplicate messages on the remote broker. The
conduitSubscriptions property is used to inform the network connection that it
should treat multiple matching destinations as a single destination to avoid this prob-
lem. The conduitSubscriptions property is true by default.

NETWORK PROPERTY: EXCLUDEDDESTINATIONS

You can tell the network to exclude certain destinations from passing messages across
a network. This property can be used, for example, to prevent destinations that
should only be used by local consumers from being propagated to a remote broker.
Excluded destinations are denoted inside of the <excludedDestinations> element as
either a <queue> or a <topic> element. Each one uses a physicalName attribute for

Listing 10.6 Make sure to use unique names for the broker
www.it-ebooks.info

http://www.it-ebooks.info/

270 CHAPTER 10 Deploying ActiveMQ in the enterprise
the name of the queue or topic to exclude. You can combine a list of excluded desti-
nations, and use wildcards to denote the names of the destinations to exclude, too.

 Excluded destinations take priority over both the <staticallyIncluded-

Destinations> element and <dynamicallyIncludedDestinations> element. So if you
have matching destinations in either of those lists, they’ll be excluded. Here’s an exam-
ple configuration using the <excludedDestinations> element.

<networkConnectors>
<networkConnector

uri="static:(tcp://remote:61617)?useExponentialBackOff=false">
<excludedDestinations>

<queue physicalName="audit.queue-1"/>
<queue physicalName="audit.queue-2"/>
<queue physicalName="local.>"/>
<topic physicalName="local.>"/>

</excludedDestinations>
</networkConnector>

</networkConnectors>

NETWORK PROPERTY: DYNAMICALLYINCLUDEDDESTINATIONS

You can ask the network to only pass messages to the remote broker for active message
consumers that match the list of destinations for dynamicallyIncludedDestinations.
The format is the same as the excludedDestinations. An empty list denotes that all
messages will be passed to the remote broker, as long as they’re not in the excluded-
Destinations list.

NETWORK PROPERTY: STATICALLYINCLUDEDDESTINATIONS

You can ask the network to only pass messages to the remote broker if they match the
list of destinations for staticallyIncludedDestinations. The format is the same as
the excludedDestinations; an example is provided in the following listing.

<networkConnectors>
<networkConnector

uri="static:(tcp://remote:61617)?useExponentialBackOff=false">
<staticallyIncludedDestinations>

<queue physicalName="management.queue-1"/>
<queue physicalName="management.queue-2"/>
<queue physicalName="global.>"/>
<topic physicalName="global.>"/>

</staticallyIncludedDestinations>
</networkConnector>

</networkConnectors>

NETWORK PROPERTY: DECREASENETWORKCONSUMERPRIORITY

The decreaseNetworkConsumerPriority property influences the algorithm used to
determine which message consumer for a queue should receive the next dispatched
message. When enabled, it’ll give a network consumer the lowest priority, meaning

Listing 10.7 Creating a list of excluded destinations

Listing 10.8 Setting options for included destinations
www.it-ebooks.info

http://www.it-ebooks.info/

271How ActiveMQ passes messages across a network of brokers
that messages from a local broker queue will only be sent to a remote broker if there
are no local consumers or they’re all busy. But the decrease in priority depends on the
broker path. For example, if a consumer is two hops away from the broker it will be
given the priority of –7, a consumer one hop away will be given the priority of –5, and
a local consumer will be given priority 0. The decreaseNetworkConsumerPriority
property is false by default.

NETWORK PROPERTY: NETWORKTTL

The networkTTL property denotes the maximum number of remote brokers a mes-
sage can pass through before being discarded. This is useful for ensuring messages
aren’t forwarded needlessly, if you have a cyclic network of connected brokers. The
default value for the networkTTL property is 1.

NETWORK PROPERTY: NAME

The default name for a network connector is bridge. It’s a good idea to give this prop-
erty a unique value when the broker is first configured, so it can be found easily
from JMX.

 There are cases when it makes sense to have more than one network connection
between the same local and remote brokers. In this case, each connector requires a
unique name. So why have more than one network connection between the two same
brokers? It comes down to performance.
A network connection uses a single trans-
port connection, and if you’re anticipat-
ing a heavy load across a network, it
makes sense to have more than one trans-
port connection. You do need to be care-
ful that you don’t get duplicate messages,
so you have to set up the network connec-
tions with the appropriate filters. Using
one for queues and one for topics can
often improve throughput for general
messaging use cases, as depicted in
figure 10.7.

 The corresponding configuration for
figure 10.7 is shown next.

<networkConnectors>
<networkConnector uri="static://(tcp://remotehost:61617)"

name="queues_only"
duplex="true"

<excludedDestinations>
<topic physicalName=">"/>

</excludedDestinations>
</networkConnector>
<networkConnector uri="static://(tcp://remotehost:61617)"

Listing 10.9 Setting options for included destinations

Store

Remote
broker

Store

Network for queues

Local
broker

Network for topics

Figure 10.7 Using more than one network
connection for message passing between
ActiveMQ brokers
www.it-ebooks.info

http://www.it-ebooks.info/

272 CHAPTER 10 Deploying ActiveMQ in the enterprise
name="topics_only"
duplex="true"

<excludedDestinations>
<queue physicalName=">"/>

</excludedDestinations>
</networkConnector>

</networkConnectors>

Having looked at how networks operate and how to configure them, we can now use
this knowledge to help scale your ActiveMQ applications.

10.3 Deploying ActiveMQ for large numbers
of concurrent applications
Scaling your applications that make use of ActiveMQ can take some time and require
some diligence. In this section, we examine three techniques to help you with this
task. We’ll start with vertical scaling, where a single broker is used for thousands of
connections and queues. Then we’ll look at scaling to tens of thousands of connec-
tions by horizontally scaling your applications using networks. Finally we’ll examine
traffic partitioning, which will balance scaling and performance, but will add more
complexity to your ActiveMQ application.

10.3.1 Vertical scaling

Vertical scaling is a technique used to increase the number of connections (and there-
fore load) that a single ActiveMQ broker can handle. By default, the ActiveMQ broker
is designed to move messages as efficiently as possible to ensure low latency and good
performance. But you can make some configuration decisions to ensure that the
ActiveMQ broker can handle both a large number of concurrent connections and a
large number of queues.

 By default, ActiveMQ will use blocking I/O to handle transport connections. This
results in a thread being used per connection. You can use nonblocking I/O on the
ActiveMQ broker (and still use the default transport on the client) to reduce the num-
ber of threads used. Nonblocking I/O can be configured via the transport connector
in the ActiveMQ configuration file. An example of this is shown next.

<broker>
<transportConnectors>

<transportConnector name="nio" uri="nio://localhost:61616"/>
</<transportConnectors>

</broker>

In addition to using a thread per connection for blocking I/O, the ActiveMQ broker
can use a thread for dispatching messages per client connection. You can tell
ActiveMQ to use a thread pool instead by setting the system property named
org.apache.activemq.UseDedicatedTaskRunner to false. Here’s an example:

ACTIVEMQ_OPTS="-Dorg.apache.activemq.UseDedicatedTaskRunner=false"

Listing 10.10 Configure the NIO transport connector
www.it-ebooks.info

http://www.it-ebooks.info/

273Deploying ActiveMQ for large numbers of concurrent applications
Ensuring that the ActiveMQ broker has enough memory to handle lots of concurrent
connections is a two-step process. First, you need to ensure that the JVM in which the
ActiveMQ broker is started is configured with enough memory. This can be achieved
using the -Xmx JVM option as shown:

ACTIVEMQ_OPTS="-Xmx1024M \
-Dorg.apache.activemq.UseDedicatedTaskRunner=false"

Second, be sure to configure an appropriate amount of the memory available to the
JVM specifically for the ActiveMQ broker. This adjustment is made via the <system-
Usage> element’s limit attribute. A good rule of thumb is to begin at 512 MB as the
minimum for an ActiveMQ broker with more than a few hundred active connections.
If your testing proves that this isn’t enough, bump it up from there. You can configure
the memory limit in the ActiveMQ configuration file as shown in the following listing.

<systemUsage>
<systemUsage>

<memoryUsage>
<memoryUsage limit="512 mb"/>

</memoryUsage>
<storeUsage>

<storeUsage limit="10 gb" name="foo"/>
</storeUsage>
<tempUsage>

<tempUsage limit="1 gb"/>
</tempUsage>

</systemUsage>
</systemUsage>

It’s also advisable to reduce the CPU load per connection. If you’re using the Open-
Wire wire format, disable tight encoding, which can be CPU intense. Tight encoding
can be disabled on a client-by-client basis using URI parameters. Here’s an example:

String uri = "failover://(tcp://localhost:61616?"
+ wireFormat.tightEncodingEnabled=false)";

ConnectionFactory cf = new ActiveMQConnectionFactory(uri);

We’ve looked at some tuning aspects for scaling an ActiveMQ broker to handle thou-
sands of connections. So now we can look at tuning the broker to handle thousands of
queues.

 The default queue configuration uses a separate thread for paging messages from
the message store into the queue to be dispatched to interested message consumers.
For a large number of queues, it’s advisable to disable this by enabling the optimize-
Dispatch property for all queues, as shown next.

Listing 10.11 Setting the memory limit for the ActiveMQ broker
www.it-ebooks.info

http://www.it-ebooks.info/

274 CHAPTER 10 Deploying ActiveMQ in the enterprise
<destinationPolicy>
<policyMap>

<policyEntries>
<policyEntry queue=">" optimizedDispatch="true"

/>
</policyEntries>

</policyMap>
</destinationPolicy>

Note the use of the wildcard > character in listing 10.11, which denotes all queues
recursively.

 To ensure you can scale not only to thousands of connections, but also to tens of
thousands of queues, use either a JDBC message store or the newer and much faster
KahaDB message store. KahaDB is enabled by default in ActiveMQ.

 So far we’ve looked at scaling connections, reducing thread usage, and selecting
the right message store. An example configuration for ActiveMQ, tuned for scaling, is
shown in the following listing.

<broker xmlns="http://activemq.apache.org/schema/core"
brokerName="amq-broker"
dataDirectory="${activemq.base}/data">

<persistenceAdapter>
<kahaDB directory="${activemq.base}/data"

journalMaxFileLength="32mb"/>
</persistenceAdapter>

<destinationPolicy>
<policyMap>

<policyEntries>
<policyEntry queue=">" optimizedDispatch="true"/>

</policyEntries>
</policyMap>

</destinationPolicy>

<systemUsage>
<systemUsage>

<memoryUsage>
<memoryUsage limit="512 mb"/>

</memoryUsage>
<storeUsage>

<storeUsage limit="10 gb" name="foo"/>
</storeUsage>
<tempUsage>

<tempUsage limit="1 gb"/>
</tempUsage>

</systemUsage>
</systemUsage>

<transportConnectors>

Listing 10.12 Setting the optimizeDispatch property

Listing 10.13 Configuration for scaling
www.it-ebooks.info

http://www.it-ebooks.info/

275Deploying ActiveMQ for large numbers of concurrent applications
<transportConnector name="openwire" uri="nio://localhost:61616"/>
</transportConnectors>

</broker>

Note the use of all the suggested items for tuning ActiveMQ. Such tuning isn’t enabled
in the default configuration file, so be sure to give yours some attention.

 Having looked at how to scale an ActiveMQ broker, now it’s time to look at using
networks to increase horizontal scaling.

10.3.2 Horizontal scaling

In addition to scaling a single broker, you can use networks to increase the number of
ActiveMQ brokers available for your applications. As networks automatically pass mes-
sages to connected brokers that have interested consumers, you can configure your
clients to connect to a cluster of brokers, selecting one at random to connect to. This
can be configured using a URI parameter as shown:

failover://(tcp://broker1:61616,tcp://broker2:61616)?randomize=true

In order to make sure that messages for queues or durable topic subscribers aren’t
orphaned on a broker, configure the networks to use dynamicOnly and a low network
prefetchSize. Here’s an example:

<networkConnector uri="static://(tcp://remotehost:61617)"
name="bridge"
dynamicOnly="true"
prefetchSize="1"

</networkConnector>

Using networks for horizontal scaling does introduce more latency, because potentially
messages have to pass through multiple brokers before being delivered to a consumer.

 Another alternative deployment provides great scalability and performance, but
requires more application planning. This hybrid solution, called traffic partitioning,
combines vertical scaling of a broker with application-level splitting of destinations
across different brokers.

10.3.3 Traffic partitioning

Client-side traffic partitioning is a hybrid of vertical and horizontal partitioning. Net-
works are typically not used, as the client application decides what traffic should go to
which broker(s). The client application has to maintain multiple JMS connections,
and decide which JMS connection should be used for which destinations.

 The advantages of not directly using network connections is that you reduce the
overhead of forwarding messages between brokers. You do need to balance that with
the additional complexity that results in a typical application. A representation of
using traffic partitioning can be seen in figure 10.8.

 We’ve covered both vertical and horizontal scaling, as well as traffic partitioning.
You should now have a good understanding of how to use ActiveMQ to provide connec-
tivity for thousands of concurrent connections and tens of thousands of destinations.
www.it-ebooks.info

http://www.it-ebooks.info/

276 CHAPTER 10 Deploying ActiveMQ in the enterprise
10.4 Summary
In this chapter you’ve learned how to configure ActiveMQ brokers to provide high
availability in production deployments, utilizing either a shared nothing or shared
storage system. You’ve also learned options for failover for ActiveMQ clients and the
performance trade-offs for having high availability configured for your applications.

 We examined ActiveMQ for store and forward. This is used to provide global distri-
bution of messages across wide area networks. We also demonstrated ActiveMQ config-
urations to filter out or filter in destinations that are required to be global for your
application.

 Finally we’ve seen how the configure ActiveMQ to scale for thousands of connec-
tions and tens of thousands of destinations.

 Having read this chapter, you should now have a good understanding of how to
deploy ActiveMQ to meet most deployment scenarios for any messaging application
that you develop with ActiveMQ.

 In the next chapter we’ll look at advanced configuration of ActiveMQ to increase
the flexibility of your applications that use ActiveMQ. We’ll also examine some differ-
ent ways to extend the functionality of ActiveMQ through the use of interceptors and
Apache Camel.

Client
application

Connection for
queues B.>

Master for
queues

B.>

Slave for
queues

B.>

Master for
queues

A.>

Slave for
queues

A.>

Connection for
queues A.>

Figure 10.8 Using traffic partitioning with
ActiveMQ master/slave deployment
www.it-ebooks.info

http://www.it-ebooks.info/

ActiveMQ broker
features in action
In the previous chapter we looked at deploying ActiveMQ in enterprise environ-
ments: how to deploy ActiveMQ for high availability and for passing messages across
geographically dispersed locations. In this chapter we’ll look at some of the more
advanced configuration options for the ActiveMQ message broker. We’ll look at
receiving messages from multiple destinations using wildcards, and sending mes-
sages to multiple destinations at the same time using composite destinations. We’ll
show how to actively listen for changes in the state of the ActiveMQ broker and for
clients leaving and joining by using advisory messages. Other advanced features of
the broker we’ll look at include virtual topics, which let you broadcast messages
over a topic, but have load balanced queues dispatch the messages. We’ll also look
at message redelivery and dead-letter queues, and how to extend the functionality

This chapter covers
 Using wildcards and composite destinations

 Utilizing advisory messages

 Understanding virtual topics and retroactive consumers

 Using ActiveMQ plug-ins

 An introduction to Apache Camel
277

www.it-ebooks.info

http://www.it-ebooks.info/

278 CHAPTER 11 ActiveMQ broker features in action
of the ActiveMQ broker with interceptor plug-ins. Finally, we’ll introduce Apache
Camel, the popular integration framework, which can be embedded into an ActiveMQ
broker to create a powerful integration engine and extend the flexibility and routing
of ActiveMQ.

 In the first section, we’ll look at how to send and receive messages from more than
one destination at a time, using composite destinations and wildcards.

11.1 Wildcards and composite destinations
In this section we’ll look at two useful features of ActiveMQ: subscribing to multiple
destinations using wildcards, and publishing to multiple destinations using composite
destinations. ActiveMQ uses a special notation to denote a wildcard subscription; we’ll
describe that in the next section.

11.1.1 Consume from multiple destinations using wildcards

ActiveMQ supports the concept of destination hierarchies—where the name of a desti-
nation can be used to organize messages into hierarchies, an element in the name is
delimited by a dot (.). Destination hierarchies apply to both topics and queues.

 For example, if you had an application that subscribed to the latest results for
sports on a Saturday afternoon, you could use the following naming convention for
your topics:

 <Sport>.<League>.<Team> -

For example, to subscribe to the latest result for a team called Leeds in an English foot-
ball game, you’d subscribe to the topic: football.division1.leeds. Now Leeds plays both
football and rugby, and for convenience, you’d want to see all results for Leeds for
both football and rugby for the same MessageConsumer. This is where wildcards are
useful.

 Three special characters are reserved for destination names:

 . A dot, used to separate elements in the destination name
 * Used to match one element
 > Matches one or all trailing elements

So to subscribe to the latest scores that all Leeds teams are playing in, you can sub-
scribe to the topic named *.*.Leeds, as shown:

String brokerURI = ActiveMQConnectionFactory.DEFAULT_BROKER_URL;
ConnectionFactory connectionFactory =

new ActiveMQConnectionFactory(brokerURI);
Connection connection = connectionFactory.createConnection();
connection.start();
Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

Topic allLeeds = session.createTopic("*.*.Leeds");

MessageConsumer consumer = session.createConsumer(allLeeds);
Message result = consumer.receive();
www.it-ebooks.info

http://www.it-ebooks.info/

279Wildcards and composite destinations
If you wanted to find out the results of all the football games in Division 1, you’d sub-
scribe to football.division1.*, and if you wanted to find out the latest scores for all
rugby games, you could subscribe to rugby.>.

 Wildcards and destination hierarchies are useful for adding flexibility to your
applications, allowing for a message consumer to subscribe to more than one destina-
tion at a time. The ActiveMQ broker will scan any destination name for a match using
wildcards, so generally the shorter the destination name, the better the performance.

 But wildcards only work for consumers. If you publish a message to a topic named
rugby.>, the message will only be sent to the topic named rugby.>, and not all topics
that start with the name “rugby.” There is a way for a message producer to send a mes-
sage to multiple destinations: by using composite destinations, which we look at next.

11.1.2 Sending a message to multiple destinations

It can be useful to send the same message to different destinations at once. For exam-
ple, when you need real-time analytics about your enterprise: an application used by a
retail store might want to send a message to request more inventory. So a message is
sent to a queue destination at the retail store’s warehouse. But it may also want to
broadcast that order to an in-store activity monitoring system. Usually you’d have to
do this by sending the message twice and use two message producers—one for the
queue and one for the topic. ActiveMQ supports a feature called composite destinations
that allows you to send the same message to multiple destinations at once.

 A composite destination uses a comma-separated name as the destination name.
For example, if you created a queue with the name store.order.backoffice,
store.order.warehouse, then the messages sent to that composite destination would
actually be sent to the two queues from the same send operation, one queue named
store.order.backoffice and one queue named store.order.warehouse.

 Composite destinations can support a mixture of queues and topics at the same
time. By default, you have to prepend the destination name with either queue:// or
topic://. So for the store application scenario where you want to send an order mes-
sage to both the order queue and also a topic, you’d set up your message producer as
follows:

String brokerURI = ActiveMQConnectionFactory.DEFAULT_BROKER_URL;
ConnectionFactory connectionFactory = new ActiveMQConnectionFactory(brokerURI);
Connection connection = connectionFactory.createConnection();
connection.start();

Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);
Queue ordersDestination = session.createQueue("store.orders, topic://

store.orders");
MessageProducer producer = session.createProducer(ordersDestination);
Message order = session.createObjectMessage();
producer.send(order);

Wildcards and composite destinations are powerful tools for building less-complicated
and flexible applications with ActiveMQ.
www.it-ebooks.info

http://www.it-ebooks.info/

280 CHAPTER 11 ActiveMQ broker features in action
 Next we’ll look at the management advisory messages that the ActiveMQ broker
produces, and how you can subscribe to them to gain useful information on changes
to your ActiveMQ system.

11.2 Advisory messages
Advisory messages are notification messages generated by the ActiveMQ broker as a
result of changes to the broker. Typically, an advisory message will be generated every
time a new administered object (connection, destination, consumer, producer) joins
or leaves the broker, but advisory messages can be generated to warn about the
ActiveMQ broker reaching system limits, too. Advisory messages are regular JMS mes-
sages that are generated on system-defined topics, which enables ActiveMQ applica-
tions to be notified asynchronously over JMS of changes in the ActiveMQ broker’s
state. They can be a good alternative to using JMX to find out about the running state
of an ActiveMQ broker.

 ActiveMQ uses advisory messages internally too, to notify connections about the
availability of temporary destinations and notify networks about the availability of con-
sumers, so you should take care if you want to disable them.

 Every advisory message generated has a JMSType of Advisory and predefined JMS
String properties, identifying the broker where the advisory was generated:

 originBrokerId—The ID of the broker that generated the advisory
 originBrokerName—The name of the broker that generated the advisory
 originBrokerURL—The first transport connector URL of the broker that gener-

ated the advisory

Advisory messages for changes in state to the administered objects usually use
ActiveMQ-specific internal commands as the payload, but they do carry useful infor-
mation. Let’s look at how to listen for connections starting and stopping with
ActiveMQ:

String brokerURI = ActiveMQConnectionFactory.DEFAULT_BROKER_URL;
ConnectionFactory connectionFactory =

new ActiveMQConnectionFactory(brokerURI);
Connection connection = connectionFactory.createConnection();
connection.start();

Session session =
connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

Topic connectionAdvisory = AdvisorySupport.CONNECTION_ADVISORY_TOPIC;
MessageConsumer consumer = session.createConsumer(connectionAdvisory);

ActiveMQMessage message = (ActiveMQMessage) consumer.receive();

DataStructure data = (DataStructure) message.getDataStructure();
if (data.getDataStructureType() == ConnectionInfo.DATA_STRUCTURE_TYPE) {

ConnectionInfo connectionInfo = (ConnectionInfo) data;
System.out.println("Connection started: " + connectionInfo);

} else if (data.getDataStructureType() == RemoveInfo.DATA_STRUCTURE_TYPE) {
RemoveInfo removeInfo = (RemoveInfo) data;
www.it-ebooks.info

http://www.it-ebooks.info/

281Advisory messages
System.out.println("Connection stopped: " + removeInfo.getObjectId());
} else {

System.err.println("Unknown message " + data);
}

You can see from the example that we use a regular JMS construct to start listening to
advisory topics. It’s worth noting the use of the AdvisorySupport class, which contains
the definition of all the advisory topic definitions. Things get harder when we start
using ActiveMQ-specific command objects—although a ConnectionInfo is sent when
a connection starts, a RemoveInfo is sent when a connection stops. The RemoveInfo
does carry the connectionId (set as the RemoveInfo’s objectId)—so it’s possible to
correlate which connection has stopped.

 Most advisory messages are specific to destinations. But the AdvisorySupport class
does have some helper methods to determine which advisory topic to listen to. You
can also use wildcards—so, for example, if you created an advisory topic for the queue
named >, you’d get information for all queues.

 Let’s look at an example of listening for consumers coming and going for a queue
named test.Queue:

String brokerURI = ActiveMQConnectionFactory.DEFAULT_BROKER_URL;
ConnectionFactory connectionFactory =

new ActiveMQConnectionFactory(brokerURI);
Connection connection = connectionFactory.createConnection();
connection.start();

//Lets first create a Consumer to listen too
Session session =

connection.createSession(false, Session.AUTO_ACKNOWLEDGE);
//Lets first create a Consumer to listen too
Queue queue = session.createQueue("test.Queue");

MessageConsumer testConsumer = session.createConsumer(queue);

//so lets listen for the Consumer starting and stopping
Topic advisoryTopic = AdvisorySupport.getConsumerAdvisoryTopic(queue);
MessageConsumer consumer = session.createConsumer(advisoryTopic);
consumer.setMessageListener(new MessageListener(){

public void onMessage(Message m) {
try {

System.out.println("Consumer Count = "
+ m.getStringProperty("consumerCount"));
DataStructure data = (DataStructure) message.getDataStructure();
if (data.getDataStructureType() ==

ConsumerInfo.DATA_STRUCTURE_TYPE) {
ConsumerInfo consumerInfo = (ConsumerInfo) data;
System.out.println("Consumer started: " + consumerInfo);

} else if (data.getDataStructureType() ==
RemoveInfo.DATA_STRUCTURE_TYPE) {

RemoveInfo removeInfo = (RemoveInfo) data;
System.out.println("Consumer stopped: "

Listing 11.1 Subscribing for consumer advisories
www.it-ebooks.info

http://www.it-ebooks.info/

282 CHAPTER 11 ActiveMQ broker features in action
+ removeInfo.getObjectId());
} else {
System.err.println("Unknown message " + data);

}
} catch (JMSException e) {
e.printStackTrace();

}

});

testConsumer.close();

You’ll notice in the example that we create a test consumer on the queue test.queue
before we create the listener for consumer advisories on test.queue. This is to demon-
strate that the ActiveMQ broker will also send advisory messages for consumers that
already exist when you start to listen for them.

 There are some advisories on destinations that aren’t enabled by default; these are
advisories on message delivery, slow consumers, fast producers, and so forth. To enable
these advisories, you have to configure them on a destination policy in the ActiveMQ
broker configuration file. For example, to configure an advisory message for slow con-
sumers on all queues, you need to add the following to your configuration:

<destinationPolicy>
<policyMap><policyEntries>

<policyEntry queue=">" advisoryForSlowConsumers="true" />
</policyEntries></policyMap>

</destinationPolicy>

You can use advisory messages to supplement your application behavior (for example,
you could slow message production from your producers if you have slow consumers)
or to supplement JMX monitoring of the ActiveMQ broker. Advisory messages are use-
ful for getting dynamic information on changes to your ActiveMQ system.

 Many different advisories are generated by the ActiveMQ broker to provide infor-
mation about the running system. A dozen of the more useful advisory topics appear
in the numbered list below, and their properties (matched by number) appear in
table 11.1.

1 ActiveMQ.Advisory.Connection
2 ActiveMQ.Advisory.Producer.Queue
3 ActiveMQ.Advisory.Consumer.Queue
4 ActiveMQ.Advisory.Queue
5 ActiveMQ.Advisory.Expired.Queue
6 ActiveMQ.Advisory.SlowConsumer.Queue
7 ActiveMQ.Advisory.FastProducer.Queue
8 ActiveMQ.Advisory.MessageDelivered.Queue
9 ActiveMQ.Advisory.MessageConsumed.Queue

10 ActiveMQ.Advisory.FULL
11 ActiveMQ.Advisory.MasterBroker
12 ActiveMQ.Advisory.MessageDLQd.Queue
www.it-ebooks.info

http://www.it-ebooks.info/

283Advisory messages

In the next section, we’re going to change tack and look at an advanced feature called
virtual topics, which can be used to supplement the way you consume messages, com-
bining the features of both of topics and queues.

Table 11.1 Properties from the list of 12 ActiveMQ advisory topics

Description Properties
Data

structure
Generated
by default

Policy entry property

1 Generated when
a connection
start/stops

null null true none

2 Producer start/
stop messages
on a queue

String='producerCount'—
number of producers

ProducerInfo true none

3 Consumer start/
stop messages
on a Queue

String='consumerCount'—
number of Consumers

ConsumerInfo true none

4 Queue created/
destroyed

null null true none

5 Expired mes-
sages on a
queue

String='orignalMessageId'—
expired id

Message true none

6 Slow queue
consumer

String='consumerId'—
consumer ID

ConsumerInfo false advisoryForSlowConsumers

7 Fast queue
producer

String='producerId'—
producer ID

ProducerInfo false advisdoryForFastProducers

8 Message deliv-
ered to the
broker

String='orignalMessageId'—
delivered ID

Message false advisoryForDelivery

9 Message con-
sumed by a
 client

String='orignalMessageId'—
delivered ID

Message false advisoryForConsumed

10 A usage
resource is at
its limit

String='usageName'—
name of usage resource

null false advisoryWhenFull

11 A broker is now
the master in a
master/slave
configuration

null null true none

12 Message sent to
a dead letter
queue

String='orignalMessageId'—
delivered ID

Message true none
www.it-ebooks.info

http://www.it-ebooks.info/

284 CHAPTER 11 ActiveMQ broker features in action
11.3 Supercharge JMS topics by going virtual
If you want to broadcast a message to multiple consumers, then you use a JMS topic. If
you want a pool of consumers to receive messages from a destination, then you use a
JMS queue. But there’s no satisfactory way to send a message to a topic and then have
multiple consumers receiving messages on that topic the way you can with queues.

 The JMS spec requires that a durable subscriber to a topic use a unique JMS client ID
and subscriber name. Also, only one thread (a single consumer) can be active at any
time with that unique JMS client ID and subscriber name. This means that if that sub-
scriber dies for some reason, there will be no failover to another consumer and there’s
no ability to load balance messages across competing consumers. But using JMS queue
semantics allows the ability to fail over consumers, to load balance messages among
competing consumers, and to use ActiveMQ message groups (see chapter 12), which
allows sticky load balancing of messages to maintain message order. Furthermore, JMS
queue depths can be monitored via JMX (see chapter 14). Using virtual topics works
around these disadvantages while still retaining the benefits of JMS topics.

 Virtual topics allow a publisher to send messages to a normal JMS topic while con-
sumers receive messages from a normal JMS queue. So consumers subscribe to a
queue to receive messages that were published to a topic. Figure 11.1 shows a diagram
of how virtual topics are structured in ActiveMQ.

 Some naming conventions are required to allow virtual topics to operate correctly.
First, to identify that a topic is to be treated as a virtual topic, the topic name should
always follow the pattern of VirtualTopic.<topic name>. So if you want to create a virtual
topic for a topic whose name is orders, you need to create a destination with the name
VirtualTopic.orders. This means that a publisher sends messages to a topic named
VirtualTopic.orders. In order to consume from the queue that’s backed by the virtual
topic, consumers must subscribe to a queue whose name follows the pattern
Consumer.<consumer name>.VirtualTopic.<virtual topic name>.

 Suppose you want consumers to compete for messages on a queue, but you want
that queue to be backed by a topic. You’d create a two queue receivers, each consuming
from a queue named Consumer.Foo.VirtualTopic.orders. An example of this is shown next.

Consumer queue

Consumer queue

Consumer queue

Virtual topic

Figure 11.1 ActiveMQ virtual topics
feed queues from topic messages
www.it-ebooks.info

http://www.it-ebooks.info/

285Supercharge JMS topics by going virtual
...
String brokerURI = ActiveMQConnectionFactory.DEFAULT_BROKER_URL;

ConnectionFactory connectionFactory =
new ActiveMQConnectionFactory(brokerURI);

Connection consumerConnection = connectionFactory.createConnection();
consumerConnection.start();

String queueName = "Consumer.Foo.VirtualTopic.orders";

// Create the first consumer for Consumer.Foo.VirtualTopic.orders
Session sessionA =

consumerConnection.createSession(false,Session.AUTO_ACKNOWLEDGE);
Queue fooQueueA = sessionA.createQueue(queueName);
MessageConsumer consumerA = sessionA.createConsumer(fooQueueA);
consumerA.setMessageListener(getMessageListener());

// Create the second consumer for Consumer.Foo.VirtualTopic.orders
Session sessionB =

consumerConnection.createSession(false,Session.AUTO_ACKNOWLEDGE);
Queue fooQueueB = sessionB.createQueue(queueName);
MessageConsumer consumerB = sessionB.createConsumer(fooQueueB);
consumerB.setMessageListener(getMessageListener());

// Create the sender
String topicName = "VirtualTopic.orders";
Connection senderConnection = connectionFactory.createConnection();
senderConnection.start();
Session senderSession =

senderConnection.createSession(false, Session.AUTO_ACKNOWLEDGE);
Topic ordersDestination = senderSession.createTopic(topicName);
MessageProducer producer =

senderSession.createProducer(ordersDestination);
producer.setDeliveryMode(DeliveryMode.PERSISTENT);

// Send 2000 messages
for (int i = 0; i < 2000; ++i) {

TextMessage message = createMessage(i);
producer.send(message);

}
...

In listing 11.2, note that two consumers are subscribed to the same queue whose name
follows the virtual topic naming pattern for the queue side. Also note that the pro-
ducer is sending to a topic whose name follows the virtual topic naming pattern for
the topic side. When the 2,000 messages are sent to the topic, each consumer will
receive 1,000 messages from the queue.

 Virtual topics are a convenient mechanism to combine the load balancing and
failover aspects of queues, with the durability of topics. Not only does the consumer
not need to worry about creating a unique JMS client ID and subscriber name, but the
consumers are competing for messages in a load balanced manner using JMS queue
semantics. If one of the consumers dies, the other consumer will continue to receive
all the messages on the queue.

Listing 11.2 Using virtual topics
www.it-ebooks.info

http://www.it-ebooks.info/

286 CHAPTER 11 ActiveMQ broker features in action
 In the next section we’ll look at using ActiveMQ to combine the longevity of dura-
ble subscribers, with the performance of normal topic subscribers.

11.4 Retroactive consumers
For applications that require messages to be sent and consumed as quickly as possi-
ble—for example, a real-time data feed—it’s recommend that you send messages with
persistence turned off.

 There’s a downside to consuming nonpersistent messages, in that you’ll only be
able to consume messages from the point when your message consumer starts. You
can miss messages if your message consumer starts behind the message producer, or
there’s a network glitch and your message consumer needs to reconnect to the broker
(or another one in a network).

 In order to provide a limited method of retroactive consumption of messages with-
out requiring message persistence, ActiveMQ has the ability to cache a configurable
size or number of messages sent on a topic. There are two parts to this—your message
consumers need to inform the ActiveMQ broker that it’s interested in retroactive mes-
sages, and you need to configure the destination in the broker to say how many mes-
sages should be cached for consumption at a later point.

 To mark a consumer as being retroactive, you need to set the retroactive flag for
the message consumer. The easiest way to do that is to set the property on the topic
name you use:

String brokerURI = ActiveMQConnectionFactory.DEFAULT_BROKER_URL;
ConnectionFactory connectionFactory =

new ActiveMQConnectionFactory(brokerURI);
Connection connection = connectionFactory.createConnection();
connection.start();

Session session =
connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

Topic topic =
session.createTopic("soccer.division1.leeds?consumer.retroactive=true");

MessageConsumer consumer = session.createConsumer(topic);
Message result = consumer.receive();

On the broker side, you can configure a number of recovery policies on a topic-by-
topic basis. The default is called the FixedSizedSubscriptionRecoveryPolicy, which
holds a number of messages in a topic, based on the calculated size the messages will
take from the broker memory. The default size is 64 KB.

 You can configure the subscription recovery policy on a named topic, or use wild-
cards to apply them to hierarchies. Here’s a sample configuration snippet of how to
change the default cache size for the FixedSizedSubscriptionRecoveryPolicy for
all topics created in the ActiveMQ broker:

<destinationPolicy>
<policyMap>

<policyEntries>
<policyEntry topic=">">

<subscriptionRecoveryPolicy>
www.it-ebooks.info

http://www.it-ebooks.info/

287Message redelivery and dead-letter queues
<fixedSizedSubscriptionRecoveryPolicy maximumSize="8mb"/>
</subscriptionRecoveryPolicy>

</policyEntry>
</policyEntries>

</policyMap>
</destinationPolicy>

Retroactive message consumers are a convenient mechanism to improve the reliability
of your applications without incurring the overhead of message persistence. We’ve
seen how enable retroactive consumers and how to configure their broker-side coun-
terpart, the SubscriptionRecoveryPolicy.

 In the next section we’re going to look at how ActiveMQ stores messages that can’t
be delivered to message consumers—dead-letter queues.

11.5 Message redelivery and dead-letter queues
When messages expire on the ActiveMQ broker (they exceed their time-to-live, if set)
or can’t be redelivered, they’re moved to a dead-letter queue, so they can be con-
sumed or browsed by an administrator at a later point.

 Messages are normally redelivered to a client in the following scenarios:

 A client is using transactions and calls rollback() on the session.
 A client is using transactions and closes before calling commit.
 A client is using CLIENT_ACKNOWLEDGE on a session and calls recover() on

that session.

A client application usually has a good reason to roll back a transacted session or call
recover()—it may not be able to complete the processing of the message(s) because
of its inability to negotiate with a third-party resource, for example. But sometimes an
application may decide to not accept delivery of a message because the message is
poorly formatted. For such a scenario, it doesn’t make sense for the ActiveMQ broker
to attempt redelivery forever.

 A configurable POJO is associated with the ActiveMQ connection that you can tune
to set different policies. You can configure the amount of time the ActiveMQ broker
should wait before trying to resend the message, whether that time should increase
after every failed attempt (use an exponential back-off and back-off multiplier), and
the maximum number of redelivery attempts before the message(s) are moved to a
dead-letter queue.

 Here’s an example of how to configure a client’s redelivery policy:

RedeliveryPolicy policy = connection.getRedeliveryPolicy();
policy.setInitialRedeliveryDelay(500);
policy.setBackOffMultiplier(2);
policy.setUseExponentialBackOff(true);
policy.setMaximumRedeliveries(2);

By default, there’s one dead-letter queue for all messages, called AcitveMQ.DLQ,
which expired messages or messages that have exceeded their redelivery attempts get
sent to. You can configure a dead-letter queue for a hierarchy, or an individual
www.it-ebooks.info

http://www.it-ebooks.info/

288 CHAPTER 11 ActiveMQ broker features in action
destination in the ActiveMQ broker configuration, like in the following example,
where we set an IndividualDeadLetterStrategy:

<destinationPolicy>
<policyMap>

<policyEntries>
<policyEntry queue=">">

<deadLetterStrategy>
<individualDeadLetterStrategy

queuePrefix="DLQ."
useQueueForQueueMessages="true"
processExpired="false"
processNonPersistent="false"/>

</deadLetterStrategy>
</policyEntry>

</policyEntries>
</policyMap>

</destinationPolicy>

Note that we configure this dead-letter strategy to ignore nonpersistent and expired
messages, which can prevent overwhelming the ActiveMQ broker with messages, if
you’re using time-to-live on nonpersistent messages.

 When a message is sent to a dead-letter queue, an advisory message is generated
for it. You can listen for dead-letter queue advisory messages on the topic
ActiveMQ.Advisory.MessageDLQd.*.

 In the next section, we’ll look at some of the interceptor plug-ins that are available
to extend the behavior of the ActiveMQ broker.

11.6 Extending functionality with interceptor plug-ins
ActiveMQ provides the ability to supply custom code to supplement broker functional-
ity. To do so requires a good understanding of the ActiveMQ broker internals, which is
unfortunately outside the scope of this book. But some ActiveMQ broker interceptor
plug-ins are provided with the ActiveMQ distribution; some we’ve already covered,
such as the authentication plug-in, in chapter 6. There are some additional miscella-
neous plug-ins, and for completeness, it’s worth looking at those now.

 We’ll start with visualization, which uses two different plug-ins that generate graph-
ical representations of connections and destinations.

11.6.1 Visualization

Visualization can be useful for identifying usage patterns for an ActiveMQ broker. For
example, being able to see a diagram of all the connections and the destinations that
they’re consuming messages from can help identify rogue clients in production envi-
ronments that have been erroneously consuming messages from the wrong queue.
You can use two visualization plug-ins that generate a graph visualization file, which
contains structural information for viewing structured data. You can use several tools
to visualize the generated files, such as Graphviz (http://www.graphviz.org).
www.it-ebooks.info

http://www.it-ebooks.info/

289Extending functionality with interceptor plug-ins
 Two types of visualization plug-ins are available, one for connections (and associ-
ated consumers and producers) called connectionDotFilePlugin, and one for generating
a destination hierarchy of all the queues and topics used in the ActiveMQ Broker,
called destinationDotFilePlugin. When these plug-ins are enabled, they generate a DOT
file on disk. A DOT file contains the structural information in a directed graph nota-
tion, suitable to be read by a graph visualization tool.

 The connectionDotFilePlugin writes information about the client connections
attached to the ActiveMQ broker to a DOT file on disk. By default the file is written
into the current directory the ActiveMQ broker was started from and is called
ActiveMQConnections.dot. Information about each client connection, including
which destinations the client connection is sending messages to or receiving messages
from, is also written to the DOT file. Every time there’s a change to a client connection
(for example, it starts or stops a message consumer), a new client connection starts, or
an old one stops, the DOT file will be overwritten.

 The connectionDotFilePlugin has only one property: the name of the file to write
the state information into, as shown in table 11.2.

The destinationDotFilePlugin is similar to the connectionDotFilePlugin. When this
plug-in is enabled, it will write state information about the current destinations in use
by the ActiveMQ broker to a DOT file that’s by default called ActiveMQDestinations.
dot. Whenever the state information of destinations changes within the broker, this
DOT file will be updated. An example of the rendered DOT file for the destination-
DotFilePlugin is shown in figure 11.2.

Table 11.2 Properties for the connection DOT plug-in

Property name Default value Description

file ActiveMQConnections.dot The path name to write state information in DOT format
for connections to the ActiveMQ broker

Topics

Queues

Queue

Connection

Consumer Queue Example A

Queues Example A

Topics ActiveMQ Advisory

Figure 11.2 Active destinations for an ActiveMQ broker graphically generated by the
destinationDotFilePlugin
www.it-ebooks.info

http://www.it-ebooks.info/

290 CHAPTER 11 ActiveMQ broker features in action
The destinationDotFilePlugin has only one property: the name of file to write the
state information into, as shown in table 11.3.

All ActiveMQ broker plug-ins can be enabled within the configuration file for the bro-
ker. Here’s an example of an ActiveMQ broker configuration file which has the con-
nectionDotFilePlugin and destinationDotFilePlugin enabled.

<broker useJmx="false" persistent="true">
<plugins>

<connectionDotFilePlugin file="ActiveMQConnections.dot"/>
<destinationDotFilePlugin file="ActiveMQDestinations.dot"/>

</plugins>
</broker>

The next plug-in we’ll look at was developed by one of ActiveMQ’s many users to
enhance the logging available for the ActiveMQ broker.

11.6.2 Enhanced logging

The logging interceptor (loggingInterceptor), if configured, allows you to log mes-
sages that are sent or acknowledged on an ActiveMQ broker, in addition to the normal
logging done by ActiveMQ. This plug-in can be useful for tracing problems or auditing
messages. A few properties for the logging interceptor can be configured, as shown in
table 11.4.

Table 11.3 Properties for the destination DOT plug-in

Property name Default value Description

file ActiveMQDestinations.dot The path name to write state information in DOT format
for destinations to the ActiveMQ broker

Listing 11.3 Configuring visualization plug-ins for the ActiveMQ broker

Table 11.4 Properties for the logging interceptor

Property name Default value Description

logAll false Log all the events

logMessageEvents false Log events associated with messages

logConnectionEvents true Log events associated with connections

logConsumerEvents false Log events associated with producers

logProducerEvents false The maximum size of the message journal data files
before a new one is used

logInternalEvents false Detailed information of workings of the broker
www.it-ebooks.info

http://www.it-ebooks.info/

291Extending functionality with interceptor plug-ins
11.6.3 Central timestamp messages
with the timestamp interceptor plug-in

The timestamp plug-in (timestampingBrokerPlugin), if configured, updates the time-
stamp on messages as they arrive at the broker. This can be useful when there’s a dif-
ference (however small) between the system clocks on a computer sending messages
to an ActiveMQ broker and the computer the broker resides on. When messages are
sent with the timeToLive property set, it’s important that the system clocks between
the sending machine and the broker are in sync; otherwise messages may get expired
erroneously. A few properties for the timestamp plug-in can be configured, as shown
in table 11.5.

It’s recommend that the timestampingBrokerPlugin be enabled on the ActiveMQ bro-
ker if you’re using the timeToLive property on messages.

 The next interceptor plug-in is used for generating messages about management
statistics for the ActiveMQ broker.

11.6.4 Statistics

The statisticsBrokerPlugin will send MapMessages containing information about the
statistics of the running of the ActiveMQ broker. There are two types of message: one
for destinations and one that gives an overview of the broker itself.

 To retrieve the statistics of the running broker with the statisticsBrokerPlugin
enabled, send an empty message to the destination (queue or topic—it doesn’t mat-
ter) called ActiveMQ.Statistics.Broker. The JMSReplyTo header names the destination
where the statistics message is sent.

 Similarly, to retrieve information about a destination, send an empty message to
the name of the destination, prepended with ActiveMQ.Statistics.Destination. For exam-
ple, to retrieve statistics for the destination Topic.Foo, send a message to the destina-
tion ActiveMQ.Statistics.DestinationTopic.Foo.

 You enable an ActiveMQ broker plug-in by including it in the broker configuration
file, as shown:

Table 11.5 Properties for the message timestamp plug-in

Property name Default value Description

zeroExpirationOverride 0 When not zero, will override the expiration date for
messages that currently don’t have an expiration set

ttlCeiling 0 When not zero, will limit the expiration time

futureOnly false If true, won’t update the timestamp of messages to
past values
www.it-ebooks.info

http://www.it-ebooks.info/

292 CHAPTER 11 ActiveMQ broker features in action
<broker useJmx="false" persistent="false">
<plugins>

<loggingBrokerPlugin logAll="true" logConnectionEvents="false"/>
<timeStampingBrokerPlugin

zeroExpirationOverride="1000"
ttlCeiling="60000" futureOnly="true"/>

<statisticsBrokerPlugin/>
</plugins>

</broker>

Broker interceptors are a useful addition for extending the functionality of ActiveMQ.
But you can provide more features and flexibility by embedding Apache Camel, the
powerful integration framework, in the ActiveMQ broker. We’ll look at Apache Camel
integration next.

11.7 Routing engine with Apache Camel framework
Apache Camel is a simple-to-use integration framework that’s easily embedded in con-
tainers and applications.

 At the core of the Camel framework is a routing engine builder. It allows you to
define your own routing rules, the sources from which to accept messages, and how to
process and send them to other destinations. Camel defines an integration language
that allows you to define routing rules, akin to business processes.

 Although Apache Camel supports a large number of integration components,
we’ll demonstrate some relatively simple ways to extend the power of ActiveMQ by
using Apache Camel for some simple routing.

 Camel can use either a Java-based domain-specific language (DSL), or Scala DSL,
or an XML-based DSL to define routes. We’ll concentrate on the XML-based DSL, so we
can extend an ActiveMQ broker functionality directly from an XML configuration file.
Apache Camel uses simple English prepositions, such as from and to, to denote a route.
It’s easy to explain with an example. First we’ll define a simple broker configuration
file to include a Camel XML file with routing rules:

<beans>
<broker brokerName="testBroker">

<transportConnectors>
<transportConnector uri="tcp://localhost:61616"/>

</transportConnectors>
</broker>
<import resource="camel.xml"/>

</beans>

Note we call import resource after the broker definition to include a Camel XML con-
figuration file. Apache Camel comes with both a generic JMS component and a more
specific, optimized ActiveMQ component. Obviously we’ll use the latter. The ActiveMQ
component needs to be configured to communicate with the broker, and we’ll use the

Listing 11.4 Configuring plugins for the broker
www.it-ebooks.info

http://www.it-ebooks.info/

293Routing engine with Apache Camel framework
vm:// transport to do this. Note we called the ActiveMQ broker testBroker, so this needs
to be the name we use when we set up the vm:// transport in the Camel XML configu-
ration file:

<bean id="activemq"
class="org.apache.activemq.camel.component.ActiveMQComponent">
<property name="connectionFactory">

<bean class="org.apache.activemq.ActiveMQConnectionFactory">
<property name="brokerURL"

value="vm://testBroker?create=false&waitForStart=1000"/>
<property name="userName" value="DEFAULT_VALUE"/>
<property name="password" value="DEFAULT_VALUE"/>

</bean>
</property>

</bean>

We can now define a route. A useful enhancement is to tap into messages broadcast
on a topic, and place them in a queue for processing later:

<route>
<from uri="activemq:topic:Test.Topic"/>
<to uri="activemq:queue:Test.Queue"/>

</route>

This route will consume messages on the topic Test.Topic and route them to the
queue Test.Queue. Simple, but useful stuff.

 Let’s demonstrate something more complex. The statistics broker plug-in
(statisticsBrokerPlugin) will only publish a statistic message when requested. So it’d be
useful to broadcast a message with statistical information periodically, and we can use
Apache Camel to do that.

 First, we need to ensure that the statisticsBrokerPlugin is enabled, as in the follow-
ing example configuration:

<beans>
<broker useJmx="false" persistent="false">

<plugins>
<statisticsBrokerPlugin/>

</plugins>
</broker>
<import resource="camel.xml"/>

</beans>

Then, with Apache Camel, we’ll do the following:

 Use the timer component to initiate the name of the route to poll.
 Communicate with the statistics plug-in using a request/reply pattern. In

Apache Camel, a request/reply exchange is called InOut—we’ll poll the queue
named Test.Queue.

 Broadcast the result on a topic called Statistics.Topic.
www.it-ebooks.info

http://www.it-ebooks.info/

294 CHAPTER 11 ActiveMQ broker features in action
The complete Apache Camel route is only three lines of code, as shown:

<route>
<from uri="timer://foo?fixedRate=true&period=1000"/>
<inOut uri="activemq:queue:ActiveMQ.Statistics.DestinationTest.Queue"/>
<to uri="activemq:topic:Statistics.Topic"/>

</route>

Apache Camel is an extremely flexible and feature-rich framework. We’ve only
touched the surface of what you can achieve with it in conjunction with ActiveMQ. For
more information, we encourage you to read Camel in Action (Claus Ibsen and Jona-
than Anstey), available from Manning Publications.

11.8 Summary
In this chapter you’ve learned how to use wildcard and composite destinations, to
improve the flexibility of your ActiveMQ applications to receive and send messages
with multiple destinations. You now have an understanding of advisory messages gen-
erated by the ActiveMQ broker.

 We’ve also covered the benefits of using virtual topics and retroactive consumers,
and when to use them. We’ve also explained when dead-letter queues are used and
how to configure them. Finally we covered how to use Apache Camel routes in
ActiveMQ, for extending flexibility and functionality of the message broker.

 In the next chapter, we’ll examine advanced messaging features that can be used
from the client side of ActiveMQ.
www.it-ebooks.info

http://www.it-ebooks.info/

Advanced client options
In the last chapter we covered advanced ActiveMQ broker features. In this chapter
we’re going to look at some advanced features on the client side of ActiveMQ. We’ll
look at how to ensure that one message consumer will receive messages from a
queue, regardless of how many message consumers have subscribed to it. This fea-
ture is called exclusive consumer, and can be used for ensuring that messages are
always consumed in order, or as a distributed locking mechanism—for which we
have an example. We’ll look at message groups, where messages can be grouped
together to be consumed by the same message consumer. ActiveMQ supports two
different ways to send large payloads through ActiveMQ—using ActiveMQ streams
and blob messages—and we’ll look at both methods. As the client-side failover
transport protocol is important for applications to survive network outages and
broker failure, we’ll look at its nuances in more detail. And, finally, we’ll look at
sending messages with a delay, and delay using scheduled messages.

This chapter covers
 How to use exclusive consumers

 The power of message groups

 Understanding support for streams and blobs

 The failover transport

 Scheduling message delivery
295

www.it-ebooks.info

http://www.it-ebooks.info/

296 CHAPTER 12 Advanced client options
 One feature that you might be expecting in this chapter is different modes for
client-side acknowledgement of messages. As we’ll find out in the next chapter on
ActiveMQ performance tuning, choosing the right mode for acknowledgement of
messages is critical for good performance, so we’ll cover acknowledgement modes
and their consequences there.

12.1 Exclusive consumers
When messages are dispatched from an ActiveMQ broker, they’ll always be in first in,
first out order. But if you have more than one message consumer for a queue in your
application(s), you can’t guarantee that the order in which the messages were dis-
patched will be the same order in which your application will consume them. This is
because you never have control over the scheduling of threads used to deliver the
messages on the client side—even if all your message consumers are using the same
connection. Ideally you’d only have one message consumer to ensure ordering of
messages. But you may also need to support failover, to have another instance of your
queue message consumer take over the processing of the queue messages if the first
consumer fails. ActiveMQ can support having multiple message consumers on a
queue, but having only one of them receive the messages from that queue. We’ll dis-
cuss this concept in the following subsection.

12.1.1 Selecting an exclusive message consumer

For applications where message order is important, or you need to ensure that there
will be only one message consumer for a queue, ActiveMQ offers a client-side option
to have only one active message consumer process messages. The ActiveMQ message
broker will select one consumer on the queue to process messages. The benefit of
allowing the broker to make the choice is that if the consumer stops or fails, then
another message consumer can be selected to be active, as depicted in figure 12.1.

Broker

Consumer stops or loses
connection

Exclusive
consumer

Exclusive
consumer

Exclusive
consumer Broker selects another

consumer to send all
queue messages to

Figure 12.1 How exclusive
consumers behave on failure
www.it-ebooks.info

http://www.it-ebooks.info/

297Exclusive consumers
If you mix standard consumers and exclusive consumers on the same queue, the
ActiveMQ message broker will still only deliver messages to one of the exclusive con-
sumers. If all the exclusive consumers become inactive, and there’s still a standard
message consumer, then consumption of queue messages will return to the normal
mode of delivery—the messages will be delivered in a round-robin fashion between all
the remaining active standard message consumers.

 You can create an exclusive consumer using a destination option on the client, like
in the following code extract:

queue = new ActiveMQQueue("TEST.QUEUE?consumer.exclusive=true");
consumer = session.createConsumer(queue);

The ability to select a message consumer to be exclusive can be used for more than
guaranteeing that messages are consumed by only one active message consumer. You
can use the exclusive consumer pattern to create a distributed lock, as we’ll demon-
strate in the next section.

12.1.2 Using exclusive consumers to provide a distributed lock

Often you use messaging to broadcast data from an external resource, be that changes
to records in a database, or comma-separated values appended to a file, or a raw real-
time data feed. You might wish to build in redundancy, so if an instance of the applica-
tion reading and broadcasting the changing data fails, another can take over. Often
you can rely on locking a resource (row lock or file lock) to ensure that only one pro-
cess will be accessing the data and broadcasting over a topic at a time. But when you
don’t want the overhead of using a database, or want to run processes across more than
one machine (and can’t use distributed locks), then you can use the exclusive con-
sumer functionality to create a distributed lock. In figure 12.2 we show an application

Active
exclusive
producer

Inactive
producer

Exclusive producer gets data from
the feed and translates it into a JMS
message to broadcast over a topic

Broker

All producers also consume
on well-known exclusive
queue—only one will be

active

Waits for message
on exclusive queue
to become active

Real-time data

JMS message

Real time data feed

Figure 12.2 Using exclusive consumers as a distributed lock to create an
exclusive producer application
www.it-ebooks.info

http://www.it-ebooks.info/

298 CHAPTER 12 Advanced client options
where we want failover for a client reading data from a real-time feed. We only want
one client to connect to the feed and distribute the events, but if it fails, we need
another client available to take over.

 In order to use exclusive consumers to create a distributed lock, we need our mes-
sage producer to subscribe exclusively to a well-known queue. If the message producer
receive a message from the queue, it becomes activated, and can then subscribe to the
real-time feed and transform the real-time data into JMS messages. Here’s a code snip-
pet for the message producer to initiate a distributed lock:

public void start() throws JMSException {
this.connection = this.factory.createConnection();
this.connection.start();
this.session =

this.connection.createSession(false, Session.CLIENT_ACKNOWLEDGE);
Destination destination = this.session.createQueue(this.queueName

+ "?consumer.exclusive=true");
Message message = this.session.createMessage();
MessageProducer producer = this.session.createProducer(destination);
producer.send(message);
MessageConsumer consumer = this.session.createConsumer(destination);
consumer.setMessageListener(this);

}

In this example, we always send a message to the well-known queue, to start off con-
sumption—this step could always be done externally by a management process. Note
that we use Session.CLIENT_ACKNOWLEDGE mode to consume the message. Although
we want to be notified that we’re an exclusive consumer—and hence have the lock—
we don’t want to remove the message from the well-known queue. In this way, if we
fail, another exclusive producer will be activated.

 For this example, we’d implement the MessageListener to look like the following
code snippet. If we’re not already activated, we call a fictional method—start-

Producing(). If this were a real application, this method would start subscribing to a
real-time feed and convert real-time data into JMS messages:

public void onMessage(Message message) {
if (message != null && this.active==false) {

this.active=true;
startProducing();

}
}

We’ve shown that using an exclusive consumer allows us to ensure that only one mes-
sage consumer will be active at a time. In the next section, we’ll look at message
groups, where the ActiveMQ broker can selectively choose a message consumer for all
messages that have the same JMSXGroupID message header property set.

12.2 Message groups
We can refine the exclusive consumer concept further with message groups. Instead
of all messages going to a single message consumer, messages can be grouped
together for a single consumer, and a message producer can designate a group for a
www.it-ebooks.info

http://www.it-ebooks.info/

299Message groups
message by setting the message header JMSXGroupID. The ActiveMQ broker will
ensure that all messages with the same JMSXGroupID are sent to the same consumer, as
shown in figure 12.3.

 If the consumer designated by the ActiveMQ broker to receive messages for a given
JMSXGroupID should close or become unavailable (a network outage, for example),
then the ActiveMQ broker will select a different message consumer to dispatch the
grouped messages to.

 Using message groups is straightforward. The definition of a group is left up to a
user and is done on the message producer—it just has to be unique for a particular
queue. All the routing is done in the ActiveMQ message broker.

 To create a group, you need to set a JMSXGroupID string property on the messages
being sent by the message producer, as shown:

Session session =
connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

Queue queue = session.createQueue("group.queue");
MessageProducer producer = session.createProducer(queue);
Message message = session.createTextMessage("<foo>test</foo>");
message.setStringProperty("JMSXGroupID", "TEST_GROUP_A");
producer.send(message);

The previous example shows a message producer being created, and then setting a
TextMessage to belong to the message group TEST_GROUP_A.

 Message groups use normal message consumers, so no additional work is required
to consume messages from a group. All the work is done by the message producer in
defining the group messages belong to, and by the ActiveMQ broker in selecting a
message consumer to send all the grouped messages to.

Broker

Consumer

Consumer

Consumer

Group B

Group C

Group A

Figure 12.3 Message groups: messages with the same JMSXGroupID will be
sent to the same consumer
www.it-ebooks.info

http://www.it-ebooks.info/

300 CHAPTER 12 Advanced client options
 The ActiveMQ broker will add a sequence number to each message in a group,
using the standard JMSXGroupSeq message header property. The sequence number
will start from 1 for a new message group.

 But from the perspective of the message consumer, you can’t assume that the first
message you receive for a new group will have the JMSXGroupSeq set to 1. If an existing
message group consumer closes or dies, any messages being routed to its group will be
assigned a new consumer. To help identify that a message consumer is receiving mes-
sages to a new group, or a group that it hasn’t seen before, a Boolean property called
JMSXGroupFirstForConsumer is set for the first message sent to the new message con-
sumer. You can check whether a message is being sent to your consumer for the first
time by seeing if this property has been set, as shown:

Session session = MessageConsumer consumer = session.createConsumer(queue);
Message message = consumer.receive();
String groupId = message.getStringProperty("JMSXGroupId");
if (message.getBooleanProperty("JMSXGroupFirstForConsumer")) {

// do processing for new group
}

It’s often the case that you start a number of message consumers to process messages
at the same time. The ActiveMQ message broker will allocate all message groups
evenly across all consumers, but if there are already messages waiting to be dis-
patched, the message groups will typically be allocated to the first consumer. To
ensure an even distributed load, it’s possible to give the message broker a hint to wait
for more message consumers to start. To do this, you have to set up a destination pol-
icy in the ActiveMQ broker’s XML configuration. Set the consumersBeforeDispatch-
Starts property with the number of message consumers you expect your application
to use, as the following example demonstrates:

<destinationPolicy>
<policyMap>

<policyEntries>
<policyEntry queue=">"

consumersBeforeDispatchStarts="2"
timeBeforeDispatchStarts="5000"/>

</policyEntries>
</policyMap>

</destinationPolicy>

The sample configuration tells the ActiveMQ broker that any queue (the name of the
queue is >, which is a wildcard for any match) should wait for two consumers before
dispatching. Additionally we’ve also set the timeBeforeDispatchStarts property to
5000ms to inform the ActiveMQ broker that if two message consumers aren’t available
within 5 seconds of getting the first message on the queue, it should use the first that
becomes available.

 Using message groups does add some minimal overhead to the ActiveMQ broker,
in terms of storing routing information for each message group. It’s possible to explic-
itly close a message group by sending a message to the ActiveMQ broker with the
www.it-ebooks.info

http://www.it-ebooks.info/

301ActiveMQ streams
JMSXGroupID set to the group you want to close and the JMSXGroupSeq property set to
-1, like in the following example:

Session session =
connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

Queue queue = session.createQueue("group.queue");
MessageProducer producer = session.createProducer(queue);<foo />
Message message = session.createTextMessage("<foo>close</foo>");
message.setStringProperty("JMSXGroupID", "TEST_GROUP_A");
message.setIntProperty("JMSXGroupSeq", -1);
producer.send(message);

You can re-create a message group that has been closed by sending a new message to
the group. But the group may be assigned to a different message consumer by the
ActiveMQ broker.

 Conceptually, message groups are like using message selectors. The difference is
that message groups automatically handle the selection of message consumers, and
they also handle the failover of message groups when a message consumer fails.

 Having looked at exclusive consumers and message groups, in the next sections
we’re going to look at how to transport large messages using advanced client-side
options with ActiveMQ, using either JMS streams or blob messages.

12.3 ActiveMQ streams
ActiveMQ streams are an advanced feature that allows you to use an ActiveMQ client as
a Java IOStream. ActiveMQ will break an OutputStream into distinct chunks of data
and send each chunk through ActiveMQ as a JMS message. A corresponding ActiveMQ
JMS InputStream should be used on the consumer side to reassemble the data
chunks.

 If you use a queue as the destination for the stream, using more than one con-
sumer on a queue (or an exclusive consumer) is fine because this feature uses mes-
sage groups. This causes messages with the same group ID to be pinned to a single
consumer. Using more than one producer in this scenario could cause problems with
the message order.

 The benefit of using JMS streams is that ActiveMQ will break a stream into manage-
able chunks and reassemble them for you at the consumer. So it’s possible to transfer
very large files using this functionality, as depicted in figure 12.4.

 To demonstrate using streams, here’s an example of reading a large file and writ-
ing it out over ActiveMQ:

//source of our large data
FileInputStream in = new FileInputStream("largetextfile.txt");

String brokerURI = ActiveMQConnectionFactory.DEFAULT_BROKER_URL;
ConnectionFactory connectionFactory =

new ActiveMQConnectionFactory(brokerURI);
Connection connection = (ActiveMQConnection)

connectionFactory.createConnection();
connection.start();
www.it-ebooks.info

http://www.it-ebooks.info/

302 CHAPTER 12 Advanced client options
Session session =
connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

Queue destination = session.createQueue(QUEUE_NAME);

OutputStream out = connection.createOutputStream(destination);

//now write the file on to ActiveMQ
byte[] buffer = new byte[1024];
while(true){

int bytesRead = in.read(buffer);
if (bytesRead==-1){

break;
}
out.write(buffer,0,bytesRead);

}
//close the stream so the receiving side knows the steam is finished
out.close();

In the example, we create an ActiveMQConnection and create an OutputStream using
a queue as the destination. We read the file using a FileInputStream, then write the
FileInputStream onto the ActiveMQ OutputStream.

 Note that we close the ActiveMQ OutputStream when we’ve completed reading the
file. This is important so that the receiving side can determine whether the stream is
finished. It’s recommended that you use a new OutputStream for each file you send.

 For completeness, here’s the receiving end of an ActiveMQ stream:

//destination of our large data
FileOutputStream out = new FileOutputStream("copied.txt");

String brokerURI = ActiveMQConnectionFactory.DEFAULT_BROKER_URL;
ConnectionFactory connectionFactory =

new ActiveMQConnectionFactory(brokerURI);
Connection connection = (ActiveMQConnection)

connectionFactory.createConnection();

Broker

Producer

FileInputStream gets split into
packet to be distributed over

ActiveMQ

File

JMS
InputStream

Consumer

File

JMS
OutputStream

Message packets get pushed out
onto FileOutputStream

Figure 12.4 Using IOStreams to transfer a large file through ActiveMQ
www.it-ebooks.info

http://www.it-ebooks.info/

303Blob messages
connection.start();
Session session =

connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

//we want to be an exclusive consumer
String exclusiveQueueName= QUEUE_NAME + "?consumer.exclusive=true";
Queue destination = session.createQueue(exclusiveQueueName);

InputStream in = connection.createInputStream(destination);

//now write the file from ActiveMQ
byte[] buffer = new byte[1024];
while(true){

int bytesRead = in.read(buffer);
if (bytesRead==-1){

break;
}
out.write(buffer,0,bytesRead);

}
out.close();

In the example, we create an ActiveMQConnection and from that create an Input-
Stream using a queue as a consumer. Note that we use an exclusive consumer by
appending "?consumer.exclusive=true" to the name of the queue. We do this to
ensure that only one consumer will be reading the stream at a time. We read the
ActiveMQ InputStream and then write it to a FileOutputStream to reassemble the
file on disk. Note that we expect the end of the file to be denoted by the end of the
stream (or -1).

 You can use streams with topics too—though if a consumer for a topic starts part-
way through the delivery of a stream, it won’t receive any data that was sent before it
was started.

 ActiveMQ breaks the stream into manageable chunks of data and sends each
chunk of data as a separate message. This means that you have to be careful when
using them, because if the message consumer should fail partway through reading the
InputStream, there’s currently no way to replay the messages already consumed by
the failed message consumer.

 ActiveMQ streams are useful for transferring large payloads, though you’ll need to
think about how an application using ActiveMQ streams should handle failure scenar-
ios. There’s an alternative and more robust method of sending large payloads: using
blob messages, which we cover in the next section.

12.4 Blob messages
ActiveMQ introduced the concept of blob messages so that users can take advantage of
ActiveMQ message delivery semantics (transactions, load balancing, and smart rout-
ing) in conjunction with very large messages. A blob message doesn’t contain the data
being sent, but is a notification that a blob (binary large object) is available. The blob
itself is transferred out of bounds, by either FTP or HTTP. In fact, an ActiveMQ
BlobMessage only contains the URL to the data itself, with a helper method to grab an
InputStream to the real data. Let’s work through an example.
www.it-ebooks.info

http://www.it-ebooks.info/

304 CHAPTER 12 Advanced client options
 First we look at how to create a blob message. In this example we’ll assume that a
large file already exists on a shared website, so we have to create a blob message to
notify any interested consumers that it exists, as shown:

import org.apache.activemq.BlobMessage;
...

String brokerURI = ActiveMQConnectionFactory.DEFAULT_BROKER_URL;
ConnectionFactory connectionFactory =

new ActiveMQConnectionFactory(brokerURI);
Connection connection = connectionFactory.createConnection();
connection.start();
ActiveMQSession session = (ActiveMQSession)

connection.createSession(false, Session.AUTO_ACKNOWLEDGE);
Queue destination = session.createQueue(QUEUE_NAME);
MessageProducer producer = session.createProducer(destination);
BlobMessage message =
session.createBlobMessage(new URL("http://example.com/bigfile.dat"));
producer.send(message);

In the example, we create a JMS connection, and from that an ActiveMQ session which
has methods to support blob messages. We create a blob message from the URL of the
file on our shared site (http://example.com) and send the blob message on a well-
known queue (QUEUE_NAME).

 Here’s the corresponding message consumer for blob messages:

import org.apache.activemq.BlobMessage;
...

// destination of our Blob data
FileOutputStream out = new FileOutputStream("blob.dat");

String brokerURI = ActiveMQConnectionFactory.DEFAULT_BROKER_URL;
ConnectionFactory connectionFactory =

new ActiveMQConnectionFactory(brokerURI);
Connection connection = (ActiveMQConnection)

connectionFactory.createConnection();
connection.start();
Session session =

connection.createSession(false, Session.AUTO_ACKNOWLEDGE);
Queue destination = session.createQueue(QUEUE_NAME);

MessageConsumer consumer = session.createConsumer(destination);
BlobMessage blobMessage = (BlobMessage) consumer.receive();

InputStream in = blobMessage.getInputStream();
// now write the file from ActiveMQ
byte[] buffer = new byte[1024];
while (true) {

int bytesRead = in.read(buffer);
if (bytesRead == -1) {

break;
}
out.write(buffer, 0, bytesRead);

}
out.close();
www.it-ebooks.info

http://www.it-ebooks.info/

305Surviving network or broker failure with the failover protocol
In the example we create a message consumer on our well-known queue
(QUEUE_NAME). We assume that all messages sent to this queue are of type
org.apache.activemq.BlobMessage. A blob message has a helper method to get an
InputStream to the remote URL that the message producer created the blob message
with. We grab the InputStream and use it to read the remote file and write it to a local
disk, called blob.dat.

 Using blob messages is more robust than stream messages, as each one is an
atomic unit of work. But they do rely on an external server being available for storage
of the actual data—in this example a file.

12.5 Surviving network or broker failure
with the failover protocol
We introduced the failover protocol in chapter 4, where we explained the basics
behind allowing a client to fail over to another ActiveMQ broker in the case of failure.
The failover protocol is the default protocol used by the Java client, so it’s worth look-
ing in more detail at some of its optional features and capabilities.

 By default, you specify in the client URI one or more ActiveMQ brokers that could
be used for the connection:

failover:(tcp://host1:61616,tcp://host2:61616,ssl://host2:61616)

By the way, specifying the failover transport URI like this is okay, too, although it can
get a bit messy if there are any embedded query parameters.

 ActiveMQ will connect to one of the brokers defined in the list, selecting one at
random. With the failover protocol, the ActiveMQ client will instantiate a periodic
keepalive protocol, so that it can detect whether the broker is no longer reachable
(connection or broker lost). When it detects that the broker is no longer available, it
will randomly select another broker from the list provided at startup. If only one bro-
ker URI is provided, the client will periodically check to see if the broker is available
again. It’s possible to listen for transport interrupts by setting a TransportListener
on the ActiveMQ connection:

import org.apache.activemq.ActiveMQConnection;
import org.apache.activemq.ActiveMQConnectionFactory;
import org.apache.activemq.transport.DefaultTransportListener;

...

ActiveMQConnection connection = (ActiveMQConnection)
connectionFactory.createConnection();
connection.addTransportListener(new DefaultTransportListener() {

public void onException(IOException arg0) {
System.err.println("This is bad");

}

public void transportInterrupted() {
System.out.println("Transport interrupted");

}

www.it-ebooks.info

http://www.it-ebooks.info/

306 CHAPTER 12 Advanced client options
public void transportResumed() {
System.out.println("Transport resumed");

}
});

connection.start();

When you supply the failover protocol with more than one transport URI to use, by
default it will select one at random to use, to ensure load balancing of clients across
brokers. When you want to have a guaranteed order of brokers that the client will
connect to, you need to disable the random selection of brokers by disabling the
randomize failover property:

failover:(tcp://master:61616,tcp://slave:61616)?randomize=false

If none of the ActiveMQ brokers specified by the failover URI are available, then by
default the failover transport will wait before trying again. The failover protocol will
wait an increasing amount of time between each successive failure to connect to an
ActiveMQ broker—this is called an exponential back-off. The failover protocol by default
has useExponentialBackOff enabled. The wait time between successive attempts to
connect is called the initialReconnectDelay (initial value is 10ms) and the multi-
plier to increase the wait time is called the backOffMultiplier (default value is 2.0).
You can also set the maximum time period for the failover protocol by using max-
ReconnectDelay (default is 30000ms). An example configuration is shown next:

failover:(tcp://master:61616,tcp://slave:61616)?\
backOffMultiplier=1.5,initialReconnectDelay=1000

One potential problem that you may run into using any transport protocol based on
TCP is the ability to know when a peer (for ActiveMQ, this will be the broker) has died.
This can happen for several reasons, like the failure of the ActiveMQ broker or loss of
network. Also, if there’s a firewall between the ActiveMQ client and broker, it may
drop the connection if it’s inactive for some time. It’s possible to configure keepalive
on the TCP connection, but this is operating system–specific and can require changes
to kernel parameters—and doesn’t work well in heterogeneous environments. For
this reason, ActiveMQ uses a keepalive protocol on top of its transports, to keep fire-
walls open and also detect whether the broker is no longer reachable. The keepalive
protocol periodically sends a lightweight command message to the broker, and
expects a response. If it doesn’t receive one within a given time period, ActiveMQ will
assume that the transport is no longer valid. The failover transport listens for failed
transports and will select another transport to use on such a failure. The parameter
used by the keepalive protocol in ActiveMQ is maxInactivityDuration, which is an
OpenWire property; the default is 30000 (milliseconds). You can specify a different
timeout to be used with the failover transport, as shown:

failover:(tcp://host1:61616?wireFormat.maxInactivityDuration=1000,\
tcp://host2:61616?wireFormat.maxInactivityDuration=1000)

Note that you have to set this parameter (and any other OpenWire properties) on the
transports used by the failover protocol, not the failover protocol itself.
www.it-ebooks.info

http://www.it-ebooks.info/

307Surviving network or broker failure with the failover protocol
 By default, the delivery mode for sending messages from an ActiveMQ client is per-
sistent (this is so ActiveMQ is compliant with the JMS specification). A message sent
with a persistent delivery mode will be synchronous—send() will block until it gets a
receipt from the broker that it has successfully received and stored the message. For
applications where performance is important, using nonpersistent delivery can dra-
matically improve results (see chapter 13). When nonpersistent delivery is used, mes-
sages are sent asynchronously, which has the downside that you can potentially lose
messages in flight if a transport fails. You can configure the failover transport to pre-
vent this by enabling message caching with the trackMessages failover transport
property. You can also control the maximum size of this message cache by use of the
maxCacheSize failover property—the default is 128 KB (the memory allocation size
allowed for the message cache). Here’s an example configuration for enabling cach-
ing and setting the maximum cache size:

failover:(tcp://host1:61616,tcp://host2:61616)?\
trackMessages=true,maxCacheSize=256000

For high-performance applications, fast failover is important too. It takes a consider-
able amount of time to build up a new transport connection (in the order of tens to
hundreds of milliseconds), so to enable fast failover, ActiveMQ can optionally allow
the failover protocol to build a backup connection ready to go if the primary trans-
port fails. The failover property to set to allow a backup connection is unsurprisingly
called backup. You can have more than one backup enabled (the default is 1) by set-
ting the failover property backupPoolSize. An example failover URI using backup is
shown next:

failover:(tcp://host1:61616,tcp://host2:61616,\
tcp://host3:61616)?backup=true,backupPoolSize=2

So far we’ve looked at configuring the failover transport with a static list of URIs to the
broker, but an ActiveMQ broker does know what brokers it’s connected to, so it can
optionally dynamically update clients with changes to the cluster as brokers come and
go. To enable dynamic updates of brokers to an ActiveMQ client, we need to enable
the property updateClusterClients on the TransportConnector used in the
ActiveMQ broker configuration. Properties on the TransportConnector are used to
control the updates; these are as shown in table 12.1.

Table 12.1 TransportConnector properties for updating clients of cluster changes

Property
Default
value

Description

updateClusterClients false If true, pass information to connected clients
about changes in the topology of the broker
cluster.

rebalanceClusterClients false If true, connected clients will be asked to rebal-
ance across a cluster of brokers when a new bro-
ker joins the network of brokers.
www.it-ebooks.info

http://www.it-ebooks.info/

308 CHAPTER 12 Advanced client options
An interesting property is rebalanceClusterClients which, if enabled, ensures that
the ActiveMQ clients will evenly distribute themselves across the cluster when a new
broker joins.

 An example configuration for an ActiveMQ broker on a machine named tokyo
using these properties is shown next:

<broker>
...
<transportConnectors>

<transportConnector name="clustered"
uri="tcp://0.0.0.0:61616"
updateClusterClients="true"
updateClusterFilter="*newyork*,*london*" />

</<transportConnectors>
...

</broker>

This configuration will update any clients that are using the failover transport proto-
col with the locations of any brokers joining that have newyork or london in their broker
names. With updateClusterClients enabled, you only need to configure the failover
protocol with one broker in the cluster, for example:

failover:(tcp://tokyo:61616)

As the client will be updated automatically as new brokers join and leave the cluster, if
the machine tokyo should fail, the client would automatically fail over to either newyork
or london.

 You may wish for your clients to automatically be distributed around all the
machines in a cluster, so all the machines share the load of your messaging application.
By enabling the property rebalanceClusterClients on the TransportConnector, as
ActiveMQ brokers join and leave the cluster, this will automatically happen.

 In this section we’ve taken a deeper look at some the functionality that can be
used with the failover transport protocol. You should now have a better understand-
ing of how to configure an ActiveMQ client to detect and survive a network outage or
broker failure.

 In the next section we’re going to look at scheduling a message to be delivered by
the ActiveMQ broker at some time in the future.

updateClusterClientsOnRemove false If true, will update clients when a cluster is
removed from the network. Having this as sepa-
rate option enables clients to be updated when
new brokers join, but not when brokers leave.

updateClusterFilter null Comma-separated list of regular expression fil-
ters used to match broker names of brokers to
designate as being part of the failover cluster for
the clients.

Table 12.1 TransportConnector properties for updating clients of cluster changes (continued)

Property
Default
value

Description
www.it-ebooks.info

http://www.it-ebooks.info/

309Scheduling messages to be delivered by ActiveMQ in the future
12.6 Scheduling messages to be delivered
by ActiveMQ in the future
The ability to schedule a message to be delivered after a delay, or at regular intervals,
is an extremely useful feature provided by ActiveMQ. One unique benefit is that mes-
sages that are scheduled to be delivered in the future are stored persistently, so that
they can survive a hard failure of an ActiveMQ broker and be delivered on restart.

 You specify that you want a message to be delivered at a later time by setting well-
defined properties on the message. For convenience, the well-known property names
are defined in the org.apache.activemq.ScheduledMessage interface. These proper-
ties are shown in table 12.2.

To have a message wait for a period of time before its delivered, you only need to set
the AMQ_SCHEDULED_DELAY property. Suppose you want to publish a message from
your client, but have it actually delivered in 5 minutes time. You’d need to do some-
thing like the following in your client code:

MessageProducer producer = session.createProducer(destination);
TextMessage message = session.createTextMessage("test msg");
long delayTime = 5 * 60 * 1000;

message.setLongProperty(ScheduledMessage.AMQ_SCHEDULED_DELAY, delayTime);
producer.send(message);

ActiveMQ will store the message persistently in the broker, and when it’s scheduled, it
will deliver it to its destination. This is important, because although you’ve specified
that you want the message to be delivered in 5 minutes time, if the destination is a
queue, it will be posted to the end of the queue. So the actual delivery time will be
dependent on how many messages already exist on the queue awaiting delivery.

 You can also use a the AMQ_SCHEDULED_PERIOD and AMQ_SCHEDULED_REPEAT proper-
ties to have messages delivered at a fixed rate. The following example will send a mes-
sage 100 times, every 30 seconds:

MessageProducer producer = session.createProducer(destination);
TextMessage message = session.createTextMessage("test msg");

Table 12.2 TransportConnector properties for updating clients of cluster changes

Property type Description

AMQ_SCHEDULED_DELAY false The time in milliseconds that a message will wait before
being scheduled to be delivered by the broker

AMQ_SCHEDULED_PERIOD false The time in milliseconds after the start time to wait before
scheduling the message again

AMQ_SCHEDULED_REPEAT false The number of times to repeat scheduling a message for
delivery

AMQ_SCHEDULED_CRON String Use a cron entry to set the schedule
www.it-ebooks.info

http://www.it-ebooks.info/

310 CHAPTER 12 Advanced client options
long delay = 30 * 1000;
long period = 30 * 1000;
int repeat = 99;

message.setLongProperty(ScheduledMessage.AMQ_SCHEDULED_DELAY, delay);
message.setLongProperty(ScheduledMessage.AMQ_SCHEDULED_PERIOD, period);
message.setIntProperty(ScheduledMessage.AMQ_SCHEDULED_REPEAT,

COUNT repeat);
producer.send(message);

Note that we specified the repeat as being 99, as the first message + 99 = 100. If you
schedule a message to be sent once, the message ID will be the same as the one you
published. If you schedule a repeat, or use the AMQ_SCHEDULED_CRON property to
schedule your message, then ActiveMQ will create a unique message ID for the deliv-
ered message.

 Cron is a well-known job scheduler on Unix systems, and it uses an expression
string to denote when a job should be scheduled. ActiveMQ uses the same syntax, as
described next:

.---------------- minute (0 - 59)
| .------------- hour (0 - 23)
| | .---------- day of month (1 - 31)
| | | .------- month (1 - 12) - 1 = January
| | | | .---- day of week (0 - 7) (Sunday=0 or 7
| | | | |
* * * * *

For example, if you want to schedule a message to be delivered at 2 a.m. on the twelfth
day of every month, you’d need to do the following:

MessageProducer producer = session.createProducer(destination);
TextMessage message = session.createTextMessage("test msg");
message.setStringProperty(ScheduledMessage.AMQ_SCHEDULED_CRON,

"0 2 12 * *");
producer.send(message);

You can combine scheduling with cron and a simple delay and repeat, but the cron
entry will always take precedence. For example, instead of sending one message at 2
a.m. on the twelfth day of every month, you may want to schedule 10 messages to be
delivered every 30 seconds:

long delay = 30 * 1000;
long period = 30 * 1000;
int repeat = 9;

MessageProducer producer = session.createProducer(destination);
TextMessage message = session.createTextMessage("test msg");

message.setStringProperty(ScheduledMessage.AMQ_SCHEDULED_CRON,
"0 2 12 * *");

message.setLongProperty(ScheduledMessage.AMQ_SCHEDULED_DELAY, delay);
message.setLongProperty(ScheduledMessage.AMQ_SCHEDULED_PERIOD, period);
message.setIntProperty(ScheduledMessage.AMQ_SCHEDULED_REPEAT,

COUNT repeat);

producer.send(message);
www.it-ebooks.info

http://www.it-ebooks.info/

311Summary
In this section we’ve looked at how to schedule messages for sometime in the future
using ActiveMQ. You should now be able to send messages after a delay, send multiple
instances of the same message at regular intervals, and use a cron entry to schedule
message delivery.

12.7 Summary
In this chapter we learned about some of the advanced features that an ActiveMQ cli-
ent can use above and beyond the JMS specification.

 We learned about exclusive consumers, and walked through an example of using
them as a distributed locking mechanism to ensure (paradoxically) that only one pro-
ducer will be running for a distributed application. We’ve seen the power of using
message groups to group messages together so that they’re consumed by the same
message consumer.

 We also looked at two different ways of transporting large payloads with ActiveMQ:
ActiveMQ streams and blob messages. You should also have a much better understand-
ing of the options available when using the failover transport protocol, and how to
schedule delivery of messagse in the future with ActiveMQ.

 In the next chapter we’ll look at performance tuning with ActiveMQ, and some of
the trade-offs between reliability and performance.
www.it-ebooks.info

http://www.it-ebooks.info/

Tuning ActiveMQ
for performance
The performance of ActiveMQ is highly dependent on a number of different fac-
tors, including the broker network topology, the transport, the quality of service
and speed of the underlying network, hardware, operating system, and the Java Vir-
tual Machine.

 But you can apply some performance techniques to ActiveMQ to improve per-
formance regardless of its environment. Your application may not need guaranteed
delivery, in which case reliable, nonpersistent messaging would yield much better
performance. It may make sense to use embedded brokers to reduce the paths of
serialization that your messages need to pass through. And, finally, a multitude of
tuning parameters can be applied, each of which have benefits and caveats. In this
chapter we’ll walk through all the standard architectural tweaks, tuning tricks, and

This chapter covers
 Learn general tuning techniques

 How to optimize producers and consumers

 An example application that has been tuned
312

www.it-ebooks.info

http://www.it-ebooks.info/

313General techniques
more so that you have the best information to tune your application to meet your
goals for performance.

 Before we get to the complex tuning tweaks, we’ll walk through some general but
simple messaging techniques using nonpersistent message delivery and batching mes-
sages together. Either one of these can reap large performance benefits—definitely
the first thing to consider if performance is going to be critical.

 As we walk through the different tuning options for ActiveMQ, we’ll demonstrate
them with example snippets of code, finally pulling all the tuning techniques together
in an example data feed application.

13.1 General techniques
You can do two simple things to improve JMS messaging performance: use nonpersis-
tent messaging, or if you really need guaranteed messaging, then use transactions to
batch up large groups of messages. Usually nonpersistent message delivery isn’t a con-
sideration unless you don’t care that a message will be lost (for example, in real-time
data feeds, since the status will be sent repeatedly within such a short period of time),
and batching messages in transactions won’t always be applicable. But ActiveMQ incor-
porates failsafes for reliable delivery of nonpersistent messages so that only cata-
strophic failure would result in message loss. In this section we’ll explain why nonper-
sistent message delivery and batching messages are faster, and why they could be
applicable to use in your application if you don’t need to absolutely guarantee that
messages will never be lost.

13.1.1 Persistent versus nonpersistent messages

The JMS specification allows for two message delivery modes: persistent and nonper-
sistent delivery. The default delivery mode is persistent. When a producer sends a mes-
sage to the broker that’s marked as persistent, the message broker will always persist it
to its message store before dispatching it to a consumer. This is to guard against cata-
strophic failure, or for later delivery to consumers who might not yet be active. If
you’re using nonpersistent delivery, then the JMS specification allows the messaging
provider to make best efforts to deliver the message to currently active message con-
sumers. ActiveMQ provides additional reliability here, which is covered later in this
section. Nonpersistent messages are significantly faster than persistent messages—
there are two reasons for this:

 Messages are sent asynchronously from the message producer, so the producer
doesn’t have to wait for a receipt from the broker. This is shown in figure13.1.

 Persisting messages to the message store (which typically involves writing to
disk) is slow compared to messaging over a network.

The main reason for using persistence is to negate message loss in the case of a system
outage. But as we saw in chapter 12, ActiveMQ can be configured to prevent this by
configuring the failover transport to cache asynchronous messages to resend again on
www.it-ebooks.info

http://www.it-ebooks.info/

314 CHAPTER 13 Tuning ActiveMQ for performance
a transport failure (using the trackMessages failover transport property). ActiveMQ
also prevents duplicate messages by using message auditing at both the client and the
ActiveMQ broker. So for usage scenarios where only reliability is required (as opposed
to guaranteed message delivery), a nonpersistent delivery mode can meet your needs.

 As by default the message delivery mode is persistent, you have to explicitly set the
delivery mode on the MessageProducer to send nonpersistent messages as can be seen
in the following listing.

MessageProducer producer = session.createProducer(topic);
producer.setDeliveryMode(DeliveryMode.NON_PERSISTENT);

We’ve seen why there’s such a big performance difference between persistent and
nonpersistent delivery of messages, and the steps that ActiveMQ takes to improve reli-
ability of nonpersistent messages. The benefit of reliable message delivery allows non-
persistent messages to be used in many more cases than would be typical of a JMS
provider.

 Having covered nonpersistent messages, let’s move on to the second generalized
technique for improving performance of delivering messages in your application—
batching messages together. The easiest way to batch messages is to use transaction
boundaries, which are explained next.

13.1.2 Transactions

When you send messages using a transaction, only the transaction boundary (the
Session.commit() method) results in synchronous communication with the message
broker. So it’s possible to batch up the production and/or the consumption of mes-
sages to improve performance of sending persistent messages. An example of this is
shown next.

Listing 13.1 Persistent message delivery

Message
store

Broker

Broker sends receipt to
message producer after

persisting the message in
the store

Message producer sends a
message to the broker and
waits for a delivery receipt

Figure 13.1 Confirmation of persistent
message delivery in ActiveMQ
www.it-ebooks.info

http://www.it-ebooks.info/

315General techniques
public void sendTransacted() throws JMSException {
ActiveMQConnectionFactory cf = new ActiveMQConnectionFactory();
Connection connection = cf.createConnection();
connection.start();

Session session =
connection.createSession(true, Session.SESSION_TRANSACTED);

Topic topic = session.createTopic("Test.Transactions");
MessageProducer producer = session.createProducer(topic);
int count =0;
for (int i =0; i < 1000; i++) {

Message message = session.createTextMessage("message " + i);
producer.send(message);

if (i!=0 && i%10==0){
session.commit();

}
}

}

public void sendNonTransacted() throws JMSException {

ActiveMQConnectionFactory cf = new ActiveMQConnectionFactory();
Connection connection = cf.createConnection();
connection.start();

//create a default session (no transactions)

Session session =
connection.createSession(false, Session.AUTO_ACKNOWELDGE);

Topic topic = session.createTopic("Test.Transactions");
MessageProducer producer = session.createProducer(topic);
int count =0;
for (int i =0; i < 1000; i++) {

Message message = session.createTextMessage("message " + i);
producer.send(message);

}
}

So we’ve covered some of the easy pickings in terms of performance, use of nonpersis-
tent messaging where possible, and now use of transaction boundaries for persistent
messages if it makes sense for your application. We’re now going to start (slowly) delv-
ing into some ActiveMQ specifics for techniques that can aid performance. The first is
to use an embedded broker. Embedded brokers cut down on the amount of serializa-
tion and network traffic that ActiveMQ uses, as messages can be passed around in the
same JVM.

13.1.3 Embedding brokers

It’s often a requirement to co-locate applications with a broker, so that any service
that’s dependent on a message broker will only be available at the same time as the
message broker, as shown in figure 13.2. Creating an embedded broker is straightfor-
ward, but one of the advantages of using the VM transport is that messages delivered

Listing 13.2 Transacted and nontransacted example
www.it-ebooks.info

http://www.it-ebooks.info/

316 CHAPTER 13 Tuning ActiveMQ for performance
through a broker don’t incur the cost of being serialized on the wire to be transported
across the network, making it ideal for applications that need to service lots of
responses quickly.

 You can create an embedded broker with a transport connector to listen to TCP
connections but still connect to it using the VM transport. By default, a broker always
listens for transport connections on vm://<broker name>. The following listing is an
example of setting up a service using an embedded broker to listen for requests on a
queue named service.queue.

BrokerService broker = new BrokerService();
broker.setBrokerName("service");
broker.setPersistent(false);
broker.addConnector("tcp://localhost:61616");
broker.start();

ActiveMQConnectionFactory cf =
new ActiveMQConnectionFactory("vm://service");

cf.setCopyMessageOnSend(false);
Connection connection = cf.createConnection();
connection.start();
Session session =

connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

final MessageProducer producer = session.createProducer(null);

Queue queue = session.createQueue("service.queue");
MessageConsumer consumer = session.createConsumer(queue);
consumer.setMessageListener(new MessageListener() {

public void onMessage(Message msg) {
try {

TextMessage textMsg = (TextMessage)msg;
String payload = "REPLY: " + textMsg.getText();
Destination replyTo = msg.getJMSReplyTo();
textMsg.clearBody();
textMsg.setText(payload);

Listing 13.3 Creating a queue service

Response
service

Response service is co-
located with broker

Response message

Broker

vm://

tcp://localhost:61616

Request

Request service connects
to a broker remotely over

tcp://

Request message

Figure 13.2 Embedding an ActiveMQ broker with a service
www.it-ebooks.info

http://www.it-ebooks.info/

317General techniques
producer.send(replyTo, textMsg);
} catch (JMSException e) {

e.printStackTrace();
}

}
});

You can test out this service with a javax.jms.QueueRequestor that connects to the
service’s embedded broker via the TCP transport connector, as shown in the following
listing.

ActiveMQConnectionFactory cf =
new ActiveMQConnectionFactory("tcp://localhost:61616");

QueueConnection connection = cf.createQueueConnection();
connection.start();
QueueSession session =

connection.createQueueSession(false, Session.AUTO_ACKNOWLEDGE);
Queue queue = session.createQueue("service.queue");
QueueRequestor requestor = new QueueRequestor(session,queue);
for(int i =0; i < 10; i++) {

TextMessage msg = session.createTextMessage("test msg: " + i);
TextMessage result = (TextMessage)requestor.request(msg);
System.err.println("Result = " + result.getText());

}

As an aside, ActiveMQ by default will always copy the real message sent by a message
producer to insulate the producer from changes to the message as it passes through
the broker and is consumed by the consumer, all in the same Java Virtual Machine. If
you intend to never reuse the sent message, you can reduce the overhead of this copy
by setting the copyMessageOnSend property on the ActiveMQConnectionFactory to
false, as shown next.

ActiveMQConnectionFactory cf = new ActiveMQConnectionFactory();
cf.setCopyMessageOnSend(false);

We’ve looked at some relatively easy-to-implement techniques to improve messaging
performance. Using an embedded broker co-located with an application is a relatively
trivial change to make. The performance gains and atomicity of the service co-located
with its broker can be an attractive architectural change, too. Having gone through
some of the easier “quick wins,” we’re going to start moving into some more difficult
configuration areas. So the next section will touch on the OpenWire protocol and list
some parameters you can tune to boost the performance of your messaging applica-
tions. These are dependent on both the hardware and the type of network you use.

Listing 13.4 Connecting a QueueRequestor

Listing 13.5 Using the setCopyMessageOnSend method
www.it-ebooks.info

http://www.it-ebooks.info/

318 CHAPTER 13 Tuning ActiveMQ for performance
13.1.4 Tuning the OpenWire protocol

It’s worth covering some of the options available on the OpenWire protocol. The
OpenWire protocol is the binary format used for transporting commands over a trans-
port (such as TCP) to the broker. Commands include messages and message acknowl-
edgements, as well as management and control of the broker. Table 13.1 shows some
OpenWire wire format parameters that are relevant to performance.

You can add these parameters to the URI used to connect to the broker in the follow-
ing way. The following listing demonstrates disabling tight encoding, using the tight-
EncodingEnabled parameter.

String uri =

 "failover://(tcp://localhost:61616?wireFormat.cacheEnabled=false&\
wireFormat.tightEncodingEnabled=false)";

ActiveMQConnectionFactory cf = new ActiveMQConnectionFactory(url);
cf.setAlwaysSyncSend(true);

These parameters are dependent on the type of application, type of machine(s) used
to run the clients and the broker, and type of network used. Unfortunately this isn’t an
exact science, so some experimentation is recommended.

Table 13.1 OpenWire tuning parameters

Parameter name
Default
value

Description

tcpNoDelayEnabled false Provides a hint to the peer transport to enable/disable
tcpNoDelay. If this is set, it may improve performance where
you’re sending lots of small messages across a relatively slow
network.

cacheEnabled true Commonly repeated values (like producerId and
destination) are cached, enabling short keys to be passed
instead. This decreases message size, which can have a pos-
itive impact on performance where network performance is rel-
atively poor. The cache lookup involved does add overhead to
CPU load on both the clients and the broker machines, so
take this into account.

cacheSize 1024 Maximum number of items kept in the cache. This shouldn’t
be bigger than Short.MAX_VALUE/2. The larger the cache, the
better the performance where caching is enabled. But one
cache will be used with every transport connection, so bear in
mind the memory overhead on the broker, especially if it’s
loaded with a large number of clients.

tightEncodingEnabled true A CPU-intensive way to compact messages. We recommend
disabling this if the broker starts to consume all the available
CPU.

Listing 13.6 Enabling tight encoding on the wire format
www.it-ebooks.info

http://www.it-ebooks.info/

319Optimizing message producers
 As we’ve lightly introduced some of the tuning parameters available on the Open-
Wire protocol, in the next section we’ll look at some of the tuning parameters avail-
able on the TCP transport.

13.1.5 Tuning the TCP transport

The most commonly used transport for ActiveMQ is the TCP transport. Two parame-
ters directly affect performance for this transport:

 socketBufferSize—The size of the buffers used to send and receive data over
the TCP transport. Usually the bigger the better (though this is operating sys-
tem dependent, so it’s worth testing!). The default value is 65536, which is the
size in bytes.

 tcpNoDelay—The default is false. Normally a TCP socket buffers up small
pieces of data before being sent. When you enable this option, messages will be
sent as soon as possible. Again, it’s worth testing this out, as whether this boosts
performance can be operating system dependent.

Here’s an example transport URI where the tcpNoDelay property is enabled:

String url = "failover://(tcp://localhost:61616?tcpNoDelay=true)";
ActiveMQConnectionFactory cf = new ActiveMQConnectionFactory(url);
cf.setAlwaysSyncSend(true);

We’ve covered some general techniques to improve performance at the application
level, and looked at tuning the wire protocol and the TCP transport. In the next two
parts of this chapter, we’ll look at tuning message producers and then message con-
sumers. ActiveMQ is flexible in its configuration, and its producers can be configured
to optimize their message exchanges with the broker, which can boost throughput
considerably.

13.2 Optimizing message producers
The rate at which producers send messages to an ActiveMQ message broker before
they’re dispatched to consumers is a fundamental element of overall application per-
formance. We’ll now cover some tuning parameters that affect the throughput and
latency of messages sent from a message producer to an ActiveMQ broker.

13.2.1 Asynchronous send

We’ve already covered the performance gains that can be achieved if you use nonper-
sistent delivery for messages. In ActiveMQ nonpersistent delivery is reliable, in that
delivery of messages will survive network outages and system crashes (as long as the
producer is active—it holds messages for redelivery in its failover transport cache).
But you can also get the same performance gain for persistent messages by setting the
useAsyncSend property on the message producer’s connection factory, as shown next.

Listing 13.7 Using the tcpNoDelay setting to tune the TCP transport
www.it-ebooks.info

http://www.it-ebooks.info/

320 CHAPTER 13 Tuning ActiveMQ for performance
ActiveMQConnectionFactory cf = new ActiveMQConnectionFactory();
cf.setUseAsyncSend(true);

This will set a property that tells the MessageProducer not to expect a receipt for mes-
sages it sends to the ActiveMQ broker. This means that a producer will not wait until
the message is on disk before sending another message.

 If your application requires guaranteed delivery, it’s recommend that you use the
default delivery mode, persistent delivery, and preferably use transactions too.

 The reasons for using asynchronous message delivery for gaining performance
should be well understood, and setting a property on the ActiveMQ connection fac-
tory is a straightforward way of achieving that. Next we’ll cover a commonly misunder-
stood feature in ActiveMQ: producer flow control. We see a lot of questions about
producers slowing down or pausing, and understanding flow control will allow you to
mitigate this situation in your applications.

13.2.2 Producer flow control

Producer flow control allows the message broker to slow the rate of messages that are
passed through it when resources are running low. This typically happens when con-
sumers are slower than the producers, and messages are using memory in the broker
awaiting dispatch.

 A producer will wait until it receives a notification from the broker that it has space
for more messages, as shown in figure 13.3. Producer flow control is necessary to pre-
vent a broker’s usage limits for memory and temporary store space from being over-
run, especially for wide area networks.

 Producer flow control is enabled by default for persistent messages but must be
explicitly enabled for asynchronous publishing (persistent messages, or for connec-
tions configured to always send asynchronously). You can enable flow control for asyn-
chronous publishing by setting the producerWindowSize property on the connection
factory.

Listing 13.8 Enabling asynchronous sends

Broker
Consumer sends an

ack when it’s consumed

Producer

ed
by the broker it has more

space

Messages awaiting
dispatch to a consumer

Consumer

Broker will only dispatch
more messages when the

consumer has space

Figure 13.3 MessageProducer feedback with producer flow control enabled
www.it-ebooks.info

http://www.it-ebooks.info/

321Optimizing message producers
ActiveMQConnectionFactory cf = new ActiveMQConnectionFactory();
cf.setProducerWindowSize(1024000);

The producerWindowSize property is used to specify the number of bytes allowed in
the producer’s send buffer before it’ll be forced to wait for a receipt from the broker
that it’s still within its usage limits. If this isn’t enabled for an asynchronous publisher,
the broker will still pause message flow, which defaults to blocking the message pro-
ducer’s transport. Blocking the transport will block all users of the connection, which
can lead to deadlock if the message consumers are sharing the connection. Producer
flow control allows blocking only the producer rather than the entire connection.

 Although protecting the broker from running low on memory is a noble aim, it
doesn’t aid our cause for performance when everything slows down to the slowest con-
sumer! So let’s see what happens when you disable producer flow control, as shown in
bold in the following code. You can do this in the broker configuration on a destina-
tion policy.

<destinationPolicy>
<policyMap>

<policyEntries>
<policyEntry topic="FOO.>"

producerFlowControl="false"
memoryLimit="10mb" />

</policyEntries>
</policyMap>

</destinationPolicy>

With producer flow control disabled, messages for slow consumers will be off-lined to
temporary storage by default, enabling the producers and the rest of the consumers to
run at a much faster rate as outlined in figure 13.4. Additionally, the system usage
memory limit determines the point at which messages are offloaded to disk by the
pending message cursors. The system usage memory limit setting is applied across the
broker. This limit needs to be lower than the destination memory limits so that they
can kick in before producer flow control.

 Disabling producer flow control enables messaging applications to run at a pace
independent of the slowest consumer, though there’s a slight performance hit in off-
lining messages. In an ideal world, consumers would always be running as fast as the
fastest producer, which neatly brings us to the next section on optimizing message
consumers.

TUNING PRODUCER FLOW CONTROL

By default, when producer flow control is enabled and there’s not enough space in
the broker for more messages, the producer’s send operation will block until space
becomes available on the broker. There are two ways to tune this parameter so that it

Listing 13.9 Setting the producer window size

Listing 13.10 How to disable flow control
www.it-ebooks.info

http://www.it-ebooks.info/

322 CHAPTER 13 Tuning ActiveMQ for performance
doesn’t block indefinitely and essentially hang the producer until space becomes
available.

 The first tuning option for producer flow control is named sendFailIfNoSpace:

<systemUsage>
<systemUsage sendFailIfNoSpace="true">

<memoryUsage>
<memoryUsage limit="128 mb"/>

</memoryUsage>
</systemUsage>

</systemUsage>

The sendFailIfNoSpace property puts control back into the hands of the producer by
throwing an exception on the client side when a send operation is attempted and space
isn’t available, instead of blocking the send operation indefinitely. This allows the pro-
ducer to catch the exception, wait a bit, and attempt the send the operation again.

 The second tuning option for producer flow control was made available in
ActiveMQ 5.4.1. This property is named sendFailIfNoSpaceAfterTimeout:

<systemUsage>
<systemUsage sendFailIfNoSpaceAfterTimeout="5000">

<memoryUsage>
<memoryUsage limit="128 mb"/>

</memoryUsage>
</systemUsage>

</systemUsage>

The sendFailIfNoSpaceAfterTimeout property provides a slightly different kind of
control. This property causes the send operation to fail with an exception on the client
side, but only after waiting the given amount of time for space to become available.

Producer

Broker

Producer not impeded by
limits being reached on the

broker

Messages copied to
temporary disk storage for

slow consumers

Fast
consumer

Fast consumers get
messages immediately

Slow
consumer

Slow consumer gets
messages dispatched from
temporary disk when it can

consume them

Figure 13.4 What the broker does with producer flow control disabled
www.it-ebooks.info

http://www.it-ebooks.info/

323Optimizing message consumers
13.3 Optimizing message consumers
In order to maximize application performance, you have to look at all the partici-
pants—and as we have seen so far, consumers play a big part in the overall perfor-
mance of ActiveMQ. Message consumers typically have to work twice as hard as
message producers, because in addition to consuming messages, they have to
acknowledge that the message has been consumed. We’ll explain some of the biggest
performance gains you can get with ActiveMQ by tuning the consumers.

 Typically the ActiveMQ broker will deliver messages as quickly as possible to con-
sumer connections. Once messages are delivered over the transport from the
ActiveMQ broker, they’re typically queued in the session associated with the consumer,
where they wait to be delivered. In the next section we’ll explain why and how the rate
at which messages are pushed to consumers is controlled, and how to tune that rate
for better throughput.

13.3.1 Prefetch limit

ActiveMQ uses a push-based model for delivery, delivering messages to consumers
when they’re received by the ActiveMQ broker. To ensure that a consumer won’t
exhaust its memory, there’s a limit (prefetch limit) to how many messages will be
delivered to a consumer before the broker waits for an acknowledgement that the
messages have been consumed by the application. Internal to the consumer, messages
are taken off the transport when they’re delivered and placed into an internal queue
associated with the consumer’s session, as shown in figure 13.5.

 A consumer connection will queue messages to be delivered internally. The size of
these queues plus the number of in-flight messages (messages that have been dis-
patched to the consumer but haven’t yet been acknowledged) is limited by the

Messages
are dispatched to a

MessageListener or queued
to be received

Transport

Session internal queue —
messages are passed from

here to interested
MessageConsumers

Messages pulled off the
transport and passed to a

session

MessageConsumer
internal queue used
when a consumer

doesn't have a
message listener

Message acknowledge
passed back to the broker
when message delivered

Transport
thread

Session
thread

Figure 13.5 How messages are passed
through an ActiveMQ connection to a
MessageConsumer in multiple steps
using multiple threads
www.it-ebooks.info

http://www.it-ebooks.info/

324 CHAPTER 13 Tuning ActiveMQ for performance
prefetch limit for that consumer. In general, the larger the prefetch size, the faster the
consumer will work.

 But this isn’t always ideal for queues, where you might want to ensure that mes-
sages are evenly distributed across all consumers on a queue. In this case with a large
prefetch, a slow consumer could have pending messages waiting to be processed that
could’ve been worked on by a faster consumer. In this case, a lower prefetch number
would work better. If the prefetch is zero, the consumer will pull messages from the
broker and no push will be involved.

 There are different default prefetch sizes for different consumers:

 Queue consumer default prefetch size = 1000
 Queue browser consumer default prefetch size = 500
 Persistent topic consumer default prefetch size = 100
 Nonpersistent topic consumer default prefetch size = 32766

The prefetch size is the number of outstanding messages that your consumer will have
waiting to be delivered, not the memory limit. You can set the prefetch size for your
connection by configuring the ActiveMQConnectionFactory as shown next.

ActiveMQConnectionFactory cf = new ActiveMQConnectionFactory();

Properties props = new Properties();
props.setProperty("prefetchPolicy.queuePrefetch", "1000");
props.setProperty("prefetchPolicy.queueBrowserPrefetch", "500");
props.setProperty("prefetchPolicy.durableTopicPrefetch", "100");
props.setProperty("prefetchPolicy.topicPrefetch", "32766");

cf.setProperties(props);

Or you can pass the prefetch size as a destination property when you create a
destination:

Queue queue = new ActiveMQQueue("TEST.QUEUE?consumer.prefetchSize=10");
MessageConsumer consumer = session.createConsumer(queue);

Prefetch limits are an easy mechanism to boost performance, but should be used with
caution. For queues, you should consider the impact on your application if you have a
slow consumer, and for topics, factor how much memory your messages will consume
on the client before they’re delivered.

 Controlling the rate at which messages are delivered to a consumer is only part of
the story. Once the message reaches the consumer’s connection, the method of mes-
sage delivery to the consumer and the options chosen for acknowledging the delivery
of that message back to the ActiveMQ broker have an impact on performance. We’ll
cover these in the next section.

Listing 13.11 Configuring the prefetch policy on the ActiveMQConnectionFactory

Listing 13.12 Setting the prefetch size when creating a destination
www.it-ebooks.info

http://www.it-ebooks.info/

325Optimizing message consumers
13.3.2 Delivery and acknowledgment of messages

Something that should be apparent from figure 13.5 is that delivery of messages via a
javax.jms.MessageListener.onMessage() will always be faster with ActiveMQ than
calling javax.jms.MessageConsumer.receive(). If a MessageListener isn’t set for a
MessageConsumer, then its messages will be queued for that consumer, waiting for the
receive() method to be called. Not only will maintaining the internal queue for the
consumer be expensive, but so will the context switch by the application thread call-
ing the receive() method.

 As the ActiveMQ broker keeps a record of how many messages have been con-
sumed to maintain its internal prefetch limits, a MessageConsumer has to send a mes-
sage acknowledgment for every message it has consumed. When you use transactions,
this happens at the Session.commit() method call, but is done individually for each
message if you’re using auto-acknowledgment.

 Some optimizations are used for sending message acknowledgments back to the
broker, which can drastically improve the performance when using the
DUPS_OK_ACKNOWLEDGE session acknowledgment mode. In addition, you can set
the optimizeAcknowledge property on the ActiveMQ ConnectionFactory to give a
hint to the consumer to roll up message acknowledgments.

ActiveMQConnectionFactory cf = new ActiveMQConnectionFactory();
cf.setOptimizeAcknowledge(true);

When using optimizeAcknowledge or the DUPS_OK_ACKNOWLEDGE acknowledg-
ment mode on a session, the message consumer can send one message acknowledg-
ment to the ActiveMQ message broker containing a range of all the messages
consumed. This reduces the amount of work the message consumer has to do,
enabling it to consume messages at a much faster rate.

 Table 13.2 below outlines the different options for acknowledging messages and
how often they send back a message acknowledgment to the ActiveMQ message broker.

Listing 13.13 Setting the optimizeAcknowledge property

Table 13.2 ActiveMQ acknowledgment modes

Acknowledgment mode
Sends an

acknowledgment
Description

Session.SESSION_TRANSACTED Rolls up acknowledg-
ments with
Session.commit().

Reliable way for message consump-
tion and performs well, providing
you consume more than one mes-
sage in a commit.

Session.CLIENT_ACKNOWLEDGE All messages up to
when a message is
acknowledged are con-
sumed.

Can perform well, providing the
application consumes a lot of mes-
sages before calling acknowledge.
www.it-ebooks.info

http://www.it-ebooks.info/

326 CHAPTER 13 Tuning ActiveMQ for performance
The downside to not acknowledging every message individually is that if the message
consumer were to lose its connection with the ActiveMQ broker for any reason, then
your messaging application could receive duplicate messages. But for applications
that require fast throughput (such as real-time data feeds) and are less concerned
about duplicates, using optimizeAcknowledge is the recommended approach.

 The ActiveMQ message consumer incorporates duplicate message detection, which
helps minimize the risk of receiving the same message more than once.

13.3.3 Asynchronous dispatch

Every session maintains an internal queue of messages to be dispatched to interested
message consumers (as can be seen from figure 13.5). The usage of an internal queue
together with an associated thread to do the dispatching to message consumers can
add considerable overhead to the consumption of messages.

 You can disable a property called alwaysSessionAsync on the ActiveMQ
ConnectionFactory to turn this off. This allows messages to be passed directly from
the transport to the message consumer. This property can be disabled as shown in the
following code.

ActiveMQConnectionFactory cf = new ActiveMQConnectionFactory();
cf.setAlwaysSessionAsync(false);

Session.AUTO_ACKNOWLEDGE Automatically sends a
message acknowledg-
ment back to the
ActiveMQ broker for
every message con-
sumed.

This can be slow but is often the
default mechanism for message
consumers.

Session.DUPS_OK_ACKNOWLEDGE Allows the consumer to
send one acknowledg-
ment back to the
ActiveMQ broker for a
range of messages con-
sumed.

An acknowledgment will be sent
back when the prefetch limit has
reached 50% full. The fastest stan-
dard way of consuming messages.

ActiveMQSession.INDIVIDUAL_ACKNOWLEDGE Sends one acknowledg-
ment for every message
consumed.

Allows great control by enabling
messages to be acknowledged indi-
vidually but can be slow.

optimizeAcknowledge Allows the consumer to
send one acknowledg-
ment back to the
ActiveMQ broker for a
range of messages con-
sumed.

A hint that works in conjunction with
Session.AUTO_ACKNOWLEDGE. An
acknowledgment will be sent back
when 65% of the prefetch buffer
has been consumed. This is the
fastest way to consume messages.

Listing 13.14 Disabling the alwaysSessionAsync property

Table 13.2 ActiveMQ acknowledgment modes (continued)

Acknowledgment mode
Sends an

acknowledgment
Description
www.it-ebooks.info

http://www.it-ebooks.info/

327Tuning in action
Disabling asynchronous dispatch allows messages to be pass the internal queueing
and dispatching done by the session, as shown in figure 13.6.

 So far we’ve looked at some general techniques you can use to improve perfor-
mance, such as using reliable messaging instead of guaranteed and co-locating an
ActiveMQ broker with a service. We’ve covered different tuning parameters for trans-
ports, producers, and consumers.

 Because using examples is the best way to demonstrate something, in the next sec-
tion we’ll demonstrate how to improve performance with an example application of a
real-time data feed.

13.4 Tuning in action
Let’s demonstrate pulling some of these performance-tuning options together with
an example application. We’ll simulate a real-time data feed, where the producer is
co-located with an embedded broker and a consumer listens for messages remotely.
This is shown in figure 13.7.

 We’ll demonstrate using an embedded broker to reduce the overhead of publish-
ing the data to the ActiveMQ broker. We’ll show some additional tuning on the mes-
sage producer to reduce message copying. The embedded broker itself will be
configured with flow control disabled and memory limits set to allow for fast stream-
ing of messages through the broker.

 Finally the message consumer will be configured for straight-through message
delivery, coupled with a high prefetch limit and optimized message acknowledgment.

 First we set up the broker to be embedded, with the memory limit set to a reason-
able amount (64 MB), memory limits set on each destination, and flow control dis-
abled. The policies for the destinations in the broker are set up using the default
PolicyEntry, as seen in the following code listing. A PolicyEntry holds configuration

Messages
are dispatched to a

MessageListener or queued
to be received

Transport

Messages pulled off the
transport and passed to a

session

MessageConsumer
internal queue used
when a consumer

doesn't have a
message listener

Message acknowledge
passed back to the broker
when message delivered

Transport
thread

Figure 13.6 Optimized message passing to a
message consumer in an ActiveMQ connection
with alwaysSessionAsync=false
www.it-ebooks.info

http://www.it-ebooks.info/

328 CHAPTER 13 Tuning ActiveMQ for performance
information for a destination used within the ActiveMQ broker. You can have a sepa-
rate policy for each destination, create a policy to only apply to destinations that
match a wildcard (for example, naming a PolicyEntry foo.> will only apply to desti-
nations starting with foo). For our example, we’re only setting memory limits and dis-
abling flow control. For simplicity, we’ll only configure the default entry, which will
apply to all destinations.

import org.apache.activemq.broker.BrokerService;
import org.apache.activemq.broker.region.policy.PolicyEntry;
import org.apache.activemq.broker.region.policy.PolicyMap;
...

BrokerService broker = new BrokerService();
broker.setBrokerName("fast");
broker.getSystemUsage().getMemoryUsage().setLimit(64*1024*1024);

PolicyEntry policy = new PolicyEntry();

policy.setMemoryLimit(4 * 1024 *1024);
policy.setProducerFlowControl(false);

PolicyMap pMap = new PolicyMap();

pMap.setDefaultEntry(policy);

broker.setDestinationPolicy(pMap);
broker.addConnector("tcp://localhost:61616");
broker.start();

This broker is uniquely named fast so that the co-located data feed producer can bind
to it using the VM transport.

 Apart from using an embedded broker, the producer is straightforward, except
that it’s configured to send nonpersistent messages and not use message copy. The
example producer is configured as shown next.

Listing 13.15 Creating the embedded broker

DataFeed

MessageProducer
co-located with embedded

broker

Broker

vm://

tcp://localhost:61616

Consumer

Consumer optimized to
receive messages as fast

as possible

broker has a tcp transport
connector

Figure 13.7 The sample tuned data feed application
www.it-ebooks.info

http://www.it-ebooks.info/

329Tuning in action

ActiveMQConnectionFactory cf = new ActiveMQConnectionFactory("vm://fast");

cf.setCopyMessageOnSend(false);

Connection connection = cf.createConnection();
connection.start();

Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);
Topic topic = session.createTopic("test.topic");
final MessageProducer producer = session.createProducer(topic);

producer.setDeliveryMode(DeliveryMode.NON_PERSISTENT);
for (int i =0; i < 1000000;i++) {

TextMessage message = session.createTextMessage("Test:"+i);
producer.send(message);

}

The consumer is configured for straight-through processing (having disabled asyn-
chronous session dispatch) and using a javax.jms.MessageListener. The consumer
is set to use optimizeAcknowledge to gain the maximum amount of consumption.
This can be seen in the following code.

ActiveMQConnectionFactory cf =
new ActiveMQConnectionFactory("failover://(tcp://localhost:61616)");

cf.setAlwaysSessionAsync(false);
cf.setOptimizeAcknowledge(true);

Connection connection = cf.createConnection();
connection.start();

Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

Topic topic = session.createTopic("test.topic?consumer.prefetchSize=32766");

MessageConsumer consumer = session.createConsumer(topic);

final AtomicInteger count = new AtomicInteger();

consumer.setMessageListener(new MessageListener() {
public void onMessage(Message message) {

TextMessage textMessage = (TextMessage)message;
try {

if (count.incrementAndGet()%10000==0)
System.err.println("Got = " + textMessage.getText());

} catch (JMSException e) {
e.printStackTrace();

}
}

});

In this section we’ve pulled together an example for distributing real-time data using
ActiveMQ. We created a demo producer and configured it to pass messages straight

Listing 13.16 Creating the producer

Listing 13.17 Creating the consumer
www.it-ebooks.info

http://www.it-ebooks.info/

330 CHAPTER 13 Tuning ActiveMQ for performance
through to an embedded broker. We created the embedded broker, and disabled flow
control. Finally, we configured a message consumer to receive messages as quickly as
possible.

 We recommend trying to change some of the configuration parameters we’ve set
(such as the optimizeAcknowledge property) to see what impact that has on
performance.

13.5 Summary
In general, message performance can be improved by asking ActiveMQ to do less.
Consider the overhead of persisting messages and the cost of transporting both mes-
sages and client acknowledgments over the wire. If possible, use reliable messaging or
batching of messages in transactions to reduce the overhead of passing a receipt from
the broker to the producer that it has received a message. You can reduce the amount
of work the ActiveMQ broker does by setting suitable memory limits (more is better)
and deciding whether producer flow control is suitable for your application. The mes-
sage consumer has to work twice as hard as the message producer, so optimizing deliv-
ery with a MessageListener and using straight-through message processing together
with an acknowledgment mode or transactions that allow acknowledgments to be
batched can reduce this load.

 In this chapter you learned about some general principles for improving perfor-
mance with any JMS-based application. We also dove into some of the internals of
ActiveMQ and how changes to the configuration can increase performance. We
learned when and when not to use those options, and their side effects. We also
brought the different aspects of performance tuning together in an example real-time
data feed application.

 You should now have a better understanding of where the performance bottle-
necks may occur when using ActiveMQ, and when and why to alleviate them. We’ve
shown how to tune your message producers and message consumers, as well as the
configuration parameters and their impact on your application architecture. You
should be able to make the right architectural decisions for your application to help
performance, and have a good understanding of the downsides in terms of guarantee-
ing delivery and how ActiveMQ can be used to mitigate them.

 In the next and final chapter of this section, we’ll look at how to administer and
monitor ActiveMQ brokers using JMX, the ActiveMQ web console, and much more.
www.it-ebooks.info

http://www.it-ebooks.info/

Administering and
monitoring ActiveMQ
The final topic left to be covered is management and monitoring of ActiveMQ bro-
ker instances. As with any other infrastructure software, it’s important for develop-
ers and administrators to be able to monitor broker metrics during runtime and
notice any suspicious behavior that could possibly impact messaging clients. Also,
you might want to interact with your broker in other ways. For example, you might
want to change broker configuration properties or send test messages from admin-
istration consoles. ActiveMQ implements some features beyond the standard JMS
API that allow for administration and monitoring both programmatically and by
using well-known administration tools.

 We’ll start this chapter with the explanation of the Java Management Extension
API (JMX), the standard API for managing Java applications. Next, we’ll explain the

This chapter covers
 Understanding JMX and ActiveMQ

 Using advisory messages to monitor ActiveMQ

 Administering ActiveMQ

 Logging configuration in ActiveMQ
331

www.it-ebooks.info

http://www.it-ebooks.info/

332 CHAPTER 14 Administering and monitoring ActiveMQ
concept of advisory messages, which allow you to receive important notifications from
the broker in a more messaging-like manner.

 In later sections we’ll focus on administrator tools for interacting with brokers.
We’ll explore some of the tools embedded in the ActiveMQ distribution such as the
command agent and the web console as well as some of the external tools such as JConsole.

 Finally, we’ll explain how to adjust the ActiveMQ logging mechanism to suit your
needs and demonstrate how to use it to track down potential problems. We’ll also
show you how to change the ActiveMQ logging preferences during runtime.

 Now, let’s get started with explaining how to use the JMX API with ActiveMQ. In the
following section you’ll learn how to configure JMX in ActiveMQ, and how you can write
Java applications to gather various ActiveMQ statistics. It’s an important topic because
many tools we’ll cover later use JMX to access the broker, so this is a lengthy section.

14.1 The JMX API and ActiveMQ
Nearly every story on management and monitoring in the Java world begins with Java
Management Extensions (JMX). The JMX API allows you to implement management inter-
faces for your Java applications by exposing functionality to be managed. These inter-
faces consist of management beans, usually called MBeans, which expose resources of
your application to external management applications. For this purpose, ActiveMQ
exposes its management API through JMX, and it can be used to manage and monitor
the broker during runtime. Some of these management and monitoring tasks may
include

 Obtaining broker statistics, such as number of consumers (total or per
destination)

 Adding new connectors or removing existing ones
 Changing some of the broker configuration properties

These tasks and many more can be achieved using JMX in ActiveMQ. Because JMX is
the standard API for Java application management, most monitoring tools support the
ability to execute JMX queries. This makes it incredibly easy to integrate the monitor-
ing of a Java application into an existing tool that supports JMX.

 In this section we’ll learn how JMX is used with ActiveMQ. We’ll start by explaining
the difference between local and remote access to the broker’s management API, and
how to expose ActiveMQ JMX MBeans. While doing this, we’ll cover various configura-
tion options used to adapt JMX to your needs. Next, we’ll see an example of a Java appli-
cation that uses the JMX API to gather various broker statistics. Finally, we’ll explain
some more advanced JMX configuration topics, such as remote access and security.

14.1.1 Local vs. remote JMX access

The JVM provides what’s known as the JMX agent. The JMX agent is comprised of the
MBean server, some agent services, and some protocol adapters and connectors. The
JMX agent is used to expose the ActiveMQ MBeans. In order to control various aspects
of the JMX agent, a set of properties is provided. Through the use of these properties,
various features in the JMX agent can be enabled and disabled. For more information,
www.it-ebooks.info

http://www.it-ebooks.info/

333The JMX API and ActiveMQ
see the document titled “Monitoring and Management for the Java Platform” (http://
mng.bz/0Dzg).

 Here’s a snippet from the ActiveMQ startup script for Linux/Unix concerning the
JMX capabilities:

if [-z "$SUNJMX"] ; then
#SUNJMX="-Dcom.sun.management.jmxremote.port=1099 \

-Dcom.sun.management.jmxremote.authenticate=false \
-Dcom.sun.management.jmxremote.ssl=false"

SUNJMX="-Dcom.sun.management.jmxremote"
fi

Here’s the same snippet from the ActiveMQ startup script for Windows concerning
the SUNJMX variable:

if "%SUNJMX%" == "" set SUNJMX=-Dcom.sun.management.jmxremote
REM set SUNJMX=-Dcom.sun.management.jmxremote.port=1099 \
-Dcom.sun.management.jmxremote.authenticate=false \
-Dcom.sun.management.jmxremote.ssl=false

Note that each snippet demonstrates the use of a
variable named SUNJMX. This variable is specific to
the ActiveMQ startup scripts, and is used to hold
the JMX properties that are recognized by the
JVM. Each snippet shows that the only JMX prop-
erty that’s enabled by default is the com.sun.
management.jmxremote property. Don’t let the
name of this property fool you, as it enables the
JMX agent for local access only. This can be easily
tested by starting up JConsole and seeing
ActiveMQ in the list of locally accessible objects as
shown in figure 14.1.

 Upon selecting the ActiveMQ run.jar and clicking the Connect button, the main
screen will appear in JConsole, as shown in figure 14.2.

 Note in figure 14.2 that the ActiveMQ JMX domain (listed as org.apache.
activemq) is near the cursor. Using the default configuration and startup script in

Figure 14.2 The main
JConsole screen with the
ActiveMQ domain
included

Figure 14.1 Accessing ActiveMQ
locally from JConsole
www.it-ebooks.info

http://www.it-ebooks.info/

334 CHAPTER 14 Administering and monitoring ActiveMQ
ActiveMQ, this is what will appear in JConsole, indicating that the JMX agent is enabled
for local access. But attempts to access ActiveMQ remotely (from a remote host) via JCon-
sole will fail, as the JMX agent hasn’t been exposed on a specific port number using the
com.sun.management.jmxremote.port property. More on this later.

 Here’s a snippet from the default broker configuration with the useJmx attribute
explicitly enabled (shown in bold):

<broker xmlns="http://activemq.org/config/1.0" useJmx="true"
brokerName="localhost"
dataDirectory="${activemq.base}/data">

...

</broker>

By simply changing the useJmx attribute from true to false, the ActiveMQ domain will
no longer be available for access:

<broker xmlns="http://activemq.org/config/1.0" useJmx="false"

brokerName="localhost"
dataDirectory="${activemq.base}/data">

...

</broker>

Upon making this small configuration change, you’ll be able to access the JMX agent
via the ActiveMQ run.jar, but the ActiveMQ domain won’t be available (see figure 14.3).
This is because the JMX agent for the JVM and the domain for ActiveMQ are distinct.
The JMX agent in the JVM is controlled by the com.sun.management.jmxremote prop-
erty, whereas the ActiveMQ domain is controlled by the useJmx attribute in the broker
configuration file.

14.1.2 Exposing the JMX MBeans for ActiveMQ

By default, the MBeans for ActiveMQ are enabled to be exposed for ease of use. In
order to fully utilize the MBeans, there are additional properties in the broker config-
uration file to enable additional functionality. Listing 14.1 shows in bold what needs
to be changed in the broker configuration to enable JMX support.

Figure 14.3 The main
JConsole screen without the
ActiveMQ domain included
www.it-ebooks.info

http://www.it-ebooks.info/

335The JMX API and ActiveMQ
<broker xmlns="http://activemq.org/config/1.0" useJmx="true"

brokerName="localhost"
dataDirectory="${activemq.base}/data">

<managementContext>
<managementContext connectorPort="2011" jmxDomainName="my-broker" />

</managementContext>

<transportConnectors>
<transportConnector name="openwire" uri="tcp://localhost:61616" />

</transportConnectors>
</broker>

Two important items in the preceding configuration file are related to the JMX con-
figuration. The first is the useJmx attribute of the <broker> element that enables/dis-
ables JMX support. The value of this attribute is true by default so the broker uses
JMX by default, but it’s included in this example configuration for demonstration
purposes.

 By default, ActiveMQ starts a connector which enables remote management on
port 1099 and exposes MBeans using the org.apache.activemq domain name. These
default values are sufficient for most use cases, but if you need to customize the JMX
context further, you can do so using the <managementContext> element. In our exam-
ple we changed the port to 2011 and the domain name to my-broker. See the proper-
ties for the management context in table 14.1.

 Now we can start the broker with the following command:

$ ${ACTIVEMQ_HOME}/bin/activemq console \
xbean:${EXAMPLES}src/main/resources/org/apache/activemq/book/ch14/ \
activemq-jmx.xml

Listing 14.1 ActiveMQ JMX configuration

Table 14.1 ManagementContext properties

Property name Default value Description

useMBeanServer true If true, try to locate and use the existing
JVM's MBeanServer

jmxDomainName org.apache.activemq The JMX domain name

createMBeanServer true If true and if no MBeanServer can be located,
create a new MBeanServer

createConnector true If true then create a JMX connector to the
MBeanServer for remote management

connectorPort 1099 The port number to be used by the JMX
connector

rmiServerPort 0 The port number to be used by the RMI server

connectorPath /jmxrmi The path to be used by the JMX connector
www.it-ebooks.info

http://www.it-ebooks.info/

336 CHAPTER 14 Administering and monitoring ActiveMQ
Among the usual log messages shown during the broker startup, you may notice the
following line:

INFO ManagementContext - JMX consoles can connect to
service:jmx:rmi:///jndi/rmi://localhost:2011/jmxrmi

This is the JMX URL we can use to connect to the broker using a utility such as JCon-
sole, as discussed later in the chapter. As you can see from the output, the port num-
ber for accessing the broker via JMX has been changed from 1099 to 2011.

 Now that JMX support has been enabled in ActiveMQ, you can begin utilizing the
JMX API to interact with the broker.

14.1.3 Exploring broker properties using the JMX API

Using the JMX API, statistics can be obtained from a broker at runtime. The example
shown in the following listing connects to the broker via JMX and prints out some of
the basic statistics such as total number of messages, consumers, and queues. Next it
iterates through all available queues and prints their current size and number of con-
sumers subscribed to them.

public class Stats {

public static void main(String[] args) throws Exception {

JMXServiceURL url = new JMXServiceURL(
"service:jmx:rmi:///jndi/rmi://localhost:2011/jmxrmi");

JMXConnector connector = JMXConnectorFactory.connect(url, null);
connector.connect();
MBeanServerConnection connection =

connector.getMBeanServerConnection();

ObjectName name = new ObjectName(
"my-broker:BrokerName=localhost,Type=Broker");

BrokerViewMBean mbean =
(BrokerViewMBean) MBeanServerInvocationHandler

.newProxyInstance(connection, name, BrokerViewMBean.class, true);

System.out.println("Statistics for broker " + mbean.getBrokerId()
+ " - " + mbean.getBrokerName());

System.out.println("\n-----------------\n");
System.out.println("Total message count: " +

mbean.getTotalMessageCount() + "\n");
System.out.println("Total number of consumers: " +

mbean.getTotalConsumerCount());
System.out.println("Total number of Queues: " +

mbean.getQueues().length);

for (ObjectName queueName : mbean.getQueues()) {
QueueViewMBean queueMbean =

(QueueViewMBean) MBeanServerInvocationHandler
.newProxyInstance(connection, queueName, QueueViewMBean.class,
true);

System.out.println("\n-----------------\n");

Listing 14.2 ActiveMQ broker statistics

Queries for
broker MBean

Grabs some
broker statistics
www.it-ebooks.info

http://www.it-ebooks.info/

337The JMX API and ActiveMQ
System.out.println("Statistics for queue " + queueMbean.getName());
System.out.println("Size: " + queueMbean.getQueueSize());
System.out.println("Number of consumers: " +

queueMbean.getConsumerCount());
}

}

}

The preceding example is using the standard JMX API to access and use broker and
request information. For starters, we have to create an appropriate connection to the
broker’s MBean server. Note that we’ve used the URL previously printed in the
ActiveMQ startup log. Next, we’ll use the connection to obtain the MBean represent-
ing the broker. The MBean is referenced by its name, which in this case has the follow-
ing form:

<jmx domain name>:BrokerName=<name of the broker>,Type=Broker

The JMX object name for the ActiveMQ MBean using the default broker configuration
is as follows:

org.apache.activemq:BrokerName=localhost,Type=Broker

But recall back in listing 14.1 that the JMX domain name was changed from local-
host to my-broker. Therefore the JMX object name for the changed broker configura-
tion looks like the following:

my-broker:BrokerName=localhost,Type=Broker

With this object name to fetch the broker MBean, now the methods on the MBean can
be used to acquire the broker statistics as shown in listing 14.2. In this example, we
print the total number of messages (getTotalMessageCount()), the total consumer
count (getTotalConsumerCount()), and the total number of queues (get-
Queues().length()).

 The getQueues() method returns the object names for all the queue MBeans.
These names have a format similar to the broker MBean object name. For example,
one of the queues we’re using in the jobs queue is named JOBS.suspend and it has the
following MBean object name:

my-broker:BrokerName=localhost,Type=Queue,Destination=JOBS.suspend

The only difference between this queue’s object name and the broker’s object name is
in the portion marked in bold. This portion of the object name states that this MBean
represents a type of Queue and has an attribute named Destination with the value
JOBS.suspend.

 Now it’s time to examine the job queue example to see how to capture broker run-
time statistics using the example from listing 14.2. But first the consumer must be
slowed down a bit to be sure that some messages exist in the system before the statis-
tics are gathered. For this purpose the following broker URL is used:

private static String brokerURL =
"tcp://localhost:61616?jms.prefetchPolicy.all=1";

Grabs some
queue statistics
www.it-ebooks.info

http://www.it-ebooks.info/

338 CHAPTER 14 Administering and monitoring ActiveMQ
Note the parameter on the URI for the broker (the bold portion). This parameter
ensures that only one message is dispatched to the consumer at a time.

 Additionally, the consumer can be slowed down by adding a one-second sleep to
the thread for every message that flows through the Listener.onMessage() method.
Here’s an example of this:

public void onMessage(Message message) {
try {
//do something here
System.out.println(job + " id:" + ((ObjectMessage)message).getObject());
Thread.sleep(1000);

} catch (Exception e) {
e.printStackTrace();

}
}

The consumer (and listener) modified in this manner have been placed into package
org.apache.activemq.book.ch14.jmx, and we’ll use them in the rest of this section.

 Now the producer can be started just like it was started in chapter 3:

mvn exec:java -Dexec.mainClass=org.apache.activemq.book.ch3.jobs.Publisher

And the modified consumer can be run as well:

mvn exec:java -Dexec.mainClass=org.apache.activemq.book.ch14.jmx.Consumer

Finally, run the JMX statistics class using the following command:

mvn -e exec:java -Dexec.mainClass=org.apache.activemq.book.ch14.jmx.Stats

The org.apache.activemq.book.ch14.jmx.Stats class output is shown next:

Statistics for broker ID:dejanb-52630-1231518649948-0:0 - localhost

Total message count: 670

Total number of consumers: 2
Total number of Queues: 2

Statistics for queue JOBS.suspend
Size: 208
Number of consumers: 1

Statistics for queue JOBS.delete
Size: 444
Number of consumers: 1

Note that the statistics from the Stats class are output to the terminal. There are
many more statistics on the MBeans from ActiveMQ. The example shown here is
meant only to be an introduction.
www.it-ebooks.info

http://www.it-ebooks.info/

339The JMX API and ActiveMQ
 As you can see, it’s easy to access ActiveMQ using the JMX API. This will allow you to
monitor the broker status, which is useful in both development and production envi-
ronments. But what if you want to restrict access to the JMX capabilities?

14.1.4 Advanced JMX configuration

In some situations, advanced configuration of the JMX agent is necessary. This
includes remote access, restricting access to a specific host, and restricting access to
particular users via authentication. Most of these tasks are fairly easy to achieve
through the use of the JMX agent properties and by slightly modifying the ActiveMQ
startup script.

 Again, remember the snippet from the ActiveMQ startup script for Linux/Unix
concerning the JMX capabilities:

if [-z "$SUNJMX"] ; then
#SUNJMX="-Dcom.sun.management.jmxremote.port=1099 \

-Dcom.sun.management.jmxremote.authenticate=false \
-Dcom.sun.management.jmxremote.ssl=false"

SUNJMX="-Dcom.sun.management.jmxremote"
fi

Recall also the same snippet from the ActiveMQ startup script for Windows concern-
ing the SUNJMX variable:

if "%SUNJMX%" == "" set SUNJMX=-Dcom.sun.management.jmxremote
REM set SUNJMX=-Dcom.sun.management.jmxremote.port=1099 \
-Dcom.sun.management.jmxremote.authenticate=false \
-Dcom.sun.management.jmxremote.ssl=false

Note the portions that are commented out. These three additional properties will be
covered in this section, as well as a fourth related property.

ENABLING REMOTE JMX ACCESS

Sometimes it’s necessary to allow access to the JMX agent from a remote host.
Enabling remote access to the JMX agent is easy. The default ActiveMQ startup scripts
include a configuration for remote access to the JMX agent using the com.sun.
management.jmxremote.port property, but it’s commented out. By adding this prop-
erty to the uncommented portion of the SUNJMX variable, remote access will be
enabled on the specified port number.

 Here’s a snippet from the ActiveMQ startup script for Linux/Unix with the
com.sun.management.jmxremote.port property enabled:

if [-z "$SUNJMX"] ; then
SUNJMX="-Dcom.sun.management.jmxremote.port=1234 \

-Dcom.sun.management.jmxremote.authenticate=false \
-Dcom.sun.management.jmxremote.ssl=false"
fi

Here’s the same snippet from the ActiveMQ startup script for Windows with the
com.sun.management.jmxremote.port property enabled:
www.it-ebooks.info

http://www.it-ebooks.info/

340 CHAPTER 14 Administering and monitoring ActiveMQ
if "%SUNJMX%" == "" set SUNJMX=-Dcom.sun.management.jmxremote.port=1234 \
-Dcom.sun.management.jmxremote.authenticate=false \
-Dcom.sun.management.jmxremote.ssl=false

Note that the com.sun.management.jmxremote.port property is now enabled and
port number 1234 has been specified. Also, two additional JMX properties related to
JMX security have been enabled as well. Specifically the com.sun.management.
jmxremote.authentication property and the
com.sun. management.jmxremote.ssl property
have both been set to false. These two proper-
ties are included and set to false to disable secu-
rity because otherwise they’re both true by
default for remote monitoring. The JMX agent
in the JVM where ActiveMQ is started will be
available for access via port number 1234. After
enabling remote access, you can test this using
JConsole’s Remote tab as shown in figure 14.4.

 Upon successfully connecting to the remote
ActiveMQ instance, you’ll be able to remotely
manage and monitor ActiveMQ.

NOTE In order for the JMX remote access to work successfully, the /etc/hosts
file must be in order. Specifically, the /etc/hosts file must contain more than
just the entry for the localhost on 127.0.0.1. The /etc/hosts file must also con-
tain an entry for the real IP address and the hostname for a proper configura-
tion. Here’s an example of a proper configuration:
127.0.0.1 localhost
192.168.0.23 urchin.bsnyder.org urchin

Note the portion of the /etc/hosts file that contains an entry for the localhost
and an entry for the proper hostname and IP address.

14.1.5 Restricting JMX access to a specific host

Sometimes you need to restrict the use of JMX to a specific host in a multi-homed
environment, such as the host on which ActiveMQ is running. The fourth related
property mentioned earlier will provide this type of restriction via the Java SE, not by
ActiveMQ itself. The java.rmi.server.hostname property is used to provide just
such a restriction. As defined in the Java SE documents on the section about RMI
properties (http://mng.bz/65hS):

 The value of this property represents the host name string that should be associated with
remote stubs for locally created remote objects, in order to allow clients to invoke methods
on the remote object. In 1.1.7 and later, the default value of this property is the IP address
of the local host, in “dotted-quad” format.

This property must be added to the SUNJMX variable in the ActiveMQ startup script.
Here’s an example of adding this property to the ActiveMQ startup script for Linux/
Unix:

Figure 14.4 Accessing the JMX agent
remotely on port 1234
www.it-ebooks.info

http://www.it-ebooks.info/

341The JMX API and ActiveMQ
if [-z "$SUNJMX"] ; then
SUNJMX="-Dcom.sun.management.jmxremote \

-Djava.rmi.server.hostname=192.168.0.23"
fi

And here’s an example of adding this property to the ActiveMQ startup script for
Windows:

if "%SUNJMX%" == "" set SUNJMX=-Dcom.sun.management.jmxremote \
-Djava.rmi.server.hostname=192.168.0.23

This slight change to use the java.rmi.server.hostname property simply notes the
name of the host to which the access should be restricted. After making this change,
the ActiveMQ MBeans can only be accessed from this host.

14.1.6 Configuring JMX password authentication

Password authentication for the JMX agent is controlled by an access file and a pass-
word file. The access file is used to define roles and assign permissions to those
roles. The password file is used to map roles to passwords. The JDK provides exam-
ples of each of these files, so the best way to begin is to take a look at these files. The
files are located in the $JAVA_HOME/jre/lib/management/ directory and are
named jmxremote.access and jmxremote.password.template. Each of these files is
intended to provide a starting point for you to define your own values.

 Here are the contents of the default jmxremote.access file:

monitorRole readonly
controlRole readwrite

Note that monitorRole is the role name and readonly is the access level. The role name
needs to correspond to a role name in the password file.

 The contents of the default jmxremote.password.template file is empty but pro-
vides the following suggestion:

monitorRole QED
controlRole R&D

Note that monitorRole is the role name and QED is the password. This role name corre-
sponds to the role name in the jmxremote.access file. The idea with the jmxremote.
password.template file is that it should be used as a template—you should make a
copy of the file to use as your password file and make changes specific to your needs.

 To make a copy of the jmxremote.password.template file for Mac OS X, use the fol-
lowing command:

$ cp /System/Library/Java/JavaVirtualMachines/1.6.0.jdk/Contents/Home/lib/ \
management/jmxremote.password.template \
/System/Library/Java/JavaVirtualMachines/1.6.0.jdk/Contents/Home/lib/ \
management/jmxremote.password

To make a copy of the jmxremote.password.template file for Linux/Unix, use the fol-
lowing command:
www.it-ebooks.info

http://www.it-ebooks.info/

342 CHAPTER 14 Administering and monitoring ActiveMQ
$ cp $JAVA_HOME/jre/lib/management/jmxremote.password.template \
$JAVA_HOME/jre/lib/management/jmxremote.password

To make a copy of the jmxremote.password.template file for Windows, use the follow-
ing command:

> copy %JAVA_HOME%\jre\lib\management\jmxremote.password.template \
%JAVA_HOME%\jre\lib\management\jmxremote.password

Edit the new jmxremote.password file so that the contents match the following:

myRole foo
yourRole bar

Note that two new roles have been defined with their own passwords.
 Now edit the jmx.access file to include the two new roles so that the contents

match the following:

myRole readwrite
yourRole readonly

Note how the roles in the jmxremote.access and jmxremote.password files correspond
to one another.

 The last requirement is to enable password authentication on the JMX agent. To
do so, remove the com.sun.management.jmxremote.authenticate property from the
SUNJMX variable in the ActiveMQ startup script. Here’s an example of removing this
property from the ActiveMQ startup script for Linux/Unix:

if [-z "$SUNJMX"] ; then
SUNJMX="-Dcom.sun.management.jmxremote \

-Dcom.sun.management.jmxremote.port=1099
-Dcom.sun.management.jmxremote.ssl=false"
fi

And here’s an example of removing this property from the ActiveMQ startup script for
Windows:

if "%SUNJMX%" == "" set SUNJMX=-Dcom.sun.management.jmxremote \
-Dcom.sun.management.jmxremote.port=1099 \
-Dcom.sun.management.jmxremote.ssl=false

After removing the com.sun.management.jmxremote.authenticate property, the last
thing to do is make sure that the user running the JVM has access to the jmxremote.
password file.

NOTE After copying the jmxremote.password.template file, chances are that
you’ll need to change the permissions on that file to disallow read access. If
read access is allowed on the jmxremote.password file, the following error will
potentially rear its head when starting up ActiveMQ:
$./bin/activemq console
Error: Password file read access must be restricted:
/System/Library/Java/JavaVirtualMachines/1.6.0.jdk/Contents/Home/lib/ \
management/jmxremote.password
www.it-ebooks.info

http://www.it-ebooks.info/

343The JMX API and ActiveMQ
The only thing left to do is start up ActiveMQ and make sure that there are no errors:

$./bin/activemq console
INFO: Using default configuration
(you can configure options in one of these file:
/etc/default/activemq /Users/bsnyder/.activemqrc)

INFO: Invoke the following command to create a configuration file
./bin/activemq setup [/etc/default/activemq |
/Users/bsnyder/.activemqrc]

INFO: Using java
'/System/Library/Frameworks/JavaVM.framework/Home/bin/java'
INFO: Starting in foreground, this is just for debugging purposes
(stop process by pressing CTRL+C)
Java Runtime: Apple Inc. 1.6.0_22
/System/Library/Java/JavaVirtualMachines/1.6.0.jdk/Contents/Home

Heap sizes: current=258880k free=253105k max=258880k
JVM args: -Xms256M -Xmx256M
-Dorg.apache.activemq.UseDedicatedTaskRunner=true

-Djava.util.logging.config.file=logging.properties
-Dcom.sun.management.jmxremote
-Dactivemq.classpath=/Users/bsnyder/amq/apache-activemq-5.4.1/conf;
-Dactivemq.home=/Users/bsnyder/amq/apache-activemq-5.4.1
-Dactivemq.base=/Users/bsnyder/amq/apache-activemq-5.4.1
ACTIVEMQ_HOME: /Users/bsnyder/amq/apache-activemq-5.4.1
ACTIVEMQ_BASE: /Users/bsnyder/amq/apache-activemq-5.4.1
Loading message broker from: xbean:activemq.xml
WARN | destroyApplicationContextOnStop parameter is deprecated,
please use shutdown hooks instead
INFO | PListStore:/Users/bsnyder/amq/apache-activemq-5.4.1/data/
localhost/tmp_storage started
INFO | Using Persistence Adapter: KahaDBPersistenceAdapter
[/Users/bsnyder/amq/apache-activemq-5.4.1/data/kahadb]
INFO | ActiveMQ 5.4.1 JMS Message Broker (localhost) is starting
INFO | For help or more information please see:
http://activemq.apache.org/
INFO | Scheduler using directory:
/Users/bsnyder/amq/apache-activemq-5.4.1/data/localhost/scheduler
INFO | JobSchedulerStore:/Users/bsnyder/amq/apache-activemq-5.4.1/data/
localhost/scheduler started
INFO | Listening for connections at: tcp://mongoose.local:61616
INFO | Connector openwire Started
INFO | ActiveMQ JMS Message Broker
(localhost, ID:mongoose.local-50084-1292777410913-0:0) started
INFO | Logging to org.slf4j.impl.JCLLoggerAdapter
(org.eclipse.jetty.util.log) via org.eclipse.jetty.util.log.Slf4jLog
INFO | jetty-7.0.1.v20091125
INFO | ActiveMQ WebConsole initialized.
INFO | Initializing Spring FrameworkServlet 'dispatcher'
INFO | ActiveMQ Console at http://0.0.0.0:8161/admin
INFO | Initializing Spring root WebApplicationContext
INFO | Connector vm://localhost Started
INFO | Camel Console at http://0.0.0.0:8161/camel
INFO | ActiveMQ Web Demos at http://0.0.0.0:8161/demo
INFO | RESTful file access application at http://0.0.0.0:8161/fileserver
INFO | Started SelectChannelConnector@0.0.0.0:8161
www.it-ebooks.info

http://www.it-ebooks.info/

344 CHAPTER 14 Administering and monitoring ActiveMQ
Now start up JConsole on a remote machine and
attempt to use JConsole to remotely connect to
ActiveMQ. Figure 14.5 shows what will happen
when attempting to remotely log in to the JMX
agent using a role name and password that don’t
exist in the jmxremote.access/jmxremote.
password file pair. To successfully make a remote
connection to the JMX agent, you must use the
correct role name and password as shown in fig-
ure 14.6.

 Hopefully these advanced JMX configurations
will help you with your ActiveMQ configurations
and your ability to properly configure access.

 Beyond the JMX features for monitoring and
managing ActiveMQ, there are additional means
of monitoring the inner workings of ActiveMQ
via what are known as advisory messages.

14.2 Monitoring ActiveMQ
with advisory messages
The JMX API is a well-known mechanism often
used to manage and monitor a wide range of
Java applications. But since you’re already build-
ing a JMS application using ActiveMQ, shouldn’t
it be natural to receive messages regarding
important broker events using the same JMS
API? Fortunately, ActiveMQ provides what are
known as advisory messages to represent administrative commands that can be used to
notify messaging clients about important broker events.

14.2.1 Configuring advisory support

Advisory messages are delivered to topics whose names use the prefix ActiveMQ.
Advisory. For example, if you’re interested in knowing when connections to the bro-
ker are started and stopped, you can see this activity by subscribing to the
ActiveMQ.Advisory.Connection topic. A variety of advisory topics are available
depending on what broker events interest you. Basic events such as starting and stop-
ping consumers, producers, and connections trigger advisory messages by default. But
for more complex events, such as sending messages to a destination without a con-
sumer, advisory messages must be explicitly enabled as shown next.

Figure 14.5 Attempting to remotely
connect to the JMX agent with the wrong
role name and password

Figure 14.6 Making a successful
remote connection to the JMX agent
requires the correct role name and
password.
www.it-ebooks.info

http://www.it-ebooks.info/

345Monitoring ActiveMQ with advisory messages
<broker xmlns="http://activemq.org/config/1.0" useJmx="true"
brokerName="localhost" dataDirectory="${activemq.base}/data"
advisorySupport="true">

<destinationPolicy>
<policyMap>

<policyEntries>
<policyEntry topic=">"
sendAdvisoryIfNoConsumers="true"/>

</policyEntries>
</policyMap>

</destinationPolicy>

<transportConnectors>
<transportConnector name="openwire" uri="tcp://localhost:61616" />

</transportConnectors>

</broker>

Advisory support can be enabled using the advisorySupport attribute of the <broker>
element B. Please note that advisory support is enabled by default, so technically
there’s no need to set the advisorySupport attribute unless you want to be explicit
about the configuration. The second and more important item is the use of a destina-
tion policy to enable more complex advisories for your destinations C. In the example,
the configuration instructs the broker to send advisory messages if the destination has
no consumers subscribed to it. One advisory message will be sent for every message
that’s sent to the destination.

 To demonstrate this functionality, start the broker using the example configura-
tion from above (named activemq-advisory.xml) via the following command:

$./bin/activemq \
xbean:src/main/resources/org/apache/activemq/book/ch14/activemq-advisory.xml

14.2.2 Using advisory messages

To demonstrate this functionality, we need to create a simple class that uses the advi-
sory messages. This Java class will use the advisory messages to print log messages to
standard output (stdout) whenever a consumer subscribes/unsubscribes, or a mes-
sage is sent to a topic that has no consumers subscribed to it. This example can be run
along with the stock portfolio example to make use of the advisory messages (and
therefore, certain broker events).

 To complete this demonstration, we must modify the stock portfolio producer.
ActiveMQ will send an advisory message when a message is sent to a topic with no con-
sumers, but only when those messages are nonpersistent. Because of this, we need to
modify the producer to send nonpersistent messages to the broker by setting the
delivery mode to nonpersistent. Using the publisher from chapter 3, the following list-
ing shows this simple modification (marked as bold):

Listing 14.3 Configuring advisory support

Advisory support is
explicitly enabledB

Enable advisories
if no consumers
on all topicsC
www.it-ebooks.info

http://www.it-ebooks.info/

346 CHAPTER 14 Administering and monitoring ActiveMQ
public Publisher(String brokerURL) throws JMSException {
factory = new ActiveMQConnectionFactory(brokerURL);
connection = factory.createConnection();
connection.start();
session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);
producer = session.createProducer(null);
producer.setDeliveryMode(DeliveryMode.NON_PERSISTENT);

}

The consumer modified in this manner has been placed into package org.apache.
activemq.book.ch14.advisory and we’ll use it in the rest of this section.

 Now let’s take a look at our advisory messages example application shown next.

public class Advisory {

protected static String brokerURL = "tcp://localhost:61616";
protected static transient ConnectionFactory factory;
protected transient Connection connection;
protected transient Session session;

public Advisory() throws Exception {
factory = new ActiveMQConnectionFactory(brokerURL);
connection = factory.createConnection();
connection.start();
session =

connection.createSession(false, Session.AUTO_ACKNOWLEDGE);
}

public static void main(String[] args) throws Exception {
Advisory advisory = new Advisory();
Session session = advisory.getSession();
for (String stock : args) {

ActiveMQDestination destination =
(ActiveMQDestination)session.createTopic("STOCKS." + stock);

Destination consumerTopic =
AdvisorySupport.getConsumerAdvisoryTopic(destination);

System.out.println("Subscribing to advisory " + consumerTopic);
MessageConsumer consumerAdvisory =

session.createConsumer(consumerTopic);
consumerAdvisory.setMessageListener(new ConsumerAdvisoryListener());

Destination noConsumerTopic =
AdvisorySupport.

getNoTopicConsumersAdvisoryTopic(destination);
System.out.println("Subscribing to advisory " + noConsumerTopic);
MessageConsumer noConsumerAdvisory =

session.createConsumer(noConsumerTopic);
noConsumerAdvisory.setMessageListener(
new NoConsumerAdvisoryListener());

}
}

Listing 14.4 Forcing an advisory message

Listing 14.5 Advisory example

Create the
JMS session

Obtains consumer advisory topic

Obtains no consumer advisory topic
www.it-ebooks.info

http://www.it-ebooks.info/

347Monitoring ActiveMQ with advisory messages
public Session getSession() {
return session;

}

}

Listing 14.5 provides a demonstration using standard JMS messaging. In the main
method, all topics of interest are traversed and consumers are created for the appro-
priate advisory topics. Note the use of the AdvisorySupport class, which you can use
as a helper class for obtaining an appropriate advisory destination. In this example,
subscriptions were created for the consumer and the no topic consumer advisory topics.
For the topic named topic://STOCKS.CSCO, a subscription is created to the advisory
topics named topic://ActiveMQ.Advisory.Consumer.Topic.STOCKS.CSCO and
topic://ActiveMQ.Advisory.NoConsumer.Topic.STOCKS.CSCO.

NOTE Wildcards can be used when subscribing to advisory topics. For exam-
ple, subscribe to topic://ActiveMQ.Advisory.Consumer.Topic.> in order
to receive advisory messages when a consumer subscribes and unsubscribes to
all topics in the namespace recursively.

Now let’s take a look at the consumer listeners and how they process advisory mes-
sages. First we’ll explore the listener that handles consumer start and stop events,
shown next.

public class ConsumerAdvisoryListener implements MessageListener {

public void onMessage(Message message) {
ActiveMQMessage msg = (ActiveMQMessage) message;
DataStructure ds = msg.getDataStructure();
if (ds != null) {
switch (ds.getDataStructureType()) {
case CommandTypes.CONSUMER_INFO:
ConsumerInfo consumerInfo = (ConsumerInfo) ds;
System.out.println("Consumer '" + consumerInfo.getConsumerId()

+ "' subscribed to '" + consumerInfo.getDestination()
+ "'");

break;
case CommandTypes.REMOVE_INFO:
RemoveInfo removeInfo = (RemoveInfo) ds;
ConsumerId consumerId = ((ConsumerId) removeInfo.getObjectId());
System.out.println("Consumer '" + consumerId + "' unsubscribed");
break;

default:
System.out.println("Unknown data structure type");

}
} else {
System.out.println("No data structure provided");

}
}

}

Listing 14.6 Consumer advisory listener

Consumer created
new subscription

Consumer
unsubscribed
www.it-ebooks.info

http://www.it-ebooks.info/

348 CHAPTER 14 Administering and monitoring ActiveMQ
Every advisory is basically a regular instance of an ActiveMQMessage object. In order
to get more information from the advisory messages, the appropriate data structure
must be used. In this particular case, the message data structure denotes whether the
consumer is subscribed or unsubscribed. If we receive a message with the Consumer-
Info as data structure, it means that it’s a new consumer subscription and all the
important consumer information is held in the ConsumerInfo object. If the data struc-
ture is an instance of RemoveInfo, it means that this is a consumer that just unsub-
scribed from the destination. The call to removeInfo.getObjectId() method will
identify which consumer it was.

 In addition to the data structure, some advisory messages may contain additional
properties that can be used to obtain important information that couldn’t be
included in the data structure. The complete reference of available advisory channels,
along with appropriate data structures and properties you can expect on each of
them, can be found at the Advisory Message page on the ActiveMQ website (http://
mng.bz/j749).

 Next is an example of a consumer that handles messages sent to a topic with no
consumers.

public class NoConsumerAdvisoryListener implements MessageListener {
public void onMessage(Message message) {
try {
System.out.println("Message "

+ ((ActiveMQMapMessage)message).getContentMap()
+ " not consumed by any consumer");

} catch (Exception e) {
e.printStackTrace();

}
}

}

In this example, the advisory message is the actual message sent to the destination. So
the only action to take is to print the message to standard output (stdout).

RUNNING THE EXAMPLE

To run the example from the command line, use the following command:

$ mvn -e exec:java \
-Dexec.mainClass=org.apache.activemq.book.ch14.jmx.Advisory \
-Dexec.args="tcp://localhost:61616 CSCO ORCL"

...

Subscribing to advisory
topic://ActiveMQ.Advisory.Consumer.Topic.STOCKS.tcp://localhost:61616
Subscribing to advisory
topic://ActiveMQ.Advisory.NoConsumer.Topic.STOCKS.tcp://localhost:61616
Subscribing to advisory
topic://ActiveMQ.Advisory.Consumer.Topic.STOCKS.CSCO

Listing 14.7 No consumer advisory listener
www.it-ebooks.info

http://www.it-ebooks.info/

349Monitoring ActiveMQ with advisory messages
Subscribing to advisory
topic://ActiveMQ.Advisory.NoConsumer.Topic.STOCKS.CSCO
Subscribing to advisory
topic://ActiveMQ.Advisory.Consumer.Topic.STOCKS.ORCL
Subscribing to advisory
topic://ActiveMQ.Advisory.NoConsumer.Topic.STOCKS.ORCL

...

Note that the example application has subscribed to the appropriate advisory topics,
as expected.

 In a separate terminal, run the stock portfolio consumer using the following
command:

$ mvn -e exec:java -Dexec.mainClass=org.apache.activemq.book.ch3.Consumer \
-Dexec.args="tcp://localhost:61616 CSCO ORCL"

Upon running this command, the Advisory application will print the following out-
put to the terminal:

Consumer 'ID:dejan-bosanacs-macbook-pro.local-64609-1233592052313-0:0:1:1'
subscribed to 'topic://STOCKS.CSCO'
Consumer 'ID:dejan-bosanacs-macbook-pro.local-64609-1233592052313-0:0:1:2'
subscribed to 'topic://STOCKS.ORCL'

This means that two advisory messages were received, one for each of the two consum-
ers that subscribed.

 Now we can start the stock portfolio publisher that was modified earlier to send
nonpersistent messages. This application can be started in another terminal using the
following command:

$ mvn -e exec:java \
-Dexec.mainClass=org.apache.activemq.book.ch14.advisory.Publisher
-Dexec.args="tcp://localhost:61616 CSCO ORCL"

Note that the messages are being sent and received as expected. But if the stock port-
folio consumer is stopped, the Advisory application output will print messages similar
to the following:

...
Consumer 'ID:dejan-bosanacs-macbook-pro.local-64609-1233592052313-0:0:1:2'
unsubscribed
Consumer 'ID:dejan-bosanacs-macbook-pro.local-64609-1233592052313-0:0:1:1'
unsubscribed
Message {up=false, stock=ORCL, offer=11.817656439151577,
price=11.805850588563015}
not consumed by any consumer
Message {up=false, stock=ORCL, offer=11.706856077241527,
price=11.695160916325204}
not consumed by any consumer
Message {up=false, stock=ORCL, offer=11.638181080673165,
price=11.62655452614702}
not consumed by any consumer
Message {up=true, stock=CSCO, offer=36.51689387339347,
www.it-ebooks.info

http://www.it-ebooks.info/

350 CHAPTER 14 Administering and monitoring ActiveMQ
price=36.480413459933544}
not consumed by any consumer
Message {up=false, stock=ORCL, offer=11.524555643871604,
price=11.513042601270335}
not consumed by any consumer
Message {up=true, stock=CSCO, offer=36.583094870955556,
price=36.54654832263293}
not consumed by any consumer
Message {up=false, stock=ORCL, offer=11.515997849703322,
price=11.504493356346975}
not consumed by any consumer
Message {up=true, stock=ORCL, offer=11.552511335860867,
price=11.540970365495372}
not consumed by any consumer
...

The first two messages indicate that the two consumers unsubscribed. The rest of the
messages sent to the stock topics aren’t being consumed by any consumer, and that’s
why they’re delivered to the Advisory application.

14.2.3 Conclusion

Although it took some time to dissect this simple example, it’s a good demonstration
of how advisory messages can be used to act on broker events asynchronously, just as is
standard procedure in message-oriented applications.

 So far we’ve shown how the ActiveMQ APIs can be used to create applications to
monitor and manage broker instances. Luckily, you won’t have to do that often, as
many tools are provided for this purpose already. The following section takes a look at
some of these tools.

14.3 Tools for ActiveMQ administration
A wide range of tools exist for monitoring and administering ActiveMQ. Which ones
you’ll be using depends primarily on the environment you’re using, your setup, and
also on your preferences. We’ll start this section with an explanation of command-line
tools. Next we’ll see how we can use the JMS API to issue commands to ActiveMQ using
the command agent (and how you can use it to access your broker using chat clients).
The general-purpose management console for Java platform named JConsole and how
it can be used with ActiveMQ is our next topic. Finally, we’ll cover the ActiveMQ web
console, integrated with ActiveMQ, which provides you with a nice user interface for
inspecting ActiveMQ resources. Most of these tools use the JMX API to communicate
with the broker, so be sure to enable JMX support as explained earlier in the chapter.
So let’s see what more can we do from the command line besides starting a broker.

14.3.1 Command-line tools

You already know how to use the bin/activemq script to start the broker. In addition to
this script, the bin/activemq-admin script can be used to monitor the broker state from
the command line. The activemq-admin script provides the following functionality:
www.it-ebooks.info

http://www.it-ebooks.info/

351Tools for ActiveMQ administration
 Start and stop the broker
 List available brokers
 Query the broker for certain state information
 Browse broker destinations

In the following sections, we’ll explore this functionality and the commands used to
expose it through the use of examples. For the complete reference and explanation
of all available command options, please refer to the Command-Line Tools page on
the ActiveMQ website (http://mng.bz/lj9a).

STARTING AND STOPPING THE BROKER

The standard method for starting ActiveMQ is to use the following command on the
command line:

$ cd apache-activemq-5.4.1
$./bin/activemq

In addition, the following command using the bin/activemq script can also be used:

$./bin/activemq-admin start

Using the same script, ActiveMQ can also be stopped using the following command:

$./bin/activemq-admin stop

The bin/activemq script is a nice alternative for stopping the broker. It’ll attempt to
use the JMX API to do this, so be sure to enable JMX support if you plan to use this
script. Please note that the bin/activemq script connects to the default ActiveMQ JMX
URL to send commands, so if you made some modifications to the JMX URL (as we did
for the earlier JMX examples) or the JMX domain, be sure to provide the correct JMX
URL and domain to the script using the appropriate parameters. For example, to stop
the previously defined broker that starts the JMX connector on port 2011 and uses the
my-broker domain, the following command should be used:

$./bin/activemq-admin stop \
--jmxurl service:jmx:rmi:///jndi/rmi://localhost:2011/jmxrmi \
--jmxdomain my-broker

This command will connect to ActiveMQ via JMX to send a command to the broker
telling it to stop.

 Now it’s time to see how to get information from ActiveMQ using the command
line.

LISTING AVAILABLE BROKERS

In some situations, multiple brokers may be running in the same JMX context. Using
the bin/activemq script you can use the list command to list all the available brokers
as shown next.
www.it-ebooks.info

http://www.it-ebooks.info/

352 CHAPTER 14 Administering and monitoring ActiveMQ
$./bin/activemq-admin list
Java Runtime: Apple Inc. 1.5.0_16
/System/Library/Frameworks/JavaVM.framework/Versions/1.5.0/Home

Heap sizes: current=1984k free=1709k max=65088k
JVM args: -Dactivemq.classpath=/tmp/apache-activemq-5.4.1/conf;

-Dactivemq.home=/tmp/apache-activemq-5.4.1
-Dactivemq.base=/tmp/apache-activemq-5.4.1
ACTIVEMQ_HOME: /tmp/apache-activemq-5.4.1
ACTIVEMQ_BASE: /tmp/apache-activemq-5.4.1
Connecting to pid: 99591
BrokerName = localhost

As you can see in listing 14.8, we have only one broker in the given context and its
name is localhost.

QUERYING THE BROKER

Starting, stopping, and listing all available brokers are useful features, but what
you’ll probably want to do more often is query various broker parameters. Let’s take
a look at demonstrating the query command being used to grab information about
destinations.

$./bin/activemq-admin query -QQueue=*
Java Runtime: Apple Inc. 1.5.0_16
/System/Library/Frameworks/JavaVM.framework/Versions/1.5.0/Home

Heap sizes: current=1984k free=1709k max=65088k
JVM args: -Dactivemq.classpath=/tmp/apache-activemq-5.4.1/conf;

-Dactivemq.home=/tmp/apache-activemq-5.4.1
-Dactivemq.base=/tmp/apache-activemq-5.4.1
ACTIVEMQ_HOME: /tmp/apache-activemq-5.4.1
ACTIVEMQ_BASE: /tmp/apache-activemq-5.4.1
Connecting to pid: 99591
DequeueCount = 0
Name = TEST.FOO
MinEnqueueTime = 0
CursorMemoryUsage = 0
MaxAuditDepth = 2048
Destination = TEST.FOO
AverageEnqueueTime = 0.0
InFlightCount = 0
MemoryLimit = 1048576
Type = Queue
EnqueueCount = 0
MaxEnqueueTime = 0
MemoryUsagePortion = 0.0
ProducerCount = 0
UseCache = true
MaxProducersToAudit = 32
CursorFull = false
BrokerName = localhost

Listing 14.8 The activemq-admin list command

Listing 14.9 The activemq-admin query command
www.it-ebooks.info

http://www.it-ebooks.info/

353Tools for ActiveMQ administration
ConsumerCount = 0
ProducerFlowControl = true
Subscriptions = []
QueueSize = 0
MaxPageSize = 200
CursorPercentUsage = 0
MemoryPercentUsage = 0
DispatchCount = 0
ExpiredCount = 0

DequeueCount = 0
Name = example.A
MinEnqueueTime = 0
CursorMemoryUsage = 0
MaxAuditDepth = 2048
Destination = example.A
AverageEnqueueTime = 0.0
InFlightCount = 0
MemoryLimit = 1048576
Type = Queue
EnqueueCount = 0
MaxEnqueueTime = 0
MemoryUsagePortion = 0.0
ProducerCount = 0
UseCache = true
MaxProducersToAudit = 32
CursorFull = false
BrokerName = localhost
ConsumerCount = 1
ProducerFlowControl = true
Subscriptions = [org.apache.activemq:BrokerName=localhost,
Type=Subscription,persistentMode=Non-Durable,
destinationType=Queue,destinationName=example.A,
clientId=ID_mongoose.local-59784-1255450207356-3_0,
consumerId=ID_mongoose.local-59784-1255450207356-2_0_1_1]
QueueSize = 0
MaxPageSize = 200
CursorPercentUsage = 0
MemoryPercentUsage = 0
DispatchCount = 0
ExpiredCount = 0

In listing 14.9, the bin/activemq-admin script was used with the query command and
a query of -QQueue=*. This query will print all the state information about all the
queues in the broker instance. In the case of a broker using a default configuration,
the only queue that exists is one named example.A (from the Camel configuration
example in the conf/activemq.xml file) and these are its properties.

 The command-line tools reference page contains the full description of all avail-
able query options. If you call the query command without any additional parameters,
it’ll print all available broker properties, which can you can use to get a quick snap-
shot of a broker’s state.
www.it-ebooks.info

http://www.it-ebooks.info/

354 CHAPTER 14 Administering and monitoring ActiveMQ
BROWSING DESTINATIONS

Browsing destinations in the broker is another fundamental administrative task. This
functionality is also exposed in the bin/activemq-admin script. The following is an
example of browsing one of the queues we’re using in our job queue example.

${ACTIVEMQ_HOME}/bin/activemq-admin browse \
--amqurl tcp://localhost:61616 JOBS.delete
ACTIVEMQ_HOME: /workspace/apache-activemq-5.2.0
ACTIVEMQ_BASE: /workspace/apache-activemq-5.2.0
JMS_HEADER_FIELD:JMSDestination = JOBS.delete
JMS_HEADER_FIELD:JMSDeliveryMode = persistent
JMS_HEADER_FIELD:JMSMessageID =
ID:dejan-bosanacs-macbook-pro.local-64257-1234789436483-0:0:1:1:2
JMS_BODY_FIELD:JMSObjectClass = java.lang.Integer
JMS_BODY_FIELD:JMSObjectString = 1000001
JMS_HEADER_FIELD:JMSExpiration = 0
JMS_HEADER_FIELD:JMSPriority = 4
JMS_HEADER_FIELD:JMSRedelivered = false
JMS_HEADER_FIELD:JMSTimestamp = 1234789436702

JMS_HEADER_FIELD:JMSDestination = JOBS.delete
JMS_HEADER_FIELD:JMSDeliveryMode = persistent
JMS_HEADER_FIELD:JMSMessageID =
ID:dejan-bosanacs-macbook-pro.local-64257-1234789436483-0:0:1:1:3
JMS_BODY_FIELD:JMSObjectClass = java.lang.Integer
JMS_BODY_FIELD:JMSObjectString = 1000002
JMS_HEADER_FIELD:JMSExpiration = 0
JMS_HEADER_FIELD:JMSPriority = 4
JMS_HEADER_FIELD:JMSRedelivered = false
JMS_HEADER_FIELD:JMSTimestamp = 1234789436706

JMS_HEADER_FIELD:JMSDestination = JOBS.delete
JMS_HEADER_FIELD:JMSDeliveryMode = persistent
JMS_HEADER_FIELD:JMSMessageID =
ID:dejan-bosanacs-macbook-pro.local-64257-1234789436483-0:0:1:1:4
JMS_BODY_FIELD:JMSObjectClass = java.lang.Integer
JMS_BODY_FIELD:JMSObjectString = 1000003
JMS_HEADER_FIELD:JMSExpiration = 0
JMS_HEADER_FIELD:JMSPriority = 4
JMS_HEADER_FIELD:JMSRedelivered = false
JMS_HEADER_FIELD:JMSTimestamp = 1234789436708
...

The browse command is different from the previous commands, as it doesn’t use JMX,
but browses queues using the QueueBrowser from the JMS API. For that reason, you
need to provide it with the broker URL using the -amqurl switch. The final parameter
provided to this command is the name of the queue to be browsed.

 As you can see, a fair number of monitoring and administration operations can be
achieved from the command line. This functionality can help you to easily check the
broker’s state and can be helpful for diagnosing possible problems. But this isn’t the
end of the administrative tools for ActiveMQ. There are still a few more advanced
administrative tools; they’re explained in following sections.

Listing 14.10 The activemq-admin browse command
www.it-ebooks.info

http://www.it-ebooks.info/

355Tools for ActiveMQ administration
14.3.2 Command agent

Sometimes issuing administration commands to the broker from the command line
isn’t easily achievable, mostly in situations when you don’t have shell access to the
machines hosting your brokers. In these situations you’ll want to administer your bro-
ker using some of the existing administrative channels. The command agent allows you
to issue administration commands to the broker using plain old JMS messages. When
the command agent is enabled, it’ll listen to the ActiveMQ.Agent topic for messages.
All commands such as help, list and query submitted in form of JMS text messages
will be processed by the agent and the result will be posted to the same topic.

 In this section we’ll demonstrate how to configure and use the command agent
with the ActiveMQ broker. We’ll also go one step further and introduce the XMPP
transport connector, and see how you can use practically any instant messaging client
to communicate with the command agent.

 Let’s begin by looking at the following configuration example.

...
<broker xmlns="http://activemq.apache.org/schema/core"

brokerName="localhost"
dataDirectory="${activemq.base}/data">

<transportConnectors>
<transportConnector name="openwire" uri="tcp://localhost:61616"/>
<transportConnector name="xmpp" uri="xmpp://localhost:61222"/>

</transportConnectors>

</broker>

<commandAgent xmlns="http://activemq.apache.org/schema/core"
brokerUrl="vm://localhost"/>

...

Two details are important in this configuration fragment. First we’ve started the XMPP
transport connector on port 61222 to expose the broker to clients via XMPP (the Exten-
sible Messaging and Presence Protocol). This was achieved by using the appropriate URI
scheme, like we do for all supported protocols. XMPP is an open XML-based protocol
mainly used for instant messaging and developed by the Jabber project (http://
jabber.org/). Since it’s open and widespread, a lot of chat clients already support this
protocol, and you can use these clients to communicate with ActiveMQ.

 For the purposes of this book, we chose to use the Adium (http://www.adiumx.
com/) instant messaging client. This client runs on Mac OS X and speaks many differ-
ent protocols, including XMPP. Any XMPP client can be used here. The first step is
always to provide the XMPP client with the details to connect to ActiveMQ, such as
server host, port, username, and password, as shown in figure 14.7. Of course, you
should connect to your broker on port 61222 since that’s where the XMPP transport
connector is running, and you can use any user and password.

Listing 14.11 Command agent configuration
www.it-ebooks.info

http://www.it-ebooks.info/

356 CHAPTER 14 Administering and monitoring ActiveMQ
 After successfully connecting to the bro-
ker, you have to join the appropriate chat
room, which basically means that you’ll sub-
scribe to the topic with the same name. In
this example we’ll subscribe to the
ActiveMQ.Agent topic, so we can use the
command agent.

 Typing a message in the chat room sends
a message to the topic, so you can type your
commands directly into the messaging cli-
ent. An example of the response for the
help command is shown in figure 14.8.

 More complex commands are sup-
ported as well. Figure 14.9 shows how you
can query the topic named TEST.FOO using
the query -QTopic=TEST.FOO command.

 The example shown in this section introduced the use of XMPP protocol. This
allows you to use instant messaging applications to interact with the ActiveMQ com-
mand agent to administer the broker via standard JMS messages. Now let’s return to
some classic administration tools such as JConsole.

Figure 14.8 The result of executing help in XMPP client using the command agent

Figure 14.7 Connecting to the broker’s agent
topic using XMPP (chat) client
www.it-ebooks.info

http://www.it-ebooks.info/

357Tools for ActiveMQ administration
14.3.3 JConsole

As we said earlier, the JMX API is the standardized API used by developers to manage
and monitor Java applications. But the API isn’t so useful without a client tool. That’s
why the Java SE comes with a tool named JConsole, the Java monitoring and manage-
ment console. JConsole is a client application that allows you to browse and call meth-
ods of exposed MBeans. Because ActiveMQ requires the Java SE to run, JConsole
should be available, and is handy for quickly view-
ing broker state. In this section, we’ll cover some
of its basic operations with ActiveMQ.

 The first thing you should do after starting
JConsole (using the jconsole command on the
command line) is choose or locate the applica-
tion you want to monitor (see figure 14.10).

 In this figure, we see a local Java process run-
ning. This is the case when ActiveMQ and JCon-
sole are started on the same machine. To monitor
ActiveMQ on a remote machine, be sure to start a
JMX connector from the ActiveMQ configuration

Figure 14.9 The result of executing query in XMPP client using command agent

Figure 14.10 Connecting to ActiveMQ
using JConsole
www.it-ebooks.info

http://www.it-ebooks.info/

358 CHAPTER 14 Administering and monitoring ActiveMQ
file (via the createConnector attribute from the <managementContext> element).
Then you can enter host and port information (such as localhost and 1099 in case of
a local broker) in the Remote tab, or the full URL (such as service:jmx:rmi:///
jndi/rmi://localhost:1099/jmxrmi) in the Advanced tab.

 Upon successfully connecting to the local ActiveMQ broker, figure 14.11 demon-
strates some of what you are able to see. This figure shows that the ActiveMQ broker
exposes information about all of its important objects (connectors, destinations, sub-
scriptions, and so on) via JMX. In this particular example, all the attributes for
queue://example.A can be easily viewed. Such information as queue size and number
of producers and consumers can be a valuable debugging aid for your applications or
the broker itself.

 Besides peaking at the broker state, you can also use JConsole (and the JMX API) to
execute MBean methods. If you go to the Operations tab for the destination named
queue://example.A, you’ll see all available operations for that particular queue as
shown in figure 14.12. This figure shows that the sendTextMessage button allows you
to send a simple message to the queue. This can be a simple test tool to produce mes-
sages without writing any code.

 Now let’s look at another similar tool that’s distributed with ActiveMQ.

Figure 14.11 Viewing queue properties using JConsole
www.it-ebooks.info

http://www.it-ebooks.info/

359Tools for ActiveMQ administration
14.3.4 Web console

In chapter 9, we saw how an internal web server is used to expose ActiveMQ resources
via REST and Ajax APIs. The same web server is used to host the web console, which pro-
vides basic management functions via a web browser. Upon starting ActiveMQ using
the default configuration, you can visit http://localhost:8161/admin/ to view the web
console.

 The web console is far more modest in capabilities compared to JConsole, but it
allows you to do some of the most basic management tasks using an user interface
adapted to ActiveMQ management. Figure 14.13 shows a screenshot of the web con-
sole viewing a list of queues with some basic information.

 For every destination, you can also execute certain management operations. For
example, you can browse, purge, and delete queues, or send, copy, and move mes-
sages to various destinations. Figure 14.14 shows the page that displays basic message
properties.

 The ActiveMQ web console provides some additional pages for viewing destina-
tions and sending messages. As stated earlier, this functionality is fairly basic and is
meant to be used for development environments, not production environments.

Figure 14.12 Executing queue operations using JConsole
www.it-ebooks.info

http://www.it-ebooks.info/

360 CHAPTER 14 Administering and monitoring ActiveMQ
14.4 Configuring ActiveMQ logging
So far we’ve seen how you can monitor ActiveMQ either programmatically or using
tools such as JConsole. But there’s one more way you can peek at the broker status,
and that’s through its internal logging mechanism. When you experience problems
with the broker’s behavior, the first and most common place to begin looking for a
potential cause of the problem is the data/activemq.log file. In this section you’ll
learn how you can adjust the logging to suit your needs and how it can help you in
detecting potential broker problems.

Figure 14.13 Show all queues via the web console page

Figure 14.14 View a message via the web console page
www.it-ebooks.info

http://www.it-ebooks.info/

361Configuring ActiveMQ logging
In this section we’ll see how we can adapt ActiveMQ logging for brokers and clients.
We’ll also introduce a logging interceptor that can be used to track messages between
brokers and clients. Let’s start with the broker-related logging discussion.

14.4.1 Broker logging

ActiveMQ uses the Apache Commons Logging API (http://mng.bz/xdQM) for its inter-
nal logging purposes. So if you embed ActiveMQ in your Java application, it’ll fit what-
ever logging mechanisms you already use. The standalone binary distribution of
ActiveMQ uses Apache Log4J (http://mng.bz/940F) library as its logging facility.

 The ActiveMQ logging configuration can be found in the conf/log4j.properties
file. By default, it defines two log appenders: one that prints to standard output, and
another that prints to the data/activemq.log file. The following listing shows the stan-
dard Log4J logger configuration.

log4j.rootLogger=INFO, stdout, out
log4j.logger.org.apache.activemq.spring=WARN
log4j.logger.org.springframework=WARN
log4j.logger.org.apache.xbean.spring=WARN

As you can see in listing 14.12, by default ActiveMQ will only print messages with a log
level of INFO or above, which should be enough for you to monitor its usual behavior.
In case you detect a problem with your application and want to enable more detailed
debugging, you should change the level for the root logger to DEBUG. Just be aware
that the DEBUG logging level will output considerably more logging information, so
you’ll probably want to narrow debug messages to a particular Java package. To do
this, you should leave the root logger at the INFO level and add a line that enables
debug logging for the desired class or package. For example, to enable trace-level
logging for the TCP transport, add the following configuration to the conf/
log4j.properties file:

log4j.logger.org.apache.activemq.transport.tcp=TRACE

After making this change in the conf/log4j.properties file and restarting ActiveMQ,
you’ll begin to see the following log output:

TRACE TcpTransport
- TCP consumer thread for tcp:///127.0.0.1:49383 starting
DEBUG TcpTransport
- Stopping transport tcp:///127.0.0.1:49383
TRACE TcpTransport
- TCP consumer thread for tcp:///127.0.0.1:49392 starting
DEBUG TcpTransport
- Stopping transport tcp:///127.0.0.1:49392

In addition to starting/stopping ActiveMQ after changing the logging configuration,
one common question is how to change the logging configuration at runtime. This is
a reasonable request, since you may not want to stop ActiveMQ to change the logging

Listing 14.12 Default logger configuration
www.it-ebooks.info

http://www.it-ebooks.info/

362 CHAPTER 14 Administering and monitoring ActiveMQ
configuration. Luckily, you can use the JMX capabilities in ActiveMQ along with JConsole
to achieve this. Just make the necessary changes to the conf/log4j.properties file and
save them. Then open JConsole and select the Broker MBean as shown in figure 14.15.

 Locate the button reloadLog4jProperties on the Broker MBean’s Operations
tab. Click the button named reloadLog4jProperties and the conf/log4j.properties
file will be reloaded and your changes will be applied.

 In addition to logging from the broker side, logging is also available on the client
side.

14.4.2 Client logging

Logging on the broker side is definitely necessary, but how do you debug problems on
the client side in your Java applications? The ActiveMQ Java client APIs use the same
logging approach as the broker, so you can use the same style of Log4J configuration
file in your client application as well. In this section we’ll show you a few tips on how
you can customize client-side logging and see more information about what’s going
on inside the client-to-broker communication.

 For starters, a Log4J configuration file must be made available to the client-side
application. The following listing shows an example Log4J configuration file that will
be used in this section.

log4j.rootLogger=INFO, out, stdout

log4j.logger.org.apache.activemq.spring=WARN
log4j.logger.org.springframework=WARN

Listing 14.13 Client logging

Figure 14.15 Reload Log4J config using JConsole
www.it-ebooks.info

http://www.it-ebooks.info/

363Configuring ActiveMQ logging
log4j.logger.org.apache.xbean.spring=WARN

log4j.logger.org.apache.activemq.transport.failover.FailoverTransport=DEBUG
log4j.logger.org.apache.activemq.transport.TransportLogger=DEBUG

As you can see, the standard INFO level is being used for the root logger. Additional
configuration has been added (marked in bold) to monitor the failover transport and
TCP communication.

 Now, let’s run our stock portfolio publisher example, but with some additional
properties that will allow us to use logging settings previously defined.

$ mvn exec:java \
-Dlog4j.configuration=file:\
src/main/resources/org/apache/activemq/book/ch14/log4j.properties \
-Dexec.mainClass=org.apache.activemq.book.ch14.advisory.Publisher \
-Dexec.args="failover:(tcp://localhost:61616?trace=true) CSCO ORCL"

The log4j.configuration system property is used to specify the location of the Log4J
configuration file. Also note that the trace parameter has been set to true via the
transport connection URI. Along with setting the TransportLogger level to DEBUG, this
will allow all the commands exchanged between the client and the broker to be easily
viewed.

 Let’s say an application is started while the broker is down. What will be seen in the
log output are messages like the following:

2009-03-19 15:47:56,699 [ublisher.main()] DEBUG FailoverTransport
- Reconnect was triggered but transport is not started yet.
Wait for start to connect the transport.
2009-03-19 15:47:56,829 [ublisher.main()] DEBUG FailoverTransport
- Started.
2009-03-19 15:47:56,829 [ublisher.main()] DEBUG FailoverTransport
- Waking up reconnect task
2009-03-19 15:47:56,830 [ActiveMQ Task] DEBUG FailoverTransport
- Attempting connect to: tcp://localhost:61616?trace=true
2009-03-19 15:47:56,903 [ActiveMQ Task] DEBUG FailoverTransport
- Connect fail to: tcp://localhost:61616?trace=true, reason:
java.net.ConnectException: Connection refused
2009-03-19 15:47:56,903 [ActiveMQ Task] DEBUG FailoverTransport
- Waiting 10 ms before attempting connection.
2009-03-19 15:47:56,913 [ActiveMQ Task] DEBUG FailoverTransport
- Attempting connect to: tcp://localhost:61616?trace=true
2009-03-19 15:47:56,914 [ActiveMQ Task] DEBUG FailoverTransport
- Connect fail to: tcp://localhost:61616?trace=true, reason:
java.net.ConnectException: Connection refused
2009-03-19 15:47:56,915 [ActiveMQ Task] DEBUG FailoverTransport
- Waiting 20 ms before attempting connection.
2009-03-19 15:47:56,935 [ActiveMQ Task] DEBUG FailoverTransport
- Attempting connect to: tcp://localhost:61616?trace=true
2009-03-19 15:47:56,937 [ActiveMQ Task] DEBUG FailoverTransport
- Connect fail to: tcp://localhost:61616?trace=true, reason:
java.net.ConnectException: Connection refused
2009-03-19 15:47:56,938 [ActiveMQ Task] DEBUG FailoverTransport
- Waiting 40 ms before attempting connection.
www.it-ebooks.info

http://www.it-ebooks.info/

364 CHAPTER 14 Administering and monitoring ActiveMQ
With debug level logging enabled, the failover transport provides a detailed log of its
attempts to establish a connection with the broker. This can be extremely helpful in
situations where you experience connection problems from a client application.

 Once a connection with the broker is established, the TCP transport will start trac-
ing all commands exchanged with the broker to the log. An example of such traces is
shown next:

2009-03-19 15:48:02,038 [ActiveMQ Task] DEBUG FailoverTransport
- Waiting 5120 ms before attempting connection.
2009-03-19 15:48:07,158 [ActiveMQ Task] DEBUG FailoverTransport
- Attempting connect to: tcp://localhost:61616?trace=true
2009-03-19 15:48:07,162 [ActiveMQ Task] DEBUG Connection:11
- SENDING: WireFormatInfo {...}
2009-03-19 15:48:07,183 [127.0.0.1:61616] DEBUG Connection:11
- RECEIVED: WireFormatInfo { ... }
2009-03-19 15:48:07,186 [ActiveMQ Task] DEBUG Connection:11
- SENDING: ConnectionControl { ... }
2009-03-19 15:48:07,186 [ActiveMQ Task] DEBUG FailoverTransport
- Connection established
2009-03-19 15:48:07,187 [ActiveMQ Task] INFO FailoverTransport
- Successfully connected to tcp://localhost:61616?trace=true
2009-03-19 15:48:07,187 [127.0.0.1:61616] DEBUG Connection:11
- RECEIVED: BrokerInfo { ... }
2009-03-19 15:48:07,189 [ublisher.main()] DEBUG Connection:11
- SENDING: ConnectionInfo { ... }
2009-03-19 15:48:07,190 [127.0.0.1:61616] DEBUG Connection:11
- RECEIVED: Response {commandId = 0, responseRequired = false,
correlationId = 1}
2009-03-19 15:48:07,203 [ublisher.main()] DEBUG Connection:11
- SENDING: ConsumerInfo { ... }
2009-03-19 15:48:07,206 [127.0.0.1:61616] DEBUG Connection:11
- RECEIVED: Response { ... }
2009-03-19 15:48:07,232 [ublisher.main()] DEBUG Connection:11
- SENDING: SessionInfo { ... }
2009-03-19 15:48:07,239 [ublisher.main()] DEBUG Connection:11
- SENDING: ProducerInfo { ... }
Sending: {offer=51.726420585933745, price=51.67474584009366,
up=false, stock=CSCO}
on destination: topic://STOCKS.CSCO
2009-03-19 15:48:07,266 [ublisher.main()] DEBUG Connection:11
- SENDING: ActiveMQMapMessage { ... }
2009-03-19 15:48:07,294 [127.0.0.1:61616] DEBUG Connection:11
- RECEIVED: Response { ... }
Sending: {offer=94.03931872048393, price=93.94537334713681,
up=false, stock=ORCL}
on destination: topic://STOCKS.ORCL

For the purpose of readability, some details of specific commands have been left out
except for one log message, which is marked bold. These traces provide a full peek
into the client-broker communication, which can help to narrow application connec-
tion problems further.
www.it-ebooks.info

http://www.it-ebooks.info/

365Configuring ActiveMQ logging
 This simple example shows that with a few minor configuration changes, many
more logging details can be viewed. But beyond standard Log4J-style logging,
ActiveMQ also provides a special logger for internal broker events.

14.4.3 Internal broker event logging

The previous sections demonstrated how the broker side and the client side can be
monitored through the use of standard Log4J logging. Similar functionality is avail-
able on the broker side for internal broker operations using a logging interceptor (aka
logging plug-in). ActiveMQ plug-ins were introduced in chapter 6 where you saw how
they can be used to authenticate client applications and authorize access to broker
resources. The logging interceptor is a simple broker plug-in that uses the broker’s
internal event mechanism to log internal broker events. The types of events that are
logged can be controlled via the configuration of the logging plug-in using the prop-
erties shown in table 14.2.

 The logging plug-in is useful for seeing more information about the broker’s inter-
nal events. This can be useful for debugging purposes during development as well as
for informational purposes during production deployment. It provides more finite
logging for particular event types and allows you to see more information about what
the broker’s doing.

 To install this plug-in, add the <loggingBrokerPlugin/> element to the list of your
plug-ins in the conf/activemq.xml configuration file. Here’s an example of this:

...
<plugins>

<loggingBrokerPlugin/>
</plugins>

...

After restarting the broker, you’ll see output indicating that the logging plug-in has
been activated. After table 14.2 we see an example of such output during the broker
startup.

Table 14.2 Logging plug-in properties

Property name Default value Description

logAll false Log all events

logMessageEvents false Log only events related to producing, consuming,
and dispatching messages

logConnectionEvents true Log only events related to connections and sessions

logTransactionEvents false Log only events related to transaction handling

logConsumerEvents false Log only events related to message consumption

logProducerEvents false Log only events related to message production

logInternalEvents false Log only events related to internal broker operations
such as failover, querying internal objects, and so on
www.it-ebooks.info

http://www.it-ebooks.info/

366 CHAPTER 14 Administering and monitoring ActiveMQ
...
Loading message broker from: xbean:activemq.xml
INFO | Created LoggingBrokerPlugin: LoggingBrokerPlugin(logAll=false,

logConnectionEvents=true, logConsumerEvents=false,
logProducerEvents=false, logMessageEvents=false,
logTransactionEvents=false, logInternalEvents=false)
...

Note that the logging plug-in is using the default configuration. Send some messages
to the broker, and you’ll see the following output from the broker:

...
INFO | Adding Connection :
org.apache.activemq.broker.ConnectionContext@1c45ce17
INFO | Adding Session : SessionInfo {commandId = 3, responseRequired =
false, sessionId = ID:mongoose.local-58504-1278340965484-0:0:1}
INFO | Removing Session : SessionInfo {commandId = 0, responseRequired =
false, sessionId = ID:mongoose.local-58504-1278340965484-0:0:-1}
INFO | Removing Session : SessionInfo {commandId = 3, responseRequired =
false, sessionId = ID:mongoose.local-58504-1278340965484-0:0:1}
INFO | Removing Connection : ConnectionInfo {commandId = 1,
responseRequired = true, connectionId =
ID:mongoose.local-58504-1278340965484-0:0,
clientId = ID:mongoose.local-58504-1278340965484-1:0, userName = null,
password = *****, brokerPath = null, brokerMasterConnector = false,
manageable = true, clientMaster = true}
...

Note that the output indicates that a connection and session were added to the broker
(a connection and a session were created), and a connection and session were
removed from the broker (a connection and session were destroyed). These are events
that are logged from a producer connecting to the broker, sending some messages,
and disconnecting from the broker. If you want to see more detailed information, then
you need to enable the appropriate logging properties as listed in table 14.2.

 Coupled with the other logging techniques, the logging interceptor can help you
to gain a much better perspective of the internal broker activities while building
message-oriented systems.

14.5 Summary
After we learned how to configure the broker and write applications using it, this last
chapter showed us how we can administer and monitor ActiveMQ instances in produc-
tion. We saw how we can do it programmatically and also covered some of the tools
most often used for this purpose.

 With this discussion, we’ve come to the end of the topics planned for this book. We
hope you enjoyed reading it, and that it helps bring your ActiveMQ and messaging
knowledge to the next level. This should by no means be the end of your journey into
ActiveMQ, since it’s a project that is being continuously developed and improved.
www.it-ebooks.info

http://www.it-ebooks.info/

index
Symbols

. special character 278
* special character 278
/etc/hosts file 340
> special character 278
> wildcard character 274
$GERONIMO_HOME

variable 206
$JBOSS_HOME variable 210
$JETTY_HOME variable 188
$TOMCAT_HOME

variable 182

A

ABORT frame 236
Access Control Lists 118
ack header 228
ack() method 234, 239
acknowledgment modes 228,

325
AUTO_

ACKNOWLEDGE 326
DUPS_OK_

ACKNOWLEDGE 326
INDIVIDUAL_

ACKNOWLEDGE 326
SESSION_TRANSACTED 325

ACLs. See Access Control Lists
ActiveMessaging project 229
ActiveMQ 3

acknowledgment modes 325
administration 5
administration tools 350, 359
advanced configuration 257,

275

advisory messages 344, 350
Ajax API 250, 253
authentication 118, 123
authorization 123, 131
configuration file 65, 82
configuring JMS resources in

Apache Geronimo 196, 202
configuring JMS resources in

JBoss 212
configuring logging 360, 366
connecting over a

network 63, 79
downloading and

installing 11
embedding with an

application 146, 158
enabling JMX support 335
exposing MBeans 334, 336
features 4–5, 8
for large numbers of concur-

rent applications 272, 275
getting started 10, 14
goals 4
high availability 258, 263
history 6
in the enterprise 257, 275
instead of RPC 9
integrating with Apache

Geronimo 192, 208
integrating with Apache

Tomcat 181, 186
integrating with Apache

Tomcat using global
JNDI 184, 186

integrating with Apache
Tomcat using local
JNDI 182–183

integrating with application
servers 174, 220

integrating with JBoss 208,
216

integrating with Jetty 187,
192

integrating with Jetty using
global JNDI 189, 192

integrating with Jetty using
local JNDI 187, 189

interceptor plug-ins 288, 292
JCA resource adapter 209
JMS specification, and 42
JNDI support 217–218, 220
job queue example 50
journal, with JDBC message

store 111
licensing 4
loose coupling 6
managing brokers 332, 344
message stores 97
messaging on the web 247
monitoring 344, 350
obtaining broker

statistics 336, 339
optimizing

performance 312, 330
prefetch limit 235
REST API 248, 250
running examples 14, 16
scheduling future message

delivery 309, 311
startup scripts 333
stock portfolio example 45,

50
streams 301, 303
visualization plug-ins 288, 290
367

www.it-ebooks.info

http://www.it-ebooks.info/

368 INDEX
ActiveMQ (continued)
web console 359
when to use 8

ActiveMQ C++ library 230
ActiveMQ JCA resource

adapter 209
ActiveMQ plug-in API 131
ACTIVEMQ_ACKS table 108
ActiveMQConnection class 302
ActiveMQConnectionFactory

class 166, 184, 219
setting prefetch limit 324

ActiveMQ-CPP 244
activemq-ds.xml file 212, 214
ACTIVEMQ_LOCK table 109
ActiveMQMessage class 348
ACTIVEMQ_MSGS table 108
activemq-optional module 78
ActiveMQQueue class 167, 184
addConnection() method 132
addConnector() method 148
additive authorization 125
addListener() method 252
Adium 355
administration 5
administration tools

browsing destinations 354
command agent 355–356
command-line tools 350, 354
JConsole 357–358
listing available brokers 351
querying brokers 352
starting and stopping

brokers 351
web console 359

administrative tools 350, 359
advances messaging 236, 241
advisory messages 280, 283,

344, 350
configuring support

for 344–345
in stock portfolio

example 345
originBrokerId property 280
originBrokerName

property 280
originBrokerURL

property 280
using 345, 350

advisorySupport attribute 345
AdvisorySupport class 281, 347
advisorySupport property 268
Ajax API 250, 253

in stock portfolio
example 252

AjaxServlet class 251
alwaysSessionAsync 326
AMQ message store 103, 106

archive directory 105
archiveDataLogs

property 106
cache 103
checkpointInterval

property 106
cleanupInterval

property 106
configuring 105–106
data logs 103
directory property 105
directory structure 104
directoryArchive

property 106
forceRecoverReferenceStore

property 106
indexBinSize property 106
indexMaxBinSize

property 106
journal directory 105
kr-store 104
lock files 104
maxCheckpointMessage-

AddSize property 106
maxFileLength property 105
persistentIndex

property 106
recoverReferenceStore

property 106
reference store 103
syncOnTransaction

property 105
syncOnWrite property 105
temp-storage directory 104
useNIO property 105

amq, broker element 157
amq.uri variable 251
AMQ_SCHEDULED_

CRON 309
AMQ_SCHEDULED_

DELAY 309
AMQ_SCHEDULED_

PERIOD 309
AMQ_SCHEDULED_

REPEAT 309
Apache Camel 5, 292, 294

prepositions 292
Apache Commons Logging

API 361
Apache Commons Pool 166
Apache Commons, BasicData-

Source class 110

Apache Derby 107, 109
Apache Geronimo 6, 175, 180

$GERONIMO_HOME
variable 206

ActiveMQ plug-in 192, 196
configuring JMS

resources 196, 202
deploying applications 202,

208
distributions 192
Geronimo deployer 193
installing 192, 196
integrating with

ActiveMQ 192, 208
verifying applications 205,

208
Apache Log4J 361
Apache OpenEJB 41
Apache Software Foundation 3

Maven 43
Apache Tomcat 175

$TOMCAT_HOME
variable 182

and global JNDI 184, 186
and local JNDI 182–183
integrating with

ActiveMQ 181, 186
Apache XBean, and

Spring 154, 156
application context 177
application servers 5, 174

integrating with
ActiveMQ 174, 220

applications
co-locating with brokers 315
creating with JMS 35, 41
embedding ActiveMQ 146,

158
using BrokerFactory

class 149–150
using BrokerService

class 147, 149
fast failover 307

Architectural Styles and the Design
of Network-based Software
Architectures 248

artifacts 48
downloading 48

ASCII null character 225
asynchronous dispatch 326
asynchronous messaging 6, 8,

21
asynchronous send 319
attributes, discoveryUri 60
authenticate property 342
www.it-ebooks.info

http://www.it-ebooks.info/

369INDEX
authentication 118, 123
by IP address 132–133
certificate-based 135, 139
configuring password

authentication 341, 344
JAAS authentication plug-in

121, 123
simple authentication plug-in

118, 120
authentication property 340
authorization 123, 131

additive 125
certificate-based 139, 142
destination-level 124, 127
JMS clients 125
message-level 127, 131
operation-level 124, 127
topics 125

AuthorizationPolicy class 128
auto acknowledgment

mode 228
AUTO_ACKNOWLEDGE

acknowledgment
mode 326

automatic broker discovery,
preventing 90

B

backOffMultiplier
property 268, 306

backupPoolSize property 307
BasicDataSource class 110
BEGIN frame 236
bin/activemq script 351
bin/activemq-admin script 351

browse command 354
query command 352

binary large objects. See blob
messages

blob messages 303, 305
BlobMessage interface 305
blobs. See blob messages
blocking I/O 272
Boolean logic 29
bridges 271
broker

caching messages in 113, 116
clustering 5
configuring 79, 138–139
embedded 79
message-level

authorization 128
preventing automatic

discovery 90

broker element
advisorySupport

attribute 345
brokerName attribute 90,

269
persistent attribute 112
useJmx attribute 335

brokerConfig option 80
brokerConfig parameter 184
broker-config.xml file 210
BrokerFactory class

createBroker() method 150
embedding ActiveMQ

using 149–150
BrokerFactoryBean class,

embedding ActiveMQ in
applications 153–154

BrokerFilter class 131
addConnection()

method 132
brokerName attribute 269
BrokerPlugin interface 133
brokers

and certificates 74
and JMX API 332, 344
configuration order 265
connecting and disconnect-

ing with STOMP 225
dynamic updates 307
embedded 315, 317
embedding in an

application 99
exclusive consumers 296, 298
expired messages 287
horizontal scaling 275
internal event logging

365–366
listing 351
local versus remote

access 332, 334
logging 361–362
managing 332, 344

with JConsole 357–358
master broker

properties 260
obtaining statistics 336, 339
querying 352
selecting an exclusive

consumer 296
shared database master/

slave 261–262
shared file system master/

slave 262–263
shared nothing master/

slave 258, 261

shared storage master/
slave 261, 263

slave broker properties 260
starting and stopping from

command line 351
surviving failure 305, 308
traffic partitioning 275
vertical scaling 272, 275

BrokerService class 161
and Spring 151
embedding ActiveMQ

using 147, 149
brokerURL attribute 184
browse command 354
BTree indexes 100
BUILD ERROR 48
BytesMessage type 31

C

C#
C# consumer with NMS

API 242–243
in stock portfolio

example 242
C++ Message Service API

ActiveMQ-CPP 244
OpenWire connector 244
STOMP connector 246
writing consumers 244, 247

C++, writing consumers 244,
247

cacheEnabled parameter 318
cacheSize parameter 318
caching

in the broker 113, 116
retroactive consumers 286

catalina.sh script 183
certificate-based security

135, 142
in stock portfolio

example 140
keystores 136
testing 139, 142
truststores 136, 138

certificates 135, 142
and brokers 74
creating 73, 76, 136
truststores 136, 138

chat 355
ciphers 76

SSL_RSA_WITH_RC4_128_
SHA 77

classes
ActiveMQConnection 302
www.it-ebooks.info

http://www.it-ebooks.info/

370 INDEX
classes (continued)
ActiveMQConnectionFactory

166, 184, 219
ActiveMQMessage 348
ActiveMQQueue 167, 184
AdvisorySupport 281, 347
AjaxServlet 251
AuthorizationPolicy 128
BrokerFactory 149–150
BrokerFactoryBean 153–154
BrokerFilter 131
BrokerService 147, 149, 151,

161
ClassPathXmlApplication-

Context 153
ConnectionInfo 281
Consumer 45–46, 51, 126
DefaultMessageListener-

Container 168, 179
FileInputStream 302
FileOutputStream 303
IndividualDeadLetter-

Strategy 288
InputStream 301, 303
IPAuthentication 133
IPAuthenticationBroker 132
JMSDeliveryMode 34
JmsMessageSenderService

176
JmsTemplate 168, 178
JNDIReferenceFactory 184
masterConnector 260
MessageConsumer 24
MessageListener 45
OutputStream 301
PolicyEntry 327
PooledConnectionFactory

166
Producer 51
Publisher 45–46
QueueRequestor 34, 317
RemoveInfo 281
SimpleAsyncConsumer 244
SimpleAuthenticationPlugin

148
SpringConfig 152
Stats 338
TopicRequestor 34
XBeanBrokerFactory 149

ClassPathXmlApplication-
Context class 153

client acknowledgment
mode 228, 234, 298

client APIs 5, 8

CLIENT_ACKNOWLEDGE
acknowledgment
mode 287

CLIENT_ACKNOWLEDGE
325

client-id header 239
clientId property 241
clients

implementing with request/
reply 162, 164

JMS clients with Spring 165,
172

logging 362, 365
client-to-broker

communication 81
CMS API 232

See also C++ Message Service
API

command agent 355–356
command-line tools 350, 354

browsing destinations 354
listing available brokers 351
querying brokers 352
starting and stopping

brokers 351
commands 224
commit 236
COMMIT frame 236
commit() method 314, 325
compiled languages,

messaging 241, 247
composite destinations 279–280
composite URIs 59, 83

white space 59
conduitSubscriptions

property 269
config property 153
config-property-value

element 210
configuration order 265
configuration property 363
configuring 265

ActiveMQ JCA resource
adapter 209, 211

AMQ message store 105–106
broker 79, 138–139
client-side JNDI 217, 220
custom security plug-in 133
high availability 258, 263
HTTP connector 78
Java Management

Extensions 339–340
JDBC message store 109–110
JMS connections 166–167
JMS destinations 167

JMS resources in Apache
Geronimo 196, 202

JMS resources in JBoss 212
JMX agent 339
JMX support 335
KahaDB message store

98, 101
logging 360, 366
memory message store

112–113
network connectors 82
networks 268, 272
NIO connector 67
password

authentication 341, 344
shared nothing master/

slave 260–261
SSL connector 70
static network connector 83
STOMP 226
subscription recovery

policies 115
support for advisory

messages 344–345
TCP connector 65
transport connectors 60–61
vertical scaling 272

CONNECT frame 239
CONNECTED frame 226
Connection advisory

message 282
connection factories 36

creating 197
connectionDotFilePlugin 289

file property 289
ConnectionFactory

alwaysSessionAsync
property 326

optimizeAcknowledge
property 325

ConnectionFactory
interface 199, 217

ConnectionFactory object 35
connectionFactory

property 166
ConnectionFactoryNames

property 219
ConnectionInfo class 281
connectivity 4
connector URIs 58, 60
connectorPath property 335
connectorPort property 335
connectors

connector URIs 58, 60
discovery connector 91–92
www.it-ebooks.info

http://www.it-ebooks.info/

371INDEX
connectors (continued)
duplex connector 81
failover connector 86, 88
fanout connector 93–94
forwarding bridge 81, 84
HTTP connector 77, 79
low-level 59
multicast connector 89, 91
network connectors 81, 94
NIO connector 66, 68
peer connector 92–93
SSL connectors 70, 77
static network connector

83, 86
TCP connector 64, 66
transport 60, 63
UDP connector 68, 70
VM connector 79, 81

Consumer class 45–46, 51, 126
Consumer.Queue advisory

message 282
consumers

C# consumer with NMS
API 242–243

C++ consumers 244, 247
caching messages in

broker 113, 116
exclusive consumers 296, 298
for blob messages 304
Perl STOMP consumer 234,

236
PHP STOMP consumer

233–234
Python STOMP

consumer 229, 233
retroactive 286–287
Ruby STOMP consumer 227,

229
selecting an exclusive

consumer 296
consumersBeforeDispatch-

Starts property 300
context.xml file 182, 184
copyMessageOnSend

property 317
correlation ID 161, 163
CPAN Net::Stomp module 234
createBroker() method 150,

161
createConnection()

method 120
createConnector attribute 358
createConnector property 335
createMBeanServer

property 335
createMessage() method 169

createProducer method 23
createStockMessage()

method 222
creating

certificates 73, 76, 136
custom security plug-in 131,

135
JMS applications 35, 41
truststores 136, 138

Cron 310
cUrl 250
custom namespaces 156, 158
custom security plug-in

131, 135
configuring 133
implementing 132–133
testing 134–135

D

databases, supported by JDBC
message store 107

db.data file 101
db.redo file 101
dead-letter queues 287–288
dead-letter strategies 287
DEBUG logging level 361, 363
debugging 361
decreaseNetworkConsumer-

Priority property 270
DefaultMessageListener-

Container class 168, 179
default-nc network

connector 90
deleting messages 98
demo configuration file 60
dependency element 203
Destination attribute 337
destination hierarchies

278–279
Destination interface 217
Destination object 35
destination policies 300, 345

FixedSizeSubscription-
RecoveryPolicy 114

subscriptionRecoveryPolicy
114

destinationDotFilePlugin 289
file property 290

destination-level
authorization 124, 127

admin operations 124
in stock portfolio

example 125
read operations 124

wildcards 124
write operations 124

destinations 21
browsing 354
composite destinations

279–280
destination hierarchies

278–279
destination policies 300
naming 226
subscribing and unsubscrib-

ing with STOMP 225
discovery 83
discovery connector 91–92

in stock portfolio
example 91

syntax 91
discoveryUri attribute 60
distributed lock manager 262
distributed locks, using exclu-

sive consumers 297–298
dlm 262
domains, point-to-point

messaging 43
domain-specific languages 292
DOT file 289
duplex connector 81
DUPS_OK_ACKNOWLEDGE

acknowledgment
mode 326

durable subscribers, and mes-
sage stores 97

durable subscriptions 33
durable topic subscribers 236,

239, 241
dynamic network discovery 266
dynamic networks 88, 94
dynamicallyIncluded-

Destinations property 270
dynamicOnly property 269,

275

E

EJB containers 41
embedded brokers 79, 92, 160,

315, 317
in stock portfolio

example 80
sample application 328
with VM transport 315

embedding ActiveMQ in
applications 146, 158

using Apache XBean 154,
156
www.it-ebooks.info

http://www.it-ebooks.info/

372 INDEX
embedding ActiveMQ in appli-
cations (continued)

using BrokerFactory
class 149–150

using BrokerFactoryBean
class 153–154

using BrokerService
class 147, 149

using custom
namespaces 156, 158

using Java 147, 150
using pure Spring

configuration 151, 153
using Spring 150, 158

enabledCipherSuites option 76
enterprise 257, 275
enterprise messaging 18, 21

history 18
errors, BUILD ERROR 48
ExceptionListener

interface 244
excludedDestinations

property 269
exclusive consumers 296, 298

distributed locks 297–298
selecting 296

Expired.Queue advisory
message 282

exponential back off 306
Extensible Markup Language

and stock portfolio
example 222–223

custom namespaces 156, 158
pure Spring

configuration 151, 153
See also XML schema docu-

ments
Extensible Messaging and

Presence Protocol 355

F

failover protocol 86, 88, 305,
308

exponential back off 306
reconnection delay logic 87
when to use 88

fanout connector 93–94
syntax 93

FastProducer.Queue advisory
message 282

FIFO. See first in, first out
file locks 297
file property 289
FileInputStream class 302

FileOutputStream class 303
files

ActiveMQ configuration
file 65, 82

activemq-ds.xml 212, 214
broker configuration

file 118
broker-config.xml 210
context.xml 182, 184
db.data 101
db.redo 101
demo configuration file 60
DOT files 289
/etc/hosts file 340
geronimo-web.xml 202
groups.properties 139
groups.properties file 121
jboss-web.xml 213
jetty.xml 189
jetty-env.xml 187
jms-context.xml 205, 213
jms-webapp.jar 216
jms-webapp.war 182, 188,

191, 206
jmx.access 342
jmxremote.access 341
jmxremote.password 342
jmxremote.password.

template 341
jndi.properties 218
KahaDB log files 100
lock files 104
Log4J configuration file 362
log4j.properties 361
login.config 121, 124
pom.xml 78
ra.xml 210
server.xml 184
SimpleAsyncConsumer 244
user.properties 139
users.properties file 121
web.xml 176, 203, 214, 251

fire-and-forget 6
first in, first out 97, 296
fixed count subscription recov-

ery policy 114
fixed size subscription recovery

policy 114
FixedSizedSubscription-

RecoveryPolicy 286
forwarding bridge 81, 84
frames 224

ABORT 236
BEGIN 236
body 224
commands 224

COMMIT 236
CONNECT 239
CONNECTED 226
creating in Ruby 228
headers 224
SEND 226, 237
SUBSCRIBE 235

FULL advisory message 282
futureOnly property 291

G

Geronimo. See Apache
Geronimo

geronimo-web.xml file 202
dependency element 203
hidden-classes element 203
moduleId element 203

GET method 248
getObjectId() method 348
getPropertyNames method 28
getQueues() method 337
getRemoteAddress()

method 128
getTotalConsumerCount()

method 337
getTotalMessageCount()

method 337
Global File System 262
global JNDI 180

and Apache Tomcat 184, 186
and Jetty 189, 192
Java Naming and Directory

Interface 175
resource configurations 185

gmcs 243
GNU Wget 249
Graphviz 288
group address 89
group property 121
groups.properties file 121, 139

H

headers 224
ack 228
client-id 239
JMSXGroupID 299–300
prefetchSize 235
SUBSCRIBE 240
subscriptionName 240
transaction 236

hidden-classes element 203
hierarchical URIs 58
www.it-ebooks.info

http://www.it-ebooks.info/

373INDEX
high availability 258, 263
shared database master/

slave 261–262
shared file system master/

slave 262–263
shared nothing master/

slave 258, 261
shared storage master/

slave 261, 263
high-performance

applications 307
horizontal scalability 9
horizontal scaling 275
hostname property 340
hosts, restricting access to 340
HTTP 77, 248
HTTP connector 77, 79

configuring 78
in stock portfolio

example 78
syntax 77

HTTP over SSL. See Secure
Sockets Layer Protocol

HTTPS. See Secure Sockets
Layer Protocol

hypertext 77
Hypertext Transfer

Protocol 77, 79
GET method 248
POST method 248

I

implementing custom security
plug-in 132–133

import resource 292
INDIVIDUAL_ACKNOWLEDGE

acknowledgment
mode 326

IndividualDeadLetterStrategy
class 288

inflight messages 323
INFO logging level 361, 363
Informix 107
InitialContextFactory

interface 219
initialReconnectDelay

property 267
InputStream class 301, 303
installing

Apache Geronimo 192, 196
JBoss 209, 211
pyactivemq project 231

installPlugin() method 133
integrating

ActiveMQ with Apache
Geronimo 192, 208

ActiveMQ with Apache
Tomcat 181, 186

ActiveMQ with application
servers 174, 220

ActiveMQ with JBoss 208,
216

ActiveMQ with Jetty 187, 192
sample web application 176,

181
with Apache Tomcat using

global JNDI 184, 186
with Apache Tomcat using

local JNDI 182–183
with Jetty using global

JNDI 189, 192
with Jetty using local

JNDI 187, 189
interceptor plug-ins 288, 292

logging 290
statistics plug-in 291, 293
timestamp plug-in 291
visualization 288, 290

interfaces
BlobMessage 305
BrokerPlugin 133
ConnectionFactory 199, 217
Destination 217
ExceptionListener 244
InitialContextFactory 219
LoginModule 121
Message 28
MessageAuthorizationPolicy

127
MessageConsumer 23, 45, 50
MessageCreator 168, 178
MessageListener 24, 33, 39,

45, 50, 244, 298, 329
MessageProducer 23, 45, 50
ScheduledMessage 309
Session 30
TransportListener 305

intialReconnectDelay
property 306

IP address, authorization
by 132

IP multicast 89
IPAuthenticationBroker

class 132
installPlugin() method 133

IPAuthenticationPlugin
class 133

isAllowedToConsume()
method 128

J

J2EE Connector
Architecture 175

JAAS. See Java Authentication
and Authorization Service

jaasCertificateAuthentication-
Plugin element 138–139

Jabber 355
Java 5, 8

checking current version 10
consumers 14
downloading and

installing 10
embedding ActiveMQ in

applications 146, 150
primitive types 28
producers 15
transport connectors 61
VM connector 79

Java Authentication and Autho-
rization Service 117

in stock portfolio
example 123

JAAS login module 131
JAAS plug-in 121, 123

Java consumers 14
Java EE 171

containers 175
Java Management

Extensions 332, 344
advanced

configuration 339–340
bin/activemq script 351
configuring password

authentication 341, 344
enabling remote access 339
enabling support for 335
exposing MBeans 334, 336
JMX agent 332
local versus remote

access 332, 334
obtaining broker

statistics 336, 339
restricting access 340

Java Message Service. See JMS
Java Naming and Directory

Interface. See JNDI
Java producers 15
Java SE downloading and

installing 10
Java Secure Socket

Extension 70
Java Servlet specification 175
www.it-ebooks.info

http://www.it-ebooks.info/

374 INDEX
Java Virtual Machine
JMX agent 332
-Xmx option 273

java.naming.factory.initial
property 219

JBoss 175, 180
$JBOSS_HOME variable 210
and Log4J 213
configuring JMS

resources 212
deploying applications

215–216
installing 209, 211
integrating with

ActiveMQ 208, 216
sample application 212, 216
Snowdrop 214
verifying applications

215–216
JBoss Virtual File System 214
jboss-web.xml file 213
JCA resource adapter 209
JCA. See J2EE Connector

Architecture
JConsole 333, 340, 357–358
JDBC message store 107, 111

ACTIVEMQ_ACKS table 108
ACTIVEMQ_LOCK table 109
ACTIVEMQ_MSGS table 108
configuring 109–110
schema 108–109
supported databases 107
with ActiveMQ journal 111

JDBC persistence adapter 109
jee:jndi-lookup element 177
Jetty 175, 180

$JETTY_HOME variable 188
and global JNDI 189, 192
and local JNDI 187, 189
Hightide 187
integrating with

ActiveMQ 187, 192
jetty.xml file 189
jetty-env.xml file 187
JMS 17, 41, 158

ActiveMQ streams 301, 303
administered objects 22, 35

ConnectionFactory 35
Destination 35

clients 22–23, 125
headers set by 27
JMS API 23

compliance 4
configuring

connections 166–167
configuring destinations 167

configuring JMS resources in
Apache Geronimo 196,
202

configuring JMS resources in
JBoss 212

consumers 22, 24, 36
creating applications 35, 41
creating connection

factories 197
creating consumers 167–168
creating destinations 197
creating producers 168, 171
defined 21, 23
delivery modes 26

nonpersistent 26
persistent 26

destinations 36
creating 197

domains 22, 32, 34
message durability 33
message persistence 33
point-to-point 32
publish/subscribe 33

JMS API 23
message selectors 29, 31
messages 22, 25, 29, 36

durability 33
headers 25, 27
message IDs 26
payload 31
persistence 33
priority 27
properties 28–29

non-JMS clients 22, 25
point-to-point messaging 50
producers 22–24, 36

default destination 23
providers 22, 25

headers set by 27
queues 43
specification 23, 35, 42

JMS API 21, 23
JMS connection factory 175
JMS connections 36, 196
JMS message headers 25, 27

JMSCorrelationID 27
JMSDeliveryMode 26
JMSDestination 26
JMSExpiration 26
JMSMessageID 26
JMSRedelivered 27
JMSReplyTo 27
JMSTimestamp 27
JMSType 27
set by client 27

set by provider 27
set by send method 26

JMS message properties 28–29
custom 28
JMS-defined 29
JMSXAppID 29
JMSXConsumerTXID 29
JMSXDeliveryCount 29
JMSXGroupID 29
JMSXGroupSeq 29
JMSXProducerTXID 29
JMSXRcvTimestamp 29
JMSXState 29
JMSXUserID 29
provider-specific 29

jms-context.xml file 205, 213
JMSCorrelationID header 27
JMSCorrelationID

property 159
JMSDeliveryMode class 34
JMSDeliveryMode header 26
JMSDestination header 26
JMSExpiration header 26
JmsMessageDelegate Java

bean 179
JMSMessageID header 26
JmsMessageSenderService

class 176
JMSPriority header 27
JMSPriority message header 27
JMSRedelivered header 27
JMSReplyTo header 27
JMSReplyTo property 159, 161,

163
JmsTemplate class 168, 178

send() method 168
JMSTimestamp header 27
JMSType header 27
jms-webapp.jar file 216
jms-webapp.war file 182, 188,

191, 206
JMSXAppID property 29
JMSXConsumerTXID 29
JMSXDeliveryCount

property 29
JMSXGroupFirstForConsumer

property 300
JMSXGroupID header 299
JMSXGroupID property 29
JMSXGroupSeq header 300
JMSXGroupSeq property 29
JMSXProducerTXID

property 29
JMSXRcvTimestamp

property 29
www.it-ebooks.info

http://www.it-ebooks.info/

375INDEX
JMSXState property 29
JMSXUserID property 29
JMX agent 332

configuring 339
enabling remote access 339

JMX. See Java Management
Extensions

jmx.access file 342
jmxDomainName

property 335
jmxremote property 333
jmxremote.access file 341
jmxremote.password file 342
jmxremote.password.template

file 341
JNDI 37, 175, 217, 220

client-side
configuration 217, 220

providers 217
resources, validating defini-

tions in Apache
Geronimo 205

support in ActiveMQ 218,
220

jndi.properties file 218
connectionFactoryNames

property 219
java.naming.factory.initial

property 219
JNDIReferenceFactory

class 184
job queue example 50, 53

running 51, 53
job queues 50
JOBS.delete queue 50
JOBS.suspend queue 50
JSSE. See Java Secure Socket

Extension

K

KahaDB message store 98, 103,
262, 274

archive directory 101
archiveDataLogs

property 102
BTree indexes 100
cache 100
checkForCorruptJournal-

Files property 102
checkpointInterval

property 102
checksumJournalFiles

property 102

cleanupInterval
property 101

concurrentStoreAndDispatch-
Queues property 102

concurrentStoreAndDispatch-
Topics property 102

concurrentStoreAndDispatch-
Transactions property 102

configuring 98, 101, 103
configuring

programmatically 99
data logs 100
databaseLockedWaitDelay

property 102
directory property 101
directory structure 100
directoryArchive

property 102
enableIndexWriteAsync

property 101
enableJournalDiskSyncs

property 101
ignoreMissingJournalfiles

property 102
indexCacheSize

property 101
indexWriteBatchSize

property 101
journalMaxFileLength

property 101
log files 100
maxAsyncJobs property 102

keepalive protocol 305
keyStore property 72
keyStorePassword property 72
keystores 71, 136

default 71
exporting 136
keytool 73

keytool 73
kr-store 104

data directory 105
state directory 105

L

last image subscription recov-
ery policy 115

LDAP 121
limit attribute 273
literals 30
local JNDI 180

and Apache Tomcat 182–183
and Jetty 187, 189
See also JNDI

lock files 104
Log4J 213

configuration file 362
log4j.properties file 361
logAll property 290, 365
logConnectionEvents

property 290, 365
logConsumerEvents

property 290, 365
logging 360, 366

broker event logging
365–366

brokers 361–362
clients 362, 365
DEBUG logging level 361,

363
INFO logging level 361, 363
logging interceptor 365

logging interceptor 365
logAll property 365
logConnectionEvents

property 365
logConsumerEvents

property 365
logInternalEvents

property 365
logMessageEvents

property 365
logProducerEvents 365
logTransactionEvents

property 365
properties 365

logging interceptor plug-
in 290

logging plug-in. See logging
interceptor

loggingBrokerPlugin
element 365

loggingInterceptor 290
login.config file 121

activemq-certificate
configuration 139

activemq-domain
configuration 124

group property 121
user property 121

login.config property 122, 125
LoginModule interface 121
logInternalEvents

property 290, 365
logMessageEvents

property 290, 365
logProducerEvents

property 290, 365
www.it-ebooks.info

http://www.it-ebooks.info/

376 INDEX
logTransactionEvents
property 365

loose coupling 6, 8, 10
advantages of 7

low-level connectors 59

M

mainframes 18
management beans. See MBeans
management interfaces 332
managementContext

element 335
createConnector

attribute 358
MapMessage type 31
master broker properties 260
master/slave 258

shared database master/
slave 261–262

shared file system master/
slave 262–263

shared nothing 258, 261
shared storage 261, 263

MasterBroker advisory
message 282

masterConnector class 260
password parameter 260
remoteURI parameter 260
userName parameter 260

Maven 78, 166, 176, 185, 190,
204–205, 215

artifacts 48
downloading and

installing 43, 45
Nexus repository

manager 48
maxActive property 110
maxCacheSize property 307
MaxDB 107
maxInactivityDuration

property 306
maxReconnectDelay

property 268
MBeans 332

exposing 334, 336
retrieving 337

MDBs 39, 41
memory message store 111,

113
configuring 112–113

message brokers 25
caching 113
embedded 160
with request/reply 160, 162

message consumers
message-level

authorization 130
optimizing 323, 327
prefetch limit 323–324
sample application 329

message copy 328
message delivery

and acknowledgment
325–326

mode, setting 314
semantics 303

message groups 298, 301
message IDs 26
Message interface 28
message listener container 167

DefaultMessageListener-
Container 168

message persistence 113
message producers

and message-level
authorization 129

asynchronous send 319
optimizing 319, 322
producer flow control 320,

322
sample application 329
setting delivery mode 314
useAsyncSend property 319

message properties
JMSCorrelationID 159
JMSReplyTo 159

message selectors 29, 31
Boolean evaluation 29
syntax 30

message stores 97, 113
AMQ message store 103, 106
durable subscribers 97
first in, first out 97
JDBC message store 107, 111
KahaDB 98, 103
memory message store 111,

113
Message type 31
messageAuthorizationPolicy

element 128
MessageAuthorizationPolicy

interface 127
MessageConsumed.Queue advi-

sory message 282
MessageConsumer class 24
MessageConsumer

interface 23–24, 45, 50
receive() method 325

MessageCreator interface 168,
178

MessageDelivered.Queue advi-
sory message 282

message-destination-ref
element 177, 203

MessageDLQd.Queue advisory
message 282

message-driven beans. See
MDBs

message-level
authorization 127, 131

and message consumers 130
message producers 129

MessageListener 45
MessageListener interface 24,

33, 39, 45, 50, 244, 298,
329

onMessage() method 325
message-oriented middleware.

See MOM
MessageProducer interface 23,

45, 50
messages

acknowledging with
STOMP 225

advisory messages 280, 283,
344, 350

asynchronous dispatch 326
blob messages 303, 305
caching in broker 113, 116
composite destinations

279–280
dead-letter queues 287–288
deleting 98
delivery and

acknowledgment 325–326
exclusive consumers 296,

298
first in, first out 97
group address 89
inflight 323
JMS clients using

Spring 165, 172
JMS messages 22
message groups 298, 301
message stores 97, 113
network configuration 268,

272
network discovery 266, 268
nonpersistent 313–314, 328
passing across a network of

brokers 263, 272
redelivery 287–288
request/reply 158, 165
retroactive consumers

286–287
www.it-ebooks.info

http://www.it-ebooks.info/

377INDEX
routing with Apache
Camel 292, 294

scheduling for future
delivery 309, 311

sending and
acknowledging 237

sending asynchronously 319
store and forward 264, 266
transactions 314–315
virtual topics 284, 286
wildcards 278–279
XML 78

messageSenderService Java
bean 177

MessageServlet servlet 249
messaging

advanced messaging with
STOMP 236, 241

Ajax API 250, 253
asynchronous 8, 21
blob messages 303, 305
composite destinations

279–280
configuring JMS

destinations 167
creating JMS

consumers 167–168
creating JMS producers 168,

171
dead-letter queues 287–288
distributed locks 297–298
durable topic

subscribers 239, 241
enterprise 18, 21
exclusive consumers 296,

298
JMS clients using

Spring 165, 172
message redelivery 287–288
nonpersistent messages

313–314
on the web 247, 253
point-to-point 32, 43, 50, 53
publish/subscribe 32–33, 43,

45, 50
request/reply 34, 158, 165
REST API 248, 250
retroactive consumers

286–287
routing with Apache

Camel 292, 294
scheduling for future

delivery 309, 311
STOMP transactions 236,

239

streams 301, 303
virtual topics 284, 286
wildcards 278–279
with compiled

languages 241, 247
with scripting languages 224,

241
with STOMP 224, 241
with XML 222–223

messaging applications 5
methods

ack() 234, 239
addConnection() 132
addConnector() 148
addListener() 252
commit() 314, 325
createBroker() 150, 161
createConnection() 120
createMessage() 169
createProducer 23
createStockMessage() 222
getObjectId() 348
getPropertyNames 28
getQueues() 337
getRemoteAddress() 128
getTotalConsumerCount()

337
getTotalMessageCount() 337
installPlugin() 133
isAllowedToConsume() 128
onException() 245
onMessage 24, 39
onMessage() 244, 325, 338
open() 228
POST 248
printXml() 229
propertyExists 28
receive 33
receive() 325
request() 163
rollback() 287
runConsumer() 245
send 23, 26
send() 168
sendMessage() 252
setDeliveryMode 34
setDisableMessageID 26
setDisableMessageTime-

stamp 27
setMessageListener 33
setText() 223
setTimeToLive 26
setupConsumer() 161
start() 148, 161–162

startProducing() 298
subscribe() 228

MLC. See message listener con-
tainer

moduleId element 203
MOM 3, 17, 41

defined 20–21
history 18

Mono project 242
multicast 94
multicast connector 89, 91

syntax 89
when to use 89

multicast discovery 267
multicast protocol, when to

use 89
multithreading, in JMS

applications 39
MySQL 107

N

needClientAuth
parameter 139

.NET Message Service API
in stock portfolio

example 242
writing a C# consumer

242–243
network configuration 268,

272
conduitSubscriptions

property 269
decreaseNetworkConsumer-

Priority property 270
dynamicallyIncludedDestina-

tions property 270
dynamicOnly property 269
excludedDestinations

property 269
name property 271
networkTTL property 271
prefetchSize property 269
staticallyIncludedDestina-

tions property 270
network connectors 81, 94

configuring 82
default-nc 90
failover connector 86, 88

network discovery 266, 268
dynamic 266
multicast 267
static 266
static transport

properties 267
www.it-ebooks.info

http://www.it-ebooks.info/

378 INDEX
network name property 271
network of brokers 81, 94

discovery 82
in stock portfolio

example 84
network configuration 268,

272
network discovery 266, 268
passing messages across 263,

272
store and forward 264, 266

network properties
conduitSubscriptions 269
decreaseNetworkConsumer-

Priority 270
dynamicallyIncluded-

Destinations 270
dynamicOnly 269
excludedDestinations 269
name 271
networkTTL 271
prefetchSize 269
staticallyIncluded-

Destinations 270
networkConnector element 82

name attribute 82
uri attribute 82, 89

networkConnectors
element 82

networks
connecting to ActiveMQ 63,

79
dynamic 88, 94
network connectors 81
peer-to-peer 92
static 83, 88
surviving failure 305, 308
unsecured 70

networkTTL property 271
New I/O API protocol 66, 68
Nexus 48
NIO connector 66, 68

configuring 67
syntax 67
when to use 66

NIO transport connector 272
NIO. See New I/O API protocol
NMS API. See .NET Message

Service API
no subscription recovery

policy 115
nonblocking I/O 272
nondurable subscriptions 34
non-JMS clients 22, 25

nonpersistent delivery
mode 26, 307

nonpersistent messages
313–314, 328

why they’re faster 313

O

ObjectMessage type 31
onException() method 245
onMessage() method 24, 39,

244, 325, 338
open() method 228
OpenWire 65–66, 79, 90, 224,

230, 273, 306
and CMS API 244
protocol 318–319

wire format
parameters 318

operation-level
authorization 124, 127

in stock portfolio
example 125

wildcards 124
optimizeAcknowledge

property 325, 329
optimizeDispatch property 273
optimizing performance 312,

330
asynchronous dispatch 326
general techniques 313–314,

319
message delivery and

acknowledgment 325–326
message producers 319, 322
optimizing message

consumers 323, 327
prefetch limit 323–324
producer flow control 320,

322
sample application 327, 330
tuning TCP transport 319
with embedded brokers 315,

317
with nonpersistent

messages 313
with OpenWire

protocol 318–319
with transactions 314–315

Oracle 107, 110
originBrokerId property 280
originBrokerName

property 280
originBrokerURL property 280
OutputStream class 301

P

password parameter 260
payload 31

BytesMessage type 31
MapMessage type 31
Message type 31
ObjectMessage type 31
StreamMessage 31
TextMessage type 31

Payment Card Industry Data
Security Standard 77

peer connector
in stock portfolio

example 92
syntax 92
when to use 93

peer-to-peer networks 92
performance 312, 330

asynchronous dispatch 326
general techniques 313–314,

319
message delivery and

acknowledgment 325–326
message producers 319, 322
optimizing message

consumers 327
prefetch limit 324
producer flow control 320,

322
sample application 327, 330
tuning TCP transport 319
with embedded brokers 315,

317
with OpenWire

protocol 318–319
with transactions 314–315

performance tuning 66
Perl

CPAN Net::Stomp
module 234

in stock portfolio
example 234

prefetch limit 235
STOMP consumer 234, 236

persistence 4
persistenceAdapter element 98

dataSource property 109
persistent delivery mode 26,

307
persistent messages, why

they’re slower 313
PHP

STOMP consumer 233–234
stompcli library 233
www.it-ebooks.info

http://www.it-ebooks.info/

379INDEX
physicalName attribute 269
pluggable authentication 121
pluggable persistence 4
plug-ins

ActiveMQ plug-in for
Geronimo 192, 196

connectionDotFilePlugin
289

custom security plug-in 131,
135

destinationDotFilePlugin
289

interceptor plug-ins 288, 292
JAAS authentication plug-

in 121, 123
jaasCertificateAuthentica-

tionPlugin element
138–139

logging 290
logging plug-in. See logging

interceptor
maven-exec-plugin 47
simple authentication plug-

in 118, 120
statistics plug-in 291, 293
timestamp plug-in 291
visualization 288, 290

point-to-point messaging 32,
43, 50, 53

and queues 51
PolicyEntry class 327
pom.xml file 78
PooledConnectionFactory

class 166
connectionFactory

property 166
port property 334, 339
POST method 248

-d switch 250
PostgreSQL 107
prefetch limit 235, 323–324,

327
default sizes 324

prefetchSize header 235
prefetchSize parameter 250
prefetchSize property 269, 275
prepositions 292
price() function 253
primitive Java types 28
printXml() method 229
Producer class 51
producer flow control 320, 322

disabling 321
sendFailIfNoSpace

property 322

sendFailIfNoSpaceAfter-
Timeout property 322

tuning 321–322
Producer.Queue advisory

message 282
producerWindowSize

property 320
properties

config 153
copyMessageOnSend 317
exec.args 47
group property 121
KahaDB configuration

properties 101
keyStore 72
keyStorePassword 72
maxActive 110
start 153
trustStore 72
user 121

PropertiesLoginModule
element 121

propertyExists method 28
protocols

commonly supported 21
discovery protocol 91–92
failover protocol 86, 88,

305, 308
fanout protocol 93–94
Hypertext Transfer

Protocol 77, 79
keepalive protocol 305
multicast protocol 89, 91
NIO. See New I/O API

protocol
OpenWire 65, 224
peer protocol 92–93
Secure Sockets Layer

Protocol 70, 77
static network connector 83,

86
TCP 64
User Datagram Protocol 68,

70
wire protocols 65
xbean: 80
See also connectors

PTP. See point-to-point
messaging

publish/subscribe messaging
32–33, 43, 45, 50

Publisher class 45–46
pure Spring configuration 151,

153
pyactivemq project 230, 233

CMS API 232

in stock portfolio
example 231

installing 231
Python

CMS API 232
in stock portfolio

example 229
pyactivemq 230, 233
STOMP clients 229
STOMP consumer 229, 233

Q

query command 352
query-based subscription recov-

ery policy 114
Queue advisory message 282
QueueBrowser 354
QueueRequestor class 34, 317
queues

and point-to-point
messaging 51

dead-letter queues 287–288
JOBS.delete 50
JOBS.suspend 50

R

ra.xml file 210
BrokerXmlConfig 210
config-property-value

element 210
ServerUrl 210

randomize property 306
rebalanceClusterClients

property 307
receive method 33
receive() method 325
reconnection delay logic 87
recover() method 287
recovery policies, FixedSized-

SubscriptionRecovery-
Policy 286

redundancy 297
reliable parameter 228
Remote Procedure Calls.

See RPC
remoteURI parameter 260
RemoveInfo class 281

connectionId 281
request() method 163
request/reply 158, 165

implementing client 162,
164
www.it-ebooks.info

http://www.it-ebooks.info/

380 INDEX
request/reply (continued)
implementing server and

worker 160, 162
running the example

164–165
request/reply messaging 34
resource-ref element 177
REST API 248, 250
restricting access 340
retroactive consumers 286–287
retroactive flag 286
rmiServerPort property 335
role names 341
rollback 236
rollback() method 287
routing engines 292, 294
row locks 297
RPC

Remote Procedure Calls 6
using ActiveMQ instead 9

Ruby
creating frames 228
STOMP consumer 227, 229

Ruby on Rails. See Ruby
runConsumer() method 245

S

Scala DSL 292
scalability

horizontal 9
improving 10
vertical 9

scaling
horizontally 275
traffic partitioning 275
vertically 272, 275

ScheduledMessage
interface 309

scheduling future message
delivery 309, 311

schemaLocation attribute 157
scripting languages, and

messaging 224, 241
Secure Sockets Layer 135, 142

 See also certificates
Secure Sockets Layer

Protocol 70, 77
ciphers 76
creating certificates 73, 76

security
authentication 118, 123
authorization 123, 131
certificate-based 135, 142
custom security plug-in 131,

135

keystores 136
message-level

authorization 127
truststores 136, 138

self-signed certificates.
See certificates

SEND command 225
SEND frame 226, 237
send method 23

headers set by 26
send() method 168
sendFailIfNoSpace

property 322
sendFailIfNoSpaceAfter-

Timeout property 322
sendMessage() method 252
server.xml file 184
servers, implementing with

request/reply 160, 162
service-oriented

architecture 247
servlets, MessageServlet 249
Session interface 30
SESSION_TRANSACTED

acknowledgment
mode 325

setDeliveryMode method 34
setDisableMessageID

method 26
setDisableMessageTimestamp

method 27
setMessageListener method 33
setText() method 223
setTimeToLive method 26
setupConsumer() method 161
shared database master/

slave 261–262
shared file system master/

slave 262–263
shared nothing master/

slave 258, 261
broker failure 259
configuring 260–261
limitations 259
overhead 259
when to use 260

shared storage master/
slave 261, 263

shared database master/
slave 261–262

shutdownOnMasterFailure
property 260

shutdownOnSlaveFailure
property 260

simple authentication plug-
in 118, 120

in stock portfolio
example 119

SimpleAsyncConsumer
class 244

SimpleAsyncConsumer.cpp
file 244

SimpleAuthenticationPlugin
class 148

slave broker properties 260
SlowConsumer.Queue advisory

message 282
Snowdrop 214
SOA. See service-oriented

architecture
socketBufferSize

parameter 319
special characters. See wildcards
Spring

and Apache XBean 154, 156
and BrokerService class 151
and custom namespaces 156,

158
BrokerFactoryBean

class 153–154
configuring JMS

connections 166–167
configuring JMS

destinations 167
creating JMS producers 168,

171
embedding ActiveMQ in

applications 150, 158
factory beans 153
JMS consumers 167–168
p-namespace 177
pure Spring

configuration 151, 153
writing JMS clients 165, 172

Spring factory beans 153
Spring Framework 165, 176,

214
Spring JMS 167
SpringConfig class 152
SQL Server 107
SSL certificates 70, 121
SSL connector

configuring 70
enabledCipherSuites

option 76
in stock portfolio

example 72
syntax 70

ssl property 340
SSL. See Secure Sockets Layer

Protocol
www.it-ebooks.info

http://www.it-ebooks.info/

381INDEX
sslContext element 75
trustStore property 139
trustStorePassword

property 139
SSL_RSA_WITH_RC4_128_

SHA cipher suite 77
start() method 148, 161–162
startProducing() method 298
startup scripts 333
static network connector 83, 86

configuring 83
in stock portfolio

example 84
syntax 83
when to use 86

static network discovery 266
static transport properties 267

static networks 83, 88
static transport properties 267
staticallyIncludedDestinations

property 270
statistics plug-in 291, 293
statisticsBrokerPlugin 291, 293
Stats class 338
StAX API 223
stock portfolio example 45, 50,

53
adapting for other

languages 222–223
adapting for transport

connectors 61, 63
over the web 252
running 46, 50
using advisory messages 345
with Ajax API 252
with certificate-based

security 140
with destination-level

authorization 125
with discovery connector 91
with embedded broker 80
with HTTP connector 78
with JAAS authentication

plug-in 123
with network of brokers 84
with NIO connector 67
with NMS API 242
with peer connector 92
with Perl 234
with pyactivemq 231
with Python 229
with simple authentication

plug-in 119
with SSL 72
with static network

connector 84

with UDP connector 69
with VM connector 80

STOMP. See Streaming Text
Oriented Messaging
Protocol

stompcli library 233
storage area networks 262
store and forward 264, 266
straight-through message

delivery 327
Streaming Text Oriented Mes-

saging Protocol
(STOMP) 224, 241

acknowledging messages 225
acknowledgment modes 228
advanced messaging 236,

241
and Perl 234, 236
and PHP 233–234
and pyactivemq 230, 233
and Python 229, 233
and Ruby 227, 229
basics 224, 226
beginning, committing, and

aborting transactions 225
body 224
client acknowledgment

mode 234
CMS API connector 246
commands 224
configuring 226
CONNECTED frame 226
connecting to and discon-

necting from brokers 225
durable topic

subscribers 239, 241
frames 224
headers 224
naming conventions 226
SEND frame 226
SUBSCRIBE frame 235
subscribing to and unsub-

scribing from
destinations 225

transactions 236, 239
StreamMessage type 31
streams 301, 303
SUBSCRIBE frame 235
SUBSCRIBE header 240
subscribe() method 228
subscription recovery

policies 113–114, 116
configuring 115
fixed count 114
fixed size 114

FixedSizedSubscription-
RecoveryPolicy 286

last image 115
no policy 115
query-based 114
timed 115

subscriptionName header 240
SubscriptionRecoveryPolicy

287
subscriptions 43

durable 33
nondurable 34

SUNJMX variable 333, 340
authenticate property 342

Sybase 107
systemUsage element, limit

attribute 273

T

TCP connector 64, 66
benefits 66
configuring 65
trace option 65
URI syntax 65

TCP transport, tuning 319
TCP. See Transmission Control

Protocol
tcpNoDelay parameter 319
tcpNoDelayEnabled

parameter 318
testing custom security plug-

in 134–135
TextMessage type 31
thread pooling 272
tight coupling,

disadvantages 6–7
tight encoding 273
tightEncodingEnabled

parameter 318
timeBeforeDispatchStarts

property 300
timed subscription recovery

policy 115
timestamp plug-in 291
timestampingBrokerPlugin 291
timeToLive property 291
Tomcat 180
TopicRequestor class 34
topics 43, 48

authorization 125
durable topic

subscribers 239, 241
virtual 284, 286

trackMessages transport
property 314
www.it-ebooks.info

http://www.it-ebooks.info/

382 INDEX
traffic partitioning 275
transaction boundary 314
transaction header 236
transactions 314–315

beginning, committing, and
aborting with STOMP 225

committing and
aborting 236

sending and acknowledging
messages 237

STOMP 236, 239
transaction boundary 314

Transmission Control
Protocol 64

drawbacks 306
vs. User Datagram

Protocol 68
transport connectors 60, 63

configuring 60–61
discovery connector 91–92
fanout connector 93–94
HTTP connector 77, 79
in Java 61
in stock portfolio

example 61, 63, 67
multicast connector 89, 91
network connectors 81, 94
NIO connector 66, 68
peer connector 92–93
SSL connector 70, 77
static network connector 83,

86
TCP connector 64, 66
UDP connector 68, 70
VM connector 79, 81

transportConnector element 60
discoveryUri attribute 60,

89–90
trace option 65

transportConnectors
element 60, 70

TransportListener
interface 305

trustStore property 72, 139
trustStorePassword

property 139
truststores 71

creating 136, 138
default 71

ttlCeiling property 291

U

UDP connector 68, 70
in stock portfolio example 69

syntax 68
UDP. See User Datagram

Protocol
uniform resource identifiers

(URIs) 58
composite URIs 59, 83
connector URIs 58, 60
hierarchical 58
structure 58–59
white space 59

updateClusterClients
property 307

updateClusterClientsOn-
Remove 308

updateClusterFilter 308
URIs. See uniform resource

identifiers
URLs. See URIs
useAsyncSend property 319
UseDedicatedTaskRunner

property 272
useExponentialBackOff

property 268, 306
useJmx attribute 334–335
useMBeanServer property 335
User Datagram Protocol 68, 70

vs. Transmission Control
Protocol 68

user.properties file 139
userName parameter 260
users.properties file 121

V

vertical scaling 9, 272, 275
VFS. See JBoss Virtual File

System
virtual topics 284, 286

naming conventions 284
visualization 288, 290

connectionDotFilePlugin
289

destinationDotFilePlugin
289

VM connector 79, 81
in stock portfolio example 80
syntax 79

VM transport, embedding
brokers 315

W

waitForSlave property 259–260

web applications
deploying and verifying in

JBoss 215–216
deploying with Apache

Geronimo 202, 208
integrating ActiveMQ with

application servers 174,
220

integration sample
application 176, 181

JBoss sample
application 212, 216

large numbers of concurrent
applications 272, 275

verifying in Apache
Geronimo 205, 208

web containers 175
web services 77, 247
web.xml file 176, 203, 214, 251

message-destination-ref
element 203

WebLogic 175
WebSphere 175
wildcard character 274
wildcards 124, 278–279

. special character 278
* special character 278
> 278

wire protocols 224
See also OpenWire; STOMP

wireFormat parameter 232
workers, implementing with

request/reply 161

X

xbean: protocol 80
XBeanBrokerFactory class 149
XML schema documents 157
XML. See Extensible Markup

Language
XMPP transport connector 355
XMPP. See Extensible Messag-

ing and Presence Protocol
-Xmx option 273
XSD. See XML schema docu-

ments

Z

zeroExpirationOverride
property 291
www.it-ebooks.info

http://www.it-ebooks.info/

Snyder Bosanac Davies

T
he Apache ActiveMQ message broker is an open source
implementation of the Java Message Service spec. It makes
for a reliable hub in any message-oriented enterprise appli-

cation and integrates beautifully with Java EE containers, ESBs,
and other JMS providers.

ActiveMQ in Action is all you’ll need to master ActiveMQ. It starts
from the anatomy of a JMS message and moves quickly through
connectors, message persistence, authentication, and authoriza-
tion. By following a running example (a stock portfolio app),
you’ll pick up the best practices distilled by the authors from
their long and deep involvement with this technology.

What’s Inside
How to design message-based apps
How to implement EI patterns using Camel
How to administer ActiveMQ

How to integrate with Geronimo, JBoss, Spring, and more

Th is book requires a working knowledge of Java, but no previous
experience with ActiveMQ or other message brokers is needed.

Bruce Snyder is a co-founder of Apache Geronimo, a committer
for ActiveMQ, Camel, and ServiceMix, and a member of various
JCP expert groups. Dejan Bosanac is an ActiveMQ committer.
Rob Davies is a co-founder of ActiveMQ, ServiceMix, and Camel.

For online access to the authors and a free ebook for owners
of this book, go to manning.com/ActiveMQinAction

$44.99 / Can $51.99 [INCLUDING eBOOK]

ActiveMQ IN ACTION

ENTERPRISE JAVA

“Covers everything you need
 to know about ActiveMQ.”
 —Pratik Patel, AT&T

“A vital resource.”
 —John Merryman, Yodle

“Complete and comprehen-
 sive, a must-have resource.”
 —Rod Biresch
 Chariot Solutions

“Authors have in-depth
 knowledge of ActiveMQ.”
 —Roberto J. Rojas
 Chariot Solutions

“Covers the basics, and then
 goes way beyond.”
 —Jeff Davis
 Author of Open Source SOA

M A N N I N G

SEE INSERT

www.it-ebooks.info

http://www.it-ebooks.info/

	ActiveMQ
	brief contents
	contents
	preface
	acknowledgments
	Bruce Snyder
	Dejan Bosanac
	Rob Davies

	about this book
	Roadmap
	Code conventions and downloads
	Authors’ Note

	Author Online
	About the cover illustration

	An introduction to messaging and ActiveMQ
	Chapter 1 Introduction to Apache ActiveMQ
	1.1 ActiveMQ features
	1.2 Using ActiveMQ: why and when?
	1.2.1 Loose coupling and ActiveMQ
	1.2.2 When to use ActiveMQ

	1.3 Getting started with ActiveMQ
	1.3.1 Downloading and installing the Java SE
	1.3.2 Downloading ActiveMQ
	1.3.3 Examining the ActiveMQ directory
	1.3.4 Starting up ActiveMQ

	1.4 Running your first examples with ActiveMQ
	1.5 Summary

	Chapter 2 Understanding message-oriented middleware and JMS
	2.1 Introduction to enterprise messaging
	2.2 What’s message-oriented middleware?
	2.3 What’s the Java Message Service?
	2.4 The JMS specification
	2.4.1 JMS clients
	JMS producers
	JMS consumers

	2.4.2 Non-JMS clients
	2.4.3 The JMS provider
	2.4.4 The JMS message
	2.4.5 JMS message internals
	JMS message headers
	JMS message properties

	2.4.6 Message selectors
	Message body

	2.4.7 JMS domains
	The point-to-point domain
	The publish/subscribe domain

	2.4.8 Administered objects
	ConnectionFactory
	Destination

	2.5 Using the JMS APIs to create JMS applications
	2.5.1 A simple JMS application
	2.5.2 Message-driven beans

	2.6 Summary

	Chapter 3 The ActiveMQ in Action examples
	3.1 Downloading Maven and compiling the examples
	3.2 Use case one: the stock portfolio example
	3.2.1 Running the stock portfolio example

	3.3 Use case two: the job queue example
	3.3.1 Running the job queue example

	3.4 Summary

	Configuring standard ActiveMQ components
	Chapter 4 Connecting to ActiveMQ
	4.1 Understanding connector URIs
	4.2 Transport connectors
	4.2.1 Configuring transport connectors
	4.2.2 Adapting the stock portfolio example

	4.3 Connecting to ActiveMQ over the network
	4.3.1 Transmission Control Protocol (TCP)
	4.3.2 New I/O API protocol (NIO)
	4.3.3 User Datagram Protocol (UDP)
	4.3.4 Secure Sockets Layer Protocol (SSL)
	Using SSL
	Creating your own SSL resources
	Enabling and disabling SSL ciphers

	4.3.5 Hypertext Transfer Protocol (HTTP/HTTPS)

	4.4 Connecting to ActiveMQ inside the virtual machine (VM connector)
	4.5 Network connectors
	4.5.1 Static networks
	Static Connector
	Failover protocol

	4.5.2 Dynamic networks
	Multicast Connector
	Discovery protocol
	Peer protocol
	Fanout Connector

	4.6 Summary

	Chapter 5 ActiveMQ message storage
	5.1 How are messages stored by ActiveMQ?
	5.2 The KahaDB message store
	5.2.1 The KahaDB message store internals
	5.2.2 The KahaDB message store directory structure
	5.2.3 Configuring the KahaDB message store

	5.3 The AMQ message store
	5.3.1 The AMQ message store internals
	5.3.2 The AMQ message store directory structure
	5.3.3 Configuring the AMQ message store

	5.4 The JDBC message store
	5.4.1 Databases supported by the JDBC message store
	5.4.2 The JDBC message store schema
	5.4.3 Configuring the JDBC message store
	5.4.4 Using the JDBC message store with the ActiveMQ journal

	5.5 The memory message store
	5.5.1 Configuring the memory store

	5.6 Caching messages in the broker for consumers
	5.6.1 How message caching for consumers works
	5.6.2 The ActiveMQ subscription recovery policies
	The ActiveMQ fixed size subscription recovery policy
	The ActiveMQ fixed count subscription recovery policy
	The ActiveMQ query-based subscription recovery policy
	The ActiveMQ timed subscription recovery policy
	The ActiveMQ last image subscription recovery policy
	The ActiveMQ no subscription recovery policy

	5.6.3 Configuring the subscription recovery policy

	5.7 Summary

	Chapter 6 Securing ActiveMQ
	6.1 Authentication
	6.1.1 Configuring the simple authentication plug-in
	6.1.2 Configuring the JAAS plug-in

	6.2 Authorization
	6.2.1 Destination-level authorization
	6.2.2 Message-level authorization

	6.3 Building a custom security plug-in
	6.3.1 Implementing the plug-in
	6.3.2 Configuring the plug-in
	6.3.3 Testing the plug-in

	6.4 Certificate-based security
	6.4.1 Preparing certificates
	6.4.2 Creating a truststore
	6.4.3 Configuring the broker
	6.4.4 Authorization explained
	6.4.5 Testing it out

	6.5 Summary

	Using ActiveMQ to build messaging applications
	Chapter 7 Creating Java applications with ActiveMQ
	7.1 Embedding ActiveMQ using Java
	7.1.1 Embedding ActiveMQ using the BrokerService
	7.1.2 Embedding ActiveMQ using the BrokerFactory

	7.2 Embedding ActiveMQ using Spring
	7.2.1 Pure Spring XML
	7.2.2 Using the BrokerFactoryBean
	7.2.3 Using Apache XBean with Spring
	7.2.4 Using a custom XML namespace with Spring

	7.3 Implementing request/reply with JMS
	7.3.1 Implementing the server and the worker
	7.3.2 Implementing the client
	7.3.3 Running the request/reply example

	7.4 Writing JMS clients using Spring
	7.4.1 Configuring JMS connections
	7.4.2 Configuring JMS destinations
	7.4.3 Creating JMS consumers
	7.4.4 Creating JMS producers
	7.4.5 Putting it all together

	7.5 Summary

	Chapter 8 Integrating ActiveMQ with application servers
	8.1 The sample web application
	8.2 Integrating with Apache Tomcat
	8.2.1 Using local JNDI to integrate ActiveMQ with Tomcat
	8.2.2 Using global JNDI to integrate ActiveMQ with Tomcat

	8.3 Integrating with Jetty
	8.3.1 Using local JNDI to integrate ActiveMQ with Jetty
	8.3.2 Using global JNDI to integrate ActiveMQ with Jetty

	8.4 Integrating with Apache Geronimo
	8.4.1 Installing Geronimo and configuring the ActiveMQ plug-in in Geronimo
	8.4.2 Configuring the ActiveMQ JMS resources in Geronimo
	8.4.3 Preparing the sample application for deployment in Geronimo
	8.4.4 Deploying and verifying the sample application in Geronimo

	8.5 Integrating with JBoss
	8.5.1 Installing JBoss and configuring the ActiveMQ resource adapter in JBoss
	8.5.2 Configuring the ActiveMQ JMS resources in JBoss
	8.5.3 Preparing the sample application for deployment in JBoss
	8.5.4 Deploying and verifying the sample application in JBoss

	8.6 ActiveMQ and JNDI
	8.6.1 Client-side JNDI configuration
	ActiveMQ JNDI support

	8.7 Summary

	Chapter 9 ActiveMQ messaging for other languages
	9.1 Adapting the stock portfolio example
	9.2 Messaging for scripting languages
	9.2.1 STOMP protocol basics
	9.2.2 Configuring STOMP transport
	9.2.3 Ruby STOMP consumer
	9.2.4 Python STOMP consumer
	Messaging with pyactivemq

	9.2.5 PHP STOMP consumer
	9.2.6 Perl STOMP consumer
	9.2.7 Advanced messaging with STOMP
	Understanding STOMP transactions
	Working with durable topic subscribers

	9.3 Messaging for compiled languages
	9.3.1 Writing a C# consumer (using the NMS API)
	9.3.2 Writing a C++ consumer (using the CMS API)

	9.4 Messaging on the web with ActiveMQ
	9.4.1 Using the ActiveMQ REST API
	9.4.2 Using the ActiveMQ Ajax API

	9.5 Summary

	Advanced features in ActiveMQ
	Chapter 10 Deploying ActiveMQ in the enterprise
	10.1 Configuring ActiveMQ for high availability
	10.1.1 Shared nothing master/slave
	When to use shared nothing master/slave
	Configuring shared nothing master/slave

	10.1.2 Shared storage master/slave
	Shared database master/slave
	Shared file system master/slave

	10.2 How ActiveMQ passes messages across a network of brokers
	10.2.1 Store and forward
	10.2.2 Network discovery
	10.2.3 Network configuration
	Network property: dynamicOnly
	Network property: prefetchSize
	Network property: conduitSubscriptions
	Network property: excludedDestinations
	Network property: dynamicallyIncludedDestinations
	Network property: staticallyIncludedDestinations
	Network property: decreaseNetworkConsumerPriority
	Network property: networkTTL
	Network property: name

	10.3 Deploying ActiveMQ for large numbers of concurrent applications
	10.3.1 Vertical scaling
	10.3.2 Horizontal scaling
	10.3.3 Traffic partitioning

	10.4 Summary

	Chapter 11 ActiveMQ broker features in action
	11.1 Wildcards and composite destinations
	11.1.1 Consume from multiple destinations using wildcards
	11.1.2 Sending a message to multiple destinations

	11.2 Advisory messages
	11.3 Supercharge JMS topics by going virtual
	11.4 Retroactive consumers
	11.5 Message redelivery and dead-letter queues
	11.6 Extending functionality with interceptor plug-ins
	11.6.1 Visualization
	11.6.2 Enhanced logging
	11.6.3 Central timestamp messages with the timestamp interceptor plug-in
	11.6.4 Statistics

	11.7 Routing engine with Apache Camel framework
	11.8 Summary

	Chapter 12 Advanced client options
	12.1 Exclusive consumers
	12.1.1 Selecting an exclusive message consumer
	12.1.2 Using exclusive consumers to provide a distributed lock

	12.2 Message groups
	12.3 ActiveMQ streams
	12.4 Blob messages
	12.5 Surviving network or broker failure with the failover protocol
	12.6 Scheduling messages to be delivered by ActiveMQ in the future
	12.7 Summary

	Chapter 13 Tuning ActiveMQ for performance
	13.1 General techniques
	13.1.1 Persistent versus nonpersistent messages
	13.1.2 Transactions
	13.1.3 Embedding brokers
	13.1.4 Tuning the OpenWire protocol
	13.1.5 Tuning the TCP transport

	13.2 Optimizing message producers
	13.2.1 Asynchronous send
	13.2.2 Producer flow control
	Tuning producer flow control

	13.3 Optimizing message consumers
	13.3.1 Prefetch limit
	13.3.2 Delivery and acknowledgment of messages
	13.3.3 Asynchronous dispatch

	13.4 Tuning in action
	13.5 Summary

	Chapter 14 Administering and monitoring ActiveMQ
	14.1 The JMX API and ActiveMQ
	14.1.1 Local vs. remote JMX access
	14.1.2 Exposing the JMX MBeans for ActiveMQ
	14.1.3 Exploring broker properties using the JMX API
	14.1.4 Advanced JMX configuration
	Enabling remote JMX access

	14.1.5 Restricting JMX access to a specific host
	14.1.6 Configuring JMX password authentication

	14.2 Monitoring ActiveMQ with advisory messages
	14.2.1 Configuring advisory support
	14.2.2 Using advisory messages
	Running the example

	14.2.3 Conclusion

	14.3 Tools for ActiveMQ administration
	14.3.1 Command-line tools
	Starting and stopping the broker
	Listing available brokers
	Querying the broker
	Browsing destinations

	14.3.2 Command agent
	14.3.3 JConsole
	14.3.4 Web console

	14.4 Configuring ActiveMQ logging
	14.4.1 Broker logging
	14.4.2 Client logging
	14.4.3 Internal broker event logging

	14.5 Summary

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

