
www.it-ebooks.info

http://www.it-ebooks.info/

Drupal 7 Theming
Cookbook

Over 95 recipes that cover all aspects of customizing and
developing unique Drupal themes

Karthik Kumar

 BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Drupal 7 Theming Cookbook
Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First Edition: November 2010

Second Edition: January 2012

Production Reference: 1100112

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-676-1

www.packtpub.com

Cover Image by Karthik Kumar

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author
Karthik Kumar

Reviewers
Kevin Davison

Richard Eriksson

Acquisition Editor
Sarah Cullington

Lead Technical Editor
Hyacintha D'Souza

Technical Editors
Joyslita D'Souza

Apoorva Bolar

Arun Nadar

Ajay Shanker

Project Coordinator
Alka Nayak

Proofreader
Julie Jackson

Indexers
Monica Ajmera Mehta

Tejal Daruwale

Rekha Nair

Graphics
Conidon Miranda

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Karthik Kumar is a Drupal developer residing in Chennai, India. He first came across
Drupal in late 2004 and has been a fan ever since. He maintains a number of modules on
http://drupal.org under the moniker Zen, http://drupal.org/user/21209, and
has also made substantial contributions towards the development of Drupal core.

To my reviewers, Kevin Davison and Richard Eriksson, for their careful
scrutiny. To all the people at Packt involved in the making of this
book—Sarah Cullington, Hyacintha D'Souza, Joyslita D'Souza, and Alka
Nayak—for their guidance and patience. To Dries and the Drupal developer
community for making Drupal what it is today.

Finally, this book is dedicated to my parents for all the freedom that they
have given me.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Kevin Davison is a Manager, Web Generalist, Drupaler at Quevin, LLC in San Francisco,
CA. Experience with Drupal began as an experiment on Quevin.com, and it has evolved
to become his passion. You can find Kevin actively involved at many DrupalCon's, Camps,
SFDUG, Drupal.org support, @Quevin, and with the Drupal community on IRC (Quevin).

Quevin (kweh-vin)—the business—stands for its effective methods of planning, designing, and
developing exceptional Drupal-based websites. Quevin is a full-service web production team,
with a single managing director who is available to speak with you directly.

He was the Technical Reviewer for the last version of this book, Drupal 6 Theming Cookbook.

Thanks to the Drupal community for making all of this possible and to
Dries for having the vision. Packt Publishing has made this a great
learning opportunity.

Richard Eriksson has been a member of the Drupal community since 2004
(visit his profile at http://drupal.org/user/8791). He has worked on the Community
Support and Systems Administration team at Bryght, the first commercial Drupal venture
(later purchased by Raincity Studios), and later at OpenRoadCommunications, where he
helped build video-intensive multilingual Drupal websites promoting video games. He also
maintains an independent consultancy called Ethical Detergent specializing in Drupal
maintenance and support. On Drupal.org, he maintains the Pirate and RSS Permissions
modules, the Cherry Blossom Theme, and most recently, the Readability Button module. He
writes occasionally on his blog, Just a Gwai Lo (http://justagwailo.com/).

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents
Preface 1
Chapter 1: Drupal Theme Basics 7

Introduction 7
Installing and enabling a theme 10
Uploading a new logo 13
Uploading a new favicon 15
Adding a slogan to the theme 17
Displaying a different theme for administration 20
Adding an existing block to the theme 22
Adding a custom block to the theme 24
Displaying a block only on the front page 27
Controlling block visibility based on user role 30
Controlling block visibility based on node type 31

Chapter 2: Beyond the Basics 35
Introduction 35
Understanding the anatomy of a theme 36
Creating a subtheme based on a core theme 38
Overriding base theme elements in a subtheme 41
Changing the screenshot image of a theme 45
Including a CSS file in a theme 48
Enabling CSS optimization 50
Creating the mysite module to hold our tweaks 54
Adding a CSS file from a module 56
Displaying a different theme for each day of the week 59
Creating a fresh look using the Color module 61

Chapter 3: Custom Themes and Zen 65
Introduction 65
Clearing the theme registry 67

www.it-ebooks.info

http://www.it-ebooks.info/

ii

Table of Contents

Creating a theme from scratch 69
Creating myzen—a Zen-based theme 72
Choosing a CSS layout for myzen 75
Overriding Zen template files with myzen 77
Adding a custom region to myzen 80
Adding a background image to the theme 84
Adding a conditional stylesheet in Zen 87
Modifying myzen's theme settings 89

Chapter 4: Templating Basics 93
Introduction 93
Changing the structure of a page using template files 95
Customizing the appearance of a particular node type 98
Customizing the appearance of a specific node 102
Theming made easy using the Devel module 106
Theme overrides using the Theme developer module 108
Styling the site maintenance page 111

Chapter 5: Development and Debugging Tools 113
Introduction 113
Finding the right function to use to theme an object 115
Analyzing variables using the Devel module 118
Generating sample content using the Devel generate module 120
Resetting the default theme manually 122
Live preview with Web Developer 124
Validating HTML and CSS using 127
Web Developer 127
Turning off JavaScript in the browser 129
Disabling CSS in the browser 131
Inspecting elements and debugging CSS using Firebug 134
Diagnostic logging of JavaScript using Firebug 137

Chapter 6: Advanced Templating 141
Introduction 141
Adding a variable to all node templates 143
Deleting a variable from the page template 146
Adding a custom theme setting 149
Hiding all regions on a page 151
Displaying the last updated date instead of the submitted date 155
Module-based variable manipulation 158
Optimizing using hook_preprocess() 160
Displaying the date field in calendar form 164

www.it-ebooks.info

http://www.it-ebooks.info/

iii

Table of Contents

Chapter 7: JavaScript in Themes 167
Introduction 167
Including JavaScript files from a theme 169
Including a JavaScript file only for certain pages 171
Giving the username textfield keyboard focus 174
Exporting a variable from PHP to JavaScript 177
Adding default text to the search textfield 179
Displaying comments in compact form 182
Minimizing and maximizing blocks using JavaScript 185

Chapter 8: Navigation 189
Introduction 189
Adding a menu to our theme 190
Adding content pages to the menu 193
Styling the Main menu 195
Contextual submenus using the Menu module 199
Adding a drop-down navigation menu 203
Customizing breadcrumbs in Zen-based themes 207
Hiding node links using CSS 209
Styling all external links in a page 211
Styling the Drupal pager 213

Chapter 9: Form Design 219
Introduction 219
Finding the form ID of a form 220
Changing the height of a textarea 223
Replacing Drupal's textareas with a WYSIWYG HTML editor 226
Reorganizing fields in a form 229
Replacing a standard submit button with an image button 232
Styling the comment form 235
Using a fieldset to group fields 240
Theming form elements from a module 245
Adding class attributes to form elements 248

Chapter 10: Theming Fields 253
Introduction 253
Creating a new node type 254
Displaying fields together using fieldgroups 259
Manipulating display layouts using fieldgroups 262
Theming a field using a template file 265
Adding image fields using the Image module 269
Using Image styles to scale and crop images on the fly 272
Adding lightbox support for images 275

www.it-ebooks.info

http://www.it-ebooks.info/

iv

Table of Contents

Chapter 11: Views Theming 279
Introduction 279
Creating a simple View 281
Styling a node listing using a Grid display 287
Embedding a View inside a node template 294
Overriding the Views table style format 299
Creating a custom Views style plugin 306

Chapter 12: Rapid Layouts with Panels 315
Introduction 315
Using Panels to create a front-page layout 317
Embedding content in a panel 321
Styling a panel with rounded corners 324
Creating custom styles with the Stylizer module 327
Changing the layout of a panel 331
Creating a custom panel layout 334
Replacing the site contact page with a panel 339

Index 343

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
Themes are among the most powerful and flexible features available when it comes to the
presentation of a website. The greatest strength of Drupal lies in its design, which, when done
correctly, allows developers and designers to customize and micromanage each and every
aspect of the site. Furthermore, the Drupal theming system and its APIs allow for the design of
custom themes that are easy to administer and maintain.

This book provides a plethora of solutions that enable Drupal theme designers to make full
use of all its features and its inherent extensibility to style their sites just the way they want
to. It covers numerous aspects from using contributed and custom themes to leveraging the
powerful Fields API introduced in Drupal 7 along with the Views and Panels modules to create
rich designs and layouts that are easy to administer and maintain.

Structured as a collection of recipes to perform a wide variety of practical tasks, this book will
systematically guide readers towards solutions that are central to Drupal theming. Each recipe
is divided into the following sections:

 f An Introduction that explains what the recipe is about

 f Getting ready lists any prerequisite steps required for the recipe to work

 f How to do it describes how to implement the recipe

 f How it works explains how the recipe works

 f There's more catalogs useful information related to the recipe

While it is recommended that readers follow the recipes in each chapter in sequence, it is also
possible to sift through the recipes at random. Special attention should always be paid to the
Getting ready section of each recipe, which provides information on preliminary steps that
need to be performed, and in some cases, specify if the recipe builds on the result of earlier
recipes in the same chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

2

What this book covers
Chapter 1, Drupal Theme Basics, introduces the reader to the basic elements of Drupal
theming, such as downloading and installing a contributed theme, and learning how to add
and customize blocks.

Chapter 2, Beyond the Basics, explains the concept of theme engines and subthemes and
briefly introduces the topic of template overrides. It also includes essential recipes dealing
with adding and optimizing CSS files.

Chapter 3, Custom Themes and Zen, focuses on starter themes, specifically Zen.

Chapter 4, Templating Basics, details how to customize page elements and content by
overriding template files.

Chapter 5, Development and Debugging Tools, provides essential information on debugging
and expediting development through the use of a number of tools.

Chapter 6, Advanced Templating, explores the PHPTemplate theme engine further and delves
into using techniques, such as variable manipulation and preprocess hooks to customize
various theme elements.

Chapter 7, JavaScript in Themes, covers the use of JavaScript and jQuery in Drupal themes.

Chapter 8, Navigation, contains recipes which focus on theming navigational elements in a
Drupal theme, such as menus, breadcrumbs, pagers, and so on.

Chapter 9, Form Design, discusses the Drupal Forms API from a theming point of view.

Chapter 10, Theming Fields, demonstrates how to theme fields and also elaborates on
the use of image fields and leveraging the Image API to display and style images to suit
the theme.

Chapter 11, Views Theming, focuses on the Views module from a themer's perspective.

Chapter 12, Rapid Layouts with Panel, shows how to create complex layouts using the Panels
module and demonstrates its use in conjunction with the Fields API and Views modules.

What you need for this book
A standard Drupal 7 development site is all that is required to run through the recipes in
this book. The system requirements for Drupal is available at http://drupal.org/
requirements. Since this book deals with theming, it is assumed that this test site is
already up and running.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

3

Who this book is for
This book is written for Drupal developers who want to refresh the look and feel of their sites.
If you are a Drupal site administrator who is looking to go beyond the basics and customize
the presentational aspects of your Drupal site, then this book is for you. It assumes that
readers are familiar with rudimentary PHP and acquainted with Drupal installation and
general usage. Readers are also expected to have knowledge of CSS and XHTML.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "The .info file can also be used to specify the
theming engine being used by the theme."

A block of code is set as follows:

<link type="text/css" rel="stylesheet"
 href="http://book.endymion/sites/all/modules/mysite/css/
 mysite-special.css?lly4ld" media="all" />
<style type="text/css" media="all">@import url
 ("http://book.endymion/sites/all/modules/mysite/css/
 mysite.css?lly4ld");</style>

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

 <?php if ($display_submitted): ?>
 <?php print $submitted ?>

 <?php endif; ?>

 <div class="clearfix">
 <?php if (!empty($content['links'])): ?>
 <div class="links"><?php print render($content['links']);
 ?></div>
 <?php endif; ?>

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Once satisfied, click on the
Save configuration button at the bottom of the page to save our changes."

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

4

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from
your account at http://www.PacktPub.com. If you purchased this book elsewhere, you
can visit http://www.PacktPub.com/support and register to have the files e-mailed
directly to you.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

5

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/support, selecting
your book, clicking on the errata submission form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded on our website, or added to any list of existing errata, under the Errata section
of that title. Any existing errata can be viewed by selecting your title from http://www.
packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

1
Drupal Theme Basics

We will be covering the following recipes in this chapter:

 f Installing and enabling a theme
 f Uploading a new logo
 f Uploading a new favicon
 f Adding a slogan to the theme
 f Displaying a different theme for administration
 f Adding an existing block to the theme
 f Adding a custom block to the theme
 f Displaying a block only on the front page
 f Controlling block visibility based on user role
 f Controlling block visibility based on node type

Introduction
Drupal is designed to separate logic from presentation with the former usually handled
through the use of modules and the latter via themes. Although this separation is not
absolute, it is distinct enough to facilitate quick and efficient customization and deployment
of websites. This especially holds true when the site is developed in a team environment as it
enables developers, designers, and content managers to work independently of each other.

Themes are synonymous with skins in other applications and control the look and feel of a
website. Each theme can consist of a variety of files ranging from a .info configuration file,
which registers the theme with Drupal, to .tpl.php template files accompanied by CSS,
JavaScript, and other files that determine the layout and style of the content. Depending on
the nature of the site and its requirements, developers can choose from the slew of themes
available on http://drupal.org as contributed themes or instead, decide to roll their own.

www.it-ebooks.info

http://www.it-ebooks.info/

Drupal Theme Basics

8

Contributed themes are, as the name suggests, themes that have been contributed by the
Drupal community at large. They usually tend to be designs that have been developed by
a user for a site and then shared with the community, or designs from other packages or
sites which have been ported over to Drupal. Consequently, while they are ready-to-wear,
they are generic in nature and lack uniqueness. Furthermore, the quality of these themes
vary significantly from one to the other with some being excellent and others well below par.
Contributed themes are an acceptable choice for sites that require rapid deployment or for
hobby sites with simple needs where uniqueness is not a factor.

Custom themes, on the other hand, are a necessity for sites with unique requirements
in layout, usability, and design. While they are often built from the ground up, it is
now established practice to use special starter themes as a base from which they
can be extended.

Contributed themes can be accessed at http://drupal.org/project/themes. This
page, by default, lists all available themes and provides filters that can be used to whittle the
results down based on Drupal version compatibility as well as other search terms. Additionally,
sorting options can be used to rearrange contributions based on their popularity, update
status, and other criteria. More information about each theme can be accessed by clicking on
its Find out more link.

There are a number of considerations to keep in mind whilst choosing a contributed theme.
Firstly, it is important to have a general idea of the layout required for our site with the chief
concern usually revolving around the column structure of the design. Most themes support a
three-column (with two sidebars and a content area) layout which can also optionally function
as a two-column single sidebar layout if no content is added to one of the sidebars. The more
exotic ones support four or more columns and are only really a viable option for special cases:

Secondly, while fewer themes nowadays are being laid out using tables, they are still around.
Unless there is no other recourse, these should be avoided in favor of CSS layouts.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

9

Next, check to see whether the theme is a fixed-width or a fluid theme or supports both types.
Fixed-width themes, as the name suggests, maintain a predefined width irrespective of the
screen resolution of the user. As a result, the site has a consistent appearance. Fluid layouts,
or liquid layouts as they are sometimes referred to, grow according to the user’s screen size
and consequently make better use of the available real estate. The question of which to use is
generally decided on a case by case basis.

The Drupal theme system also supports the use of different theme engines to render
the design. Each engine uses a different process by which the designer can interact with
Drupal to implement a design. The PHPTemplate engine is built into Drupal and is by far the
most popular of the ones available. The vast majority of contributed themes available are
compatible with PHPTemplate. Nevertheless, it is prudent to check the specifications of the
theme to ensure that it does not require a different theme engine. Contributed theme engines
can, if necessary, be downloaded from http://drupal.org/project/theme+engines.

Every theme’s project page usually provides screenshots and explicitly specifies layout and
other pertinent information. A number of them also link to a demonstration page, as in the
following screenshot, where the theme can be previewed and tested using different browsers,
screen resolutions, and so on. A third-party site http://themegarden.org, which
showcases various contributed themes, comes in very handy for the same reason:

Additionally, project pages customarily link to their Git repositories where files within the
theme can be viewed prior to downloading it. It is also worth exploring the issue queue of a
project to see if bugs have been reported and are being addressed in a timely manner.

Git is a tool used by Drupal developers to manage their code and control their
releases. It is effectively a repository for modules, themes, and Drupal itself.
More information on Git is available at http://drupal.org/handbook/
git.

www.it-ebooks.info

http://www.it-ebooks.info/

Drupal Theme Basics

10

Once the list of candidate themes has been narrowed down to a short list, the only way to
test them further is to download and install them. The theme project page lists available
downloads based on version and stability along with release notes which might be useful
to glance through as well. Download the latest release recommended for Drupal 7. The
recipes in this chapter will address the installation and configuration of a downloaded
contributed theme.

Installing and enabling a theme
This recipe will cover the steps required to install and enable a downloaded theme.

Getting ready
Downloaded themes are made available in both the ubiquitous zip format as well as the
format which usually offers superior compression. These files can be extracted using archive
programs such as 7-Zip (http://www.7-zip.org) as well as commercial packages such as
WinZip (http://www.winzip.com) and WinRAR (http://www.rarlabs.com).

How to do it...
To install a theme, open Windows Explorer and navigate to the Drupal installation:

1. Browse to sites/all/themes.

2. Extract the downloaded theme into a subfolder inside this folder. In other words, if the
theme is called mytheme, the folder sites/all/themes/mytheme should contain
all the files of the theme:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

11

In the previous screenshot, we see the Sky theme’s installation folder situated within
sites/all/themes. Themes also often contain a README.txt file which provides
documentation which is worth a read-through.

File structure options
In this recipe, we have chosen to use the folder sites/
all/themes/ to store our theme. By positioning our
theme inside sites/all, we are stating that the theme is
to be available to all sites using this Drupal installation. In
other words, this enables multi-site setups to share modules
and themes. In case we want to restrict access to the theme
solely to one particular site, we would position its folder
within sites/foo.example.com/themes/ where
foo.example.com is the site in question.

3. Access the Drupal site in a browser and navigate to admin/appearance
[Home | Administration | Appearance].

4. As in the following screenshot, the newly installed theme should now be listed on this
page under the Disabled themes section. Click on the associated Enable and set
default link to activate the theme:

How it works...
Drupal scans folders within sites/all/themes and in particular looks for files with the
extension .info. These files contain information about each theme such as its name,
description, version compatibility, and so on. If the theme is compatible, it is listed on the
theme administration page.

www.it-ebooks.info

http://www.it-ebooks.info/

Drupal Theme Basics

12

A site can have multiple themes enabled. Out of these, only one can be chosen as the default
theme. The default theme is, as the name suggests, the primary theme for the website. In the
following screenshot, we can see that the Sky theme is now enabled and is the new default
theme for the site overriding the core theme, Bartik, which is relegated to second position in
the list of enabled themes:

There’s more...
Drupal makes it easier for us to manage our sites by following preset naming conventions
when it comes to the folder structure of the site.

Folder structure
Themes do not necessarily have to be placed at the root of the sites/all/themes folder.
For organizational purposes, it might be useful to create sites/all/themes/contrib
and sites/all/themes/custom. This will allow us to differentiate between downloaded
themes and custom themes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

13

Since Drupal’s core themes are located within the root themes folder, we
might be led to believe that this could be a good place to store our contributed
or custom themes. While this will certainly work, it will prove to be a bad
decision in the long run as it is never a good idea to mix core files with custom
files. The chief reason for this separation is manageability. It is far easier to
maintain and update Drupal when there is a clear distinction between the
core installation and contributed or custom modules and themes. It also
ensures that we do not accidentally overwrite or lose our changes when we
upgrade our site to the next Drupal release.

Disabling a theme
Enabled themes can be disabled by clicking on their associated Disable links. However, this
can only be done if they are not currently the default theme of the site. If the link is missing,
then another theme will first need to be set as the default. Once this is done, the Disable link
should automatically become available.

See also
Once a theme is enabled, the next logical step would be to configure it. The following recipes
in this chapter, namely Uploading a new logo, Uploading a new favicon, and so on describe
how to do so.

While this recipe dealt with installing and enabling a downloaded theme, it is also a good
idea to consider Creating a subtheme based on a core theme recipe in Chapter 2, Beyond
the Basics as well as Creating a theme from scratch recipe in Chapter 3, Custom Themes
and Zen.

Uploading a new logo
Most websites incorporate a logo into their design, usually accompanying the site name in the
header. For example, the Drupal logo or “Druplicon” in the following screenshot represents the
default logo displayed for every core theme that comes packaged with Drupal:

These logos tend to play an important role in the branding and identity of the site and are
frequently an important facet in the overall design of the theme. This recipe details the steps
involved in changing the logo displayed in a theme.

www.it-ebooks.info

http://www.it-ebooks.info/

Drupal Theme Basics

14

Getting ready
The new logo should be in a suitable format and should balance quality with size. The rule of
thumb usually followed is as follows:

 f PNG: For high quality images that contain transparencies

 f JPEG: For detailed photographic logos that do not involve transparencies

 f GIF: For simple line art

How to do it...
A custom logo can be added to a theme using the following steps:

1. Navigate to the admin/appearance [Home | Administration | Appearance] page.

2. Click on the Settings link accompanying the theme in question.

3. Look for the Logo image settings fieldset. Within the fieldset, uncheck the Use the
default logo checkbox as we want to use a custom image:

4. Using the Upload logo image field, browse and select the logo file in the filesystem.

5. Finally, click on the Save configuration button below upload and save the changes.

How it works...
The uploaded file is saved in the Drupal filesystem and the path to the logo is registered as a
configuration setting in the database. During display, rather than using the logo supplied by
Drupal or the theme itself, this setting is loaded to embed the custom logo within the Drupal
page. The following screenshot displays the theme with its default logo replaced with
a custom PNG:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

15

There’s more...
Besides specifying the logo file via a theme’s configuration page, there are other avenues that
can also be pursued.

Directly linking to image files
Alternatively, instead of uploading the logo via Drupal, use the Path to custom logo textfield to
point to an existing logo file on the server. This is often handy when the same image is being
shared by multiple themes.

Yet another option is to simply place the logo file in the theme’s folder and rename it to
logo.png. Provided that the Use the default logo field is checked, the theme will
automatically look for this file in its folder and use it as its logo.

See also
In the next recipe, Uploading a new favicon, we will see how to go about adding a shortcut
icon that adds to the identity of our site.

Uploading a new favicon
This recipe details the steps involved in changing the favicon displayed with the theme. A
favicon, dubbed as a shortcut icon in the Drupal interface, is an image that is particular to
a site and is displayed in the address bar of the browser next to the site URL as well as the
browser tab. It also makes its presence felt if the site is bookmarked in the browser as shown
in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Drupal Theme Basics

16

Getting ready
We are going to need the icon file to be added which is recommended to be of size 32x32
pixels or higher. An example icon file named favicon.ico can be seen in the misc folder in
the Drupal installation.

How to do it...
Adding a custom favicon to the theme can be done by performing the following steps:

1. Navigate to the admin/appearance [Home | Administration | Appearance] page.

2. Click on the Settings link accompanying the theme in question.

3. Look for the Shortcut icon settings fieldset.

4. As in the following screenshot, uncheck the Use default shortcut icon checkbox as
we want to use a custom icon:

5. Using the Upload icon image field, browse and select the icon file in the filesystem.

6. Finally, click on the Save configuration button below upload and save the changes.

How it works...
The uploaded file is saved in the Drupal filesystem and the path to the icon is registered as
a theme setting in the database. When a page is being rendered, the Drupal theme system
designates this .ico file as the favicon for the site.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

17

In the following screenshot, we can see the logo image added in the previous recipe also
being used as the basis for a favicon:

There’s more...
Besides manually uploading the icon file via the configuration page of the theme, other
avenues are also available to accomplish the same objective.

Alternative methods
Just as we saw when uploading a custom logo image, instead of uploading the icon file via
Drupal, use the Path to custom icon textfield to point to the icon file on the server. A third
option is to place the icon file in the theme’s folder and rename it to favicon.ico. Provided
that the Use the default shortcut icon field is checked, the theme will automatically look for
this file in its folder and use it as its favicon. Not specifying a favicon will instead result in the
site using Drupal’s default icon, Druplicon, which is located within the misc folder.

Other formats besides the ICO format are also supported by some, but not all,
browsers. More information is available at http://en.wikipedia.org/
wiki/Favicon.

See also
The previous recipe in this chapter, Uploading a new logo, is, in many ways, similar to this one
as it describes how to replace the default logo image with a custom file.

Adding a slogan to the theme
This recipe details the steps involved in adding a slogan to the theme. Site slogans are a
common feature on most sites and are typically witty or involve clever wordplay. They are
synonymous with catchphrases, taglines, mottoes, and so on.

www.it-ebooks.info

http://www.it-ebooks.info/

Drupal Theme Basics

18

Drupal offers a global setting to store the site slogan which is customarily displayed by themes
near the site logo or site name and is also regularly added to news feeds and site e-mails as
part of the site’s identity.

Getting ready
Think up a good slogan! This is the biggest stumbling block to getting this recipe right.

How to do it...
Adding a slogan to a theme involves the following steps:

1. Navigate to admin/config/system/site-information
[Home | Administration | System | Site information].

2. Locate the Slogan textfield and add the slogan here as shown in the
following screenshot:

3. Click the Save configuration button at the bottom of the page to save our changes.

4. Now, navigate to the theme administration page at admin/appearance
[Home | Administration | Appearance].

5. Click on the Settings tab at the top of the page.

The resulting page should have multiple tabs: one titled Global settings which affects
all themes and others representing each enabled theme. Configuration options under
the Global settings tab serve as the site’s default settings for all themes, while
equivalent settings within each theme’s tab work as overrides for the global settings.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

19

6. On the Global settings page, look for the Site slogan setting in the Toggle display
section and ensure that it is checked:

7. Click the Save configuration button to save our changes.

If any of the themes have overridden the global setting, then the Site Slogan
checkbox will also need to be checked in its respective theme tab.

How it works...
Drupal saves the provided slogan as a configuration setting in the database. The theme
system makes this setting available as a variable to the theme which outputs it accordingly
when the page is being rendered.

In the following screenshot, we can see that the slogan is enabled and is displayed along with
the logo and the name of the site:

www.it-ebooks.info

http://www.it-ebooks.info/

Drupal Theme Basics

20

There’s more...
Besides the site slogan, other theme variables can also be configured from the
Site information and theme configuration pages.

Similar settings
The Drupal Site information page seen in this recipe also contains fields for other settings
such as the Site name which are also similarly exposed by themes. Toggles for these as well
as other variables can also be controlled via the theme system’s Global settings tab.

See also
Two previous recipes in this chapter, Uploading a new logo and Uploading a new favicon, deal
with altering similar variables via the theme configuration pages.

Displaying a different theme for
administration

This recipe describes how to set up Drupal to use a different theme only for administration
pages. This is a frequent requirement especially on brochure sites which have a limited
number of regions where blocks can be placed or have missing page elements such as
breadcrumbs which reduces usability. Having a separate administration theme also comes
in handy during custom theme design as the site could well be largely unusable during the
initial stages of development. A stable administration interface will therefore ensure that
administrative tasks can still be performed effortlessly until the new theme becomes ready.

Getting ready
Depending on the amount of real estate required, it will be worthwhile to put some thought
into deciding on the right theme to use as the administration theme. Themes such as the
aptly named Administration theme (http://drupal.org/project/admin_theme) and
RootCandy (http://drupal.org/project/rootcandy) have been designed specifically
with the administration pages in mind. That said, if the requirement is temporary, using a core
theme such as Garland will usually suffice.

How to do it...
Specifying an administration theme can be done by following these steps:

1. Navigate to admin/appearance [Home | Administration | Appearance].

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

21

2. Choose Garland (or any other theme of choice) in the Administration theme
drop down at the bottom of the page.

In situations where only administrators have permissions
to add and edit content, it might be handy to also check
the Use administration theme when editing or creating
content checkbox seen previously.

3. Click the Save configuration button to save our changes in the database.

Viewing an administration page should confirm that the specified administration theme is
being used in preference to the default theme.

How it works...
Every time a page is displayed, Drupal checks to see if the URL of the page begins with
admin. If it does and if we have specified an administration theme, Drupal overrides the
default theme being used with the specified theme.

Since the administration theme is a special case, Drupal does not require the
theme to be enabled for it to be available as an option.

See also
Just as Drupal can dynamically change the theme being used to render administration pages,
so can we. This is covered in the Displaying a different theme for each day of the week recipe
in Chapter 2, Beyond the Basics.

www.it-ebooks.info

http://www.it-ebooks.info/

Drupal Theme Basics

22

Adding an existing block to the theme
Drupal’s page layout is customarily divided into a number of regions which are laid out
differently from theme to theme. For example, a theme could have regions named Left
sidebar and Right sidebar which will be displayed to the left and right hand side respectively
of another region named Content. Regions serve as containers for blocks.

Blocks are self-contained elements which are located within regions and typically contain
information or functionality that is repeated consistently across multiple pages. They can
contain contextual information that complements the actual content of a page such as a block
that outputs information about the author of the node currently being displayed, or static
information such as a login form block or a block that displays advertisements. While previous
versions of Drupal considered the primary content of a page to live outside the block system,
Drupal 7 does not render it any such importance.

This recipe details the steps involved in adding an existing block to a region of a theme.

Getting ready
For this example, we will be adding a Who’s online block to the Left sidebar region, assuming
that such a region exists, of the Garland core theme. The position of a block both in terms
of region as well as its weight (which determines its order among other blocks in the same
region) can prove to be very important in terms of usability and exposure.

It is assumed that the Garland theme is enabled and, ideally, also set as the default theme.

How to do it...
The Who’s online block can be added by following these steps:

1. Navigate to admin/structure/block [Home | Administration |
Structure | Blocks].

2. If more than one theme is enabled on the site, choose the appropriate tab at the top
of the page.

3. Look for the Who’s online block under the Disabled section.

4. Click on the crosshairs icon to its left and drag the block to the Left sidebar region.

Alternatively, we could have simply chosen the Left sidebar in the Region drop down
and then used the crosshairs to order the block within the region. This is the quicker
option when there are a lot of blocks and regions to deal with on this page.

5. Click on the Save blocks button at the bottom of the page to save our changes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

23

The block should now be visible in the left sidebar as can be seen with the Garland theme in
the following screenshot:

How it works...
Drupal maintains a table named blocks in its database which contains a list of all the blocks
exposed by the modules in its installation. By moving the Who’s online block to the Left
sidebar region, we are effectively just manipulating this table in the database. When a page
is displayed, Drupal uses this table to determine the status and location of each block for the
current theme and the theme system positions them accordingly.

There’s more...
Block layouts are particular to each theme and can therefore be customized differently for
different themes.

Theme-specific block layouts
Seeing that each theme is laid out with its own set of regions, it stands to reason that a block
can also be positioned in different regions for different themes. For example, the Who’s
online block seen in this recipe can be positioned in the Left sidebar region of the Garland
theme and the Right sidebar of another theme such as Bartik. Taking this idea further, we
can also have the block enabled only for Garland and not for Bartik.

The block layout for each theme can be managed by clicking on the appropriate theme
tab at the top of the block management page at admin/structure/block [Home |
Administration | Structure | Blocks]. Each theme provides a Demonstrate block regions
link which can be used to obtain an overview of the regional layout of the theme.

See also
In the next recipe, we will expand on what we have seen here by learning how to go about
Adding a custom block to the theme.

www.it-ebooks.info

http://www.it-ebooks.info/

Drupal Theme Basics

24

Adding a custom block to the theme
This recipe details the steps involved in adding a block with custom content to the theme.
Drupal blocks can either be declared using a module or, as we are doing here, added
manually via the block administration interface.

Getting ready
For this recipe, we will be adding a simple welcome message in a custom block within a
predetermined region. As with standard blocks, position matters!

How to do it...
The following procedure outlines the steps required to add a custom block to a theme:

1. Navigate to admin/structure/block [Home | Administration |
Structure | Blocks].

2. If more than one theme is enabled, select the theme that we are adding our block to
by clicking on its tab.

3. Click on the Add block link at the top of the page.

4. In the ensuing page, type a welcome message in the Block description textfield.

This description field comes in handy on the block
administration page when trying to differentiate between
blocks with identical titles, or as is frequently the case,
no titles.

5. Next, if the block requires a title to be displayed above its content, add one via the
Block title textfield. In this case, we do not need one as we are just looking to display
a welcome message.

6. As displayed in the following screenshot, enter the welcome text into the Block body
textarea: Welcome to Mysite. Enjoy your stay!.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

25

Similar to most other textareas in Drupal, a linked Input
format should be available to filter the content appropriately.
This allows for great flexibility when adding content.

7. The Region settings fieldset lists all currently enabled themes. Optionally, choose the
region where this block is to be displayed for each of them (or – None – if it is not to
be displayed at all).

8. Finally, click on Save block to create the block.

How it works...
Just as with standard blocks, Drupal maintains a table named block_custom which tracks
all custom blocks including their content and input format. Once a custom block is enabled, it
is added to the block table and tracked as if it was a standard block.

www.it-ebooks.info

http://www.it-ebooks.info/

Drupal Theme Basics

26

When created, a custom block appears in the block list and can be treated just like any other
block. It can be dragged around different regions, have its visibility settings controlled, and
so on. The following screenshot displays our newly created welcome block as part of the
Garland theme:

An easy way to identify custom blocks on the block management
page is by their tell-tale delete links. Only custom blocks feature
a delete option.

There’s more...
Custom blocks are useful for more than simply embedding text strings.

Doing more with custom blocks
Custom blocks can be very handy to not only add visible content, but also to execute short
code snippets on specific pages provided the appropriate input format has been selected.
For example, we could embed some custom JavaScript required only for a few specific page
nodes, by adding it to a custom block—equipped with a suitable input format—which is set to
be displayed only with the aforementioned page nodes.

That said, if a more optimal solution is available—such as using a module to hold our
code—then it should be pursued instead of inserting code into blocks and thereby into
the database.

See also
Now that we have seen how to add and manage blocks, we can proceed to control it further by
playing with its visibility configuration. The final three recipes of this chapter outline the steps
required for Displaying a block only on the front page, Controlling block visibility based on
user role, and Controlling block visibility based on node type.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

27

Displaying a block only on the front page
This recipe details the steps involved in displaying a block only on a certain page, which in
this case, is the front page. We will be displaying the welcome message block created in the
previous recipe as an example.

Getting ready
The front page is a special case on most sites as it usually showcases the rest of the site.
Manipulating block visibility for front page blocks is a frequent requirement and in our case,
we are going to ensure that the welcome message block is only going to be displayed on the
front page and nowhere else.

How to do it...
Block visibility is controlled from the block’s configuration page as follows:

1. Navigate to admin/structure/block [Home | Administration |
Structure | Blocks].

2. Locate the block that needs to be configured, the Welcome message block, and click
on its Configure link listed in the Operations column.

3. On the configuration page, scroll down to the Visibility settings section and select
the Pages tab.

4. In the Pages tab, choose the Only the listed pages radio button for the Show block
on specific pages setting:

www.it-ebooks.info

http://www.it-ebooks.info/

Drupal Theme Basics

28

5. As shown in the previous screenshot, add the word <front> within the
associated textarea.

6. Click on the Save block button at the bottom of the page to save our changes.

7. Finally, visit the front page of the site as well as other pages to confirm that the block
is only being displayed on the front page.

How it works...
Whenever a block is to be displayed, Drupal checks to see if we have any visibility settings
applied to it. In this case, we have Only the listed pages switched on. As a result, Drupal
checks the textarea configured within the Pages tab to see which pages have been listed. The
use of the <front> keyword, which is a special indicator that represents the front page of the
site, tells Drupal that unless this is the root of the site, this block should not be displayed.

This is all done before the content of the block is processed by Drupal thereby improving
performance and making this method cleaner and more efficient than hiding the block using
CSS or elsewhere in the theme.

There’s more...
Drupal offers a number of page-matching options to help further refine when and where we
display our blocks.

Multiple pages
Multiple pages can be specified in the textarea within the Pages tab. For example, if the block
is to be displayed only on the front page and on user pages, the list would be the following:

<front>
user/*

Drupal will now compare the path of the page against each entry in this list and decide to
display the block only if there is a match.

Wildcards
The use of the asterisk wildcard in user/* states that the match should be
performed against all paths beginning with user. This ensures that the block
is displayed for all pages within each user’s My account section.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

29

Matching against URL aliases
Drupal’s Path module allows users to specify URL aliases for nodes and system paths. While
this can potentially be a source of indecision when it comes to choosing which paths to use
while configuring a block’s page-visibility settings, the Block module’s page-matching code
intelligently compares against both possibilities. For example, consider the following table that
specifies the internal paths and corresponding aliases for three nodes:

Internal path URL alias
node/1 products/foo
node/13 products/bar
node/22 products/baz

If we wanted to match against all three nodes, we could specify the three node paths directly
as follows:

 f node/1

 f node/13

 f node/22

Or, we could specify the three aliases as follows:

 f products/foo

 f products/bar

 f products/baz

Alternatively, we could simply use the aliases with a wildcard as follows:

 f products/*

Exclusive display
This recipe can also be similarly applied to display a block on all pages but the front page.
This involves choosing the Show on every page except the listed pages option in the Page
specific visibility settings section.

See also
The next recipe, Controlling block visibility based on user role, expands on this recipe by
describing the steps to restrict block visibility to a particular set of users.

www.it-ebooks.info

http://www.it-ebooks.info/

Drupal Theme Basics

30

Controlling block visibility based on
user role

Drupal allows administrators to segregate users into logical subsections named roles which
facilitate features such as access control and content targeting. This recipe details the
steps involved in toggling block visibility based on the role of the user viewing the page. For
example, a block displaying advertisements might only need to be visible for anonymous users
and not for authenticated users.

Getting ready
For this recipe, we will be configuring the welcome message block, which we created in an
earlier recipe in this chapter, to only be visible to authenticated users, or to be more precise,
to users belonging to the authenticated user role.

How to do it...
Controlling block visibility is handled from the block administration pages outlined as follows:

1. Navigate to admin/structure/block [Home | Administration |
Structure | Blocks].

2. Locate the block that needs to be configured, the Welcome message block, and click
on its Configure link.

3. On the configure screen, scroll down to the Visibility settings section and select the
Roles tab.

4. In the Roles tab, check the authenticated user checkbox for the Show block for
specific roles setting as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

31

5. Click the Save block button at the bottom of the page to save the changes.

6. Finally, confirm that our changes have worked by checking if our block is visible only
for users who have logged into the site—authenticated users—and not for those who
have not—anonymous users.

How it works...
Drupal maintains a table named block_role which keeps track of role-specific settings for
all blocks. Changes made to role settings on the block configuration page are cataloged in
this table. When an anonymous user now visits the site, Drupal will look up this table and note
that the Welcome message block is restricted to authenticated users only. Consequently, the
block will not be displayed.

See also
Both the previous recipe, Displaying a block only on the front page, as well as the next
one, Controlling block visibility based on node type, deal with managing block visibility
configurations.

Controlling block visibility based on
node type

So far in this chapter, we have looked at controlling block visibility based on the path of the
page and the role of the user. In this recipe, we will look to configure a block to be displayed
based on the node type of the content on the page.

Getting ready
We will be configuring the Recent comments block—which is provided by the Comment
module—to only be visible for two particular node types, story and blog. The blog type is
automatically created upon enabling the Blog module via the module administration page
at admin/build/modules [Home | Administration | Site building | Modules]. The story
type and another example type named page, however, need to be created manually via the
Add content type page at admin/structure/types/add [Home | Administration |
Structure | Content types].

It is assumed that both the Blog and Comment modules have been enabled and that the
story and page node types have been created. It is also recommended that sample nodes and
associated comments be created for all node types to reliably test our recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

Drupal Theme Basics

32

How to do it...
Block visibility can be configured from the block’s configuration page as per the
following steps:

1. Navigate to admin/structure/block [Home | Administration |
Structure | Blocks].

2. Look for the block that needs to be configured, Recent comments, and click on
its Configure link.

3. On the configure screen, scroll down to the Visibility settings section and select the
Content types tab.

4. In the Content types tab, check the checkboxes that correspond to the Blog entry
and Story types as shown in the following screenshot:

5. Finally, click on Save block to save our changes.

To test if our changes have taken effect, visit pages representing each of the three node
types: blog, page, and story, and verify that the Recent comments block is being displayed
only for the two configured in this recipe and not the rest.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

33

How it works...
Drupal maintains a table named block_node_type which keeps track of type-specific
settings for all blocks. When a block is to be displayed, Drupal looks up this table if node
type-specific conditions are in effect. If they are, then Drupal compares the type of the node
being displayed against the types loaded from the block_node_type table and displays the
block only if there is a match.

In this case, the block will only be displayed if we are viewing a blog or story node.

See also
Earlier recipes in this chapter, namely Controlling block visibility based on user role and
Displaying a block only on the front page, also concern controlling block visibility.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

2
Beyond the Basics

We will be covering the following recipes in this chapter:

 f Understanding the anatomy of a theme

 f Creating a subtheme based on a core theme

 f Overriding base theme elements in a subtheme

 f Changing the screenshot image of a theme

 f Including a CSS file in a theme

 f Enabling CSS optimization

 f Creating the mysite module to hold our tweaks

 f Adding a CSS file from a module

 f Displaying a different theme for each day of the week

 f Creating a fresh look using the Color module

Introduction
One of the more prevalent adages with respect to Drupal development and theming is:

Do not hack core!

Modules, themes, and other files that come with a stock Drupal installation should never be
edited directly. In other words, we really should not need to modify anything outside the sites
folder of our installation as it is designed to contain all our changes and customizations. The
reasoning behind this is that most, if not all, aspects of core are accessible and modifiable
through a clean and non-invasive process using Drupal's APIs. Therefore, hacking core
modules and themes to get things done is almost always unnecessary and ill-advised.

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond the Basics

36

Another reason against directly editing core modules and themes, or for that matter, even
their contributed counterparts, is that whenever an upgrade of Drupal or said modules and
themes takes place, we will very likely be overwriting—quite unwittingly—the changes we have
made or at the very least, make the upgrade a trying exercise.

With respect to themes, let us consider a situation where our site is making use of a core
theme such as Garland and we are looking to tweak its markup or styling to better suit
our purposes. As reasoned earlier, what we do not want to do is just dive in and edit the
theme directly. Instead, the Drupal way advocates that we extend the Garland theme using
a subtheme that, by default, is more or less an identical copy. This subtheme can then be
modified and customized by overriding aspects of the base theme such as its stylesheets,
template files, template variables, and so on. This decision will ensure that our changes will
remain secure within the sites folder and furthermore, will allow us to easily track all the
changes we have introduced through our subtheme.

Modules can similarly be extended and overridden using our own custom modules.

In this chapter, we will look at the building blocks of a basic theme and then familiarize
ourselves with the concept of the subtheme and the various techniques available to extend,
override, and modify it according to our requirements.

Understanding the anatomy of a theme
Drupal themes can consist of a multitude of files each with its own purpose, format, and
syntax. This recipe will introduce each of these types with an explanation of what they do.

Getting ready
It will be useful to navigate to the Garland folder at themes/garland to browse and view the
files inside a typical, fully featured theme. Garland uses the PHPTemplate theming engine
which is the default engine in Drupal 7.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

37

How to do it...
The following table outlines the types of files typically found inside a theme's folder and the
naming conventions to be followed for some of them:

Type Mandatory? Description
mytheme.info Yes Configuration file which provides information to Drupal

about a theme named mytheme.
*.tpl.php Varies Template files which allow the customization and

styling of themable aspects of Drupal. These can
either live at the root level of the theme or in a folder
named templates.

page.tpl.php Yes A template file which determines the layout of all
Drupal pages.

node.tpl.php No A template file which determines the layout of a node
inside a Drupal page.

block.tpl.php No A template file which determines the layout of a block.
template.php No PHPTemplate master file where some of the more

complicated and powerful tweaks and overrides occur.
*.css No CSS stylesheets which need to be explicitly included

through the .info files.
*.js No JavaScript files which need to be explicitly included

through the .info file.
favicon.ico No Shortcut icon: If this file exists, it will be automatically

included in the theme unless overridden from
within Drupal.

logo.png No Site logo: If this file exists, it will be automatically included
in the theme unless overridden from within the theme or
the theme's settings in Drupal.

screenshot.png No Theme preview image: If this file exists, it will be
automatically included in the theme.

Perusing the contents of each of the available files will prove very useful as we go along
developing our theme.

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond the Basics

38

How it works...
When a theme is added, Drupal first parses its .info file. This file, as its extension suggests,
provides information about the theme such as its name, Drupal version compatibility, regions
declared, CSS stylesheets used, JavaScript files included, and so on. In other words, Drupal
uses it to map the structure of a theme.

The .info file can also be used to specify the theming engine being used by the theme.
Theme engines allow theme developers to communicate with Drupal using a simpler and
more convenient interface commonly through template files. A number of them also
introduce their own language formats for use in these template files. This directive, however,
is generally not included as most themes use the PHPTemplate engine which is the default
choice in Drupal 7.

Template files in PHPTemplate themes are those that use the .tpl.php extension.
Unlike other engines, these files just use PHP and HTML and do not rely on any special
markup languages.

There's more...
Other theme engines besides PHPTemplate are also available. However, only a handful of
themes in Drupal's contribution repository rely on them.

Other theme engine types
The PHPTemplate engine is the most widely prevalent theming engine used in the Drupal
ecosystem. Themes using other engines such as Smarty or Xtemplate are rare and will
be structured quite differently. A list of engines can be found at http://drupal.org/
project/theme+engines.

Creating a subtheme based on
a core theme

As explained in the introduction to this chapter, subthemes allow developers to customize and
extend existing theme installations in a non-destructive manner. They are also handy
in keeping the amount of repetitious code to a minimum thereby improving efficiency and
easing management.

This recipe details the steps involved in creating a subtheme of an existing theme, which in
this case is the core theme, Garland.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

39

Getting ready
Create a folder named mytheme inside sites/all/themes. This name is usually also
the name of the new theme and it is best to keep things uncomplicated by not using spaces
and special characters. While mytheme is suitable for the purpose of this recipe, it will be
a good idea to give the theme a unique and pertinent name based on its design and use.
It is also important to ensure that there are no name conflicts with other existing core or
contributed themes.

As mentioned in the previous chapter, by creating this theme within
sites/all/themes, we are effectively sharing the theme between
all sites using the installation. If we need to restrict its availability to
just one site, we would instead place it within sites/foo.example.
com/themes where foo.example.com is the URL of the site.

How to do it...
A subtheme of a core theme can be created through the following procedure:

1. Create a file named mytheme.info inside the mytheme folder.

2. Edit this new file and add the following code inside it:
name = Mytheme
description = My new sub-theme (CSS, phptemplate, 3-col)
base theme = garland
core = 7.x

It is useful to add an informative description field as it will be visible
in the theme administration page. Specifying the key characteristics of the
theme can save time and effort as the administrator gets a quick overview
of the design.

3. Save the file.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond the Basics

40

4. Next, visit admin/appearance [Home | Administration | Appearance] to check if
our new theme is available.

As the preceding screenshot attests, the theme administration page should now include our
new theme - Mytheme. Enabling it should confirm that it is more or less identical to Garland
and can now be extended further as per our requirements.

How it works...
Drupal uses the .info files to learn about our new subtheme. The name and description
variables, rather unsurprisingly, represent the name of the theme and a description that
customarily includes details about the layout of the theme.

The base theme variable denotes the parent theme which our subtheme is based on.
By using this variable, we are informing Drupal that it should use the layout and styling of
the base theme—in this case Garland—unless we indicate otherwise. This process of replacing
base theme variables with subtheme equivalents is commonly referred to as overriding the
base theme.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

41

Finally, the core variable denotes the compatibility of our theme with Drupal 7.

While previewing mytheme, we might find that the logo image is missing
in the header of the Garland style. This is because the theme setting
for our subtheme is set to Use the default logo as per the setting on its
theme configuration page. Either modifying this setting or including a
logo.png file in our theme folder should resolve this issue.

There's more...
Drupal allows for easy manageability by supporting chaining with subthemes.

Chaining
Subthemes can be chained, if necessary. For example, our mytheme could now become the
base theme for another theme named mynewtheme which would inherit all the modifications
made by mytheme to Garland.

See also
The next recipe, Overriding base theme elements in a subtheme, explain how to override
template files belonging to the base theme from within a subtheme. It is also worthwhile
exploring two recipes from the next chapter, namely, Creating a theme from scratch and
Creating myzen, a Zen-based theme.

Overriding base theme elements in
a subtheme

This recipe details the steps involved in overriding a template file registered by a base theme
with an equivalent file in the subtheme. As an example, we will be restructuring the layout of a
Drupal node by modifying the node.tpl.php template.

Getting ready
We will be using the mytheme subtheme that was created in the previous recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond the Basics

42

How to do it...
As we are dealing with a subtheme here, it is by default relying on the template files of its
base theme. To override the base file used to theme the layout of a node, copy the node.
tpl.php file from the base theme's folder, themes/garland, to the sites/all/themes/
mytheme folder. Opening the new file in an editor should bring up something similar to
the following:

<?php
 // $Id: node.tpl.php,v 1.24 2010/12/01 00:18:15 webchick Exp $
?>
<div id="node-<?php print $node->nid; ?>" class="<?php print
 $classes; ?>"<?php print $attributes; ?>>

 <?php print $user_picture; ?>

 <?php print render($title_prefix); ?>
 <?php if (!$page): ?>
 <h2<?php print $title_attributes; ?>><a href="<?php print
 $node_url; ?>"><?php print $title; ?></h2>
 <?php endif; ?>
 <?php print render($title_suffix); ?>

 <?php if ($display_submitted): ?>

 <?php print $submitted ?>

 <?php endif; ?>

 <div class="content clearfix"<?php print $content_attributes; ?>>
 <?php
 // We hide the comments and links now so that we can render
 // them later.
 hide($content['comments']);
 hide($content['links']);
 print render($content);
 ?>
 </div>

 <div class="clearfix">
 <?php if (!empty($content['links'])): ?>
 <div class="links"><?php print render($content['links']);
 ?></div>
 <?php endif; ?>

 <?php print render($content['comments']); ?>
 </div>

</div>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

43

The lines highlighted in the preceding code excerpt indicate the code we are looking to modify.
To elaborate, we are going to move the node's submission information from a position at the
top, right to the bottom of the node display. This can be done by simply moving the relevant
block of code to an appropriate location further down in the template file, as highlighted in
the following code:

<?php
 // $Id: node.tpl.php,v 1.24 2010/12/01 00:18:15 webchick Exp $
?>
<div id="node-<?php print $node->nid; ?>" class="<?php print
 $classes; ?>"<?php print $attributes; ?>>

 <?php print $user_picture; ?>

 <?php print render($title_prefix); ?>
 <?php if (!$page): ?>
 <h2<?php print $title_attributes; ?>><a href="<?php print
 $node_url; ?>"><?php print $title; ?></h2>
 <?php endif; ?>
 <?php print render($title_suffix); ?>

 <div class="content clearfix"<?php print $content_attributes; ?>>
 <?php
 // We hide the comments and links now so that we can render
 // them later.
 hide($content['comments']);
 hide($content['links']);
 print render($content);
 ?>
 </div>

 <?php if ($display_submitted): ?>

 <?php print $submitted ?>

 <?php endif; ?>

 <div class="clearfix">
 <?php if (!empty($content['links'])): ?>
 <div class="links"><?php print render($content['links']);
 ?></div>
 <?php endif; ?>

 <?php print render($content['comments']); ?>
 </div>

</div>

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond the Basics

44

Once this has been done, save the file and exit the editor. As we have made changes to the
template system, we will need to rebuild the theme registry, or as is recommended throughout
this book, simply clear the entire Drupal cache. One of the ways to do this is through the
performance configuration page available at admin/config/development/performance
[Home | Administration | Configuration | Development | Performance].

How it works...
For performance purposes, Drupal maintains a registry of all the stylesheets that have been
included, the template files that are available, the theme functions that have been declared,
and so on. As our theme initially had no node.tpl.php file in the mytheme folder, Drupal fell
back to the node.tpl.php file of the base theme which, in this case, is Garland. However,
once we added one to the mytheme folder, we needed to rebuild this registry so that Drupal
became aware of our changes. Once this was done, Drupal used the updated node.tpl.php
file the next time a node was displayed.

The following screenshots provide a before and after comparison of an example node:

In the following screenshot, we can see our modified template file in action as the position of
the submission information DIV has moved from the top to the bottom of the node:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

45

There's more...
The non-invasive technique of extending base themes using subthemes allows for
smooth upgrades.

Clean upgrades
If we had modified the node.tpl.php file inside Garland, the next time our Drupal
installation is upgraded, we would have very likely forgotten about our changes and
overwritten them during the upgrade process. By using a subtheme, we can now upgrade
Drupal without any fear of losing any changes we have made.

Another positive is that if bugs have been fixed in Garland, they will seamlessly propagate
downriver to our subtheme.

See also
The first recipe in Chapter 3, Custom Themes and Zen details how to go about Clearing the
theme registry, an oft-repeated procedure throughout the theme development cycle.

Changing the screenshot image of a theme
This recipe details the steps involved in changing the screenshot image associated with a
theme. This image provides the user with a preview of what the site will look like when the
theme is enabled. This is normally only required when we are working with a subtheme or
a custom theme.

Getting ready
Once the theme is just about ready to go, visit the front page of the site to take the
screenshot. As we are providing a snapshot of the theme, temporarily swap the name of
the site with the name of the theme. It might also be useful to prepare some example
content for display on the front page to obtain an accurate representation of the style
and layout of our theme.

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond the Basics

46

How to do it...
Adding a screenshot for our theme can be done through the following steps:

1. On the front page, press ALT + Print Screen to take a screenshot of the
active window.

Mac users can use Command + Shift + 3 while Linux users should
be able to bring up the screenshot utility relevant to their distribution
by pressing Print Screen.

2. Open up a graphics editor and paste the screenshot within.

3. Make a wide selection of the theme incorporating different elements such as the
position of the logo, breadcrumb, fonts and node styles, and so on.

4. Crop and resize to 294x219 pixels which is the rather odd standard for
theme screenshots.

5. Save the image as a PNG file named screenshot.png.

6. Finally, copy the file to the theme's folder.

Visiting admin/appearance [Home | Administration | Appearance] should confirm that
screenshot.png is being used to represent our theme.

How it works...
Drupal automatically looks for a file named screenshot.png in the theme's folder and if
found, includes that image as a preview of the theme on the theme management page as
illustrated in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

47

There's more...
Each theme's .info file provides the syntax required to specify many of the theme's
configuration settings. This includes nominating the screenshot file to be used.

Using the .info file
The screenshot image can also be specified in the theme's .info file using the
following syntax:

screenshot = mytheme.png

where mytheme.png is the name of the screenshot file.

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond the Basics

48

See also
The Chapter 1, Drupal Theme Basics recipes, Uploading a new favicon and Uploading a new
logo, demonstrate how to include and modify other common image elements of a theme.

Including a CSS file in a theme
This recipe details the steps involved in adding a CSS file to the theme through its .info file.
In this case, we will be adding a CSS file to the mytheme subtheme that we created earlier in
this chapter.

Getting ready
We will be including a CSS file in this theme. Create a folder titled css within the mytheme
folder at sites/all/themes/mytheme and within, create a CSS file named mytheme.css.
Open the file in an editor and add the following example rule to it:

* {
 color: #996633 !important;
}

The above rule should override and change the color of all text on the page to a brownish hue.
It is assumed that mytheme is the active/default theme of the site.

How to do it...
Adding a CSS file to a theme is best accomplished through its .info file. Navigate to the
theme's folder at sites/all/themes/mytheme and open the mytheme.info file in an
editor. Add the following line to this file to include our CSS file:

stylesheets[all][] = css/mytheme.css

Note that the above statement specifies that the CSS file is present
within the css folder. The folder name is arbitrary and is not
necessarily restricted to CSS.

Once done, save the file and exit the editor. As we have modified the .info file and
introduced a new file, our changes will not take effect until the theme registry is rebuilt.
Therefore, clear the Drupal cache and view the site to confirm that our new stylesheet has
been included correctly. If it has, then the theme should now display all text in brown as
shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

49

How it works...
Drupal checks the .info file and notes that we have declared stylesheets using the
stylesheets variable. The syntax of this variable is similar to that of an array in PHP. The
all index in the syntax represents the media type as used in CSS declarations.

The next screenshot displays a section of the source code of a page that confirms the
inclusion of the new stylesheet, mytheme.css. We can also see that our subtheme is also
including the stylesheets declared by its base theme, Garland, as well as its own stylesheets:

In the preceding screenshot, we can see that Drupal references each
stylesheet along with a query string. For example, mytheme.css is
included as mytheme.css?llue28. This quirky suffix is a trick used
by Drupal to ensure that browsers do not use stale copies of a cached
CSS file while rendering our site.
We can test this by clearing the Drupal cache and viewing the source
code once again. Now, our stylesheets should have a different suffix,
perhaps something like mytheme.css?llvg5v, thereby tricking
browsers into believing that these are different files and loading them
instead of their locally cached copies.

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond the Basics

50

There's more...
One of the advantages of using a subtheme is that we can easily override elements of the
base theme. This includes stylesheets as well.

Overriding the base theme's stylesheet
If the base theme includes a stylesheet named layout.css, adding a stylesheet of the same
name in the subtheme will override the base theme's stylesheet. In other words, Drupal will
include the subtheme's stylesheet instead of that of the base theme.

See also
Later in this chapter, the recipe, Adding a CSS file from a module, provides an alternative
approach to including CSS files. The first recipe in Chapter 7, JavaScript in Themes explains all
about including JavaScript files from a theme.

The first recipe in Chapter 3, Custom Themes and Zen details how to go about clearing the
theme registry, an oft-repeated procedure throughout the theme development cycle.

Enabling CSS optimization
CSS optimization in Drupal is accomplished through two steps, aggregation and compression.
In other words, multiple related CSS files are grouped together into a single file and then
compressed to produce a much smaller file. This optimization provides a significant boost to
performance both on the server as well as for the user.

This recipe demonstrates how to enable this feature in Drupal and explains how it works.

Getting ready
CSS optimization is a requirement only when a site is ready to go live. Until such time, it is
recommended that it be left switched off as otherwise, CSS changes during development will
not take effect unless the Drupal cache is cleared.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

51

How to do it...
Optimization and other performance related features are sequestered within
admin/config/development/performance [Home | Administer | Configuration |
Development | Performance]. This performance configuration page should have a section
titled Bandwidth optimization which contains options for CSS and JavaScript optimization.
Look for the setting named Aggregate and compress CSS files. and enable
it as shown in the following screenshot:

Once done, click on the Save configuration button at the bottom of the page to save
our changes.

How it works...
Aggregation involves the collating and joining of multiple CSS files into a single stylesheet,
while compression reduces the resulting file to a smaller size by trimming out unnecessary
elements such as whitespace. The former helps in reducing the number of files that the server
has to load and serve, while the latter saves on bandwidth and time.

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond the Basics

52

In the following screenshot, we get a glimpse at an example Drupal page which loads
a number of stylesheets for each page view. Each of these files has to be downloaded
separately by the user's browser which creates a lag as the web server has to serve each
of them separately as well. Furthermore, the multitude of @import calls result in each file
being downloaded and parsed in sequence rather than in parallel which increases the wait
time for the user even further. All in all, there are eleven files that need to be processed.
If this is extrapolated to sites of greater complexity, the number of files and, consequently,
the server and bandwidth load begin to take on significant proportions and can seriously
impact performance.

The following screenshot is the same page as before with one difference, CSS optimization is
now turned on. The number of CSS files has now been reduced to only five, four for all media
types and the other being the print media type. Additionally, all the @import calls have been
replaced with <link> leading to quicker load times as they can be downloaded in parallel
by the user's browser. These stylesheets are stored in the Drupal filesystem and are cached
copies. As a result, each page load now only involves the web server serving five files instead
of the previous eleven.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

53

Prior to Drupal 7, enabling CSS optimization would have reduced the number
of CSS files to just two, one for all media types and another for the print
media type. While this drastically reduced the number of files required to
be loaded, the fact that different Drupal pages had different combinations
of stylesheets meant that the same files were being optimized repeatedly
to account for minor changes in the combination. In Drupal 7, this issue
has been solved by introducing a grouping variable which allows for the
optimization of related stylesheets such as system and theme stylesheets
separately. While this increases the number of aggregated stylesheets, to
five in this recipe, the overall performance increases as the server does not
need to reaggregate as often.

There's more...
CSS optimization and other performance improvements should be used with care. Enabling
them prematurely during the development stage can slow down development or lead to bugs
and anomalies going unnoticed as we would then be working with cached versions of the
code. However, there are exceptions where this is not the case.

Internet Explorer and the number 31
It is generally considered that CSS optimization is only necessary to improve performance
on production sites and that enabling it beforehand will only hinder development. However,
optimization can sometimes be handy during theme development on Internet Explorer. This
browser has a hard limit of 31 stylesheets, that is, only the first 31 CSS files are considered
and the rest are ignored. While 31 stylesheets might initially appear ample, sites routinely
incorporate enough modules to easily exhaust this limitation. By enabling CSS optimization,
we can work around this problem by drastically reducing the number of stylesheets that need
to be loaded.

Other optimizations
Other optimization settings can also be configured on the performance page. These include
page caching, block caching, and JavaScript optimization. While page and block caching
endeavor to reduce the number of database calls that Drupal has to make to load and render
content, JavaScript optimization offers benefits similar to those gained with CSS optimization.

It is also worthwhile browsing through the Caching and Performance modules that are
available as contributed modules through http://drupal.org/project/modules under
the category Performance and Scalability.

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond the Basics

54

Creating the mysite module to hold
our tweaks

In the course of developing our site, we will frequently come across situations where
various elements of the site need to be tweaked in PHP using Drupal's APIs. While a lot of
theme-specific cases can be stored in template files, certain tweaks which are theme-agnostic
require that we store them in a module to ensure that they are available to all themes.

This recipe covers the creation of a module to hold our tweaks and other bits and pieces.

Getting ready
As we saw when creating the mytheme subtheme earlier in this chapter, the
sites/all folder provides a modules folder along with a themes folder to hold
our custom and contributed installations. These modules and themes are automatically
made available to all sites using this Drupal installation. However, if we are looking to
restrict the use of our module solely for a particular site, then we would place it within
sites/foo.example.com/modules instead.

How to do it...
The following list details the procedure involved in creating a module named mysite to hold
our theme-agnostic customizations and other odds and ends:

1. Create a folder inside sites/all/modules named mysite where mysite refers
to the name of our site.

2. Within this folder, create a file named mysite.info.

3. Edit this file and add the following code inside:
name = Mysite
description = A module to hold odds and ends for mysite.
core = 7.x

4. Save the file.

5. Create another file named mysite.module. This is the file that will hold our
odds and ends.

6. Save and exit the editor.

7. Finally, enable the module through the module administration page at admin/
modules [Home | Administer | Modules].

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

55

How it works...
Just as with themes, modules require a .info file which provides information to Drupal
on compatibility, dependencies, and so on. Once Drupal ascertains that the module is
compatible with the version installed, it loads the .module file of the same name and
processes it accordingly.

We can test if the module is working by adding a snippet such as the following:

<?php

/**
 * Implements hook_init().
 */
function mysite_init() {
 // Display a message on every page load.
 drupal_set_message("Welcome to MySite!");
}

As the comment suggests, the mysite module will now inject a welcome message into every
page view. This is confirmed in the following screenshot:

There's more...
The Drupal community routinely comes up with modules to ease the pain of development.

Module builder
There's a module available named Module Builder which can be used to generate a skeleton
of a general module. This can subsequently be populated as per our requirements. It is
available at http://drupal.org/project/module_builder.

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond the Basics

56

See also
The next recipe, Adding a CSS file from a module, makes use of this module to include a CSS
file dynamically.

Adding a CSS file from a module
Situations arise where CSS files or CSS rules need to be added from a module. This could
be useful, for example, to style features added by the module, or to style content added by
some other module. When compared with including stylesheets through a theme's .info file,
modules provide greater control and flexibility.

This recipe demonstrates how to add CSS files using the mysite module.

Getting ready
We will be using the mysite module created in the previous recipe. Within its folder, create
a subfolder named css and subsequently, within it create two CSS files named mysite.css
and mysite_special.css and populate them with some sample rules.

How to do it...
Add the following code to the file mysite.module:

/**
 * Implements hook_init().
 */
function mysite_init() {
 // The path to the mysite module.
 $path = drupal_get_path('module', 'mysite');

 // Include mysite.css.
 drupal_add_css($path . '/css/mysite.css');

 // Include mysite-special.css, but do not preprocess and
 // prioritize file via its weight.
 drupal_add_css($path . '/css/mysite-special.css',
 array('preprocess' => FALSE, 'weight' => -20));
}

If the module is named something else, the function mysite_init()
will need to be renamed appropriately. On the other hand, if the module
already contains an existing hook_init() function, the contents of
our function will need to be integrated appropriately to it.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

57

Save the file and exit the editor. Visiting the site and viewing its sources should confirm that
two new CSS files are now being included for every page.

How it works...
The drupal_add_css() function is used to add CSS files from a module. Its syntax is
as follows:

drupal_add_css($data = NULL, $options = NULL)

While the syntax might initially appear simple, each of the two parameters can accept a
number of different options. In this recipe, we make two calls to drupal_add_css(). In the
first call, we include a file from the css folder:

 drupal_add_css($path . '/css/mysite.css');

The only parameter we pass is the complete path (relative to the site root) of the CSS file to
be included. The complete path is retrieved using an earlier call to drupal_get_path()
the result of which we have stored within the variable $path. drupal_add_css(), which will
typically include this file using an @import statement and make it available for aggregation
and optimization.

The second call to drupal_add_css() exercises a couple of options:

 drupal_add_css($path . '/css/mysite-special.css',
 array('preprocess' =>
 FALSE, 'weight' => -20));

Here we make use of both the available parameters to the function. The first passes the path
to the mysite-special.css file. The second, however, passes an array containing two
additional directives which explicitly instruct Drupal not to aggregate this file and furthermore,
also ensure that this file is included ahead of other similarly configured CSS files by virtue of
its lower weight.

Looking at the source code of a typical page on the site when CSS optimization is enabled, we
should see the stylesheets included similar to the following transcription:

<link type="text/css" rel="stylesheet"
 href="http://book.endymion/sites/all/modules/mysite/css/
 mysite-special.css?lly4ld" media="all" />
<style type="text/css" media="all">@import url
 ("http://book.endymion/sites/all/modules/mysite/css/
 mysite.css?lly4ld");</style>

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond the Basics

58

As the preceding markup attests, the mysite-special.css file is included ahead of
mysite.css. What's more, since we have specified that it is not to be aggregated, Drupal
has gone ahead and included it using a <link> tag rather than an @import statement. By
enabling CSS optimization, we should find that only the mysite.css file is aggregated and
optimized while mysite-special.css is included as it is.

Drupal API documentation
Drupal documentation for drupal_add_css(), drupal_get_
path(), and just about every other Drupal function is available at
http://api.drupal.org. This documentation is parsed directly
from the comments included in the Drupal code. Consequently, the
same information can also be retrieved by sifting through the Drupal
source code, preferably with a capable editor.

There's more...
Besides adding external stylesheets, the Drupal API also allows for adding inline CSS.

Adding inline CSS
We can also utilize the drupal_add_css() function to inject inline CSS directly within the
HEAD tags of the HTML document. We can do this by passing a string containing our CSS and
instructing Drupal that it is to be included inline by way of the second parameter.

// Include inline CSS.
drupal_add_css('<style type="text/css">body
 { color: #000; }</style>', 'inline');

Naming conventions
While including CSS files from within modules, it is highly recommended that all files be
prefixed with the name of the module. In this case, we have prefixed the special.css file
with the name of our module, thus giving us mysite-special.css. This makes it easier
while grouping and overriding stylesheets and reduces ambiguity and confusion.

See also
The Including a JavaScript file only for certain pages recipe in Chapter 7, JavaScript in Themes
outlines similar functionality for JavaScript. Enabling CSS optimization, seen earlier in this
chapter, is also relevant.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

59

Displaying a different theme for each day
of the week

This recipe demonstrates how we can go about controlling the theme being used to render a
page from within a module. As an example, we will be adding the code that allows the rotation
of themes based on the day of the week.

Getting ready
As we have seen in other recipes in this chapter, a number of sites use an "odds and ends"
module to handle tweaks and customizations particular to the site. We will be using the
mysite.module created earlier in this chapter to hold our customizations. It is assumed that
the module is available and already enabled.

How to do it...
Open the mysite.module file and paste the following code in it:

/**
 * Implements hook_custom_theme().
 */
function mysite_custom_theme() {
 // An array of themes for each day of the week.
 // These themes have to be installed and enabled.
 $themes = array();
 $themes[0] = 'garland';
 $themes[1] = 'bartik';
 $themes[2] = 'stark';
 $themes[3] = 'seven';
 $themes[4] = 'mytheme';
 $themes[5] = 'sky';
 $themes[6] = 'danland';

 // Get the current day of the week in numerical form.
 $day = date("w");

 // Override current theme based on day of the week.
 return $themes[$day];
}

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond the Basics

60

Save the file and then refresh a page on the Drupal site to see this snippet at work. Due to
the nature of this feature, it might be necessary to fiddle with the computer's date settings to
simulate different days of the week during testing.

As the comments in the code note, the theme returned by
hook_custom_theme() has to be installed and enabled
for this to work.

How it works...
The function hook_custom_theme() manipulates a global variable named
$custom_theme which controls the theme being used to render the current page.
Drupal changes the theme being used based on the value returned by this function.

As we are looking to change the theme based on the day of the week, we are going to
take advantage of a feature of PHP's date() function that returns the day of the week
as a number between zero and six with the former representing Sunday and the latter
denoting Saturday.

// Get the current day of the week in numerical form.
$day = date("w");

We now map the $day variable to the $themes array which also has elements from zero to
six associated with seven enabled themes and, as a result, we obtain the equivalent theme
for that day of the week. Finally, returning the associated theme overrides the default theme
with the theme for the current day of the week.

There's more...
The PHP code used in this recipe can be easily modified to display a random theme on every
page load.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

61

Displaying a random theme
Instead of displaying a preset theme for each day of the week, integrating the following
snippet into the mysite_custom_theme() function will display a random theme on
every page load:

 // Override current theme randomly.
 return $themes[array_rand($themes)];

See also
Rather than cycling through different themes, the next recipe, Creating a fresh look using the
Color module, provides an alternate solution that makes use of the Color module to modify an
existing theme by changing its color scheme.

Creating a fresh look using the Color module
The Color module allows the administrator to easily change the color scheme of themes that
support it. This facilitates a fresh look for the site without having to create a new theme or
subtheme. Among Drupal's core themes, Garland and Bartik both support the Color module.
In this recipe, we will be covering the steps required to change the color scheme of Garland to
something different and possibly unique.

Getting ready
Ensure that the Color module is enabled in admin/modules [Home | Administration |
Modules]. As we are going to change the color scheme of the Garland theme, ensure that it is
enabled and set as the current theme.

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond the Basics

62

How to do it...
Colorizing the Garland theme can be accomplished by following these steps:

1. Navigate to admin/appearance [Home | Administration | Appearance].

2. Look for the Garland theme and click on its associated settings link.

3. In the ensuing page, look for the section titled Color scheme.

4. In this section, the Color set drop-down lists a host of available preset color
schemes. Choosing any of the presets will change the color scheme of the
Preview section further below:

5. Once satisfied, click on the Save configuration button at the bottom of the page to
save our changes.

How it works...
The Color module works by generating stylesheets using the new color scheme which
effectively replace the existing stylesheet at runtime. The generated CSS file is stored in the
site's filesystem in a folder named color. In addition to the stylesheets, the Color module,
can also dynamically blend the theme's image assets to suit the new color scheme.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

63

The Color module creates a new stylesheet which is a customized
copy of the theme's original CSS file. As it is a copy, fixes and updates
to the original file are automatically propagated to it. Therefore,
whenever changes are made to the original file, it is recommended
that the stylesheet be regenerated by simply saving the customized
color settings once again.

There's more...
We are not restricted to the inbuilt presets provided by the Color module and can also
create our own.

Custom presets
If the provided presets are unsatisfactory, clicking on the text fields below the drop down will
allow further customization. Once a text field has focus, the color wheel on the right can also
be clicked and used to select different palettes at will. These new settings are saved as the
Custom preset as demonstrated in the following screenshot:

The locks in the previous screenshot can be activated or deactivated.
When activated, adjusting one value will adjust any linked fields
by a relative amount. When deactivated, each field can be
adjusted individually.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

3
Custom Themes

and Zen

We will be covering the following recipes in this chapter:

 f Clearing the theme registry

 f Creating a theme from scratch

 f Creating myzen—a Zen-based theme

 f Choosing a CSS layout for myzen

 f Overriding Zen template files with myzen

 f Adding a custom region to myzen

 f Adding a background image to the theme

 f Adding a conditional stylesheet in Zen

 f Modifying myzen's theme settings

Introduction
While subthemes of core and contributed themes are convenient and efficient in modifying
and reusing elements of their base themes, circumstances often require a completely unique
approach specific to our site. Custom themes are the solution for websites that demand a
fresh look, use complex layouts, or require such intricate fine tuning that it would be prudent
to start with a clean slate.

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Themes and Zen

66

Custom themes are the equivalent of handcrafted pieces of art, as the themer controls every
piece of the puzzle from a design or implementational point of view. This includes setting up
the theme using .info files, choosing the layout, implementing it in a page template, adding
regions, styling nodes using node templates, blocks using block templates, and so on. But
over time, developers have identified a list of common tasks, characteristic layouts, and file
and folder hierarchies that are logical, efficient, and promote reuse. This has evolved into
what have been dubbed starter themes—themes upon which custom themes are built,
usually as subthemes.

The most popular starter theme for Drupal is Zen. As advertised on its project page, the idea
behind the Zen theme is to have a flexible standards-compliant and semantically correct
XHTML theme that can be highly modified through CSS and an enhanced version of Drupal's
template system. It is designed in modular fashion thereby making it straightforward to
change layouts, override templates and theme functions, and to add or remove features.
Additionally, the Zen theme comes with extensive documentation within each file which make
things all the more convenient.

With respect to CSS, Zen maintains a number of well-documented CSS files
segregated by functionality or location. For example, layout rules are contained
within a dedicated layout.css (or similar) file and page backgrounds are styled
within page-backgrounds.css, and so on. This makes it convenient when it
comes to managing and tracking code changes.

In addition to the standard files that we have encountered while customizing themes in the
earlier chapters, a Zen-based theme contains the following file and folder structure:

File/folder name Purpose
css/ A folder to store stylesheets.
images/ A folder to store images used in the theme.
images-source/ A folder where the source files for the optimized images in the images

folder are available.
js/ A folder to store JavaScript files.
templates/ A folder where tpl.php template files are located.
template.php A file where theme function overrides and other theme and engine

related code is placed.
theme-settings.
php

A file where settings particular to a theme can be placed. These settings
are customarily exposed on the theme's configuration page.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

67

There are a number of other starter themes available on Drupal.org. Some of the more
popular ones include:

 f Fusion (http://drupal.org/project/fusion)

 f Blueprint (http://drupal.org/project/blueprint)

 f Ninesixty (http://drupal.org/project/ninesixty)

 f Adaptive theme (http://drupal.org/project/adaptivetheme)

We will be looking only at the Zen starter theme in this book.

Clearing the theme registry
Before we begin, we need to familiarize ourselves with a seemingly trivial yet crucial task
that needs to be performed on a routine basis during theme development—clearing the
theme registry. The theme registry is essentially a table that Drupal uses to list and track
the files and features of a theme as well as the theme functions which are being exposed by
modules and the theme itself.

While it is a recommended practice to turn on Drupal's cache feature only for production
sites, the theme registry is built and cached regardless of other caching options. As a
result, any changes that affect the structure of the theme will necessitate the clearing
of the theme registry.

Getting ready
Rebuilding the registry is an intensive operation which is required only when changes have
been made to the theme files.

How to do it...
There are a number of ways of clearing the registry. In a stock Drupal installation, visiting
admin/config/development/performance (Home | Administration | Configuration |
Development | Performance) and clicking on the Clear cached data button will clear all the
cached data, including the registry, and force a rebuild.

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Themes and Zen

68

A shortcut
It is sometimes handy to know that the cache and registry can also be
cleared by visiting admin/appearance (Home | Administration |
Appearance) and just clicking on the Save configuration button.

However, during development or debugging, we will want to clear the registry with great
regularity. Instead of having to do so manually, it is often handy to be able to instruct Drupal
to perform this operation automatically on every page load. Some themes, including the Zen-
based theme, which we will be familiarizing ourselves with later in this chapter, offer an option
on their configuration pages to rebuild the registry on every page load. While this is certainly
convenient, the recommended method of managing this and other development-oriented
operations is through the use of the Devel module.

As the name suggests, the Devel module is one that is tailor-made for use during
development. It can be downloaded from http://drupal.org/project/devel. Once
the module has been downloaded and installed, navigate to admin/config/development/
devel (Home | Administration | Configuration | Development | Devel settings) where the
option to Rebuild the theme registry on every page load can be enabled.

How it works...
Drupal maintains a cache of all .info files, template files, and theme functions in the theme
registry. This registry is a part of the cache table in the Drupal database. When we click on
the Clear cache data button in the Performance settings page, all Drupal is doing is clearing
this entry in the cache table, which automatically forces a rebuild of the registry. The Devel
module does the same thing when the Rebuild the theme registry on every page load setting
is enabled, except that it does this automatically on every page view.

It's important to keep in mind that rebuilding the registry, or for that matter
clearing any of the caches, is an expensive operation that adversely
affects the performance of the site. Therefore, it is recommended that this
setting only be enabled during development and not in production sites.

Clearing the registry is an important factor to keep in mind during development and especially
during debugging. More information on development and debugging tools including the Devel
module is available in Chapter 5, Development and Debugging Tools.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

69

There's more...
The Devel module also provides a block with handy shortcuts to oft-used areas of the site.

Clearing the cache using the Development block
The Devel module provides a custom menu which can also be embedded as a block through
the Block management page at admin/structure/block (Home | Administration |
Structure | Blocks). As it is a menu, the block will be made available only if the Menu module
is enabled. Once enabled, the block lists a number of links to perform operations such as
emptying the Drupal cache, rebuilding the menu cache, and even reinstalling modules as
shown in the following screenshot. Emptying the cache will also force a rebuild of the theme
registry. Once the theme is reasonably stable, it might be more efficient to manually clear the
cache through this block instead of rebuilding the registry during each page view:

See also
Chapter 5, Development and Debugging Tools elaborates further on the uses of the Devel
module during theme development.

Creating a theme from scratch
While we have earlier looked at installing contributed themes and extending base themes
using subthemes, this recipe will outline the steps required to create a custom theme
from scratch.

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Themes and Zen

70

Getting ready
Custom themes, like contributed themes, are placed within the sites/all/themes
folder (or the sites/foo.example.com/themes folder, in case of multi-site installations).
Some administrators prefer to go a step further and place custom and contributed
themes in their own folders. In other words, our custom theme would be placed within
sites/all/themes/custom and any other contributed themes would find their place
within sites/all/themes/contrib or similar.

How to do it...
Creating a brand new custom theme is not unlike what we did in Chapter 2, Beyond the
Basics, in creating a subtheme for a core theme. The primary difference is that there
is no base theme in this case and that files such as page.tpl.php will need to be
explicitly defined:

1. Create a folder with the new theme's name inside the sites/all/themes folder. In
this example, we are going to call our theme mytheme.

2. Within this folder, create a file named mytheme.info and open it in an editor.

3. Add details about the theme as follows:

name = My theme
description = My custom theme
core = 7.x

4. Save the file.

5. Visit the theme administration page at admin/appearance (Home | Administration
| Appearance) and we should be able to see a new entry for our theme:

6. Enable the theme and activate it by clicking its Enable and set default link.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

71

How it works...
Just as with other themes, Drupal scans the sites/all/themes folder looking for .info
files that indicate the presence of a theme. Seeing mytheme.info, it parses the file, loads
the details of the theme, and saves them in the database.

When the new theme is enabled, what we will see is largely unstyled content not unlike the
following screenshot. The problem here is that we have not specified any CSS stylesheets to
lay out the page. The only styles being loaded are those that are module-specific as opposed
to theme-specific:

The styles being used in the preceding screenshot are as follows:

<style type="text/css" media="all">@import url("http://book.endymion/
 modules/system/system.base.css?lm5mb7");
 @import url("http://book.endymion/modules/system/system.menus.
 css?lm5mb7");
 @import url("http://book.endymion/modules/system/system.messages.
 css?lm5mb7");
 @import url("http://book.endymion/modules/system/system.theme.
 css?lm5mb7");
</style>
<style type="text/css" media="all">@import url("http://book.endymion/
 modules/field/theme/field.css?lm5mb7");
 @import url("http://book.endymion/modules/node/node.css?lm5mb7");
 @import url("http://book.endymion/modules/user/user.css?lm5mb7");
</style>

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Themes and Zen

72

As we can see, the only stylesheets in evidence are those belonging to core modules and
none from our theme.

Furthermore, during the process of building the page, Drupal has noticed that we do not have
any template files in our theme, most notably, page.tpl.php. Therefore, it has defaulted to
an inbuilt page template file from modules/system/page.tpl.php and used it instead.
Similarly it is using the node.tpl.php file from modules/node/ as the basis for each
node's layout.

In other words, we have a lot of work ahead of us in getting things up and running especially
if our eventual requirements are going to be complicated. As we will see in the next recipe,
this is one of the reasons why most themers prefer to use a starter theme and hit the
ground running.

See also
The next recipe, Creating myzen—a Zen-based theme, implements a custom theme based on
a starter theme named Zen.

Creating myzen—a Zen-based theme
While building a custom theme from scratch is great, most themers prefer to use starter
themes as the base for their designs. Starter themes save time and effort as themers do not
have to perform tedious repetitive tasks, and can rely on a tried and tested structure to use as
a foundation for their custom themes.

In this recipe, we will be looking at creating a theme based on the most popular of all starter
themes available on Drupal.org, Zen.

Getting ready
Download the theme from http://drupal.org/project/zen and install it within
sites/all/themes/. The default Zen theme does not need to be enabled for our
custom theme to work.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

73

How to do it...
The Zen theme provides a starter kit that can be used to kick-start our theme:

1. Navigate to the newly installed Zen theme's folder at sites/all/themes/zen.

2. Copy the STARTERKIT folder inside it.

3. Paste this folder into sites/all/themes.

4. Rename the folder to the name of our new theme which, in this recipe, is myzen:

5. Within this folder, rename the file STARTERKIT.info.txt to myzen.info.

6. Open the .info file in an editor.

7. Update the name field to the name of the theme which in this case is myzen.

8. Update the description field to My custom Zen sub-theme.

9. Save and exit this file.

10. Open template.php in an editor and replace all occurrences of STARTERKIT_
with myzen_ using the editor's find and replace all function.

11. Save and exit the editor.

12. Repeat the find and replace operation for the file theme-settings.php as well.

13. Save and exit this file.

Visiting the theme administration page at admin/appearance (Home | Administration |
Appearance). It should now display our new theme. Screenshots, favicons, and other niceties
can be configured just like for any other theme.

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Themes and Zen

74

How it works...
The Zen theme contains a folder named STARTERKIT that is effectively a skeleton subtheme
containing files and folders that can be readily customized to create a new theme. Once we
have made a copy of this folder and renamed its .info file with the name of our theme,
Drupal will recognize our new entry, which is now registered as a subtheme of Zen as seen in
the following screenshot:

While the Zen theme needs to be available, it does not need to be
enabled for myzen to function.

Once enabled, the front page of the site will look something like the following screenshot.
It is worthwhile comparing the screenshots in this recipe with those from the Creating a
theme from scratch recipe earlier in this chapter. The essential difference is that we have
a fleshed-out skeleton to work with when we use Zen with a lot of the right pieces already in
the right place:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

75

There's more...
The Zen theme comes with a plethora of settings and documentation, which can at times be a
little overwhelming. But the rewards of familiarizing ourselves with them are worth the time.

Subtheme of Zen
We can confirm that this is a subtheme of Zen through its .info file, which specifies that
base theme = zen

As mentioned in the last chapter, if we need another theme similar to myzen, we can create
one with base theme = myzen and save ourselves a host of repeated operations.

RTFM
Just about every folder which comes with Zen contains a README.txt file that is filled to
the brim with copious documentation. It is a good idea to always read through these files
beforehand rather than diving in head first.

Rebuild theme registry on every page
The Zen theme contains a setting that rebuilds the theme registry automatically on every page
load. This setting is exposed in the .info file as settings[zen_rebuild_registry] and
also through the theme settings page at admin/appearance/settings/myzen (Home |
Administration | Appearance | Settings | My Zen). By default it is enabled.

See also
The next recipe, Choosing a CSS layout for myzen, explains how to easily change the CSS
layout for our subtheme.

Choosing a CSS layout for myzen
Layouts decide how elements on a page, customarily contained in DIVs, are positioned.
Zen comes with a couple of preset layouts that can be used. If neither of them is suitable, a
custom layout can be created. In this recipe, we will be replacing the default fixed-width layout
with a liquid layout which we discussed in Chapter 1, Drupal Theme Basics.

Getting ready
We are going to assume that the myzen theme from earlier in this chapter is enabled and the
current default. It is also important to decide on the type of layout required for the site during
the design stage.

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Themes and Zen

76

How to do it...
All we are going to do here is replace one of the stylesheets used in myzen with another:

1. Open myzen.info in an editor.

2. In the section pertaining to stylesheet declarations, look for the line
that declares the fixed-width layout which should usually be
stylesheets[all][] = css/layout-fixed.css.

3. Replace this with stylesheets[all][] = css/layout-liquid.css.

4. Save the file and exit the editor.

5. In what should be second nature by now, clear the theme registry for our changes
to take effect.

How it works...
The default fixed-width layout is, as the name suggests, of a fixed width. The positioning of
the content does not vary based on the dimensions of the browser and the resolution of the
user's monitor. Consequently, we are assured of a consistent structure regardless of the
user's configuration.

By replacing the layout-fixed.css stylesheet in the myzen.info file, Drupal is now
instructed to load the layout-liquid.css file instead. Unlike fixed-width layouts, liquid
layouts try to occupy as much of the available real estate as possible. In other words, larger
monitors and browser windows will be able to view more of the content while smaller ones will
have to do with less. Once this layout is enabled and the theme registry cleared, we should be
able to see that the layout of the site now occupies the full width of the screen and will flow
and reposition itself as we resize the browser window.

There's more...
Zen and its subthemes take care while displaying content and ensure that the markup is
clean and semantically correct. Furthermore, in light of the growing internationalization of the
web, it provides Right-To-Left (RTL) support out of the box.

What is RTL?
A number of CSS files in Zen and other themes are offered in two variants—one with an RTL
suffix and the other without. RTL is an acronym for right-to-left and is used to signify that
the stylesheet will be used when RTL mode is enabled, customarily for sites with content in
languages such as Hebrew and Arabic.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

77

Custom layouts
There are various advantages and disadvantages of using a fixed-width or a liquid layout, and
a variety of ways to accomplish these very same layouts which are drastically different from
the way Zen implements them. Other types of layouts such as grid layouts are also in vogue.
If a custom layout is necessary, all that needs to be done is to add the appropriate rules to
a stylesheet such as layout-custom.css and embedding it into our theme through its
.info file as seen in this recipe.

See also
Later in this chapter, the recipe, Adding a custom region to myzen, explains how to go about
adding custom regions to our layout.

Overriding Zen template files with myzen
Zen subthemes, by default, use the page, node, and other template files directly from the
base theme. In other words, we do not need to specify template files in our myzen theme
unless we are looking to change the template.

In this recipe, we are going to override the base theme's page.tpl.php template file with
our own copy and make changes to it. As an example, let us see whether we can reposition
the status messages element which is usually represented by the $messages variable.

Getting ready
We are going to assume that the myzen subtheme is already created and available.

How to do it...
The following steps outline the procedure to import a template file from the base theme
to the subtheme:

1. Navigate to the sites/all/themes/zen/templates folder that contains the
default templates.

2. Copy the page.tpl.php file.

3. Paste it into the equivalent folder in the subtheme, namely, sites/all/themes/
myzen/templates.

4. Within the subtheme, open this file in an editor.

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Themes and Zen

78

5. Scroll down looking for any usage of the $messages variable. It should be located in
a code block not dissimilar to the following code snippet:

<?php print $breadcrumb; ?>

<?php print render($title_prefix); ?>
<?php if ($title): ?>
 <h1 class="title" id="page-title"><?php print $title; ?></h1>
<?php endif; ?>
<?php print render($title_suffix); ?>

 <?php print $messages; ?>

<?php if ($tabs = render($tabs)): ?>
 <div class="tabs"><?php print $tabs; ?></div>
<?php endif; ?>

6. What we are looking to do is to move the status messages to a more prominent
location above the title and the breadcrumb. After moving the relevant line of code
further above, this block should look something like the following code snippet:

 <?php print $messages; ?>

<?php print $breadcrumb; ?>

<?php print render($title_prefix); ?>
<?php if ($title): ?>
 <h1 class="title" id="page-title"><?php print $title; ?></h1>
<?php endif; ?>
<?php print render($title_suffix); ?>
<?php if ($tabs = render($tabs)): ?>
 <div class="tabs"><?php print $tabs; ?></div>
<?php endif; ?>

7. Save the file and exit.

8. As we have imported a template file, we also need to clear the theme registry.

We should now be able to see our changes in effect when a node, for example, is updated.

How it works...
Once we have copied the template file from Zen to myzen, and subsequently cleared the
registry, Drupal was alerted during the theme registry rebuilding process that a new page.
tpl.php file was available. Due to the fact that this template file was located in the myzen
theme's folder, it took precedence over the version contained within the Zen theme's folder
leading to our updates taking effect.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

79

It's interesting to note that while the page.tpl.php template file
in myzen took precedence over the file in the Zen folder, the latter
was already overriding the equivalent template file in Drupal's
system module folder.

The following screenshots should offer a before-and-after comparison of this recipe in action:

In the previous screenshot, we can see that the status message is being displayed below
the title of the node. However, with our new template file in action, we can see that the
status message is now displayed above the title and the breadcrumb as shown in the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Themes and Zen

80

See also
Overriding base theme elements in a subtheme recipe in Chapter 2, Beyond the Basics deals
with overriding the node.tpl.php template file for a Garland subtheme.

Adding a custom region to myzen
Regions are essentially containers for Drupal blocks. The layout of regions in a page
effectively dictates the layout of the site. By default the myzen theme contains the
following regions:

 f Help

 f First sidebar

 f Second sidebar

 f Navigation bar

 f Highlighted

 f Content

 f Header

 f Footer

 f Page bottom

In this recipe, we will be looking to replace the existing footer region with two separate regions
named footer top and footer bottom respectively.

Getting ready
We are going to assume that the myzen theme from earlier in this chapter is enabled and the
current default. We will be updating the default page.tpl.php template file that is used by
myzen. If this file does not exist in sites/all/themes/myzen/templates, it will need to
be imported into this folder from sites/all/themes/zen/templates/page.tpl.php.

How to do it...
In order to add a custom region to myzen, follow the ensuing steps. First up, we will be
updating the regions list in the .info file:

1. Open the myzen.info file in an editor.

2. Scroll down to the section dealing with regions.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

81

3. Look for the following declaration:
regions[footer] = Footer

4. Replace the previous declaration with the following:

regions[footer_top] = Footer top
regions[footer_bottom] = Footer bottom

5. Save the file and exit the editor.

6. Now that we have added our new regions, we need to ensure that Drupal uses
them by updating the page.tpl.php template. Open myzen's page.tpl.php
file in an editor.

7. Scroll down and look for the following line of code:

<?php print render($page['footer']); ?>

8. Replace the preceding line with the following two:

<?php print render($page['footer_top']); ?>
<?php print render($page['footer_bottom']); ?>

Note the correspondence between the variable names in the
template file and the internal names for their respective regions
in the myzen.info file.

9. Save the file and exit the editor.

10. Clear the theme registry as per usual.

The new regions should now be visible if we navigate to the blocks administration page at
admin/structure/block (Home | Administration | Structure | Blocks). Clicking on
the Demonstrate block regions (My Zen) link at the top of the page should provide a visual
representation of the theme regions.

How it works...
Drupal's theming system loads (and caches) information from each theme's .info file.
This includes information on the regions that each theme wants to declare. These regions
are populated by Drupal and its installed modules with content and then presented to the
templating engine.

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Themes and Zen

82

The following two screenshots should offer a before-and-after comparison of the block region
demonstration page for the myzen theme. Each region in the layout is depicted by a yellow
bar that contains the name of the region:

In the original layout, as displayed in the preceding screenshot, we can see the various
regions highlighted in yellow. These regions include the lone Footer, situated below the
content of the page. By simply editing the .info file and updating a template file, we
have been able to replace this single option with two new regions—Footer top and
Footer bottom—as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

83

There's more...
Drupal's theming system has a couple of tricks up its sleeve when it comes to regions.

Hidden regions
Looking at the default list of regions declared in the myzen.info file, we should be able to
see something of an anomaly:

regions[help] = Help
regions[sidebar_first] = First sidebar
regions[sidebar_second] = Second sidebar
regions[navigation] = Navigation bar
regions[highlighted] = Highlighted
regions[content] = Content
regions[header] = Header
regions[footer] = Footer
regions[bottom] = Page bottom
regions[page_top] = Page top
regions[page_bottom] = Page bottom

Firstly, there are two regions titled Page bottom, although only one (which, if we look
through page.tpl.php, can be confirmed to be the entry denoted by regions[bottom])
is visible in Drupal. Furthermore, the region titled Page top in the .info file is missing
altogether in the template file. If we do a little more digging, we should be able to ascertain
that this happens with other themes as well, notably with the Drupal core theme, Bartik. An
explanation for this anomaly lies not in the labels given to each region, but in their internal
names—page_top and page_bottom—which are set aside by Drupal to be populated
dynamically by modules such as core's Toolbar module rather than through the use of blocks
through the Block administration pages.

Besides the default hidden regions provided by the theming system, themes can also specify
their own custom hidden regions using the following syntax:

regions_hidden[] = myregion

This region will not be visible on the block administration interface.

Besides these hidden regions declared by the theming system, modules can also specify their
own hidden regions using hook_system_info_alter(). The Dashboard module which
also ships with core makes use of this feature to, by default, add three regions namely—
dashboard_main, dashboard_sidebar, and dashboard_inactive.

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Themes and Zen

84

Adding a background image to the theme
Zen-based themes come with a plethora of stylesheets separated logically by functionality. In
this recipe, we will be exploring their use by adding a background image to our myzen theme.

Getting ready
As usual, we are going to assume that myzen is enabled and is the current default
theme. As we are going to be using a background image in this recipe, it will also be a
good idea to ensure that the myzen theme is using a fixed-width layout to improve the
visibility of the background.

The background image to be used should be optimized and saved in the sites/all/
themes/myzen/images/ folder. In this recipe, we will be setting the image file named
body-bg.png as the background and repeating it along both the X and Y axes.

How to do it...
As Zen-based themes use stylesheets partitioned based on their functionality, we can add our
rules to the file page-backgrounds.css by following the ensuing steps:

1. Navigate to the sites/all/themes/myzen/css folder which contains a set of
stylesheets available for customization.

2. Look for the file named page-backgrounds.css and open it in an editor.

3. The first rule that we are concerned with is the one for the BODY tag. Locate it and
add the following highlighted rule to set the background image:
body {

 background: url(../images/body-bg.png) repeat;

}

As the CSS file is within the css folder, we need to use the
../images/body-bg.png syntax to reference the file within
the images folder.

4. The next element we are going to be styling is the DIV with id="#page" which
contains the regions of the layout. Look for the entry for #page and add the following
highlighted rule below to it:

#page {
 background: #EEE;
}

5. Save the file and exit the editor.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

85

How it works...
The page-backgrounds.css file is added to the theme through its .info file. The
myzen.info file will, by default, have a whole host of CSS files included not unlike
the following list:

stylesheets[all][] = css/html-reset.css
stylesheets[all][] = css/wireframes.css
stylesheets[all][] = css/layout-fixed.css
stylesheets[all][] = css/page-backgrounds.css

stylesheets[all][] = css/tabs.css
stylesheets[all][] = css/pages.css
stylesheets[all][] = css/blocks.css
stylesheets[all][] = css/navigation.css
stylesheets[all][] = css/views-styles.css
stylesheets[all][] = css/nodes.css
stylesheets[all][] = css/comments.css
stylesheets[all][] = css/forms.css
stylesheets[all][] = css/fields.css
stylesheets[print][] = css/print.css

; Example of adding handheld stylesheets. The iPhone's preferred media
type
; is based on the CSS3 Media queries. http://www.w3.org/TR/css3-
mediaqueries/

;stylesheets[handheld][] = css/mobile.css
;stylesheets[only screen and (max-device-width: 480px)][] = css/
iphone.css

Commented code
In the preceding excerpt from the .info file, lines prefixed with
a semicolon are deemed to have been commented out and are
not considered.

Most of the CSS files referenced in the file are skeleton stylesheets, each with its own
functionality and purpose. They are usually also peppered with a lot of documentation and
examples to get us started. In this case, the page-backgrounds.css file is already included
and our rules should take effect automatically. It is important that we limit our changes in this
stylesheet to rules pertaining to page element backgrounds. Including extraneous styles will
defeat the purpose of partitioning the CSS based on functionality.

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Themes and Zen

86

As we have amended the CSS to display a background image for the body and a background
color for the content, the resulting front page should now have a tiled background for its body
and a gray backdrop to its content as demonstrated in the following screenshot:

There's more...
Stylesheet management can sometimes be an involved process and is largely dependent on
our own personal preferences.

Custom file structures
Some themers are uncomfortable with managing the multitude of CSS files that come
with Zen and other themes. They either prefer their own logical structures or use a single
monolithic stylesheet containing all the rules. There is nothing really wrong with this and it is
simply a question of comfort and ease of use.

Unused stylesheets
Once we are done styling our theme, we will usually find that there are a number of
stylesheets included in myzen.info that are empty or never used. Rather than deleting the
relevant lines, it is prudent to just comment them out by prefixing them with a semicolon.

See also
The next recipe, Adding a conditional stylesheet in Zen, explores Drupal's support for
stylesheets further.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

87

Adding a conditional stylesheet in Zen
Conditional stylesheets are a regular staple for themers who wish to ensure that their themes
are consistent across all browsers, most notably, particular versions of the Internet Explorer
(IE) browser. While other themes would require us to conditionally introduce said stylesheets
either using a module or through the theme's template.php file, Zen-based themes offer a
straightforward alternative.

In this recipe, we will be looking at the procedure involved in adding a conditional stylesheet
that is loaded only if the browser is IE. Furthermore, the version of the browser has to be
eight—IE8.

Getting ready
This recipe centers around the myzen subtheme that is assumed to have been created,
enabled, and set as the default theme. A CSS file named ie8.css should be created and
saved inside myzen's css folder. Hacks and workarounds particular to IE8 are to be added
to this file.

How to do it...
Adding a conditional stylesheet to the myzen theme can be accomplished as follows:

1. Navigate to the sites/all/themes/myzen folder.

2. Open the myzen.info file in an editor.

3. Scroll down to the section dealing with conditional stylesheets. The default
configuration should look something like the following code block:

; To target all versions of IE with an ie.css, uncomment the
following line:
;stylesheets-conditional[IE][all][] = css/ie.css
stylesheets-conditional[lte IE 7][all][] = css/ie7.css
stylesheets-conditional[lte IE 6][all][] = css/ie6.css

4. Add the following statement to this list:

stylesheets-conditional[IE 8][all][] = css/ie8.css

lte in the code stands for lesser than or equal to and gte
stands for greater than or equal to. More information and a list of
other operators can be found at http://msdn.microsoft.
com/en-us/library/ms537512.aspx.

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Themes and Zen

88

5. Save the file and exit.

6. As we have made changes to the .info file, the theme registry needs to be rebuilt.

When the site is now viewed in IE8, the ie8.css stylesheet will also be loaded.

How it works...
When the HTML source for a sample page is viewed, the conditional-stylesheets declaration
used in this recipe will be translated to something like the following code snippet:

<!--[if lte IE 7]>
 <style type="text/css" media="all">@import url("http://book.endymion
 /sites/book.endymion/themes/myzen/css/ie7.css?lmgood");</style>
<![endif]-->
<!--[if lte IE 6]>
 <style type="text/css" media="all">@import url("http://book.endymion
 /sites/book.endymion/themes/myzen/css/ie6.css?lmgood");</style>
<![endif]-->
<!--[if IE 8]>
 <style type="text/css" media="all">@import url("http://book.endymion
 /sites/book.endymion/themes/myzen/css/ie8.css?lmgood");</style>

<![endif]-->

As evident from the preceding source code, Zen translates our entries in the .info file into
conditional comments and inserts them as markup. The conditional comments are only
triggered in Internet Explorer, which includes the appropriate stylesheet accordingly.

There's more...
Drupal's theming API also provides an avenue to include stylesheets conditionally.

Adding conditional stylesheets from modules and themes
The drupal_add_css() function can be used to insert conditional comments from modules
and themes. In the following excerpt from Garland's template.php, we can see a conditional
stylesheet being included solely for IE6 by leveraging the 'browsers' option:

/**
 * Override or insert variables into the html template.
 */
function garland_preprocess_html(&$vars) {
 // Toggle fixed or fluid width.
 if (theme_get_setting('garland_width') == 'fluid') {
 $vars['classes_array'][] = 'fluid-width';
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

89

 // Add conditional CSS for IE6.
 drupal_add_css(path_to_theme() . '/fix-ie.css', array('group' =>
 CSS_THEME, 'browsers' => array('IE' => 'lt IE 7', '!IE' => FALSE),
 'preprocess' => FALSE));

}

See also
Adding a CSS file from a module recipe in Chapter 2, Beyond the Basics elaborates on adding
CSS files from within custom modules.

Modifying myzen's theme settings
Visiting the theme configuration page for the myzen theme created earlier in this chapter
should reveal a number of theme-specific settings. In this recipe, we are going to learn where
these settings are added and then, learn how to add and modify them to suit our purposes.

Getting ready
As we are working with the myzen theme created earlier in this chapter, it should be enabled
and set as the site's default theme. Furthermore, when the myzen theme was created,
all instances of STARTERKIT_ in the theme-settings.php file should be replaced by
myzen_. Once this is done, the theme configuration page for the myzen theme should include
theme-specific settings as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Themes and Zen

90

How to do it...
The setting that we will be adding is one to hide the RSS or Atom feed icons displayed at
the bottom of the default page template. To do so, we will be working with two different
files—myzen's theme-settings.php and its page.tpl.php. As a reference, we will
also be looking at the Zen theme's theme-settings.php file:

1. Load all three files in three separate editors.

2. By comparing myzen's theme-settings.php and Zen's theme-settings.php,
we can tell that all the settings in the previous screenshot are declared by
Zen through a function named zen_form_system_theme_settings_alter().
Myzen gets access to these settings as it is a subtheme of Zen and it can modify
them as it sees fit in its own alter function, myzen_form_system_theme_
settings_alter().

3. In myzen's myzen_form_system_theme_settings_alter() function, we can
see that an existing setting is already being modified:
// Remove some of the base theme's settings.
unset($form['themedev']['zen_layout']);

Looking up the zen_layout setting in the Zen theme's zen_
form_system_theme_settings_alter() we can see that
the unset() call removes an option to toggle between a liquid
and fixed-width layout. We should be able to see this setting in
the settings form if we comment out this line of code.

4. To add our feed icon toggle, insert the following code under the unset() call within
myzen_form_system_theme_settings_alter():

$form['feed'] = array(
 '#type' => 'fieldset',
 '#title' => t('Feed settings')
);
$form['feed']['zen_display_feed_icons'] = array(
 '#type' => 'checkbox',
 '#title' => t('Display feed icons in the body of the
 page.'),
 '#default_value' => theme_get_setting('zen_display_feed_icons')
);

5. Save the file and exit its editor.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

91

6. Now, that we have added our setting, we should implement it within the page.tpl.
php template file. Switch to its editor and locate the code pertaining to the display of
the feed icons which should look like the highlighted line in the following excerpt:

<?php print render($page['help']); ?>
<?php if ($action_links): ?>
 <ul class="action-links"><?php print render($action_links); ?>

<?php endif; ?>
<?php print render($page['content']); ?>

 <?php print $feed_icons; ?>

</div></div><!-- /.section, /#content -->

7. Replace the highlighted with the following:
<?php if (theme_get_setting('zen_display_feed_icons')) print
 $feed_icons; ?>

The theme_get_setting() function retrieves our newly added
form option. We should be able to see other examples of this
function in action within the Zen theme's template.php file.

8. Save the file and exit all editors.

9. Navigate back to myzen's theme configuration page at admin/appearance/
settings/myzen (Home | Administration | Appearance | Settings) and refresh
the page to confirm that a new fieldset titled Feed settings is now available. Note that
the checkbox within it is unchecked by default as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Themes and Zen

92

To set the default to enabled, we need to include our new setting within myzen.info
file. Open this file in an editor.

10. Look for the section dealing with theme settings and include the following highlighted
line to it:
settings[zen_jump_link_target] = main-menu
settings[zen_rebuild_registry] = 1
settings[zen_wireframes] = 0

 settings[zen_display_feed_icons] = 1

11. Save the file and exit the editor.

12. Clear the theme registry as we have made changes to the myzen.info file which
is also cached.

13. Refresh the myzen theme's settings page to confirm that the default value is
being registered.

14. Toggle the setting and click on the Save configuration button to save our changes.

15. Visiting the default front page should confirm that the RSS feed icon at the bottom of
the page is no longer being displayed.

How it works...
The Zen theme exports a set of variables and allows its subtheme, myzen, to act upon
them by updating their values, adding new settings, or removing existing ones. These
settings are constructed using the Forms API and altered by each subtheme. The settings
are saved within the database and are accessed using the theme_get_setting()
function. Furthermore, default values for each setting can be added or modified through
myzen.info as well.

See also
The Forms API is explored in greater detail in Chapter 9, Form Design. Chapter 8, Navigation,
explores how to go about customizing breadcrumbs in Zen-based themes.

www.it-ebooks.info

http://www.it-ebooks.info/

4
Templating Basics

We will be covering the following recipes in this chapter:

 f Changing the structure of a page using template files

 f Customizing the appearance of a particular node type

 f Customizing the appearance of a specific node

 f Theming made easy using the Devel module

 f Theme overrides using the Theme developer module

 f Styling the site maintenance page

Introduction
Drupal's design stresses the separation of logic from presentation with the former being
handled by modules and the latter by themes. Theme functions—commonly those that are
prefixed with theme_—and theme template files act as a bridge between the two as they
are designed to be overrideable. All theme functions and template files are tracked by
Drupal's theme system and cataloged in a theme registry. Modules and themes are
expected to declare their theme functions and templates through the use of a function
named hook_theme(). This function is parsed for each module and theme and the
resulting registry is cached in the database.

What this registry does is allow developers to modify and override existing theme
implementations with their own customizations. If the registry states that for task foo, theme
function bar() has to be used, we can modify the registry to point to our own function named
baz() instead of bar(), which does something entirely different.

www.it-ebooks.info

http://www.it-ebooks.info/

Templating Basics

94

For example, let us consider the following snippet of code from Drupal's user module that is
located at modules/user/user.module:

/**
 * Returns HTML for a user signature.
 *
 * @param $variables
 * An associative array containing:
 * - signature: The user's signature.
 *
 * @ingroup themeable
 */
function theme_user_signature($variables) {
 $signature = $variables['signature'];
 $output = '';

 if ($signature) {
 $output .= '<div class="clear">';
 $output .= '<div>—</div>';
 $output .= $signature;
 $output .= '</div>';
 }

 return $output;
}

The preceding code snippet is a theme function used to insert the markup required to display
a user's signature in a comment. This piece of code is expressly isolated in this function so
that it can be modified from the theme layer.

When we want to modify the output of the user signature and incorporate our own markup
into it, we need to override theme_user_signature() with our own implementation.
Doing so can be as simple as creating a function named myzen_user_signature()
inside the template.php of our theme, which in this example is myzen. Once the
registry is rebuilt, Drupal will become aware of this new function that will supersede
theme_user_signature() and use it instead of the original when displaying a
user's signature.

Similar to the theme function above, the modules/user folder contains a collection
of .tpl.php template files including one named user-picture.tpl.php with the
following content:

<?php if ($user_picture): ?>
 <div class="user-picture">
 <?php print $user_picture; ?>
 </div>
<?php endif; ?>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

95

This template file specifies the markup to be used when displaying a user's avatar image and
can be overridden through the use of, for example, a new template file in the theme's directory
with the same name. Once the theme registry is rebuilt after our change, Drupal will notice
this new file and use it instead of the original.

In this chapter, we will be using these and other techniques in order to customize our theme
using the prescribed Drupal approach.

Changing the structure of a page using
template files

As we have seen in earlier chapters, the page template file—page.tpl.php—is responsible
for the overall layout and markup of a Drupal page. Various elements common to all pages
in the site such as the layout of regions, headers, footers, logos, slogans, breadcrumbs, and
so on are all positioned in this file. While this may make the page template file appear to be
something of a master template file, this is not entirely accurate.

The html.tpl.php template file would be a more apt candidate for the title of master
template file as this is where the actual structure of the HTML page is declared. This includes
specifying the DOCTYPE of the page, HTML headers where styles and scripts are embedded,
the BODY tag, and finally, content that Drupal has deemed to be intrinsic to each page.

In this recipe, we will look at modifying the html.tpl.php and page.tpl.php template
files in order to override the position of the Skip to main content link that is used to improve
accessibility to the main content of the page.

Getting ready
The html.tpl.php template file is rarely a default inclusion in most Drupal 7 themes as they
rely on the version provided by Drupal itself. If this template file is missing from our current
theme, it will need to be imported from the system module's folder at modules/system into
the theme's folder.

It is also possible that some themes will not have a page.tpl.php file of their own.
This is usually because they are subthemes and the template file will need to be
imported from the base theme as we saw in the last chapter. In other cases, using
modules/system/page.tpl.php as a foundation is usually a good idea.

Themers looking for a little adventure can, of course, also create both these files from scratch!
Introducing new template files will, as usual, necessitate a clearing of the theme registry to
ensure that Drupal becomes aware of their existence.

www.it-ebooks.info

http://www.it-ebooks.info/

Templating Basics

96

How to do it...
The following is an excerpt from the default html.tpl.php template file that ships with
Drupal with the DIV pertaining to the skip-link highlighted:

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="<?php print
$language->language; ?>" version="XHTML+RDFa 1.0" dir="<?php print
$language->dir; ?>"<?php print $rdf_namespaces; ?>>

<head profile="<?php print $grddl_profile; ?>">
 <?php print $head; ?>
 <title><?php print $head_title; ?></title>
 <?php print $styles; ?>
 <?php print $scripts; ?>
</head>
<body class="<?php print $classes; ?>" <?php print $attributes;?>>
 <div id="skip-link">

 <a href="#main-content" class="element-invisible element-
 focusable"><?php print t('Skip to main content'); ?>

 </div>

 <?php print $page_top; ?>
 <?php print $page; ?>
 <?php print $page_bottom; ?>
</body>
</html

What we are looking to do is to move this DIV to the page template file and position it below
the logo of the site. For example, in the following excerpt from a page.tpl.php template file,
we have positioned the skip-link DIV below the DIVs pertaining to the logo and site title and
above the navigation links:

<?php print render($page['header']); ?>
 <div id="wrapper">
 <div id="container" class="clearfix">

 <div id="header">
 <div id="logo-floater">
 <?php if ($logo || $site_title): ?>
 <?php if ($title): ?>
 <div id="branding"><a href="<?php print $front_
 page ?>">

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

97

 <?php if ($logo): ?>
 <img src="<?php print $logo ?>" alt="<?php print $site_
 name_and_slogan ?>" title="<?php print $site_name_and_
 slogan ?>" id="logo" />
 <?php endif; ?>
 <?php print $site_html ?>
 </div>
 <?php else: /* Use h1 when the content title is empty */ ?>
 <h1 id="branding"><a href="<?php print $front_page ?>">
 <?php if ($logo): ?>
 <img src="<?php print $logo ?>" alt="<?php print $site_
 name_and_slogan ?>" title="<?php print $site_name_and_
 slogan ?>" id="logo" />
 <?php endif; ?>
 <?php print $site_html ?>
 </h1>
 <?php endif; ?>
 <?php endif; ?>
 </div>

 <div id="skip-link">

 <a href="#main-content" class="element-invisible element-
 focusable"><?php print t('Skip to main content'); ?>

 </div>

 <?php if ($primary_nav): print $primary_nav; endif; ?>
 <?php if ($secondary_nav): print $secondary_nav; endif; ?>
 </div> <!-- /#header

Once such a change has been made and our files saved, the position of the Skip to main
content link in the markup should have changed.

How it works...
The Skip to main content link is, by default, hidden from view and is accessed primarily by
screen-reader software and certain users of portable devices. The link enables, for example,
a blind user using a screen-reading package, to avoid having to listen to the narrator plodding
through lists of navigational links and so on before getting to the actual content of the page.
By simply clicking the link, the user can skip elements deemed irrelevant to the content of
the page.

www.it-ebooks.info

http://www.it-ebooks.info/

Templating Basics

98

Drupal's default html.tpl.php template positions the skip-link right at the top of the page.
This link is hidden using CSS and is invisible to the general user who is not looking to skip to
the content. However, if we want to locate this link in most mainstream browsers, all we need
to do is TAB into the page. This should immediately highlight the heretofore hidden link as
shown in the following screenshot:

Clicking the skip-link will switch us directly to the main content of the page and consequently—
for screen-readers—avoid having to list the presence of the logo, site name, slogan, and
navigational elements. While this works fine, another school of thought recommends that the
skip-link should always be positioned below the actual name of the site. The reasoning behind
this is that users relying on screen-readers will very likely always want to know the title of
the site they are accessing and ensure that they have not navigated away from it. This allows
them to skip to the main content with the assurance that they are on the page or site that they
intended to access.

We have accomplished this change in this recipe by moving the skip-link DIV from the
html.tpl.php template to the page.tpl.php template and positioning it accordingly.
While the change will not be visible by simply refreshing the browser window, hitting the
TAB key should confirm that the Skip to main content link is activated only after we cycle
through the logo and site title links.

See also
The Chapter 3 recipe, Overriding Zen template files with myzen, covers the basics of overriding
template files, specifically page.tpl.php, from within a subtheme.

Customizing the appearance of a particular
node type

Drupal's PHPTemplate theming engine uses naming conventions to easily theme nodes.
While the standard template used is named node.tpl.php, other naming conventions
are available to target specific subsets of nodes. Here we will be looking at specifically
theming content of a particular node type—story—by modifying it so that the title of the
node does not link to its content in its teaser view, thereby directing users to click the
Read more link instead.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

99

Getting ready
This recipe uses the myzen theme created earlier in this book as an example theme. As we
are going to be working with a node type named story, ensure that it exists via the content
type administration page at admin/structure/types [Home | Administration | Structure
| Content types]. Furthermore, as we are targeting particular node types, it will be a good
idea to create more than one node type along with sample content for each.

How to do it...
The following steps are performed in the theme folder, which in this recipe is sites/all/
themes/myzen. Zen-based themes store their template files in a templates folder while
others might choose to store them in the base folder.

1. Myzen's templates folder should be empty by default. The node.tpl.php file will
need to be imported from the Zen theme's templates folder as described in recipes
in the previous chapter.

2. Within the myzen theme, rename node.tpl.php to node--story.tpl.php where
story signifies the machine name of the node type.

The internal or machine names of node types
are listed on the Content types page at admin/
structure/types [Home | Administration |
Structure | Content types].

3. Open the node—-story.tpl.php file in an editor.

Note the use of a double hyphen in the filename.
A single hyphen will result in the template file not
taking effect.

4. The default template code should look like the following:
<div id="node-<?php print $node->nid; ?>" class="<?php print
$classes; ?> clearfix"<?php print $attributes; ?>>

 <?php print $user_picture; ?>

 <?php print render($title_prefix); ?>
 <?php if (!$page && $title): ?>
 <h2<?php print $title_attributes; ?>><a href="<?php print
 $node_url; ?>"><?php print $title; ?></h2>

www.it-ebooks.info

http://www.it-ebooks.info/

Templating Basics

100

 <?php endif; ?>
 <?php print render($title_suffix); ?>

 <?php if ($unpublished): ?>
 <div class="unpublished"><?php print t('Unpublished'); ?>
 </div>
 <?php endif; ?>

 <?php if ($display_submitted): ?>
 <div class="submitted">
 <?php print $submitted; ?>
 </div>
 <?php endif; ?>

 <div class="content"<?php print $content_attributes; ?>>
 <?php
 // We hide the comments and links now so that we can render
 // them later.
 hide($content['comments']);
 hide($content['links']);
 print render($content);
 ?>
 </div>

 <?php print render($content['links']); ?>

 <?php print render($content['comments']); ?>

</div><!-- /.node -->

5. The highlighted line in the preceding block of code contains the code that links
the title to its URL. Remove the anchor tag so that the same line now looks like the
following:
 <h2<?php print $title_attributes; ?>><?php print $title; ?>
 </h2>

6. Save the file and exit the editor.

7. Clear the theme registry as we have added a new template file.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

101

How it works...
The following screenshot displays a typical story node's teaser layout with the title linked to
the full-page view of the node.

Drupal's theme system is designed to be overridden. As soon as we created the
node--story.tpl.php file in this recipe and importantly, cleared the theme registry,
Drupal updated the registry to account for this new addition. Subsequently, whenever a
story node is displayed, it is aware of the presence of this new file that supersedes the
default node.tpl.php file and uses it instead. It gets a little complicated with our myzen
recipe as it is actually a Zen subtheme. As a result, we are overriding Zen's own template
files that in turn are overriding the default Drupal files:

The preceeding chart lists the template hierarchy in an increasing order of precedence with
node--story.tpl.php always overriding node.tpl.php and the template files of the
myzen theme being preferred over those of Zen and Drupal. In this case, the node--story.
tpl.php in our myzen theme takes precedence over all other available options.

www.it-ebooks.info

http://www.it-ebooks.info/

Templating Basics

102

The result of our machinations is evident in the following screenshot that demonstrates the
story node's teaser with our changes in effect. We can see that the node title no longer links
to the node page and that the Read more link will need to be used instead. Furthermore,
since we have used node--story.tpl.php rather than the generic node.tpl.php, only
the story node has been affected and the blog node continues to retain its original behavior.

See also
The next recipe, Customizing the appearance of a specific node, takes things further by
targeting the node template of a single node based on its node ID.

Customizing the appearance of a
specific node

In a similar vein to the previous recipe, we will be looking at using the Drupal theme system's
naming scheme to customize specific pieces of content. While the previous recipe targeted
nodes of a particular node type, here we are going to target a single node based on its
node ID.

The customization we will be performing on the node in question is that it should only display
its content and links to authenticated users. In other words, anonymous users will only be
able to see its title.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

103

Getting ready
As we are going to be targeting a particular node based on its node ID, we will need to obtain
this number from the node in question. This can be discerned from the URL of the node which
should, by default, be of the form node/123 where 123 signifies the node ID. If the node has
a URL alias enabled, this ID can be obtained by clicking on the Edit link of the node, which
should lead us to a URL containing the node ID.

How to do it...
Navigate to the sites/all/themes/myzen folder and perform the following steps:

1. Myzen's templates folder should be empty by default. The node.tpl.php file will
need to be imported from the Zen theme's templates folder as described in recipes
in the previous chapter.

2. Within the myzen theme, rename node.tpl.php to node--123.tpl.php where
123 signifies the node ID of the node that we want to customize.

Note the use of the double hyphen in the filename format
for node--123.tpl.php.

3. Open this file in an editor. The default node--123.tpl.php should look something
like the following:
<div id="node-<?php print $node->nid; ?>" class="<?php print
$classes; ?> clearfix"<?php print $attributes; ?>>

 <?php print $user_picture; ?>

 <?php print render($title_prefix); ?>
 <?php if (!$page && $title): ?>
 <h2<?php print $title_attributes; ?>><a href="<?php print
 $node_url; ?>"><?php print $title; ?></h2>
 <?php endif; ?>
 <?php print render($title_suffix); ?>

 <?php if ($unpublished): ?>
 <div class="unpublished"><?php print t('Unpublished'); ?>
 </div>
 <?php endif; ?>

 <?php if ($display_submitted): ?>
 <div class="submitted">

www.it-ebooks.info

http://www.it-ebooks.info/

Templating Basics

104

 <?php print $submitted; ?>
 </div>
 <?php endif; ?>

 <div class="content"<?php print $content_attributes; ?>>
 <?php
 // We hide the comments and links now so that we can render
 // them later.
 hide($content['comments']);
 hide($content['links']);
 print render($content);
 ?>
 </div>

 <?php print render($content['links']); ?>

 <?php print render($content['comments']); ?>

</div><!-- /.node -->

4. What we want to do is wrap the highlighted code in the previous step inside an if
statement so that the resulting block looks something like the following:
<?php if ($logged_in): ?>
 <div class="content"<?php print $content_attributes; ?>>
 <?php
 // We hide the comments and links now so that we can render
 // them later.
 hide($content['comments']);
 hide($content['links']);
 print render($content);
 ?>
 </div>
 <?php print render($content['links']); ?>
 <?php print render($content['comments']); ?>
<?php endif; ?>

5. Save the file and exit the editor.

6. Clear the theme registry as we have added a new template file.

7. Visit node/123 both as an anonymous and as an authenticated user to verify
whether our changes have taken effect.

8. Confirm that other nodes are unaffected.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

105

How it works...
When we clear the theme registry, Drupal rescans all modules and themes for any available
template files. When a page is viewed, it builds an hierarchical list of candidate template
files that might be suitable to display the page and chooses the one that is deemed to be
the most suitable match. In this hierarchical list, there are many preset template files
including node.tpl.php, node--[nodetype].tpl.php, and as in this recipe, a
template with greater precedence, node--[nid].tpl.php.

The change that we have made to the contents of the template file uses the built-in variable
named $logged_in, which is set to FALSE when the current user is anonymous and TRUE
otherwise. Displaying the content of the node only when this variable is TRUE ensures that it
is only inserted when the user is logged in.

There's more...
Core themes and starter themes such as Zen tend to document anything and everything that
we will need to know while customizing template files and functions.

Template variables and documentation
Most core themes and starter themes such as Zen go the extra mile to document all the
default variables that are available in each template. For example, the node.tpl.php
template file that ships with Zen includes the documentation for the $logged_in variable
used in this recipe as well as many others, as can be seen in the following excerpt:

* Node status variables:
* - $view_mode: View mode, e.g. 'full', 'teaser'...
* - $teaser: Flag for the teaser state (shortcut for $view_mode ==
* 'teaser').
* - $page: Flag for the full page state.
* - $promote: Flag for front page promotion state.
* - $sticky: Flags for sticky post setting.
* - $status: Flag for published status.
* - $comment: State of comment settings for the node.
* - $readmore: Flags true if the teaser content of the node cannot
* hold the
* main body content. Currently broken; see http://drupal.org/
* node/823380
* - $is_front: Flags true when presented in the front page.
* - $logged_in: Flags true when the current user is a logged-in
* member.
* - $is_admin: Flags true when the current user is an administrator.

www.it-ebooks.info

http://www.it-ebooks.info/

Templating Basics

106

See also
The previous recipe, Customizing the appearance of a particular node type, shows how we
can rename templates to target a node based on its node type.

Theming made easy using the Devel module
The Devel module provides functions and tools that aid both module and theme developers.
While it is entirely fine to develop sites without it or related modules such as Theme
developer, they are highly recommended as they save time and effort and will eventually
prove indispensable. This recipe will outline the setup process and relevant features of the
Devel module.

Getting ready
The Devel module can be downloaded from http://drupal.org/project/devel. Once
downloaded, install and enable it via the module administration page.

How to do it...
From a themer's point of view, there are two primary features of importance that are
provided by the Devel module. The first is the development block that can be enabled from
the block administration page at admin/structure/block [Home | Administration |
Structure | Blocks]:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

107

In the pictured development block, the most frequently used option is usually Empty
cache. Clicking this link will empty Drupal's caches as well as clear and rebuild the theme
registry. In other words, it is a regular port of call during most debugging sessions. Another
handy option from a themer's point of view is Theme registry, which links to a page listing
all theme functions and templates registered with Drupal along with other relevant details
for each item.

The Devel settings link is a handy shortcut to the Devel module's settings page which
can also be found at admin/config/development/devel [Home | Administration |
Configuration | Development | Devel settings]. Of immediate importance to us on this page
is the setting right at the bottom—a checkbox titled Rebuild the theme registry on every page
load. When checked, the registry does not need to be manually emptied and rebuilt as it will
be done automatically by the Devel module on each page view.

Theme registry rebuilding is an intensive operation and automatically
rebuilding it on every page load will severely affect performance if used
in a production site. Remember to turn this off!

How it works...
The Devel module is a crucial component of every Drupal developer's toolkit whether it be
module or theme development. As just demonstrated, from a theme developer's point of view,
it provides a number of handy tools to speed up development as well as aid debugging.

The Devel module, as its name suggests, is a module tailored towards
development and as such, is not intended for production environments.
That said, circumstances might sometimes demand its use in debugging
issues on the production server. In such cases, it is important to only
enable it temporarily and strictly control access to its features via the
Permissions page at admin/people/permissions [Home |
Administration | People | Permissions].

See also
The next recipe, Theme overrides using the Theme developer module, introduces a
complementary module to Devel named Theme developer. The next chapter, Development
and debugging tools, covers further aspects of the Devel module and other tools in
greater detail.

www.it-ebooks.info

http://www.it-ebooks.info/

Templating Basics

108

Theme overrides using the Theme
developer module

This recipe will outline the features of the Theme developer module. We will use it to
demonstrate the steps to be followed to locate the theme function or template being used to
display a particular element in a page.

Getting ready
The Theme developer module can be downloaded from http://drupal.org/project/
devel_themer. It depends on the Devel module that we looked at in the previous recipe.
Both of these modules need to be downloaded, installed, and enabled.

At the time of writing this book, the Theme developer module was still being
ported from its Drupal 6 version to a new Drupal 7 equivalent. Consequently,
some of the features were not quite ready. As a result, certain screenshots
involving incomplete features of this module are based on its Drupal 6
version. While they do not account for a few minor discrepancies and
changes, the images serve their purpose and are reasonably representative.

How to do it...
Once the modules have been enabled, we should have a page that looks similar to the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

109

As we saw in an earlier recipe, there are two items that are of particular interest to us in the
Development block, namely the Empty cache and Theme registry links. Firstly, the Empty
cache link, as the name suggests, clears the Drupal cache and theme registry when clicked.
Secondly, the Theme registry link provides a directory of currently available theme functions
that are stored in the registry.

When the Theme developer module is enabled, the Themer info link appears on the bottom
left of the screen as seen in the previous screenshot. This checkbox is always disabled
by default upon every page load and needs to be checked only when we want to find out
information about a particular element in our theme. For example, if we want to obtain details
about the theme function responsible for the display of an author's name in a node, all we
need to do is check the Themer info checkbox and then click on the author's name. As seen
in the next image, this will load details about the theme function or template file involved in an
overlay along with a list of arguments passed to the function:

The Drupal Themer Information overlay is movable. If it blocks elements of
the page, it can be dragged to a more convenient location.

www.it-ebooks.info

http://www.it-ebooks.info/

Templating Basics

110

How it works...
The Theme developer module makes use of a function named hook_theme_registry_
alter(), which allows it to intercept and track the use of theme functions and template files
in each page. With a little JavaScript, the module compares the clicked element with a stored
list, using which it displays theme-related information about the element.

In the previous screenshot, we can see that the Parents hierarchical list provides
information about the template file used to display the author's name, which in this
case is node.tpl.php, which in turn is embedded in page.tpl.php.

Below the Parents list, we are given the name of the theme function—theme_username()—
which was used to theme the username field. Further below, we are provided with a list of
arguments—just one in this case—which have been passed to this function. The arguments
can be expanded to list their contents, which will prove very handy.

Lastly, and crucially, we are also provided with a list of candidate function names that
can be used to override the currently used function. In other words, rather than editing
theme_username() to add our changes, we can use one of myzen_username() or
zen_username() to hold our changes depending on our scope and requirements.

If the element is not displayed by way of a theme function, Theme
developer just shows the template file involved in the display process and
lists candidate template files that can be used to override the existing one.

There's more...
The Theme developer module, besides providing information on theme functions and
template files, also links to their documentation pages.

Drupal API documentation
Theme developer will link Drupal's core functions, such as theme_username() in the above
example, to their entries on http://api.drupal.org, which contain information about the
function, its arguments, and use cases.

Compatibility issues
The ability of the Theme developer module to load related theme information of clicked
elements on a page is accomplished by wrapping said elements in HTML and tracking them
via JavaScript. As the markup of the page is changed, this feature can adversely affect the
functionality of certain modules—especially those that rely on JavaScript—and themes. As
a result, it is recommended that this module only be used during the theming or debugging
process and be turned off at other times.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

111

See also
A number of recipes in Chapter 6, Advanced Templating, frequently rely on the Theme
developer module while customizing templates.

Styling the site maintenance page
Drupal offers a site maintenance mode where the site is inaccessible to end users unless
expressly specified. During this period, visitors to the site are presented with a maintenance
page. In this recipe, we will be looking at an approach that will allow us to style this page from
our theme.

Getting ready
We will be using the Zen-based myzen theme that we created in the last chapter. It is
recommended that for the purpose of the recipe, the site is loaded on two separate browser
applications—the first for the admin account and the other for an anonymous user account.
This will make it easier to make changes and verify their effect.

The site can be placed in maintenance mode by navigating to admin/config/
development/maintenance [Home | Administration | Configuration | Development |
Maintenance mode] and enabling the Put site into maintenance mode checkbox.

How to do it...
The default maintenance theme is the site's active theme. To change it to the myzen theme,
execute the following steps:

1. Browse to the site's settings.php file which is customarily located in the
sites/default folder, and open it in an editor.

2. Uncomment the line pertaining to the maintenance theme and change its value to
the theme of choice, which in this case, is Garland.
$conf['maintenance_theme'] = 'myzen';

3. Save the file and exit.

The steps thus far should allow us to change the theme being used to display the
maintenance page. If we want to do more and change the style of the maintenance page,
we will need to edit its template file. In the case of Zen-based themes, this is just a matter
of overriding the default template file—maintenance-page.tpl.php—provided by Zen.
In other words, copying this file from the Zen theme's templates folder to the templates
folder of the myzen theme should be all that is necessary. Once copied, we should be able to
edit it and incorporate any changes that we desire.

www.it-ebooks.info

http://www.it-ebooks.info/

Templating Basics

112

It should be second nature by now to clear the theme registry if we do go
ahead and import the maintenance template file.

How it works...
The Garland theme's maintenance page looks:

By using the $conf array in settings.php, we were able to tell Drupal to use a
different theme as the maintenance theme. In our case, this was myzen. Changing the
maintenance_theme configuration to this theme resulted in a maintenance page that
looked more like the following:

www.it-ebooks.info

http://www.it-ebooks.info/

5
Development and
Debugging Tools

We will be covering the following recipes in this chapter:

 f Finding the right function to use to theme an object

 f Analyzing variables using the Devel module

 f Generating sample content using the Devel generate module

 f Resetting the default theme manually

 f Live preview with Web Developer

 f Validating HTML and CSS using Web Developer

 f Turning off JavaScript in the browser

 f Disabling CSS in the browser

 f Inspecting elements and debugging CSS using Firebug

 f Diagnostic logging of JavaScript using Firebug

Introduction
In our world of Drupal design and development—or any other package for that matter—it is
seldom that we get things right the first time. In fact, most of our time is spent in isolating,
patching, refining, and re-evaluating code or design that we theretofore had believed was
perfectly fine. This has led to the creation of a plethora of developmental aids and tools to
streamline these processes and save us a heap of time and effort better spent elsewhere.
These include documentation, browser-based tools, as well as Drupal modules that assist in
development and debugging.

www.it-ebooks.info

http://www.it-ebooks.info/

Development and Debugging Tools

114

First and foremost is documentation. Drupal's documentation is largely centered around
its handbook which can be accessed via http://drupal.org/handbook. Besides this,
documentation for the various Drupal APIs is located at http://api.drupal.org. These
sites include information contributed by community members as well as extracts from the
comments in the code files.

Drupal-specific development and debugging tools primarily revolve around the Devel module
and its offshoots such as the Devel generate and Theme developer modules. We have
already taken advantage of the Devel and Theme developer modules in previous chapters and
will see more of them in this one.

When it comes to client-side tools, the chief protagonist is a Firefox add-on pictured in the
following screenshot named Firebug. It is an invaluable tool that has revolutionized web
development by allowing the debugging and streamlining of all aspects of theming from HTML
and CSS to JavaScript right from within the browser. While the primary add-on is only available
for Firefox, a less potent variant is available for other browsers in the form of Firebug Lite.
More information on both of these options is available at http://getfirebug.com.

A complement to Firebug's in-depth capabilities is available in the form of the Web Developer
add-on which provides a suite of development, testing, and validation tools as pictured in
the following screenshot. Initially created by Chris Pederick as a Firefox add-on, it is now also
available as an extension for Google Chrome. More information on this add-on is available at
http://chrispederick.com/work/web-developer/.

Besides Firefox, other browsers such as Opera, Internet Explorer, and Google Chrome come
with their own sets of tools and plugins. For example, Opera provides a suite of tools under the
moniker Dragonfly while Google Chrome and Internet Explorer's equivalent are simply titled
Developer Tools. Chrome is also aided by user-contributed extensions which are quite similar
to Firefox add-ons with a significant number of them being ported equivalents of the same.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

115

In this chapter, we will be primarily concentrating on Firefox add-ons as they provide the most
complete and feature-rich set of tools that are available to developers today.

Finding the right function to use to theme
an object

In the previous chapter, we saw how to find out which theme function is being used to theme
an element—the username—in a page and subsequently, learned to override it. However, while
writing modules or when we are looking at ways to render data loaded from the database, it is
also not uncommon to be at a loss to know which function to use to theme a Drupal object.

In this recipe, we will look to source potential solutions which can be used to render a
typical Drupal user object. We will be accomplishing this task using the Devel module
and available documentation.

Getting ready
The Devel module which can be downloaded from http://drupal.org/project/devel
is assumed to be installed and enabled. Furthermore, it is required that the access devel
information and Execute PHP Code permissions be assigned to the current user.

The Development block which is provided by the module also needs to be enabled.

How to do it...
As we are looking to theme the user object and perhaps display it as a link to the user's
profile, let us check whether there are any Drupal functions related to the term username. To
do this, visit the Drupal API site at http://api.drupal.org and type the word username
into the search field. This autocomplete field should provide—as seen in the following
screenshot—a drop down listing all functions that include the term username:

www.it-ebooks.info

http://www.it-ebooks.info/

Development and Debugging Tools

116

As displayed in the preceding screenshot, the theme_username() function looks promising.
The linked API page (which is also conveniently pictured in the image) should provide
information on the arguments that need to be supplied to this function, as well as information
on the return type and a lot more. We can see that the theme_username() function accepts
a single parameter, $variables. Looking at the Parameters section, we can see that this
parameter is structured as an associative array with a choice of predefined keys.

The API site customarily also provides links to other areas of Drupal
that use the function being viewed. However, as theme functions are
invoked as arguments of the theme() hook, this information is not
available. As an alternative, if we need to look at some real-world
examples of the function in action, we will need to run a code search
throughout the entire project for the term theme('username' to
get a list of all instances of the function being used.

Once we have a candidate function in hand, we can give it a test run using the Devel module's
PHP evaluation feature. This can be accessed by clicking on the Execute PHP Code link in the
Development block seen in the next screenshot. In the ensuing form, enter some test code
such as the following to see the theme function in action:

// Print the current user who is always available via a
// global variable.
global $user;
$username = theme('username', array('account' => $user));
print($username);
print("\n");

// Print some other user: User with user ID 5.
$user_other = user_load(5);
$username2 = theme('username', array('account' => $user_other));
print($username2);

Once this is done, click the Execute button to evaluate the code.

How it works...
When the PHP code is evaluated, the result should look something like the following:

<a href="/user/1" title="View user profile."
 class="username">Karthik
foo

In other words, we have implemented theme_username() correctly and can proceed to use
it in our modules or themes as necessary.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

117

There's more...
There are also other avenues available to us when it comes to finding information on available
module and theme functions.

Function reference and the theme registry
Besides using the Drupal API documentation site, another handy option is to use the Devel
module's Function reference list or view the site's Theme registry to source out potential
theme functions. Both these options can be accessed by clicking on their respective links
in the Development block and then running a search for candidate functions as seen in the
following screenshot:

See also
Theme overrides using the Theme developer module, a recipe from the previous chapter,
explains how to use the Theme developer to find the theme function being used to render an
element on the page. In other words, in situations where we have a working example of what
we are trying to accomplish, we can trace the functions being used to do so.

The Displaying a profile name instead of the username recipe in Chapter 4, Templating
Basics lists the steps required to override the theme_username() function that we
looked at in this recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

Development and Debugging Tools

118

Analyzing variables using the Devel module
While working with the Drupal API, we will often be faced with the situation where we have
no idea how a variable is structured. While PHP provides a number of functions to peek into
the variable, Drupal's Devel module provides a cleaner solution and a prettier interface to
do the same.

In this recipe, we will be looking at the Devel module's dpm() function.

Getting ready
It is assumed that the Devel module has been installed and is enabled. It also comes with
its own set of permissions and it is assumed that the current user has all the appropriate
permissions including access devel information.

We will also be making use of the mysite module created earlier in this book to hold our
odds and ends.

How to do it...
The following steps are to be performed inside the mysite module folder at
sites/all/modules/mysite:

1. Open the file mysite.module in an editor.

2. Look for an implementation of the mysite_init() hook. If it is unavailable, create
one and add the following code so that the resulting function looks as the following:

/**
 * Implements hook_init().
 */
function mysite_init() {
 global $user;

 // Analyze the $user variable.
 dpm($user);
}

3. Save the file and exit the editor.

4. Access the site in a browser to see whether we are presented with a pretty-printed
representation of the $user variable.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

119

How it works...
When the site is now accessed, the $user variable should be displayed at the top of the page
as shown in the following screenshot:

We can see that all the data within the $user object is now visible. Each property is listed
along with its datatype and length. Furthermore, complex datatypes such as arrays are also
expanded, thus giving us an excellent overview of the entire object.

There's more...
It is always recommended that the codebase is kept neat and tidy. Once we are done with our
debugging, it is a good idea to clean up after ourselves.

Removing debug functions after use
It is important that the calls to dpm() and other Devel module commands be removed once
the debugging session is over. It is not an infrequent occurrence to find the site becoming
unusable because the Devel module was disabled without removing these commands.
Alternatively, if some debugging code is used regularly enough to be retained in a module,
then it might be worthwhile to wrap all code related to the Devel module within a
module_exists() check as follows:

if (module_exists('devel')) {
 // Add debugging code here.
}

www.it-ebooks.info

http://www.it-ebooks.info/

Development and Debugging Tools

120

Other useful Devel module functions
Besides dpm(), other useful functions include dd() which logs output to an external file, and
ddebug_backtrace() which is useful as a post mortem tool to analyze where things went
wrong. More information can be found by simply browsing through the devel.module file
inside the Devel module's folder.

See also
The previous chapter contains the Listing all variables in a template file recipe which provides
a more direct approach to getting information about all available variables.

Generating sample content using the
Devel generate module

Once our theme has made significant progress, it is important to test it in various scenarios
with different sets of sample data to ferret out bugs and anomalies that sometimes tend to
be overlooked during the design phase. In this recipe, we will be using the Devel generate
module to generate test data in the form of content, taxonomy categories, and users to
simulate real-world input.

Getting ready
It is assumed that the Devel module is available and enabled. While the Devel module
itself is not a prerequisite, the Devel generate module is part of its package and should
also be enabled from the module installation page. It is also assumed that the Taxonomy,
Comment, and if necessary, the Path and Upload modules are enabled. Furthermore, it is
recommended that multiple node types be made available to the generator to ensure that our
sample data encompasses as many permutations and combinations as possible.

How to do it...
The Devel generate module, once enabled, exposes its functionality via the Generate items
section in the administration pages and block. We will be generating sample taxonomy
vocabularies, terms, users, and content as per the following steps:

1. To generate taxonomy vocabularies, navigate to admin/config/development/
generate/vocabs [Home | Administration | Configuration | Development |
Generate vocabularies] to access the category generation form.

2. In the resulting page, specify the number of vocabularies that need to be created and
other variables.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

121

3. Click on the Generate button to create them.

4. To generate taxonomy terms for our newly created vocabularies, navigate to admin/
config/development/generate/taxonomy [Home | Administration |
Configuration | Development | Generate terms] to access the term
generation form.

5. Choose the vocabularies for which the terms should be generated and amend the
other options on this page as necessary.

6. Click on Generate to generate the taxonomy terms for the selected vocabularies.

7. Next, navigate to admin/config/development/generate/user [Home |
Administration | Configuration | Development | Generate users] to access the
user generation form.

8. Tweak the number of users, their roles, and age as needed.

9. Again, click on Generate to generate our test user accounts.

10. Finally, navigate to admin/config/development/generate/content [Home |
Administration | Configuration | Development | Generate content] to access the
content generation form:

www.it-ebooks.info

http://www.it-ebooks.info/

Development and Debugging Tools

122

11. As the previous screenshot attests, there are a number of options available on this
form. Tweak them so that there is significant variation in the generated nodes to
account for varying user input and realistic situations.

The Delete all content option, when checked, will delete all
existing content and generate new entities.

12. Click on Generate to generate the test content.

How it works...
The Devel generator utilizes the Batch API while generating content. This allows Drupal
to create large numbers of items without the page timing out or the server running out of
memory. Once the generator has run its course, we can verify the generated content by
visiting the Taxonomy, User, and Content administration pages. Visiting the default front
page or the URL node should display a simulation of what the site will look like with
real-world user input.

With the introduction of fields in Drupal core, the Devel generate module automatically
analyzes the structure of each node type and populates as many fields it is familiar with as
possible. For example, taxonomy terms, attachments, comments, and so on, are created
automatically by the generator as necessary.

Resetting the default theme manually
There will be times where certain changes we have made to the theme will render the site
utterly unusable. For example, this can happen when there are layout issues with the theme
which might make navigating to the Theme administration pages difficult, or when we have
introduced an error in our PHP code which leads to the White Screen of Death where all we
have to work with is an unusable blank screen. While we could simply stomp our way into the
database and change the variable specifying the current theme, the Drupal Way advocates a
cleaner and simpler solution to rescue the site.

In this recipe, we will be looking at rescuing an unusable site via the settings.php
configuration file.

Getting ready
This recipe only applies when a Drupal site becomes unusable due to errors in the theme
currently being used.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

123

How to do it...
As the site is unusable, we can either edit the database directly or, as detailed in the following
steps, use the settings.php file to override the default theme being used:

1. Navigate to the site's settings.php file which is, by default, inside the
sites/default folder.

2. Open this file in an editor and look for a section titled Variable overrides.

3. The $conf array in this section is normally commented out and is heavily
documented. Uncomment the highlighted line as in the following excerpt,
by removing its hash prefix:
$conf['site_name'] = 'My Drupal site';

 $conf['theme_default'] = 'garland';

$conf['anonymous'] = 'Visitor';

4. Save the file and exit the editor.

5. Try accessing the site in a browser to ensure that it is now accessible and that the
theme has been changed to Garland.

How it works...
The $conf configuration array is used by Drupal to load and store system variables. By
declaring this array in the settings.php file, we are effectively overriding variables that are
stored in the database. In this case, we have specified that the theme to be used to display
the site should be Garland, which should override our problematic theme.

Once the bugs in the theme have been weeded out, we can reverse our changes to the
settings.php file to revert back to the original theme.

There's more...
Drupal stores its configuration data in a table named variables in the database. The Devel
module provides an interface to this table which is often handy when attempting to peek
under the hood.

www.it-ebooks.info

http://www.it-ebooks.info/

Development and Debugging Tools

124

Using the Devel module to view and edit database variables
The Devel module comes with a handy variable editor which can be used to view and even
edit variables directly in the database. For this recipe, we can use it to confirm that the
theme_default variable is indeed being overridden. It can be accessed by clicking on the
Variable editor link in the Development block. Scrolling down to the bottom of the resulting
page should confirm that the theme_default setting is still set to myzen whereas the theme
actually being used to display the page is Garland.

Each row in the variable editor table has an associated Edit link
that can be used to modify the variable in question. However, it
should be noted that these variables are stored in serialized form
and as such need to be edited with care. More information on PHP's
serialize() function can be obtained at http://php.net/
manual/en/function.serialize.php.

Live preview with Web Developer
Drupal theme development usually involves a lot of toggling between editor and browser
to see our changes in effect. After a point, this can get to be rather tedious, especially
when debugging or tweaking CSS, and compounded further more while working directly
on the server.

In this recipe, we will be looking at the features provided by the Web Developer add-on
which will allow us to directly edit HTML and CSS in the browser and see our changes
propagate instantaneously.

Getting ready
The Web Developer add-on for Firefox is assumed to have been installed and enabled. It can
be downloaded from http://chrispederick.com/work/web-developer/.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

125

How to do it...
Web Developer's list of features includes a rudimentary HTML editor which can be used to
tweak markup during testing. The editor can be launched by clicking on Miscellaneous in the
Web Developer toolbar and then clicking on Edit HTML.

The editor is launched in a panel as seen in the next screenshot, and includes a search field
to locate pertinent sections of the page. Any changes made in the panel will be reflected
immediately in the page above.

The CSS editor can similarly be launched by clicking on CSS in the toolbar and selecting Edit
CSS. This should load all the linked stylesheets in an editor in a panel below.

How it works...
The Web Developer add-on allows us to edit page elements on-the-fly directly in the browser.
These include both HTML and CSS elements which upon modification are automatically
updated in the Firefox window.

www.it-ebooks.info

http://www.it-ebooks.info/

Development and Debugging Tools

126

In the previous screenshot, the comments.css file has been opened in the editor after which
the title for the Comments section has been styled with the color red. The changes are
immediately apparent in the browser above. If we are working on a local server, the stylesheet
can be saved using the save button at the top of the panel. If not, we can either copy and
paste the modified file, or alternatively, apply the changes manually.

CSS aggregation
If CSS aggregation is enabled for the site, it is important that it be
turned off before editing to ensure that Web Developer has access
to all the component CSS files. If not, we will only have access to a
single, monolithic, and unwieldy stylesheet.

There's more...
The Web Developer extension is not the sole player with these features. Other extensions
including Firebug support them as well.

Editing HTML and CSS using Firebug
The Firebug add-on also provides similar live-editing functionality for HTML and CSS. These
features can be accessed from the HTML and CSS menus in the Firebug panel and clicking
on Live Edit as demonstrated in the following screenshot:

The decision of which tool to use comes down to personal preference and degree of comfort
with the interface.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

127

View all CSS rules at once
The Web Developer toolbar provides an option to view all CSS rules in one location. This can
be done by clicking on the CSS menu in the toolbar and then clicking View CSS. This feature
can be quite handy during debugging when we need to run a search for particular rules,
usually relating to positional aspects of elements.

See also
Once we are done editing our HTML and CSS file, we can make use of the next recipe,
Validating HTML and CSS using Web Developer, to check whether our changes are efficient
and meet prevailing standards.

Validating HTML and CSS using
Web Developer

Validation is an integral part of web development. HTML and CSS validation ensure that the
document is structurally and semantically correct and provide a reliability guarantee that the
page will be displayed correctly both now and in the future.

In this recipe, we will look at how the Web Developer add-on provides easy options for
validating both HTML and CSS using the W3C validator at http://validator.w3.org.

Getting ready
It is assumed that the Web Developer add-on is installed and enabled in Firefox.

How to do it...
To validate the HTML of a page currently being viewed in Firefox, click on the Tools menu of
the Web Developer toolbar and select Validate HTML as displayed in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Development and Debugging Tools

128

Once clicked, we will be redirected to the W3C validator page to view the results of the check.

Similarly, validating the CSS of a page being currently viewed can be performed by clicking on
the Tools menu of the toolbar and selecting Validate CSS.

Validating HTML and CSS from the local server
The W3C validator by default validates files and pages on servers
that are accessible through the Internet. However, this is not always
convenient as our site might still be under development on a local
server or we are perhaps looking to validate pages on the site that are
accessible to authenticated users only. In such situations, we can use
Web Developer's Validate Local CSS and Validate Local HTML options
which save the HTML or CSS as files and upload them to the validator.

How it works...
Once it receives its input, the HTML validator validates the page against its Doctype
declaration. In the following screenshot, the local page in question was declared to be
XHTML + RDFa compliant and it passed the validation process successfully:

Similarly, the W3C CSS validator checks the supplied CSS against a predefined profile, which
in the following screenshot is set to CSS 2.1. As a result, we see that some CSS 3 properties
have been flagged as errors as they do not conform to the CSS 2.1 specifications:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

129

There's more...
When attempting to validate multiple pages in a site, it is useful to know that we can
temporarily instruct Web Developer to automatically validate the page being viewed.

Validating HTML and CSS automatically
The Web Developer toolbar provides an option that can be used to automatically validate the
page being viewed. This setting can be enabled by clicking on the Tools menu of the toolbar
and selecting Display Page Validation. This will result in an additional toolbar being added to
Firefox which displays the validation status of the current page. This is handy when performing
quality checks across different pages in the site and can save time and effort.

Turning off JavaScript in the browser
Websites cater to users using browsers of varying capabilities on a plethora of devices.
Consequently, there is no guarantee that user experiences will always be the same across the
board. Graceful degradation is often a term associated with site usability and accessibility,
and ensures that sites are still functional in the absence of key technologies such as
JavaScript, CSS, images, and plugins such as Flash. Disabling various browser features is also
quite frequently an essential step during debugging.

This recipe will detail the steps required to disable JavaScript during development.

Getting ready
While every browser provides a JavaScript toggle somewhere in its preferences dialogs, and
many of them are beginning to provide handy developer tools of their own, we will be using
the Web Developer add-on for Firefox and Google Chrome which can be downloaded from
http://chrispederick.com/work/web-developer/. It is assumed that it has been
installed and enabled.

www.it-ebooks.info

http://www.it-ebooks.info/

Development and Debugging Tools

130

How to do it...
Once the Web Developer add-on is installed in Firefox, a toolbar should be available at
the top of the page. Clicking on the Disable drop down should present a list of options
including Disable JavaScript, which in turn, leads to another submenu with the All
JavaScript option. This, when clicked, should disable JavaScript in the browser as
displayed in the following screenshot:

The page will need to be refreshed to see our changes taking effect.

How it works...
Once JavaScript is disabled, all the frills will no longer be active. In the previous screenshot,
we can clearly see, for example, that the Body field has an additional Summary field that,
when JavaScript is enabled, is usually only made visible upon clicking an Edit summary link.
Furthermore, we can verify that the vertical tabs on the edit page are now expanded with their
contents visible. In other words, even though JavaScript has been disabled, the page is still
functional and accessible.

There's more...
Other browsers also provide tools that allow the easy manipulation of their options, including
the option to temporarily disable JavaScript.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

131

Disabling JavaScript in Opera
Disabling JavaScript in Opera is as simple as pressing F12 to access the Quick preferences
menu and toggling the Enable JavaScript option accordingly as demonstrated in the
following screenshot:

Disabling JavaScript in Internet Explorer
As outlined in the following screenshot, pressing F12 in Internet Explorer loads the Developer
Tools panel. Clicking—within the panel—the Disable menu and clicking the Script option
accordingly, will disable or enable JavaScript support in the browser:

See also
The next Disabling CSS in the browser recipe provides information on doing the same for
CSS. Chapter 7, JavaScript in Themes, is dedicated to JavaScript where tools such as the Web
Developer toolbar will come in very handy during testing and debugging.

Disabling CSS in the browser
Besides catering to Graceful degradation as seen with the recipe on disabling JavaScript,
disabling CSS files is invaluable during debugging, especially once the levels of complexity
increase. This recipe will detail the steps required to disable CSS during development.

www.it-ebooks.info

http://www.it-ebooks.info/

Development and Debugging Tools

132

Getting ready
We will be using the Web Developer add-on for Firefox which can be downloaded from
http://chrispederick.com/work/web-developer/. It is assumed that it has
been installed and enabled.

We will also be using the myzen theme created in earlier chapters as the example theme in
this recipe.

How to do it...
Once the Web Developer add-on is installed in Firefox, a toolbar should be available at the
top of the page. Clicking on the CSS drop down should present a list of options including
Disable Styles, which in turn, leads to another submenu featuring a number of options. Of
immediate interest is the All Styles option which when enabled, disables all CSS styles from
the document. This is useful to visualize, for example, how accessibility software tends to
parse the page.

When it comes to debugging, however, the more valuable feature is the ability to disable
specific stylesheets listed under the Individual Style Sheet option. Situations frequently
arise where rules in existing stylesheets are overridden in order to modify default styles. For
example, the myzen theme overrides the default tab styles provided by Drupal using styles
located in its own CSS file titled tabs.css. The styles in this file can be disabled by selecting
the tabs.css entry from the list of stylesheets as demonstrated in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

133

How it works...
When the tabs.css file is disabled, we should immediately be able to see the default tab
styles provided by Drupal take effect. This is demonstrated using the following screenshots:

The previous screenshot displays the tabs on a typical node page first using the styles in
myzen's tabs.css. The following screenshot, however, displays the same page with the
tabs.css file disabled, and consequently, with Drupal's default tab styles taking effect:

There's more...
Similar, if not as comprehensive, options also exist in tools for other browsers.

Disabling CSS in Internet Explorer
While individual CSS files cannot be disabled in Internet Explorer, the Developer Tools panel—
which can be accessed by pressing F12—does provide an option to disable all CSS support for
the page. This can be done by clicking on the Disable menu and selecting CSS as shown in
the following screenshot:

See also
The next Inspecting elements and debugging CSS using Firebug recipe outlines how we can
temporarily disable specific CSS rules rather than entire stylesheets, all from the comfort of
our browser.

www.it-ebooks.info

http://www.it-ebooks.info/

Development and Debugging Tools

134

The previous Turning off JavaScript in the browser recipe lists the steps required to
temporarily disable JavaScript in the browser using the Web Developer toolbar.

Inspecting elements and debugging CSS
using Firebug

Prior to the advent of Firebug, debugging documents styled with complex CSS was an exercise
in tedium. In this recipe, we will be demonstrating the use of Firebug in locating an errant
margin that we are looking to modify.

The default setting for comment display in Drupal is to thread and nest them. In other words,
replies to existing comments are added beneath them and indented by way of a margin to
indicate each comment's specific level in the hierarchy. We are going to find out which CSS
file, as well as the rule in particular, is responsible for this margin and modify it accordingly.

Getting ready
For the purposes of this recipe, the comment module will need to be enabled and some test
content that involves nested comments will need to be generated using the Devel generate
module. It is assumed that the Firebug add-on has been installed in Firefox.

How to do it...
Firstly, we will need to view a sample node in Firefox and locate a suitable nested comment
that is a reply to another and is, therefore, indented. We can then look to ascertain the origin
of this indentation using Firebug.

To do so, right-click on the title of the comment in question and click on Inspect Element. This
should locate the element's markup in the HTML section of the Firebug panel at the bottom of
the window. The markup of a typical comment in Drupal should look something as follows:

<div class="indented">

 <div class="comment comment-by-node-author comment-by-anonymous
 even clearfix">
 <h3 class="comment-title">
 <a rel="bookmark" class="permalink"
 href="/comment/4031#comment-4031">Incassum Saluto
 </h3>
 <!-- Comment body -->

 </div>
 <!-- /.comment -->

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

135

 <div class="indented" style="">
 <!-- Other nested comments -->

 </div>
</div>

Furthermore, simply hovering over an element in the Firebug HTML panel should highlight
the corresponding object in the browser window along with its margins and padding, if any.
As the comment's title is a simple anchor tag, it is unlikely to be the source of the margin for
the entire block of content. Consequently, we can look at its parent and other elements in its
ancestry as being more likely to be the source of the indentation. Inspecting each one in turn
should offer information on their layouts.

Hovering over one of the ancestors of the comment title —a DIV tag with a telltale class
named indented—should highlight the entire comment in the browser along with a
conspicuous yellow block to its left. This indicates that this element has a margin applied to
it. Clicking the DIV should load all its styles on the right-hand side of the Firebug panel as
displayed in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Development and Debugging Tools

136

As we can tell from the screenshot, the element has a margin of 25 pixels. We can also
tell that this rule is located inside the comment.css file on line number 5; clicking the
filename should load the entire CSS file and make it available for editing if so necessary.
We can additionally confirm the layout of this element by clicking on the Layout tab in the
Firebug panel.

Now that we have our element and the rule responsible for the margin, we can look at
modifying it. Right-clicking the margin-left rule should provide a list of options including
Edit, Delete, and Disable as in the next screenshot. Clicking on Edit will allow us to change
the margin while Delete will remove the entire rule altogether. Disable on the other hand
will temporarily disable the rule so that we can preview what the element will look like without
it in effect:

Additionally, we can click on New Property to add a new rule, perhaps a border, to this
element. With Firebug also coming with autocomplete support, adding new rules is a cinch.

Rather than right-clicking to access the context menu and performing operations, we can
double-click rules to edit them or double-click an empty area near a rule to add a new one.
Similarly, disabling individual rules can be accomplished by clicking the disable icon to the left
of the rule in question as seen in the previous screenshot.

How it works...
We have just scratched the surface of Firebug's features here and it is well worth exploring
all its tabs and context menus. Additional documentation on the CSS panel is available at
http://getfirebug.com/wiki/index.php/CSS_Panel.

See also
The next Diagnostic logging of JavaScript using Firebug recipe, demonstrates how Firebug
similarly also provides powerful tools to debug and manipulate JavaScript.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

137

Diagnostic logging of JavaScript
using Firebug

Even though Firebug supports an endless number of more complex JavaScript debugging
features, the fundamental approach of using diagnostic prints to debug scripts is still
alive and well. In this recipe, we will be looking at Firebug's console() function and
a few of its variants.

Getting ready
It is assumed that the Firebug add-on has been successfully installed in Firefox. We will also
be using the myzen theme created earlier in this book as an example theme in this recipe.

How to do it...
Firebug comes with a console to log output which is accessed using the console()
command. To see this in action:

1. Navigate to the myzen theme folder at sites/all/themes/myzen.

2. Browse to the js subfolder where the JavaScript files are stored, and create a file
named console.js.

3. Open this file in an editor and add the following script to it:
(function ($) {
 Drupal.behaviors.consoleDebug = {
 attach: function() {
 var s = 'Foo';

 console.log(s);
 console.debug(s);

 $('a').each(function() {
 // console.log(this);
 console.count('Number of links on the page:');
 });
 console.warn('This is simply a warning!');
 console.error('This is an error!');
 }
 };
}(jQuery));

4. Save the file and exit the editor.

5. Browse back up to the myzen theme's base folder and open the myzen.info file
in an editor.

www.it-ebooks.info

http://www.it-ebooks.info/

Development and Debugging Tools

138

6. Add our new JavaScript file to the scripts section using the following code:

scripts[] = js/console.js

7. Save the file and exit the editor.

8. Rebuild the Drupal cache.

9. Access the site in Firefox and open the Firebug panel.

10. Within the Firebug panel, choose the Console tab and if it is not enabled already,
do so.

11. Finally, refresh the page to confirm that the console output is being displayed in
Firebug's Console tab.

How it works...
When a page is accessed in Firefox, the Console tab of the Firebug panel should output
something as shown in the following:

What is important to note is the various variants of the console command. console.
log() simply logs the input, whereas console.debug() also adds a link to the script
that is responsible for the call. Clicking the link will take us to the Script pane where more
information can be accessed and further debugging performed.

Similarly, console.warn() logs the input in a starkly noticeable warning format, whereas
console.error() also triggers a trace request besides registering as an error.

It is also useful to note that any complex JavaScript objects that are logged in the console are
hyperlinked to their equivalent location in the Script, HTML, or CSS panes. This feature comes
in very handy especially when manipulating HTML using jQuery.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

139

There's more...
Firebug is a very powerful debugging tool with a plethora of features we have not
covered here.

Other console variants
There are a number of other variants in the console API. More information along
with examples can be accessed at http://getfirebug.com/wiki/index.php/
Console_API.

Breakpoints, watches, and more
More complex and comprehensive debugging features such as breakpoints, variable
watching, stack traces, and more are also provided by Firebug and can be accessed
from its Script tab.

See also
Chapter 7, JavaScript in Themes, is dedicated to JavaScript where the use of Firebug will
prove invaluable. The previous Inspecting elements and debugging CSS using Firebug
recipe provides information on how to use Firebug in order to debug the CSS in our
modules and themes.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

6
Advanced Templating

We will cover the following recipes in this chapter:

 f Adding a variable to all node templates

 f Deleting a variable from the page template

 f Adding a custom theme setting

 f Hiding all regions on a page

 f Displaying the last updated date instead of the submitted date

 f Module-based variable manipulation

 f Optimizing using hook_preprocess()

 f Displaying the date field in calendar form

Introduction
In a bid to separate logic from presentation, Drupal's theming system tries to minimize the
amount of PHP that is necessary in a template file. This ensures that themers who are not
as comfortable in a PHP environment, are not exposed to the nitty-gritty of complicated code
manipulations. Instead, they are provided with a host of pre-prepared variables that contain
the content of the regions and blocks that make up a page, or those that describe other
elements such as user details and submission information that can be utilized in the
template file.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Templating

142

But the question arises: where do these variables come from? And how can they be modified?
This is where preprocess and process functions come in. Prior to the execution of every
template file, Drupal calls a set of functions known as preprocess functions that insert,
modify, and in general, organize the variables (provided by Drupal, its modules, and the
theming system), which are available for use in the file. Furthermore, as we saw with template
overrides in the last chapter, Drupal checks for and executes a series of candidate preprocess
functions thereby allowing themes as well as modules to have a shot at manipulating the
available variables. Just as with overrides, these candidate names can be divined using the
Theme developer module as illustrated in the following screenshot:

In the preceding image, the candidate functions that affect variables available to the
page.tpl.php template are listed under the section titled Preprocess functions. As is
evident, there are a number of functions available with each being useful in certain stages
of the theme system's workflow.

Preprocess functions come in two flavors—functions that manipulate variables particular
to specific templates, and functions that allow the manipulation of variables common to
all templates or subsets thereof, as the need may be. The former may be of the form
myzen_preprocess_page($variables) or myzen_preprocess_block($variables)
where _page and _block signify the template files associated with $variables. The
latter on the other hand, may be of the form myzen_preprocess($variables, $hook),
which is triggered regardless of which template file is being called. However, the name of the
template being called is passed to this function using the $hook parameter, which could be
page, block, or similar.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

143

As mentioned previously, Drupal's theme system allows the manipulation of these variables
in various stages of the workflow. For example, the display of a node template will trigger the
following functions—if declared—in sequence:

Level Function name
Module (mysite) mysite_preprocess()

mysite_preprocess_node()
Theme (myzen) myzen_preprocess()

myzen_preprocess_node()
Module (mysite) mysite_process()

mysite_process_node()
Theme (myzen) myzen_process()

myzen_process_node()

Therefore, variables manipulated by an earlier function in this queue can be manipulated
again at a later stage, if so desired. We will be taking advantage of this feature throughout
this chapter.

Zen-based themes come with a template.php file that contains skeleton
preprocess and process functions, which are commented out by default.
Documentation about each function as well as instructions on how to
uncomment it usually accompanies each option.

As detailed in the previous screenshot and table, one of the new features included in Drupal
7's theming system is the sibling concept of process functions. Process functions, as is
evident by the lack of the pre prefix, are run after preprocess functions and are used to modify
variables that have been modified by other preprocess functions. For example, if two modules
named foo and bar are both modifiying a variable named baz, situations can arise where
one of the modules will want its modifications to take precedence over the other. Process
functions provide a clean and non-invasive solution to such scenarios. They are also handy in
cases where variables are to be modified in separate phases.

Process functions retain an identical structure and functionality to preprocess functions and
are also listed in the Theme developer pop up.

Adding a variable to all node templates
In this recipe, we will be adding a variable to be made available in all node template files.
For this example, the new variable will contain a disclaimer that we will be displaying at the
bottom of all nodes.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Templating

144

Getting ready
We will be using the myzen theme created earlier in this book as the example theme in this
recipe. It is also assumed that a node.tpl.php file exists in myzen's templates folder as per
recipes in earlier chapters. If not, this file will need to be imported from the Zen base theme or
a new one will need to be created.

How to do it...
A new variable can be made available to node template files by introducing it via the
appropriate preprocess function as follows:

1. Navigate to the myzen folder at sites/all/themes/myzen.

2. Open the file template.php in an editor.

As mentioned in the introduction to this chapter, this file will have a number of
commonly used preprocess functions in skeleton form. These are usually
commented out.

3. Look for the function titled myzen_preprocess_node(). This can either be
uncommented or alternatively, a new function can be created.

4. Modify this function so that the effective end result is as follows:
function myzen_preprocess_node(&$variables) {
 $variables['disclaimer'] = t('mysite takes no responsibility for
 user contributed content and comments.');
}

The ampersand prefix for the $variables parameter is important as it tells
PHP that it is being passed by reference. Consequently, any changes that we
make to this variable will be automatically communicated upstream to the
code that is called myzen_preprocess_node().

5. Save and exit this file.

6. Navigate to the templates subfolder, which should contain the node.tpl.php
template file.

7. Open node.tpl.php in an editor and scroll down to the bottom of the file.

8. Add the following highlighted markup below the content and links section:
 <div class="content"<?php print $content_attributes; ?>>
 <?php
 // We hide the comments and links now so that we can render
 // them later.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

145

 hide($content['comments']);
 hide($content['links']);
 print render($content);
 ?>
 </div>

 <?php print render($content['links']); ?>

 <?php if (!$teaser): ?>
 <div class="disclaimer">
 <?php print $disclaimer; ?>
 </div>
 <?php endif; ?>

9. Save the file and exit.

10. As we are introducing new elements to the theme, we will need to clear the theme
registry to see them take effect.

11. View a node on the site to confirm that our disclaimer has now been added to the
bottom of the content.

How it works...
We have chosen to place our code in myzen_preprocess_node() for two reasons.
Firstly, we want this code to only affect the myzen theme which is why it has been placed
within the myzen theme's template.php file. Secondly, we are inserting a variable that is
only going to be used in node templates—hence, the _node suffix. If we had just used a plain
myzen_preprocess() function, we would have introduced this variable for pages, blocks,
and other templates besides the node templates.

To introduce our variable, we just need to add it to the $variables array, which is the first
argument for all preprocess functions. The $variables variable contains a list of all the
variables that will be used or passed to the template file:

$variables['disclaimer'] = t('mysite takes no responsibility for user
contributed content and comments.');

By using an index named disclaimer in the array, the variable to be made available to the
template file—node.tpl.php in this recipe—will also be named the same. In the template
file, we take an additional step of only displaying this variable if the $teaser variable is
not TRUE. This ensures that the disclaimer is only displayed for full node views and will
consequently not be displayed when the node is viewed in teaser form. Once this check has
been performed, we simply print the $disclaimer variable nestled within our HTML
of choice.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Templating

146

String handling in Drupal
Just about every time we need to output a string in Drupal, it is recommended
that it be passed through the t() function. This core function ensures that
the string is validated, formatted correctly, and furthermore, also fulfills its
primary function of translating text input depending on the user's locale,
if so configured. More information on this subject can be accessed via the
documentation page for this function at http://api.drupal.org/api/
function/t/7.

In our currently bare-boned example theme, the changes are visible in the form of a
disclaimer at the bottom of the node as exhibited in the following screenshot:

Since the variable is contained within a DIV with class disclaimer, we can now proceed to
style it using CSS.

See also
The next recipe, Deleting a variable from the page template, complements this recipe by
outlining how to delete existing variables. It will also be worth exploring its subsequent recipe,
Adding a custom theme setting, which makes the disclaimer field introduced in this recipe, a
customizable theme setting.

Deleting a variable from the page template
While we introduced a new variable in the previous recipe, we will be removing an existing
variable in this one. To demonstrate the effectiveness of template variable manipulation, we
will be removing the feed icons such as the RSS icon from only the front page of the site by
making them unavailable to the page template file.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

147

Getting ready
We will be using the myzen theme created earlier in this book as the example theme in this
recipe. It is also assumed that a page.tpl.php file exists in myzen's templates folder. If
not, this file will need to be imported from the Zen base theme or a new one will need to
be created.

How to do it...
Just as we manipulated myzen_preprocess_node() to add a variable to node templates,
we will be manipulating myzen_preprocess_page() to remove variables from the page
template file as follows:

1. Navigate to the myzen folder at sites/all/themes/myzen.

2. Open the file template.php in an editor.

3. Look for the function titled myzen_preprocess_page(). If it is commented out, it
can either be uncommented or alternatively, a new one can be created.

4. Modify this function so that the effective end result is as follows:
function myzen_preprocess_page(&$variables) {
 // Do not display the RSS icon if this is the front page.
 if ($variables['is_front']) {
 // Using unset() will lead to a PHP NOTICE as the
 // template file will be trying to print a non-
 // existent variable.
 // unset($variables['feed_icons']);
 $variables['feed_icons'] = '';
 }
}

As ever, it is a good idea to always add an informative comment
along with the code that describes our changes.

5. Save and exit this file.

6. Clear the theme registry to see our changes take effect.

7. View the site's front page to confirm that the search box and the feed icon are no
longer visible.

8. Similarly, view a node to ensure that it is unaffected by our change.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Templating

148

How it works...

The following screenshot displays the structure of a typical front page with the feed icons, in
this case a single RSS icon, rendered at the bottom of the page:

Furthermore, looking at the myzen theme's page template, we can see that the $feed_icons
variable is being printed using the following line of code:

<?php print $feed_icons; ?>

If we compare this with the actual HTML being generated, we can see that the $feed_icons
variable also contains all the markup necessary for its display. Additionally, we can notice that
the variable is not wrapped within an IF block that checks whether the variable actually exists
prior to printing it. As a result, we can foresee that simply removing the variable will result in a
PHP notice message (if the server and Drupal are set to display them) as we will then be trying
to access a variable that does not exist.

With our investigative work done, we then proceed to the template.php file where we
proceed to create our myzen_preprocess_page() function. Using this function, we restrict
our changes to pages and therefore, the page.tpl.php template file. In our preprocess
function, we first check whether the current page is the front page of the site by checking
the is_front variable. If this variable is set to TRUE, then we go ahead and simply set
the feed_icons variable to an empty string rather than using PHP's unset() function to
remove it completely. Once the variable has been blanked and the cache cleared, we should
be able to confirm that the RSS icon is no longer being displayed only on the front page.

See also
The previous recipe in this chapter titled Adding a variable to all node templates, describes
how to add a new variable to a template. Similarly, Displaying the last updated date instead
of the submitted date provides an example where we modify an existing variable to suit our
purposes. This recipe can be found later on in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

149

Adding a custom theme setting
While it is quite straightforward to just edit a template file and add our changes, there are
situations where this might not be feasible. When a theme-specific variable needs to be
routinely modified or in cases where editing template files is not an option, the ideal solution
is to upgrade it to a configurable setting. This can be done either by adding a form element by
way of a module, or as this recipe will outline, by declaring a theme configuration setting for
display on the theme's administration page.

As an example, this recipe will make the disclaimer variable used in an earlier recipe in this
chapter, a configurable option.

Getting ready
This recipe is a continuation of the Adding a variable to all node templates recipe from earlier
in this chapter. It is assumed that it has been completed successfully.

How to do it...
There are two changes that we will need to make to the existing implementation from the
previous recipe. First, we will need to add our theme-specific setting to our theme. With
Zen-based themes, this can be easily done via the theme-settings.php file that comes
with the starter-kit. Open this file in an editor and look for the commented out declaration
of an example variable named myzen_example within the myzen_form_system_
theme_settings_alter() function. Below this section, add the following form
textfield element declaration:

$form['myzen_disclaimer'] = array(
 '#type' => 'textfield',
 '#title' => t('Node disclaimer'),
 '#default_value' => theme_get_setting('myzen_disclaimer'),
 '#description' => t(“Enter the disclaimer text to add at the bottom
 of node content.")
);

We can now save this file and exit the editor. Next, we need to replace the hardcoded string
in the node.tpl.php file and replace it with our newly configured setting by updating the
preprocess function in the template.php file to resemble the following:

function myzen_preprocess_node(&$variables) {
 $variables['disclaimer'] = theme_get_setting('myzen_disclaimer');
}

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Templating

150

How it works...
The myzen_form_system_theme_settings_alter() function inside
theme-settings.php is an implementation of hook_form_system_theme_
settings_alter(), a function that is called by Drupal to allow themes to conveniently
add and manipulate form fields on the theme configuration page. Our new setting will look
something like this on myzen's theme configuration page:

We can see from the screenshot what each of the fields in the form element declaration -
#title, #type, and #description—represent. The #default_value option represents
the default value of the textfield before it has been configured by the administrator.

The myzen_form_system_theme_settings_alter() function
contains pre-existing code that loads settings from the base Zen theme. Our
changes to the myzen theme are merged with these settings. If necessary, the
settings from the base theme can be manipulated from the subtheme.

Now that our new setting is up and running, we use another Drupal function—theme_get_
setting()—to retrieve our theme-specific option and forward it to our template file as the
variable $disclaimer:

$variables['disclaimer'] = theme_get_setting('myzen_disclaimer');

As the node template file already uses the $disclaimer variable, our changes should be
immediately apparent as illustrated in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

151

There's more...
There is a rather complicated interplay happening between the base theme and the
subtheme when it comes to theme settings as they can both declare complex settings
for display on the theme page.

Zen's breadcrumb settings
Using its hook_form_system_theme_settings_alter() function, the Zen base
theme adds options to customize breadcrumbs. This implementation can be seen in its
own theme-settings.php file and can serve as an additional example on how to add
customized settings.

Complex form options
By leveraging Drupal's Form API, theme developers can create options of much greater
complexity than the simple textfield we have introduced in this recipe. We will be seeing
more of the Form API in a later chapter.

See also
The Chapter 3, Custom Themes and Zen recipe, Modifying myzen's theme settings,
details how we can remove a theme setting from a Zen-based theme. Furthermore, the
Chapter 8, Navigation recipe, Customizing breadcrumbs in Zen-based themes, provides a
practical example of the breadcrumb customizations in action.

Hiding all regions on a page
This recipe will outline how simple and yet powerful template variable manipulation can be by
demonstrating the steps required to hide all regions on a page. Controlling region visibility is
a frequent requirement for pages such as the front page of a site or other landing pages that
place an onus on capturing the attention of the viewer. By hiding regions, the designer has
more real estate to make use of and there are fewer distractions for the user.

In this recipe, we will look to hide all regions for the front page of the site that is set to display
a node. We will also take the opportunity to hide the page title and hide elements such as
node links and submission information that are not always necessary for the front page
of a site.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Templating

152

Getting ready
We will be using the myzen theme created earlier in this book as the example theme in this
recipe. It is assumed that the front page of the site is set to display a single sample node
rather than the default multi-node listing. The Default front page for a site can be configured
via the Site information page at admin/config/system/site-information [Home |
Administration | Configuration | System | Site information].

How to do it...
As we are going to be working with regions, an easy way to get an outline of the declared
regions is through the block administration page at admin/structure/block [Home |
Administration | Structure | Blocks] for the myzen theme. The block administration page
provides a link titled Demonstrate block regions (My Zen), which when clicked, will take us
to the block (and region) demonstration page. The following screenshot outlines the default
layout of our Zen-based theme with the bars in yellow highlighting the regions of the theme:

1. Navigate to the myzen folder at sites/all/themes/myzen.

2. Open the file template.php in an editor.

3. Locate the myzen_preprocess() function or if it does not exist, create one.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

153

4. Add the following content to this function so that the effective result is as follows:
function myzen_preprocess(&$variables, $hook) {
 if ($variables['is_front']) {
 switch ($hook) {
 case 'html':
 // Override the node title and use a custom title
 // for the front page.
 $variables['head_title'] = t('Welcome to My site!');
 break;
 case 'region':
 // Empty all regions besides the content.
 if ($variables['region'] != 'content') {
 $variables['content'] = '';
 }
 break;
 case 'page':
 // Do not display the node title for the front page.
 $variables['title'] = '';
 break;
 case 'node':
 // Hide submission information and links.
 $variables['display_submitted'] = FALSE;
 unset($variables['content']['links']);
 break;
 }
 }
}

5. Save the file and exit.

6. Rebuild the theme registry to ensure that any new functions or template files
take effect.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Templating

154

How it works...
Unlike other preprocess functions such as myzen_preprocess_node() that target a
particular template file, we are using the generic myzen_preprocess() function that is
executed for all template files. This function accepts an additional parameter named $hook
that indicates which template the accompanying $variables parameter is related to.

In the preprocess function, we match the current hook using a switch block and perform
our modifications accordingly. That said, the question remains of how we actually find which
hook or template and which variable to modify. This is where the Theme developer module is
especially handy:

The preceding screenshot displays the variables available to the region.tpl.php template
that is related to the Content region outlined in yellow on the block administration screen
behind. Of particular interest in the Template variables list, are the region variable that
retains the name of the region, the content variable that, on this demonstration page, is a
39 character-long string containing the region's markup, the is_front boolean that is set to
TRUE only if we are viewing the front page, and so on. We can similarly confirm an identical
structure for all the other regions.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

155

The is_front variable will return TRUE if we are viewing the front page
of the site. It also returns TRUE if we are viewing the page that has been
selected as the front page. In other words, if we have chosen the node with
nid 25, the is_front variable will be TRUE both when we visit the front
page as well as when we visit node/25 (or its URL alias).

As mentioned before, this preprocess function relies on a switch block that allows us to
match each hook against the $hook parameter. As we are only concerned with the front page
of the site, we place this block within an if statement that checks whether the current page
is the front page of the site by looking at the is_front variable. Once this is true, we perform
our manipulations for each hook.

Firstly, for the html hook (where variables for the html.tpl.php template file are handled),
we override the node title with one more suitable for a front page. Next, for the region hook,
for all regions besides the content region, we simply set the content variable to empty,
which leads to the region displaying nothing. Similarly, for the page hook, we simply blank
the title variable, which will ensure that we do not display the title of the node on the front
page. Lastly, in the node hook, we ensure that the links and submission information are also
not displayed.

See also
We explored the steps required to add our own regions to a theme in the Chapter 3, Custom
Themes and Zen recipe titled Adding a custom region to myzen.

Displaying the last updated date instead
of the submitted date

In this recipe, we will be replacing the contents of the $date template variable which, by
default, displays the creation date of the node, with the node's last updated date instead. This
is useful with content such as fora, news, and so on where recency is an important indicator
of the freshness of a node.

Getting ready
We will be using the myzen theme created earlier in this book as the example theme in this
recipe. It is also assumed that the node.tpl.php file is available in its templates folder.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Templating

156

How to do it...
Manipulating the $date variable can be performed using the following steps:

1. Navigate to the myzen theme folder at sites/all/themes/myzen.

2. Open the template.php file in an editor.

3. Look for the myzen_preprocess_node() function; if unavailable, create a skeleton
function of the same name.

4. Edit it so that it effectively functions as in the following snippet. Any pre-existing
changes will need to be merged appropriately.
function myzen_preprocess_node(&$variables) {
 $variables['submitted'] = t('Submitted by !username !datetime
 ago',
 array('!username' => $variables['name'],
 '!datetime' => format_interval(REQUEST_TIME -
 $variables['changed'])
)
);
}

5. Save the changes and exit the file.

6. Clear the theme registry if necessary.

7. Visit any node page to verify our changes.

How it works...
The following screenshot displays the default node page with the time of creation displayed
very accurately, but rather cryptically:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

157

Before proceeding with any changes, it is useful to analyze the structure of the variables
available to the template file—node.tpl.php in this case. If we look through the template
variables listed by Theme developer, we can see that there are telltale variables named date,
which contains the date string that we see displayed under the node's title, and updated,
which contains the last updated time. We could just change the value of this variable and
amend the node template file accordingly. However, a more careful inspection reveals that
another variable named submitted is also listed that contains the entire submission
information string including the date information. Consequently, it will be simpler to just
modify this string and avoid editing the node.tpl.php template file altogether.

The myzen_preprocess_node() function used in this recipe simply changes the string
value of the submitted variable to represent the last updated time. This time is calculated
as the difference between the time right now—returned by the Drupal constant REQUEST_
TIME—and the last updated field represented by $variables['changed'] and formatted
to suit our purposes using the format_interval() function. Once this is done, the node
should include our changes as in the following screenshot:

There's more...
The Drupal API is populated by a number of utility functions including format functions such
as format_interval(), which we saw in this recipe.

format_interval() and other format functions
The format_interval() function represents an integer as a human-readable
concept of time. For example, format_interval(3600) is represented as 1 hour,
format_interval(360000) is represented as 4 days 4 hours, and format_
interval(36000000) as 1 year 7 weeks respectively. More information on Drupal's
format functions can be found at http://api.drupal.org/api/group/format/7
and is worth exploring.

See also
The final recipe in this chapter—Displaying the date field in calendar form—deals with styling
the date field that we have been manipulating in this recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Templating

158

Module-based variable manipulation
This recipe will outline an alternative method to variable manipulation performed at the
module level rather than at the theme level. This provides the advantage of being theme-
agnostic, that is, the modifications made will be made available or applied to all themes,
which is particularly useful for sites using multiple themes.

To demonstrate this approach, we will be adding a list of classes to the node template based
on the taxonomy terms associated with the node in question.

Getting ready
We will be using the mysite module created earlier in this book as an example module to hold
our odds and ends. As we are going to demonstrate injecting classes based on the taxonomy
terms, perform the following preparatory steps:

1. Create a sample vocabulary with its machine name set to category.

2. Generate a number of sample terms for this vocabulary.

3. Associate this vocabulary to a sample node type by including it as one of its fields
with its name set to field_category.

Associating fields with node types will require the use of the Field UI module. If necessary,
Chapter 10, Theming Fields, provides a brief guide to adding fields prior to delving into their
theming aspects. Once the category field has been added to the node type, its page should
look something like the following:

We will be working on the node page of a node created using these specifications.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

159

How to do it...
Adding classes to node markup based on its associated taxonomy terms is something that will
be useful irrespective of which theme is being used to view the node. Consequently, we can
elect to inject this change via a module rather than a theme's template.php file to ensure
that it is available to all themes. This can be done as follows:

1. Navigate to the mysite module's folder in sites/all/modules.

2. Open the mysite.module file in an editor.

3. Create a mysite_preprocess_node() function in this file as follows:
function mysite_preprocess_node(&$variables) {
 // Add taxonomy-based classes to the node markup.
 foreach ($variables['field_category'] as $term) {
 $variables['classes_array'][] = 'taxonomy-' . $term['tid'];
 }
}

4. Save the file and exit the editor.

5. Clear the Drupal cache as we have introduced a new preprocess function.

6. View a node page in a browser. The relevant markup with our new taxonomy-based
classes will look something like this:
<div class="node node-story node-promoted taxonomy-1 taxonomy-4
taxonomy-6 taxonomy-2 view-mode-full node-by-viewer clearfix"
id="node-504"></div>

7. View the same page using different themes to ensure that our manipulations have
taken effect on all of them.

How it works...
As we are looking to include our modifications regardless of which theme is being used, the
best place to locate our changes—based on the available candidate preprocess functions—is
in a module. As covered earlier, most sites will inevitably need to use a custom module to
contain site-specific tweaks and modifications, and we have chosen a similar location to hold
our preprocess function:

foreach ($variables['field_category'] as $term) {
 $variables['classes_array'][] = 'taxonomy-' . $term['tid'];
}

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Templating

160

Before we proceed with our changes, it is best to use the Theme developer module to get a
map of what we are dealing with. Once this is done, we can choose the best path to proceed.
In the preprocess function, we first iterate through the taxonomy array for the field_category
taxonomy field within the $variables array. With the term ID (tid) obtained, we can create
a suitably representative class name and append it to the classes_array variable, which
at a later stage will be converted from an array into a string of class names for inclusion in the
template file's markup.

See also
Just as we added taxonomy terms as classes in this recipe, the next recipe, Optimizing using
hook_preprocess(), utilizes another approach to adding author roles as classes within a
template file.

Optimizing using hook_preprocess()
This recipe will demonstrate using the hook_preprocess() function in a module. We will be
using it to seemingly export settings from one template file to another by making information
from the node template available to the page template file. In this example, we will be adding
the author's roles into the class list of the BODY tag as well as part of the content of the node.

Getting ready
We will be using the myzen theme created earlier in this book as the example theme in this
recipe. It is also assumed that the node.tpl.php and page.tpl.php files exist in myzen's
templates folder.

Just as with the previous recipe where we added our preprocess function to a module, we will
be adding our function here into the mysite module.

How to do it...
First, let us add our preprocess function to the mysite module:

1. Navigate to the mysite module's folder within sites/all/modules.

2. Open the mysite.module file in an editor.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

161

3. Create a mysite_preprocess() function in this file as follows:
function mysite_preprocess(&$variables, $hook) {
 // Cache author role names.
 static $author_roles = array();
 // Cache author role classes.
 static $author_role_classes = array();

 // Modify variables for the page template file.
 if ($hook == 'page' && isset($variables['node'])) {
 $user = user_load($variables['node']->uid);

 $author_role_classes = array();
 foreach ($user->roles as $rid => $role) {
 $author_role_classes[] = 'author-role-' . $rid;
 // Only display custom roles; ignore anonymous and
 // authenticated
 // user roles.
 if ($rid > 2) {
 $author_roles[] = $role;
 }
 }
 }
 else if ($hook == 'html' && !empty($author_role_classes)) {
 // Add classes to the <body> tag.
 $variables['classes_array'] = array_merge($variables['classes_
 array'], $author_role_classes);
 }
 // Modify variables for the node template file.
 else if ($hook == 'node' && !empty($author_roles)) {
 // Modify submission information text to include role names.
 $variables['submitted'] = t('Submitted by !username (!roles)
 on !datetime',
 array('!username' => $variables['name'],
 '!roles' => implode(', ', $author_roles),
 '!datetime' => $variables['date']
)
);
 }
}

4. Save the file and exit the editor.

5. Clear the theme registry.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Templating

162

6. Verify our changes by viewing node pages created by users with only the default
authenticated user role as well as those with other custom roles:

The preceding screenshot displays the node with the author's sole custom role
inserted next to the username.

7. View the source-code of a node page to verify that classes indicative of the author's
roles are being inserted. The BODY tag should now look something like the following:
<body class="not-front logged-in node-type-page page-node-89
section-node one-sidebar sidebar-first author-role-2 author-
role-3">

Our changes can also be verified by using the Themer information pop up for the entire page,
which should confirm that the classes_array includes our author classes:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

163

How it works...
The primary decision that we have made here is to use mysite_preprocess() as the
location for our modifications. The fact that this is a module function and not a theme-specific
template function suits our purposes because we want the features that we have introduced
to be common across all themes used in the site. Moreover, we are using the plain preprocess
function rather than a template-specific option for reasons of optimization. Of particular
importance from an optimization point of view is the following statement:

$user = user_load($variables['uid']);

The user_load() call is a costly operation as it is not cached by Drupal. What this means
is that every time we execute it, we are effectively running a potentially large number of
database calls, which usually tends to lead to performance bottlenecks. Consequently, if
instead of using mysite_preprocess() we were using mysite_preprocess_node()
and mysite_preprocess_page(), we would have needed to run this operation twice,
creating twice the hassle. While it is a minor incentive here, we can also get away with
iterating through the roles array just once.

The key to actually exporting data from one template to another is through our use of
two static variables, $author_roles & $author_role_classes. By declaring these
variables as static, we are informing PHP that the value of this variable is to be retained
even after we exit the function. As a result, the next time the same function is called, this
variable continues to hold data from the previous call thereby allowing us to seamlessly move
information between calls. In this case, the preprocess function is called for each $hook,
which can be page, html, block, node, and so on.

In our function, we have made use of the preprocess function to store information related to
the roles assigned to the author (as opposed to the user viewing the page). We process this
information just the once in the page hook and elect to store it in the two aforementioned
static variables. Subsequently, when the function is again triggered for the HTML and node
hooks respectively, we access these variables to accomplish our tasks, namely adding
appropriate classes to the BODY tag of the page and modifying the submission information to
include information about the author's roles.

More information related to static variables is available at
http://php.net/manual/en/language.variables.scope.php.

See also
Similar to this recipe, Module-based variable manipulation, lists the steps required in adding
taxonomy terms as CSS classes in a template.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Templating

164

Displaying the date field in calendar form
This recipe will use a number of techniques to transform a standard text-based date field into
an eye-catching calendar form.

Getting ready
We will be using the myzen theme created earlier in this book as the example theme in this
recipe. It is also assumed that a node.tpl.php file exists in myzen's templates folder.

How to do it...
We are going to break down this operation into three stages. The first is the preprocess stage
where we break the node's timestamp down into the required component parts and introduce
them as variables in a preprocess function:

1. Navigate to the myzen theme folder at sites/all/themes/myzen.

2. Open the file template.php in an editor.

3. Locate the myzen_preprocess_node() function, or if unavailable, create one.

4. Add the following code into the aforementioned preprocess function so that it
effectively looks like the following:
function myzen_preprocess_node(&$variables) {
 $variables['calendar_month'] = format_date($variables['node']
->created, 'custom', 'M');
 $variables['calendar_day'] = format_date($variables['node']
->created, 'custom', 'j');
 $variables['calendar_year'] = format_date($variables['node']
->created, 'custom', 'Y');
}

5. Save the file and exit the editor.

The second stage is the template stage where we make use of the newly added variables
and wrap them in appropriate markup. This readies them for the third stage where we will be
styling these fields:

6. Navigate to the templates folder.

7. Locate the node.tpl.php file within and open it in an editor.

8. Add the following markup that is highlighted to display the new calendar fields leaving
the template looking something like in the following excerpt:
<div id="node-<?php print $node->nid; ?>" class="<?php print
$classes; ?> clearfix">

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

165

 <div class="calendar">
 <?php print $calendar_month;?>
 <?php print $calendar_day;?>
 <?php print $calendar_year;?>
 </div>

9. If there are any pre-existing fields in this template that display the timestamp,
remove them.

10. Save the file and exit the editor.

If we clear the theme registry and preview a node page, we should see something like in the
following screenshot:

The final stage is the styling stage where we will be dressing up the markup to resemble a
calendar page:

11. Navigate to the myzen css folder.

12. Open the file nodes.css and insert the following rules:
.node .calendar {
 float: left;
 margin: 2.5em 1em 1em 0;
 color: #FFF;
 font-variant: small-caps;
}
.node .calendar span {
 display: block;
 padding: 0 4px;
 text-align: center;
 background-color: #3399CC;
}
.node .calendar .day {
 background-color: #EEE;
 color: #000;
 font-weight: bold;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Templating

166

13. Save the file and exit the editor.

14. Clear the theme registry.

15. Visit a node page to confirm that our modifications have taken effect.

How it works...
The key to this recipe is the myzen_preprocess_node() function where we break down
the node's created timestamp into its three relevant parts, namely month, day, and year.
We do this using Drupal's format_date() function, which is a rather complicated wrapper
around PHP's date functions. More information on format_date() and the PHP date()
functions can be found at http://api.drupal.org/api/function/format_date/7
and http://php.net/manual/en/function.date.php respectively.

Once broken down, we export each date field as a variable to the node template. In the node
template, we use these variables to populate our markup for the calendar field:

<div class="calendar">
 <?php print $calendar_month;?>
 <?php print $calendar_day;?>
 <?php print $calendar_year;?>
</div>

We then proceed to style our creation using the nodes.css file where the reasons for our
markup should be readily apparent. The three SPANs are displayed as block elements to
ensure that they are stacked vertically and the DIV container is floated to the left to ensure
that the content on the right—the node body—flows in parallel, thereby giving us the look
demonstrated in the following screenshot:

See also
An earlier recipe in this chapter, Displaying the last updated date instead of the submitted
date, describes how we can manipulate variables to modify the date associated with a node.

www.it-ebooks.info

http://www.it-ebooks.info/

7
JavaScript in Themes

We will be covering the following recipes in this chapter:

 f Including JavaScript files from a theme

 f Including a JavaScript file only for certain pages

 f Giving the username textfield keyboard focus

 f Exporting a variable from PHP to JavaScript

 f Adding default text to the search textfield

 f Displaying comments in compact form

 f Minimizing and maximizing blocks using JavaScript

Introduction
Until a few years ago, mentioning the word JavaScript to a themer would usually result in
groans about inconsistencies in browser support, lack of standards, difficulty in debugging,
and a myriad of other complaints. Thankfully, however, things have changed considerably
since then. Browsers have evolved and standards have improved. JavaScript is now a potent
weapon in any themer's armory and this is especially true with the introduction of cross-
browser libraries and frameworks which address most of the aforementioned issues with it.

JavaScript libraries take out the majority of the hassle involved in writing code which will
be executed in a variety of browsers each with its own vagaries and peculiarities. Drupal,
by default, uses jQuery, a lightweight, robust and well-supported package which, since its
introduction, has become one of the most popular libraries in use today. While it is possible to
wax eloquent about its features and ease of use, its most appealing factor is that it is a whole
lot of fun!

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript in Themes

168

jQuery's efficiency and flexibility lies in its use of CSS selectors to target page elements and its
use of chaining to link and perform commands in sequence. As an example, let us consider
the following block of HTML which holds the items of a typical navigation menu:

<div class="menu">
 <ul class="menu-list">
 Item 1
 Item 2
 Item 3
 Item 4
 Item 5
 Item 6

</div>

Now, let us consider the situation where we want to add the class active to the first
menu item in this list and while we are at it, let us also color this element red. Using arcane
JavaScript, we would have accomplished this using something similar to the following code:

var elements = document.getElementsByTagName("ul");
for (var i = 0; i < elements.length; i++) {
 if (elements[i].className === "menu-list") {
 elements[i].childNodes[0].style.color = '#F00';
 if (!elements[i].childNodes[0].className) {
 elements[i].childNodes[0].className = 'active';
 }
 else {
 elements[i].childNodes[0].className =
 elements[i].childNodes[0].className + ' active';
 }
 }
}

Now, we would accomplish the same task using jQuery as follows:

$("ul.menu-list li:first-child").css('color',
 '#F00').addClass('active');

This jQuery statement can be effectively read as: Retrieve all UL tags classed menu list and
having LI tags as children, take the first of these LI tags, style it with some CSS that sets its
color to #F00 (red), and then add a class named active to this element.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

169

For better legibility, we can format our query with each chained command on a separate line:

$("ul.menu-list li:first-child")
 .css('color', '#F00')
 .addClass('active');

We are just scratching the surface here. More information and documentation on jQuery's
features are available at http://jquery.com and http://www.visualjquery.
com. A host of jQuery plugins which, like Drupal's modules, extend and provide additional
functionality, are available at http://plugins.jquery.com.

Another aspect of JavaScript programming that has improved in leaps and bounds is in the
field of debugging. With its rising ubiquity, developers have introduced powerful debugging
tools that are integrated into browsers and provide tools such as interactive debugging,
flow control, logging, monitoring, and so on, which have traditionally only been available to
developers of other high-level languages. Of the many candidates out there, the most popular
and feature-rich is Firebug, which we looked at in Chapter 5, Development and Debugging
Tools. It can be downloaded and installed from https://addons.mozilla.org/en-US/
firefox/addon/firebug/.

This chapter will deal with recipes that describe different ways of adding JavaScript files in
Drupal and using them to style and manipulate our content.

Including JavaScript files from a theme
This recipe will list the steps required to include a JavaScript file from within the .info file of
the theme. To ensure that the JS file is being included, we will be adding some sample code
that outputs the standard Hello World! string upon page load.

Getting ready
While the procedure is the same for all themes, we will be using the Zen-based myzen theme
in this recipe. It is assumed that this theme is the site's default theme.

How to do it...
The following steps are to be performed inside the myzen theme folder at
sites/all/themes/myzen:

1. Browse into the js subfolder where JavaScript files are conventionally stored.

2. Create a file named hello.js and open it in an editor.

3. Add the following code:
alert("Hello World!!");

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript in Themes

170

4. Save the file and exit the editor.

5. Browse back up to the myzen folder and open myzen.info in an editor.

6. Include our new script using the following syntax:
scripts[] = js/hello.js

7. Save the file and exit the editor.

8. Rebuild the theme registry and if JavaScript optimization is enabled for the site, the
cache will also need to be cleared.

9. View any page on the site to see our script taking effect.

How it works...
Once the theme registry is rebuilt and the cache cleared, Drupal adds hello.js to its list
of JavaScript files to be loaded and embeds it in the HTML page. The JavaScript is executed
before any of the content is displayed on the page and the resulting page with the alert dialog
box should look something like the following screenshot:

There's more...
While we have successfully added our JavaScript in this recipe, Drupal and jQuery provide
efficient solutions to work around this issue of the JavaScript being executed as soon as the
page is loaded.

Executing JavaScript only after the page is rendered
A solution to the problem of the alert statement being executed before the page is ready,
is to wrap our JavaScript within a function to ensure that the code within is executed only once
the page has been rendered and is ready to be acted upon. In Drupal, this is accomplished as
follows:

(function ($) {
 alert("Hello World!!");
}(jQuery));

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

171

The Drupal wrapper syntax is different from the traditional jQuery
syntax which wraps the code within a $(document).ready();
function. This discrepancy is necessary to avoid conflicts with other
JavaScript libraries that use similar syntax.

Drupal's JavaScript behaviors
While simply embedding the alert() call works well, Drupal recommends the use of
behaviors to manage our use of JavaScript. This allows for reuse as well as better control of
our code. Our Hello World! example would now look like this:

(function ($) {
 Drupal.behaviors.myzenAlert = {
 attach: function() {
 alert("Hello World!!");
 }
 };
}(jQuery));

All registered behaviors are automatically called by Drupal once the page is ready.

As with most things Drupal, it is always a good idea to namespace our
behaviors based on the module or theme name to avoid conflicts. In
this case, the behavior name has been prefixed with myzen as it is
part of the myzen theme.

See also
The next recipe, Including a JavaScript file only for certain pages, outlines how we can
similarly include JavaScript files from a module.

Including a JavaScript file only for
certain pages

This recipe will list the steps required to include a JavaScript file from a module rather than
a theme. Unlike themes, modules offer a lot more options on when and how JavaScript files
should be included. We will be taking advantage of this feature to ensure that our JavaScript
is being included only for node pages.

We will be testing this by outputting the standard Hello World! string as we saw in the
previous recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript in Themes

172

Getting ready
We will be using the mysite module created earlier in this book to hold our odds and ends. It is
assumed that this module has been created and is enabled.

How to do it...
The following steps are to be performed inside the mysite module folder at sites/all/
modules/mysite:

1. If it does not already exist, create a folder within titled js.

2. Inside this new folder, create a file named hello.js and open it in an editor.

3. Insert the following JavaScript:
(function ($) {
 Drupal.behaviors.mysiteHello = {
 attach: function() {
 alert("Hello World!!");
 }
 };
}(jQuery));

4. Save the file and exit the editor.

5. Navigate up one level back to the base folder of the mysite module.

6. Open the file mysite.module in an editor.

7. Look for an implementation of the mysite_init() hook. If it is unavailable, create
one and add the following code so that the resulting function looks like the following:
/**
 * Implements hook_init().
 */
function mysite_init() {
 // The path to the mysite module.
 $path = drupal_get_path('module', 'mysite');

 // Include file only for node pages.
 if (arg(0) == 'node') {
 drupal_add_js($path . '/js/hello.js');
 }
}

8. Save the file and exit the editor.

9. Clear the Drupal cache if necessary.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

173

10. Confirm that the script is being included correctly by viewing node pages and others
such as administration pages. The Hello World! alert should only be triggered for
the former.

How it works...
The mysite_init() function is executed for all pages. Within it, we check whether the string
'node' is the first component of the current path. If it is, we queue our JavaScript file for
inclusion. Subsequently, when a node page is viewed, our included JavaScript file is executed
resulting in the page displaying a Hello World! alert box as demonstrated by the screenshot in
the previous recipe.

The arg() function is used to return components of the current path. For
example, if we are viewing a node with node ID 13, or in other words, if we
are accessing node/13, then arg(0) will return 'node' while arg(1)
will return 13. More information on the arg() function is available at
http://api.drupal.org/api/drupal/includes--bootstrap.
inc/function/arg/7.

There's more...
Whilst targeting individual pages, it is important to ensure that we match said pages as
accurately as possible.

Checking paths with greater accuracy
In this recipe, we checked whether the user was viewing a node page by checking for
arg(0) == 'node'. While this will certainly work fine, let us consider the following
additional paths:

URL Description
node The default Drupal front page containing a list of all published nodes.
node/add A page listing all available content types that can be created.
node/add/page The creation form for a node type named page.
node/13 A standard node display page which is what we are targeting.
node/13/edit A node edit page.

As the previous table demonstrates, we need to be aware of these other permutations that
might trigger false positives and include the JavaScript file unnecessarily and in some cases
to detrimental effect. Keeping this in mind, we could refine our path-checking code to:

if (arg(0) == 'node' && is_numeric(arg(1))) {

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript in Themes

174

By ensuring that the second component of the path is a number through the use of
PHP's is_numeric() check, this would target only URLs of the form node/13 and avoid
most of the other permutations. It would however, still be triggered for paths of the form
node/13/edit. If this is unacceptable, we will need to refine our if statement further by
checking whether the third argument is present:

if (arg(0) == 'node' && is_numeric(arg(1)) && is_null(arg(2))) {

See also
The first recipe in this chapter, Including JavaScript files from a theme, covers another approach.

Giving the username textfield
keyboard focus

This recipe will detail how keyboard focus can be assigned to the username field in the login
block. This will ensure that the user does not need to use the mouse or tab through the page
to log in to the site.

Getting ready
We will be using the mysite module created earlier in this book to hold our odds and ends. It is
assumed that this module has been created and is enabled.

How to do it...
The following steps are to be performed inside the mysite module folder at sites/all/
modules/mysite:

1. Create if necessary, and navigate to the JavaScript folder at
sites/all/modules/mysite/js.

2. Create a JavaScript file named userfocus.js and open it in an editor.

3. Add or merge the following JavaScript to the file:
(function ($) {
 Drupal.behaviors.mysiteUserFocus = {
 attach: function() {
 // console.log($('input#edit-name'));

 $('input#edit-name').focus();

 }
 };
}(jQuery));

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

175

The line of jQuery functionally relevant to this recipe has been highlighted. The ID of
the username textfield, edit-name, was located using Firebug.

Use Firebug's console.log() function, as commented out in the
preceding code block, to verify that we are targeting the correct element.

4. Save the file and exit the editor.

5. Open the file mysite.module in an editor.

6. Look for an implementation of hook_init() or if unavailable, create one.

7. Add the code to include our JavaScript file so that the mysite_init() function
resembles something like the following:
/**
 * Implements hook_init().
 */
function mysite_init() {
 global $user;

 // The path to the mysite module.
 $path = drupal_get_path('module', 'mysite');

 // Only include the JS file for anonymous users.
 if ($user->uid == 0) {
 drupal_add_js($path . '/js/userfocus.js');
 }
}

8. Save the file and exit the editor.

9. Empty the Drupal cache if necessary.

10. Preview a page as an anonymous user to check whether the username textfield is
assigned keyboard focus.

11. View the HTML source first as an anonymous user and then as an authenticated user
to ensure that the JavaScript file is only being included for the former.

How it works...
As we are targeting the login form, it can also be assumed that we are also only targeting
anonymous users, that is, those who are yet to log in. In other words, if the user ID of the
current user is 0, we can include our JavaScript file:

 if ($user->uid == 0) {
 drupal_add_js($path . '/js/userfocus.js');
 }

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript in Themes

176

userfocus.js uses jQuery to locate the element with ID edit-name and applies the
JavaScript function focus() to it, thereby giving the textfield keyboard focus. Viewing a page
on the site as an anonymous user should now default to the keyboard cursor blinking inside
the username textfield as shown in the following screenshot:

If we investigate things a little further, we should also be able to confirm that our keyboard
focus code also works as expected on a few other user login forms besides the one in the
default login block seen in the previous screenshot. These include the form on the user login
page at /user, the Create new account form at /user/register, and the Request new
password form at /user/password. This is due to the fact that all these forms contain a
Username field with CSS ID #edit-name.

While we have added our code to a separate file named userfocus.js
to allow selective loading solely for anonymous users, it could have been
placed in a more generic mysite.js containing other, possibly even
unrelated code. Whether this should or should not have been done is a
question of preference, flexibility, and code manageability.

There's more...
If we are not certain about which field to give keyboard focus to, it is usually safe to assign
focus to the first available textfield.

Keyboard focus on the first available textfield
This recipe can be adapted to assign keyboard focus to the first available textfield instead of
a specific textfield as in this case. This is usually handy as a default option in cases where we
are not completely aware of the structure or content of a page.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

177

See also
Just as we have done in this recipe in assigning keyboard focus to a particular field, it is also
sometimes useful to add a default string to the field in question. The recipe, Adding default
text to the search textfield, which can be found later in this chapter, addresses this situation
with respect to the search module.

Exporting a variable from PHP to JavaScript
Once we get beyond the rudimentary, we will frequently be faced with scenarios where
the JavaScript will need to adapt based on settings and user data that are stored in
the database or provided by Drupal modules. In this recipe, we will look at how the Drupal
API allows themers to seamlessly export variables from a module and make them available
to JavaScript.

Getting ready
We will be using the mysite module created earlier in this book to hold our odds and ends. It is
assumed that this module has been created and is enabled.

How to do it...
The following steps are to be performed inside the mysite module folder at sites/all/
modules/mysite.

1. Open the file mysite.module in an editor.

2. Look for an implementation of hook_init() or if unavailable, create one.

3. Add the code to include our JavaScript file so that the mysite_init() function
resembles similar to the following code:
/**
 * Implements hook_init().
 */
function mysite_init() {
 // Export a single variable.
 drupal_add_js(array('hello' => 'Hello World!'), 'setting');

 // Wrap multiple related variables inside
 // a parent variable.
 drupal_add_js(array(
 'helloarray' => array(
 'hello' => 'Hello World!',
 'goodbye' => 'Goodbye World!'
)

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript in Themes

178

), 'setting');

 // The path to the mysite module.
 $path = drupal_get_path('module', 'mysite');
 drupal_add_js($path . '/js/hello.js');
}

4. Save the file and exit the editor.

5. Navigate to the js subfolder. Create this folder if it does not exist.

6. Create a file named hello.js and open it in an editor.

7. Add the following code to the file:
(function ($) {
 Drupal.behaviors.mysiteHello = {
 attach: function() {
 // Use console.log to confirm existence
 // of variables via Firebug.
 console.log(Drupal.settings.hello);
 console.log(Drupal.settings.helloarray.hello + " and "
 + Drupal.settings.helloarray.goodbye);
 }
 };
}(jQuery));

8. Save the file and exit the editor.

9. Clear the cache if necessary.

10. View any page in Firefox and confirm that our variables are being displayed in
the Firebug console.

How it works...
If we view the HTML source of the page where our JavaScript is being included and peruse the
head block, we will see something similar to the following code:

<script type="text/javascript">
<!--//--><![CDATA[//><!--
jQuery.extend(Drupal.settings, {"basePath":"\/",
 "pathPrefix":"","ajaxPageState":
 {"theme":"myzen","theme_token":"bi86SatLQJv2qqvypURKVrS4sR-
 5piz9hLXY0V-irNw", "hello":"Hello World!",
 "helloarray":{"hello":"Hello World!","goodbye":"Goodbye World!"}});

//--><!]]>
</script>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

179

What Drupal does is store all exported variables in a special Drupal.settings object.
Therefore, with our variables all being collated in a single location, they can be retrieved
and manipulated with ease.

When the Firebug console is opened, we should see all three strings displayed, the first from
the hello variable and the next two from our nested helloarray variable. We can also inspect
the Drupal settings object via the DOM tab which should list all exported variables as shown
in the following screenshot:

Adding default text to the search textfield
This recipe will outline the steps required to add a default string of text to the search textfield.
The text will only be visible when the field does not have keyboard focus.

Getting ready
We will be using the mysite module created earlier in this book to hold our odds and ends.
It is assumed that this module has been created and is enabled. It is also assumed that the
search module has been enabled with appropriate permissions granted, and that the search
block is active for our theme and is visible on all pages. In our example, the search block has
been placed in the header region.

The jQuery plugin repository provides a number of solutions at http://plugins.jquery.
com/plugin-tags/default-text that could be used to accomplish our goal. While they
might simplify the jQuery required and perhaps offer a few more options, we will be making do
without them for this recipe.

How to do it...
The following steps are to be performed inside the mysite module folder at sites/all/
modules/mysite:

1. Browse into the js folder which should contain all our JavaScript files. If this folder
does not exist, create it.

2. Create a JavaScript file named search.js.

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript in Themes

180

3. Add the following JavaScript to this file:
(function ($) {
 Drupal.behaviors.mysiteSearch = {
 attach: function() {
 // Hide the search submit button.
 $('#block-search-form .form-submit').hide();

 // Apply the default text to the search block's text
 // field.
 $('#block-search-form .form-type-textfield .form-text')
 // Widen textfield.
 .attr('size', 30)
 // Add default text options on blur.
 .blur(function () {
 $(this).attr('value', Drupal.t
 ('Enter search query ...'))
 .click(function () {
 $(this).attr('value', '');
 $(this).unbind('click');
 });
 })
 // Trigger the blur event to set things up.
 .blur();
 }
 };
}(jQuery));

In the previous jQuery, we have taken advantage of its chaining feature
to efficiently string a series of operations together. To elaborate, we have
located the search form's textfield, widened it, and then implemented
the default text feature all in what is effectively a single statement.

4. Save the file and exit the editor.

5. Navigate up a step back into the mysite module folder.

6. Open the file mysite.module in an editor.

7. Look for an implementation of hook_init() or if unavailable, create one.

8. Add the code to insert our custom settings and include our JavaScript files so that
the mysite_init() function resembles similar to the following:
/**
 * Implements hook_init().
 */
function mysite_init() {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

181

 global $user;

 // The path to the mysite module.
 $path = drupal_get_path('module', 'mysite');

 // Add our custom JavaScript file.
 drupal_add_js($path . '/js/search.js');
}

9. Save the file and exit the editor.

10. Rebuild the theme registry and clear the cache if necessary.

11. View any page containing the search block to see whether our jQuery is having
an effect.

12. Ensure that the default search text disappears when the textfield has focus and
reappears when it does not.

13. Turning off JavaScript in the browser should confirm that the original implementation
still works fine without it.

How it works...
The following is a screenshot of the search box at the top of a page rendered using the
myzen theme:

When the search.js file is active, the resulting search box should look like the one in the
following screenshot:

As this functionality is useful regardless of which theme is being used, we add our JavaScript
through the mysite module instead of the myzen theme.

Seeing how we are targeting the search block's textfield and button, we need to know
how they can be accessed. This is accomplished using Firebug's element selector which,
in this case, should indicate that both these elements reside within a DIV with ID
block-search-form. Furthermore, within this DIV, we can target the Search button
using its class name which is form-submit. Similarly the search textfield has a class
named form-type-textfield which we can use to target it in our search.js file.

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript in Themes

182

In terms of required functionality, when the search box is clicked, the default search text
should disappear and when the focus moves back elsewhere on the page, the text should
reappear. We accomplish this in jQuery using a combination of the JavaScript blur() event
and the click() event. blur() is triggered when an element loses focus and can therefore
be used to reset the default text string. The click() event as the name suggests, is triggered
when an element, in this case the textfield, is clicked to attain focus.

Using the preceding information, we can target the search box and add our default text
functionality to it.

See also
An earlier recipe in this chapter titled Giving the username textfield keyboard focus, discusses
how to assign keyboard focus to a particular field on a page. We could quite easily extend this
to target a particular search textfield.

Displaying comments in compact form
Drupal provides options to display comments in a variety of fashions. In this recipe, we will
look to provide an alternate representation by compacting the display of a node's list of
comments using jQuery.

Getting ready
We will be using the myzen theme created earlier in this book as the example theme in this
recipe. As we are looking to theme the display of comments, it is assumed that the comment
module is enabled and that sample comments are available for testing purposes.

How to do it...
The following steps are to be performed inside the myzen theme folder at sites/all/
themes/myzen:

1. Browse into the js subfolder.

2. Create a JavaScript file named comment.js and open it in an editor.

3. Add the following JavaScript to this file:
(function ($) {
 Drupal.behaviors.myzenComments = {
 attach: function() {
 // Target comment headings.
 $('#comments h3.comment-title')
 .click(function(e) {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

183

 e.preventDefault();
 // Display all siblings in animated fashion.
 $(this).siblings().show('fast');
 })
 .siblings()
 .hide();
 }
 };
}(jQuery));

4. Save the file and exit the editor.

5. Navigate up a level back into the base myzen theme folder.

6. Open myzen.info in an editor.

7. Include our new JavaScript file by adding the following line to the scripts section:
scripts[] = js/comment.js

8. Save the file and exit the editor.

9. Rebuild the theme registry and clear the cache.

10. Visit any node with a number of comments to confirm that our JavaScript is
working well.

How it works...
This recipe, while it accomplishes much, is implemented using a few lines of jQuery. However,
it is important to perform some groundwork prior to jumping into the JavaScript to understand
how we arrived at our solution. We need to first look at how the HTML for the comments
section is structured:

<div id="comments" class="comment-wrapper">
 <h2 class="title">Comments</h2>

 <div class="comment comment-by-node-author comment-by-anonymous
 first odd clearfix">
 <h3 class="comment-title"><a href="/comment/663#comment-663"
 class="permalink" rel="bookmark">
 Cui Incassum Persto Uxor</h3>
 <div class="submitted"><!-- Snipped Submission info --></div>

 <div class="content"><!-- Snipped content --></div>

 </div> <!-- /.comment -->
 <!-- Other comments -->
</div>

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript in Themes

184

Analyzing the markup, we can conclude that we want to just display all the H3 tags within the
DIV tag with ID comments and hide() all of their highlighted sibling() tags. Doing so will
result in a list of minimized comment titles as evident from the following screenshot:

Additionally, when an h3 tag is clicked, we want to display, or in jQuery lingo, show() all of its
siblings(). The following screenshot demonstrates a clicked comment:

Looking at our jQuery, we can confirm that this is exactly what we have done. We have
also used the animation feature of the jQuery show() function to spice up the display
of the comment.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

185

Minimizing and maximizing blocks
using JavaScript

In this recipe, we will be looking at using JavaScript to add a clickable button to each block
allowing them to be minimized or maximized upon clicking.

Getting ready
We will be using the myzen theme created earlier in this book as the example theme in this
recipe. We will also be using a couple of icon images to indicate the minimized and maximized
state of each block. These images are to be placed inside the images folder of the theme and
named open.png and close.png respectively.

How to do it...
The following steps are to be performed inside the myzen theme folder at sites/all/
themes/myzen:

1. Browse into the js subfolder where JavaScript files are conventionally stored.

2. Create a file named block.js and open it in an editor.

3. Add the following JavaScript to the file:
(function ($) {
 Drupal.behaviors.myzenBlockDisplay = {
 attach: function() {
 // We are targeting all blocks inside sidebars.
 var s = $('div.sidebar').addClass('js-sidebar');

 $('.block h2.block-title', s)
 .click(function () {
 $(this).siblings().toggle('slow');
 $(this).parent().toggleClass('block-open');
 })
 .siblings()
 .hide();
 }
 };
}(jQuery));

4. Save the file and exit the editor.

5. Browse back up to the myzen folder and open myzen.info in an editor.

6. Include our new script using the following:
scripts[] = js/block.js

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript in Themes

186

7. Save the file and exit the editor.

8. Navigate up a level and into the css folder of the myzen theme. Open the file
blocks.css in an editor.

9. Scroll down to the bottom and add the following rules to the file:
.js-sidebar .block h2 {
 background: url(../images/open.png) no-repeat left center;
 padding-left: 1.1em;
}

.js-sidebar .block-open h2 {
 background: url(../images/close.png) no-repeat left center;
 padding-left: 1.1em;
}

10. Save the file and exit the editor.

11. Rebuild the theme registry and clear the cache if necessary.

12. View a page with blocks to see our changes taking effect.

How it works...
As with other recipes in this chapter, we organize our jQuery based on the markup that we are
looking to manipulate. In this case, we first identify the sidebar containing the blocks that we
are targeting. We give this sidebar a unique class name of js-sidebar thus making it easy
for us to target blocks within CSS.

Next, we retrieve all the block titles and retain them while hiding all their siblings or in other
words, the content of each block. This should result in blocks being minimized by default like
the ones in the following screenshot:

$('.block h2.block-title', s)
 .click(function () {
 $(this).siblings().toggle('slow');

 $(this).parent().toggleClass('block-open');

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

187

 })
 .siblings()
 .hide();

Next, we want to assign a click handler to these block titles. When clicked, we execute the
two highlighted functions, use toggle() to hide or show the block content elements as
necessary and add or remove the block-open class to the list of classes for each block
using toggleClass(). The presence of this class is used to swap the icon denoting the
open or closed status of the block. When clicked, the block should look similar to the one in
the following screenshot:

There's more...
We can extend our script by optionally setting the default status of particular blocks.

Minimizing or maximizing particular blocks by default
Instead of minimizing all blocks, we can also target particular blocks to be minimized or
maximized by default. For example, if we wanted the Development block to be maximized by
default, we could add the following code below our existing jQuery:

$('#block-menu-devel', s)
 .toggleClass('block-open')
 .children('h2.block-title')
 .siblings()
 .show();

As the Development block has the ID block-menu-devel, we can target it in particular and
reverse all the changes made previously.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

8
Navigation

We will be covering the following recipes in this chapter:

 f Adding a menu to our theme

 f Adding content pages to the menu

 f Styling the Main menu

 f Contextual submenus using the Menu module

 f Adding a drop-down navigation menu

 f Customizing breadcrumbs in Zen-based themes

 f Hiding node links using CSS

 f Styling all external links in a page

 f Styling the Drupal pager

Introduction
Drupal relies on a core menu component which provides a framework allowing modules to
create and customize navigational elements. These can subsequently be exposed via the
theme by way of menus embedded either directly within the theme or as content within
blocks. Furthermore, this framework forms the basis for the breadcrumb navigation which is
an integral facet of every site's user interface.

Besides menu items exposed by modules, Drupal also provides an optional Menu module
which allows the customization of the aforementioned items as well as the creation and
management of new user-defined menus and their constituent menu items. Customized
menu items are not solely restricted to the domain of the site and can also be linked to
external URLs if necessary.

www.it-ebooks.info

http://www.it-ebooks.info/

Navigation

190

As a site's complexity grows, so does its menu structure. Consequently, simple and static
menu implementations no longer suffice and other alternatives are required. One of the
solutions frequently arrived at is the introduction of DHTML menus, a set of drop down
and expandable menus which customarily rely on a combination of CSS and JavaScript
in their implementation.

In this chapter, we will be looking at the various features of the menu system and learn to
customize and alter them to suit our purposes.

Adding a menu to our theme
In this recipe, we will look at using the Menu module to add a menu to a theme which will
allow the user to navigate through the site. While we can add as many menus as we need,
Drupal and most Drupal themes, by default, support two generic menus named Main links
and Secondary links.

Getting ready
The Menu module that comes with Drupal will need to be enabled to add our menu and menu
items. We will be adding a link to a local node with URL alias about-us to link to a typical
About us page on the site. It is assumed that such a node has been created.

How to do it...
Let us first add a custom item to the menu:

1. Navigate to admin/structure/menu (Home | Administration | Structure |
Menus) and look for a menu titled Main menu.

2. Click on its associated add link option.

3. Add a menu item: for example, a link to an external site with Menu link title set to
Drupal and Path to http://drupal.org as in the next screenshot.

4. The Description field can optionally be filled and appears when the user hovers over
the link as its title attribute.

5. The Weight field dictates the order of the item relative to others in the same menu.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

191

6. Ensure that the Parent link is set to <Main menu> and click on the Save button to
create the menu item:

Moving menu items between different menus
The Parent link drop down seen in the previous screenshot controls where
this menu item is displayed. If, say we wanted to move this link to the User
menu instead, then all we would need to do is edit this menu item and set
its Parent link to <User menu>.

7. Navigate back to the menu management page.

8. Click on the add link option for the Main menu.

9. Now, rather than adding a link to an external site, let us add a link to a local node
titled About us with URL alias about-us.

www.it-ebooks.info

http://www.it-ebooks.info/

Navigation

192

The URL in the Path field will need to be valid if pointing to local content. In
other words, if there is no page with the URL alias about-us in this recipe,
then Drupal will throw an error at us when we try to save our changes.

10. Click on Save to create our local link.

We should now be able to see our two new links at the top of the page.

How it works...
Once the menu items have been added, the menu management page should look something
as shown in the following screenshot of the site rendered using the Bartik core theme:

The crosshairs before each item on the menu management page can be used to drag
the item and reorder the menu. In other words, instead of playing around with the weight
field on each menu item's edit page, we can save time and energy through simple
drag-and-drop operations.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

193

There's more...
While the Main and Secondary menus are customarily added to the page via the page.tpl.
php template file of the theme, it is also possible to insert the menu as a block.

Using the Main menu block
Whenever a menu is created in Drupal, it is automatically also made available as a block. As
a result, instead of embedding the Main menu as part of page.tpl.php, we could have
just as easily added this block into a header region of the page. The downside however, is
that making changes to the markup and styling might be a little more involved once the menu
begins to get complicated.

See also
In the next recipe, Adding content pages to the menu, we will see how we can add items to the
menu directly from the node form.

Adding content pages to the menu
In this recipe, we will be looking at an alternative means of adding an item to a menu directly
from the node. This can be done either during creation or later, via the node's edit form.

Getting ready
The Menu module needs to be enabled for this recipe in order to be able to add a menu item
via the node form. We will also be working with a sample node named Products which will
need to be created. We will be expanding this menu in later recipes of this chapter.

How to do it...
The following steps detail the procedure required to link to a Products overview page from
the Main menu:

1. Browse to the Products overview node and click on its Edit tab.

2. Scroll down to the Menu settings fieldset and click on it.

www.it-ebooks.info

http://www.it-ebooks.info/

Navigation

194

3. Check the Provide a menu link option which should reveal further fields laid out
similar to the Add item form in the menu administration pages as shown in the
following screenshot:

4. Add the title of the menu item in the Menu link title textfield which, in this
case, would be something such as Products. This does not need to be the same
as the node title.

5. Select <Main menu> as the Parent item as we want this link to be displayed in
the site menu.

6. The Weight field dictates the position of the menu item with respect to its neighbors
and should be selected appropriately.

7. Click on the Save button to save the node.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

195

How it works...
When the node is saved, we should be able to see a new menu item titled Products in the site
menu as displayed in the following screenshot:

As in evident from the screenshot, we have used the weight attribute to ensure that the
Products item is displayed before the Drupal link we added in the previous recipe.

There's more...
Drupal's menu system does an excellent job when it comes to controlling access to menus
and menu items.

Access control and menu visibility
Menu items that cannot be accessed by the user will not be displayed. For example, if the
Products node is set to be visible solely to authorized users, then only users who have access
to the node will be able to view its links menu item as well.

See also
In the next recipe, Styling the Main menu, and in a later recipe titled Adding a drop-down
navigation menu, we will learn how to theme our menus in different ways.

Styling the Main menu
Now that we have a menu at our disposal, let us look at styling it. In this recipe, we will look at
how to go about theming the menu via CSS when using the myzen theme.

Getting ready
We will be using the myzen theme created earlier in this book as the example theme in this
recipe. The menu items used are those created in the previous recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

Navigation

196

How to do it...
By inspecting the markup of the page, we should be able to verify that the Main menu in the
myzen theme is contained within a DIV with ID as navigation. It is important to use tools
such as Firebug to familiarize ourselves with the structure of this element and its contents in
order to theme it efficiently. The markup in our example theme looks something as shown in
the following:

<div id="navigation">
 <div class="section clearfix">
 <h2 class="element-invisible">Main menu</h2>
 <ul class="links inline clearfix" id="main-menu">
 <li class="menu-317 first">About
 us
 <li class="menu-318 active-trail active"><a class="active-trail
 active" title="Peruse through our product list."
 href="/node/174">Products
 <li class="menu-316 last"><a title="Visit Drupal's home page."
 href="http://drupal.org">Drupal

 </div>
</div>

The structure of the menu can also be confirmed and, if necessary, modified via the myzen
theme's page.tpl.php template file.

Let us start off by giving the navigation block—with its id attribute also named
navigation—a little color. Rules that affect the backgrounds of page elements are, by
default, contained within the file page-backgrounds.css:

1. Browse to the myzen theme's css folder at sites/all/themes/myzen/css.

2. Locate the page-backgrounds.css file and open it in an editor.

3. Add the following rule to the bottom of the file:

#navigation {
 background: #F0B900;
}

4. Save the file and exit the editor.

5. Empty the cache if necessary and preview a page to ascertain whether our changes
have taken effect.

Now that we have styled the background, let us style the links. Rules particular to the
navigation area are placed in a file named navigation.css:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

197

6. Locate the navigation.css file in the myzen theme's css folder and open it
in an editor.

7. Style navigation links by adding the following rules to the bottom of this file:

/*
 * Style navigation links.
 */
#navigation a {
 text-decoration: none;
}

#navigation a:link {
 color: #C93A03;
}

#navigation a:visited {
 color: #3D1101;
}

#navigation a.active {
 text-decoration: underline;
}

8. Save the file and exit the editor.

9. Again, empty the cache if necessary and preview a page to ascertain whether our
changes have taken effect.

How it works...
The markup used for these menu items is declared via the theme's page.tpl.php template
file. For example, looking at the file for Zen-based themes such as myzen, the following block
is how we inject our menu into the page:

<?php if ($page['navigation'] || $main_menu): ?>
 <div id="navigation">
 <div class="section clearfix">
 <?php print theme('links__system_main_menu', array(
 'links' => $main_menu,
 'attributes' => array(
 'id' => 'main-menu',
 'class' => array('links', 'inline', 'clearfix'),
),
 'heading' => array(
 'text' => t('Main menu'),
 'level' => 'h2',
 'class' => array('element-invisible'),

www.it-ebooks.info

http://www.it-ebooks.info/

Navigation

198

),
)); ?>
 <?php print render($page['navigation']); ?>
 </div>
 </div><!-- /.section, /#navigation -->

As is evident from the code, adding, modifying, or removing CSS IDs and classes
from a menu becomes as simple as amending the attributes array appropriately.
However, if we want to get even more adventurous and actually change the underlying
structure of the menu, then we will need to roll up our sleeves and override the
links__system_main_menu() theme function.

In this case, as we are using the default markup, we have gone right ahead to styling it via the
page-backgrounds.css and navigation.css files. Once the cache has been cleared,
the end result should look something as shown in the following screenshot:

Similarly, other CSS rules to tweak the padding and margins of the navigation block can
also be added.

Zen-based themes, by default, take advantage of Drupal's CSS
aggregation feature by splitting up the different sections of monolithic
CSS files and placing them into separate, logically distinct files. It
should however be understood that the breakup is more of a guide
than anything else and does not need to be adhered to religiously. If
necessary, the files can be reorganized to suit our own purposes.

There's more...
While the Main menu links are usually placed in the upper half of the page, Secondary links
tend to be a little more variable.

The Secondary links menu
Drupal also provides a Secondary links menu which, by default, sources its links from the
User menu and contains links to the user's profile page as well as an option to log out from
the site. If necessary, the source for these links as well as for the Main menu links can be
altered via the menu module's settings page at admin/structure/menu/settings
(Home | Administration | Structure | Menus).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

199

See also
We will learn how to create submenus in the next recipe, Contextual submenus using the
Menu module. Later on, we will learn how to configure our menu as a drop-down menu in the
recipe titled Adding a drop-down navigation menu.

Contextual submenus using the
Menu module

The Drupal menu system allows us to add nested menus. In this recipe, we will utilize this
feature in adding a simple submenu to the existing menu which is displayed only when the
parent menu is clicked.

Getting ready
The Menu module needs to be enabled and we will be reusing the menu structure from the
previous recipes in this chapter. Specifically, we will be populating the Products menu created
earlier by adding a few sample products to it. Creating a few sample nodes to which we can
link these menu items is also recommended.

We will also be using the myzen theme created earlier in this book as the example theme
in this recipe.

How to do it...
Let us first add a set of custom items to the menu as children of an existing item:

1. Navigate to admin/structure/menu (Home | Administration |
Structure | Menus).

2. Click on the add link option associated with the Main menu.

3. Add a menu item named Foo and link it to a node on the site such as node/123.

4. Select an existing menu item—Products—as the Parent item.

5. Click the Save button to save the changes.

6. Repeat this process to create two other items titled Bar and Baz.

Now that we have our nested menu, we need to inform Drupal that we want to use these
newly created child items as the submenus of the parent items. This can be done as follows:

7. Navigate to the menu administration page at admin/structure/menu (Home |
Administration | Structure | Menus) and click on the Settings tab.

www.it-ebooks.info

http://www.it-ebooks.info/

Navigation

200

8. In the ensuing page which should resemble the following screenshot, set the Source
for the Main links and Source for the Secondary links to Main menu as we want
Drupal to load its Secondary links from the Main links submenu:

9. Click on Save configuration to save the changes.

10. Now, browse to the myzen theme folder at sites/all/themes/myzen and then
into its templates folder.

11. Open the page.tpl.php template file in an editor. If this file is missing, it will need
to be imported from the Zen theme.

12. First look for a section towards the top of the page that deals with the display of the
secondary menu.

13. Cut the entire PHP section—which should consist of a call to theme('links__
system_secondary_menu')—to the clipboard.

14. Further below, look for the navigation block which should also contain the code
dealing with the display of main menu links.

15. Paste the code for the secondary menu immediately below a similar call for the main
menu links.

16. Next, insert a delimiter between the two menus using the following tag:

›

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

201

17. Our block of code should look similar to the following excerpt where the modified
lines have been highlighted:
<?php if ($page['navigation'] || $main_menu): ?>
 <div id="navigation"><div class="section clearfix">
 <?php print theme('links__system_main_menu', array(
 'links' => $main_menu,
 'attributes' => array(
 'id' => 'main-menu',
 'class' => array('links', 'inline', 'clearfix'),
),
 'heading' => array(
 'text' => t('Main menu'),
 'level' => 'h2',
 'class' => array('element-invisible'),
),
)); ?>

 ›

 <?php print theme('links__system_secondary_menu', array(

 'links' => $secondary_menu,

 'attributes' => array(

 'id' => 'secondary-menu',

 'class' => array('links', 'inline', 'clearfix'),

),

 'heading' => array(

 'text' => $secondary_menu_heading,

 'level' => 'h2',

 'class' => array('element-invisible'),

),

)); ?>

 <?php print render($page['navigation']); ?>

 </div></div><!-- /.section, /#navigation -->
<?php endif; ?>

18. Save the file and exit the editor.

19. Finally, switch over to the myzen theme's css folder.

www.it-ebooks.info

http://www.it-ebooks.info/

Navigation

202

20. Open navigation.css in an editor and add the following CSS rules to the bottom
of the file:
#navigation ul {
 float: left;
}

#navigation #secondary-prefix {
 float: left;
 padding-right: 10px;
}

21. Save the file and exit the editor.

22. If necessary, empty the cache to ensure that our changes are being registered.

How it works...
Drupal, by default, provides two menus named Main links and Secondary links. By setting
the source of the secondary menu to the same one as for the main menu, we are effectively
instructing Drupal that we are looking to display contextual submenus based on the currently
displayed item:

In the previous screenshot, we can see our three items from the Main links menu being
displayed. As seen in the following screenshot, when the Products menu item is clicked, the
secondary menu will now automatically display its submenus, namely the three products:
Bar, Baz, and Foo:

While in this recipe we added the submenu right next to the parent, it could just as easily have
been displayed below it or in a separate block of its own.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

203

See also
 f While contextual submenus are handy, they are frequently ruled out in favor of the

more dynamic drop-down menus which we will see in the next recipe, Adding a
drop-down navigation menu

 f As we needed to add some sample content to our site in this recipe, it might be
worthwhile browsing through the Generating test content using the Devel generate
module recipe in Chapter 5, Development and Debugging Tools

Adding a drop-down navigation menu
The more complex the site, the more complex becomes the menu structure. Once we are
dealing with nested menus, the inevitable solution from an interface perspective is to use
drop-down menus. In this recipe, we will be looking at implementing a drop-down menu, or to
be more precise, a drop-right menu using the Nice Menus module.

Getting ready
The Nice Menus module can be downloaded at http://drupal.org/project/
nice_menus. It is assumed that it has been installed and is enabled. We will be using
it to add a drop-right menu to the myzen theme created earlier in this book.

While the instructions in this recipe pertain to version 7.x-2.0—beta3
of the Nice Menus module, it should still be applicable for other
releases in the 2.0 cycle and possibly future versions as well.

How to do it...
The Nice Menus module works primarily through the use of specially created blocks which
render menu trees as drop-down menus. By default, it dynamically exposes two blocks ready
to be configured. We can see the module in action by using one of the blocks to display the
Navigation menu as a drop-right menu as per the following steps:

1. Navigate to the block management page at admin/structure/block
(Home | Administration | Structure | Blocks).

2. Scroll down to find the two Nice Menu blocks which should be disabled by default.

www.it-ebooks.info

http://www.it-ebooks.info/

Navigation

204

3. Click on the configure link next to the first block. The ensuing page should look
something as shown in the following:

4. Add Management menu as the Menu Name. This is used purely to differentiate one
menu from the other.

5. Select the Management menu as the Menu Parent.

6. Finally, select right in the Menu Style field as we will be positioning this menu in the
left sidebar.

7. Click on Save block to save our changes.

8. Back on the block administration page, move the block just configured to the First
sidebar region.

9. Click on Save blocks to save our changes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

205

The Nice menu block should now be visible in the left sidebar. It is however, not styled in
keeping with our theme as is evident from the following screenshot:

Styling the menu involves simply overriding the color scheme and images used by the
module. In keeping with the myzen theme's logical breakdown of CSS files, we can do this in
navigation.css as follows:

10. Browse to the myzen theme's css folder.

11. Look for the file named navigation.css and open it in an editor.

12. Scroll down to the bottom and insert the following rules:

/**
 * Override default Nice Menu styles. We are only
 * targeting one particular block which contains a nice menu
 * with direction set to "right".
 */
#block-nice-menus-1 ul.nice-menu {
 margin-left: 0.6em;
 padding-left: 0;
}

#block-nice-menus-1 ul.nice-menu ul li,
#block-nice-menus-1 ul.nice-menu-right,
#block-nice-menus-1 ul.nice-menu-right li,
#block-nice-menus-1 ul.nice-menu-right ul ul {
 width: 13.5em;
}

#block-nice-menus-1 ul.nice-menu li,
#block-nice-menus-1 ul.nice-menu-right li.menuparent,
#block-nice-menus-1 ul.nice-menu-right li li.menuparent {
 background-color: #80AA00;
}

#block-nice-menus-1 ul.nice-menu-right li.menuparent:hover,
#block-nice-menus-1 ul.nice-menu-right li.over {
 background-color: #F0B900;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Navigation

206

Finding out the CSS ID of the block and what to override, testing and
debugging was accomplished using a combination of Firebug and Web
Developer plugins in Firefox.

13. Save the file and exit the editor.

14. Empty the cache if necessary and refresh the browser to see whether our changes
have taken effect.

The end result should look something like in the multi-hued screenshot below. The original
Management block has been left intact to serve as a comparison:

Note that we have used CSS selectors to style links in their various states such as active
and hover.

How it works...
Nice menus uses a combination of JavaScript and CSS to implement the DHTML menu.
While earlier versions utilized the Suckerfish (http://www.alistapart.com/articles/
dropdowns) method, the current version utilizes a jQuery adaptation of Suckerfish, dubbed
Superfish. JavaScript parameters as well as Nice menu block settings can be configured via
the module's configuration page at admin/config/user-interface/nice_menus
(Home | Administration | Configuration | User interface | Nice menus). Once configured,
the module exposes an appropriate number of blocks via the block management page
which can be tweaked as seen in this recipe. Each block sources a list of menu items from
its assigned menu tree and outputs them as a list within the block. Once this is done, the
embedded jQuery within the page along with CSS acts upon the list and transforms it into the
dynamic drop-down (or drop-right in our case) menu system that we see in this recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

207

There's more...
While we have configured a drop-right menu in this recipe, other variants are also available.

Horizontal menus
While this recipe dealt with a menu positioned vertically in the sidebar, Nice menus can just
as easily be positioned as a block in the header region as a horizontal menu dropping down
to display its submenus. This can be done simply by choosing down in its block configuration
page. Additionally, the CSS overrides in this recipe will need to be updated to account for this
change as well.

See also
We discussed a simpler, albeit static display of submenus in the previous recipe titled
Contextual submenus using the Menu module.

Customizing breadcrumbs in
Zen-based themes

Breadcrumbs are elements essential in the layout of a page. They allow users to identify
their current position in the site's hierarchy as well as making it easy to retrace their steps
and revisit previously visited pages. This recipe describes how breadcrumbs can easily be
customized in Zen-based themes. We will attempt to change the breadcrumb delimiter
from ›—an angled quotation— to …—ellipsis.

Getting ready
We will be using the myzen theme created earlier in this book as the example theme
in this recipe.

How to do it...
The default myzen breadcrumb uses a right-angled quotation as the delimiter. This can be
modified as follows:

1. Navigate to the theme administration page at admin/appearance
(Home | Administration | Appearance).

2. Locate the myzen theme and click on its associated Settings link.

www.it-ebooks.info

http://www.it-ebooks.info/

Navigation

208

3. Scroll down until we reach the fieldset titled Breadcrumb settings as displayed in the
following screenshot:

4. Change the value of the Breadcrumb separator textfield from › to ….

Both the › and … characters are unicode characters and are different from
the > (greater than symbol) and … (three periods). More information and a
table of similar characters can be found at http://en.wikipedia.org/
wiki/List_of_XML_and_HTML_character_entity_references.

5. Click on Save configuration to save the changes.

How it works...
The configurable breadcrumb separator field we have used in this recipe is particular to
Zen-based themes. Zen makes use of hook_form_system_theme_settings_alter()
to expose its own custom settings on the theme settings form. It subsequently incorporates
our customizations in zen_breadcrumb() which overrides Drupal's default
theme_breadcrumb():

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

209

This override in the Zen theme trickles down to our subtheme, thereby allowing us to easily
modify the breadcrumb from the previous screenshot to the following one which uses the
ellipsis as the delimiter:

See also
In Chapter 3, Custom Themes and Zen, we looked at how to modify a Zen-based theme's
settings in the Modifying myzen's theme settings recipe. It can be extended to modify or
extend the default options that Zen has made available to style breadcrumbs in our theme.

Hiding node links using CSS
While manipulating node links is best done using Drupal's hook_link_alter() function,
sometimes, adding a couple of lines of simple CSS can do the trick rather neatly as well. In
this recipe, we will look at hiding only the Read more link from a node's teaser display. To
make things a little more interesting, we will be doing this solely for authenticated users and
as a further restriction, limit it only to nodes of a particular node type, story.

Getting ready
We will be using the myzen theme created earlier in this book as the example theme in this
recipe. It is assumed that sample story nodes are available and that they are displayed as
teasers in node listings to ensure that the Read more link is displayed. Teaser configuration
for the story node type can be performed via the Teaser tab on the Field UI module's
management form accessible at admin/structure/types/manage/story/display/
teaser (Home | Administration | Structure | Content types | Story | Manage display).

How to do it...
As we are using the myzen theme, we can add our CSS rules to a file dealing with
node display:

1. Navigate to the myzen theme's css folder at sites/all/themes/myzen/css.

2. Locate the file nodes.css and open it in an editor.

www.it-ebooks.info

http://www.it-ebooks.info/

Navigation

210

3. Scroll right to the bottom and add the following rule:

.logged-in .node-story .node-readmore {
 display: none;
}

4. Save the file and exit the editor.

5. Preview a typical node listing such as the front page in a browser, to verify that the
Read more link is hidden only for story nodes and only if the user is logged in.

How it works...
As with most cases where we are manipulating or overriding CSS, the Firebug and Web
Developer plugins are invaluable in analyzing the HTML structure and CSS rules in effect.
The following screenshot outlines the task ahead with the Read more link visible for all
node types:

What is the key to this recipe is the availability of the .logged-in and .node-story
classes. The .logged-in (and similarly, .not-logged-in) class is added to the BODY tag
and denotes the authentication status of the user. The .node-story (and if viewing a page
node, the .node-page) class is added to the containing DIV of each node to specify the type
of node within.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

211

These classes are provided by Drupal's theme system and Zen's template functions
respectively, and used in the page.tpl.php and node.tpl.php template files. Once we
are aware of their existence, we can specifically target particular combinations—in this case,
the .logged-in .node-story .node-readmore class—and simply hide them from the
user's view as evidenced in the following screenshot:

It should be noted that hiding elements with CSS does not mean
that the user, search engines, and others cannot access the data
within. As a consequence, this method should not be considered
in situations where security is a concern.

See also
In the next recipe, we will look at a JavaScript solution to styling links on a page, specifically
links to external sites.

Styling all external links in a page
This recipe will describe how the External links module can be used to style URLs linking to
external sites and links which use the mailto: protocol to reference e-mail addresses.

Getting ready
The External links module can be downloaded from http://drupal.org/project/
extlink and is assumed to have been enabled.

www.it-ebooks.info

http://www.it-ebooks.info/

Navigation

212

How to do it...
The External links module works out of the box as it functions based on JavaScript. To see the
module in action, create or edit a node with the following modifications:

 f Add a link to an internal URL: for example, About us

 f Add a link to an external URL: Drupal

 f Add an e-mail link using the mailto protocol: <a href="mailto:test@example.
com">test@example.com

Once the node is saved, we should be able to see the external and mailto: link styled
something as shown in the following screenshot:

It should be noted that the node content should be associated with an
appropriate text format that allows anchor tags, thereby allowing our
links to be displayed.

How it works...
The External links module uses JavaScript to locate anchor tags and, depending on its
configuration, adds the classes ext and mailto to tags linking to external URLs and
e-mail addresses respectively. Once the classes are inserted into the markup, the module's
preloaded CSS file acts upon them and styles them by adding an appropriate icon next to
each link.

As the styling is performed using CSS, we can, if necessary, also override the default styles
with something more in keeping with our theme.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

213

There's more...
The External links module provides a configuration page to customize the way links are styled.

External links configuration settings
While the default settings are usually sufficient, the External links module comes with a
number of configurable options which can be accessed via its settings page at admin/
config/user-interface/extlink (Home | Administration | Configuration | User
interface | External links). These include icon display toggles, pattern-matching fields, UI
tweaks, and more.

It is important to keep in mind that this module is not a Drupal filter and
works using JavaScript upon the entire page. Consequently, links in the
navigation menus and elsewhere will also be affected. This can, however,
be tweaked by adding exceptions via the module's configuration page.

See also
While we looked at styling external links in this recipe, the previous Hiding node links using
CSS recipe, explains how we can use CSS to target specific links on a page in order to style
them as necessary.

Styling the Drupal pager
When displaying a large number of items on a page, it is often required that we paginate the
results in order to keep things simple and concise for the user as well as for easing the load
on the server. Drupal uses the pager API to accomplish this and the user is presented with an
interface to navigate between pages in the result-set. The pager interface typically links to the
next and previous pages, first and last pages, and often, even a range of individual pages of
the set.

In this recipe, we will be looking to theme this pager element and rework it to display an
abbreviated page tracker instead of listing individual pages by number.

Getting ready
We will be using the myzen theme created earlier in this book as the example theme in this
recipe. The Theme developer module will be used to identify the theme function to override.

www.it-ebooks.info

http://www.it-ebooks.info/

Navigation

214

How to do it...
First, we need to identify how Drupal is going about theming the pager list. The quickest way
to do so is by using the Theme developer module as follows:

1. Enable Themer info and click on one of the pager links such as the next link.
The ensuing pop up should list the theme functions and templates used in
displaying the link.

2. Note that there are three telltale theme functions which appear to be related to
the pager display, namely, theme_pager_link(), theme_pager_next(), and
theme_pager():

3. Clicking on the other pager links narrows it down further to theme_pager_link()
and theme_pager() as in the previous screenshot.

4. Clicking on the two function names should lead us to http://api.drupal.org
which should tell us that these functions reside in includes/pager.inc.

5. Furthermore, looking at the code for the two functions, it becomes readily apparent
that theme_pager() is the one to override.

6. Copy the entire theme_pager() function.

7. Browse to the myzen theme folder at sites/all/themes/myzen.

8. Locate template.php and open it in an editor.

9. Scroll down to the bottom of the file and paste the theme_pager() function
in its entirety.

10. Rename this function myzen_pager().

11. Scroll down towards the bottom of the function where we are populating the $items
array with each pager element.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

215

12. Locate the section between those that deal with the previous and the next pager
elements. This section should contain an if block that deals with the display of page
numbers in the pager and should be nestled within the comments // When there
is more than one page, create the pager list., and // End generation.

13. Delete the entire if block and replace it with the highlighted code so that the
resulting function looks as follows:
/**
 * Returns HTML for a query pager.
 *
 * Menu callbacks that display paged query results should call
 * theme('pager') to
 * retrieve a pager control so that users can view other results.
 * Format a list
 * of nearby pages with additional query results.
 *
 * @param $variables
 * An associative array containing:
 * - tags: An array of labels for the controls in the pager.
 * - element: An optional integer to distinguish between
 * multiple pagers on
 * one page.
 * - parameters: An associative array of query string parameters
 * to append to
 * the pager links.
 * - quantity: The number of pages in the list.
 *
 * @ingroup themeable
 */

function myzen_pager($variables) {
 $tags = $variables['tags'];
 $element = $variables['element'];
 $parameters = $variables['parameters'];
 $quantity = $variables['quantity'];
 global $pager_page_array, $pager_total;

 // Calculate various markers within this pager piece:
 // Middle is used to "center" pages around the current page.
 $pager_middle = ceil($quantity / 2);
 // current is the page we are currently paged to
 $pager_current = $pager_page_array[$element] + 1;
 // first is the first page listed by this pager piece (re
 // quantity)
 $pager_first = $pager_current - $pager_middle + 1;
 // last is the last page listed by this pager piece (re
 // quantity)

www.it-ebooks.info

http://www.it-ebooks.info/

Navigation

216

 $pager_last = $pager_current + $quantity - $pager_middle;
 // max is the maximum page number
 $pager_max = $pager_total[$element];
 // End of marker calculations.

 // Prepare for generation loop.
 $i = $pager_first;
 if ($pager_last > $pager_max) {
 // Adjust "center" if at end of query.
 $i = $i + ($pager_max - $pager_last);
 $pager_last = $pager_max;
 }
 if ($i <= 0) {
 // Adjust "center" if at start of query.
 $pager_last = $pager_last + (1 - $i);
 $i = 1;
 }
 // End of generation loop preparation.

 $li_first = theme('pager_first', array('text' =>
 (isset($tags[0]) ? $tags[0] : t('« first')), 'element' =>
 $element, 'parameters' => $parameters));
 $li_previous = theme('pager_previous', array('text' =>
 (isset($tags[1]) ? $tags[1] : t('‹ previous')), 'element' =>
 $element, 'interval' => 1, 'parameters' => $parameters));
 $li_next = theme('pager_next', array('text' => (isset($tags[3])
 ? $tags[3] : t('next ›')), 'element' => $element,
 'interval' => 1, 'parameters' => $parameters));
 $li_last = theme('pager_last', array('text' => (isset($tags[4])
 ? $tags[4] : t('last »')), 'element' => $element,
 'parameters' => $parameters));

 if ($pager_total[$element] > 1) {
 if ($li_first) {
 $items[] = array(
 'class' => array('pager-first'),
 'data' => $li_first,
);
 }
 if ($li_previous) {
 $items[] = array(
 'class' => array('pager-previous'),
 'data' => $li_previous,
);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

217

 // When there is more than one page, add a page tracker.

 $items[] = array(

 'class' => array('pager-tracker'),

 'data' => t('[@current/@total]', array('@current' =>
 $pager_current, '@total' => $pager_max)),

);

 if ($li_next) {
 $items[] = array(
 'class' => array('pager-next'),
 'data' => $li_next,
);
 }
 if ($li_last) {
 $items[] = array(
 'class' => array('pager-last'),
 'data' => $li_last,
);
 }
 return '<h2 class="element-invisible">' . t('Pages') . '</h2>'
 . theme('item_list', array(
 'items' => $items,
 'attributes' => array('class' => array('pager')),
));
 }
}

14. Save the file and exit the editor.

15. Empty the cache and preview our changes in the browser.

How it works...
The primary stumbling block in this recipe is in locating the right function to override. With
the use of the Theme developer, we were able to narrow things down to a few conspicuous
functions and looking further into the code of these functions, we were able to identify the
correct function as theme_pager():

www.it-ebooks.info

http://www.it-ebooks.info/

Navigation

218

Our changes should have transformed the previous default pager into the more concise
version further below. As is evident, we have replaced individual page numbers with an
abbreviated version that only tracks which page we are currently on without giving us an
option to navigate to specific pages in the result-set. However, it now does provide us with a
total page count which is often a handy statistic to have:

We achieve this by replacing the code that displays links for each individual page with the
following that only displays the page tracker:

$items[] = array(

 'class' => array('pager-tracker'),

 'data' => t('[@current/@total]', array('@current' =>
 $pager_current, '@total' => $pager_max)),

);

In the previous code, we make use of the $pager_current and $pager_max variables
calculated earlier in the function, which contain the number of the current page and the total
number of pages in the result-set respectively. We also specify the class of this new element
to be pager-tracker, thereby allowing us to specifically target this particular element if we
need to style it at a later date.

www.it-ebooks.info

http://www.it-ebooks.info/

9
Form Design

We will be covering the following recipes in this chapter:

 f Finding the form ID of a form

 f Changing the height of a textarea

 f Replacing Drupal's textareas with a WYSIWYG HTML editor

 f Reorganizing fields in a form

 f Replacing a standard submit button with an image button

 f Styling the comment form

 f Using a fieldset to group fields

 f Theming form elements from a module

 f Adding class attributes to form elements

Introduction
Forms are an integral part of just about every site and Drupal provides a powerful interface to
create and manipulate them through its Form API. The API abstracts the process of creating
and managing complex forms, and standardizes the process with implicit importance placed
upon security and reusability.

All said, however, the singular benefit of the Form API is the ability for Drupal modules and
themes to alter and customize existing forms at will. It could well be argued that this API
is Drupal's most powerful feature. The Field API, introduced into core with Drupal 7, also
incorporates the Form API and is consequently, similarly extensible.

www.it-ebooks.info

http://www.it-ebooks.info/

Form Design

220

The Form API can be a complex beast to understand in its entirety. However, from the point of
view of a themer, our focus will rest solely on the process through which forms in Drupal are
constructed and displayed. Keeping this in mind, forms are rendered by running through the
following broad steps:

 f Create elements: The Form API and contributed modules create and expose form
elements for use by modules. These elements can include basic fields such as
textfields, checkboxes, and submit buttons, or complex ones such as date fields and
slider widgets. Each declared element is, by default, rendered using its own theme
function. This can—as with most things Drupal—be overridden.

 f Create form: Modules such as the node module or one of our custom modules
can create a form by specifying and collating the aforementioned form elements
in a form array.

 f Alter form: The created form array is now available for alteration by other modules.
It is in this step that most of the heavy-lifting in terms of customization is done as it
gives modules a chance to change the structure of pre-existing forms and also specify
how they are to be themed and executed.

 f Build form: The form array is now organized by the Form API along with some
tweaking and is ready to be displayed.

 f Render form: The built form is now rendered using the specified theme functions and
returned to the Drupal engine as an HTML form.

In this chapter, we will primarily be dealing with altering existing forms to nudge and tweak
them towards our desired look and feel. However, it is highly recommended that we become
familiar with the Form API's inner workings by reading through the available documentation at
http://drupal.org/node/37775. In particular, the comprehensive Form API reference
at http://api.drupal.org/api/drupal/developer--topics--forms_api_
reference.html/7 is an invaluable resource.

Version awareness
Due to the fact that Drupal has more than one active version, keeping an
eye on version numbers when poring through documentation, downloading
themes, modules and so on, is a good idea.

Finding the form ID of a form
Drupal's Form API uses an ID field to identify each form. These IDs are usually automatically
generated based on the function declaring the form and are therefore, unique. Consequently,
they can be used to identify specific forms either while altering the form using hooks such as
hook_form_alter() or for theming purposes using JavaScript and CSS.

In this recipe, we will look at ways to identify the form ID of a form.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

221

Getting ready
We will be using the Devel module to retrieve and display the form ID, and the Search module
to simulate a situation where there is more than one form on a page. Additionally, we will be
adding our code to the mysite module created earlier in this book. It is assumed that all these
modules have been installed and are enabled.

Furthermore, the search block provided by the Search module should be enabled from the
block management page for the current theme.

How to do it...
Navigate to the mysite module folder at sites/all/modules/mysite to perform the
following steps:

1. Locate the file mysite.module and open it in an editor.

2. Scroll down to the bottom and add the following function:
/**
 * Implements hook_form_alter().
 */
function mysite_form_alter(&$form, &$form_state, $form_id) {
 // Print the form ID to the screen as a message.
 dpm($form_id);

 //Analyze the entire form array.
 //dpm($form);
}

If the Devel module is unavailable, var_dump() will work as an
adequate alternative to dpm().

3. Save the file and exit the editor.

4. Clear the Drupal cache, if necessary.

5. View a node form at say, node/add/story, and confirm that its form ID is being
displayed. When the search block is enabled, its form ID should also be visible.

www.it-ebooks.info

http://www.it-ebooks.info/

Form Design

222

How it works...
The mysite_form_alter() function is an implementation of a Drupal hook, which is
triggered for each and every form being displayed on a page. The last of the three parameters
available to this function is $form_id, which identifies the form currently being displayed. As
we potentially have at least two forms on the page—the search block form as well as the node
form being displayed—we should see the unique form ID for each of these forms as evident in
the following screenshot:

Now that we have the form ID, we can use it to target specific forms and alter
them accordingly.

There's more...
There is another method that can also be used to divine the form ID of a Drupal form.

Identifying the form ID from the HTML source
Using hook_form_alter() to retrieve a form's Form ID is usually the first of many steps
used to modify a form, it is also possible to accomplish this task by looking through the form's
HTML source. For example, the following is the source code for the search box form:

<div class="block block-search clearfix" id="block-search-form">
 <div class="content">
 <form accept-charset="UTF-8" id="search-block-form" method="post"
 action="/node/add/story">
 <div><div class="container-inline">
 <h2 class="element-invisible">Search form</h2>
 <div class="form-item form-type-textfield form-item-search-
 block-form">
 <label for="edit-search-block-form--2" class="element-
 invisible">Search </label>
 <input type="text" class="form-text" maxlength="128" size="15"
 value="" name="search_block_form" id="edit-search-block-
 form--2" title="Enter the terms you wish to search for.">

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

223

 </div>
 <div id="edit-actions--2" class="form-actions form-wrapper">
 <input type="submit" class="form-submit" value="Search"
 name="op" id="edit-submit--2"></div><input type="hidden"
 value="form-A-n1YJkZx6s9gRlgwRN9ld2-bj3nRrSqHAmsef2IB6Y"
 name="form_build_id">
 <input type="hidden" value="bLRsHgo0FT2pGXz7zfpkCPQ7G9A0vhkWTE
 JeR0IFndI" name="form_token">
 <input type="hidden" value="search_block_form" name="form_id">

 </div>
 </div>
 </form>
 </div>
</div>

As the highlighted line of code attests, each form's Form ID is passed along with the
form as a hidden value. We can also see that the id attribute of the form
tag—search-block-form—is also very similar to the form ID.

See also
The next recipe, Changing the height of a textarea provides a practical example of altering a
form based on its form ID.

Changing the height of a textarea
Forms in Drupal are managed using the Form API and modified using hook_form_alter().
In this recipe, we will look at changing the default height, or to be more precise, the default
number of rows of the textarea that represents the body field in a node form.

Getting ready
We will be using the mysite module created earlier in this book to contain the
hook_form_alter().

How to do it...
Navigate to the mysite module folder at sites/all/modules/mysite to perform the
following steps:

1. Locate the file mysite.module and open it in an editor.

2. Scroll down to the bottom and add the following function:
/**
 * Implements hook_form_alter().

www.it-ebooks.info

http://www.it-ebooks.info/

Form Design

224

 */
function mysite_form_alter(&$form, &$form_state, $form_id) {
// dpm($form_id);
// dpm($form);

 if (isset($form['#node_edit_form'])) {

 $form['body'][$form['language']['#value']][0]['#rows'] = 5;

 }

}

If there is a pre-existing implementation of hook_form_alter(), the highlighted
code above will need to be integrated with it.

3. Save the file and exit the editor.

4. View the node form at, for example, node/add/story, to see whether the number
of rows has been modified.

How it works...
The hook_form_alter() function is triggered for all forms that use the Drupal Form API.
Therefore, the first thing that we do in our function is to restrict it suitably so that it is only
applicable to node forms. While we could have done this by matching the form ID, Drupal
provides an easier way out as it sets a key titled #node_edit_form in the $form array that
is one of the hook's parameters. Once we ascertain that this key exists in the array, we can be
certain that we are dealing with a node's edit form.

With the form identified, we can go ahead with modifying the textarea, which in this case is
the one associated with the body field. At this point, we usually have no concrete idea about
the structure of the form and therefore have to rely on a couple of diagnostic debugging calls
to snoop around the $form array. This is usually accomplished using the Devel module's
dpm() function. In the case of a standard node form, the body field's textarea is customarily
sequestered within $form['body']['und'][0].

The und in form arrays indicate that the language code for the content
is undetermined or language neutral. However, this could just as
easily be es or de. Therefore, rather than assuming that it will always
be und, we supplant it with the current language of the form that is
embedded at $form['language'['#value'].

Once we have familiarized ourselves with the structure, we can go ahead and modify the
textarea. The #rows attribute used in the form_alter() corresponds to the rows attribute
of the textarea and changing this Form API attribute effectively changes its HTML counterpart.
This can be confirmed by viewing the HTML source for the modified textarea, which should
look something like the following:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

225

<textarea rows="5" cols="60" name="body[und][0][value]" id="edit-body-
und-0-value" class="text-full form-textarea"></textarea>

A body field with rows altered to 5 is shown in the following screenshot:

There's more...
Drupal provides variants of hook_form_alter() that allows us to better target both specific
forms as well as groups of forms that are built upon a base form.

Targeting only node forms
Drupal provides an alternative to target only node forms. While we simply checked for the
presence of a variable in this recipe, we can go a step further and avoid this check altogether
by refining the name of our form_alter() hook. To do this, we simply include the base form
ID for node forms in the function's name as follows:

/**
 * Implements hook_form_BASE_FORM_ID_alter().
 */
function mysite_form_node_form_alter(&$form, &$form_state, $form_id) {
 $form['body'][$form['language']['#value']][0]['#rows'] = 5;
}

Targeting particular node forms
As we were targeting all node forms in this recipe, we used a hook_form_alter() to retain
our code. However, if we were looking to target only a particular form ID—in this case a specific
node type's form—we could use a shortcut to restrict our code solely to that form. To do this,
we simply include the form ID in the function's name as follows:

/**
 * Implements hook_form_FORM_ID_alter().
 */
function mysite_form_story_node_form_alter(&$form, &$form_state,
$form_id) {
 $form['body'][$form['language']['#value']][0]['#rows'] = 5;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Form Design

226

Using this specific hook, we can avoid the conditional statement to check whether this form
is the form we are looking for. Moreover, placing code pertaining to each form's ID in its own
function also reduces clutter and generally improves manageability.

Altering columns
As with rows, the columns of a textarea can be altered using the #cols attribute:

$form['body'][$form['language']['#value']][0]['#cols'] = 30;

While this should theoretically work as is, due to the JavaScript and CSS also being applied
to this textarea, it will require a little more tweaking.

Replacing Drupal's textareas with a
WYSIWYG HTML editor

WYSIWYG or What-You-See-Is-What-You-Get editors are a common requirement on most
Drupal sites and ease HTML input, styling, and other potentially involved tasks for contributors
to the site. In this recipe, we will be looking at replacing Drupal textareas with a popular
WYSIWYG editor named CKEditor.

Getting ready
We will be using the WYSIWYG module that can be downloaded from http://drupal.org/
project/wysiwyg. While default Drupal installations come with a single text format named
Plain text, we will be associating the editor with a custom format named HTML that allows
HTML tags. Text formats can be created from their configuration page at admin/config/
content/formats [Home | Administration | Configuration | Content authoring |
Text formats].

How to do it...
The WYSIWYG module is effectively a Drupal wrapper that supports a multitude of third-party
editors. It can be downloaded and installed just like any other module. Once this is done, we
will need to enable one of the available third-party editors—in this case, CKEditor—as follows:

1. Browse to the WYSIWYG module's configuration page at admin/config/content/
wysiwyg [Home | Administration | Configuration | Content authoring |
Wysiwyg profiles].

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

227

2. From the list of editors listed on the ensuing page, click on the Download link
corresponding to the entry for CKEditor:

3. Download the editor from the linked page.

4. If it does not already exist, create a subfolder inside sites/all/
named libraries.

5. Extract the downloaded file inside sites/all/libraries so that the
file ckeditor.js can be accessed at sites/all/libraries/
ckeditor/ckeditor.js.

6. Refreshing the WYSIWYG module's configuration page should now confirm that the
editor has been installed correctly:

www.it-ebooks.info

http://www.it-ebooks.info/

Form Design

228

7. As in the previous image, associate the HTML text format with the CKEditor and leave
the Filtered HTML format as is.

Each available text format can be assigned to a different editor, or
no editor as in the case of the Plain text format above. Clicking the
Edit link allows further customization of the editor's options such as
button configuration, visual style, formatting, and so on.

8. Click on the Save button to save our changes.

9. Visit a node form to see the editor in action when the HTML text format is chosen.

How it works...
As in the following screenshot, when the HTML format is chosen, the textarea is enhanced
with the CKEditor. On the other hand, when the Plain text format is selected, the textarea
reverts back to its default plain form:

As mentioned earlier, each of the buttons and the overall style of the editor can be adjusted
according to our requirements via the module's configuration page. Similarly, other Drupal
modules might choose to expose their functionality to contributors by way of a button in the
editor's interface.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

229

Reorganizing fields in a form
The Form API, like many other components of Drupal, provides options to order form
elements through the use of weights. In this recipe, we will exercise this and other features to
reorganize the structure of a typical node form.

Getting ready
We will be using the mysite module created earlier in this book to contain our hook_form_
alter(). Fields provided by the Menu module will be among those that we will be looking to
tweak and it is therefore assumed that the module is enabled.

It is also recommended that the Devel module be enabled to help with diagnostic prints and
other debugging efforts.

How to do it...
In this recipe, we are going to look to restructure the vertical tabs present at the bottom of
every node form. Navigate to the mysite module folder at sites/all/modules/mysite to
perform the following steps:

1. Locate the file mysite.module and open it in an editor.

2. Scroll down to the bottom and add the following function:
/**
 * Implements hook_form_BASE_FORM_ID_alter().
 */
function mysite_form_node_form_alter(&$form, &$form_state, $form_
id) {
 // dpm($form_id);
 // dpm($form);

 // Move the author fieldset outside the vertical tabs

 // group and keep it uncollapsed.

 unset($form['author']['#group']);

 $form['author']['#collapsed'] = FALSE;

 // Move the revision information fieldset to the top

 // of the vertical tabs group, thereby making it the

 // default.

 $form['revision_information']['#weight'] = -10;

}

www.it-ebooks.info

http://www.it-ebooks.info/

Form Design

230

If there is an existing implementation of hook_form_node_form_alter(), the
highlighted code will need to be integrated into it.

3. Save the file and exit the editor.

4. View the node form at, for example, node/add/story, to confirm that our changes
have taken effect.

How it works...
In the following screenshot, we can see the default appearance of the vertical tabs section
present at the bottom of every node form. The tabs are actually Drupal Form API fieldsets that
have been transformed using JavaScript and CSS to resemble tabs.

The fact that each of the tabs is actually a fieldset can be confirmed
by loading the node form in a browser with JavaScript disabled.

To tweak these fields, we have to resort to the Swiss army knife of every Drupal developer, an
alter() function. With form_alter() functions, it is usually necessary that a diagnostic
print using dpm() be used to analyze the form array. Order for form elements is decided by
the #weight attribute and the Devel module's output, as seen in the following screenshot,
will be needed to deduce the changes that will be required to be made:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

231

Form API fieldsets are organized into vertical tabs by assigning them to the same group. In
the Devel module's dpm() output in the previous screenshot, we can see that the #group for
the Authoring information fieldset is set to additional_settings. Furthermore, the fieldset is
collapsed as its #collapsed value is set to TRUE. Consequently, deleting the #group key and
setting #collapsed to TRUE should remove the Authoring information from the vertical tab
group and display it as a separate entity in the form.

The other change we have attempted in this recipe is to move the Revision information
fieldset within the vertical tab group right to the top of the stack. Moving it to the top gives it
greater prominence as well as making it the default tab. We do this by altering the fieldset's
#weight value to one lower than that of the Menu settings fieldset. Once this is done,
the Revision information fieldset will float to the top of the pile as evidenced in the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Form Design

232

Replacing a standard submit button with
an image button

Design requirements sometimes dictate that standard form buttons be replaced with image
equivalents. In this recipe, we will be replacing the Save and Preview buttons in node creation
forms with image buttons.

Getting ready
We will be using the mysite module created earlier in this book. We will be adding two image
buttons—one for Save and the other for the Preview button—to the form for a node type
named story. It is assumed that these images are available as save.png and preview.png,
and stored in the mysite module's images folder.

It is also worthwhile familiarizing ourselves with the syntax and general vagaries of the
button, image_button, and submit form element types via the Form API reference
manual at http://api.drupal.org/api/drupal/developer--topics--forms_
api_reference.html/7#image_button.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

233

How to do it...
As we are altering forms, we will be performing the following steps in the mysite module
as follows:

1. Browse to the mysite module folder at sites/all/modules/mysite.

2. Locate the file mysite.module and open it in an editor.

3. Scroll down to the bottom of the page and paste the hook_form_alter()
implementation as follows:
/**
 * Implements hook_form_BASE_FORM_ID_alter().
 */
function mysite_form_node_form_alter(&$form, &$form_state, $form_
id) {
 // dpm($form);

 $path = drupal_get_path('module', 'mysite');
 $form['actions']['submit']['#type'] = $form['actions']
 ['preview']['#type'] = 'image_button';
 $form['actions']['submit']['#src'] = $path . '/images/save.png';
 $form['actions']['preview']['#src'] = $path . '/images/preview.
 png';
}

If an implementation of this function already exists, the code will need to be
integrated appropriately.

The commented-out dpm() calls in the code snippet above are useful in
determining the type and structure of the forms that we are dealing with.

4. Save the file and exit the editor.

5. In a browser, visit a node creation form such as the one at node/add/story, to see
whether our changes have taken effect.

www.it-ebooks.info

http://www.it-ebooks.info/

Form Design

234

How it works...
A standard node form, by default, comes with two buttons—one for preview and the other for
submission. Using the Devel module's dpm() function to look through the structure of the
$form array indicates that the two buttons are contained within an array named actions as
demonstrated in the following screenshot:

Now that we are familiar with the structure of the forms that we are dealing with, we can go
ahead with our replacements. First, we swap the element type of the submit and preview
elements from that of a simple button to an image_button. Next, we use the #src
attribute to point to the images in our module's images folder. The Form API will now use
these images when rendering the buttons:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

235

The end result should transform the standard node form buttons seen in the previous
screenshot to their more attractive image equivalents as in the following screenshot:

Styling the comment form
In this recipe, we will look at manipulating form elements and markup using the Form API
in an effort to make styling elements of the comment form easier. To be precise, we will be
altering the comment form displayed to anonymous users in order to position its contact fields
within a DIV block, thereby allowing us to target them better via CSS.

Getting ready
We will be using the mysite module created earlier in this book to contain an implementation
of hook_form_alter(). As we are going to be working on the comment form, it is assumed
that the Comment module is enabled.

Drupal's default permissions do not permit anonymous users to view or add comments.
These permissions can be added via the Permissions management page at admin/people/
permissions [Home | Administration | People | Permissions]. To assist with debugging,
it is also recommended that, if the Devel module is enabled, anonymous users be allowed to
access debugging output via its permissions.

It goes without saying that such permissions should be disabled
for production sites. In fact, the Devel module should ideally not
be enabled at all.

www.it-ebooks.info

http://www.it-ebooks.info/

Form Design

236

Finally, the node type being commented on will need to have comments enabled and also
requires that anonymous users leave their contact information along with their comments.
This can be done—as in the following image—via the Comment settings fieldset on the node
type's edit page at admin/structure/types/manage/story [Home | Administration |
Structure | Content types], where story is the node type in question:

How to do it...
Navigate to the mysite module folder at sites/all/modules/mysite to perform the
following steps:

1. Locate the file mysite.module and open it in an editor.

2. Add (or merge) the following functions:
/**
 * Implements hook_init().
 */
function mysite_init() {
 // The path to the mysite module.
 $path = drupal_get_path('module', 'mysite');
 drupal_add_css($path . '/css/mysite.css');
}

/**
 * Implements hook_form_BASE_FORM_ID_alter().

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

237

 */
function mysite_form_comment_form_alter(&$form, &$form_state,
$form_id) {
 global $user;

 // Alter comment form for anonymous users.
 if ($user->uid == 0) {
 // dpm($form);

 $form['author']['name']['#prefix'] = '<div class="comment-
 contact">';
 $form['author']['homepage']['#suffix'] = '</div>';
 }
}

3. Save the file and exit the editor.

4. Access a comment form as an anonymous user and view its source to see whether
the name, mail, and homepage fields are wrapped in a DIV with its class attribute set
to comment-contact.

Now that we have the markup ready, we can proceed to styling our new block. While it is
usually recommended that all custom styling be added directly to the theme, it is sometimes
preferable to contain CSS that is theme-agnostic within the module. Themes can override
these rules if need be. As we have altered the markup using the mysite module, we can also
contain the related CSS rules within an associated stylesheet such as mysite.css, which we
have included in our form_alter() implementation:

5. If it does not already exist, create a file named mysite.css inside the mysite
module's css folder and open it in an editor.

6. Add the following rules to the file:
.comment-contact {
 width: 94%;
 padding-left: 1em;
 background-color: #FEE;
 border: 1px dashed red;
}

.comment-contact label {
 float: left;
 width: 110px;
 margin-right: 10px;
}

7. Save the file and exit the editor.

8. Back in the browser, empty the Drupal cache and access the comment form once
again as an anonymous user to see our alterations take effect.

www.it-ebooks.info

http://www.it-ebooks.info/

Form Design

238

How it works...
As we are looking to box the three contact fields inside a DIV, we can make use of the Form
API's #prefix and #suffix attributes to inject the opening and closing tags before the first
field and after the last:

As in the previous screenshot, the first field in this case is the Your name field while the last
one is the Homepage field. Looking at our code, as we have seen in earlier recipes, it is
through the use of the Devel module's dpm() function that we obtain information on the inner
workings of the form. While adding the opening DIV, we also take the opportunity to specify a
class name for the tag, namely comment-contact, which will allow us to specifically target
the element via CSS.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

239

Once we have altered the markup, we move on to the styling. We use the comment-contact
class to style the DIV by giving it a border and background while also cleaning up the display
of the three contact fields by aligning them inline. This is accomplished by floating the LABEL
elements to the left, which will automatically move their corresponding INPUT elements up
and inline as seen in the following screenshot:

Additionally, playing with the widths of the LABEL elements ensures that the all the contacts
fields are aligned thereby making the form easier on the eye.

There's more...
The Form API also allows us to target specific instances of comment forms.

Targeting specific comment forms
As we saw with node forms, we can target comment forms for specific node types by simply
altering the function name of the form_alter() implementation. In other words, if we
wanted to target the comment form for the node type named story, we would name our
function mysite_form_comment_node_story_form_alter(). In this recipe, we have
chosen to instead use the base form ID, which allows us to target all (and only) comment
forms irrespective of node type.

www.it-ebooks.info

http://www.it-ebooks.info/

Form Design

240

Using a fieldset to group fields
The FIELDSET element is used to group related fields together and can be seen extensively in
Drupal forms. While we saw how to inject markup in the previous recipe to group fields from a
styling point of view, in this recipe, we will be looking at grouping related fields of the contact
form using two separate fieldsets.

Getting ready
We will be using the mysite module created earlier in this book to hold our customizations.
As we are altering the contact form, it is assumed that the Contact module is enabled and
configured with at least a couple of contact categories via its management page at
admin/structure/contact [Home | Administration | Structure | Contact form].
Enabling the module automatically makes a menu item available, which can also be
enabled from the menu management page at admin/structure/menu
[Home | Administration | Structure | Menus].

The form is accessible via the URL contact and should look something like the
following screenshot:

How to do it...
Navigate to the mysite module folder at sites/all/modules/mysite to perform the
following steps:

1. Locate the file mysite.module and open it in an editor.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

241

2. Scroll down to the bottom and add the following function:
/**
 * Implements hook_form_FORM_ID_alter().
 */
function mysite_form_contact_site_form_alter(&$form, &$form_state,
$form_id) {
 // dpm($form);

 // Wrap the name and mail fields in a fieldset.
 $form['contact_fields'] = array(
 '#type' => 'fieldset',
 '#title' => t('Contact information')
);

 // Move existing fields to fieldset.
 $form['contact_fields']['name'] = $form['name'];
 $form['contact_fields']['mail'] = $form['mail'];

 // Wrap the subject, message, category and copy fields
 // in a fieldset.
 $form['message_fields'] = array(
 '#type' => 'fieldset',
 '#title' => t('Message')
);

 // Move existing fields to fieldset.
 $form['message_fields']['subject'] = $form['subject'];
 $form['message_fields']['cid'] = $form['cid'];
 $form['message_fields']['message'] = $form['message'];
 $form['message_fields']['copy'] = $form['copy'];

 // Move the submit button below our fieldsets.
 $form['submit']['#weight'] = 1;

 // Clear out the now unnecessary form elements.
 unset($form['name'], $form['mail'], $form['subject'],
 $form['message'], $form['copy'], $form['cid']);
}

3. Save the file and exit the editor.

4. Clear the Drupal cache, if necessary.

5. In a browser, visit the contact form accessible via the URL contact, to verify that the
fields are contained within two fieldsets. Perform a test submission to confirm that
the form is functioning correctly.

www.it-ebooks.info

http://www.it-ebooks.info/

Form Design

242

How it works...
Analyzing the contact form using the Devel module's dpm() function and comparing it
with the form, we can learn that the form fields are called name, mail, subject, message,
cid, and copy:

In the form_alter(), what we have done is created two fieldset elements and made all the
aforementioned fields children of their respective fieldsets, thereby designating them to be
displayed within. In other words, we are moving each field from $form to the newly created
$form[fieldset]. The end result should look like the following:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

243

There's more...
While basic fieldsets are invaluable both from a structural and a visual point of view, Drupal
provides a few improvements that make them an even more attractive option.

Collapsible fieldsets
Collapsible fieldsets are used by Drupal to make complex forms look simpler by minimizing
them by default using JavaScript. This is controlled by the #collapsible and #collapsed
attributes of the fieldset in question. For example, let us look at the fixed fieldset created in
this recipe:

$form['contact_fields'] = array(
 '#type' => 'fieldset',
 '#title' => t('Message')
);

www.it-ebooks.info

http://www.it-ebooks.info/

Form Design

244

To transform this static fieldset into one that is collapsible and collapsed by default, we just
need to set this fieldset's #collapsible and #collapsed attributes to TRUE:

$form['contact_fields'] = array(
 '#type' => 'fieldset',
 '#title' => t('Contact information'),
 '#collapsible' => TRUE,

 '#collapsed' => TRUE

);

Setting a fieldset to be collapsed by default is, however, not
recommended if any of the fields within are required fields as the
user will not be aware of them until he/she opens the fieldset.

More information on the fieldset element is available as part of the Form API documentation
at http://api.drupal.org/api/drupal/developer—topics--forms_api_
reference.html/7#fieldset.

Vertical tabs
While they may not be suitable on this contact form, the use of vertical tabs simplify pages
containing a number of fieldsets. A prime example is their use on node edit forms as we have
been seeing throughout this chapter. When configured, Drupal uses a mixture of JavaScript
and CSS to minimize and restyle a collection of fieldsets as concise tabs.

If we were to take the example of the fieldsets declared in the contact form in this recipe,
adding vertical tabs support can be accomplished with the following highlighted modifications
to the existing code:

// Create a new vertical tabs group.

$form['contact'] = array(

 '#type' => 'vertical_tabs'

);

$form['contact_fields'] = array(
 '#type' => 'fieldset',
 '#title' => t('Contact information'),
 '#group' => 'contact'
);

$form['message_fields'] = array(
 '#type' => 'fieldset',
 '#title' => t('Message'),
 '#group' => 'contact'
);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

245

See also
The next recipe, Theming form elements from a module, extends the fieldset element we
worked with in this recipe and adds a new feature to it.

Theming form elements from a module
Drupal form elements such as checkboxes and radio buttons are all rendered using the theme
system and consequently, can be overridden just like any other theme function. In this recipe,
we will be adding a new feature to the FIELDSET element by overriding theme_fieldset().
We will be demonstrating its use by adding a postscript to the Revision information fieldset
present in every node form.

Getting ready
This recipe requires the use of the mysite module created earlier in this book. The Devel and
Theme developer modules will also be used to identify the theme function to override.

How to do it...
Firstly, we need to identify how Drupal is going about theming a fieldset. The recommended
method of doing so is to use the Theme developer module as follows:

1. Browse to a node form at, for example, node/add/story.

2. Locate the Revision information fieldset which, if collapsed, should be expanded.

3. Enable Themer info and click on an empty area in this fieldset. The ensuing pop up
should list the theme functions and any templates used in rendering the fieldset.

4. Based on the output of Themer info as seen in the following screenshot, the function
responsible appears to be theme_fieldset(). Clicking this link should take us to the
function's documentation page at http://api.drupal.org/api/drupal/
includes--form.inc/function/theme_fieldset/7:

www.it-ebooks.info

http://www.it-ebooks.info/

Form Design

246

5. As per the documentation, this function resides within the file includes/form.inc.
Open this file locally in an editor.

6. Copy the function theme_fieldset() in its entirety.

7. Now, navigate to the mysite module's folder at sites/all/modules/mysite.

8. Open the file mysite.module in an editor.

9. Paste the theme_fieldset() function into this file.

10. Rename this function to mysite_fieldset().

11. Amend the return call at the bottom of the function to include a new attribute titled
#postscript. The resulting function should resemble the following code block:
/**
 * Override theme_fieldset().
 */

function mysite_fieldset($variables) {
 $element = $variables['element'];
 element_set_attributes($element, array('id'));
 _form_set_class($element, array('form-wrapper'));

 $output = '<fieldset' . drupal_attributes($element['#attributes'
]) . '>';
 if (!empty($element['#title'])) {
 // Always wrap fieldset legends in a SPAN for CSS positioning.
 $output .= '<legend>' .
 $element['#title'] . '</legend>';
 }
 $output .= '<div class="fieldset-wrapper">';
 if (!empty($element['#description'])) {
 $output .= '<div class="fieldset-description">' .
 $element['#description'] . '</div>';
 }
 $output .= $element['#children'];
 if (isset($element['#value'])) {
 $output .= $element['#value'];
 }

 // Include custom postscript attribute.

 if (isset($element['#postscript']) && $element['#postscript']) {

 $output .= '<div class="postscript">' . $element['#postscript']
 . '</div>';

 }

 $output .= '</div>';
 $output .= "</fieldset>\n";
 return $output;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

247

12. Add the following function to the mysite module:
/**
 * Implements hook_theme_registry_alter().
 */
function mysite_theme_registry_alter(&$theme_registry) {
 // Override theme_fieldset().
 $theme_registry['fieldset']['function'] = 'mysite_fieldset';
}

13. Finally, to make use of our changes, scroll down to the bottom of the
mysite.module file and add the following function:
/**
 * Implements hook_form_BASE_FORM_ID_alter().
 */
function mysite_form_node_form_alter(&$form, &$form_state, $form_
id) {
 // dpm($form);
 $form['revision_information']['#postscript'] = t('If a new
 revision is to be created, please ensure that a log message is
 added detailing any changes.');
}

If an existing implementation of the form_alter() function
already exists, this code will need to be integrated appropriately.

14. Save the file and exit the editor.

15. Empty the Drupal cache to ensure that our theme override takes effect.

16. Browse to the node form to confirm that the Revision information fieldset now
includes a postscript at the bottom.

How it works...
As the fieldset is rendered using a theme function, we are able to override it just like any
other theme function in Drupal. What is of interest in this case is that we have chosen to use
mysite_fieldset() as the override function and located it within mysite.module rather
than going with myzen_fieldset() within the myzen theme's template.php file. This
choice was made as the change that we are introducing appears to be something that will be
useful across different themes. If, on the other hand, we were changing the markup of the
fieldset to suit only the myzen theme, then we would have been better off locating the override
function within the theme.

www.it-ebooks.info

http://www.it-ebooks.info/

Form Design

248

As we are overriding this function from within a module, we need to inform Drupal of this
change as, by default, it only looks within themes for overrides. To do so, we need to take
advantage of a hook named hook_theme_registry_alter() where we will be altering
the theme registry and pointing Drupal to our custom override. Once this has been done
and importantly, the cache has been cleared, our newly introduced mysite_fieldset()
function will be recognized.

Within the mysite_fieldset() function, all we are effectively doing is inserting our
custom #postscript attribute towards the end of the markup. With this done, we can
use this attribute as part of any fieldset's declaration as demonstrated in the subsequent
form_alter() implementation. The resulting Revision information fieldset should now look
something like the following:

Adding class attributes to form elements
Drupal 7 is quite meticulous with its forms and other markup when it comes to assigning
CLASS and ID attributes. This ensures that various page elements can be individually
targeted either via CSS or JavaScript and thereby, manipulated as necessary. This is however,
not true all the time and circumstances sometimes require further customization.

In this recipe, we will assign class attributes to the Search module's textfields and use them
along with a pinch of jQuery to improve usability in situations where the search block is
concurrently visible along with the module's input form on the search page.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

249

Getting ready
We will be using the mysite module created earlier in this book to hold an implementation
of hook_form_alter(). As we are playing with the Search module, it is assumed that the
module is enabled and that the site's content has subsequently been completely indexed.
This can be verified via admin/config/search/settings [Home | Administration |
Configuration | Search and metadata | Search settings].

Lastly, enable the search block via the block administration page at admin/structure/
block [Home | Administration | Structure | Blocks].

How to do it...
Navigate to the mysite module folder at sites/all/modules/mysite to perform the
following steps:

1. Locate the file mysite.module and open it in an editor.

2. Scroll down to the bottom and add the following function:
/**
 * Implements hook_form_alter().
 */
function mysite_form_alter(&$form, &$form_state, $form_id) {
 // dpm($form);

 // Set the class attribute and add some JS goodness to the
 // search form when both the theme search box as well as
 // the basic search form are visible.
 if ($form_id == 'search_form') {
 // Set the class attribute of the search form textfield.
 $form['basic']['keys']['#attributes']['class'][] = 'search-
 text';

 // The path to the mysite module.
 $path = drupal_get_path('module', 'mysite');
 drupal_add_js($path . '/js/search.js');
 }
 else if ($form_id == 'search_block_form') {
 // Set the class attribute of the search-box textfield.
 $form['search_block_form']['#attributes'] = array('class' =>
 array('search-text'));
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Form Design

250

If there is an existing implementation of hook_form_alter(),
this code will need to be integrated into it.

3. Save the file and exit the editor.

4. Visit the URL search where both the search block and basic search form should be
displayed. The HTML source should confirm that both the textfields now have a class
named search-text assigned to them.

Now that we have assigned the classes to the two textfields, we can work on getting the
JavaScript up and running. Note that in the preceding hook_form_alter() function, we
have also conditionally included the JavaScript file we will be creating as follows:

5. Browse to the mysite module's js folder.

6. Create a file named search.js and open it in an editor.

7. Add the following jQuery to this file:
(function ($) {
 Drupal.behaviors.mysiteSearch = {
 attach: function() {
 var fields = $('.search-text');
 // Set default text to both fields.
 var text = fields.filter(function() { return $(this).val()
 .length; }).val();
 fields.val(text);

 // Sync textfield key-presses.
 fields.keyup(function(event){
 fields.not(this).val($(this).val());
 });
 }
 };
}(jQuery));

8. Save the file and exit the editor.

9. Empty the Drupal cache.

10. Revisit the search page and perform a test search query.

11. Confirm that the current search keywords are being displayed in both textfields.

12. Confirm that user input into either textfield is automatically synchronized with the
other textfield.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

251

How it works...
One of the minor issues with using the search block is that when it is used to perform a query,
the resulting page does not display the keywords being searched for in its textfield. Instead,
they are displayed solely in the search module's form as in the following screenshot:

By using the Form API's #attributes option via a hook_form_alter(), we are able to
add a class titled .search-text to both textfields. This subsequently allows us to easily
target the two elements using jQuery. Once we have them, we can ensure that the theme's
search box contains the same keywords as the primary search form as evident in the
following screenshot:

We are also able to take this opportunity to implement a synchronization effect using jQuery's
keyup() event, which synchronizes the user's input into either textfield in real time.

www.it-ebooks.info

http://www.it-ebooks.info/

Form Design

252

See also
Another recipe where we are looking to modify the markup in order to insert CSS
classes of our choice is the Chapter 6, Advanced Templating recipe titled Optimizing
using hook_preprocess().

www.it-ebooks.info

http://www.it-ebooks.info/

10
Theming Fields

We will be covering the following recipes in this chapter:

 f Creating a new node type

 f Displaying fields together using fieldgroups

 f Manipulating display layouts using fieldgroups

 f Theming a field using a template file

 f Adding image fields using the Image module

 f Using Image styles to scale and crop images on the fly

 f Adding lightbox support for images

Introduction
A large part of what was known in Drupal 6 as the Content Construction Kit or CCK suite of
contributed modules has been integrated into core in Drupal 7, and is collectively referred to
simply as Fields or as the Fields API. Fields enable the creation, management, customization,
and display of node types from within Drupal's administration pages. Besides the ease of it all,
there are other intrinsic advantages to relying on Fields.

Firstly, the use of Fields implies that we do not have to write and maintain our own code as
most of our specifications reside in the database. Furthermore, we do not need to optimize
the database either as the API ensures that this is automatically done for us. With the API
being a part of core, upgrades to our fields are handled automatically and reliably. In other
words, when we do upgrade our site to Drupal 8 or later, our data will also be upgraded to
account for any changes.

www.it-ebooks.info

http://www.it-ebooks.info/

Theming Fields

254

Another clincher is the fact that all the fields within each node type are now exposed to other
modules such as Views which enable us to do more and to do so quickly and efficiently. Fields
and Views take most of the complexity out of customization and allows site administrators to
get on with the more creative aspects of site deployment.

From a theming perspective, we can manage how each field is displayed from the
administration UI. By default, we can control rudimentary aspects such as field order, visibility,
label placement, and so on. Each field can also have its own custom display settings. For
example, the body field can optionally be displayed in summary form or in full. Similarly, an
Image field can be customized to be rendered as a thumbnail when viewed in teaser form or
in larger dimensions when a node is viewed in full.

Fields are not only used in nodes. They are also incorporated into the
User and Comment modules within core. Moreover, they can also be
reused and reconfigured when necessary.

The core package comes with a primary module named Field which is a prerequisite for all
other modules, a number of basic modules such as Text, Number, List, and Options which
enable the creation of form elements based on their types, and more complex elements such
as Image. Besides these, there are a plethora of contributed modules that similarly allow the
creation of form fields such as the Email Field module which handles e-mail address input,
the Date module which enables date input, or the Link field which allows configurable URL
input. The Field_UI module provides a management interface where all of these fields can be
configured and administered.

A list of contributed Field modules for Drupal 7 can be retrieved by navigating to http://
drupal.org/project/modules and choosing the Fields category and 7.x for compatibility
prior to clicking on the Search button.

In this chapter, we will look at creating a node type named company and then extending it
using Fields.

Creating a new node type
In this recipe, we will be adding a new node type and customizing it using Fields. As an
example, we will be creating a type named company to hold information about a company
along with details such as its address, telephone number, e-mail address, and so on.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

255

Getting ready
It is assumed that the Field, Field UI and, at the very least, the Text module have all been
enabled. The Field UI module is required for the field management interface to be accessible.

How to do it...
The Field API integrates into Drupal's content management pages and can be accessed by
navigating to admin/structure/types [Home | Administration | Structure | Content
types]. Perform the following steps to add the new node type:

1. Click on the Add content type tab at the top.

2. As we are creating a type specifically to hold details about a company, set the Name
field in the ensuing form to Company.

Note that a suitable Machine name (company) for this node type
has been automatically created as seen in the following screenshot.

3. Add some pertinent information in the Description field:

4. Select the Submission form settings vertical tab and amend the labels of the Title
field to read Company name.

www.it-ebooks.info

http://www.it-ebooks.info/

Theming Fields

256

5. Click on Save content type to create our new node type. This should take us back to
the Content types list which should now include our new type:

6. Click on the company type's manage fields link.

7. Click on the edit link associated with the Body field.

8. On the edit page, change the Label to Company description.

9. Click on the Save settings button at the bottom of the page to save our changes.

10. Back on the Manage fields tab, scroll down to the section dealing with the addition of
new fields.

11. Use this form to add a new field to hold the address details of the company as shown
in the following screenshot:

12. Clicking on Save should take us to the field configuration form.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

257

13. In the ensuing form, customizations can be made as necessary before clicking
on Save field settings to add the field. The module will run us through a series of
optional field configuration steps where the field can be customized further.

14. Similarly, add two more textfields, Phone and E-mail address, to complete the set of
basic fields for our node type as displayed in the next screenshot:

Unlike the Address field that uses the Long text type, note that the
Phone and E-mail fields use the basic Text type.

How it works...
Now that we have our new type set up, we can go ahead and add company content through
node/add/company [Home | Add content | Company]. The following screenshot displays a
company node created for a company named Foo Corp:

www.it-ebooks.info

http://www.it-ebooks.info/

Theming Fields

258

There's more...
The Fields API also provides options to adjust the weight of each field and thereby,
its display order.

Adjusting the display order of fields
As the following screenshot demonstrates, the display order of various fields can be adjusted
using the drag-and-drop crosshairs to the left of each field and subsequently saving the
changes. This display order pertains to the position of the fields in the node edit form only and
not the actual view of the rendered node which is handled through the Manage display tab:

Multiple-value fields
As companies might well have multiple phone numbers, we can cater to this requirement
by amending the Number of values property of the Phone field accordingly through the
configuration page of the field. For our needs, setting it to Unlimited should work well. Once
modified, the node creation page should support multiple phone numbers as shown in the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

259

Contributed modules: e-mail and phone
While we have used simple textfields to store the phone and e-mail fields in the company
node type, we could have just as well made use of contributed modules which provide
custom field types for each of these inputs. In the case of the phone field, using the Phone
module (http://drupal.org/project/phone) will introduce additional capabilities such
as number validation and display formatting support. The Email Field module (http://
drupal.org/project/email) provides similar support for e-mail addresses.

See also
Once we have created our custom node type, we can theme it just like any other type.
Customizing the appearance of a particular node type recipe in Chapter 4, Templating Basics
explains how to target the template file of a specific node type to hold our customizations.

Displaying fields together using fieldgroups
A contributed module named Field group allows us to organize fields into groups known as
fieldgroups. These groups can be created for the purpose of gathering associated fields during
input or while rendering them during display. In this recipe, we will be creating a group to
contain all fields providing contact information within the company node type.

Getting ready
We will be using the company node type created earlier in this chapter. As this recipe uses
fieldgroups, it is required that the Field group module be installed and enabled. It is available
at http://drupal.org/project/field_group.

How to do it...
Once the fieldgroup module has been enabled, the Manage fields form for the company
node type should now have an option to also create groups. This form can be accessed
by navigating to admin/structure/types/manage/company/fields [Home |
Administration | Structure | Content types | Company].

The Contact fieldgroup to hold the Address, Phone, and E-mail address fields can be
created using the following procedure:

1. Scroll down to the bottom of the page to locate the row titled New group.

www.it-ebooks.info

http://www.it-ebooks.info/

Theming Fields

260

2. Add Contact and contact respectively to the Label and Group name textfields as
shown in the following screenshot:

3. Use the Fieldset option and then click the Save button to create the new group.

4. A new group named Contact should now be listed at the bottom of the table. Drag
the three fields—Address, Phone, and E-mail address—onto the Contact group where
they should snap into place as members of the group:

5. Click the Save button to save our changes.

This procedure will add the group fieldset to the node edit form. Repeating it within the
Manage display tab should allow us to group contact fields during node display as well.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

261

How it works...
Looking at a node's edit form, we should be able to confirm that all the contact fields now
reside within a fieldset named Contact. Note that the fieldset, as demonstrated in the
following screenshot, is collapsible. This and other options can be set from the fieldgroup's
configuration form which is visible as a gear icon in the previous screenshot.

On the other hand, viewing a company node should confirm the presence of a new fieldset
containing only the two visible contact fields as shown in the next screenshot. Here, we can
see that the fieldset is not collapsible:

www.it-ebooks.info

http://www.it-ebooks.info/

Theming Fields

262

See also
The next recipe, Manipulating display layouts using fieldgroups explores other formatting
options provided by the Field group module.

Manipulating display layouts using
fieldgroups

The Field group module supports other options besides collapsible fieldsets. These include
vertical tabs, horizontal tabs, and accordion layouts, and can make for interesting displays. In
this recipe, we will experiment with the use of horizontal tabs for our company node type.

Getting ready
We will be using the company node type created earlier in this chapter. This recipe
continues from where we left off in the previous recipe which is assumed to have been
completed successfully.

How to do it...
To convert the display layout for the company node type to use horizontal tabs, perform the
following steps:

1. Navigate to the manage display interface for the company node at admin/
structure/types/manage/company/display [Home | Administration |
Structure | Content types | Company].

2. Create three separate groups with labels Company, Bio, and Contact respectively. If
a group named Contact already exists, leave it as it is.

3. Drag the contact fields into the Contact group and the Company description field
into the Bio group.

4. Next, drag the Bio and Contact groups into the Company group.

5. Change the Format for the Company group to Horizontal tabs group.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

263

6. Similarly, change the Format for the Bio and Contact groups to Horizontal tab item
so that the resulting page looks like the following screenshot:

7. Click on the Save button to save our changes.

How it works...
The Field group module allows administrators to group associated fields together. While the
fields are always organized within HTML fieldsets, depending on our configured choices, the
module includes an appropriate JavaScript file that can style these fieldsets further. In this
case, it will include the file horizontal-tabs.js which formats the company node fields to
resemble the following screenshot:

While we have used the tab formats in the Manage display tab in this recipe, they can also be
used in the Manage fields tab to customize the node edit form.

www.it-ebooks.info

http://www.it-ebooks.info/

Theming Fields

264

It is also important to remember that in Drupal 7 fields are not restricted
solely to the domain of nodes. They are also used by other modules such
as Comment and User and can be just as effective with them.

There's more...
The Field group module provides other formatting styles besides horizontal tabs.

Vertical tabs
The following screenshot displays the same fieldgroups being rendered using vertical tabs:

All that was required to accomplish this switch was to change the tab format on the Manage
display form. The Company fieldgroup was set to be formatted as a Vertical tabs group rather
than a Horizontal tabs group, and the fields formatted as Horizontal tab items were changed
over to Vertical tabs.

This would also work on the node edit form. An additional feature on
these forms is that if fields were only formatted as vertical tabs and not
sequestered within Vertical tabs group fields, they will be added to the
existing vertical tab group which is a common feature on these forms.

Accordions
Accordions provide a nifty interface that displays only one tab at a time with transitions
between tabs being animated. The Field group module also supports accordion layouts which
can be enabled—just as we saw with vertical tabs—by changing the formatters to Accordion
group and Accordion item respectively on the Manage display form.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

265

We can see fieldgroups formatted using an accordion layout in the next screenshot:

See also
The Field group module utilizes a lot of JavaScript to achieve its layouts. Chapter 7, Javascript
in themes, covers the use of Javascript in Drupal modules and themes.

Theming a field using a template file
Once our field requirements become complex, we will find ourselves having to resort to
modifying the field to meet our needs. As with most things Drupal, template functions and files
are where these modifications usually reside.

In this recipe, we will look at modifying the output of the Phone field in the company node type
to use an unordered list when there are multiple items present.

Getting ready
We will be using the myzen theme created earlier in this book, to hold our theme
customizations. Following the recommendations outlined in earlier chapters, we will
also be making use of the Devel and Theme developer modules to assist in identifying
the theme functions and templates to override. It is assumed that these modules are
installed and enabled.

www.it-ebooks.info

http://www.it-ebooks.info/

Theming Fields

266

To get an idea of the work at hand, navigate to a sample company node and view the markup
of a Phone field with multiple values. The HTML should look something like the following:

<div class="field field-name-field-phone field-type-text
 field-label-above clearfix">
 <div class="field-label">Phone:</div>
 <div class="field-items">
 <div class="field-item even">+12 34 5678 9012</div>
 <div class="field-item odd">+12 34 5678 9013</div>
 </div>
</div>

As can be seen, multiple values of the same field are displayed using separate DIV blocks.
This is a less than ideal solution in situations where we are looking to use lists to contain
multiple related items. While we can use CSS to style these DIVs to behave like lists, it is not
optimal. Moreover, other scenarios might not afford us such luxuries.

How to do it...
Overriding the Phone field involves overriding a field of type text. In order to locate the
right template file to override, we first need to use the Theme developer module. Enable
Themer info and click on the Phone field to gain information on the functions and templates
responsible for its display. As outlined in the following screenshot, the template file in use is
default field template file named field.tpl.php:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

267

We are also informed that, if we wanted to override this file, we could locate our changes in a
file with a name based on the provided Candidate template filenames. The filenames dictate
the scope of the template file. This scope can range from our own version of field.tpl.php
which will affect all fields to field--field_phone--company.tpl.php which will only
affect the field named field_phone when used within the company node type. In our case,
we can use the latter as we are just looking to modify this particular field.

To override the template, perform the following steps:

1. Navigate to the core Field module's folder at modules/field.

2. Browse into the theme folder.

3. Copy the file named field.tpl.php.

4. Browse to the myzen theme folder at sites/all/themes/myzen.

5. Click into the templates subfolder and paste the file into it.

6. Rename the file to field--field_phone--company.tpl.php.

7. Open this file in an editor. Its contents should effectively be something like
the following:
<div class="<?php print $classes; ?> clearfix"
 <?php print $attributes; ?>>
 <?php if (!$label_hidden) : ?>
 <div class="field-label"<?php print $title_attributes;
 ?>><?php print $label ?>: </div>
 <?php endif; ?>
 <div class="field-items"<?php print $content_attributes; ?>>

 <?php foreach ($items as $delta => $item) : ?>

 <div class="field-item <?php print $delta % 2 ? 'odd' :
 'even'; ?>"<?php print $item_attributes[$delta]; ?>>
 <?php print render($item); ?></div>

 <?php endforeach; ?>

 </div>
</div>

The highlighted lines are a tentative pointer to the code where we run through
multiple values and print them.

8. Replace this entire block of code with the following which is a more simplified, yet
cleaner version that displays each entry as a list item:
<div class="<?php print $classes; ?> clearfix"
 <?php print $attributes; ?>>
 <?php if (!$label_hidden) : ?>
 <div class="field-label"<?php print $title_attributes;
 ?>><?php print $label ?>: </div>
 <?php endif; ?>

www.it-ebooks.info

http://www.it-ebooks.info/

Theming Fields

268

 <div class="field-items"<?php print $content_attributes; ?>>

 <?php foreach ($items as $delta => $item) : ?>

 <li class="field-item <?php print $delta % 2 ? 'odd' :
 'even'; ?>"<?php print $item_attributes[$delta]; ?>>
 <?php print render($item); ?>

 <?php endforeach; ?>

 </div>
</div>

The lines of highlighted code indicate where we have replaced the old markup with an
unordered list. We are cycling through each entry in the $items array and outputting
it as a list entry.

9. Save the file and exit the editor.

10. Empty the Drupal cache and rebuild the theme registry as we have introduced a new
template file into the system.

The default field.tpl.php template file includes an HTML
comment that explains the function of the file. Once the template
file has been copied to the myzen theme's templates folder,
this comment is no longer necessary and can be removed.

How it works...
Once the cache has been emptied, browse to a company node page to see our changes
in effect:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

269

As displayed in the previous screenshot, the two phone numbers are now displayed using an
unordered list which, if necessary, can be styled further using CSS. Looking at the markup, we
should be able to confirm that our changes have taken effect:

<div class="field field-name-field-phone field-type-text
 field-label-above clearfix">
 <div class="field-label">Phone:</div>
 <div class="field-items">

 <li class="field-item even">+12 34 5678 9012</div>
 <li class="field-item odd">+12 34 5678 9013</div>

 </div>
</div>

See also
Another approach to altering markup, albeit an inelegant and time-consuming one, is to
implement our modifications using JavaScript. Chapter 7, JavaScript in Themes, is dedicated
to using JavaScript and, in particular, jQuery, to manipulate page markup and more.

Adding image fields using the Image module
In this recipe, we will be adding image support to the company node type using the
Image module.

Getting ready
The Image is a field module and a part of Drupal core. Besides the base field modules, it also
depends on the File module. It is assumed to be enabled. We will be adding the image field to
the company node type created earlier in this chapter.

How to do it...
Once the Image module is enabled, it becomes available as a field type. The following steps
detail how we can add image support to the company node type:

1. Navigate to the company type's field management page at admin/structure/
types/manage/company/fields [Home | Administration | Structure | Content
types | Company | Manage fields].

2. Scroll down to the section titled New field.

3. Add Images and images respectively to the Label and Field name textfields.

www.it-ebooks.info

http://www.it-ebooks.info/

Theming Fields

270

4. Choose Image as the Field type as well as the widget type as shown in the
following screenshot.

5. Click on Save to create the field.

6. Click on the Save field settings button in the resulting form as we are happy with the
default upload destination.

7. In the next step, check the Enable Title field option.

8. Scroll down to the bottom and set the Number of values option to Unlimited.

There are a number of other settings available here that allow control
over where the files are saved, file type restrictions, resolutions, and size.

9. Click on Save field settings to complete the procedure.

10. This should bring us back to the Manage fields tab. Click on the Manage display tab.

11. Move the new Images field down the table as in the following screenshot:

12. Click the Save button to register our changes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

271

How it works...
Once configured, the company node form will now support the uploading of images as
demonstrated in the following screenshot:

Once we save our node, we should be able to see our images being displayed in the node view
as shown in the next screenshot. Note that we are displaying each image in its original form
as per our display settings:

See also
The two following recipes, Using Image styles to scale and crop images on the fly and Adding
lightbox support for images, further demonstrate how powerful and efficient image handling
can be in Drupal.

www.it-ebooks.info

http://www.it-ebooks.info/

Theming Fields

272

Using Image styles to scale and crop
images on the fly

Now that we have added image support to the company node type, we can look to style the
input images to make them more presentable. When customizing images, we inevitably find
ourselves performing a series of repeated steps such as cropping, scaling, resizing, and so
on, as per the requirements of our theme. It used to be the case that this procedure had to be
performed manually for each image or, if we were a little more proactive, performed through a
custom script to apply our changes on the fly. In Drupal 7, we can automate this process and
style our images in a non-invasive manner thanks to the tools provided by the Image module
in the form of Image styles.

An Image style is a term used to represent the series of operations that we are looking to
perform on the image. These operations are known as effects and by default include scale,
crop, scale and crop, resize, rotate, and desaturate. Contributed modules can extend this set
by leveraging the module's APIs to play with other more complex effects such as watermarking
and coloring. All this, of course, happens on the fly and makes use of a caching system that
makes this a truly elegant solution.

As we saw in the previous recipe, by default, the Image module displays images in their
original form. It also provides three other options of large, medium, and thumbnail that can
also be used. In this recipe, we will be looking at scaling and cropping the images using image
styles to render a perfectly square thumbnail for the company node type.

Getting ready
This is a follow-up to the previous recipe where we added image support to the company
node type. The Image module handles image operations through the use of either PHP's GD2
extension or ImageMagick. It is assumed that one of these libraries is installed. This can be
verified by visiting the Image toolkit configuration page at admin/config/media/image-
toolkit [Home | Administration | Configuration | Media | Image toolkit].

We will also be adding a smidgeon of CSS to pretty our images and will be doing so using
the mysite module created earlier in this book. The CSS will be added to its mysite.css file
which is assumed to be loaded through the module's hook_init() function during runtime.

How to do it...
Once enabled, the Image module provides a configuration interface at admin/config/
media/image-styles [Home | Administration | Configuration | Media | Image styles]
where the following steps are to be performed:

1. Click on the Add style link.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

273

2. Type company-thumbnail inside the Style name textfield.

3. Click the Create new style button to create it.

4. In the subsequent configuration screen, choose Scale and crop in the Effect table
and click on Add:

5. Change the Width and Height textfields to 100 which indicates the value in pixels.

6. Click on the Add effect button to update the style.

Now that our style has been created, we can look to apply it to our images:

7. Navigate to the company node type's Manage display configuration page at admin/
structure/types/manage/company/display [Home | Administration |
Structure | Content types | Company].

8. Set the Images field's gear icon which should open up further configuration options.

9. In the resulting form, change the Image style to company-thumbnail.

www.it-ebooks.info

http://www.it-ebooks.info/

Theming Fields

274

10. Click the Update button as seen in the following screenshot to register our change:

11. Click on the Save button to save our changes to the database.

Finally, we need to style our images to be displayed inline in a horizontal row to provide a
gallery-like feel:

12. Navigate to the mysite module's folder at sites/all/modules/mysite.

13. Within its css folder, open the file mysite.css in an editor.

14. Add the following rule to the file:
.field-name-field-images .field-items .field-item {
 display: inline;
 padding-right: 5px;
}

15. Save the file and exit the editor.

How it works...
Once the new preset has been applied, the Images field on a company node page will look
something like the following screenshot where five images have been uploaded:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

275

Looking at the location of each of these thumbnails, we should be able to see that they are
stored in a location such as sites/default/files/styles/company-thumbnail/
public/1.png while the originals reside in a standard location similar to sites/default/
files/1.png. This is due to the Image module's caching system which stores images
generated for each style in a dedicated subfolder. Consequently, the original image remains
untouched and can be used to generate more such styled images or modify existing ones. To
illustrate, if we now wanted to replace these thumbnails with larger versions of size 150x150
pixels, all we would need to do is either edit the company-thumbnail style to reflect this
change, or alternatively, create a new style named company-thumbnail-150 and display each
image using it.

See also
The next recipe, Adding lightbox support for images, uses the Image and Colorbox modules to
create a gallery-like presentation of our images.

Adding lightbox support for images
Lightbox plugins allow users to view magnified versions of clicked thumbnails in modal
dialogs on the same page. Coupled with easing animations and other attractive effects, they
make for engaging viewing.

While there are a number of modules that provide such functionality, we will be looking at the
Colorbox plugin and module in this recipe specifically as it is jQuery-based and supports the
Image module.

Getting ready
The Colorbox module (version 7.x-1.1 at the time of writing) can be downloaded from
http://drupal.org/project/colorbox. The project page also provides information
on installing the Colorbox plugin which summarily amounts to downloading it from http://
colorpowered.com/colorbox and extracting within sites/all/libraries.

We will also be continuing from where we left off in the previous recipe in which we uploaded
a number of images to a sample node.

How to do it...
Once enabled, the Colorbox module can be configured from admin/config/media/
colorbox [Home | Administration | Configuration | Media | Colorbox] as per the
following steps:

1. Set the value of the Image field gallery setting to Per field gallery.

www.it-ebooks.info

http://www.it-ebooks.info/

Theming Fields

276

2. Click the Save configuration button to save our changes:

Once Colorbox has been configured, it should now be available as an option in the
company node type's Manage display form.

3. Navigate to the Manage display form at admin/structure/types/
manage/company/display [Home | Administration | Structure |
Content types | Company].

4. For the Default display, change the Format settings for the Images field from Image
to Colorbox.

5. Click on the field's configuration (gear) icon which should load options for the
Colorbox formatter.

6. Set the Node image style value to company-thumbnail as we want the square
thumbnail to be used to display the images in the node view.

7. Choose None (original image) in the Colorbox image style drop down as we are just
going to display the original image without any modifications in the lightbox.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

277

8. Once the values have been set as shown in the following screenshot, click on the
Update button:

9. Finally, click on the Save button to save our changes.

How it works...
Now that the thumbnails are being formatted using Colorbox, clicking them should trigger the
lightbox as seen in the following screenshot:

Note that unlike the standard Image module style, we can actually see the Title attribute of
the image being displayed in the lightbox.

There's more...
The Colorbox module also provides further options to configure and style our lightbox display.

www.it-ebooks.info

http://www.it-ebooks.info/

Theming Fields

278

Advanced customizations using Colorbox
The Colorbox module provides an interface through its configuration page to theme and
tweak the JavaScript and CSS used in the display of the lightbox. While we can use one of the
provided preset styles such as Stockholm Syndrome in the next screenshot, we could also
just as easily create our own custom style and register it with our theme:

In the previous screenshot, choosing Custom will expose all the nuts and bolts pertaining to
the animation and style of the dialog.

Media modules
Another endeavor in providing image, audio, and video support to Drupal is the suite of
modules based on the Media module (http://drupal.org/project/media). While
they are still under heavy development at the time of writing this chapter, they build upon
the capabilities of the Image module and are set to be a feature-rich alternative. Of special
interest are the Media Browser which provides a library-like interface and promotes the reuse
of existing media content, and Media Gallery which provides a convenient option to create
image and other galleries. The latter can also, optionally, make use of the Colorbox plugin
seen in this recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

11
Views Theming

We will be covering the following recipes in this chapter:

 f Creating a simple View

 f Styling a node listing using a Grid display

 f Embedding a View inside a node template

 f Overriding the Views table style format

 f Creating a custom Views style plugin

Introduction
The Views module is the most popularly contributed module in the Drupal ecosystem, and
with good reason, as it has become one of the cornerstones of Drupal development. Along
with core features such as the Fields API as well as other modules such as Panels, it has
contributed immensely towards Drupal's reputation of being an ideal tool for rapid site
development and deployment.

Views, at its most fundamental level is a database query builder. It allows us to construct
database queries using a user-friendly interface, and subsequently, present the result to the
user in a variety of manners. The query builder supports a number of components including:

 f Filters which conditionally refine the query to return a more accurate result set. For
example, as we will customarily only require nodes that have been published, we
can add a filter to the View stating that the result set should only contain published
nodes. They can optionally also be exposed to the user as a form element.

 f Contextual filters which are usually dynamic parameters passed to the query at
runtime such as the elements of the URL of the page being displayed.

 f Relationships which are usually used to connect two different database tables
together based on the relationship between two of their elements.

www.it-ebooks.info

http://www.it-ebooks.info/

Views Theming

280

 f Field specification which describes the fields to be returned as part of the result set.

 f Sorting support which specifies how the results are to be sorted.

 f Pagination support which limits the number of results returned.

 f Support for distinct results to limit duplicates in the result set.

Views takes the returned results and runs them through its styling component which is built atop
the Drupal theme system. The module supports a variety of styling options through the use of
style formats which allow representing the results as tables, lists, and so on. Moreover, all style
formats can be overridden from Drupal's theme layer just as we have seen in earlier chapters.

Additionally, Views allows administrators to create multiple Displays for each View. Displays
allow the efficient representation of the same query in a variety of different ways. For example,
a list of nodes can be presented both as content on a page or as content in a block, and so on.

The project page for the Views module is available at http://drupal.org/project/
views. It is highly recommended that the Advanced Help module is installed along with
Views. It can be downloaded from http://drupal.org/project/advanced_help and
provides extensive and easily accessible contextual help all across this and other modules,
if configured. In the following screenshot, the question mark icons all represent links to
documentation specific to the associated elements:

In this chapter, we will primarily be looking at the Views module from a theming point of view
with particular attention being paid to overriding the default styling options provided. It is
highly recommended that users looking to theme Views also familiarize themselves with the
Drupal theming system prior to diving in.

The version of Views covered in this chapter is 7.x-3.0-rc1, the latest
release at the time of writing. Considering the advanced status of the
release, the final interface is not expected to be drastically different to
the one being covered in the following recipes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

281

Creating a simple View
In this recipe, we will look at the ease with which we can create a simple unformatted
node listing using the Views module. This View, which will represent a list of products as a
rudimentary gallery, will be used as an example later in this chapter.

Getting ready
The View we will be creating will display a list of nodes of a custom node type named
product. Besides the standard fields of Title and Body, this node type also contains two
additional fields named Image and Price which are of type Image and Number (Decimal)
respectively, as the following screenshot will attest. It is assumed that these field modules
have been enabled along with any dependencies.

Once the product node type has been created, sample products and product images will also
need to be added for the purpose of this recipe.

How to do it...
To create the View, navigate to the Views management page at admin/structure/views
[Home | Administration | Structure | Views] and perform the following steps:

1. Click on the Add new view link at the top of the page.

2. Set the View name to Product Gallery which should also automatically set the
View's internal machine name to product_gallery.

www.it-ebooks.info

http://www.it-ebooks.info/

Views Theming

282

3. Check the Description checkbox and set the View description field to A
representation of all product nodes.

4. As seen in the previous screenshot, the default options are acceptable for the
remainder of the form as we will be editing them further later on. However, note that
the Path where we can access this View is automatically set to product-gallery.

5. Click on the Continue and edit button.

6. In the ensuing View management page, click on Save to complete the
creation process.

The Views administration interface uses JavaScript and Ajax to
allow changes to be made in real time without frequent page
refreshes. However, any changes made are not saved until the
Save button is clicked.

With our View created, we can proceed to customize it further:

7. In the Filter criteria section, click on the Add link to add a filter.

8. In the Add filter criteria interface which pops up, select Content in the Filter
drop down.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

283

9. Select Content: Type from the list of options below as shown in the
following screenshot:

Note that we are not choosing Content: Published in this window as
it has already been selected when we created the View. We can see
this filter already added at the bottom of the previous screenshot.

10. Click on Add and configure filter criteria to add the filters.

11. In the resulting configuration screen for the Content: Type filter, select the Product
type as shown in the following screenshot and click on Apply (all displays):

www.it-ebooks.info

http://www.it-ebooks.info/

Views Theming

284

12. Click the Save button to save the changes to the View.

13. In the Format section, click on the link titled Content.

14. In the ensuing pop up, change the row style to Fields as shown in the next screenshot
and click on Apply (all displays):

15. Similarly, click on Apply (all displays) in the subsequent Row style options
window as well.

16. Next, in the Fields section, which should be populated with a single field, Content:
Title, click the Add link to add the fields to display.

17. In the resulting Add fields form, select Content in the Filter drop down.

18. Check the two fields that are part of the Product node type, namely Content: Image
and Content: Price as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

285

19. Click on Add and configure fields.

20. In the configuration screen for the Image field, set the Image style option to
thumbnail and click on the Apply (all displays) button:

21. Accept the default configuration options for the Price field and click on Apply to
register our changes.

22. Finally, in the Sort criteria section, click on the default sort option which should be
Post date (desc) and remove it by clicking on Remove in its configuration pop up.

23. Add a new Sort criteria by clicking on its Add link.

24. Choose Content: Title and click on Add and configure sort criteria.

25. Select the sorting direction, ascending or descending, and click on the
Apply (all displays) button.

26. Finally, click on the Save button to save the View.

www.it-ebooks.info

http://www.it-ebooks.info/

Views Theming

286

How it works...
Once configured, the View's configuration page should look similar to following screenshot:

We can clearly see the three fields— Content: Title, Content: Image, and Content: Price—as
well as the two filters—Content: Type and Content: Published—and the lone Sort criteria,
Content: Title (asc). Each of these elements can be clicked to reach its configuration screen,
if available.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

287

As we are, by default, using a page display for our View, we can access it at the configured
URL product-list. As the View uses the Unformatted style by default, the output is a
simple collection of fields as shown in the following screenshot:

The Unformatted style option is useful in cases where the styling is customized entirely
through overridden template files. We will be investigating this and other styling options
as we go along in this chapter.

See also
While our View is currently in an unformatted state, the next recipe Styling a node listing using
a Grid display, lists the steps required to style a View.

Styling a node listing using a Grid display
In this recipe, we will look at the ease with which we can represent the node View created in
the previous recipe as a gallery by styling the View as a grid. A grid will allow us to achieve a
gallery-like feel with each cell in a table layout representing a row from the result set.

www.it-ebooks.info

http://www.it-ebooks.info/

Views Theming

288

Getting ready
We will be using the product_gallery View created earlier in the previous recipe.
Additionally, we will need to use the Image module, as we saw in the last chapter, to
customize the thumbnail for the Image field specifically for use in the product node type.
To do so, navigate to admin/config/media/image-styles [Home | Administration |
Configuration | Media | Image Styles] and add an Image style named product_thumb
which performs a Scale and Crop operation to create a thumbnail of size 150x150 pixels as
shown in the following screenshot:

This recipe also makes use of the myzen theme created earlier in this book to hold our
CSS customizations.

How to do it...
To achieve a gallery-like representation of the product nodes, we will be adding a new display
to the product_gallery View as follows:

1. Browse to the Views administration page at admin/structure/views [Home |
Administration | Structure | Views].

2. Locate the product_gallery View and click on its edit link.

3. The View management interface should currently have a single Display named
Page listed at the top. Click on the Add link next to it and choose to create another
Page display.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

289

4. Change the name of this display from Page to Gallery by clicking on the Display
Name value as shown in the following screenshot:

5. Next, in the Format section, click on Unformatted list to change the style format
being used to style this display.

6. In the resulting configuration form, first declare the scope of our changes through the
drop down at the top. In this case, as we want to override the default settings with our
own, select This page (override).

Overriding allows us to adjust and tweak the current display to provide
a different representation of the results when compared to the default
display. If this option was not overridden here, then our changes would
have inadvertently also affected the other Page display. Virtually every
configurable option in a display can be overridden to our satisfaction.

www.it-ebooks.info

http://www.it-ebooks.info/

Views Theming

290

7. Change the style plugin to Grid as in the following screenshot:

8. Click the Apply (this display) button to register our change.

9. In the Grid plugin's configuration form, leave the Number of columns set to 4 and the
Alignment field set to Horizontal.

10. Click on Apply (this display) to register our changes.

11. As this is a new page display, we will also need to specify a URL for it. Click on
the Path: / link under Page settings.

12. Set the path to product-gallery and click on Apply.

13. Click on Save to save our changes to the View.

Make sure that we are working on the Gallery display any time the
page is refreshed.

With the style plugin set to Grid, we can go ahead and also customize the Image field to use
our custom Image style solely for the Gallery display:

14. In the Fields section, click on the arrow next to its add link and choose rearrange.

15. Choose This page (override) in the display drop down at the top so that we are only
affecting the Gallery display.

16. Rearrange the field order so that the image is at the top followed by the product title
and its price.

17. Click on Apply (this display) to effect our changes.

18. Back in the Fields section, click on Content: Image (Image) which should represent
the product image.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

291

19. In the resulting configuration form, choose For This page (override) in the drop
down at the top to ensure that the changes made to the fields are local to the
Gallery display only.

20. As we do not want a label, uncheck the Create a label checkbox.

21. Change the Image style to product_thumb as shown in the next screenshot:

22. Click on Apply (this display) to register our changes.

23. Similarly, disable the label for the Price field as well.

24. Once that has been done, click on the Save button to save our changes.

Finally, we can add a little CSS to position the grid and its contents at the center of the page:

25. Browse to the myzen theme's folder at sites/all/themes/myzen.

26. Navigate into its css subfolder and locate views-styles.css which is loaded by
the theme through its .info file.

27. Open this file in an editor and add the following rules to it:
/* Product gallery */
.view-product-gallery table {
 width: 80%;
 margin: auto;
 text-align: center;
}

28. Save the file and exit the editor.

www.it-ebooks.info

http://www.it-ebooks.info/

Views Theming

292

How it works...
Once our changes to the Gallery display have been saved, the management page should look
similar to the following screenshot:

Subsequently, visiting the View's URL at product-gallery should result in a gallery-like
representation of the product nodes as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

293

There's more...
Views comes with a number of other styling options. While Grids allow us to lay out our
content as an HTML table purely for visual reasons, the Table plugin allows us to represent the
contents of nodes in standard tabular form. Views also allows us to adjust the markup used to
display fields as well as the View directly from its management interface.

Styling as a table
A simple swap of the format style plugin being used from Grid to Table will provide a standard
tabular representation of the nodes. This can be done by clicking on Format: Grid and
changing the plugin to Table in the resulting configuration screen. The following screenshot
displays the eventual View page as a sortable table:

Adding custom CSS classes to the View
While the Views module routinely adds well-structured class names to most of its markup, it
is sometimes necessary to add our own custom classes. This can be done by clicking on the
CSS class link within the Advanced section. In this recipe, we have made use of the default
class name .view-product-gallery to target the table used by the Gallery display.

Adjusting markup for fields
Fields also, just like the actual View, provide us with an opportunity to adjust their markup.
To do so, click on the appropriate field within the Fields section and in the ensuing window,
look within the Style settings fieldset. Options should be provided to override the default
HTML for the labels, values, or the overall fields themselves. CSS classes can be similarly
injected as well.

www.it-ebooks.info

http://www.it-ebooks.info/

Views Theming

294

Embedding a View inside a node template
Views usually tend to be output as pages, blocks, and other displays. In this recipe, we will be
looking at taking this a step further, by manually embedding a View inside a node template
using a smidgeon of code. To be more precise, we will be taking the backlinks View which
comes with the Views module and embedding it inside a theme's node template file to provide
a list of related content which links to the node currently being displayed.

Backlinks provide a list of nodes that link to the current node. For example, if in the
content of node/123, we include a link to node/456, node/123 is considered to be a
backlink of node/456.

Getting ready
As we are going to be embedding the backlinks View, it is assumed that it has been enabled.
Additionally, for backlinks to be available, the content of the site will need to link to each other.
In other words, sample nodes will need to be created that link to other nodes in the site to
allow backlinks to be cataloged.

Furthermore, as backlinks are generated by the Search module, it is imperative that it is
enabled and that the site is indexed completely. This can be ascertained by visiting the
search module's configuration page at admin/config/search/settings [Home |
Administration | Configuration | Search and metadata | Search settings].

We will be using the myzen theme created earlier in this book to hold our customizations. It is
assumed that a node template file already exists within the theme's templates folder.

How to do it...
Once the backlinks View has been enabled from the Views management page at admin/
structure/views [Home | Administration | Structure | Views], we should be able to
confirm that it makes available two displays by default. As shown in the following screenshot,
the first one is a Page display which manifests itself as a tab on each node page, and the
second one, titled What links here, is a block display which can be managed through the
Drupal's block administration pages:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

295

A What links here tab should appear at the top of each node's page just by enabling the
View. This tab will, as shown in the following screenshot, list all the backlinks for the node
being viewed. The block will, similarly, display the same links in a configurable block:

Rather than relying on a menu tab or an isolated block, we will be looking to tastefully embed
the View directly inside a node. This can be done through the following steps:

1. Browse to the myzen theme folder at sites/all/themes/myzen.

2. Navigate into its templates subfolder.

3. Locate node.tpl.php and open it in an editor.

4. Look for code that deals with the display of content such as the following:
<div class="content"<?php print $content_attributes; ?>>
 <?php
 // We hide the comments and links now so that we can render
 // them later.
 hide($content['comments']);
 hide($content['links']);

 print render($content);

 ?>
</div>

www.it-ebooks.info

http://www.it-ebooks.info/

Views Theming

296

5. Add the embed code to this block so that it now looks similar to the following:
<div class="content"<?php print $content_attributes; ?>>
 <?php
 // We hide the comments and links now so that we can render
 // them later.
 hide($content['comments']);
 hide($content['links']);

 // Only display backlinks in full node views.

 if (!$teaser) {

 ?>

 <div class="backlinks">

 <h3>What links here</h3>

 <?php print views_embed_view('backlinks', 'block');?>

 </div>

 <?php

 }

 print render($content);
 ?>
</div>

The views_embed_view() call returns the block display of the backlinks View.

6. Save the file and exit the editor.

7. Browse back up a level and into the css folder.

8. Locate the views-styles.css file and open it in an editor.

9. Add the following rules to the file:
/* Backlinks */
.backlinks {
 float: right;
 display: inline;
 padding: 0 1em;
 margin: 0 0 0.5em 1em;
 border-left: dashed 1px;
}

.backlinks h3 {
 margin-top: 0;
 padding-top: 0;
}

.backlinks ul {
 padding-left: 1.2em;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

297

.backlinks ul li {
 list-style: square;
}

views-styles.css is, by default, automatically loaded by the theme through its
.info file.

10. Save the file and exit the editor.

11. Clear the Drupal cache if necessary.

How it works...
Refreshing the node page should now display the node's backlinks along with its contents as
in the following screenshot:

We can see that the backlinks are identical to what was displayed in the What links here tab
we saw earlier. Furthermore, thanks to our CSS, we have floated the entire block to the right
and have displayed it inline, thereby allowing the content to flow around it. A simple border
and other tweaks and nudges provide the finishing touch.

As we are embedding the What links here block directly into the node
content, displaying the tab is unnecessary. As this tab is handled by the
backlinks View's Page display, simply deleting the display or, alternatively,
playing with its access settings or similar should do the trick.

There's more...
There are also a couple of alternative approaches which can be used to embed Views.

www.it-ebooks.info

http://www.it-ebooks.info/

Views Theming

298

views_embed_view() and View titles
In this recipe, we have resorted to manually adding the View's title along with the
views_embed_view() call, as the function, by design, only returns the content of the View.
If it is necessary that the View's title is also dynamically inserted, then we will need to resort to
the relatively longer approach as follows:

<div class="content"<?php print $content_attributes; ?>>
 <?php
 // We hide the comments and links now so that we can render
 // them later.
 hide($content['comments']);
 hide($content['links']);
 // Only display backlinks in full node views.

 if (!$teaser) {

 ?>

 <div class="backlinks">
 <?php
 $view = views_get_view('backlinks');
 $view_content = $view->preview('block');
 $view_title = $view->get_title();
 ?>
 <h3><?php print $view_title; ?></h3>
 <?php print $view_content; ?>
 <?php

 }

 print render($content);
 ?>
</div>

Embedding Views using the Viewfield module
While it is simple enough to embed code directly into template files or elsewhere in the theme,
the Viewfield module, which can be downloaded from http://drupal.org/project/
viewfield, provides a more straightforward alternative. It exposes all available Views
through a field that can be added to node type, thereby allowing a View to be embedded in
a node display just like any other field.

See also
Views can also be embedded within Panels as detailed in the Chapter 12, Rapid Layouts with
Panels recipe, Embedding content in a Panel.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

299

Overriding the Views table style format
In this recipe, we will override the Views template used to render table styles. In particular,
we will be overriding the standard table used to display the Tracker View in order to allow the
spanning of rows of the same node type.

Getting ready
The Views module comes with a default View named Tracker which provides the same
functionality as the Tracker module by providing a table listing nodes that the current user
has either created or participated in. This View can be enabled from the Views administration
page at admin/structure/views [Home | Administration | Structure | Views]. If it
has already been modified, it might be best to revert the view to its default settings prior
to continuing.

As we will be overriding template files in this recipe, we will be making use of the myzen theme
created earlier in this book.

How to do it...
The Tracker View, once enabled, provides a table of pertinent content as shown in the
following screenshot, which can be accessed at the URL tracker:

Looking at the markup of a typical row as displayed in the following block of code, we can see
that each row contains a td element which specifies the node type of the row. We can also
see in the previous screenshot that the Type for multiple rows is often the same and is rather
needlessly repeated.

www.it-ebooks.info

http://www.it-ebooks.info/

Views Theming

300

<tr class="odd views-row-first">
 <td class="views-field views-field-type">Product</td>

 <td class="views-field views-field-title">
 Product 08</td>
 <td class="views-field views-field-name">
 <a class="username" title="View user profile."
 href="/user/1">Karthik</td>
 <td class="views-field views-field-comment-count"></td>
 <td class="views-field views-field-last-comment-timestamp
 active">Thu, 09/08/2011 – 02:46</td>
</tr>

We are going to look at overriding the template used to display this table so that multiple rows
with the same node type are replaced by a single field spanning multiple rows.

While we would normally use the Theme developer module to analyze the template structure
used in rendering the table, the Views module provides a more straightforward alternative.
The default template can be overridden by following these steps:

1. Browse to the Views administration page at admin/structure/views
[Home | Administration | Structure | Views].

2. Locate the Tracker View and click on its Edit link.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

301

3. Within the display's Advanced fieldset, click on the Theme: Information link seen
in the previous screenshot. This should display a list of templates and candidate
template names used to render the View and each of its fields.

4. Click on the Style output link seen in the preceding screenshot to obtain the default
template code for this template. It should be similar to the following:
<?php
 /**
 * @file views-view-table.tpl.php
 * Template to display a view as a table.
 *
 * - $title : The title of this group of rows. May be empty.
 * - $header: An array of header labels keyed by field id.
 * - $header_classes: An array of header classes keyed by field
 * id.
 * - $fields: An array of CSS IDs to use for each field id.
 * - $class: A class or classes to apply to the table, based on
 * settings.
 * - $row_classes: An array of classes to apply to each row,
 * indexed by row.
 * number. This matches the index in $rows.
 * - $rows: An array of row items. Each row is an array of
 * content.
 * $rows are keyed by row number, fields within rows are keyed
 * by field ID.
 * - $field_classes: An array of classes to apply to each field,
 * indexed by
 * field id, then row number. This matches the index in $rows.
 * @ingroup views_templates

www.it-ebooks.info

http://www.it-ebooks.info/

Views Theming

302

 */
?>
<table <?php if ($classes) { print 'class="'. $classes . '" '; }
 ?><?php print $attributes; ?>>
 <?php if (!empty($title)) : ?>
 <caption><?php print $title; ?></caption>
 <?php endif; ?>
 <thead>
 <tr>
 <?php foreach ($header as $field => $label): ?>
 <th <?php if ($header_classes[$field])
 { print 'class="'. $header_classes[$field] . '" '; } ?>>
 <?php print $label; ?>
 </th>
 <?php endforeach; ?>
 </tr>
 </thead>
 <tbody>
 <?php foreach ($rows as $count => $row): ?>

 <tr class="<?php print implode(' ', $row_classes[$count]); ?>">

 <?php foreach ($row as $field => $content): ?>

 <td <?php if ($field_classes[$field][$count])
 { print 'class="'. $field_classes[$field][$count] . '" ';
 } ?><?php print drupal_attributes
 ($field_attributes[$field][$count]); ?>>

 <?php print $content; ?>

 </td>

 <?php endforeach; ?>

 </tr>

 <?php endforeach; ?>
 </tbody>
</table>

The code that we just saw confirms that this template is the one which is responsible
for the markup used for displaying the table. The highlighted lines indicate the code
that we will be looking to modify to our needs.

5. Copy the entire block of code to the clipboard.

6. Click on the Back to Theming information link at the top of the pop-up window to get
back to the template file list.

7. Out of the available candidate template file names assigned to the Style output
template, choose views-view-table--tracker--page.tpl.php which by specifically
targeting the table style for the Tracker View is the most suitable for our case.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

303

8. In the local filesystem, browse to the myzen theme folder at sites/all/themes/
myzen.

9. Navigate into its templates subfolder.

10. Create a new file with the chosen candidate filename:
views-view-table--tracker--page.tpl.php.

11. Open this file in an editor and paste the code copied earlier into it.

Alternatively, we could have also copied the file views-view-
table.tpl.php from the Views module's theme folder at
sites/all/modules/views/theme and pasted it into the
myzen theme's templates folder, and subsequently renamed it
to views-view-table--tracker--page.tpl.php.

12. Amend the code as per the highlighted segments so that the file now looks similar
to the following:

<?php
 /**
 * @file views-view-table.tpl.php
 * Template to display a view as a table.
 *
 * - $title : The title of this group of rows. May be empty.
 * - $header: An array of header labels keyed by field id.
 * - $header_classes: An array of header classes keyed by field
 * id.
 * - $fields: An array of CSS IDs to use for each field id.
 * - $class: A class or classes to apply to the table, based on
 * settings.
 * - $row_classes: An array of classes to apply to each row,
 * indexed by row.
 * number. This matches the index in $rows.
 * - $rows: An array of row items. Each row is an array of
 * content.
 * $rows are keyed by row number, fields within rows are keyed
 * by field ID.
 * - $field_classes: An array of classes to apply to each field,
 * indexed by
 * field id, then row number. This matches the index in $rows.
 * @ingroup views_templates
 */

 // Calculate rowspans and store in an array.
 // This code should ideally be inside a preprocess
 // function.

www.it-ebooks.info

http://www.it-ebooks.info/

Views Theming

304

 foreach ($rows as $row) {
 // Initialize tracking variables.
 if (!isset($groups)) {
 $groups = array();
 $current = $row['type'];
 $count = 0;
 $total = 0;
 }

 if ($row['type'] == $current) {
 $count++;
 }
 else {
 $current = $row['type'];
 $groups[$total] = $count;
 $total += $count;
 $count = 1;
 }
 }
 $groups[$total] = $count;

?>
<table <?php if ($classes) { print 'class="'. $classes . '" '; }
 ?><?php print $attributes; ?>>
 <?php if (!empty($title)) : ?>
 <caption><?php print $title; ?></caption>
 <?php endif; ?>
 <thead>
 <tr>
 <?php foreach ($header as $field => $label): ?>
 <th <?php if ($header_classes[$field])
 { print 'class="'.$header_classes[$field] . '" '; } ?>>
 <?php print $label; ?>
 </th>
 <?php endforeach; ?>
 </tr>
 </thead>
 <tbody>
 <?php foreach ($rows as $count => $row): ?>

 <tr class="<?php print implode(' ', $row_classes[$count]); ?>">

 <?php foreach ($row as $field => $content):

 // Only group the type column.

 if ($field == 'type'):

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

305

 // Add rowspan attribute only if the current

 // row is the first of a series. If not, do not

 // display any content.

 if (isset($groups[$count])): ?>

 <td class="views-field views-field-<?php print
 $fields[$field]; ?>"
 rowspan="<?php print $groups[$count]; ?>">

 <?php print $content; ?>

 </td>

 <?php endif; ?>

 <?php else: ?>

 <td class="views-field views-field-<?php print
 $fields[$field]; ?>">

 <?php print $content; ?>

 </td>

 <?php endif; ?>

 <?php endforeach; ?>

 </tr>

 <?php endforeach; ?>
 </tbody>
</table>

13. Save the file and exit the editor.

14. Back in the browser, click on Rescan template files at the bottom of the Theming
information section. This is the equivalent of clearing Drupal's cache which should be
performed as a matter of course whenever template files are newly introduced
or removed.

15. Note that views-view-table--tracker--page.tpl.php is now in bold next to the Style
output link as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Views Theming

306

16. Click on the OK button.

17. Click the Save button to save any changes to the View.

How it works...
Refreshing the tracker page should now display a cleaner representation of its contents with
node types occupying multiple rows as in the following screenshot:

Looking at the PHP used in the template file, we can see that we made two passes through
the $rows array. The first iteration was expressly used to analyze the node type of each
row and to create the $groups array which was used to keep track of contiguous blocks of
identical node types. Using this information in the second iteration, we selectively displayed
the type only once for each of these contiguous blocks and through the use of the rowspan
attribute achieved our grouping effect.

See also
When none of the available styles is able to fulfill our requirements, we will have no other
recourse except in Creating a custom Views style format plugin, the final recipe in this chapter.

Creating a custom Views style plugin
Views style plugins such as tables and lists are used to render the View in a variety of display
formats. The inbuilt plugins are often all that are needed for basic displays and the ability to
override their template files through the theme tends to be a straightforward answer for most
customization requirements. However, more complex display scenarios, especially those that
are frequently reused, necessitate a better solution – a custom style plugin.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

307

In this recipe, we will create a custom style plugin which will render a View as an HTML
definition list and use it to display a list of taxonomy terms along with their descriptions.

Getting ready
Create a View named Definitions to display taxonomy terms with two of their fields, the term
name and the term description, and optionally also takes the vocabulary ID as an argument
as shown in the following screenshot:

I

As shown in the previous screenshot, the display has been made accessible at the
URL definitions.

We will be using the mysite module created earlier in this book to hold our custom
Views style plugin.

How to do it...
Browse to the mysite module folder at sites/all/modules/mysite and perform the
following steps:

1. Open the file mysite.module in an editor and add the following code which
declares to the Views module that we are going to be specifying some customizations
from within a folder named views:
/**
 * Implements hook_views_api().
 */

www.it-ebooks.info

http://www.it-ebooks.info/

Views Theming

308

function mysite_views_api() {
 return array(
 'api' => 3.0,
 'path' => drupal_get_path('module', 'mysite') . '/views'
);
}

2. Save the file and exit the editor.

3. Next, open mysite.info and add the following lines to it to ensure that our plugin
files are loaded by Drupal:
files[] = views/mysite.views.inc
files[] = views/views_plugin_style_dlist.inc

4. Save the file and exit the editor.

5. Create a folder named views.

6. Within it, create four files named dlist.views.theme.inc, mysite.
views.inc, views_plugin_style_dlist.inc, and views-view-dlist
.tpl.php respectively.

The term dlist—short for definition list—in the previous
filenames indicates the internal name for our new plugin.

7. Add the following PHP which declares our new plugin to the file mysite.views.inc:
/**
 * Implements hook_views_plugins().
 */
function mysite_views_plugins() {
 return array(
 'style' => array(
 'dlist' => array(
 'title' => t('Definition list'),
 'type' => 'normal',
 'path' => drupal_get_path('module', 'mysite') . '/views',
 'handler' => 'views_plugin_style_dlist',
 'uses fields' => TRUE,
 'uses row plugin' => FALSE,
 'uses options' => TRUE,
 'uses grouping' => FALSE,
 'theme' => 'views_view_dlist',
 'theme path' => drupal_get_path('module', 'mysite') .
 '/views',

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

309

 'theme file' => 'dlist.views.theme.inc',
 'help' => t('Render a view as a definition list.')
)
)
);
}

8. Add the following PHP code which adds custom options to our plugin to the file
views_plugin_style_dlist.inc:
/**
 * Style plugin to render each item in a definition list.
 *
 * @ingroup views_style_plugins
 */
class views_plugin_style_dlist extends views_plugin_style {
 function options_form(&$form, &$form_state) {
 parent::options_form($form, $form_state);

 // Create an array of allowed columns.
 $field_names = $this->display->handler->get_field_labels();

 // The term field indicates the definition term.
 $form['term'] = array(
 '#type' => 'select',
 '#title' => t('Term field for the definition list
 <DT>'),
 '#options' => $field_names,
 '#default_value' => $this->options['ter);

 // The definition field indicates the definition content.
 $form['definition'] = array(
 '#type' => 'select',
 '#title' => t('Definition field for the definition list
 <DD>'),
 '#options' => $field_names,
 '#default_value' => $this->options['definition']
);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Views Theming

310

9. Add the following PHP code which preprocesses the variables made available to the
template to the file dlist.views.theme.inc:
/**
 * Make variables available to the definition list template.
 * file.
 */
function template_preprocess_views_view_dlist(&$vars) {
 template_preprocess_views_view_unformatted($vars);
 // Filter fields to only contain the term and definition.
 $vars['rows'] = $vars['view']->style_plugin->rendered_fields;
}

10. Add the following theme markup to the file views-view-dlist.tpl.php:
<div class="definition-list">
 <?php if (!empty($title)): ?>
 <h3><?php print $title; ?></h3>
 <?php endif; ?>
 <dl>
 <?php foreach ($rows as $id => $row): ?>
 <dt class="views-field views-field-term-<?php print $id;
 ?>">
 <?php print $row[$options['term']]; ?>
 </dt>
 <dd class="views-field views-field-definition-<?php print
 $id; ?>">
 <?php print $row[$options['definition']]; ?>
 </dd>
 <?php endforeach; ?>
 </dl>
</div>

This file can eventually be overridden just like any other template file.

11. Save all the files and exit their editors.

12. Rebuild the theme registry by clearing the Drupal cache.

13. Navigate to the Views management page at admin/structure/views [Home |
Administration | Structure | Views].

14. Locate the custom View named Definitions and click on its Edit link.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

311

15. Edit the displays style setting by clicking on its current style, which is by default set to
Unformatted list:

16. Set the style to the newly available Definition list option as in the
previous screenshot.

17. Click on Apply (all displays) which should bring up the style's configuration page.

18. As shown in the previous screenshot, set the Term field for the definition list <DT>
to Taxonomy term: Name and the Definition field for the definition list <DD> to
Taxonomy term: Term description.

19. Click on Apply (all displays) again.

20. Finally, click on Save to save the changes to the View.

www.it-ebooks.info

http://www.it-ebooks.info/

Views Theming

312

How it works...
Accessing the page display at URL definitions/3 where 3 represents a vocabulary ID
should now display the terms for said vocabulary along with their descriptions as a definition
list. The following screenshot displays the View with the terms listed first and the definitions
indented appropriately below:

Generally speaking, the key to constructing a custom plugin is to declare it correctly. Looking
at the declaration of the dlist plugin in mysite_views_plugins(), we can see that there
are a myriad options available to be set as per our requirements:

/**
 * Implements hook_views_plugins().
 */
function mysite_views_plugins() {
 return array(
 'style' => array(
 'dlist' => array(
 'title' => t('Definition list'),
 'type' => 'normal',
 'path' => drupal_get_path('module', 'mysite') . '/views',
 'handler' => 'views_plugin_style_dlist',
 'uses fields' => TRUE,
 'uses row plugin' => FALSE,
 'uses options' => TRUE,
 'uses grouping' => FALSE,

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

313

 'theme' => 'views_view_dlist',
 'theme path' => drupal_get_path('module', 'mysite') .
 '/views',
 'theme file' => 'dlist.views.theme.inc',
 'help' => t('Render a view as a definition list.')
)
)
);
}

For example, we have set the path and theme path values to point to the views folder
within the mysite module as that is where we have located our files. We have also indicated
that the plugin uses fields from the View and also uses options to specify the term and
definition fields to be used during output.

More information on the plugin API can be gleaned from the Views documentation which can
be accessed by installing the Advanced Help module. Furthermore, browsing through the
code pertaining to the inbuilt plugins tends to be very educational as well. These files can be
found within the Views module's plugins and theme subfolders.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

12
Rapid Layouts

with Panels

We will be covering the following recipes in this chapter:

 f Using Panels to create a front-page layout

 f Embedding content in a panel

 f Styling a panel with rounded corners

 f Creating custom styles with the Stylizer module

 f Changing the layout of a panel

 f Creating a custom panel layout

 f Replacing the site contact page with a panel

Introduction
The Panels module is, at its heart, a visual tool for layout design. Layered on top of this core is
a sometimes overwhelming myriad of features and suite of modules that give a new meaning
to flexibility and ease of use. In this chapter, we will be concentrating on the layout and
theming aspects of this module.

www.it-ebooks.info

http://www.it-ebooks.info/

Rapid Layouts with Panels

316

Panels are useful for everything from creating complex landing pages such as the front page
of a site, to overriding system pages and replacing them with a custom layout. Besides being
used to lay out the content of a page, they can just as easily be embedded within nodes or
even within other panels. This enables us to design and implement intricate layouts virtually
at the click of a few buttons:

The previous screenshot illustrates a typical panel layout. In this screenshot, Top, Left side,
Right side, and Bottom all represent regions within the panel. Each region can contain an
unlimited number of panes which are not restricted in what they can contain. For example,
the Top region contains two panes named Site slogan and Welcome message, which as their
names suggest, display the site slogan and a custom welcome message. On the other hand,
the panes within the Left side region contain two nodes in teaser form. Lastly, the Right side
region contains a View that mimics the functionality of the Tracker module.

The layout designer supports dragging and dropping panes from one region to another and
within the same region. In other words, reordering or reorganizing the content within a layout
becomes a painless exercise. The content itself can be chosen from a variety of sources.
For example, in the previous screenshot, we have embedded site elements, nodes, custom
content, and even a view.

Panels also come with style plugins which can be applied to entire regions or to individual
panes. Furthermore, we can tweak region and pane properties such as their CSS classes to
assist during any additional theming or for use by JavaScript.

All in all, Panels are a lot of fun as the recipes that follow will demonstrate!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

317

The version of Panels covered in this chapter is 7.x-3.0-dev, the latest
development release after alpha3 at the time of writing. The interface for
future releases of the 7.x-3 branch should hopefully be largely unchanged.

Using Panels to create a front-page layout
Panels are useful in a variety of scenarios. But, their most common use is in implementing
complex front page designs which draw input from a number of sources and attempt to
display them in a coherent layout.

In this recipe, we will look at using Panels to create a basic front-page layout.

Getting ready
It is assumed that the Panels module and its dependencies, which include the Chaos tools
and the Page manager modules, are installed and enabled. The Panels module controls
access to its features via the Permissions page at admin/people/permissions [Home
| Administration | People | Permissions]. In cases where the Panels administrator is not
logged in as user ID 1, it is assumed that relevant permissions for the Panels module are
assigned appropriately.

How to do it...
The following steps are performed on the Panels management page at admin/structure/
panels [Home | Administration | Structure | Panels].

1. Under the Page Wizards heading, click on Landing Page.

2. In the Landing page wizard form, set the Administrative title to Frontpage
dashboard.

3. If the title is not sufficiently indicative of the type of panel we are creating, add a
description in the Administrative description textarea.

www.it-ebooks.info

http://www.it-ebooks.info/

Rapid Layouts with Panels

318

4. Configure the URL where the panel is to be accessible by setting the Path to
dashboard as shown in the following screenshot:

5. If need be, add a menu entry for this landing page. Front pages usually do not require
this option as the Home links tend to suffice.

6. Within the layout Category drop down, choose Columns: 2.

The Builder category allows us to create our own layouts as we
will see later on in this chapter. The other categories are layout
groups provided either by the Panels module or by way of plugins
registered by other modules or themes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

319

7. From the available layouts, select the one titled Two column stacked, which is a
simpe and yet flexible layout.

8. Click on the Continue button.

9. On the next step, set the Title type to No title as our front page requires no title:

10. Click on the Finish button as displayed in the previous screenshot to save our
changes.

11. Revisit the Panels administration page at admin/structure/panels [Home
| Administration | Structure | Panels] and locate our newly created panel,
Frontpage dashboard, in the Manage Pages table and click on its Edit link.

12. In the resulting interface, click on the General tab on the left.

13. As the next screenshot depicts, check the Disable Drupal blocks/regions option as
we would like our front page to be devoid of any extraneous information:

14. Click on the Update and save button to register our change.

15. To set our new panel up as the front page of the site, visit admin/config/system/
site-information [Home | Administration | Configuration | System |
Site information].

www.it-ebooks.info

http://www.it-ebooks.info/

Rapid Layouts with Panels

320

16. As shown in the next screenshot, set the value for the Default front page textfield
to dashboard:

17. Click on the Save configuration button.

How it works...
The Content tab of the Panel management page should now look something like this:

We can confirm that the regions conform to the chosen two-column stacked design. Each
of Top, Left side, Right side, and Bottom are the regions of the panel layout that can each
contain one or more panes added by way of the configuration icons available in the form of
gears pinned to the top left of each region.

Browsing to the front page of the site or the URL dashboard should now display a valid, albeit
empty page, with empty sidebars as we have chosen to hide our blocks for this layout.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

321

See also
If we are not content with the layout chosen for a panel, we can either look at the Changing
the layout of a panel recipe or, alternatively, at the Creating a custom panel layout recipe.
Once we are comfortable with the layout, we can look to add content to our panel as per the
next recipe, Embedding content in a panel.

Embedding content in a panel
Now that we have a layout ready for our front page panel, we can look into adding content
to it. In this recipe, we will be embedding the site's slogan and other elements to the various
regions of the frontpage_dashboard panel.

Getting ready
We are going to be using the frontpage_dashboard panel created in the previous
recipe. As we will be using the site's slogan as a field, it is expected that it is filled in through
the Site information page at admin/config/system/site-information [Home |
Administration | Configuration | System | Site information].

The Views module interacts with Panels through an intermediary named Views content
panes. If we would like to embed Views within our panes, then this module will also need to
be enabled.

How to do it...
Visit the Panels administration page at admin/structure/panels [Home |
Administration | Structure | Panels] and locate our newly created panel, Frontpage
dashboard, in the Pages list and click on its Edit link. In the ensuing interface, perform the
following steps:

1. On the Panel management page, click on the Content tab on the left.

2. The two-column stacked layout should now be visible with four regions – Top, Left
side, Right side, and Bottom – each with its own configuration icon in the form of a
gear. Click on the configuration icon for the top region.

www.it-ebooks.info

http://www.it-ebooks.info/

Rapid Layouts with Panels

322

3. In the context menu that appears, click on Add content:

4. In the resulting pop up, select the Page elements tab on the left.

5. As shown in the following screenshot, click on Site slogan which should, predictably,
add the site's slogan to the Top region as a pane:

6. Back in the Content page, click on Update and preview to preview our changes.

7. Once satisfied, click on the Update and save button to save our changes.

8. Repeat the previous steps to add other content to the other regions of this panel as
necessary.

How it works...
Visiting the front page should now display the slogan of the site as content within the Top
region. The following screenshot demonstrates the frontpage_dashboard panel with a
number of panes added to its regions using steps similar to the ones we followed here. The
site's slogan, as per this recipe, is a pane in its Top region, a view displaying a list of recent
activity is a pane in the Right side region, and two nodes have been inserted as separate
panes inside the Left side region. Additionally, the Bottom region contains the standard
contact form provided by the Contact module:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

323

Reorganizing the Panel
Panes within a Panel can be reorganized by dragging and dropping them at
will either within or between regions.

There's more...
Just as with a Panel region, the panes within each region come with their own configuration
icon that can be used to configure them further.

Editing existing content
Just like configuration icons exist for each region, each content pane can be configured by
clicking on its own configuration icon which is also a gear residing on the right-hand side of
the pane. Configuration options include editing CSS properties such as ID and class values
of the pane, styling and performance options, and a whole lot more as shown in the following
screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Rapid Layouts with Panels

324

Views support for Panels
Views support for the Panels module can be achieved by enabling the Views content panes
module which is a part of the Chaos tools suite. Once enabled, available views can be added
and configured through the Panel region's configuration pop up.

If the Views option is unavailable even after the Views content panes module
has been enabled, visit the Panel modules configuration page at admin/
structure/panels/settings [Home | Administration | Structure |
Panels | Settings]. Under the General tab, ensure that the Make all views
available as panes option is checked. Furthermore, click on the Panel pages
tab at the top and ensure that the New View Panes and New All Views
checkboxes are also enabled. Empty the Drupal cache in cases where the
Views module was installed after Panels.

See also
The Panels module is commonly used in tandem with the Views module, a combination that
allows developers to easily manage the presentation of our content. The Views module is
covered in detail in Chapter 11, Views Theming.

Styling a panel with rounded corners
With our layout created and content added, we can look at using the Panel module's style
plugins to pretty things up a little bit. In this recipe, we will be styling the Slogan pane created
earlier in this chapter by containing it within a box with rounded corners.

Getting ready
We will be working with the frontpage_dashboard panel created earlier in this chapter and
it is assumed that a Slogan pane has been added as per the previous recipe.

How to do it...
All Page panels are listed in the Page manager table at admin/structure/pages [Home |
Administration | Structure | Pages]. Locate the Frontpage dashboard panel and click on its
Edit link to perform the following steps:

1. In the resulting Panel management interface, click on the Content tab on the left.

2. In the content layout page, click on the configuration icon for the Top region.

3. Click on the Change link in the resulting context menu as shown in the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

325

4. In the Panel style pop up, select Rounded corners from the list of available styles:

5. Click on the Next button.

6. In the Box around drop down, select Each region as we want the entire region to be
encased in a box with rounded corners. In cases where multiple panes are contained
within the region, we might need to choose Each pane instead:

7. Click on the Save button.

8. Back on the content layout page, click on Update and save to save our changes.

9. Repeat this process for each Panel region as necessary.

10. Refresh the site's front page in a browser to confirm that our new style settings have
taken effect.

www.it-ebooks.info

http://www.it-ebooks.info/

Rapid Layouts with Panels

326

How it works...
The following screenshot demonstrates the front page panel with its regions and panes styled
with the rounded corners effect:

The effect is provided by a Panels style plugin which injects its own markup when the pane or
region is set to be output. The plugin also includes its own CSS file and images to create the
rounded corners effect.

There's more...
Just as we styled a panel region, we can also similarly style individual panes.

Styling individual panes
While we have looked at how we can apply styles to regions and all panes within a region,
individual panes can also be styled similarly through their configuration screens as shown in
the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

327

See also
In situations where the inbuilt styles do not suffice, we can choose to roll our own. The next
recipe, Creating custom styles with the Stylizer module, explains how.

Creating custom styles with the Stylizer
module

While we learned how to apply styles to panel regions and panes earlier in this chapter, this
recipe will outline how we can utilize the Stylizer module to easily create and apply our own
custom styles. We will create a style using Stylizer and apply it to the Slogan pane which is
part of the Frontpage dashboard panel we have been working on thus far in this chapter.

Getting ready
Stylizer comes with the Chaos tools group of modules and is assumed to have been
enabled along with its dependencies, chief among which is the Color module. The module
exposes a permission named Use the Stylizer UI which is required to add and manage our
custom styles.

While we will be using the Frontpage dashboard panel created earlier in this chapter as an
example panel to implement our styles, it is not a prerequisite. This recipe can be easily
adapted to work with any available pane.

How to do it...
The Stylizer module enables us to create styles particular to panel regions and panes. These
styles can either be created on-the-fly from region or pane configuration screens, or as
recommended in the following steps, created through the Stylizer management interface and
then applied to the regions and panes as appropriate:

1. Navigate to Stylizer management page at admin/structure/stylizer [Home |
Administration | Structure | Stylizer].

2. Click on the Add link at the top of the page.

www.it-ebooks.info

http://www.it-ebooks.info/

Rapid Layouts with Panels

328

3. In the resulting page give our new style a title—Prominence in this case—and
description as seen in the following screenshot:

4. Click on the Continue button.

5. In the next step, choose Panel pane in the Type drop down as we want to apply this
style to panes rather than panels.

6. Click on the Continue button to proceed to the next step.

7. Select the Rounded shadow box style as seen in the next screenshot and click on
Continue:

8. In the next page, use the Color module's color form to choose the scheme for the
pane and the font and padding fieldsets for additional styling. The values for the
Slogan pane can be seen in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

329

As the Slogan pane does not have a header field, these fields can be left as it is.

9. Use the Preview button to preview the new style using the provided sample of text.

10. Finally, click on the Finish button to save the style.

Now that we have created the style, we can use it to style our panel panes.

11. Browse to our Frontpage dashboard panel's administration page and click on the
Content tab on the left side.

12. Click on the configuration icon of the Slogan pane and in the ensuing context menu,
click on Change under the Style menu as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Rapid Layouts with Panels

330

13. In the resulting pop up, select Prominence and click on Next as shown in the
following screenshot:

14. Back in the Panel management page, click on Update and Save to save our changes.

15. Refresh the site's front page to confirm that the new style has taken effect.

How it works...
In this recipe, we have created and applied a pane style named Prominence to the Mission
pane. This transforms what was a simple line of text into a block with rounded corners, a drop-
shadow, modified background and foreground colors, text alignment, font styling, and if need
be, a lot more. The end result is demonstrated in the following screenshot:

There's more...
The Stylizer module can be very effective when styling both regions and panes. Furthermore,
updating the Stylizer preset will automatically also update the styles of associated regions
and panes.

Stylizer for regions/panels and panes
The Stylizer module allows us to create specific styles for panel regions and panes. As
their names suggest, region styles affect entire panel regions whereas pane styles affect
individual panes. In the following screenshot, we can see the Slogan pane styled with the
Prominence style situated within the Top region which is unstyled. Below it, we can see the
Left region styled with a region style and two panes within which are both styled individually
with pane styles:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

331

See also
While we look at creating a custom style in this recipe, the previous recipe, Styling a panel
with rounded corners, lists the steps required to style a panel using one of the default styles.

Changing the layout of a panel
Plans are seldom perfect and during the development of a site, there is an inevitable stage
where things are chopped and changed leading to a lot of wasted time and effort. The Panels
module, however, eases these concerns making nudges, tweaks, and even large-scale
modifications relatively pain free.

In this recipe, we will be looking at changing the entire layout of a Panel from a Two column
stacked layout to a Two column bricks layout which provides us with more regions. As we are
effectively adding three more regions, we will see how the module allows us to intelligently
merge the content from one set of regions to another.

Getting ready
We will be using the frontpage_dashboard layout created earlier in this chapter to serve
as an example panel in this recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

Rapid Layouts with Panels

332

How to do it...
Navigate to admin/structure/pages [Home | Administration | Structure | Pages] and
locate the Frontpage dashboard panel. Click on its Edit link to perform the following steps:

1. Click on the Layout tab on the left:

2. As shown in the preceding screenshot, change the layout from the Two column
stacked layout to the Two column bricks layout.

3. Click on Continue.

The next screen provides us with an opportunity to migrate content from our existing
layout to the new layout which might not retain a similar structure. In this case, we
are moving from a layout with four regions to one with seven regions.

4. In the following screenshot, we can see that are seven distinct destination regions
namely Top, Middle, Bottom, Left above, Right above, Left below, and, Right below.
All the content from the original Bottom, Left side, Right side, and Top regions can
be mapped, migrated, and even merged into each of these regions as appropriate:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

333

5. Click on Update and save to complete the migration.

6. Back in the Panel management page, confirm that our layout is now a Two column
bricks layout.

How it works...
Layout migration is a painless procedure that allows us to make changes at will without losing
any of the styles or customizations applied to panes. This is done by mapping old regions to
new regions and simply changing their region values accordingly in the database. Panels also
intelligently only offers to migrate regions that are populated with content panes.

In the next screenshot, we can see that the new Two column bricks layout has now been
activated and all the panes from the four original regions have been migrated and three new
empty regions are now available for use:

See also
The first recipe in this chapter titled Using Panels to create a front-page layout, details the
steps required to create a panel using one of the inbuilt layouts. On the other hand, the next
recipe, Creating a custom panel layout, explains how we can create our own layouts if the
default options do not suffice.

www.it-ebooks.info

http://www.it-ebooks.info/

Rapid Layouts with Panels

334

Creating a custom panel layout
The myriad layouts that the Panels module comes packaged with are usually sufficient for
most requirements. That said, themers wanting to display content using more interesting and
complex layouts can also roll their own. While it used to be the case that custom panel layouts
needed to be added in as a plugin, this is no longer necessary.

In this recipe, we will make use of the Panel module's Layout designer to create our own
custom layout designed for a page requiring a lot of regions.

Getting ready
It is a good idea to sketch an outline of our layout either on paper or in a graphics editor to
get an idea of what we want prior to fiddling with the Layout designer. For example, the layout
that we are looking to create in this recipe will be based on the rudimentary sketch in the next
screenshot which was created using Microsoft Paint:

Right
Content

Left
Content

Offers 1 - 4

Ads News

Snippets

How to do it...
Create an empty Panel page named Blurbs with particular care taken to choose Flexible
(which should be the default option under the Builders category) as its layout during creation.
Once this layout has been selected, we gain access to the Layout designer and can create our
layout as follows:

1. Navigate to the Blurbs panel management page and click on its Content tab.

2. Click on the Show layout designer button which should be visible above the region
titled Center as in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

335

3. Click on the Region link which contains the Center region and select Region
settings.

Note the presence of the Remove region option
which will come in handy while reworking the
layout, if necessary.

4. In the region configuration pop up, set the Region title to Snippets.

5. Optionally, add a class to enable easy access to the region from CSS or JavaScript:

www.it-ebooks.info

http://www.it-ebooks.info/

Rapid Layouts with Panels

336

6. Click on the Save button to save our changes.

7. Back in the designer, click on the Column link and select Add row on top.

8. In the Add row pop up, select Columns in the Contains drop down and click Save.

9. Click on the newly created row and select Add column.

10. In the Add column pop up, set the value of the Width drop down to Fluid and
click on Save.

11. Repeat this process to add a second column to the right which should result in our
layout looking like the following screenshot:

Note the presence of the resize handle between the two columns which allow us to
adjust their width, if required.

12. Click on the newly created Column link on the left and click on Add row.

13. This time, however, select Regions in the Add row pop up and click on Save.

14. Click on the newly created row and select Add region.

15. In the resulting pop up, set the Region title to Left content.

16. Set the Width to Fluid and click on Save.

17. Similarly, add a row and a region named Right content to the second column as well
which should result in our layout looking like the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

337

It is a good idea to Update and save our progress after
any significant changes have been made to the layout.

18. Now that we have the first column from our sketched layout up and running, we can
create the second column by clicking on the Canvas link and selecting Add column
to right.

19. In the resulting pop up, set the Width to Fluid and click on Save.

20. As we did earlier, add two rows to the column which are set to contain regions.

21. In the top row, add four regions named Offers 1, Offers 2, Offers 3, and Offers 4 so
that the layout now looks like the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Rapid Layouts with Panels

338

22. In the bottom row, create two regions named Ads and News respectively so that our
layout now resembles the following screenshot:

23. Finally, click on Update and save to create our custom layout.

How it works...
Looking at our newly created panel from the Content tab of the Panel manager with the
Layout designer switched off results in a layout as shown in the following screenshot:

The Layout designer uses a JavaScript-based frontend to allow the user to design the layout.
Once done, the specifics of the layout are saved in the Drupal database and loaded during
runtime to provide us with our layout. The layouts that come with Panels are, on the other
hand, stored as code.

The PHP representation of our new layout can be viewed by clicking on the Export link at
the top of the Panel management page. For our more involved endeavors, it might be worth
exporting our layout into a module, especially in situations where we might want to reuse the
layout elsewhere.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

339

There's more...
The Layout designer can take some getting used to and we will initially find ourselves doing a
lot of chopping and changing in order to get our layout just right.

Removing regions, rows, and columns
While working with the Layout designer, it is often necessary to remove elements to rework
or tweak the layout. This, however, is not always a simple process. The rule of thumb with
removing elements in the Panel layout designer is that the element being removed has to be
empty. As columns contain rows and rows contain regions, removing a row requires that any
regions within it will need to be removed first. Similarly, removing a column requires that any
rows contained within it will also need to be removed first, and consequently, all regions within
said rows!

See also
While we looked at creating a custom layout in this recipe, the first entry in this chapter, titled
Using Panels to create a front-page layout, covers the creation of a panel using one of the
built-in layouts.

Replacing the site contact page
with a panel

The Contact module's contact form is, by default, rather static and plain with no
straightforward option to add new content or to reorganize it. In this recipe, we will
replace the standard contact page with a panel thereby allowing us to take advantage
of the power of Panels.

Getting ready
The Contact module is assumed to be enabled and configured with a couple of categories.
We will be embedding the default contact form in one of our new panel's panes.

To demonstrate how using panels allows us to easily add new content, we will be embedding
a view into one of its panes. The view is to be titled Addresses and should return a list of
custom contact nodes containing sample contact information where the title represents the
country and the body represents the contact address within the country. Other fields such as
phone and e-mail can also be added.

It is assumed that the sample nodes and view have been created and are available for use by
the panel.

www.it-ebooks.info

http://www.it-ebooks.info/

Rapid Layouts with Panels

340

How to do it...
The Page manager module allows the overriding of specific Drupal pages. These pages are
listed along with custom panels on the Page management interface accessible at admin/
structure/pages [Home | Administration | Structure | Pages]. The contact page can be
overridden by following the next procedure:

1. Locate the entry for the site contact page in the table and enable it by clicking on its
Enable link:

2. Once enabled, click on the same entry's Edit link.

3. By default, there are no panels available and Drupal uses the standard contact form.
To remedy this, let us create one by clicking either on the Add a new variant link or
the Add variant tab at the top.

4. Give the variant a title such as Contact or as shown in the next screenshot, Contact
with addresses:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

341

5. Click on Create variant.

6. In the resulting layout page, choose a suitable layout. In our case, a simple Two
column layout will suffice.

7. Click on the Continue button.

8. In the Panel settings page, check the Disable Drupal blocks/regions option and
again, click on the Continue button.

9. In the Panel content step, set the Title type to No title.

10. Click on the Create variant button.

11. Click on Save to complete the creation process.

12. With the variant created, click on its Content tab on the left.

13. Access the Left side region's configuration icon and choose Add content.

14. In the ensuing pop up, click on the Widgets tab on the left.

15. Choose the Contact form on the right:

16. Click on the Finish button on the next page.

17. Similarly, add content to the Right side column which, in this case, is the Addresses
view which returns a list of addresses of offices around the world:

www.it-ebooks.info

http://www.it-ebooks.info/

Rapid Layouts with Panels

342

18. Finally, with the layout resembling the preceding screenshot, click on Update and
save to save our changes.

How it works...
Browsing to the contact form at the URL contact should now display our panel as displayed in
the following screenshot:

We can see that along with the standard contact form, we now have the Addresses view also
displayed alongside. As the form as well as the view are both panes, we can now also style
them at will.

www.it-ebooks.info

http://www.it-ebooks.info/

Index
Symbols
$date template variable 155
$disclaimer variable 145, 150
$(document).ready(); function 171
$feed_icons variable 148
$form array 224, 234
$form_id 222
$hook parameter 142, 155
$logged_in variable 105
$pager_current variable 218
$pager_max variable 218
$variables array 145, 160
$variables parameter 144, 154
$variables variable 145
7-Zip 10
#collapsed attributes 243
#collapsible attributes 243
#cols attribute 226
#default_value option 150
<front> keyword 28
.info file 47
#postscript attribute 248
#prefix attribute 238
#suffix attribute 238

A
access devel information permission 115
Adaptive theme

URL 67
Add block link 24
Add content type tab 255
Add effect button 273
Add item form 194
Advanced Help module 280
Ajax 282

All Styles option 132
alter() function 171, 230
arg() function 173
autocomplete field 115

B
backlinks 294
base theme

stylesheet, overriding 50
base theme elements

overriding, in sub-theme 41-45
Batch API 122
block

displaying, on all pages 29
displaying, on front page 27, 28
maximizing, JavaScript used 185-187
minimizing, JavaScript used 185-187
multiple pages 28
URL aliases, matching against 29
wildcards 28
working 28

block_node_type 33
block-open class 187
Blueprint

URL 67
blur() event 182
BODY tag 160
breadcrumbs

customizing, in Zen-based themes 207-209
browser

CSS, disabling 131-133

C
calendar form

date field, displaying in 164-166

www.it-ebooks.info

http://www.it-ebooks.info/

344

candidate themes 10
Chaos tools suite 324
class attributes 248

adding, to form elements 248-251
classes_array variable 160
Clear cache data button 68
click() event 182
colorbox module 278
Color module

about 61
used, for modifying color scheme 62, 63

comment-contact class 239
comment form

specific comment forms, targeting 239
styling 235-239

comments
displaying, in compact form 182-184

Comment settings fieldset 236
Company fieldgroup 264
configuration page 258
console() function 137
console.log() function 175
contact field-group 259
Contact module 339
content

embedding, in panel 321, 322
content pages

adding, to menu 193, 194
Content types list 256
Content types tab 32
contextual filters 279
contributed theme

about 8
downloading 9

CSS
aggregation 126
automatic validation 129
editing, Firebug used 126
in browser, disabling 131-133
in internet explorer, disabling 133
rules, viewing 127
used, for hiding node links 209-211
validating, web developer used 127-129

CSS file
adding, from module 56, 57
including, in theme 48, 49

CSS optimization

about 50
enabling 51-53

custom block
adding, to theme 24, 25
using 26
working 25

custom CSS classes
adding, to Views 293

custom panel layout
creating 334-338

custom styles
creating, with Stylizer module 327-330

custom themes 8
custom Views style plugin

about 306
creating 307-313

D
database query builder 279
database variables

editing, devel module used 124
viewing, devel module used 124

date
field, displaying in calendar form 164-166
last updated date, displaying 155-157

date() function 60
Description field 255
devel generate module

about 114
Batch API used 122
used, for generating sample content 120-122

devel module
about 107
debug functions, removing 119
functions 120
URL, for downloading 68
used, for analyzing variables 118, 119
used, for editing database variables 124
used, for viewing database variables 124
used, for theming 106, 107

development block 115
used, for clearing cache 69

different theme
displaying, for administration 20, 21
working 21

Disable link 13

www.it-ebooks.info

http://www.it-ebooks.info/

345

display layouts
managing, fieldgroups used 262, 263

dpm() function 118, 224, 238
drop-down navigation menu

adding 203, 204
Drupal 7
drupal_add_css() function 57, 58
Drupal API

documentation 110
URL 114

Drupal API documentation 58
Drupal ecosystem 279
Drupal pager

styling 213-218
Drupal themes

about 9, 36
anatomy 36-38

E
elements

debugging, Firebug used 134-136
inspecting, Firebug used 134-136

email field module 259
Enable Title field option 270
execute php code permission 115
existing block, adding to

theme 22, 23
theme-specific block layouts 23

external links module
configuration settings 213
in page, styling 211, 212
URL, for downloading 211

F
favicon

about 15
alternative method 17
custom favicon, adding to theme 16
uploading 15, 16
working 16, 17

features, Views 279
feed_icons variable 148
field group module 259
fieldgroups

accordions 264
display layouts, managing 262, 263

used, for displaying fields together 259-262
vertical tabs 264

fields
about 253
displaying together, fieldgroups used 259-

262
display order, adjusting 258
grouping, fieldset used 240-243
in form, reorganizing 229-231
markup, adjusting for 293
multiple-value fields 258
theming, template file used 265-269

Fields API 279
fieldset

#collapsed attributes 243
#collapsible attributes 243
collapsible fieldsets 243
FIELDSET element 240
form_alter() function 242
using, to group fields 240-243
vertical tabs 244

FIELDSET element 240
Fieldset option 260
Find out more link 8
Firebug

about 114
used, for debugging elements 134-136
used, for diagnostic logging of JavaScript

137-139
used, for editing CSS 126
used, for editing HTML 126
used, for inspecting elements 134-136

Firebug Lite 114
form_alter() function 224, 230, 242
form_alter() hook 225
form_alter() implementation 237, 239, 248
Form API

about 219
alter form 220
build form 220
create elements 220
create form 220
fields, reorganizing 229-231
render form 220

format_date() function 166
format_interval() function 157
form elements

www.it-ebooks.info

http://www.it-ebooks.info/

346

class attributes, adding 248-251
form_alter() implementation 248
hook_theme_registry_alter() 248
mysite_fieldset() function 248
myzen_fieldset() 247
#postscript attribute 248
theming, from module 245, 247

form ID
$form_id 222
finding 220-222
hook_form_alter() function 220, 222
identifying, from HTML source 222, 223
mysite_form_alter() function 222
var_dump() 221

frontpage_dashboard panel 321
front-page layout

panels, creating with 317-320
function

used, for theming object 115, 116
function reference 117
Fusion

URL 67

G
Garland theme

colorizing 62
Git 9
Global settings tab 20
grid 287
Grid display

node listing, styling 287-292

H
hide() tag 184
hook_custom_theme() function 60
hook_form_alter() function 220, 222, 224,

225, 229, 235, 250
hook_form_node_form_alter() 230
hook_form_system_theme_settings_alter()

function 150, 151, 208
hook_init() 175
hook_link_alter() function 209
hook_preprocess() function 160-163
hook_theme() function 93
hook_theme_registry_alter() function 110
HTML

automatic validation 129
editing, Firebug used 126
validating, web developer used 127-129

HTML source
form ID, identifying fom 222, 223

html.tpl.php template file 95

I
ID attributes 248
image

background image, adding to theme 84, 85
cropping, image styles used 272-274
lightbox support, adding 275-277
scaling, image styles used 272-274

image button
used, for replacing submit button 232-234

image fields
adding, image module used 269-271

image module
used, for adding image fields 269-271

image styles
used, for cropping image 272-274
used, for scaling image 272-274

inline CSS
adding 58

INPUT element 239
installing

theme 10, 11
internet explorer

CSS, disabling 133
JavaScript, disabling 131

is_front variable 148, 155
is_numeric() check 174

J
JavaScript

about 282
arg() function 173
diagnostic logging, Firebug used 137-139
executing, after page rendering 170
files, including for certain pages 171-173
files, including from theme 169, 170
in browser, turning off 129, 130
in Internet Explorer, disabling 131
in opera, disabling 131
mysite_init() hook 172

www.it-ebooks.info

http://www.it-ebooks.info/

347

used, for maximizing blocks 185-187
used, for maximizing particular blocks 187
used, for minimizing blocks 185-187
used, for minimizing particular blocks 187
variable, exporting from PHP 177, 178

K
keyboard focus

assigning, to username textfield 174-176
on username textfield 176

keyup() event 251

L
LABEL element 239
layout

modifying, for panel 331-333
lightbox support

adding, for images 275-277
links__system_main_menu() theme

function 198

M
maintenance_theme configuration 112
Manage display form 264, 276
Manage display tab 260, 263
Manage fields tab 256, 263, 270
markup

adjusting, for fields 293
media module 278
menu

access control 195
adding , to theme 190-192
content pages, adding 193, 194
contextual submenus 199-202
custom item, adding 190
custom items set, adding 199
drop-down navigation menu, adding 203, 204
horizontal menus 207
items, moving between menus 191
main menu block, using 193
main menu, styling 195-198
secondary links menu 198
visibility 195

Menu link title textfield 194
Menu settings fieldset 193

module
about 35, 36
CSS file, adding from 56, 57
form elements, theming from 245-247

Module builder 55
mysite_custom_theme() function 61
mysite_fieldset() function 247, 248
mysite_form_alter() function 222
mysite_init() function 173, 175, 177, 180
mysite_init() hook 118
mysite module

creating 54, 55
mysite_preprocess_node() function 159
myzen_fieldset() 247
myzen_form_system_theme_settings_alter()

function 149, 150
myzen_pager() function 214
myzen_preprocess() function 145, 152, 154
myzen_preprocess_node() function 156, 157,

164, 166
myzen_preprocess_page() function 148
myzen theme, Zen-based theme

about 288
background image, adding 84, 85
conditional stylesheet, adding 87, 88
conditional stylesheet, adding from modules

88, 89
conditional stylesheet, adding from themes

88, 89
creating 72
creating, steps 73
CSS layout, selecting 75, 76
custom layouts 77
custom region, adding 80-83
hidden regions 83
layout-fixed.css stylesheet 76
Right-To-Left (RTL) 76
RTFM 75
settings, modifying 89-92
sub-theme 75
template files, overriding with myzen 77-79
theme registry, rebuilding 75
working 74

N
Name field 255

www.it-ebooks.info

http://www.it-ebooks.info/

348

new logo
custom logo 14
GIF 14
image files, directly linking to 15
JPEG 14
PNG 14
uploading 13
working 14, 15

Nice Menus module
about 203, 206
Nice menu block 205
URL, for downloading 203

Ninesixty
URL 67

node
links hiding, CSS used 209-211
new node type, creating 254-258

node listing
styling, Grid display used 287-292

node templates
variable, adding 143, 145
Views, embedding 294-297

node type
appearance, customizing 98-102
specific node, appearance customizing 102,

105
node type based block visibility

controlling 31, 32
working 33

Number of values option 270
Number of values property 258

O
object

theming, function used 115, 116
Opera

JavaScript, disabling 131

P
page

external links, styling 211, 212
regions, hiding 151-155

Page manager module 340
page structure

changing, template files used 95-98
page template

variable, deleting 146-148
page.tpl.php template file 96
panel

about 279, 316
content, embedding 321, 322
creating, Stylizer module used 330
existing content, editing 323
individual panes, styling 326
layout, modifying 331-333
reorganizing 323
site contact page, replacing with 339-342
styling, with rounded corners 324-326
used, for creating front-page layout 317-320
views support 324

panel layout
columns, removing 339
creating 334-338
regions, removing 339
rows, removing 339

Panels management page 317
Panels module 315
panes

creating, Stylizer module used 330
styling 326

Parent link drop-down 191
phone module 259
PHP

variable, exporting to JavaScript 177, 178
PHPTemplate engine 38
Products overview node 193
Provide a menu link option 194

R
random theme

displaying 61
Read more link 210
Recent comments block 32
region

on page, hiding 151-155
adding, to myzen 80-83
hidden region 83

Revision information fieldset 231
Right-To-Left (RTL) 76
rounded corners

panel, styling with 324-326

www.it-ebooks.info

http://www.it-ebooks.info/

349

S
Save block button 31
Save blocks button 22
Save content type 256
Save field settings button 270
Scale and Crop operation 288
screenshot image

modifying, of theme 45, 46
Search module 294
search textfield

default text, adding 179-182
serialize() function 124
Show on every page except the listed pages

option 29
sibling() tag 184
site

maintenance page, styling 111, 112
site contact page

replacing, with panel 339-342
slogan

similar settings 20
theme, adding to 17-19
working 19, 20

Smarty 38
stylesheet

conditional stylesheet, adding from modules
88, 89

conditional stylesheet, adding from themes
88, 89

conditional stylesheet, adding to theme 87,
88

Stylizer module
about 330
custom styles, creating with 327-330
styles, creating for panel regions 330
styles, creating for panes 330

Submission form settings 255
submit button

replacing, with image button 232, 234
sub-theme

base theme elements, overriding 41-45
chaining 41
creating 38-41

Suckerfish 206
Superfish 206

T
tar.gz format 10
template files

used, for changing page structure 95-98
used, for theming field 265-269

template.php file 148
textarea

$form array 224
#cols attribute 226
columns, altering 226
dpm() function 224
form_alter() hook 225
height, changing 223, 224
hook_form_alter() function 224, 225
only node forms, targeting 225
particular node forms, targeting 225
replacing, with WYSIWYG HTML editor 226-

228
t() function 146
theme

about 7, 35, 36
anatomy 36-38
candidate themes 10
contributed themes 8
creating, from scratch 69, 70
CSS file, including 48, 49
custom block, adding to 24, 25
custom theme setting, adding 149-151
custom themes 8
disabling 13
Drupal theme 9
enabled themes 12
enabling 10, 11
existing block, adding to 22, 23
file structure options 11
folder structure 12, 13
installing 10, 11
JavaScript files, including from 169, 170
manual reset 122, 123
menu, adding 190-192
overriding, theme developer module used

108-110
rotating, based on week day 59, 60
screenshot image, modifying 45, 46
slogan, adding to 17-19
working 12, 71

www.it-ebooks.info

http://www.it-ebooks.info/

350

theme_breadcrumb() 208
theme_default setting 124
theme_default variable 124
theme developer module

about 114
URL, for downloading 108
used, for overriding theme 108-110

theme_fieldset() 245
theme() hook 116
theme_pager() function 214
theme registry

about 93, 117
cache clearing, development block used 69
clearing 67
clearing, steps 67, 68
working 68

theme_username() function 110, 116, 117
theme_user_signature() 94
Tracker View 299

U
Unformatted style option 287
unset() function 148
user_load() call 163
username textfield

keyboard focus, assigning 174-176
user role-based block visibility

controlling 30
working 31

V
var_dump() 221
variable

adding, to node templates 143, 145
analyzing, devel module used 118, 119
deleting, from page template 146, 148
manipulating, module-based 158-160
exporting, from PHP to JavaScript 177, 178

Viewfield module
used, for embedding Views 298

View management page 282
Views

about 279, 281
alternative embedding approaches 297
configuration page 286, 287
creating 281, 282

custom CSS classes, adding to 293
customizing 282-287
embedding, inside node template 294-297
embedding, Viewfield module used 298
features 279
markup, adjusting for fields 293
styling, as table 293
styling options 293
table style format, overriding 299-306

Views administration interface 282
views_embed_view() function 298
Views module

about 279
URL, for project page 280

Views style plugin
about 306
creating 307-313

views support, for panel 324
Views table style format

overriding 299-306
View titles 298

W
web developer

add-on 114, 125
live preview with 124-126
used, for validating CSS 127-129
used, for validating HTML 127-129

Weight field 194
What-You-See-Is-What-You-Get editor (WYSI-

WYG HTML editor)
textarea, replacing with 226-228

WinRAR 10
WinZip 10

X
Xtemplate 38

Z
Zen-based theme

breadcrumbs, customizing 207-209
file structure 66
folder structure 66
myzen theme, creating 72
template files, overriding 77-79

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
Drupal 7 Theming Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

Drupal 7 Module
Development
ISBN: 978-1-84951-116-2 Paperback: 420 pages

Create your own Drupal 7 modules from scratch

1. Specifically written for Drupal 7 development

2. Write your own Drupal modules, themes,
and libraries

3. Discover the powerful new tools introduced
in Drupal 7

4. Learn the programming secrets of six experienced
Drupal developers

Drupal 7 Themes
ISBN: 978-1-84951-276-3 Paperback: 320 pages

Create new themes for your Drupal 7 site with a clean
layout and powerful CSS styling

1. Learn to create new Drupal 7 themes

2. No experience of Drupal theming required

3. Discover techniques and tools for creating and
modifying themes

4. The first book to guide you through the new
elements and themes available in Drupal 7

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

Drupal 7 Social Networking
ISBN: 978-1-84951-600-6 Paperback: 328 pages

Build a social or community website with friends lists,
groups, custom user profiles, and much more

1. Step-by-step instructions for putting together
a social networking site with Drupal 7

2. Customize your Drupal installation with modules
and themes to match the needs of almost any
social networking site

3. Allow users to collaborate and interact with each
other on your site

4. Requires no prior knowledge of Drupal or PHP;
but even experienced Drupal users will find this
book useful to modify an existing installation into
a social website

Drupal 7 First Look
ISBN: 978-1-84951-122-3 Paperback: 288 pages

Learn the new features of Drupal 7, how they work and
how they will impact you

1. Get to grips with all of the new features in
Drupal 7

2. Upgrade your Drupal 6 site, themes, and modules
to Drupal 7

3. Explore the new Drupal 7 administration interface
and map your Drupal 6 administration interface to
the new Drupal 7 structure

4. Complete coverage of the DBTNG database layer
with usage examples and all API changes for both
Themes and Modules

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Drupal Theme Basics
	Introduction
	Installing and enabling a theme
	Uploading a new logo
	Uploading a new favicon
	Adding a slogan to the theme
	Displaying a different theme for administration
	Adding an existing block to the theme
	Adding a custom block to the theme
	Displaying a block only on the front page
	Controlling block visibility based on user role
	Controlling block visibility based on node type

	Chapter 2: Beyond the Basics
	Introduction
	Understanding the anatomy of a theme
	Creating a subtheme based on a core theme
	Overriding base theme elements in a subtheme
	Changing the screenshot image of a theme
	Including a CSS file in a theme
	Enabling CSS optimization
	Creating the mysite module to hold our tweaks
	Adding a CSS file from a module
	Displaying a different theme for each day of the week
	Creating a fresh look using the Color module

	Chapter 3: Custom Themes and Zen
	Introduction
	Clearing the theme registry
	Creating a theme from scratch
	Creating myzen—a Zen-based theme
	Choosing a CSS layout for myzen
	Overriding Zen template files with myzen
	Adding a custom region to myzen
	Adding a background image to the theme
	Adding a conditional stylesheet in Zen
	Modifying myzen's theme settings

	Chapter 4: Templating Basics
	Introduction
	Changing the structure of a page using template files
	Customizing the appearance of a particular node type
	Customizing the appearance of a specific node
	Theming made easy using the Devel module
	Theme overrides using the Theme developer module
	Styling the site maintenance page

	Chapter 5: Development and Debugging Tools
	Introduction
	Finding the right function to use to theme an object
	Analyzing variables using the Devel module
	Generating sample content using the Devel generate module
	Resetting the default theme manually
	Live preview with Web Developer
	Validating HTML and CSS using Web Developer
	Turning off JavaScript in the browser
	Disabling CSS in the browser
	Inspecting elements and debugging CSS using Firebug
	Diagnostic logging of JavaScript using Firebug

	Chapter 6: Advanced Templating
	Introduction
	Adding a variable to all node templates
	Deleting a variable from the page template
	Adding a custom theme setting
	Hiding all regions on a page
	Displaying the last updated date instead
	of the submitted date
	Module-based variable manipulation
	Optimizing using hook_preprocess()
	Displaying the date field in calendar form

	Chapter 7: JavaScript in Themes
	Introduction
	Including JavaScript files from a theme
	Including a JavaScript file only for certain pages
	Giving the username textfield keyboard focus
	Exporting a variable from PHP to JavaScript
	Adding default text to the search textfield
	Displaying comments in compact form
	Minimizing and maximizing blocks using JavaScript

	Chapter 8: Navigation
	Introduction
	Adding a menu to our theme
	Adding content pages to the menu
	Styling the Main menu
	Contextual submenus using the Menu module
	Adding a drop-down navigation menu
	Customizing breadcrumbs in Zen-based themes
	Hiding node links using CSS
	Styling all external links in a page
	Styling the Drupal pager

	Chapter 9: Form Design
	Introduction
	Finding the form ID of a form
	Changing the height of a textarea
	Replacing Drupal's textareas with a WYSIWYG HTML editor
	Reorganizing fields in a form
	Replacing a standard Submit button with an image button
	Styling the comment form
	Using a fieldset to group fields
	Theming form elements from a module
	Adding class attributes to form elements

	Chapter 10: Theming Fields
	Introduction
	Creating a new node type
	Displaying fields together using fieldgroups
	Manipulating display layouts using fieldgroups
	Theming a field using a template file
	Adding image fields using the Image module
	Using Image styles to scale and crop images on the fly
	Adding lightbox support for images

	Chapter 11: Views Theming
	Introduction
	Creating a simple View
	Styling a node listing using a Grid display
	Embedding a View inside a node template
	Overriding the Views table style format
	Creating a custom Views style plugin

	Chapter 12: Rapid Layouts with Panels
	Introduction
	Using Panels to create a front-page layout
	Embedding content in a panel
	Styling a panel with rounded corners
	Creating custom styles with the Stylizer module
	Changing the layout of a panel
	Creating a custom panel layout
	Replacing the site contact page with a panel

	Index

