
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

jQuery Mobile: Up and Running

Maximiliano Firtman

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

www.it-ebooks.info

http://www.it-ebooks.info/

jQuery Mobile: Up and Running
by Maximiliano Firtman

Copyright © 2012 Maximiliano Firtman. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Simon St. Laurent
Production Editors: Jasmine Perez and Teresa Elsey
Copyeditor: Linley Dolby
Proofreader: Stacie Arellano

Indexer: Lucie Haskins
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

February 2012: First Edition.

Revision History for the First Edition:
2012-02-07 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449397654 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. jQuery Mobile: Up and Running, the image of a Japanese sable, and related trade
dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-39765-4

[LSI]

1328624859

www.it-ebooks.info

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449397654
http://www.it-ebooks.info/

Table of Contents

Preface . ix

1. The Mobile Platform . 1
Why Do We Need jQuery Mobile? 1

Myths of the Mobile Web 1
Mobile Webapps 3
So, Again…Why Do We Need jQuery Mobile? 3

What Is jQuery Mobile? 4
What jQuery Mobile Is Not 5
The Framework 5

The Mobile and Tablet World 6
Device Categories 6
Operating Systems and Browsers 9
jQuery Mobile Compatibility 11

HTML5 and CSS3 14
Main Features 15

Use of Nonintrusive Semantic HTML5 16
Progressive Enhancement 17
Accessibility Support 18

Testing Webapps 18
Emulators and Simulators 19
Remote Labs 23

2. Starting with the Framework . 25
Preparing the Document 25

Requirements 25
Hosting the Files 25
Using a CDN 27
Main HTML5 Template 29

Adobe Dreamweaver Support 32
Previewing Files 33

iii

www.it-ebooks.info

http://www.it-ebooks.info/

Architecture 34
Roles 34
Theming 35
The Page 36

Navigation 40
Back Button 41
Internal Page Links 42
External Page Links 44
Absolute External Links 49
Mobile Special Links 50
Transition Between Pages 50
Reverse Transition 52

Dialogs 52
Closing or Going Back? 54
Opening Pages from Dialogs 56

Integrating with the Phone 57
Making a Call 58
Video and VoIP Calls 59
Sending Email 60
Sending an SMS 60
Other URI Schemes 61
Bringing It All Together 61

3. UI Components . 63
Toolbars 63

Positioning 64
True Fixed Toolbars 66
Adding Content to the Header 66
Adding Content to the Footer 69
Navigation Bars 70
Persistent Footer 73

Formatting Content 75
Collapsible Content 76
Accordion 79

Columns 81
Buttons 82

Inline Buttons 83
Grouped Buttons 83
Effects 85
Icons 85
Creating Custom Icons 87
Icon Positioning 88
Icon-Only Buttons 89

iv | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Icon Shadow 89

4. Lists . 91
Full-Page Lists Versus Inset Lists 94
Visual Separators 96
Interactive Rows 98

Nested Lists 101
Split Button Lists 104
Ordered Interactive Lists 107

Using Images 107
Row Icons 107
Thumbnails 108

Aside Content 109
Title and Description 111
Using Count Bubbles 111
Filtering Data with Search 112
List Views Cheat Sheet 114

5. Form Components . 115
Form Action 115

Forcing a Non-AJAX Form 116
Form Elements 116

Labels 117
Field Containers 117
Text Fields 118
Auto-Growing Text Area 119
New HTML5 Attributes 121
Date Fields 122
Slider 123
Flip Toggle Switch 124
Select Menus 125
Radio Buttons 135
Checkboxes 137
File Uploads 139

6. The Framework and JavaScript . 141
Document Events 141
Configuration 143

Global Configuration 144
Page Configuration 149
Widgets Configuration 150

Utilities 152
Data-* Utilities 152

Table of Contents | v

www.it-ebooks.info

http://www.it-ebooks.info/

Page Utilities 152
Platform Utilities 155
Path Utilities 155
UI Utilities 155

Custom Transitions 156
Dynamic Content 157

Creating Pages 157
Creating Widgets 160
Updating Widgets 160

Creating Grids 162
Changing Page Contents 162
Event Handling 162

Page Events 162
Widget Events 165
Orientation Event 165
Gesture Events 166
Virtual Clicks Events 167

7. Creating Themes . 169
ThemeRoller 170

Global Settings 171
Swatch Color Settings 171
Inspector 172
Adobe Kuler 173
Exporting Your Theme 174

Fireworks Theme Editor 175
Editing Themes 180
Custom Transitions 181

8. Installation and Offline Access . 183
Package Definition 183

HTML Manifest 184
Download Process 185
Accessing Online Resources 186
Updating Resources 187
JavaScript Object 188
Events 189

Icon Installation 191
Invitation 191
Icon Name 191
Icon Definition 195

Full Screen 197
Detecting Full Screen 197

vi | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Styling the Webapp 199
Mixing It All Together 201
Storing Offline Data 202

9. A Complete Webapp . 205
Webapp Structure 205

Offline Manifest 206
Pages 207
Stylesheet 214
Data 214
Script 215

10. Extending the Framework . 221
Creating a Plug-in 221

Basic Template 222
Creating Our Plug-in 223

Notable Plug-ins 228
Pagination 228
Bartender 230
DateBox 230
Simple Dialog 232
Action Sheet 234

Plug-ins for Tablets 235
SplitView 235
MultiView 237

Compatible Plug-ins 237

11. Packaging for Stores . 239
Store Distribution 240
Custom Distribution 241
Preparing the Package 241
Packaging with PhoneGap 242

PhoneGap Build 243

Index . 245

Table of Contents | vii

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

This book is the ideal companion for web designers and developers wanting to create
mobile experiences using jQuery Mobile.

jQuery Mobile has appeared in the market to solve one problem: dozens of mobile
platforms and browsers and the need to create compatible interfaces for all of them.

This book requires just basic knowledge of HTML (any version), and basic JavaScript
is helpful for the last chapters. The reader doesn't need to understand HTML5, Java-
Script, or jQuery to use most of the jQuery Mobile framework and the contents of this
book.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

ix

www.it-ebooks.info

http://www.it-ebooks.info/

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “jQuery Mobile: Up and Running
by Maximiliano Firtman (O’Reilly). Copyright 2012 Maximiliano Firtman,
978-1-449-39765-4.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

x | Preface

www.it-ebooks.info

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.it-ebooks.info/

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://shop.oreilly.com/product/0636920014607.do

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | xi

www.it-ebooks.info

http://shop.oreilly.com/product/0636920014607.do
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

The Mobile Platform

If you are reading this book, you are probably a web designer or a web developer, maybe
a jQuery fan or a webapp developer. Before coding, we need to address the mobile
ecosystem and where jQuery Mobile fits into it. Let’s do it.

Why Do We Need jQuery Mobile?
The first question that you should be asking yourself is why does jQuery Mobile exist?
Why do we need something special for mobile devices if there are plenty of mobile
browsers rendering standard desktop websites?

To answer these questions, let me copy and paste some extracts from my other book
Programming the Mobile Web (O’Reilly). By the way, I asked for permission from myself
for doing that.

Myths of the Mobile Web
As the Web has moved onto mobile devices, developers have told themselves a lot of
stories about what this means for their work. While some of those stories are true,
others are misleading, confusing, or even dangerous.

It’s not the mobile web; it’s just the Web!

I’ve heard this many times in the last few years, and it’s true. It’s really the same Web.
Think about your life. You don’t have another email account just for your mobile.
(Okay, I know some guys who do, but I don’t believe that’s typical.)

You read about the latest NBA game on your favorite site, perhaps ESPN; you don’t
have a desktop news source and a different mobile news source. You really don’t want
another social network for your mobile; you want to use the same Facebook or Twitter
account as the one you used on your desktop. It was painful enough creating your
friends list on your desktop, you’ve already ignored many people…you don’t want to
have to do all that work again on your mobile.

1

www.it-ebooks.info

http://shop.oreilly.com/product/9780596807795.do
http://www.it-ebooks.info/

So, yes…it’s the same Web. However, when developing for the mobile web we are
targeting very, very different devices. The most obvious difference is the screen size,
and yes, that will be our first problem. But there are many other not-so-obvious dif-
ferences. One issue is that the contexts in which we use our mobile devices are often
extremely different from where and how we use our comfortable desktops or even our
laptops and netbooks.

Don’t get me wrong—this doesn’t mean that, as developers, we need to create two,
three, or dozens of versions duplicating our work. This is where jQuery Mobile comes
to the rescue.

You don’t need to do anything special when designing for the mobile web

Almost every smartphone on the market today—for example, the iPhone and Android-
based devices—can read and display full desktop websites. Yes, this is true. Users want
the same experience on the mobile web as they have on their desktops. Yes, this is also
true. Some statistics even indicate that users tend to choose web versions over mobile
versions when using a smartphone. However, is this because we really love zooming in
and out, scrolling and crawling around for the information we want, or is it because
the mobile versions are really awful and don’t offer the right user experience? I’ve seen
a lot of mobile sites consisting of nothing but a logo and a couple of text links. My
smartphone wants more!

One website should work for all devices (desktop, mobile, TV, etc.)

As we will see, there are techniques that allow us to create only one file but still provide
different experiences on a variety of devices, including desktop, mobile, TV, and game
consoles. This vision is called “One Web.” Today, there are a lot of mobile devices with
very low connection speeds and limited resources—non-smartphones—that, in theory,
can read and parse any file, but will not provide the best user experience and will have
compatibility and performance problems if we deliver the same document we would
for the desktop. Therefore, One Web remains a goal for the future. A little additional
work is still required to provide the right user experience for each mobile device, but
there are techniques that can be applied to reduce the work required and avoid code
and data duplication.

Just create an HTML file with a width of 240 pixels, and you have a mobile website

This is the other fast-food way to think about the mobile web. Today, there are more
than 3,000 mobile devices on the market, with almost 50 different browsers (actually,
more than 500 different browsers if we separate them by version number). Creating
one HTML file as your mobile website will be a very unsuccessful project. In addition,
doing so contributes to the belief that the mobile web is not useful.

2 | Chapter 1: The Mobile Platform

www.it-ebooks.info

http://www.it-ebooks.info/

Mobile Webapps
I’m not going to enter the discussion about mobile web development versus native
development. In fact, I believe that the discussion is mostly wrong. Often the discussion
is about native code versus JavaScript code or browser apps versus installed apps.
However, what these discussions fail to mention is that multiplatform development is
quite a challenge in the native development environment because each platform re-
quires a different SDK. Therefore, because the real concerns are ease of development
and deployment to multiple mobile devices, mobile web development is a perfect sol-
ution for most situations. The term webapp has plenty of synonymous or similar con-
cepts, such as mobile webapps, widgets, hybrids, HTML5 apps, and more.

In particular, a mobile webapp differs from typical mobile websites in its purpose. A
webapp typically has a more transactional way of thinking in the user interface, emu-
lating native mobile applications. It is still created using web technologies (HTML, CSS,
JavaScript, AJAX) but offers an application-similar experience to the user.

Frequently mobile webapps also make use of HTML5 features, such as offline or geo-
location access, to provide a better experience. Geolocation is not an official part of the
HTML5 specification, but a W3C API of its own; however, it is often mentioned under
the HTML5 umbrella.

A webapp can be implemented in many ways (as shown in Figure 1-1) including:

• Accessed from the browser

• Installed as a full-screen webapp

• As an installed webapp via a package officially implemented by vendors (sometimes
called widgets)

• As an installed webapp embedded in a native application, commonly known as
hybrid

We will cover how to create these webapps in the rest of the book. For more in-depth
information, just cross the street to my other book: Programming the Mobile Web
(O’Reilly).

A webapp typically generates new challenges for web designers and developers, such
as loading views instead of pages, maintaining a two-way navigation between views,
and creating rich controls specifically for touch devices.

So, Again…Why Do We Need jQuery Mobile?
If you read the last few pages (and I’m pretty confident you did), you are aware that
mobile web design and development presents new challenges for us. We need to create
webapps that are more than simple websites; there are too many devices out there with
different browser compatibilities; and there are also too many libraries trying to solve
the same problem with mixed community and device support.

Why Do We Need jQuery Mobile? | 3

www.it-ebooks.info

http://shop.oreilly.com/product/9780596807795.do
http://www.it-ebooks.info/

That is why jQuery Mobile was created: to help designers and developers create mobile
web experiences easily, and for those experiences to be multiplatform, customizable,
and with unobtrusive code.

The extensive worldwide jQuery community also provides a great opportunity for the
framework’s future.

The framework has received official sponsorship and support from many of the biggest
companies in this area, including the following:

• Adobe

• Mozilla Corporation

• HP Palm

• BlackBerry/RIM

• Nokia

• DeviceAtlas and dotMobi

What Is jQuery Mobile?
According to an official note at http://www.jquerymobile.com:

jQuery Mobile is a unified user interface system across all popular mobile device plat-
forms, built on the rock-solid jQuery and jQuery UI foundation. Its lightweight code is
built with progressive enhancement, and has a flexible, easily themeable design.

Figure 1-1. A webapp delivered as (from left to right) a browser-based experience, a full-screen
installed application, and an embedded webapp inside a native app (hybrid)

4 | Chapter 1: The Mobile Platform

www.it-ebooks.info

http://www.jquerymobile.com
http://www.it-ebooks.info/

What jQuery Mobile Is Not
To understand jQuery Mobile, it is very important to know what it is not.

jQuery Mobile is not a jQuery alternative for mobile browsers.
To use jQuery Mobile, you need to include the typical jQuery framework. It is not
a replacement; it is a UI layer on top of jQuery.

jQuery Mobile is not a webapp SDK.
You can create the whole mobile experience with jQuery Mobile but you will need
some additional work to compile it as native apps. We will see how, why, and when
to do this in the next chapters.

jQuery Mobile is not a framework for JavaScript lovers.
Except in the case of certain advanced topics, you won’t need any JavaScript code
for jQuery Mobile to work. That is great if you are a web designer who hates all of
those braces and semicolons.

jQuery Mobile is not the solution for all mobile applications, websites, or games.
However, it covers solutions for most of them. For the others, well…I have to con-
vince you to read my other book somehow.

The Framework
If you don’t know what jQuery is, you may be a time traveler from 10 years in the past.
If you are Marty McFly, point your browser to http://jquery.com and read about this
incredibly useful JavaScript framework, the most used one on the Web since 2007.

jQuery Mobile is a framework that delivers webapp experiences to mobile and tablet
devices, mainly with touch interfaces, effortlessly, across multiple platforms, and using
only HTML5 standard code. A jQuery Mobile app looks like Figure 1-2.

The platform uses the jQuery “core” framework, a JavaScript library, a CSS 3 stylesheet,
and some resource images.

jQuery Mobile is comparable to jQuery UI on the desktop side: it’s just a UI framework.
The name (without any UI inside) leaves you to wonder whether it’s a core framework;
but I believe the decision was made to take advantage of the power of the jQuery
trademark inside the designer and developer world.

The framework was created by the same team as the main jQuery frame-
work, whose leader is John Resig, JavaScript Tool developer for the
Mozilla Corporation (@jeresig on Twitter).

This new platform, like jQuery and jQuery UI, was released as an open source project
under a dual license MIT or GPL version 2.

What Is jQuery Mobile? | 5

www.it-ebooks.info

http://jquery.com
https://twitter.com/jeresig
http://www.it-ebooks.info/

If you want to participate in the development, you can provide patches,
fix bugs, participate in the discussion, and work over the active live code
on http://jquerymobile.com/contribute.

The Mobile and Tablet World
People do not browse the Web only from their desktop. Now we have very different
devices with different screen sizes, input mechanisms, and even new features from old
friends such as HTML, JavaScript, and CSS.

Mobile devices are here. There is no doubt—there are more than five billion devices
worldwide and counting. Tablets are also coming in a big way, with millions in the
market.

Device Categories
Right now, we can divide mobile devices into the following categories:

• Mobile phones

• Low-end mobile devices

Figure 1-2. A typical jQuery Mobile webapp with standard theming in smartphones, a webOS device
in this case

6 | Chapter 1: The Mobile Platform

www.it-ebooks.info

http://jquerymobile.com/contribute
http://www.it-ebooks.info/

• Mid- and high-end mobile devices, also known as social devices

• Smartphones

• Tablets

Mobile phones

Okay, we still have mobile phones in some markets. These are phones with call and
SMS support. They don’t have web browsers or connectivity, and they don’t have any
installation possibilities. These phones don’t really interest us; we can’t do anything
for them right now.

In a couple of years, because of device recycling and evolving services provided by
carriers and manufactures, such phones will probably not be on the market anymore.

Low-end mobile devices

Low-end mobile devices have a great advantage: they have web support. They typically
have a very basic browser, but this is the gross market. Perhaps they aren’t the most
heavy Internet users today, but this may change quickly with the advent of social net-
works and Web 2.0 services. If your friends can post pictures from their mobile devices,
you’ll probably want to do the same, so you may upgrade your phone whenever you
can.

Nokia, Motorola, Kyocera, LG, Samsung, and Sony Ericsson have devices for this mar-
ket. They typically do not have touch support, have limited memory, and include only
a very basic camera and a basic music player.

Mid-end/high-end mobile devices

This is the mass-market option for a decent mobile web experience. Mid-end devices
maintain the balance between a good user experience and moderate cost. In recent
years, this category was also known as social devices, meaning that the users access
social sites, such as Facebook or Twitter via the mobile web.

In this category, devices typically offer a medium-sized screen, basic HTML-browser
support, sometimes 3G, a decent camera, a music player, games, sometimes touch, and
application support. The big difference between these and smartphones is that high-
end devices generally are not sold with flat Internet rates. The user can get a flat-rate
plan, but he’ll have to go out and find it himself. Starting in 2011, many of these devices
include WLAN (WiFi), as we can see in Figure 1-3.

Smartphones

There are dozens of smartphone devices on the market, including iPhone, Android-
based devices, webOS, Symbian, BlackBerry, and Windows Phone (Figure 1-4). This
is the most difficult category to define. Why aren’t some mid-end and high-end devices

The Mobile and Tablet World | 7

www.it-ebooks.info

http://www.it-ebooks.info/

considered “smart” enough to be in this category? The definition of smart evolves every
year. Even the simplest mobile device on the market today would have been considered
very smart 10 years ago.

Typically when you buy a smartphone, you sign up for a one- or two-year contract with
a flat-rate data plan. A smartphone, as defined today, has a multitasking identifiable
operating system, a modern HTML5 browser, wireless LAN (WLAN, also known as
WiFi) and 3G connections, a music player, and several of the following features:

• GPS (Global Positioning System) or A-GPS (Assisted Global Positioning System)

• Digital compass

• Video-capable camera

• TV out

• Bluetooth

• Touch support

• 3D video acceleration

• Accelerometer

Figure 1-3. The Nokia X3-02 Touch and Type: a mid-end touch device, with numeric keypad and WiFi

8 | Chapter 1: The Mobile Platform

www.it-ebooks.info

http://www.it-ebooks.info/

Some multimedia devices qualify as smartphones for us web creators,
but they don’t have a phone feature. On this list are the Apple iPod
Touch and the Sony PlayStation Portable (PSP). The only difference
from tablets is their screen size, less than three inches.

Tablets

A tablet is a device with a large screen (between 6 and 11 inches), a full HTML5 browser,
WLAN connection (WiFi), sometimes 3G, touch support, and all the other features
that we can find on a smartphone.

In this category, we can find many devices, including the following:

• Apple iPad

• Samsung Galaxy Tab

• BlackBerry PlayBook

• Barnes and Noble Nook Color

• Motorola Xoom

• LG Optimus Pad

• Amazon Fire

• Sony S1 and S2

Operating Systems and Browsers
This book is not intended to delve deeply into the mobile ecosystem. There is a detailed
list of operating systems, platforms, and browsers in Programming the Mobile Web

Figure 1-4. A sampling of smartphone devices

The Mobile and Tablet World | 9

www.it-ebooks.info

http://shop.oreilly.com/product/9780596807795.do
http://www.it-ebooks.info/

(O’Reilly). However, if we are going to create mobile web experiences, we need to at
least know what we are talking about.

In the mobile world, we can divide the operating systems in two main groups: identi-
fiable operating systems and proprietary ones. In the latter group, we will find mainly
phones, low- and mid-end devices.

With the identifiable operating systems, we will be more interested in which OS a device
has than its brand and model. I mean, we are not going to develop a webapp for the
Samsung Galaxy; we are going to develop a webapp for Android devices. The iPhone
may be an exception to this rule, because it is a platform of its own, having as of this
writing only one device: the iPhone. (Different versions of the device are just that; for
web developers there are no huge differences between an iPhone 4 and an iPhone 3GS.)

Table 1-1 lists the operating systems we can find on today’s market in smartphones
and tablets.

Table 1-1. Operating systems and browsers available in smartphones, social devices, and tablets

Operating system Creator Browser included Other browsers

iOS Apple Safari Opera Mini and pseudo-
browsers

Android Google Android Browser Firefox, Opera Mini, Amazon
Silk, Opera Mobile

Symbian Nokia Symbian Browser Opera Mini, Opera Mobile

webOS / Open webOS HP (formerly Palm) webOS Browser

Windows Phone Microsoft Internet Explorer

Windows Mobile Microsoft Internet Explorer Opera Mobile

MeeGo Nokia Micro Browser/Nokia
Browser

Firefox

BlackBerry OS RIM BlackBerry Browser Opera Mini

Tablet OS RIM Tablet OS Browser

S40 Nokia Nokia Browser

Bada Samsung Samsung Browser

Every operating system has different versions, and some allow the user to update to a
newer one. Every OS comes with an installed browser, but the user can install and use
an alternative browser. Sometimes the manufacturer or the operator from whom the
user bought the device installs or replaces the default browser with an alternative, such
as Opera Mobile.

If we expand our browser research to low- and mid-end devices, we will find more than
20 other new browsers, including Ovi Browser, NetFront Browser, and Phantom
Browser from LG. But that is not the target of jQuery Mobile right now.

10 | Chapter 1: The Mobile Platform

www.it-ebooks.info

http://www.it-ebooks.info/

What Is a Pseudo-Browser?
A pseudo-browser is a native application that users can install on their devices. They
use the same engine as the default browser, but offer extra features over it. There are
plenty of examples for iOS, such as SkyFire or Perfect Browser. They all use Safari as
the final rendering engine; therefore, for jQuery Mobile, they are not separate browsers.

In Programming the Mobile Web, you will find 20 pages with detailed information about
browser types and features of each one.

jQuery Mobile Compatibility
jQuery Mobile is a framework intended for touch devices, including smartphones, tab-
lets, and multimedia devices. The compatible list will change with time and as the
framework continues to evolve, so it is difficult to publish a complete list here.

The jQuery Mobile 1.0 version is compatible with the following by-default browsers:

iOS
Safari for iPhone, iPod Touch, and iPad from iOS 3.2

Android OS
Android Browser phones and tablets

BlackBerry OS
BlackBerry Browser for smartphones from 5.0 and for tablets

Symbian
Nokia Browser for touch devices

webOS
webOS Browser from webOS 1.4

Bada
Bada Browser

MeeGo
Micro Browser and Nokia Browser (included in Nokia N9)

Windows Phone
Internet Explorer from Windows Phone/Mobile 6.5 and Windows Phone 7.0

Kindle
Browser from Kindle 3

The Mobile and Tablet World | 11

www.it-ebooks.info

http://shop.oreilly.com/product/9780596807795.do
http://www.it-ebooks.info/

jQuery Mobile is also compatible with the following third-party browsers:

• Opera Mini, fully supported from 5.0 on most devices

• Opera Mobile, fully supported from 10.0 on most devices

• Firefox Mobile

This compatibility list just gives you some information to start with. The compatibility
is far more complex than this list because we can cross multiple operating system ver-
sions with multiple browser versions with different results. Even newer devices not
listed here will be compatible with the library if they support the minimum features
that the framework needs.

To simplify: jQuery Mobile will work on every browser with the capabilities to offer
the experience that the framework provides. Any modern browser should be included
in this list.

Many modern mobile browsers use a WebKit-based engine, like Safari
or Chrome for desktop. Any modern WebKit-based mobile browser
should be fully compatible with jQuery Mobile. Also Chrome, Firefox,
Safari, Opera, and Internet Explorer for desktop are compatible with
jQuery Mobile.

Mobile graded browser support

jQuery Mobile uses a table chart to define the compatibility of every device with this
library (Figure 1-5). I would not try to enter in this categorization war if I were you. But
you can check it if you want more information at http://jquerymobile.com/gbs/.

Many modern desktop browsers, such as Firefox, Google Chrome, Sa-
fari, or Internet Explorer, are compatible with jQuery Mobile too. Even
if it is not intended for desktop applications, this ability will be useful
for testing purposes. However, we will see later that installing an emu-
lation environment will be useful.

I believe the compatibility is far more complex than this table, and for a typical web
designer and developer it should be absolutely hidden. There are better ways to know
if a feature is available in a mobile browser than trying to categorize each one of them.
One solution is right in your hands: use jQuery Mobile.

GBS (Graded Browser Support) divides mobile browsers into three categories:
A-grade, B-grade, and C-grade. In the jQuery Mobile world, here’s what these grades
mean:

12 | Chapter 1: The Mobile Platform

www.it-ebooks.info

http://jquerymobile.com/gbs/
http://www.it-ebooks.info/

A-grade
A browser with CSS3 media queries capability. These browsers will be fully tested
by the jQuery team. However, some features will be automatically disabled if the
device does not support them. The framework provides a full experience with
AJAX-based animations.

B-grade
Browser has an enhanced experience but without AJAX navigation features.

C-grade
A browser incompatible with jQuery Mobile. This browser will not receive any
CSS or JavaScript code from the framework, so the user will see a plain HTML file
with the content. We will see later in this book how to handle this situation.

Figure 1-5. jQuery Mobile maintains a list of browser compatibility on its website

The Mobile and Tablet World | 13

www.it-ebooks.info

http://www.it-ebooks.info/

PhoneGap and native development
If you look into the Mobile Graded Browser Support Table of jQuery
Mobile, you will find PhoneGap as a browser. PhoneGap is not a
browser; it’s a framework with which to create hybrids. That is: native
applications with a webapp inside. PhoneGap is officially supported by
jQuery in many platforms, such as iOS, Symbian, BlackBerry, Android,
and webOS.

The great news is that you can use whatever hybrid framework you like;
jQuery Mobile will work if it works for PhoneGap. That is because
PhoneGap is not a browser by itself; it is just a framework using the
native browser engine.

To make it simple: jQuery Mobile is compatible with the creation of native apps with
HTML.

HTML5 and CSS3
I know most web designers and developers panic about HTML5 and CSS3. Before
saying anything about it: don’t worry, jQuery Mobile will make everything for you.
Therefore, you don’t need to know HTML5 or CSS3 to work with this framework. I
encourage you to learn them regardless. You will be able to accomplish much more
knowing these new standards, but that is for a later discussion.

This book is not intended to teach you HTML5 or CSS3, but it is important to under-
stand some things about them. Many mobile browsers, mainly inside smartphones and
tablets, support HTML5, CSS3, and other APIs.

I can talk for hours about HTML5, including its history and what it has to offer to the
mobile space.

HTML5 in hard terms is an evolving standard that includes changes to the HTML
markup and lot of new APIs in JavaScript (yes, HTML5 is a lot about JavaScript APIs).
HTML5 in a more casual term is an umbrella for many modern features inside browsers,
including the W3C’s formal HTML5 standard, other W3C APIs, CSS3, and nonstan-
dard extensions. You can check http://mobilehtml5.org for compatibility information
for HTML5 in mobile browsers.

jQuery Mobile uses many of HTML5 features to provide a great and fast experience on
mobile browsers. That does not mean that the browser needs to support HTML5 as a
whole. In fact, many old browsers still support some HTML5 markup even without
knowing its existence. jQuery Mobile uses CSS3 a lot, when possible, for animations,
gradients, effects, and UI rendering.

14 | Chapter 1: The Mobile Platform

www.it-ebooks.info

http://mobilehtml5.org
http://www.it-ebooks.info/

To further arouse your curiosity, with HTML5, CSS3, and other modern techniques,
you can provide, with or without a jQuery Mobile experience, the following features:

• Offline access

• Offline storage

• Web sockets

• Geolocation access

• Accelerometer and gyroscope support

• Animations

• 2D and 3D transformations

• Gradients and visual effects

• Viewport management (for zooming support inside the browser)

• Webapp installation metadata

• Integration with native applications

• Multimedia support

• Graphic drawing (vector and bitmap)

• Custom font support

There are several samples and links regarding these features on my blog,
http://www.mobilexweb.com/.

Main Features
jQuery Mobile started in August 2010 as a modern framework, including many patterns
and best practices for multiplatform development. The main features of the framework
are:

• Cross platform, cross device, and cross browser

• UI optimized for touch devices

• Themeable and customizable design

• Usage of nonintrusive semantic HTML5 code only, without the need of any Java-
Script, CSS, or API knowledge

• AJAX calls automatically to load dynamic content

• Built on the well-known and supported jQuery core

• Lightweight size, 12Kb compressed

• Progressive enhancement

• Accessibility support

We’ve already discussed some of these features. Let’s deeply analyze others.

Main Features | 15

www.it-ebooks.info

http://www.mobilexweb.com/
http://www.it-ebooks.info/

Use of Nonintrusive Semantic HTML5
I know you are hungry: you need to see some code. Here you have it. jQuery Mobile
creates webapps from standard and semantic HTML5, perfectly suitable for search
engine optimization (SEO) and web performance optimization (WPO) purposes:

<!DOCTYPE html>
 <html>
 <head>
 <meta charset="utf-8" />
 <title>My first jQuery Mobile code</title>
 <link rel="stylesheet" href="http://code.jquery.com/mobile/1.0/jquery.mobile-
1.0.min.css" />
 <script src="http://code.jquery.com/jquery-1.6.4.min.js"></script>
 <script type="text/javascript" src="http://code.jquery.com/mobile/1.0/
jquery.mobile-1.0.min.js"></script>
 <meta name="viewport" content="width=device-width, initial-scale=1">
</head>

 <body>
 <div data-role="page" data-theme="a">
 <div data-role="header">
 <h1>jQuery Mobile</h1>
 </div>
 <div data-role="content">

 <ul data-role="listview" data-inset="true" data-divider-theme="b">
 <li data-role="list-divider">Summary
 The Platform
 The Page
 Lists
 Components

 <ul data-role="listview" data-inset="true" data-divider-theme="d">
 <li data-role="list-divider">Links
 Mobile Web Blog
 O'Reilly Media

 </div>
 <div data-role="footer">
 <h4>© 2011 Maximiliano Firtman @firt</h4>
 </div>
 </div>
 </body>
 </html>

You can see in Figure 1-6 how this sample renders on many mobile browsers, including
non-jQuery Mobile compatible ones, as in Figure 1-7. As you can see, there is no Java-
Script code there for initialization or any other stuff. Just some JavaScript includes.

Be patient, we will start analyzing the jQuery code in the following chapters.

16 | Chapter 1: The Mobile Platform

www.it-ebooks.info

http://www.it-ebooks.info/

Progressive Enhancement
Progressive enhancement is a simple but very powerful technique used in web design
that defines layers of compatibility that allow any user to access the basic content,
services, and functionality of a website, while providing an enhanced experience for
browsers with better support of standards. jQuery Mobile is totally built using this
technique.

The term progressive enhancement was coined by Steven Champeon in 2003 (http://
www.hesketh.com), and while this approach wasn’t defined for the mobile web specif-
ically, it is perfect for mobile web design.

Figure 1-6. How our first simple jQuery Mobile code looks on different devices: iOS, webOS, and
Android

Figure 1-7. On noncompatible browsers, jQuery Mobile falls back to a simple, fully functional HTML
file

Main Features | 17

www.it-ebooks.info

http://www.hesketh.com
http://www.hesketh.com
http://www.it-ebooks.info/

Progressive enhancement has the following core principles:

• Basic content is accessible to all browsers.

• Basic functionality is accessible to all browsers.

• Semantic markup contains all content.

• Enhanced layout is provided by externally linked CSS.

• Enhanced behavior is provided by unobtrusive, externally linked JavaScript.

• End user browser preferences are respected.

This list sounds like jQuery Mobile’s feature list, doesn’t it? That’s right. A jQuery
Mobile application will also works on a very basic browser without CSS or JavaScript
support. And that is a great feature for a mobile webapp.

Accessibility Support
From Wikipedia:

Web accessibility refers to the inclusive practice of making websites usable by people of
all abilities and disabilities. When sites are correctly designed, developed, and edited, all
users can have equal access to information and functionality.

Web accessibility inside mobile browsers has just begun; however, jQuery Mobile is
now fully compatible with W3C’s WAI-ARIA specification on compatible browsers
(http://www.w3.org/TR/wai-aria/). At the time of this writing, only iOS 4.0 or higher is
compatible with this specification with the feature called VoiceOver.

Therefore, a jQuery Mobile webapp will provide an accessible experience to users with
visual disabilities on iPhone, iPod, and iPad.

Testing Webapps
We have already mentioned that a jQuery Mobile webapp will work on almost every
modern desktop browser. However, it would be better if we could test them in a more
accurate environment (see Figure 1-8).

To test the mobile webapp in different environments, we can use:

• Real devices

• Remote labs

• Emulators

• Simulators

• Lot of friends

18 | Chapter 1: The Mobile Platform

www.it-ebooks.info

http://www.w3.org/TR/wai-aria/
http://www.it-ebooks.info/

Figure 1-8. Testing jQuery Mobile accessibility from an iPad

Testing Webapps | 19

www.it-ebooks.info

http://www.it-ebooks.info/

Emulators and Simulators
The most useful tools for our work will be emulators and simulators. Generally speak-
ing, an emulator is a piece of software that translates compiled code from an original
architecture to the platform where it is running. It allows us to run an operating system
and applications on another operating system. In the mobile development world, an
emulator is a desktop application that emulates mobile device hardware and operating
systems, allowing us to test and debug our applications and see how they are working.
The browser, and even the operating system, is not aware that it is running on an
emulator, so we can execute the same code as on the real device.

We should also add to our mobile development environment classic tools for project
and configuration management, such as bug tracking, version control, and project
management tools. Figure 1-8 shows how you can test jQuery Mobile accessibility from
an iPhone, iPod, or iPad with iOS 4.0 or higher. Go to Settings → General → Accessibility
and activate VoiceOver. Now close your eyes and browse your website using your
fingers and ears.

Figure 1-9 shows how an Android Emulator provides a full Android OS on your desktop
with images for different devices including tablets, such as Galaxy Tab or Nook Color.

Emulators are created by manufacturers and offered to developers for free, either
standalone or bundled with the Software Development Kit (SDK) for native
development.

Figure 1-9. An Android Emulator

20 | Chapter 1: The Mobile Platform

www.it-ebooks.info

http://www.it-ebooks.info/

There are also operating system emulators that don’t represent any real device hardware
but rather the operating system as a whole. These exist for Windows Mobile and
Android.

On the other hand, a simulator is a less complex application that simulates some of the
behavior of a device, but does not emulate hardware and does not work over the real
operating system. These tools are simpler and less useful than emulators. A simulator
may be created by the device manufacturer or by some other company offering a sim-
ulation environment for developers. In mobile browsing, there are simulators with
pixel-level simulation, and others that neither create a skin over a typical desktop
browser (e.g., Firefox or Safari) with real typography nor render engine simulation.
Figure 1-10 shows how the iOS Simulator provides you with an iPad for free inside your
Mac. The same can happen for other tablets, also with Windows or Linux desktop
machines.

Figure 1-10. The iOS simulator

Even with emulators, the final rendering and performance will not be exactly the same
as in the real device. Therefore, real device testing is a good practice, even if we are
going to do it only on some key devices.

For mobile web development, we will find emulators from Nokia, Symbian, BlackBerry,
Android, webOS, and Windows Mobile and simulators from Apple for the iPhone and
iPad (though only for Mac OS X).

Testing Webapps | 21

www.it-ebooks.info

http://www.it-ebooks.info/

Some browser-based emulators (that finally work on many different platforms), like
the Opera Mobile emulator, are also available.

Table 1-2 shows the available emulators and simulators for download.

Table 1-2. Available mobile and tablet emulators and simulators for download

Name Platform Type Browsers
available

Windows Mac Linux

iOS Simulator iOS Simulator Safari No Yes No

Android
Emulator

Android Emulator Android
Browser and
downloadable

Yes Yes Yes

HP webOS
Emulator

webOS Emulator webOS
Browser

Yes Yes Yes

Nokia
Symbian
Emulators

Symbian Emulator Internal
Browser and
downloadable

Yes No No

Windows
Phone
Emulator

Windows
Phone

Emulator Internet
Explorer

Yes No No

Nokia Series
40 Emulators

Nokia OS Emulator S40, Ovi
Browser,
Opera Mini

Yes No No

BlackBerry
Simulators

BlackBerry OS Emulator BB Browser,
downloadable

Yes No No

BlackBerry
PlayBook
Simulator

Tablet OS Emulator Internal
Browser

Yes Yes Yes

Opera Mobile
Emulator

Many Browser
Emulator

Opera Mobile Yes Yes Yes

Opera Mini
Simulator

Many Online
Browser
Emulator

Opera Mini Yes Yes Yes

PhoneGap
Simulator

Many Simulator PhoneGap
hybrid

Yes Yes Yes

Adobe Device
Central

Many Simulator Many Yes Yes No

An up-to-date list of emulator download URLs can be found at http://www.mobilexweb
.com/emulators.

22 | Chapter 1: The Mobile Platform

www.it-ebooks.info

http://www.mobilexweb.com/emulators
http://www.mobilexweb.com/emulators
http://www.it-ebooks.info/

Remote Labs
A remote lab is a web service that allows us to use a real device remotely without being
physically in the same place. It is a simple but very powerful solution that gives us access
to thousands of real devices, connected to real networks all over the world, with a single
click. You can think of it as a remote desktop for mobile phones.

The most useful services on the market are the following:

Keynote DeviceAnywhere (commercial)
http://www.deviceanywhere.com

Perfecto Mobile (commercial)
http://www.perfectomobile.com

Nokia Remote Device Access for Symbian and MeeGo (free)
http://www.mobilexweb.com/go/rda

Samsung Lab.Dev for Android (free)
http://www.mobilexweb.com/go/labdev

For updated information on this topic, go to http://www.mobilexweb.com/go/labs.

Testing Webapps | 23

www.it-ebooks.info

http://www.deviceanywhere.com
http://www.perfectomobile.com
http://www.mobilexweb.com/go/rda
http://www.mobilexweb.com/go/labdev
http://www.mobilexweb.com/go/labs
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

Starting with the Framework

Preparing the Document
Let’s get our hands dirty and create the typical jQuery Mobile webapp template.

Requirements
Our HTML5 document needs to include:

• The jQuery core JavaScript file

• The jQuery Mobile core JavaScript file

• The jQuery Mobile core CSS file

• The jQuery Mobile theme CSS file (optional)

In addition, jQuery Mobile will use a series of PNG files for some of the UI but we don’t
need to explicitly link them. There is also a version of the CSS file that includes both
the core file and the default theme.

Before coding, our first decision is about resources’ hosting. There are two approaches:

• Host all the files within our project

• Use a CDN (Content Delivery Network)

Hosting the Files
If you want to host all the files with your webapp, you need to download the latest ZIP
package from http://jquerymobile.com/download. The ZIP name will include the version
of the framework, for example: jquery.mobile-1.0.zip.

The jQuery Mobile package does not include the jQuery core. You need to also down-
load it from http://jquery.com (production version is recommended).

25

www.it-ebooks.info

http://jquerymobile.com/download
http://jquery.com
http://www.it-ebooks.info/

In the jquery.mobile-XX.zip package, you will find the following structure:

• demos folder

• images folder

• jquery.mobile-XX.css

• jquery.mobile-XX.js

• jquery.mobile-XX.min.css

• jquery.mobile-XX.min.js

• jquery.mobile.structure-XX.css

• jquery.mobile.structure-XX.min.css

XX will be the version number, including release type, for example: 1.1b1 for 1.1 Beta
1, 1.0rc2 for 1.0 Release Candidate 2, or 1.0 for 1.0 final version.

As we can see inside the package, there are two types of JavaScript/CSS files: one with
the min suffix and one without it.

The files with the min suffix are the recommended version for production, because they
are minified (compressed, without spaces, comments and line-breaks). If you need to
debug inside jQuery Mobile, you can use the non-suffixed versions.

jQuery Mobile 1.0 requires jQuery code 1.6.4. Don’t try to use a later
version of the core because it might be incompatible. If you are using a
later version of the mobile framework, check the documentation to ver-
ify which core framework version is the one you need to use.

In the most common situation, you will add the following files to your project’s root
folder:

• jquery-XX.js (from the jQuery core)

• images folder

• jquery.mobile-XX_min.js

• jquery.mobile-XX_min.css

If you are creating a webapp using PhoneGap or another offline/hybrid mechanism, it’s
better to embed the files inside your package so the webapp can work offline.

The files with the structure name are useful if we are going to create our own theme as
we will see later in this book.

26 | Chapter 2: Starting with the Framework

www.it-ebooks.info

http://www.it-ebooks.info/

jQuery Mobile’s License
Usage of jQuery Mobile (and jQuery, the core) is free of charge and they are open source
with dual license, MIT or GPL version 2. The MIT license is the recommended choice
for most projects and it does not require anything from us. The only important thing
to remember is to not delete or change the copyright information at the top of the files.
If you have any doubt, you can check http://jquery.org/license.

If you host the files on your server, you need to verify that the files are being gzipped
on your server if the client supports compression. This will reduce the jQuery Mobile
JavaScript and CSS transfer and load time by 80%. If you don’t know how, just ask
your provider or check in at http://mobilexweb.com/go/performance.

Using a CDN
There is a simpler way of using jQuery Mobile: Content Delivery Networks (CDNs).
A jQuery CDN is just a public server on the Web hosting the files for us. This approach
has its advantages and disadvantages.

The main disadvantage is that our webapp will work only if the public CDN is online.
Of course, they are prepared for that and they have all the possible support for being
online 24/7. However, some projects need to not rely on third-party servers, such as
offline webapps.

If you are creating hybrid or native apps with jQuery Mobile (such as
PhoneGap apps), you should not use a CDN. If the device has lost con-
nection, you could not even show a nice alert using the framework. If
you are creating HTML5 offline webapps, you can use the CDN if you
add them to the application manifest.

The main advantages of using a CDN are as follows:

• You can use jQuery Mobile now, in one second without downloading anything.

• Your server will deliver fewer files, producing less traffic.

• Your webapp will take advantage of caching: if the user has visited other webapps
using jQuery Mobile with the same CDN, her browser may already have all the
resources in the cache.

• For most shared hosting servers, jQuery Mobile resources will load faster from a
CDN.

Preparing the Document | 27

www.it-ebooks.info

http://jquery.org/license
http://mobilexweb.com/go/performance
http://www.it-ebooks.info/

• Your webapp will take advantage of the different domain usage for performance
purposes.

• On some CDNs, you can link directly to a single location that always features the
latest version. However, this is not always recommended, because you will never
know how your webapp will respond to newer versions without testing.

There is no room in this book to talk about web performance optimization (WPO) for
mobile browsers. If you want to check more about this, go to http://www.mobilexweb
.com/go/performance and follow Steve Souders’s blog at http://stevesouders.com.

For the jQuery core, there are several CDNs from which to choose:

• Official jQuery CDN

• Microsoft jQuery CDN (http://www.asp.net/ajaxlibrary/CDN.ashx)

• Google AJAX Libraries API (http://code.google.com/apis/libraries/)

At the time of this writing, the Official jQuery CDN and Microsoft CDN are hosting
the jQuery Mobile files.

Using a CDN is really simple. You just need to copy and paste the URL to the JavaScript
or CSS external file, and that’s all. In http://jquerymobile.com/download/, you will find
a copy-and-paste snippet that looks like this:

<link rel="stylesheet" href="http://code.jquery.com/mobile/1.0/
jquery.mobile-1.0.min.css" />
<script src="http://code.jquery.com/jquery-1.6.4.min.js"></script>
<script src="http://code.jquery.com/mobile/1.0/jquery.mobile-1.0.min.js"></script>

If we are providing our own theme (as we are going to see later), we need to use the
following snippet:

<link rel="stylesheet"
href="http://code.jquery.com/mobile/1.0/jquery.mobile.structure-1.0.min.css" />
<-- Our theme CSS file here -->

<script src="http://code.jquery.com/jquery-1.6.4.min.js"></script>
<script src="http://code.jquery.com/mobile/1.0/jquery.mobile-1.0.min.js"></script>

As you can see, there are just three external resources to a code.jquery.com hosting
server with minified versions of every resource. You don’t need to download anything,
including images, CSS, or JavaScript code to use it. Remember to check the latest ver-
sion available on the website.

28 | Chapter 2: Starting with the Framework

www.it-ebooks.info

http://www.mobilexweb.com/go/performance
http://www.mobilexweb.com/go/performance
http://stevesouders.com
http://www.asp.net/ajaxlibrary/CDN.ashx
http://code.google.com/apis/libraries/
http://jquerymobile.com/download/
http://www.it-ebooks.info/

Latest builds

If you always want to run your code with the latest version, jQuery CDN offers you
new resources to embed in your code. Remember that these versions change automat-
ically, so though your code works today, it may have problems tomorrow. This option
should be used for development and testing purposes. Remember that this version may
include unstable development code.

The files to include for using the latest builds are these:

<link href="http://code.jquery.com/mobile/latest/jquery.mobile.min.css" rel="stylesheet"
 type="text/css" />
<script src="http://code.jquery.com/jquery-1.6.4.min.js"></script>
<script src="http://code.jquery.com/mobile/latest/jquery.mobile.min.js"></script>

The advantage of the latest development builds is the ability to use new features not
available yet on the latest production build.

Main HTML5 Template
To create a jQuery Mobile webapp, you just need to create an empty HTML5 file. If
you have never created an HTML5 document, it’s very easy and similar to an HTML
4.01 file.

The DOCTYPE (first line in the document) is very simple: <!DOCTYPE html>.

And the other change is the meta charset tag, inside the head tag: <meta char
set="utf-8" />.

There is no space in this book to talk in detail about changes from HTML 4.01, but
just know that these changes are also compatible in some older non-HTML5 compat-
ible devices where jQuery Mobile also works.

If you use Dreamweaver, starting with the CS5 version, you can create
an HTML5 empty template by selecting HTML5 from the Document
Type drop-down list in the New Document window. If you don’t have
this option, you need to first download the 11.0.3 or newer update from
the Adobe.com website or the Adobe Updater application.

The official recommendation from the jQuery Mobile team is to include the JavaScript
and CSS resources inside the head tag (hosted or CDN-based) and add a viewport
meta tag:

<!DOCTYPE html>
 <html>

 <head>
 <meta charset="utf-8" />
 <title>Your Title</title>
 <link rel="stylesheet"

Preparing the Document | 29

www.it-ebooks.info

http://www.it-ebooks.info/

 href="http://code.jquery.com/mobile/1.0/jquery.mobile-1.0.min.css" />
 <script src="http://code.jquery.com/jquery-1.6.4.min.js"></script>
 <script type="text/javascript"
 src="http://code.jquery.com/mobile/1.0/jquery.mobile-1.0.min.js"></script>
 <meta name="viewport" content="width=device-width, initial-scale=1">
</head>

 <body>

 </body>

</html>

That is all! We have just created an empty jQuery Mobile document. Of course, the
body is empty and we will revisit that shortly.

The viewport

The viewport is the area in which the page fits. You can specify its width and height,
and it can be larger or smaller than the total visible area of the screen. This is where the
scale and zoom features of the mobile browser come into play. If you are creating a
mobile-friendly website, it shouldn’t need to be zoomed in or out or it should start with
a visible area equal to the device’s screen width, so you can say to the browser that you
want to start with a scale of 1:1 (viewport area:visible area). Let’s take a look at Fig-
ure 2-1 to see what’s happening to jQuery Mobile on iOS without a viewport
definition.

jQuery Mobile alpha versions used to create the viewport automatically.
If you are migrating an older jQuery Mobile alpha webapp, remember
that you will need to add the viewport metatag explicitly on your pages.

The typical viewport metatag for jQuery Mobile will look like this:

<meta name="viewport" content="width=device-width, initial-scale=1">

You can also indicate that you don’t want the user to change that scale (with gestures
or buttons):

<meta name="viewport" content="width=device-width, initial-scale=1, user-scalable=no">

30 | Chapter 2: Starting with the Framework

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2-1. In jQuery Mobile we need to define a viewport meta tag to avoid this kind of UI problems
when loading our webapp

Performance on JavaScript

Before continuing with our webapp, we need to talk about performance. There is a
well-known practice inside WPO claiming that inserting external script tags inside the
head is wrong from a performance perspective. That is absolutely true. Just read the
excellent book from Steve Souders: High Performance Web Sites (O’Reilly).

However, from jQuery Mobile’s perspective, moving the two scripts (jQuery and
jQuery Mobile) to the end of the HTML file may lead to a non-desired result: your
webapp will be shown as plain HTML without CSS for some milliseconds until the
framework is downloaded and executed, even if we put the CSS file in the head.

Preparing the Document | 31

www.it-ebooks.info

http://shop.oreilly.com/product/9780596529307.do
http://www.it-ebooks.info/

That is because of the progressive enhancement approach that jQuery Mobile uses
inside the framework. The CSS file does not do anything on the rendering without the
JavaScript.

Therefore, it is better to have them both in the head, even if we have a small performance
delay.

Adobe Dreamweaver Support
Starting from version CS5.5, Adobe Dreamweaver has official support of jQuery Mobile
inside the tool. You can download a free trial from http://www.adobe.com/go/dream
weaver.

The first version of Dreamweaver CS5.5 includes jQuery Mobile
alpha 3 and not the latest release. Check http://mobilexweb.com/go/
dwjqm for instructions on how to update to the latest version. You can
always start with alpha 3 and change it manually. Later versions of
Dreamweaver will include the latest stable version at the time of release.

The support includes the ability to start a page using jQuery Mobile. To do that, just
open Dreamweaver, go to File → New, select Page from Sample → Mobile Starters, and
you will have the ability to select from three templates (as seen in Figure 2-2):

• jQuery Mobile from CDN

• jQuery Mobile with local files

• jQuery Mobile with local files, including PhoneGap support (to be covered later
in this book)

Every template starts with a jQuery Mobile document with four pages linked between
one another.

The best part of using Dreamweaver is not the templates, but the code syntax assistant.
You can start typing data- to receive a list of possible jQuery Mobile data-* values. Or
you can receive a list of possible values for each data-* jQuery Mobile attribute (at least
defined up to alpha 3).

With the new multiscreen preview method available in Dreamweaver
since CS5.5, you can see how jQuery Mobile adapts itself to different
screen sizes and orientations, including smartphones and tablets.

You will also find a new menu under Insert called “jQuery Mobile” that has snippet
code for most of the UI components we are covering in this book.

32 | Chapter 2: Starting with the Framework

www.it-ebooks.info

http://www.adobe.com/go/dreamweaver
http://www.adobe.com/go/dreamweaver
http://mobilexweb.com/go/dwjqm
http://mobilexweb.com/go/dwjqm
http://www.it-ebooks.info/

Previewing Files
To see jQuery Mobile in action inside Dreamweaver you need to use the Live View
function, as seen in Figure 2-3.

Figure 2-3. You can see jQuery Mobile in action inside Dreamweaver using the Live View

Figure 2-2. Dreamweaver from CS5.5 supports jQuery Mobile templates from scratch.

Adobe Dreamweaver Support | 33

www.it-ebooks.info

http://www.it-ebooks.info/

Architecture
jQuery Mobile uses a very simple and powerful approach to define the content of the
webapp. Remember that we’ve already discussed that the framework uses an unob-
trusive approach, meaning that our HTML documents will work even without jQuery
Mobile loading properly.

The main unit of the framework is the page. Just like normal HTML files then? No. Let
me explain. A page is just a div element with a specific role. One HTML document can
host one page or many pages inside the same file. And that is a new concept for most
web designers.

We will be able to link to pages inside the same HTML document, or to pages on
external HTML documents, using simple HTML markup, such as the a tag.

Cards Idea
The ability to embed more than one page inside the same document has been in the
mobile web field for more than 10 years. The now obsolete Wireless Markup Language
(WML) standard had the ability to insert many visual pages inside the same document
with the goal of reducing latency and download times. jQuery Mobile follows the same
idea implemented over normal HTML and JavaScript.

In the WML world, every page was called a card and a WML document was called a
deck. A WML file used the card tag for defining a page inside a document, while jQuery
Mobile typically uses a div tag with a specific role.

Roles
jQuery Mobile uses standard HTML markup, such as the div tag. To define what the
framework should do with that div, we define a role. A role in the framework is defined
using the attribute data-role. For example, <div data-role="page">.

The main roles available on jQuery Mobile 1.0 are defined in Table 2-1, and we will
cover them throughout the book.

Custom data-* Attributes
The usage of data-<something> or data-* attributes on an HTML tag is an HTML5
feature called custom data attributes (defined in the W3C specification) that allows us
to define whatever attribute we want to add to a tag while maintaining an HTML-valid
document. It is useful for adding custom metadata to tags without invalidating the
markup.

jQuery Mobile often uses this ability to define custom attributes for the framework.
But don’t get confused: data-role is not a new HTML5 new attribute. Its usage is an
implicit contract between the framework and us.

34 | Chapter 2: Starting with the Framework

www.it-ebooks.info

http://www.it-ebooks.info/

The great feature of custom attributes is that they also work on non-HTML5 browsers
without any serious issue.

If you are using Adobe Dreamweaver starting from CS5.5 version, you will have auto-
matic jQuery Mobile suggestions when typing data- inside an HTML element.

Table 2-1. Main roles available in jQuery Mobile 1.0

Role Description

page Defines a page, the unit that jQuery Mobile uses to show content

header Header of a page

content Content of a page

footer Footer of a page

navbar Defines a navigation bar, typically inside a header

button Renders a visual button

controlgroup Renders a component

collapsible Collapsible panel of content inside a page

collapsible-set Group of collapsible panels (accordion)

fieldcontain Container for form fields

listview Content of multiple items as a list

dialog Dialog page

slider Visual slider for Boolean values

nojs Element that will be hidden on jQuery Mobile’s compatible browsers

Theming
jQuery Mobile uses a powerful theming mechanism to define visual appearance of the
user interface. We are going to cover theming and custom personalization later in this
book, but it’s important to know now that every UI element (such as a page, button,
or component) can use a different color swatch inside a theme.

The framework up to 1.0 includes only one default theme, and a Theme
Roller (an online webapp to create your own theme) is available at http:
//jquerymobile.com/themeroller to define our own theme without coding
CSS files directly.

A theme is a group of definitions for layout, styles, and colors. Every theme includes a
set of color swatches that we can change anywhere in our webapp. Color swatches are
created to have different options to show elements. A color swatch is defined by a letter,
from a to z. The default theme includes swatches from a to e with the ability to add
more letters of our own.

Architecture | 35

www.it-ebooks.info

http://jquerymobile.com/themeroller
http://jquerymobile.com/themeroller
http://www.it-ebooks.info/

Table 2-2 shows the conventions about the color swatches as seen in Figure 2-4.

Table 2-2. Color swatch conventions

Letter Description Color in the default theme

a Highest level of visual priority (default on toolbars) black

b Secondary level of visual priority blue

c Baseline level (default swatch for most situations) silver

d Alternate secondary level gray

e Accent yellow

A color swatch is defined on every jQuery Mobile HTML element with data-theme and
the letter to assign, for example: data-theme="e" for using the accent swatch.

Figure 2-4. Default themes from a to e

Typically we can change the color swatch of lots of elements in our webapp, such as
pages, lists, buttons, elements, form elements, and toolbars. We don’t need to change
them to all the same elements at the same time. We can use color swatches to highlight
one element from another.

Color swatches use a cascading system. That means that if a wrapper element defines
a swatch color, its children will use that swatch unless a new one is defined explicitly.

The Page
We know that the page is the main unit for jQuery. A typical page will be divided in
three parts: header, content, and footer. The only mandatory section is the content.
Every part is declared using div tags with the corresponding role:

<div data-role="page">

 <div data-role="header">

 </div>
 <div data-role="content">

36 | Chapter 2: Starting with the Framework

www.it-ebooks.info

http://www.it-ebooks.info/

 </div>
 <div data-role="footer">

 </div>

</div>

Every part, including the page, the header, the footer, and the content can have its own
swatch color from the current theme.

The page-role element is not mandatory on a single page document and
if we don’t provide one, the framework will add one by itself. However,
it’s a good practice to add it, as it will make our code cleaner and safer
for future changes.

In Figure 2-5 we can see a diagram of a typical jQuery Mobile document. Remember
that this page needs to be inside an HTML5 document’s body with jQuery Mobile
embedded.

jQuery Mobile will manage orientation changes itself (portrait or landscape) on most
devices, adapting the UI automatically to the new viewport.

If we want to provide content for non-A-grade compatible browsers, we
can add the role nojs, for example <div data-role="nojs">. This content
will automatically be hidden for A-grade browsers.

On compatible devices, such as Android-, webOS- and iOS-based ones, jQuery Mobile
will try to hide the browser’s address bar by manipulating the initial scroll. This is done
to render a more native app look and feel. However, this hack will only work if the
content is tall enough to fit the available space. If the page does not contain enough
content, the address bar will be visible at all times.

The header and the footer

In the header and footer, we can insert whatever HTML we want. However, because
of the standard jQuery Mobile stylesheet, the best rendering UI will be achieved using
h1 in the header and h4 in the footer. We will see later in this book how to customize
the UI.

The footer is optional but the header is generally needed in webapp navigation UI. The
header structure is predefined and is divided into three subareas: left, title, and right.

We will cover the left and right areas later. For now, let’s say that these are places
prepared for action buttons.

Architecture | 37

www.it-ebooks.info

http://www.it-ebooks.info/

The title is automatically taken from any hX tag, such as an h1 or h2 element. The space
available for the title is limited and it will be automatically cropped if it doesn’t fit. On
most compatible devices, we will see an ellipsis as in Figure 2-6. This behavior is also
replicated in the footer.

Figure 2-5. A typical page contains a header, a content area, and an optional footer inside a jQuery
Mobile document

38 | Chapter 2: Starting with the Framework

www.it-ebooks.info

http://www.it-ebooks.info/

The content

The content area can have any HTML code. Typically we are going to use some of the
styled controls included with the framework, such as buttons, lists, or forms.

Let’s improve our sample, as seen in Figure 2-7:

<div data-role="page">

 <div data-role="header">
 <h1>Our first webapp</h1>
 </div>
 <div data-role="content">
 <p>This is the main content of the page</p>
 </div>
 <div data-role="footer">
 <h4>More on mobilexweb.com</h4>
 </div>

</div>

Figure 2-6. If the title doesn’t fit, jQuery Mobile adds an ellipsis at the end

Architecture | 39

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2-7. Each role (header, content, footer) has a nice iOS-like UI by default

If you insert code inside a page, but outside a header, content, or
footer section, jQuery Mobile stylesheets will not work, and you will
have some UI bugs if you don’t take care of them manually.

Navigation
For navigation between pages, we will use standard a elements. jQuery Mobile will take
them and do the magic for us.

First of all, there are different types of hyperlinks that we can make:

• Internal links to another page in the same document (known as a multipage
document)

• External links to a page in other jQuery Mobile documents

• Absolute links to non-jQuery Mobile documents

• Mobile special links

Linking between jQuery Mobile’s pages (first two cases) creates two special linking
behaviors:

• It creates a transition animation between pages, on compatible devices (such as
iOS- and Android-based devices).

• If running on a browser (and not in chromeless installed app), the browser’s back
button will automatically go back to the first page.

A great feature of jQuery Mobile is the detection of the browser’s back button to deliver
a backward navigation option using techniques transparent to us. Some devices, such

40 | Chapter 2: Starting with the Framework

www.it-ebooks.info

http://www.it-ebooks.info/

as Android- and BlackBerry-based ones, have hardware back buttons that will also work
for going back to the previous page.

In multipage documents, the first page in the DOM will be shown with
the first load.

The navigation from the second page to the first one after a back event is fired is done
using the same transition effect in reverse.

This back pattern is inspired by iOS and other mobile OS’s user interfaces’ patterns.
jQuery Mobile will stack every new page the user accesses so she can go back anytime
to any previously viewed page.

This navigation is entirely done by the framework. jQuery Mobile manipulates the
current URL, adding hash values after the initial URL. On some devices, this process
can cause a strange effect. While the address bar is hidden, the user navigates to another
page, the address bar appears for a second, and then it hides again. This effect only
happens with browser-based webapps. You can avoid it by using a full-screen webapp
or a hybrid native app, as we are going to see it later in this book.

Back Button
If we want to add a visual “back” button at the left of the header, we can use the data-
add-back-btn="true" attribute on our page. The button label can be customized us-
ing data-back-btn-text also applied on the page and the button color swatch can be
defined using data-back-btn-theme. For example:

<div data-role="page" data-add-back-btn="true" data-back-btn-text="Previous"
 data-back-btn-theme="e">

</div>

If you are creating a browser-based experience and not a chromeless
webapp (such as an installed webapp), you should know that every
browser provides a back button either as a touch button or as a hardware
key. Therefore, creating an explicit button for going back will only du-
plicate actions and use valuable space on the screen. If you are creating
an installed chromeless webapp, you should always include an explicit
back button.

Navigation | 41

www.it-ebooks.info

http://www.it-ebooks.info/

Internal Page Links
We have already mentioned that a jQuery Mobile document can nest multiple pages
inside. To do that, we add multiple pages as body’s children. We need to define a id
(identification name) using standard HTML for every page, so we can then access them.

To create a link to another page inside the same document, we just need to use #<id>
in the href attribute, where <id> is the identification name of the target page. For ex-
ample: .

An external page link must be hosted in the same domain as the current
page or hosted in the same package in a native app. If you link to a
document in another domain, it will be treated as an absolute external
link unless you enable cross-domain AJAX loading from JavaScript.

By default, the framework uses the document’s title element as the browser’s title.
This title is useful for browser-based apps and is shown on top of some browsers as
well as when a user bookmarks the page. If we want to update this title when the user
accesses a new internal page, we can do it with the data-title optional attribute of
every page.

Let’s see a sample (shown in Figure 2-8):

<body>

<div data-role="page" id="page1">

 <div data-role="header">
 <h1>First page</h1>
 </div>
 <div data-role="content">
 <p>This is the main content of the page.</p>
 <p>You can go to the second page.</p>

 </div>
 <div data-role="footer">
 <h4>mobilexweb.com</h4>
 </div>

</div>

<div data-role="page" id="page2" data-title="This is the second page">

 <div data-role="header">
 <h1>Second page</h1>
 </div>
 <div data-role="content">
 <p>This is the main content of the second page</p>
 <p>You can go back using the header’s button, clicking here
or using your browser’s back button.
 </div>
 <div data-role="footer">

42 | Chapter 2: Starting with the Framework

www.it-ebooks.info

http://www.it-ebooks.info/

 <h4>mobilexweb.com</h4>
 </div>

</div>

</body>

Figure 2-8. Navigation between internal pages is easy and transparent using standard link tags

Can we create a whole webapp using only one HTML document? If we don’t require
any dynamic content, we can. However, remember that when nesting multiple pages
inside a document, the user will need to download the document completely, even if
he does not see all pages. We need to find the balance between performance and avail-
ability to decide how many pages and which pages should be delivered in the same
document.

In Figure 2-9 you can see a diagram of internal page navigation.

We could store some stats from our website to know which pages the user is likely to
visit, so we can prefetch them as pages in the same document.

When the framework finds a link to the previous page, it automatically
converts it in a back action link, so you will see a reverse animation, and
the action will not add a new entry in the history. If you want a link to
go back, you can use data-rel="back" on any a element.

Navigation | 43

www.it-ebooks.info

http://www.it-ebooks.info/

External Page Links
If we don’t want to include a page inside the same document as the first one, or if we
need to dynamically create the content (for example, using PHP or any other server-
side code), we can link to another jQuery Mobile HTML document using standard a
tags:

Go to next page

Figure 2-9. When navigating between internal pages, every forward link will add an entry in the
navigation stack, while every back action will remove the last entry

44 | Chapter 2: Starting with the Framework

www.it-ebooks.info

http://www.it-ebooks.info/

That’s all? Yes, the framework will automatically trap any link like the one in the pre-
vious line and it will provide a very similar experience as the one with internal links.

An external page link must be hosted in the same domain as the current
page or hosted in the same package in a native app. If you link to a
document in another domain, it will be treated as an absolute external
link.

The only difference is that the framework will be using AJAX to make the request to
the other document, will parse its content, add the page included in the current DOM,
and make a smooth transition to this new page. While the request is being made, the
user will see a nice loading spinner as shown in Figure 2-10. Remember to use data-
title to update the browser’s title after loading the new page.

Figure 2-10. When linking to external jQuery Mobile pages, the framework will automatically show
an animated spinner while loading the requested page (only if it is taking a long time)

Let’s think about it for a second: When jQuery Mobile finds a link on a page, it first
detects whether it is an internal link (starting with a hash #) or an external link. If it is
an external link without any rel or target attribute defined (as in the example we’ve
written), it captures the click event creating an AJAX request for the href document
while showing a progress modal window. When the request has finished, the frame-
work adds the loaded page to the DOM and navigates to it as if it were an internal page.

Navigation | 45

www.it-ebooks.info

http://www.it-ebooks.info/

For browsers not compatible with the framework, external links will
work as normal HTML links without any trouble because that is what
they are: standard a tags. That is the power of progressive enhancement.

jQuery Mobile will automatically add the external loaded page to the DOM with a new
ID (defined as the relative URL from the original document), so it will already be “on
stage” if the user goes to the same page again while the jQuery Mobile document is still
loaded on the browser. This operation is shown on Figure 2-11.

The URL and jQuery Mobile’s Navigation
jQuery Mobile uses hash navigation (#<id>) for moving between pages on some devices.
Therefore, HTML anchor navigation will not work inside a jQuery Mobile document
for scrolling inside the same page.

You need to create JavaScript logic for emulating that feature. In noncompatible devi-
ces, internal pages will all display at the same time and internal linking will work as
normal HTML anchor navigation links.

There are some mobile browsers supporting History API (one of the new HTML5 APIs)
allowing a website to change the entire URL without creating a full-page refresh. jQuery
Mobile uses this API on compatible browsers, so instead of hash navigation #<id> for
external links, the full target URL will be shown in the URL address bar while the
content is still loaded using AJAX from the first document.

An AJAX request can fail. There are several reasons for that, such as a server error, a
not-found URL, a connection failure, or a network problem on the device. If the target
page cannot be loaded, the user will receive an error alert like the one in Figure 2-12.
Later in this book we will learn how to customize this error message.

AJAX or Hijax?
AJAX (originally, Asynchronous JavaScript and XML) is a client-side technique that
allows the browser to make a request to the server “behind the scenes” without chang-
ing the URL of the page and without blocking the UI while loading. Originally, an AJAX
request used XML as the data’s format, while now it is more common to transfer JSON-
formatted values, or even plain text or HTML.

jQuery Mobile makes AJAX requests between page navigations, requesting the whole
target HTML document as plain text for later parsing while still having a normal HTML
link in the markup. This pattern is technically known as Hijax and it includes the use
of progressive enhancement techniques to make it work.

46 | Chapter 2: Starting with the Framework

www.it-ebooks.info

http://www.it-ebooks.info/

To make external page links to a page without any issue, we need to follow these rules:

• The destination must be also a jQuery Mobile document.

• The destination must be hosted in the same domain.

• The destination must be a one-page document.

• If the destination URL is a folder (for example, /clients), the href attribute must
end with slash, href="/clients/".

• The target attribute should not be declared, as in target="_blank".

A jQuery Mobile webapp life cycle typically involves one full HTTP
request (the first document), many possible internal pages loading, and
many possible AJAX requests for external pages. No further HTTP full
requests are performed until an absolute external link is found or a B-
grade or C-grade browser is in action.

To avoid internal problems with the framework logic, we need to treat external docu-
ments with multiple pages as absolute external links, as we are going to discuss in the
next section.

Figure 2-11. The framework will add to the original document’s DOM the page loaded via AJAX
using an external link so it will be prefetched for future use

Navigation | 47

www.it-ebooks.info

http://www.it-ebooks.info/

The framework takes from the loaded document only the first page (the first div with
role="page") and discards any other content. This means that any information you add
to the head element of the target document will be ignored, with any other content
outside the first page element.

With that in mind, any CSS or JavaScript embedded in other documents, as well as the
title element, will be ignored. Should we remove them? Absolutely not. Remember
that jQuery Mobile uses progressive enhancement techniques, so the ignored content
will be useful for noncompatible devices loading the full document in the browser. We
will talk about how to deal with this limitation later.

Prefetching and Caching Pages
Sometimes we don’t want to use external pages because we want to show the next page
as soon as the user selects the option. To reduce AJAX times, we can prefetch a page.
We can indicate to jQuery Mobile which links should be prefetched by the framework
so they can be available sooner on the DOM. To do that, just add the Boolean at-
tribute data-prefetch to any link, for example:

Go to this new page

Remember to use this feature only on links with a higher probability of being used.
Good usage examples are: paged articles, photo gallery (prefetching the next picture),

Figure 2-12. The message that the user will receive if the destination page could not be loaded in an
external jQuery page load

48 | Chapter 2: Starting with the Framework

www.it-ebooks.info

http://www.it-ebooks.info/

or a link that statistically we know that most users follow. This feature will add HTTP
traffic and consumption to the user, so it should be used with care.

To avoid a large DOM in memory, jQuery Mobile automatically removes from the
DOM an external loaded page when it becomes hidden (after going back or going
forward to a new page). If the same page needs to be shown again, the framework tries
to recover it from a cache; if not, it reloads the page from the server. If we want to force
an external page to not be removed from the DOM, we can use the page attribute data-
dom-cache="true" on the page element. Use this feature only if you are sure that the user
will return, because increasing the DOM extensively leads to memory and performance
issues.

Absolute External Links
Sometimes we want to link to another site or document that does not belong to jQuery
Mobile content. For that purpose, we need to explicitly define an absolute external
link. We can accomplish this by adding data-rel="external" to the a tag.

For example:

Check my blog

There are other situations where a link is treated as an absolute external one, such as
when defining any target or when linking to a different domain document, whether or
not it’s a jQuery Mobile document:

Check my blog

Check my blog

Another way to force a link to be an absolute external one is to use data-ajax=false
inside the link (useful for pages inside the same domain):

Other page

When the user clicks (or taps with her finger) an absolute link, a jQuery
Mobile instance will be unloaded, and the browser will be redirected to
the target destination. If we want to maintain our instance while opening
the link, we should add target="_blank" in the hyperlink. It will work
on most smartphones and tablets with multipage navigation support.

If you are creating a native webapp, you should think twice about using absolute ex-
ternal links. By default, the final target will be loaded inside your webapp container
(within your application limits), and it may not be what you want. For example, if your
native app does not provide any navigation buttons such as back actions, the user will
not be able to return to your app. On some solutions, such as PhoneGap, this URL will
be opened in the default browser, closing or minimizing your app.

Navigation | 49

www.it-ebooks.info

http://www.it-ebooks.info/

If you link to an absolute external URL within a jQuery Mobile docu-
ment, it will work as usual but the target page will not have a back button
feature. The target page will initiate a new jQuery Mobile instance.

We will cover native development using jQuery Mobile in later chapters, so I leave you
to ponder how to solve this problem until then.

Mobile Special Links
Remember we are creating mobile web experiences. We should enhance the user’s
experience by integrating our app with the device whenever we can. We can include
call or send SMS actions using URI schemes. We will get deeper into this ability in
“Integrating with the Phone” on page 57.

Remember to always apply progressive enhancement patterns to your
website. That means that you should always use standard a links instead
of changing pages or navigation using JavaScript. Using standard HTML
for navigation will allow your webapp to work on every mobile browser
scenario.

Transition Between Pages
As we saw before, when a user goes from a page to another page, jQuery Mobile uses
a smooth animation transition. By default, all the transitions are made using a right-to-
left animation. This animation pattern is very useful for master detail and general-to-
specific navigation. When you get deeper inside the navigation, you see a right-to-left
animation. When you go back to previous pages, you see the reverse: left-to-right ani-
mation.

Transitions use CSS3, and they are hardware-accelerated on most de-
vices. On some noncompatible devices, there will be no animation be-
tween pages.

jQuery Mobile allows us to change or to define explicitly which animation transition
we want in every page change. To do that, we need to use the custom attribute data-
transition inside the link. Every transition has its reverse counterpart for the back
action.

50 | Chapter 2: Starting with the Framework

www.it-ebooks.info

http://www.it-ebooks.info/

The available transitions (described in Figure 2-13) are:

slide
The default right-to-left animation.

slideup
Bottom-to-top animation, mostly used for modal pages.

slidedown
Top-to-bottom animation.

pop
The new page will grow from a small point in the middle to a full-screen page.

fade
A cross-fade animation between old and new pages.

flip
A 2D or 3D rotation animation. 3D is available only on some devices, such as iOS
devices. On other devices, such as those that are Android-based, this transition
renders a 2D rotation that may not be the effect you really want.

Most transition effects inside jQuery Mobile 1.0 were developed by the
jQTouch (http://jqtouch.com) team, built by David Kaneda and main-
tained now by Jonathan Stark. Starting with version 1.1, jQuery Mobile
is improving the transition effects and adding two new values: flow and
turn.

To define a new transition on a link, we apply data-transition="name", for example:

second page

Figure 2-13. These are the possible transitions between pages available in jQuery Mobile 1.0

Navigation | 51

www.it-ebooks.info

http://jqtouch.com
http://www.it-ebooks.info/

Transition animations will work only on A-grade browsers with internal
and external links to jQuery Mobile pages. Animations will not work
with absolute links or with special URI schemes, such as SMS sending.

I recommend you maintain classic transitions between pages and make consistent UI
mental patterns. For example, for going deeper in the information or navigation hier-
archy, always use the slide transition. For lateral actions such as Help, Settings, and
Adding new items, you should use any other transition.

Remember that transitions are applied to links, not to pages. This means that the action
of going to another page can be done using different transitions if you use many links
to get there. Try to maintain consistency in your webapp in these situations.

Reverse Transition
If we want to force a reverse transition (back action), we can specify data-direc
tion="reverse" on the desired link. jQuery Mobile will automatically make the transi-
tion in reverse.

Dialogs
A dialog is just another way to show a page in our webapp. Therefore, a dialog is not a
new thing. It is just a page with a different semantic.

A dialog page is intended for modal messages, lists, or information that does not have
any hierarchal relation with the page that links to it.

The main differences between a normal page and a dialog page (shown in Fig-
ure 2-14) are:

• It has a close action button (with an X) at the top left corner where the back action
button is if we define data-add-back-btn.

• A margin conveying to the user that it is not a full-screen page, but a pop-up window
that appears over the original page.

• It does not appear on the navigation stack as a new page. (As Figure 2-15 shows,
if you open a new page in a dialog, it will open as if the dialog was not there. External
loading will also have the same behavior.)

To open a dialog page, we need to use data-rel="dialog" inside the a tag where the
link goes. The rel defines the relation between the current page and the linked one (in
this case a dialog relation). For example:

<!-- This link goes to an external page, shown as a dialog -->
Delete this item

52 | Chapter 2: Starting with the Framework

www.it-ebooks.info

http://www.it-ebooks.info/

It is a good idea to change the default transition animation to something other than
slide to avoid confusion with the standard animation for pages in the hierarchy. There-
fore, a typical dialog-opening link will look like the following code:

<!-- This link goes to an external page, shown as a dialog -->

 Delete this item

Figure 2-14. Here you can see the exact same page opened normally and as a dialog

Figure 2-15. A dialog page does not create a new entry in the navigation stack

Dialogs | 53

www.it-ebooks.info

http://www.it-ebooks.info/

When a page is used as a dialog, we can define the overlay color swatch using data-
overlay-theme.

Instead of using data-role="page" for a dialog, we can also use data-
role="dialog" instead of data-rel="dialog" on the anchor elements.

Closing or Going Back?
As we saw in Figure 2-14, pages opened as dialogs do not go back, they just close. That
means there’s a change to the navigation process inside the framework when using
dialogs.

The first change is that the dialog “belongs” to the page that opened it. The dialog does
not generate a new entry in the history navigation stack.

A dialog page is similar to a pop-up or modal content behavior in typical desktop
applications. To close a dialog using a link, button, or other UI control, we should only
link to the original page. When jQuery Mobile finds a link to the opener page, it will
treat it as a close action.

In the next chapters, we will analyze how to customize visual design of
pages, dialogs, and components using themes and CSS.

Let’s suppose we have a delete action on delete.html. This link will open a dialog (on
confirm.html) to let the user confirm the deletion. In the confirmation dialog, we should
have two actions: delete and cancel.

Dialog pages do not add entries in the navigation stack. Therefore, if the user reloads
the page while the dialog is open, he will get the original page with the dialog closed.

The cancel link should close the dialog, as with the X button at the top-left corner.
Then, the cancel link will be just a normal a tag to confirm.html.

Just to make our sample a bit nicer, I’m going to jump ahead to the next chapters.
Using data-role="button" in any link, we will transform the typical underlined link
with a nice full-width, finger-height prepared button. In next chapters we will talk more
about buttons and how to customize them.

54 | Chapter 2: Starting with the Framework

www.it-ebooks.info

http://www.it-ebooks.info/

There is a JavaScript way to close a dialog that we are going to see in
next chapters. However, using a standard link going back to the opener
page is the recommended approach if we are going to target noncom-
patible devices with our webapp. Remember that jQuery Mobile uses
progressive enhancement, and if the browser does not even support
JavaScript, the webapp will work anyway

Let’s see this in action in Figure 2-16. Here is the code for delete.html:

<!DOCTYPE html>
<html>

<head>
 <meta charset="utf-8" />
 <title>Up and Running with jQuery Mobile</title>
 <link rel="stylesheet" href="jquery.mobile-1.0.min.css" />
 <script src="jquery-1.6.4.min.js"></script>
 <script type="text/javascript" src="jquery.mobile-1.0.min.js">
 </script>
 <meta name="viewport" content="width=device-width, initial-scale=1">
</head>

<body>

 <div data-role="page" id="main">

 <div data-role="header">
 <h1>Book Properties</h1>
 </div>

 <div data-role="content">
 <h2>Up and Running with jQuery Mobile</h2>
 <p>Author: Maximiliano Firtman</p>
 <p>This book has no reviews yet on our database.</p>

 <p>
 <a href="./confirmation.html" data-rel="dialog"
data-transition="pop" data-role="button">
 Delete this book

 Modify this book

 </p>
 </div>

 <div data-role="footer">
 <h4>O'Reilly Store</h4>
 </div>

 </div>

Dialogs | 55

www.it-ebooks.info

http://www.it-ebooks.info/

 </body>
</html>

Here is the code for confirmation.html:

<!DOCTYPE html>
<html>

<head>
 <meta charset="utf-8" />
 <title>Delete Confirmation</title>
 <link rel="stylesheet" href="jquery.mobile-1.0.min.css" />
 <script src="jquery-1.6.4.min.js"></script>
 <script type="text/javascript" src="jquery.mobile-1.0.min.js">
 </script>
 <meta name="viewport" content="width=device-width, initial-scale=1">
</head>

<body>

 <div data-role="page" id="alert">
 <div data-role="header">
 <h1>Confirmation</h1>
 </div>
 <div data-role="content">
 <h2>Are you sure you want to delete this book?</h2>

 <!-- This will be a normal page loading -->
 Yes, delete

 <!-- This is just a close link -->
 Cancel
 </div>

 </div>

 </body>
</html>

If you want to customize the close button text, you can do that on your
page using data-close-btn-text.

Opening Pages from Dialogs
Dialogs can have normal links to other pages (or absolute external links). When the
user selects a link that points to a different page than the opener (as we saw in the last
section), jQuery Mobile will close the dialog, go back to the opener page, and then
open the new page as if it were hosted in the opener.

56 | Chapter 2: Starting with the Framework

www.it-ebooks.info

http://www.it-ebooks.info/

In our sample, if we click on “Yes, delete” the dialog will close and we will see a typical
transition to the delete-yes.html page.

In Figure 2-15 we can see a diagram of what is happening with the navigation in this
situation.

Integrating with the Phone
Repeat with me: “We are designing a page for a mobile device. A mobile device. A
mobile device.” What does this mean? We should integrate with the phone whenever
we can.

One way to do this is through URI schemes, different protocols that we can use in-
side a href of a link a tag. I’m pretty sure you are already familiar with the mailto:
protocol. In mobile browsers, we can find many more. Some of them are compatible
with most devices and some others are platform-dependent (for example, iOS). The
latest ones are useful if we are creating a native webapp and we are sure in which
platform are we running.

Figure 2-16. Our dialog sample in action on an iPhone

Integrating with the Phone | 57

www.it-ebooks.info

http://www.it-ebooks.info/

Making a Call
Remember: most mobile devices are also phones! So, why not to create link-to-call
actions? If you’re creating a business guide, or even for our own unique phone, most
people will prefer to call a person instead of filling in a form on the device.
Figure 2-17 shows how these actions work on a couple of different devices.

Figure 2-17. Palm’s webOS and Android show the call window when we activate a tel link

The preferred method (copied from the Japanese i-Mode standards) is to use the
tel:<phone number> scheme.

Call us free!

This URI scheme was proposed as a standard in RFC 5341 (http://tools.ietf.org/html/
rfc5341), but be careful reading the specification, because most of the parameters pro-
posed there do not work on any device.

I recommend inserting the phone number in the international format:
the plus sign (+), the country code, the local area code, and the local
number. We do not really know where our visitors will be located. If
they are in the same country, or even in the same local area, the inter-
national format will still work.

If the user activates a call link, she will receive a confirmation alert asking whether to
place the call, showing the full number so she can decide. This is to avoid frauds tricking
the user into calling another country or a premium number.

58 | Chapter 2: Starting with the Framework

www.it-ebooks.info

http://tools.ietf.org/html/rfc5341
http://tools.ietf.org/html/rfc5341
http://www.it-ebooks.info/

Some nonphone mobile devices (such as the iPod Touch or iPad), don’t allow voice
calls. Instead, they show a prompt to add the phone number to the phonebook (see
Figure 2-18).

Figure 2-18. Some devices, such as Apple’s iPad, don’t have calling capabilities but they offer other
choices with a tel link

Video and VoIP Calls
iOS-based devices with cameras, such as iPhone 4 and iPod Touch 4G, include a
videochat application called FaceTime. If you are targeting these devices, you can create
a videocall link using facetime://<user-name-or-number>. These links will lead to an
error in other devices:

Call me using Facetime

Skype also has its own URI scheme for linking. We need the Skype username for making
the link. Optionally, we can also add a ?call parameter to initiate a call immediately.
Without it, we will see the user’s profile instead:

Call us using Skype

If the device does not have the native app to which we are linking, such
as FaceTime or Skype, installed, the user will receive an error. It is better
to not show those links to noncompatible devices. For device-targeting
and content adaptation, check the book Programming the Mobile Web
(O’Reilly).

Check http://www.mobilexweb.com/go/uri for updated information about URI schemes
for mobile browsers.

Integrating with the Phone | 59

www.it-ebooks.info

http://shop.oreilly.com/product/9780596807795.do
http://www.mobilexweb.com/go/uri
http://www.it-ebooks.info/

Sending Email
Some modern devices with browsers also have mail applications that can react to the
classic web mailto: protocol. The syntax is ?parameters. The detected parameters can
change from device to device but generally include cc, bcc, subject, and body. The
parameters are defined in a URL format (key=value&key=value), and the values must be
URI-encoded.

Here are some samples:

Mail us
Mail us

Mail us

Be aware that the mailto: mechanism doesn’t guarantee that the message will be sent.
It generally just opens the mail application, and the user has to confirm the sending
after making optional changes. If you need to actually send the mail, use a server
mechanism.

Generally, if we want to insert a newline in the body of the email, we can use the carriage
return plus line feed characters (%0D%0A). This does not currently work with the Mail
application in iOS, but we can insert HTML tags inside the body, so we can use

 for the Mobile Safari browser:

<a href="mailto:info@mobilexweb.com?subject=Contact&body=This%20is%20the%20
body%0D%0AThis%20is%20a%20new%20line">Mail us

<a href="mailto:info@mobilexweb.com?subject=Contact&body=This%20is%20the%20body

This%20is%20a%20new%20line">Mail us from iPhone

Sending an SMS
We all like the Short Message Service; that’s why mobile browsers generally offer the
ability to invoke the new SMS window from a link. To do this, we have two possible
URI schemes, sms:// and smsto://. Unfortunately, there is no standard way to know
for sure which one is compatible with a user’s browser. However, for jQuery Mobile-
only smartphones, we can safely use sms://.

The syntax is sms[to]://[<destination number>][?parameters]. As you can see, the
destination number is optional, so you can open the SMS composer from the device
without any parameters defined. The parameters involved in defining the body are not
compatible with all phones for security reasons (avoid premium SMS texts). As with
sending an email, an SMS is not automatically sent when the user presses the link. The
link only opens the SMS Composer window; the user must finish the process manually.
The destination number should either be an international number or, if it is a short
number code, we should guarantee that the user is in the right country and is connected
with one of the compatible carriers of that short code.

60 | Chapter 2: Starting with the Framework

www.it-ebooks.info

mailto:?parameters
http://www.it-ebooks.info/

Here are some samples:

Send an SMS

Invite a friend by SMS<a>

Contact us by SMS

More info for product
 AA2

Other URI Schemes
If you want to get deeper inside mobile integration from HTML, including MMS, iDEN-
networks Direct Call, videocalls, BlackBerry PIN messages, Facebook, Twitter, and
other native app integration, check out Programming the Mobile Web (O’Reilly).

Special URI schemes are not a feature of jQuery Mobile. The framework
just leaves the URI as-is and the mobile browser becomes responsible
for it.

Bringing It All Together
Let’s create a simple jQuery Mobile webapp using different URI schemes:

<!DOCTYPE html>
<html>

<head>
 <meta charset="utf-8" />
 <title>Up and Running with jQuery Mobile</title>
 <link rel="stylesheet" href="jquery.mobile-1.0.min.css" />
 <script src="jquery-1.6.4.min.js"></script>
 <script type="text/javascript" src="jquery.mobile-1.0.min.js">
 </script>
 <meta name="viewport" content="width=device-width, initial-scale=1">
</head>

<body>

<div data-role="page" id="main">
 <div data-role="header">
 <h1>Special Links</h1>
 </div>
 <div data-role="content">
 <p>Use the following buttons for testing special mobile behaviours.</p>

 <p>

 Call the White House

Integrating with the Phone | 61

www.it-ebooks.info

http://shop.oreilly.com/product/9780596807795.do
http://www.it-ebooks.info/

 SMS the White House

 SMS with a body text

 <a href="mailto:info@mobilexweb.com?subject=Sent%20from%20the%20web"
 data-role="button">
 Mail me

 Skype me

 Call using Facetime

 (iOS with camera only)

 </p>
 </div>
 <div data-role="footer">
 <h4>www.mobilexweb.com</h4>
 </div>
 </div>

 </body>
 </html>

62 | Chapter 2: Starting with the Framework

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3

UI Components

jQuery Mobile has a great set of UI components to use on our webapp. Remember that
we can always use plain HTML and CSS for adding our own content and ideas. How-
ever, for cross compatibility purposes, we are going to give usage priority to frame-
work’s components.

We can divide jQuery Mobile’s components into the following groups:

• Toolbar components

• Formatting components

• Button components

• List components

• Form components

In this chapter we will examine the first three categories, while saving list and form
components for later.

Toolbars
Toolbars are optional areas in our webapp defining headers and/or footers. They are
both optional, although headers are usually on every mobile webapp.

We have already talked about the header in the previous chapter: it’s the upper bar
where the title and/or the back/close button are located. It is defined generally as a
div with a role or header usually with an h1 title:

<div data-role="header">
 <h1>Page's title</h1>
</div>

The footer is a similar bar, located at the bottom of the webapp, with a more general
purpose. It can include copyright information, a call action link, or a series of buttons
such as a toolbar or a tab navigator area. It is usually a div with a footer role:

63

www.it-ebooks.info

http://www.it-ebooks.info/

<div data-role="footer">

</div>

Positioning
Positioning toolbars seems easy: headers at the top, footers at the bottom. However,
jQuery Mobile’s positioning system lets us define different behaviors for both toolbars.

Every toolbar (header or footer) can be positioned in four ways:

• Inline mode

• Standard fixed mode

• Full-screen fixed mode

• True fixed mode

The inline mode is the by-default value for every toolbar. It means the header and footer
will flow inline with the page. That means that if the page’s content is longer than the
available height, the footer will be hidden by default and it will appear after scrolling
down, while the header will be visible only while the scroll’s position is at the top.

Sometimes it is useful to have the toolbars available at all times and that is why jQuery
Mobile offers us the fixed and full-screen modes. To define the positioning mode of a
toolbar, we use the attribute data-position.

A fixed toolbar in jQuery Mobile will be positioned at the top (header) or at the bottom
(footer). While the user is scrolling the content of our page, the toolbar will be auto-
matically hidden with a fade transition. When the user finishes the scroll, the fixed
toolbar will appear again automatically in the right place at the top or bottom.

If the user taps on some noninteractive content area of the page, the fixed toolbars will
convert themselves to inline mode when in fixed mode, and vice versa. This allows the
user to move between inline/fixed modes easily by touching the screen and allowing
more space for content when needed.

To define a fixed toolbar, as shown in Figure 3-1, we just use data-position="fixed".

A full-screen toolbar is just a hidden fixed toolbar that appears when the user taps on
the screen. It disappears again when the user taps on the screen for a second time. The
content will take the whole screen, and if the user needs something from the toolbar,
he will tap on the content.

With both fixed and full-screen toolbars, the user can show/hide the
fixed toolbars with a tap inside the content area. The difference is that
with full-screen mode, the toolbars will be really hidden and with fixed
mode the toolbars will be positioned inline.

64 | Chapter 3: UI Components

www.it-ebooks.info

http://www.it-ebooks.info/

This is particularly useful when showing photos, long text, or large forms so we can
take advantage of the whole screen.

When the toolbars are visible, the content will be overlapped. On most browsers, the
headers use partial opacity so we can see a transparent background behind the header.

To use this mode, we just define data-position="fixed" on the toolbars and then data-
fullscreen="true" to the page (the element whose data-role is page).

The following sample defines full-screen toolbars:

<div data-role="page" data-fullscreen="true">

 <div data-role="header" data-position="fixed">
 <h1>Page's title</h1>
 </div>

 <div data-role="content">

 </div>

 <div data-role="footer" data-position="fixed">

 </div>

</div>

Figure 3-1. A fixed toolbar is at the top (for the header) or at the bottom (for the footer) no matter
the content’s length or initial scroll value, but while scrolling, the toolbars are hidden

Toolbars | 65

www.it-ebooks.info

http://www.it-ebooks.info/

True Fixed Toolbars
At the time of this writing, only some mobile browsers support position: fixed and
overflow: auto in CSS. Fixed position and scrolling zones let us define fixed areas on
screen that will be at the same place even if the user scrolls the document. The viewport
and zooming in and out usually add complexity to the fixed position idea.

The latest versions of some mobile browsers, including Safari on iOS, Android, Black-
Berry, and Nokia’s browsers, support position: fixed and/or the ability to scroll inside
a block with overflow: auto.

If we want to provide a true fixed toolbars experience, we can enable the touch overflow
ability in jQuery Mobile. Using overflow: auto, it will create, with CSS, a smaller
scrolling area using than the whole screen so our toolbars will be shown in the same
place always. This ability is disabled by default in 1.0, and we can enable it using Java-
Script. If we enable this feature, noncompatible browsers will fall back to standard fixed
toolbars. Future versions of the framework will obsolete this attribute and they will
provide true fixed toolbars by default on compatible devices.

We will cover the jQuery JavaScript API later in this book, but just to understand the
idea, to enable true fixed toolbars, this should be the code:

$.mobile.touchOverflowEnabled = true;

Adding Content to the Header
A standard jQuery Mobile header includes a title, any hX child element, and optionally,
one or two buttons located at the right and/or at the left of the header. There is also a
way to customize the appearance and content as we want.

Adding buttons

Usually (but not always), mobile usability for touch devices uses positive actions to the
right and negative actions to the left. Examples of positive actions are Done, Save, Yes,
OK, and Send. Negative actions are Cancel, Back, No, Exit, and Log Out.

Remember from Chapter 2 that we don’t need to provide a back action
on our own. jQuery Mobile will handle the browser’s back button au-
tomatically, and we can use data-add-back-btn="true" on a page to add
a button at the left side of the title. If we are using this option, we should
not add any other button to the left.

A header’s button is just a hyperlink; it uses an a element inside the header. If we provide
only one a element, it will be located at the left side of the title. If we add two buttons,
the first one will be located at the left and the second one at the right of the title.

66 | Chapter 3: UI Components

www.it-ebooks.info

http://www.it-ebooks.info/

If we want to force the location of a button, we can use a CSS class for
that: class="ui-btn-right" or class="ui-btn-left".

The following header will have only one button, as shown in Figure 3-2:

<div data-role="header">
 Log out
 <h1>Title</h1>
</div>

Figure 3-2. Headers can contain buttons positioned at the right or left of the title

The following header will show two buttons, the right one using an icon:

<div data-role="header">
 Log out
 <h1>Title</h1>
 Settings
</div>

As we can see in the last sample in Figure 3-3, we can apply any of the standard jQuery
Mobile icons to a toolbar button using data-icon as well as any of the possible values
that we saw in the last chapter and covered again in the button sections of this chapter.

Figure 3-3. It’s common to use icons inside a toolbar’s button to improve user readability.

By default, every toolbar’s button inherits the toolbar theme (and if not defined, the
page theme). If we want to differentiate one button from the other we can use data-
theme to change the color swatch appearance of one of the buttons (Figure 3-4).

For example:

<div data-role="header">
 Cancel
 <h1>New record</h1>
 Save
</div>

Toolbars | 67

www.it-ebooks.info

http://www.it-ebooks.info/

If we want to provide our own header’s button linked to the previous
page, it’s important to use data-rel="back" on the a element so the
framework can handle the back animation and history process correctly.

Adding a logo

It’s common to want to show an image/logo instead of text. Use of images in a mobile
webapp is beyond the scope of this book, but if you want to show an image in a header
using the standard left and right buttons, the best way is to use an img tag inside the h1:

<div data-role="header">
 Cancel
 <h1></h1>
 Save
</div>

The header will grow to the height of the image automatically, as we can see in Fig-
ure 3-5. Remember to match the current color swatch background color. For better
compatibility, don’t use images larger than 125 pixels.

Figure 3-5. Using images for the page’s title is as simple as using the img element

Remember that when using jQuery Mobile, you are targeting different
screen sizes and resolutions at the same time, so to include images we’ll
need some feature detection algorithms to provide the best experience
for each device.

Customizing the header

If you don’t want the typical jQuery Mobile header rendering, you can deactivate the
automatic header behavior (such as hX and a handling) attaching all your content inside
a block container (usually a div element).

Figure 3-4. We can change a button’s appearance using a theming color swatch

68 | Chapter 3: UI Components

www.it-ebooks.info

http://www.it-ebooks.info/

Customizing the header allows us to add form elements, such as drop-
down lists or checkboxes for filtering or menu access. These controls
will be discussed in Chapter 5.

Let’s see a sample (illustrated in Figure 3-6):

<div data-role="header">
 <div>
 <h1>A custom title</h1>
 A non-button link
 </div>
</div>

You will need to use your own HTML and CSS code to manage the custom header
content. The header’s height will grow automatically to match our custom contents.

Figure 3-6. We can avoid the automatic behavior of hX and a elements in the headers by using custom
headers

Adding Content to the Footer
The footer is far more flexible than the header. As in the header, any a element will be
rendered as a button, although there is no left and right button placement in the footer.
Every button is added inline, one after the other. It allows us to add as many buttons
as we like, as in a button bar.

By default, the framework doesn’t add visual padding between the buttons and the
footer border, so to provide a better visual appearance, we should add the class ui-
bar to the footer.

Let’s see a sample (shown at Figure 3-7):

<div data-role="footer" class="ui-bar">
 Refresh
 Filter
 Search
 New Item
</div>

Toolbars | 69

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 3-7. The footer toolbar is more flexible on the quantity and alignment of buttons than the header

In the next few pages, we will cover button sets, which allow a series of
buttons to be treated as one big group element. We can add this kind
of element to the footer.

Footers can also handle form elements and navigation bars, the next topic we are going
to cover.

Navigation Bars
A navigation bar (also known as a navbar) is a set of links that can be placed at a toolbar,
usually a footer, that combine to create a series of exclusive options. The idea of a
navigation bar is to act as a main navigation method for our webapp. On some plat-
forms, such as iOS or Nokia, this navigation bar is also called a tab bar.

To avoid UI mistakes, you should not use navigation bars for action
buttons (such as Save, Cancel, and Search) but as a main navigation
structure for your webapp. For action buttons, use normal buttons on
a header or footer.

A navigation bar is just a container, usually a div element, wrapping an unordered list
that includes every action link. The container’s role needs to be defined as navbar:

<div data-role="navbar">

 Option 1
 <!-- ... -->
 Option n

</div>

The navbar’s buttons, as seen in Figure 3-8, have a different appearance than the stan-
dard buttons we saw in Figure 3-7. The width of the button is calculated as in the
following algorithm:

70 | Chapter 3: UI Components

www.it-ebooks.info

http://www.it-ebooks.info/

• One button on the navbar, 100%

• Two buttons on the navbar, 50%

• Three, four, or five buttons on the navbar, 33%, 25%, or 20% respectively

• Six or more buttons, 50% in multiple lines (two elements per line), as we can see
in Figure 3-9

Figure 3-9. If we use more than five buttons, the navbar changes the layout to two buttons per line

It’s a good idea to keep the number of navbar elements below six so they
can be rendered in one line. The limit of five is because on most touch
smartphones, one-fifth of the screen’s width is the maximum preferred
width for touch areas.

Using icons

We can use icons for every navbar element, using the standard jQuery Mobile icon
mechanism. That is, using data-icon with a standard name or even customizing it with
our own icons.

Figure 3-8. Here we can see a navbar inside a header and a footer

Toolbars | 71

www.it-ebooks.info

http://www.it-ebooks.info/

By default, the icon is placed at the top of the text, as seen in Figure 3-10. If at least one
navbar element uses an icon, the whole navbar height is updated to match the one with
the icon:

<div data-role="header" data-position="fixed">
 <h1>Home</h1>
 <div data-role="navbar">

 Home
 Contacts
 Events
 News

 </div>
</div>

Figure 3-10. Using icons is a good practice for usability and visual appearance.

With the standard jQuery Mobile methods for creating custom icons,
we can use any navbar icons for our elements. There are plenty of free
icons available on the Web, with the most popular located at http://
glyphish.com.

Selected element

Every navbar can have a selected element, which uses the class ui-btn-active. An active
element will contrast from the UI based on your current theme (light blue on the default
theme). Figure 3-11 shows the selected style for every color swatch.

Figure 3-11. The selected state is clearly shown using a different color swatch

If we are using a navbar as the main navigation for our webapp, it is a good idea to
include the Home page as the first element. And it’s a good idea to mark the first element
as the selected element using class="ui-btn-active" on the first a element. For
example:

<div data-role="footer" data-position="fixed">
 <div data-role="navbar">

72 | Chapter 3: UI Components

www.it-ebooks.info

http://glyphish.com
http://glyphish.com
http://www.it-ebooks.info/

 Home
 Contacts
 Events
 News

 </div>
</div>

When the user presses on a navbar element, automatically change the selected element
to the current selected element. That means that we don’t need to be aware of the ui-
btn-active class update. That also means that we can use JavaScript-based event han-
dlers to manage each element’s click and provide changes to the UI and/or page navi-
gation and the navbar selection will be automatically updated.

Persistent Footer
While thinking about navbars, understand that if we change the jQuery Mobile docu-
ment, a new footer will appear, removing the current one. That means that the selected
state, for example, can show some rendering problems (it disappears and appears again
or it animates with the page transition). To solve this problem and many others, we
can use a persistent footer. When defined, the same footer will persist on the DOM
even if we change the page, so the user doesn’t see any visual glitch while changing
pages.

There is no official way in the framework to define a persistent header.
Some hacks to do that include the use of a persistent footer and some
CSS tricks to change a footer’s position to the top.

To make a persistent toolbar, we need to define a data-id identification to a fixed footer
for every page where we want to have the same footer. Then, any page that has a footer
with the same data-id will retain the previous footer without any update.

We also need to use the same footer code and maybe update the selected item. There
is one new problem with going forward and back with a navbar and a persistent footer:
how to maintain the selected state actively. For that, when using a navbar on a persistent
footer we should apply two classes to the selected item: ui-btn-active and ui-state-
persist.

Let’s try a full sample with a navbar as a persistent footer and two pages inside the
navbar. The results are shown in Figure 3-12.

A persistent footer should be defined as fixed, with data-position=
"fixed".

Toolbars | 73

www.it-ebooks.info

http://www.it-ebooks.info/

<!DOCTYPE html>
<html>
 <head>
 <!-- Typical jQuery Mobile header goes here -->
 </head>

 <body>
 <div data-role="page" id="home">

 <div data-role="header">
 <h1>Home</h1>

 </div>

 <div data-role="content">
 <p>This is content for the home</p>
 </div>

 <div data-role="footer" data-id="main" position="fixed">
 <div data-role="navbar">

 <a data-icon="home" class="ui-btn-active ui-state-persist">Home
 Help

 </div>
 </div>

 </div>

 <div data-role="page" id="help">

 <div data-role="header">
 <h1>Help</h1>
 </div>

 <div data-role="content">
 <p>This is content for Help</p>
 </div>

 <div data-role="footer" data-id="main" position="fixed">
 <div data-role="navbar">

 Home
 <a data-icon="alert" class="ui-btn-active ui-state-persist">Help

 </div>
 </div>

 </div>

 </body>
 </html>

74 | Chapter 3: UI Components

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 3-12. Using a persistent footer

Formatting Content
Now it’s the time to get deeper into the content area of our webapp. The most important
thing to know is that any HTML code will work inside <div data-role="content">.

Every theme of jQuery Mobile includes nice styles with padding, margins, sizes, and
colors for every standard element optimized for the current theme and mobile device.
That includes styles for hX elements, links, bold and emphasized text, citations, lists,
and tables.

If we are going to provide our own CSS styles for the content, we need
to be aware of the theming system to avoid UI problems if we change
the theme. More about theming and customization later in this book.

Apart from basic HTML elements, there are some components provided by the frame-
work that are defined using data-role. In the header and footer, as we saw before, some
elements such as hX or a have automatic component rendering behavior. That is not
the case with the contents area, except from some form elements, as we are going to
see in Chapter 5.

In Figure 3-13 you can see how jQuery Mobile renders some basic HTML elements
using the default theme.

Formatting Content | 75

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 3-13. Some basic HTML elements rendered using the default theme

76 | Chapter 3: UI Components

www.it-ebooks.info

http://www.it-ebooks.info/

Collapsible Content
Remember that we are targeting mobile devices. In mobile devices, space is very limited.
That is when collapsible content comes in handy. Collapsible content can be hidden
and revealed by a JavaScript behavior after touching a title or button.

jQuery Mobile automatically provides support for this UI design pattern without
adding any JavaScript of our own. To create collapsible content, we just need to define
a container with data-role="collapsible". This container needs to have an hX element
that will act as the title to be shown always as the open/close button. The collapsible
content will be any HTML code inside that container apart from the title.

By default, jQuery Mobile opens collapsible content when the page loads. We can hide
it by default using data-collapsed="true" on the container.

Let’s see a sample:

<div data-role="content">

<div data-role="collapsible">
 <h2>History of Rome</h2>
 <p>There is archaeological evidence of human occupation of the Rome area from at
 least 14,000 years, but the dense layer of much younger debris obscures
 Palaeolithic and Neolithic sites.[11] Evidence of stone tools, pottery and
 stone weapons attest to at least 10,000 years of human presence.
 </p>
</div>

<div data-role="collapsible" data-collapsed="true">
 <h2>Government of Rome</h2>
 <p>Rome constitutes one of Italy's 8,101 communes, and is the largest both in terms
 of land area and population. It is governed by a mayor, currently Gianni Alemanno,
 and a city council.
 </p>
</div>

</div>

As we can see in Figure 3-14, jQuery Mobile adds a plus icon and a minus icon for the
open and close buttons, respectively. At the time of this writing, there is no way to
customize these icons.

Formatting Content | 77

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 3-14. Collapsible panels are a good way to show lot of information on the same page, giving
the user the ability to close and open details

As with any other rich control, we can change this control’s swatch color using data-
theme. We can also define the additional attribute data-content-theme that will affect
only the content and not the open/close button of the collapsible panel.

If you don’t define any hX element inside the collapsible container, the
content will be open and not have any close behavior. If you define more
than one hX element, the first one will be used as the title and the others
will be rendered as content inside.

Nested collapsible contents

You have the option of nesting collapsible content panels. The framework will add an
automatic margin to every new level of collapsible panel. It’s recommended to not add
more than two levels to avoid UI and DOM complexity:

<div data-role="content">
 <div data-role="collapsible">
 <h2>Rome</h2>
 <div data-role="collapsible">
 <h3>History</h3>
 <p>There is archaeological evidence of human occupation of the Rome area from
 at least 14,000 years, but the dense layer of much younger debris obscures
 Palaeolithic and Neolithic sites.[11] Evidence of stone tools, pottery and

78 | Chapter 3: UI Components

www.it-ebooks.info

http://www.it-ebooks.info/

 stone weapons attest to at least 10,000 years of human presence. </p>
 </div>
 <div data-role="collapsible" data-collapsed="true">
 <h3>Government</h3>
 <p>Rome constitutes one of Italy's 8,101 communes, and is the largest both in
 terms of land area and population. It is governed by a mayor, currently
 Gianni Alemanno, and a city council. </p>
 </div>
 </div>

 <div data-role="collapsible">
 <h2>Madrid</h2>
 <div data-role="collapsible">
 <h3>History</h3>
 <p>Although the site of modern-day Madrid has been occupied since pre-historic
 times,[23] in the Roman era this territory belonged to the diocese of
 Complutum (present-day Alcalá de Henares).</p>
 </div>
 <div data-role="collapsible" data-collapsed="true">
 <h3>Government</h3>
 <p>The City Council consists of 57 members, one of them being the Mayor,
 currently Alberto Ruiz-Gallardón Jiménez. The Mayor presides over the
 Council.</p>
 </div>
 </div>
</div>

Accordion
There is another typical rich Internet application behavior related to collapsible con-
tent: the accordion. This allows you to group collapsible content so that only one panel
can be visible at a time. So, when you view one panel, all the others are closed.

jQuery Mobile supports this kind of components as collapsible sets. That is, a container
with data-role="collapsible-set" and a group of collapsible panels as children.

If we apply a data-theme or data-content-theme to a collapsible set, every child will
inherit these values unless set explicitly.

The template is:

<div data-role="collapsible-set">
 <div data-role="collapsible">
 <!-- Collapsible title & content -->
 </div>
 <!-- any collapsible content quantity -->
 <div data-role="collapsible">
 <!-- Collapsible title & content -->
 </div>
</div>

Formatting Content | 79

www.it-ebooks.info

http://www.it-ebooks.info/

By default, jQuery Mobile opens the last collapsible panel in a collaps-
ible set. If you want a different panel to open by default, just use
data-collapsed="false" on the element you want to be opened and
data-collapsed="true" on all the others.

Let’s try a sample:

<div data-role="page" id="home">

 <div data-role="header">
 <h1>@firt</h1>
 </div>

 <div data-role="content" data-theme="b">

 <!-- This defines the whole collapsible set (accordion) -->
 <div data-role="collapsible-set">
 <div data-role="collapsible" data-collapsed="false">
 <h2>Books</h2>

 Programming the Mobile Web
 jQuery Mobile: Up & Running
 Mobile HTML5

 </div>
 <div data-role="collapsible" data-collapsed="true">
 <h2>Talks</h2>

 Velocity Conference
 OSCON
 Mobile World Congress
 Google DevFest

 </div>
 </div>
 <!-- end of collapsible set (accordion) -->

 </div>

</div>

Figure 3-15 shows a collapsible set with the border styles of every collapsible zone set
to have rounded corners.

80 | Chapter 3: UI Components

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 3-15. An accordion rich control can be created using a collapsible set of panels, visible one
panel at a time

Columns
jQuery Mobile offers us some templates to define content to be shown in columns,
called layout grids. These grids act like a table without the semantic problem of using
table (please, don’t use table for anything besides tabular data).

Remember that you are on a mobile device; columns should be used
with care, only to place small elements such as buttons, links, or small
items. If you are targeting tablets, you have more space for columns.

The layout grid method uses CSS classes to define grid areas and columns. We can
define grids from two up to five columns. Each grid is invisible, uses the whole 100%
width, and has no padding or margin defined.

To create a grid, just use a block container, typically a div, with a class of ui-grid-a for
two columns, ui-grid-b for three columns, ui-grid-c for four columns and ui-grid-
d for five columns. Every grid will divide, by default, the width into equal-width
columns.

Columns | 81

www.it-ebooks.info

http://www.it-ebooks.info/

Every cell should be a block container using ui-block-<letter> with <letter> being
from a to d being the first to the fifth column on the grid.

Let’s try a basic two-column example using the HTML5 new element section, as we
can see in Figure 3-16:

<div data-role="content">
 <section class="ui-grid-a">
 <div class="ui-block-a">Column 1</div>
 <div class="ui-block-b">Column 2</div>
 </section>
</div>

Figure 3-16. We can align elements in up to five equal-sized columns

The layout grids also work as tiled layout. That means, if we add more cells than the
available columns, we can emulate different rows using the same grid:

<div data-role="content">
 <section class="ui-grid-b">
 <!-- Row 1 -->
 <div class="ui-block-a">Cell 1.1</div>
 <div class="ui-block-b">Cell 1.2</div>
 <div class="ui-block-c">Cell 1.3</div>
 <!-- Row 2 -->
 <div class="ui-block-a">Cell 2.1</div>
 <div class="ui-block-b">Cell 2.2</div>
 <div class="ui-block-c">Cell 2.3</div>
 </section>
</div>

Buttons
We’ve already seen that we can use any a element to make links between pages or to
link to external content. However, a typical a element is not rendered easily for touch
devices. The element is typically inline, and the clickable area is only the text. That is
not a good experience for the touch user. That is why jQuery Mobile provides buttons.

82 | Chapter 3: UI Components

www.it-ebooks.info

http://www.it-ebooks.info/

A button is a UI component that feels like…well, a button. That is, a larger clickable
area with text and optionally an icon.

A button can be created in different ways:

• Using a button element

• Using an input element that typically renders a button, including type="button",
type="submit", type="reset" and type="image"

• Any a element with data-role="button"

jQuery Mobile’s button is typically rendered with a centered label, rounded corners,
and shadows, depending on CSS3 compatibility on the browser.

If we are showing a group of buttons, it’s a good UI design pattern to
choose one button—the positive and most probable one—to use with
a different theme.

The default button uses the whole width of the screen, so every button will use a dif-
ferent line. Let’s see a typical sample, rendered in Figure 3-17:

Click me!
<button data-theme="b">Click me too!</button>
<input type="button" value="Don't forget about me!">

Inline Buttons
We can create inline buttons that don’t use the whole width by applying the attribute
data-inline="true" over the element. Therefore, we can have three buttons in the same
row (as seen on Figure 3-17) with the following code:

Button 1
Button 2
Button 2

If we want to use inline buttons that take up the whole width of the
screen, we can use layout grids to define up to five columns, each one
with a button inside.

Grouped Buttons
If we have several buttons that are related to one another, we can group them and
receive a different user interface where every button is inside a group container. This
technique is called a grouped control in jQuery Mobile, and it involves a new component
called a control group and a set of buttons.

Buttons | 83

www.it-ebooks.info

http://www.it-ebooks.info/

When using grouped buttons, don’t declare them as inline buttons.

The control group is just a container, typically a div element with data-role="con
trolgroup". This group will include a set of buttons within it, and the look will be similar
to Figure 3-17:

<div data-role="controlgroup">
 Button 1
 Button 2
 Button 2
</div>

As we can see in Figure 3-18, the buttons are rendered one below the other in a vertical
layout. We can create a horizontal layout using data-type="horizontal" on the control
group as seen in Figure 3-19:

<div data-role="controlgroup" data-type="horizontal">
 Button 1
 Button 2
 Button 2
</div>

Figure 3-17. Buttons are the best way to provide interaction in our webapps for touch devices

84 | Chapter 3: UI Components

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 3-18. When we have different inline buttons, it’s better to wrap them in a control group for
better appearance

Figure 3-19. If we have fewer than five buttons with short labels, we can use a horizontal control group

A horizontal group of buttons may look like a selection of different op-
tions (pushed buttons). However, up to now they are just buttons grou-
ped together. There is no selected state using this technique. We’ll cover
group pushed buttons later in this book

Effects
By default, every button is rendered with rounded corners and a shadow. We can
change this behavior with Boolean attributes data-corners and data-shadow. Later in
this book we will see how to define this change globally using JavaScript.

So we can create a button without both styles using:

Help

Icons
jQuery Mobile includes a powerful icon mechanism that allows us to apply themes to
buttons as well as many other components where an icon can be used. Therefore, we
will talk about icons again later in this book and the options, icon gallery, and func-
tionality will be exactly the same as the analysis we are doing now.

Buttons | 85

www.it-ebooks.info

http://www.it-ebooks.info/

Every button can define an icon through the data-icon attribute. This attribute receives
an icon name. The name can be one of the gallery (already included with the framework)
or a custom name.

The possible icons available in jQuery Mobile 1.0 are described in Table 3-1.

Table 3-1. Icons available in jQuery Mobile

Icon description Value

Left arrow arrow-l

Right arrow arrow-r

Up arrow arrow-u

Down arrow arrow-d

Delete (x) delete

Plus sign plus

Minus sign minus

Checkmark check

Gear icon (settings) gear

Refresh refresh

Forward action forward

Back action back

Grid grid

Star star

Alert (warning icon) alert

Info (i) info

Home icon home

Search icon search

Remember that the icon images are provided with the framework, in the
download ZIP package or hosted in the CDN. Button icons need the
image folder to be available in case we decide to host the framework by
ourselves or if we are creating a native app with the framework inside.
jQuery Mobile uses CSS Sprites to reduce image loading on icons and
it provides two versions: a low and a high DPI version that will be au-
tomatically used.

You can see how each icon is rendered in Figure 3-20.

86 | Chapter 3: UI Components

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 3-20. All the icons included in the jQuery Mobile framework

Creating Custom Icons
If we want to provide our own custom icons, we just need to define our own unique
name in the data-icon attribute. The preferred naming scheme to use is <app-name>-
<icon-name>, for example: myapp-tweet.

jQuery Mobile will automatically add a white circled background to the
icon, so it will work on every row background without any problem.

jQuery will also expect us to create a CSS class called ui-icon-<name>, for example, ui-
icon-myapp-tweet, and specify a background image. To reduce UI problems, the icon
should be in white (or transparent), saved as a 18×18 pixel PNG-8 with alpha trans-
parency. The icon should not have any border; the framework will add it when using
the icon in the list view. The icon should also be smaller than 18×18 pixels, because it
will be rendered inside a circle that is 18 pixels wide. Our icon should be drawn inside
the circle, so don’t use the corners.

The class should look like the following code:

<style>
 .ui-icon-myapp-tweet {
 background-image: url(icons/tweet.png);
 }
</style>

Our custom icon will not work on high-resolution devices, such as iPhone 4 and iPod
Touch 4G with retina display. That is because we also must provide a high-resolution
version of the icon. To do so, we should provide an alternative CSS selector definition.
The image should be exactly double in size, 36×36. We can provide the same image for
both low- and high-resolution versions; however, for better results, two images is the
recommended solution.

Buttons | 87

www.it-ebooks.info

http://www.it-ebooks.info/

If the CSS style will be applied only on one HTML5 jQuery Mobile
document, the preferred way to add it is by using the style tag, instead
of using an external reference to improve performance. Of course, it’s
not as simple as I tried to synthesize it, but try to think about perfor-
mance when adding new external resources, unless you have an active
cache policy.

To provide different versions, just use two different definitions using CSS3 media quer-
ies. The first definition will apply to every resolution, and the second will apply on
devices with twice the resolution of the standard (such as iPhone 4 or newer). We need
to force the background size to 18×18, because on these devices px refers to virtual
points matching two real pixels per virtual point. The class now looks like this:

<style>
 .ui-icon-myapp-tweet {
 background-image: url(icons/tweet.png);
 }

 @media only screen and (-webkit-min-device-pixel-ratio: 2) {
 .ui-icon-myapp-tweet {
 background-image: url(icons-hd/tweet.png) !important;
 background-size: 18px 18px;
 }
}

</style>

Let’s see how a standard button compares to a custom button (Figure 3-21). The cus-
tom app is using the CSS styles we’ve just defined:

Help
Tweet

Figure 3-21. We can provide custom icons for buttons and other UI components

Icon Positioning
By default, every icon is rendered to the left of the button’s text. We can change its
position using the data-iconpos attribute, which supports right, left (default value),

88 | Chapter 3: UI Components

www.it-ebooks.info

http://www.it-ebooks.info/

bottom, and top. When using bottom or top, the button’s height grows. This is partic-
ularly useful when used on navigation bars or horizontal grouped buttons.

Let’s see different icon positions over the same link (Figure 3-22):

Help
Help

<div data-role="controlgroup">
 Help
 Help
</div>

Figure 3-22. With data-iconpos, we can align an icon at any of the four areas shown in this image

Icon-Only Buttons
jQuery Mobile also supports buttons without text inside. This is not the most usable
feature because the buttons are too small for touch interfaces. To create an icon-only
button, just use data-iconpos="notext" on the button.

Icon Shadow
jQuery Mobile includes an attribute with which you can remove the shadow effect on
the icons. For this effect, we can use data-iconshadow="false" on any button element.

Buttons | 89

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4

Lists

Up to now, we have created very simple pages rendered by jQuery Mobile. The next
big step is to use rich controls and views provided by the framework; in this case,
lists. Almost every mobile project will have at least one list in its content, so that is why
we are going to address this first.

It’s difficult to start this chapter with a definition. You already know what a list is. And
there is nothing new I can say about them as a general term. Inside jQuery Mobile
world, a list is just an ordered (ol HTML element) or unordered (ul HTML element)
list inside a page with at least one list item (li HTML element) and the role defined as
listview using the HTML5 syntax data-role="listview".

If you want to just show a bulleted or numbered list, you can always render typical
ul and ol HTML elements; just remember to not assign any JQM role.

Lists are a powerful solution for many uses inside the framework, as we are going to
see in next pages.

The most typical list is an unordered one (ul) that simply exists inside a page without
other content. Let’s see a simple sample, illustrated in Figure 4-1:

<!DOCTYPE html>
<html>

<head>
 <meta charset="utf-8" />
 <title>Up and Running with jQuery Mobile</title>
 <link rel="stylesheet" href="jquery.mobile-1.0.min.css" />
 <script src="jquery-1.6.4.min.js"></script>
 <script type="text/javascript" src="jquery.mobile-1.0.min.js">
 </script>
 <meta name="viewport" content="width=device-width, initial-scale=1">
</head>

<body>

 <div data-role="page" id="main">

91

www.it-ebooks.info

http://www.it-ebooks.info/

 <div data-role="header">
 <h1>HTML5 and APIs</h1>
 </div>

 <div data-role="content">
 <ul data-role="listview">
 Offline Access
 Geolocation API
 Canvas
 Offline Storage
 New semantic tags

 </div>

 </div>

 </body>
</html>

Figure 4-1. A typical list view renders rows nicely for touch devices

jQuery Mobile renders lists optimized for touch usage, as you can see in the default
row height used by the framework. Every list item automatically fits the whole width
of the page, a typical UI pattern for touch mobile devices. (If we have a long list, we
can use fixed toolbars.)

92 | Chapter 4: Lists

www.it-ebooks.info

http://www.it-ebooks.info/

Remember that jQuery Mobile works on the client side. The document
with the list can be generated dynamically with any server-side platform,
such as PHP, Java, ASP.NET, or Ruby without any issue.

We can also use ordered lists with the ol element. However, if we don’t define inter-
active rows with links, there will not be any rendering difference from ul, as we can see
in Figure 4-2:

<!DOCTYPE html>
<html>

<head>
 <!-- Typical jQuery Mobile header goes here -->
</head>

<body>

 <div data-role="page" id="main">

 <div data-role="header">
 <h1>Chapters</h1>
 </div>

 <div data-role="content">
 <ol data-role="listview">
 The Mobile Jungle
 Mobile Browsing
 Architecture and Design
 Setting up your environment
 Markups and Standards
 Coding Markup
 CSS for Mobile Browsers
 JavaScript Mobile
 Ajax, RIA and HTML5
 Server-Side Browser Detection
 Geolocation and Maps
 Widgets and Offline webapps
 Testing, Debugging and Performance
 Distribution and Social Web 2.0

 </div>

 </div>

 </body>
</html>

This sample shows how jQuery Mobile renders list rows. If the text doesn’t fit on a
single line, the framework will automatically resize that row.

Lists | 93

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 does not use XML syntax; therefore it’s not necessary to close
all tags, like the element li. Of course, you can close them if you feel
more comfortable (for example, if you are a developer like me; a non-
closing li hurts my eyes).

Full-Page Lists Versus Inset Lists
By default, lists are in a full-page mode. That means that the list covers the whole page
contents, as in Figures 4-1 and 4-2. However, on some projects, it can be useful to have
lists mixed up with other HTML content. For that purpose, jQuery Mobile offers inline
lists. To define them, just add data-inset="true" to the ul or ol elements:

<ol data-role="listview" data-inset="true">
 <!-- item rows -->

Figure 4-2. An ordered list is rendered the same as an unordered list, unless we define an interactive list

94 | Chapter 4: Lists

www.it-ebooks.info

http://www.it-ebooks.info/

In Figure 4-3 we can see how our previous samples are rendered using the inline at-
tribute. As we can see, the table has a slightly different design, with more padding
sharing space with other content inside the same page. It also adds nice rounded corners
and other CSS3 effects.

Figure 4-3. An inset table has a very different UI and it can share the page with other content, including
other lists

With lists, we can define color swatches via data-theme on the ul element
and also on every li element.

With inline lists we can also design a page with multiple tables inside
with optional HTML content between them.

Full-Page Lists Versus Inset Lists | 95

www.it-ebooks.info

http://www.it-ebooks.info/

Visual Separators
You can use separators to divide a single list into row groupings with their own titles,
as shown in Figure 4-4. It’s a common pattern on mobile operating systems, such as
iOS on iPhone and iPad. To do this in jQuery Mobile, we can just use a new role
available for li elements: data-role="list-divider".

Note that list dividers are just standard li elements with a different role,
and they are at the same level as the normal row on the DOM tree.

We can divide the list elements into groups using this technique, such as A-Z groups
if we are listing alphabetical ordered data or any other classification we want to make.
Remember we can change the color swatch to highlight each divider.

Let’s run a simple example:

<!DOCTYPE html>
<html>

<head>
 <!-- Typical jQuery Mobile header goes here -->
</head>

<body>

 <div data-role="page" id="main">

 <div data-role="header">
 <h1>World Cup</h1>
 </div>

 <div data-role="content">
 <ul data-role="listview">
 <li data-role="list-divider">Group A
 Argentina
 Nigeria
 England
 Japan
 <li data-role="list-divider">Group B
 United States
 Mexico
 Korea
 Greece
 <li data-role="list-divider">Group C
 Germany
 Finland
 Chile
 South Africa

 </div>

96 | Chapter 4: Lists

www.it-ebooks.info

http://www.it-ebooks.info/

 </div>

 </body>
</html>

Figure 4-4. Here we can see how the row separators render on the list

If we are populating the list from client-side code, as in JavaScript, we
must call a refresh method after doing so, so the framework can take
changes and render them properly. We will cover these techniques later,
but for now, if you have only one list on a page with id page1, the jQuery
code will look like $("#page1 ul").listview("refresh").

In Figure 4-4, we can see how list dividers work over lists.

Visual Separators | 97

www.it-ebooks.info

http://www.it-ebooks.info/

Interactive Rows
Lists become more powerful when we combine them with touch interaction.

If a list element contains an a element, it will convert that row in an interactive one for
touch and/or cursor navigation. One great feature of jQuery Mobile is that the whole
row will be interactive automatically for touch no matter where the link is placed inside
the row. Meaning the user doesn’t need to tap only in the link’s text area. She can tap
on any pixel in the row.

An interactive row has a different height than a read-only one. This
different design is optimized for touch interaction, as the touch area
needs to be large enough to avoid errors. The row text also has a larger
font size. In iOS-based devices, 44 pixels is the recommended height for
most common controls. Other touch devices use similar sizes.

The framework automatically adds a nice arrow at the right side of the row giving the
user a hint that the row is touchable, as seen in Figure 4-5. This icon can be changed
using data-icon, as we will see in a minute.

On the same list, we can mix interactive rows with read-only rows. However, the most
typical UI design is to have full-interactive or full-read-only lists.

In the following sample, shown in Figure 4-5, we can see interactive rows in action:

<!DOCTYPE html>
<html>

<head>
 <!-- Typical jQuery Mobile header goes here -->
</head>

<body>

 <div data-role="page" id="main">

 <div data-role="header">
 <h1>Interactive</h1>
 </div>

 <div data-role="content">
 <ul data-role="listview">
 Internal Page link
 External Page link
 Absolute external link

 Call to a phone number using a link
 JavaScript link

 </div>

98 | Chapter 4: Lists

www.it-ebooks.info

http://www.it-ebooks.info/

 </div>

 </body>
</html>

Figure 4-5. Interactive rows are just hyperlinks inside list elements that automatically are clickable
and touchable

As we can see in Figure 4-5, when we are working with interactive rows, jQuery Mobile
tries to maintain rows of the same height. Therefore, when the row’s title doesn’t fit in
one line, like the fourth row’s title, jQuery Mobile will crop the text, adding an ellipsis
at the end on CSS3-compatible devices. Keep the length of a row’s text to a minimum
if you don’t have a detail page with the full text.

The a element must be inside the li tag, and there is no obligation to insert the row
title as the content of the link. We can just leave the link empty and it will work anyway:

 Internal Page link

On some devices with cursor or focus navigation, such as BlackBerry or Android, the
user may choose to navigate with the keyboard keys or a trackball. Firing a row (using
some OK key or pressing the trackball) will fire the link inside the list element. In

Interactive Rows | 99

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 4-6, you can see how this works on Android devices with a border focus shown
typically in orange by the browser on the selected row.

Figure 4-6. On focus-based browsers, interactive lists can be browsed using cursor keys or a trackball

Using interactive lists is the preferred way to create links in a page, instead of using just
a tags alone, because they are optimized for touch and cursor-based navigation.

When the user taps an interactive row that generates a page redirection action inside
the framework, the row becomes selected while the new page is being transitioned or

100 | Chapter 4: Lists

www.it-ebooks.info

http://www.it-ebooks.info/

loaded from the network. A selected row has a different color scheme, as seen in
Figure 4-7.

Figure 4-7. When a interactive row is selected, the framework changes its color scheme to a highlight
background, light-blue on the default theme

We can change the default interactive row’s icon using data-icon on the li element,
for example:

<li data-icon="info">More information

If we want to remove the icon on an interactive row, we can use the special false value
on data-icon:

<li data-icon="false">No icon interactive row

Nested Lists
Nested lists are a great feature of jQuery Mobile. If you have any hierarchical structure
or navigation that you want to show in different pages, as in continents → countries
→ cities, you can use a nested list.

A nested list is just a list view (a list with the role specified) inside an item of another
list view. For example, we can use a ul inside an li of another ul. jQuery Mobile will

Interactive Rows | 101

www.it-ebooks.info

http://www.it-ebooks.info/

generate an implicit page for every nested list as if it were created by us explicitly and
will make the link between levels automatically.

A nested list will be rendered with a different theme to provide visual reference that it
is a second-level list. Of course, we can define theming explicitly with data-theme as we
are going to see later.

Then, we have different levels of navigation automatically creating only one page. After
loading, jQuery Mobile will show only items from the first level, and every item with
a list inside it will become an interactive row. If the user selects that row, a transition
to a new page will execute showing the next level list view with the back action to the
previous level.

There is no limit in the quantity of levels a nested list can have. However, if you have
too many levels and items, it’s a good idea to use different pages to reduce DOM and
initial loading. Nested lists are only recommended for specific situations. Don’t create
your whole site as a nested list.

Of course, we can mix nested lists with normal interactive rows. Therefore we can have
a first level list with some items linked to other documents or pages, and other items
with nested lists.

It’s important to add text to the li in addition to the ul or ol because the framework
needs to show a title for the interactive item in the implicit page that is created.

Therefore, a typical nested list will look like:

 Item title
 <ul data-role="listview">
 <!-- Nested list items -->

Let’s create a sample, as shown in Figure 4-8:

<!DOCTYPE html>
<html>

<head>
 <!-- Typical jQuery Mobile header goes here -->
</head>

<body>

 <div data-role="page" id="main">

 <div data-role="header">
 <h1>Training</h1>
 </div>

 <div data-role="content">
 <ul data-role="listview">
 Order Now!

102 | Chapter 4: Lists

www.it-ebooks.info

http://www.it-ebooks.info/

 Cities available
 <ul data-role="listview">
 Boston
 New York
 Miami
 San Francisco
 San Jose

 Topics
 <ul data-role="listview">
 Intro to Mobile Web
 <ul data-role="listview">
 WML and other oldies
 XHTML MP
 HTML 4.01
 HTML5

 Mobile Browsers
 <ul data-role="listview">
 Safari for iOS
 Android Browser
 Firefox for Mobile
 Opera

 Tablet Browsers
 Using jQuery

 Promotions
 <ul data-role="listview">
 10% off before May
 3x2
 10% off to subscribers

 </div>

 </div>

 </body>
</html>

In nested tables, jQuery Mobile will automatically use the row text as
the title for the newly generated page, so be aware that you need to keep
your text as simple and short as possible to fit in the title area.

In Figure 4-8 we can see all the navigation and pages that we get when using a nested
list without special effort.

Interactive Rows | 103

www.it-ebooks.info

http://www.it-ebooks.info/

With some jQuery Mobile hacks, we can create links to the automati-
cally generated pages in a nested list manipulating the URL hash. How-
ever, if we need to do so, it might be better to have an explicit page
created instead of a nested list.

Split Button Lists
Sometimes it’s useful if we can have two possible interactive actions active on the same
row. The most common scenario is to have a detail action and also an edit action.

For example, if we list contact names on a table, we can offer two possible actions: view
details and edit. For that purpose, jQuery Mobile uses what it is called a split row. If a
list item, li, has two hyperlinks (a element), it will be automatically treated as an split
row.

As we can see in Figure 4-9, the row is split in two parts: left and right. The first link
in the DOM will be used as the first action, active in the left side of the row. The second
link will be used as the alternate action, activated on the right side of the row.

The second link action doesn’t need any text inside the link. In fact, the first link action
doesn’t either. We can leave the a link without contents, and it will be applied to the
whole row.

Following iOS user interface guidelines, the first action should be used
for details and the second action should be used for edit. However, that
is not an obligation.

Figure 4-8. Nested lists offer navigation similar to having different pages without creating new pages

104 | Chapter 4: Lists

www.it-ebooks.info

http://www.it-ebooks.info/

By default, jQuery Mobile will use a bordered arrow icon for the right button (the
second action) a little different than the one for standard interactive rows.

If we want to define a different theme for the right split icon, we can do it using data-
split-theme over the ul tag.

Let’s take a look at a sample, shown in Figure 4-10:

<!DOCTYPE html>
 <html>

 <head>
 <!-- Typical jQuery Mobile header goes here -->
 </head>

 <body>

 <div data-role="page" id="main">

 <div data-role="header">
 <h1>Your Friends</h1>
 </div>

Figure 4-9. A split row allow us to have two active zones per row, one for the typical action and one
defined by a separate icon at the right

Interactive Rows | 105

www.it-ebooks.info

http://www.it-ebooks.info/

 <div data-role="content">
 <ul data-role="listview">
 Bill Gates

 Steve Jobs

 Mark Zuckerberg

 Larry Page

 </div>

 </div>

 </body>
 </html>

Figure 4-10. Every zone has its own selected state, as we can see here

We can change the icon for the second action using the modifier data-split-icon—
applied to the list itself (ul or ol element) and not to the list item (li element).

The list view uses the same icon set as for buttons (as we are going to see in the next
chapters), but with the addition of a rounded border for a visual difference from normal
buttons.

The possible icons we can use up to jQuery Mobile 1.0 are shown in Table 3-1.

106 | Chapter 4: Lists

www.it-ebooks.info

http://www.it-ebooks.info/

We can provide our own icon set using only one image and applying
CSS Sprites, like the ones included in the framework.

Managing row importance

If we want some or all rows to be more important than typical ones, we can insert the
row’s title inside any hx tag, such as h2 or h3. When we do that, that row will grow in
height.

If we want a row to be less important (maybe for a not-so-frequent action), we should
enclose the row’s title in a p tag to reduce the row’s height.

In later chapters we will see how to customize list views and rows in a more precise way.

Ordered Interactive Lists
Previously in this chapter, we talked about using ol for defining our list views instead
of ul. We’ve also realized that using ol on read-only lists has no effect on the rendering.
That is definitely different when we have interactive rows.

First, one important requirement: all the rows must be interactive for this list to work.
Then, we can use ol and our links will be numbered automatically, as we can see in
Figure 4-11.

Using Images
In each row we can define one image to graphically identify the item. There are two
different kinds of images we can add to every row: icons and thumbnails.

Row Icons
A row icon is an image shown at the left side of the row’s title. Don’t confuse the row
icon with the right arrow on interactive rows or with the split rows’s icon.

An icon is a 16×16-pixel image inside the li element, with the class ui-li-icon defined.
For example:

 Send by e-mail

Icons are usually used for action lists, for example, for a list showing multiple actions
we can do with a record (delete, edit, share by email, share in a social network, etc.).

Using Images | 107

www.it-ebooks.info

http://www.it-ebooks.info/

Thumbnails
A thumbnail is an 80×80-pixel image that is also positioned at the left of the text. They
are preferred to icons when we are showing photos, pictures, or other graphical infor-
mation attached to each item.

Thumbnails are usually used for lists showing database records, such as friends, books,
DVDs, cities, etc.

A thumbnail is defined as an image inside the list item. It doesn’t need any special
class defined:

 George Washington

Let’s see icons and thumbnails in action in two inset lists at Figure 4-12.

Figure 4-11. If we define a listview role in a ol element with interactive rows, we'll get this ordered UI

108 | Chapter 4: Lists

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 4-12. A picture worth millions; that is why we can add icons and thumbnails to every list row

Aside Content
Up to now, every list we’ve designed has only one column for text content. We can add
a thumbnail or an icon but only one text column. We can add a second-level column
to every row for supplemental information we want to show.

To do so, we can use any HTML element with a class of ui-li-aside, such as a span or
div element.

Let’s create a sample showing a price as the aside content (Figure 4-13):

<!DOCTYPE html>
 <html>

 <head>
 <!-- Typical jQuery Mobile header goes here -->

 </head>

 <body>

Aside Content | 109

www.it-ebooks.info

http://www.it-ebooks.info/

 <div data-role="header">
 <h1>Order online</h1>
 </div>

 <div data-role="content">
 <ul data-role="listview">
 Soda
 $1.00
 Sandwich
 $3.20
 Ice cream
 $1.50

 </div>

 </div>

 </body>
 </html>

Figure 4-13. With aside content, we can show more information about a row without using a new page

110 | Chapter 4: Lists

www.it-ebooks.info

http://www.it-ebooks.info/

Title and Description
If we want to show both a title and a description as part of the row, we can do it by
using some header element hx tag for the title and a p element for the description text.
This is not rendered as a second column but as shown in Figure 4-14.

Of course, you can mix title and description with aside content and with icons or
thumbnails in the same row.

Figure 4-14. If we need to provide long content aside from the title, the best solution is to show a title
and a description instead of aside content.

Using Count Bubbles
A count bubble is a circle with a number inside rendered at the right of the row usually
showing how many items are in there on interactive rows. It can be used to show unread
elements, unfinished tasks, or any other numeric information in a very simple way.

Using Count Bubbles | 111

www.it-ebooks.info

http://www.it-ebooks.info/

There is no limitation to a numeric value for the count bubble. However,
using text is discouraged because the space available is optimized for
numeric values. For text, use aside content or description.

Just use any element, such as a span tag, with a class of ui-li-count inside a list row
and that’s all. For example:

Inbox
 86

In Figure 4-15 we can see how a count bubble is rendered on an interactive list. We can
define the count bubble’s color swatch via data-count-theme on the ul element so we
can change the default white background color.

Figure 4-15. An interactive lists with count bubbles

Filtering Data with Search
I’ve left the best part for the last. Leave your book for a moment. If you are reading this
book in any digital format, leave the reader or your browser. Go and take any of the
list view samples we’ve done in this chapter.

112 | Chapter 4: Lists

www.it-ebooks.info

http://www.it-ebooks.info/

Search for the ul or ol element and add data-filter="true", test it and then go back
to the book.

The magic of jQuery Mobile has happened. When adding this simple attribute, a search
box will be attached automatically at the top the list (full page or inset) and it works!

This feature will filter our list elements based on the user’s typing. The search text box
looks very nice (as you can see in Figure 4-16), with a search icon at the left side, a
watermark hint text, rounded corners, and a clear button at the right side.

Again, for this to work, just use the following code. Please go now to this book’s website
to grab the source code to copy and paste. Typing it will be very hard for you:

<ul data-role="listview" data-filter="true">
 <!-- list rows -->

We can customize the placeholder text using data-filter-placeholder, for example:

<ul data-role="listview" data-filter="true" data-filter-placeholder=
 "Search contacts...">
 <!-- list rows -->

If we want to customize the search bar’s color swatch, we can use the data-filter-
theme attribute.

Figure 4-16. Search filters are a magic solution that adds a filtering system without any code

Filtering Data with Search | 113

www.it-ebooks.info

http://www.it-ebooks.info/

List Views Cheat Sheet
We’ve covered many features of list views in the last few pages. In Figure 4-17 you will
find a quick cheat sheet to understand how to render your list views using HTML
markup.

Figure 4-17. All the list view possibilities in one diagram

114 | Chapter 4: Lists

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5

Form Components

The jQuery Mobile framework supports standard web forms with automatic AJAX
handling on compatible devices and with touch-optimized rendering for standard form
controls. That’s the first good news about form controls.

When I say standard web form I’m talking about a group of form controls—such as
input, textarea, and select elements—inside a form element with an action attribute
defined as the URL that will receive the form’s data.

Form Action
Any form action will be handled as we expect. That is, the form will be submitted when
the user presses a submit button or when the user presses the Enter key. Did I say Enter
key on a mobile device?

We are going to target different devices with different input handling. Some of them
will have physical keyboards (maybe with an Enter key); some others will only have a
virtual onscreen keyboard. Devices with a virtual keyboards usually have a “send,”
“submit,” or similar button on the keyboard that acts as the submit button while the
user is entering form data.

When the form is submitted, jQuery Mobile will use an AJAX transition to the sub-
mission page similar to a link to an external page, unless the form is submitted to
another domain. The form can use get or post defined in the action attribute of the
form element.

A typical jQuery Mobile form will look very similar to a typical web form:

<form action="send.php" action="get">

</form>

A jQuery Mobile form needs a jQuery Mobile document on the results page, similar to
an external link. That is because, by default, jQuery Mobile will try to send the form
via AJAX using the framework.

115

www.it-ebooks.info

http://www.it-ebooks.info/

The results page will be added to the history’s browser if we are using a get method
using the location hash.

The same data-transition and data-direction attributes that we saw in Chapter 2 are
applicable to form elements. Therefore we can define a form submission action to be
shown with a pop transition:

<form action="send.php" action="get" data-transition="pop">

</form>

Forcing a Non-AJAX Form
If we want to force a standard HTTP request without AJAX, we can use data-
ajax="false" on the form element. This is particularly useful if the action is on a different
domain host or when using file uploads (more on this later).

Another way to force a non-AJAX submit is by using target="_blank" on the form ele-
ment.

It’s possible to define an autofocus Boolean value on an input form
control to receive focus after the page loads. However, on a jQuery Mo-
bile document, this attribute will work only on the first page and not on
newly loaded pages using jQuery Mobile’s transitions.

Form Elements
jQuery Mobile supports standard web form controls and new rich controls on the same
form. The framework has a feature called “auto-initialization” that takes every web
form control and replaces it with a touch-friendly rich control.

The framework also takes new HTML5 input types to a new level, supporting them
even on browsers without official support.

The following elements will be rendered as rich controls:

• Buttons, using button and input elements

• Text inputs, using input and textarea elements

• Checkbox and radio buttons using input elements

• Menus using select and option elements

• Sliders using input type="range" new control

• Slider switches using select and option elements with a new role

If we don’t want jQuery Mobile to render a form control as a rich UI component, we
can force it using data-role="none" on every form element.

116 | Chapter 5: Form Components

www.it-ebooks.info

http://www.it-ebooks.info/

Every form element will use one line and will not share a row with another form control.
This is the best solution for user experience on mobile forms. We can always force
columns, but it’s not recommended for mobile forms.

When using AJAX, all the pages will share the same DOM, including
the webform controls. That is why we need to maintain our form ele-
ment’s unique IDs in our entire site. If we have two forms, don’t use the
same ID for similar form controls

Labels
A very important element of every form’s control is the label. We should always include
a label element pointing to the right control using the for attribute. Let’s see an ex-
ample:

<label for="company">Company Name:</label>
<input type="text" id="company">

The most important thing to know about labels is that if the user clicks on a label, the
form control will gain focus and the user will be ready to use it. Therefore the clickable
area of an element is the control itself, plus the label created, a good experience for
touch devices.

If, for any reason, you want a form element without a label, you still
need to think in terms of accessibility. That is why you should always
have a label and, if you want to hide it, you can apply the class ui-hidden-
accessible to it or any other HTML element.

Field Containers
A field container is an optional label/component wrapper that enhances the experience
on wider screens, such as tablet devices. This container is any block element with data-
role="fieldcontainer".

This container aligns the label and form controls correctly and adds a thin border to
act as a field separator. The second important feature of a container is that the layout
is automatically defined based on the device’s width. That is: if the device has a narrow
width, the label is placed at the top of the form control; if not, the label is placed at the
left in a two-column layout, as seen in Figure 5-1.

We can add a field container to every label/control pair as shown in the following
sample:

<div data-role="fieldcontainer">
<label for="company">Company Name:</label>
<input type="text" id="company" name="company">
</div>
<div data-role="fieldcontainer">

Form Elements | 117

www.it-ebooks.info

http://www.it-ebooks.info/

<label for="email">Email:</label>
<input type="email" id="email" name="email">
</div>

Figure 5-1. The label placement changes from smartphone to tablet based on well-known mobile
design patterns

Text Fields
jQuery Mobile supports the basic HTML5 text input controls and renders them ac-
cording to the current theme and color swatch. These are the available input text fields:

• <input type="text">

• <input type="password">

• <input type="email">

• <input type="tel">

• <input type="url">

• <input type="search">

• <input type="number">

• <textarea>

When we use any of the previous elements, we will receive a jQuery Mobile control
automatically. Remember we don’t need to explicitly specify any data-role.

Every input element with the types button, submit, clear, and image will
be automatic rendered as jQuery Mobile buttons.

118 | Chapter 5: Form Components

www.it-ebooks.info

http://www.it-ebooks.info/

If you are thinking: “I only know about text and password input types,” don’t worry.
email, tel, url, search, and number are new input types in the HTML5 specification that
are very important in the mobile world. As you know, most touch devices don’t have
physical keyboards. When we define one of these new input types, we will get a different
and optimized virtual keyboard as you can see in Figure 5-2.

Figure 5-2. Using new HTML5 text input types we can get different virtual keyboards on some mobile
devices

Don’t worry about older devices not supporting HTML5 new input
types. Every browser will fall back to a basic text field if it doesn’t un-
derstand the type attribute.

The search input type has two differences when compared to the typical text input
type: it has a different UI inside jQuery Mobile and it provides a different “return” key
in the virtual keyboard of some devices, as you can see in Figure 5-3:

<div data-role="fieldcontainer">
<label for="search">Search:</label>
<input type="search" id="search" name="search">
</div>

Auto-Growing Text Area
When we use textarea for multiline text input, we will get a complimentary service:
auto-growing. jQuery Mobile starts with a two-line height until we enter text that cre-
ates a third line. Then, the framework will automatically expand the text area to fit the

Form Elements | 119

www.it-ebooks.info

http://www.it-ebooks.info/

new line. This is to allow scrolling inside a textarea, which is a painful operation on
most touch mobile browsers.

<div data-role="fieldcontainer">
<label for="comments">Your comments:</label>
<textarea id="comments" name="comments></textarea>
</div>

In Figure 5-4 we can see the auto-growing text area in action.

Figure 5-4. jQuery Mobile automatically expands text areas when the text uses more lines than
available

Figure 5-3. A search text input has a different appearance inside a jQuery Mobile document

120 | Chapter 5: Form Components

www.it-ebooks.info

http://www.it-ebooks.info/

Secure or Not Secure
The usage of the password text input (<input type="password" />) on mobile devices
is a subject of much debate. The password text input (with the classic stars or circles
displayed instead of the typed characters) was originally created because of the possi-
bility of a password or other sensitive data being stolen by someone standing behind
the user with a view of the screen. In the mobile ecosystem, the situation is different.
With the limited screen size and font size, it is very difficult for another person to see
what a user is typing on his mobile phone. Furthermore, typing on non-QWERTY
devices is difficult, and if we show a star instead of the real character typed, the user
may be unsure that he’s entered the text correctly (even if, as some devices do, the
character is displayed for a second before it’s changed to a star). If you still want to use
the password input, I recommend forcing the text input to be numeric. Jakob Nielsen
(http://useit.com), guru of web usability, agrees. In a 2009 Alertbox column, Nielsen
wrote: “Usability suffers when users type in passwords and the only feedback they get
is a row of bullets. Typically, masking passwords doesn’t even increase security, but it
does cost you business due to login failures.” Facebook mobile has implemented a
feature that when you misspell the password once, the next try will have a visible pass-
word input with a legend confirming that the password is still secure while visible.
Another solution is to use a normal text field for the password and then add a checkbox
with the label: “Hide my password” that will change the input to password when
checked.

New HTML5 Attributes
It’s safe to use any HTML5 attribute on our text fields, as they will work on compatible
devices and will do nothing on older browsers. Inside the list of new form control
attributes we can mention required, pattern, placeholder, and min and max (useful only
for <input type="number">).

Therefore if a field is mandatory, we can mark it with the Boolean required attribute.
And we can also define a placeholder, text that will be displayed grayed out—as a
hint—while there is no value on the input control:

<div data-role="fieldcontainer">
<label for="name">Your Name:</label>
<input type="text" id="name" required placeholder="Enter your name">
</div>

<div data-role="fieldcontainer">
<label for="age">Your Age:</label>
<input type="number" id="age" required placeholder="Enter your age" min="10"
max="110">
</div>

Form Elements | 121

www.it-ebooks.info

http://useit.com
http://www.it-ebooks.info/

Using CSS3’s new pseudoclasses, we can create different styles for valid,
invalid, required, and optional text fields without any JavaScript vali-
dation code.

Date Fields
Entering dates in HTML was always a problem and we used to rely on JavaScript li-
braries rendering visual calendars using HTML. HTML5 now has added support for
date fields through the input element using the following types:

• date for a date selector (day, month, year)

• datetime for a complete date selector (day, month, year, hour, minutes) using
standard syntax including GMT time zone

• time for a time selector (hour, minutes)

• datetime-local for a complete date selector without time zone information

• month for a month selector (typically rendered as a drop-down list)

• week for a week of the year selector (typically rendered as a drop-down list)

Date input types are new and they are not implemented on every browser, whether
mobile or desktop. As of this writing, most date input types work properly on Safari
for iOS since version 5.0, BlackBerry Browser for PlayBook and for Smartphones since
5.0, Opera Mobile, and Firefox for Android. You can check updated information about
this compatibility at http://mobilehtml5.org.

Even if we are not providing an explicit data-role, remember that input
controls are rendered as jQuery Mobile’s controls. Therefore, global
attributes such as data-theme for color swatch definition will still work.

Remember that if the browser does not support the input element, it will automatically
fall back to a text input:

<div data-role="fieldcontainer">
<label for="birth">Your Birthdate:</label>
<input type="date" id="birth" name="birth">

<label for="favmonth">Your favorite month:</label>
<input type="month" id="favmonth" name="favmonth">
</div>

Date input types support min and max attributes. In Figure 5-5 we can see how date
fields render on some smartphones and tablets.

122 | Chapter 5: Form Components

www.it-ebooks.info

http://mobilehtml5.org
http://www.it-ebooks.info/

Slider
A slider is ideal for numeric values inside a range. When used, it provides a numeric
text field and a horizontal slider at the right, as seen in Figure 5-6. To use a slider, we
must define an HTML5 <input type="range"> control. It accepts min, max, and step
values:

<div data-role="fieldcontainer">
<label for="qty">Quantity:</label>
<input type="range" id="qty" name="qty" min="1" max="100" value="5">
</div>

The slider supports a color swatch definition via data-theme that affects the numeric
input type, and we can also define a data-track-theme that affects only the track, as
seen in Figure 5-6:

<div data-role="fieldcontainer">
<label for="qty">Quantity:</label>
<input type="range" id="qty" name="qty" min="1" max="100" value="5" data-theme="e"
data-track-theme="b">
</div>

Figure 5-5. From iOS version 5 on, date elements are supported, so we will get a nice date picker when
using this HTML5 input type

Form Elements | 123

www.it-ebooks.info

http://www.it-ebooks.info/

The slider control supports keyboard events for compatible devices. Therefore, when
the control is focused, the user can use the arrow keys, wheel, or joystick to increase
or decrease the control’s value.

Flip Toggle Switch
A flip toggle switch is a selector for Boolean values (true or false, on or off), similar to
a checkbox in functionality but with a radically different user interface. It is rendered
as a visual switch that can be turned on or off by the user (tapping or dragging the
switch).

This is the first form control that needs an explicit data-role: slider. It needs a
select element with only two options as children: first the off/false value and then the
on/true value:

 <label for="updated">Receive updates</label>
<select id="updated" name="updated" data-role="slider">
<option value="no">No</option>
<option value="yes">Yes</option>
</select>

Without a field container, the flip toggle switch is rendered using the full page width.
With a field container wrapping the content, it takes a more common visual approach,
as seen in Figure 5-7.

The HTML5 <input type="color"> color picker control doesn’t work
on most mobile browsers and it will render just as any other text input
control.

Figure 5-6. A range input type is rendered by jQuery Mobile as a numeric small input type and a
synchronized horizontal slider over the standard HTML5 rendering

124 | Chapter 5: Form Components

www.it-ebooks.info

http://www.it-ebooks.info/

Select Menus
Menus through select elements are a typical form control to select one or multiple
options from a pop-up list. Every mobile browser supports selects (single and multiple
selection). jQuery Mobile changes the select user interface with a button-style control
that invokes the native menu when tapped, as seen in Figure 5-8.

By default, select menus take up the entire width unless a field container is used to
wrap them:

 <label for="training">Training</label>
<select id="training" name="training">
<option value="1">HTML5</option>
<option value="2">jQuery Mobile</option>
<option value="3">iOS</option>
<option value="4">Android</option>
<option value="5">BlackBerry</option>
<option value="6">Qt for Meego</option>
</select>

Using the multiple Boolean attribute, jQuery mobile and the native control will provide
a different user interface for multiple selection, as seen in Figure 5-9:

 <label for="lang">Languages you like</label>
<select id="lang" name="lang" multiple>
<option value="1">C/C++</option>
<option value="2">Objective-C</option>
<option value="3">Java</option>
<option value="4">C#</option>
<option value="5">Visual Basic</option>
<option value="6">ActionScript</option>
<option value="7">Delphi</option>
<option value="8">Phyton</option>
<option value="9">JavaScript</option>
<option value="10">Ruby</option>
<option value="11">PHP</option>
</select>

Figure 5-7. The flip toggle switch has a different width when used with a field container

Form Elements | 125

www.it-ebooks.info

http://www.it-ebooks.info/

As any other form element, we can change the default color swatch using data-theme,
and the optgroup element is also compatible for grouping option elements.

If we change form control values from JavaScript, such as the value
attribute of select menus, or checked attribute on radio buttons and
checkboxes, the jQuery Mobile UI will not update unless we refresh the
widgets using the jQuery Mobile API that we will cover in the next
chapter.

Grouping select menus

Select menus can be grouped using the controlgroup element, vertically or horizontally.
The latest is useful for short length selects, for example: a group of month/day/year
selects. To group select menus, we need to embed them in a div with data-role="con
trolgroup", as in the following examples, shown in Figure 5-10:

<div data-role="controlgroup">
<legend>Color and Size</legend>
<select id="color" name="color">
<option value="1">Blue</option>

Figure 5-8. A select menu is automatically converted to a button-like style control with an icon inviting
the user to open the selection menu

126 | Chapter 5: Form Components

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 5-9. When using a multiple selection menu, the user interface shows us the selected elements
separated by a comma and a count bubble showing how many elements were selected

Form Elements | 127

www.it-ebooks.info

http://www.it-ebooks.info/

<option value="2">White</option>
<option value="3">Red</option>
<option value="4">Black</option>
<option value="5">Pink</option>
</select>
<select id="size" name="size">
<option value="1">X-Small</option>
<option value="2">Small</option>
<option value="3">Medium</option>
<option value="4">Large</option>
<option value="5">X-Large</option>
</select>
</div>

<div data-role="controlgroup" data-type="horizontal">
<legend>Week day and time</legend>
<select id="weekday" name="weekday" multiple>
<option value="1">Mon</option>
<option value="2">Tue</option>
<option value="3">Wed</option>
<option value="4">Thu</option>
<option value="5">Fri</option>
</select>
<select id="time" name="time">
<option value="1">Morning</option>
<option value="2">Midday</option>
<option value="3">Afternoon</option>
</select>

Figure 5-10. We can group select menus using a controlgroup wrapper

When using the controlgroup element, individual labels are hidden from the UI as when
used alone. To define a label for the whole group, we can use the legend element, as in
the following sample shown in Figure 5-11:

128 | Chapter 5: Form Components

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 5-11. For not-so-long select menus, we can use a horizontal controlgroup element

Form Elements | 129

www.it-ebooks.info

http://www.it-ebooks.info/

<div data-role="controlgroup" data-type="horizontal">
<legend>Delivery options</legend>

<label for="weekday">Week day</label>
<select id="weekday" name="weekday" multiple>
<option value="1">Mon</option>
<option value="2">Tue</option>
<option value="3">Wed</option>
<option value="4">Thu</option>
<option value="5">Fri</option>
</select>
<label for="time">Time</label>
<select id="time" name="time">
<option value="1">Morning</option>
<option value="2">Midday</option>
<option value="3">Afternoon</option>
</select>
</div>

Non-native select menus

As we’ve already seen in Figure 5-10, every select element renders by default as a
jQuery Mobile rich control, but when opened it relies on the native select element of
the mobile browser. If we want to override the native behavior, jQuery Mobile provides
an alternative user interface for select menus.

To activate this feature, we need to use data-native-menu="false" on the select ele-
ment. As we see in Figure 5-12, it seems the same when closed, but when it’s opened,
the different UI appears on screen:

 <label for="training">Training</label>
<select id="training" name="training" data-native-menu="false">
<option value="1">HTML5</option>
<option value="2">jQuery Mobile</option>
<option value="3">iOS</option>
<option value="4">Android</option>
<option value="5">BlackBerry</option>
<option value="6">Qt for Meego</option>
</select>

The appearance of the control is also different when we have a list with a length longer
than the screen, using a dialog-like appearance, as we can see in Figure 5-13.

When using non-native menus, optgroup elements will be rendered as
list dividers rows as in a list view.

The non-native menus use an overlay over the current form when it’s open. We have
the data-overlay-theme to define the color swatch for this overlay. If we have
an option element with an explicit empty value, value="", or with the data-

130 | Chapter 5: Form Components

www.it-ebooks.info

http://www.it-ebooks.info/

placeholder="true" attribute, it will be used as the overlay’s title and not a selectable
option, as in the following sample (Figure 5-14):

 <label for="training">Training</label>
<select id="training" name="training" data-native-menu="false" data-overlay-theme="e">
<option value="0" data-placeholder="true">Select your training</option>
<option value="1">HTML5</option>
<option value="2">jQuery Mobile</option>
<option value="3">iOS</option>
<option value="4">Android</option>
<option value="5">BlackBerry</option>
<option value="6">Qt for Meego</option>
</select>

As we can see in Figure 5-15, non-native menus also work nicely with multiple selection
menus, with the multiple Boolean attribute defined. When multiple is defined, the
overlay dialog will have a close button, instead of an automatic close after a selection.

jQuery Mobile also detects the disabled attribute for option elements properly.

Figure 5-12. When using a non-native select menu, the original menu is replaced by an interactive list
view on a dialog-like mode

Form Elements | 131

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 5-13. If the select menu has too many options, the opening behavior involves the creation of a
dialog page

132 | Chapter 5: Form Components

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 5-14. A placeholder allows us to define a title for the selection dialog in a non-native select list

Form Elements | 133

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 5-15. Multiple non-native menus have a user interface with a multiple selection list view

134 | Chapter 5: Form Components

www.it-ebooks.info

http://www.it-ebooks.info/

For non-native menus to work, we have one restriction on option ele-
ments. They need to include explicitly the value attribute with an op-
tion. If you define an empty value, then it will be used as the title of the
pop-over window.

Radio Buttons
We all know what a radio button is. The great thing about radio buttons on jQuery
Mobile is how they are rendered without any work from us. First, let’s check the re-
quirements for radio buttons to work properly on jQuery Mobile:

• Every option must be a <input type="radio">.

• Every option of the same group must have the same name value.

• Every option must have a unique id and a unique label element applied to it.

One big difference between using select menus and radio buttons is that with select,
the label applies to the whole element, while on radio buttons the label applies to each
element. In Figure 5-16 we can see that the label is part of the button text and it’s not
a label outside the control, as in an input text control.

If we want to provide a label to a whole group of options, we can use the legend HTML
element.

Let’s see a sample:

<legend>Menu type</legend>

<label for="menuNative1">Native menu, single selection</label>
<input type="radio" id="menuNative1" name="menuType" value="1">

<label for="menuNative2">Native menu, multiple selection</label>
<input type="radio" id="menuNative2" name="menuType" value="2">

<label for="menuNonNative1">Non-native menu, single selection</label>
<input type="radio" id="menuNonNative1" name="menuType" value="3">

<label for="menuNonNative2">Non-native menu, multiple selection</label>
<input type="radio" id="menuNonNative2" name="menuType" value="4">

Form Elements | 135

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 5-16. Radio buttons are rendered with their labels inside a button

If we embed every radio element inside a controlgroup wrapper, then we’ll have a nicer
UI, as seen in Figure 5-17:

<div data-role="controlgroup">
<-- label and radio elements go here -->
</div>

Figure 5-17. Grouping radio buttons in a controlgroup is the best way to provide a clear user interface

If we change the controlgroup element’s type to horizontal, then we have a very dif-
ferent appearance. The elements will not have the typical radio selector, and the control
will become a pushed button control, as seen in Figure 5-18:

<legend>Delivery method</legend>

<div data-role="controlgroup" data-type="horizontal">

<label for="deliveryUPS">UPS</label>
<input type="radio" id="deliveryUPS" name="delivery" value="ups">

<label for="deliveryDHL">DHL</label>
<input type="radio" id="deliveryDHL" name="delivery" value="dhl">

136 | Chapter 5: Form Components

www.it-ebooks.info

http://www.it-ebooks.info/

<label for="deliveryFedex">FedEx</label>
<input type="radio" id="deliveryFedex" name="delivery" value="fedex">

</div>

Figure 5-18. Using a horizontal controlgroup wrapper, radio buttons are converted to pushed buttons
using a different color swatch for the selected value

Even if jQuery Mobile presents the radio button user interface com-
pletely differently, the form is still working in the same way. That means
that the value property will match the selected value element.

Checkboxes
Checkboxes work similarly to radio buttons (Figure 5-19), but with multiple selection.
We can use a single checkbox as in the following sample:

 <label for="accept">I accept terms and conditions</label>
<input type="checkbox" id="accept" name="accept" value="yes">

Figure 5-19. A checkbox takes its label and renders a nice button with a checkbox button while selected

Form Elements | 137

www.it-ebooks.info

http://www.it-ebooks.info/

We can also wrap checkboxes inside a controlgroup and we will have a grouped buttons
user interface with multiple selection (Figure 5-20):

<legend>Delivery options</legend>

<div data-role="controlgroup">

<label for="optionGift">Pack it as a Gift</label>
<input type="checkbox" id="optionGift" name="optionGift" value="yes">

<label for="optionBag">Send it with a bag</label>
<input type="checkbox" id="optionBag" name="optionBag" value="yes">

<label for="optionRemove">Remove the box</label>
<input type="checkbox" id="optionRemove" name="optionRemove" value="yes">

</div>

Figure 5-20. Grouping checkboxes with a legend element creates a nice multiple selection list.

Using a horizontal controlgroup, the user interface becomes a multiple push-button
control, as seen in Figure 5-21. If the button is pressed, then it’s a checked element.

138 | Chapter 5: Form Components

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 5-21. If we have small labels and not more than five checkboxes, we can use horizontal control
group wrappers to have a push-button multiple selection control

<div data-role="controlgroup" data-type="horizontal">

<label for="bold">B</label>
<input type="checkbox" id="bold" name="bold" value="yes">

<label for="italic">I</label>
<input type="checkbox" id="italic" name="italic" value="yes">

<label for="underline">U</label>
<input type="checkbox" id="underline" name="underline" value="yes">

</div>

File Uploads
File uploads are a real problem in the mobile space, and it’s because lack of compati-
bility on some smartphones and tablet platforms, such as iOS (iPhone and iPad), An-
droid before 2.2, and webOS (Figure 5-22). These platforms don’t support <input
type="file"> for different reasons, including the lack of a user-public filesystem. jQuery
Mobile doesn’t provide any specific appearance for file uploads, and we should be very
careful implementing them on mobile browsers.

Form Elements | 139

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 5-22. Some mobile browsers and platforms, such as Safari for iOS, don’t support file uploads,
and we will receive a disabled standard form control

On some newer devices, such as Android from 3.0, the HTML Media Capture API is
available, which allows us to request a camera picture, video, or audio recording from
a file upload input type. You can check http://mobilehtml5.org for compatibility with
this HTML5 API.

140 | Chapter 5: Form Components

www.it-ebooks.info

http://mobilehtml5.org
http://www.it-ebooks.info/

CHAPTER 6

The Framework and JavaScript

jQuery Mobile provides a JavaScript API to communicate with the framework and to
manage content using JavaScript. The first thing to know is that the framework is an
HTML5 framework and the best way to create content is by using nonintrusive
HTML5.

Creating pages and content using JavaScript instead of markup will lead to incompa-
tibilities with some B-grade browsers and with older non-jQuery Mobile compatible
platforms. If you are targeting modern tablets and smartphones and you are prepared
to test your code on different real devices, then it’s safe to create content using Java-
Script and AJAX instead of markup directly.

The JavaScript API not only allows us to create dynamic content compatible with the
framework, but it also enables new events for us to handle and global configurations
that we can define.

This chapter will require a basic knowledge of JavaScript and the jQuery core
framework.

Document Events
It’s common on a web page to use the load event to configure some defaults and initi-
alization code. If you are using the jQuery core framework, you may also be fond of
the ready event exposed to the document element.

When we are working with a jQuery Mobile document, we have a new event that we
need to handle and to understand: mobileinit. This new event will be fired when the
jQuery Mobile framework is loaded and ready for our initialization code. This event
should be handled on the document element using jQuery’s bind method:

$(document).bind('mobileinit', function() {
 // Initialization code here
});

141

www.it-ebooks.info

http://www.it-ebooks.info/

Mobile initialization is fired after the jQuery Mobile framework is loaded into memory
and just before rendering the UI elements. That is why we can use this event handler
to change some of the UI global preferences.

The order of a jQuery Mobile document’s event execution usually is:

• mobileinit

• ready

• load

If you want to execute some code after a page is loaded or shown, you
should not use load, ready, or mobileinit. Every jQuery Mobile page
element has a series of events that we can bind to.

The first thing to discuss about the mobileinit event is where should it be placed. We
should bind this event in a special place inside the header element. It should be between
the jQuery core include and the jQuery Mobile include. That is because we need the
$ jQuery object to be ready and we need to bind it before the jQuery Mobile framework
is executed.

That is why the typical template for a jQuery Mobile document with a script configu-
ration code is:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8" />
 <title>My first jQuery Mobile code</title>
 <link rel="stylesheet" href="http://code.jquery.com/mobile/1.0/jquery.mobile-
1.0.min.css" />
 <script src="http://code.jquery.com/jquery-1.6.4.min.js"></script>

 <!-- CUSTOM INITIALIZATION CODE -->
 <script src="customcode.js"></script>

 <script src="http://code.jquery.com/mobile/1.0/jquery.mobile-
1.0.min.js"></script>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 </head>
 </html>

Keep in mind that adding too many script tags on a mobile page is a bad practice
because of performance issues. In some situations it’s better to have all the custom
initialization code as an inline script code inside the HTML document instead of having
it in an external file.

142 | Chapter 6: The Framework and JavaScript

www.it-ebooks.info

http://www.it-ebooks.info/

If you are working with external documents, be aware that the script
tags on the external documents loaded via AJAX will not be executed
unless the user is accessing your website not from the home page, so
everything should be declared in one JavaScript external file and linked
from every document.

For example, we can bind mobileinit event as in the following sample:

<script src="http://code.jquery.com/jquery-1.6.4.min.js"></script>

<script>
$(document).bind("mobileinit", function() {
 // Our initialization code here
});
<script>

<script src="http://code.jquery.com/mobile/1.0/jquery.mobile-
1.0.min.js"></script>

Configuration
jQuery Mobile attaches a new mobile object to the jQuery main object, $, also available
as jQuery. Therefore, most of the work with the API will be done using $.mobile or
jQuery.mobile. We will find global attributes and useful methods to use and call while
creating our jQuery Mobile experience. This object will only be available after a
mobileinit event is fired.

The framework uses the widget architecture of the jQuery UI framework for desktop.
A widget is a control that is managed by the framework. In jQuery Mobile 1.0, the
widgets available are usually mapped from a data-role attribute, but we have the form
controls without a role, too. Therefore, page, button, and listview are widgets inside
the framework.

Every widget has an object constructor and default configuration that we can change
inside the mobileinit that affects every widget instance on the page.

The following is the list of widgets available in jQuery Mobile 1.0:

• page

• dialog

• collapsible

• fieldcontain

• navbar

• listview

• checkboxradio

• button

Configuration | 143

www.it-ebooks.info

http://www.it-ebooks.info/

• slider

• textinput

• selectmenu

• controlgroup

Some jQuery Mobile rich controls are grouped in one widget; for example, all the text
input types—even textarea—use the same widget: textinput. Checkboxes and radio
buttons are also grouped in the checkboxradio widget.

Every widget has its own object constructor that represents how every object on the
page will work. We can access this prototype using $.mobile.<widget_name>.proto
type. Usually, every widget constructor has an option object where we can define widget
default attributes, for example, $.mobile.page.prototype.options to define default at-
tributes that will be applied to every page instance (data-role="page").

Remember to set up global defaults or widget defaults on the
mobileinit event handler. If we change defaults after or before, the new
attributes may not be applied to our document.

Global Configuration
A lot of values that we can define using a data-* attribute explicitly on every element,
can be defined globally to be applied to every control, unless a new value is defined in
the markup.

Most of the global configuration values can be changed via $.mobile object, in the
mobileinit event handler.

User interface

By default, jQuery Mobile assigns classes to specific elements on the page and other
classes while the elements are active. These classes are used by the theme stylesheet to
provide different appearances. We can change the class name used by the current active
page (in a multipage document) or the class name used by an active button by using
the string-based properties activePageClass and activeBtnClass. By default, the values
are ui-page-active and ui-btn-active. The active button state is used on many other
widgets, such as navigation bars, radio buttons, and checkboxes using buttons
internally.

There are two global attributes (which we will not change in most situations) that allow
us to change scrolling behavior. By default, when a jQuery Mobile document is loaded,
it is scrolled down from the top just enough to hide the address bar. We can change
this by setting the defaultHomeScroll value. When we open a page and then go back
again to it, the framework scrolls the viewport to the same position where the original
page was in the first tap (remembering the position). However, if the first page was very
near to the top (but not at the pixel 0), the framework will stay at the top and not scroll.

144 | Chapter 6: The Framework and JavaScript

www.it-ebooks.info

http://www.it-ebooks.info/

The default minimum value to scroll while going back is defined as 250 pixels high; we
can change it using the minScrollBack attribute.

Finally, two global attributes that we will change more frequently are the default tran-
sitions applied to page loading and dialog loading. By default, they are assigned to
slide and pop and we can change them using defaultPageTransition and defaultDia
logTransition attributes.

The following example will change some user interface default values:

$(document).bind("mobileinit", function() {
 // We change default values
 $.mobile.defaultPageTransition = "fade";
 $.mobile.minScrollBack = 150;
 $.mobile.activeBtnClass = "active-button";
});

Core and AJAX functionalities

Some of the core functionalities of the framework can be manipulated through some
global attributes. We can define a namespace via the ns global attribute if we are using
another framework that can conflict with jQuery Mobile. By default the namespace is
not defined. If we define a namespace, for example:

$(document).bind("mobileinit", function() {
 // We change default values
 $.mobile.ns = "firt";
});

Then, all the data-* attributes become data-<namespace>-*—for example data-firt-
* in our case—including every jQuery Mobile custom attribute such as data-role (con-
verted to data-<namespace>-role). With our new namespace, the typical page template
should be:

<div data-firt-role="page">
 <div data-firt-role="header" data-firt-theme="a">

 </div>
 <div data-firt-role="content">

 </div>
</div>

If you define a namespace, you should also manually change the CSS
file (both structural and theme files) to understand your new name-
space. For example, you should replace [data-role=page] conditional
selectors to match your new namespace, such as [data-namespace-
role=page].

One of the core functionalities of jQuery Mobile is the AJAX framework used to load
external pages. We can disable all the AJAX functionality using the Boolean attribute

Configuration | 145

www.it-ebooks.info

http://www.it-ebooks.info/

ajaxEnabled. If we disable it with $.mobile.ajaxEnabled=false, then every external page
will be loaded as a full HTTP request on the browser.

By default, XMLHttpRequest—the object behind AJAX—doesn’t allow cross-domain re-
quests. That means that if our page is on domain1.com, we can’t load a page using AJAX
from domain2.com. The framework automatically uses a full HTTP request in this sit-
uation. There are some special situations where we can still use cross-domain requests
and we can force the framework to support that through the allowCrossDomainPages
attributes.

Some new mobile browsers support Cross Origin Resource Sharing
(CORS), a W3C working draft available at http://w3.org/TR/cors. This
standard allows a browser to support a cross-domain request if the sec-
ond server response includes some special HTTP headers. You can
check http://mobilehtml5.org to verify compatibility of CORS inside
mobile browsers.

If you are creating an offline application or a hybrid solution—such as a PhoneGap or
RhoMobile application—you are basically loading pages through the file:// protocol
(local files). These frameworks allows you to perform AJAX requests to any domain on
the Internet, so if you are creating this kind of application and want to load external
pages from the Web, you should allow it using $.mobile.allowCrossDomainPages=true.

Some widgets, such as nested list views, generate new pages dynamically. The frame-
work needs a name for every new page (for hash, URL, and other purposes). By default,
jQuery Mobile uses ui-page as the parameter name, unless we change it using subPa
geUrlKey from the $.mobile object. When talking about dialogs, we have the property
dialogHashKey that is by default linked to ui-state=dialog. Usually, we won’t change
these properties.

If you want the framework to not change every link behavior to support different actions
from jQuery Mobile, you can disable it by using $.mobile.linkBindingEnabled=false.
By default, jQuery Mobile initializes the first page in the document after the DOM is
ready. We can disable this behavior by using $.mobile.autoInitializePage=false.

We can also disable the automatic hash reading that allows automatic forward and
back actions when the user presses the browser or device’s back and forward buttons
using $.mobile.hashListeningEnabled=false.

Localizable strings

The framework has some hard-coded string values inside the framework that we can
change or localize to other languages. Some of them are not visible on a typical jQuery
Mobile document and that is because they are used for semantic information or for
accessibility (so screen readers can say what are they).

146 | Chapter 6: The Framework and JavaScript

www.it-ebooks.info

http://w3.org/TR/cors
http://mobilehtml5.org
http://www.it-ebooks.info/

The possible strings to change include the loading message when an external page is
loading via AJAX, the page load error message when the external page can’t be loaded,
and some other widget-based messages.

The following is the list of messages with the default value:

// Global strings
$.mobile.loadingMessage = "loading";
$.mobile.pageLoadErrorMessage = "Error Loading Page";

// Widget strings
$.mobile.page.prototype.options.backBtnText = "Back";
$.mobile.dialog.prototype.options.closeBtnText = "Close"
$.mobile.collapsible.prototype.options.expandCueText =
 " click to expand contents";
$.mobile.collapsible.prototype.options. collapseCueText = " click to collapse contents";
$.mobile.listview.prototype.options.filterPlaceholder = "Filter items...";
$.mobile.selectmenu.prototype.options.closeText = "Close";

Therefore, to create a Spanish version of the jQuery Mobile’s texts, we should use the
following code:

$(document).bind('mobileinit', function() {
 // Global strings
 $.mobile.loadingMessage = "cargando";
 $.mobile.pageLoadErrorMessage = "Error Cargando Página";

 // Widget strings
 $.mobile.page.prototype.options.backBtnText = "Atrás";
 $.mobile.dialog.prototype.options.closeBtnText = "Cerrar"
 $.mobile.collapsible.prototype.options.expandCueText =
 " click para expandir contenido";
 $.mobile.collapsible.prototype.options. collapseCueText =
 " click para cerrar contenido";
 $.mobile.listview.prototype.options.filterPlaceholder = "Filtrar ítems...";
 $.mobile.selectmenu.prototype.options.closeText = "Cerrar";

});

Touch overflow

As we have discussed in previous chapters, enabling fixed toolbars (with data-posi
tion="fixed") doesn’t provide a real fixed toolbar in jQuery Mobile 1.0. It just emulates
a fixed toolbar while not scrolling the page. See Figure 6-1.

As of iOS 5.0, Safari supports position: fixed elements and one-finger scrolling over
block areas with overflow: scroll and a new prefix-based extension, called overflow-
scrolling: touch. By default, this behavior is disabled, but if we want to provide real
fixed toolbars on iOS 5 (and possibly other platforms in the future), we just need to
enable touchOverflowEnabled. It will fall back to a normal jQuery Mobile fixed toolbar
on noncompatible platforms:

Configuration | 147

www.it-ebooks.info

http://www.it-ebooks.info/

$(document).bind('mobileinit', function() {
 $.mobile.touchOverflowEnabled=true;
});

Scrolling inside block elements with overflow: scroll is also supported
on Android 3.0 and BlackBerry Browser for PlayBook. jQuery Mobile
will add automatic support for these browsers after 1.1.

If we enable this property, we can also enable zooming using touchOverflow
ZoomEnabled. Be careful with this option because it can lead to some usability problems.
These two properties should become obsolete in later versions because they will be
replaced by a default fixed toolbar behavior.

Figure 6-1. When we use touch overflow fixed headers, the page is designed in a different way: the
content area has its own scrolling area

148 | Chapter 6: The Framework and JavaScript

www.it-ebooks.info

http://www.it-ebooks.info/

Page Configuration
For every page, data-role="page" is created using default options that can be overridden
by data-* attributes. If we want to change defaults, we can change the prototype’s
options of every page instance.

For example, if we want to provide a visible back button on every page that has a
previous history page, we can define the addBackBtn property as true. We can change
the back button’s text and theme through backBtnText and backBtnTheme.

And we can also change the default theme by defining headerTheme, footerTheme, and
contentTheme.

For example:

$(document).bind('mobileinit', function() {
 $.mobile.page.prototype.options.addBackBtn = true;
 $.mobile.page.prototype.options.backBtnTheme = "e";
 $.mobile.page.prototype.options.headerTheme = "b";
 $.mobile.page.prototype.options.footerTheme = "d";
});

If you are creating a full-screen webapp, a hybrid, or a PhoneGap app,
you should definitely provide an explicit back button in the header, so
you must handle mobileinit event and define $.mobile.page.proto
type.options.addBackBtn=true.

Page loading

Every time a page is externally loaded using AJAX, some default attributes are used.
These attributes can be found in $.mobile.loadPage.defaults object, and Table 6-1
shows its possible values.

Table 6-1. $.mobile.loadPage.defaults properties

Property Accepting Default value Description

type "get"/"post" "get" Defines the AJAX request
type

data object/string If type is "post", this is
where we can set the post
object to send

reloadPage true/false false Defines whether the new
page should be reloaded
even if it’s cached on the DOM

role string <defined by data-role> Defines the role to apply to
the target page

showLoadMsg true/false true Defines whether the loading
message should be visible if

Configuration | 149

www.it-ebooks.info

http://www.it-ebooks.info/

Property Accepting Default value Description
the request is taking longer
than the timeout defined

loadMsgDelay milliseconds 50 Milliseconds to wait before
showing the loading
message

theme a to z c Default color swatch to apply
to every page

domCache true/false false Defines whether pages
should be cached on the DOM

If we want to change a page loading attribute just for one page load and
not for all, we can use the $.mobile.changePage utility.

Widgets Configuration
Every widget on jQuery Mobile has its own default configuration attributes. Remember
we can change its defaults by changing the options object of the widget’s prototype,
$.mobile.<widget_name>.prototype.options. For example:

$(document).bind('mobileinit', function() {
 // Enables filtering on all the listviews
 $.mobile.listview.prototype.filter = true;

 // Enables non-native menus for all selects
 $.mobile.selectmenu.prototype.nativeMenu=false;
});

Most widgets support the theme default attribute. Therefore, if we want
all select menus to have the e theme by default, we can use
$.mobile.selectmenu.prototype.theme="e".

Table 6-2 shows the most commonly used attributes for each widget that we can
change.

Table 6-2. Default properties available to define for every widget.

Widget Property Values (default) Description

<every widget> theme a to z Color swatch to be applied to
every widget’s instance

listview filter true/(false) Enables filtering on every list
view

150 | Chapter 6: The Framework and JavaScript

www.it-ebooks.info

http://www.it-ebooks.info/

Widget Property Values (default) Description

listview filterPlaceHolder string Placeholder text of the filter’s
text box

listview filterTheme a to z Color Swatch for the filter
text box

navbar iconpos (top)/bottom/left/
right

Icon position for navigation
bar’s items

slider trackTheme a to z Color swatch for the track of
the slider

selectmenu icon icon value (arrow_d) Icon for the select’s opening
button

selectmenu iconpos top/bottom/left/
(right)

Icon position

selectmenu corners (true)/false Rounded corners for the
opening button

selectmenu shadow (true)/false Shadow for the opening
button

selectmenu iconshadow (true)/false Shadow for the opening but-
ton’s icon

selectmenu menuPageTheme a to z (b) Color swatch for the non-
native menu

selectmenu overlayTheme a to z (a) Color swatch for the non-
native overlay

selectmenu closeText string String for the close button for
non-native menus

selectmenu nativeMenu (true)/false Defines whether the select
menus will be native or not

dialog closeBtnText string String for the close button

dialog overlayTheme a to z (a) Color swatch for the dialog
overlay

collapsible expandCueText string Text for the opening button

collapsible collapseCueText string Text for the closing button

collapsible collapsed (true)/false Defines whether the collaps-
ible should be opened or
closed by default

collapsible heading comma-separated values List of tags that will be used
as collapsible’s header

collapsible contentTheme a to z Color swatch for the content

collapsible iconTheme a to z Color swatch for the header’s
icon

Configuration | 151

www.it-ebooks.info

http://www.it-ebooks.info/

Widget Property Values (default) Description

button icon icon value By default icon for every
button

button iconpos icon position Icon position for every button

button inline true/(false) Defines whether every but-
ton should be inline or not

button corners (true)/false Rounded corners for every
button

button shadow (true)/false Shadow for every button

button iconshadow (true)/false Shadow for the button’s icon

Utilities
jQuery Mobile provides lot of utilities for managing our application from JavaScript.
Utilities are provided by methods and read-only attributes that will allow us to create
better experiences from JavaScript.

Data-* Utilities
When using jQuery Mobile, it’s common to manipulate data-* custom attributes ex-
tensively. For example, if we are trying to get a collection of buttons on the page, we
can use jQuery:

var buttons = $("a[data-role=button"]);

jQuery Mobile adds a new jQuery Mobile filter called jqmData that also applies a name-
space if we are using one. It’s safer and easy to change the previous code with:

var buttons = $("a:jqmData(role='button')");

jqmData and jqmRemoveData should also be used instead of the typical jQuery functions
data and removeData on a jQuery collection object, for example:

$("a").jqmRemoveData("transition");
$("#button1").jqmData("theme", "a");

Page Utilities
If we need to access the current page, jQuery Mobile provides the $.mobile.active
Page attribute that is automatically linked to the current visible data-role="page" ele-
ment. This property is linked to the jQuery DOM object (usually a div element):

var currentPageId = $.mobile.activePage.id;

We can access the current page container (usually the body element) with the
$.mobile.pageContainer attribute.

152 | Chapter 6: The Framework and JavaScript

www.it-ebooks.info

http://www.it-ebooks.info/

The most useful utility on the framework is the $.mobile.changePage method. It allows
us to transition to another page as if the user clicked a link. We can use this method to
show both internal and external pages using JavaScript.

Some utilities are only available after a mobileinit event is fired. So we
can’t use them inside this event handler.

The first mandatory parameter can be a string value (meaning a URL for an external
page) or a jQuery object with an internal page.

To load an external page external.html we can just use:

$.mobile.changePage("external.html");

To transition to an internal page already in the same document, we can use:

$.mobile.changePage($("#pageId"));

We cannot open internal pages just by loading them as a string
"#pageId", we have to send the DOM object using jQuery, $("#pageId").

Page transition options

The second optional argument of changePage is an object, usually defined with JSON
syntax, with optional attributes for the transition and/or AJAX loading.

All the possible options are defined in Table 6-3.

Table 6-3. Optional properties available for a changePage operation

Property Values Default value Description

transition transition name slide Transition to be applied

reverse true/false false Defines if the transition
should be done in reverse
(usually for back actions)

type "get"/"post" "get" HTTP method to use to load
the external page

data object or string Data to be sent when POST is
defined

allowSamePageTransi
tion

true/false false Allow transition to the same
page as the active one (tran-
sition to itself)

changeHash true/false true Decides if the new page
should be in the history

data-url string The URL to be attached in the
location

Utilities | 153

www.it-ebooks.info

http://www.it-ebooks.info/

Property Values Default value Description

pageContainer jQuery DOM object The container where to at-
tach the new page

reloadPage true/false false Forces a reload of the page,
even if its cached on the DOM

showLoadMsg true/false true Determines whether the
page loading message
should be visible after some
milliseconds or not

role page/dialog defined by data-role The role to be applied to the
new page

If we want to force a reverse slide transition, we can use:

$.mobile.changePage($("#page2"), {
 transition: "slide",
 reverse: true
});

The following sample will load an external page sending data via POST:

<script>
function viewProduct(idProduct) {
 $.mobile.changePage("productdetail.php", {
 method: "post",
 data: {
 action: 'getProduct',
 id: idProduct
 },
 transition: "fade"
 });
}
</script>

<!-- ... -->
Product details

Remember that even if we are loading a page using POST, the destina-
tion must be a jQuery Mobile document, including headers and a data-
role="page".

There is a $.mobile.loadPage method that is mainly used by changePage when an ex-
ternal page is loaded. This method will bring the target page to the DOM but will not
transition to it. We should use changePage instead. We can use loadPage if we want to
prefetch content, inject it on the DOM, and then use changePage in the future to tran-
sition to it with the jQuery DOM object.

154 | Chapter 6: The Framework and JavaScript

www.it-ebooks.info

http://www.it-ebooks.info/

Platform Utilities
The framework provides us with some platform utilities that we can use to help web
development. Table 6-4 shows the most useful platform utilities.

Table 6-4. Utilities available to query about the executing platform in $.mobile object

Method/property Description

orientationChan
geEnabled

If the native orientationchange event is available.

gradeA() Returns true if the browser is an A-grade browser in the jQuery Mobile’s compatibility chart.

urlHistory A collection of pages that were browsed inside jQuery Mobile without a page reload. Every element
has pageUrl, title, and transition.

getDocumentUrl() Returns the original document’s URL (the first load).

getDocumentBase() Returns the original document base.

keyCode Constants defining codes for key event handling, includes: ALT, BACKSPACE, COMMAND, COM
MAND_LEFT, COMMAND_RIGHT, DELETE, DOWN, UP, RIGHT, LEFT, END, ENTER, ESCAPE,
HOME, INSERT, MENU, PAGE_DOWN, PAGE_UP, PERIOD, SHIFT, SPACE, TAB, WINDOWS.

getScreenHeight() Get the current screen’s height.

Path Utilities
There are some path management utilities used by the framework and exposed as public
methods through $.mobile.path. The methods are shown in Table 6-5.

Table 6-5. Path utilities available in $.mobile.path object.

Method Description

parseUrl(url) Returns an object with every part of the URL as a property (protocol, hostname,
port, pathname, directory, filename, hash, and more)

makePathAbsolute(relative
Path, absolutePath)

Returns an absolute path based on a relative one

makeUrlAbsolute(relativeUrl,
absoluteUrl)

Returns an absolute URL based on a relative one

isSameDomain(Url1, Url2) Returns true if both URLs are in the same domain

isRelativeUrl(Url) Returns true if the URL is relative

isAbsolute(Url) Returns true if the URL is absolute

UI Utilities
The last series of utilities are for user interface. With $.mobile.getInheritedTheme(ele
ment, defaultSwatch) we can receive the color swatch that should be applied to an
element based on its own color swatch definition or the inherit chain.

Utilities | 155

www.it-ebooks.info

http://www.it-ebooks.info/

With $.mobile.silentScroll(y) we can scroll to any position in the page without
animation and event triggering and with $.mobile.showPageLoadingMsg() and
$.mobile.hidePageLoadingMsg() we can show and hide the loading message pop up by
our own.

// This code shows the loading message and hide it after 2 seconds
$.mobile.showPageLoadingMsg();
setTimeout(function() {
 $.mobile.hidePageLoadingMsg();
}, 2000);

Finally, $.mobile.fixedToolbars.show() and $.mobile.fixedToolbars.hide() let us
show and hide the fixed toolbars (as we have seen in previous chapters). The toolbars
can be full screen or just fixed. You can’t hide real fixed toolbars for iOS 5. By default,
they are shown and hidden using a fade transition. We can change that by defining a
true parameter so that $.mobile.fixedToolbars.show(true) will show the toolbars im-
mediately without fade animation.

Custom Transitions
In Chapter 3 we have already mentioned all the possible transitions available in jQuery
Mobile 1.0. Can we define our own transitions? Yes we can, and there are two ways:

• Using CSS3 animations

• Using JavaScript

When we define a data-transition attribute (or by applying a transition from Java-
Script), jQuery Mobile first verifies if the name is one of the transitions available in the
framework. If not, it looks inside a collection called $.mobile.transitionHandlers. If
the transition is unknown and not defined in the collection, a default transition is used.

The default transition can be changed, and must be defined as a handler function. By
default, the fallback transition is mapped to a custom transition that must be defined
in CSS3 animations (see next chapter).

We can also map the default transition to $.mobile.noneTransitionHandler, which ba-
sically shows the new page and hides the previous page without any animation.

For example, we can add an explode transition type:

$.mobile.transitionHandlers.explode = explodeTransitionHandler;

We can also change the default transition and then use whatever name we want using
the same handler:

$.mobile.defaultTransitionHandler = explodeTransitionHandler;

156 | Chapter 6: The Framework and JavaScript

www.it-ebooks.info

http://www.it-ebooks.info/

A transition handler is a JavaScript function that will receive four arguments:

• Name of the transition

• reverse, which when set to true, indicates when the transition should occur in
reverse

• toPage, which is a jQuery DOM object of the destination page

• fromPage, which is a jQuery DOM object of the origin page

We can use whatever JavaScript code we want to make the transition. Just be sure that,
at the end, you’ve removed the $.mobile.activePageClass from the origin page and
you’ve applied it to the destination page.

Be careful with JavaScript-based transitions. You may have compatibil-
ity and performance issues on some platforms. Do extensive testing be-
fore using them.

Dynamic Content
If we are using dynamic content, such as a database-driven website, it’s possible that
we don’t want to create jQuery Mobile documents on the fly and we just want to use
JavaScript and AJAX to change, show, and hide information in our webapp.

When you are using JavaScript-based elements instead of semantic
markup you may have problem with non-jQuery Mobile compatible
browsers. If you are targeting smartphones and tablets you may not have
any problem.

Creating Pages
Can we create pages on the fly? We know that a page is just a div element with a proper
data-role, so our first thought is that we can make it work. Let’s try and see what it
happens. We are going to create a basic page that will create four pages on the fly using
JavaScript:

<div data-role="page">
 <div data-role="header">
 <h1>Dynamic page</h1>
 </div>
 <div data-role="content">
 Add Pages
 <ul id="list1">

 </div>
</div>

Dynamic Content | 157

www.it-ebooks.info

http://www.it-ebooks.info/

Then in a script we define the function to create dynamic pages and add buttons to
transition to them:

function addPages() {
 for (var i=1; i<5; i++) {
 var page = $("<div>").jqmData("role", "page").attr("id", "page" + i);
 // header
 $("<div>").attr("data-role", "header").append($("<h1>")
 .html("Page " + i)).appendTo(page);
 // content
 $("<div>").attr("data-role", "content").append($("<p>")
 .html("Contents for page " + i))
 .appendTo(page);

 $("body").append(page);

 $("").append($("<a>").attr("href", "#page"+i).html("Go to page " + i))
 .appendTo("#list1");
 }
 $("#button1").hide();
};

If we see this in action in Figure 6-2, we will see that if the pages are created dynamically
after the page is loaded, they work but they don’t have the right CSS styles for the
header.

Dynamically created pages have one disadvantage: if the user reloads
the page while on one of the new pages, it will not work unless we
capture mobileinit and check to see if the user (reading the hash value
or a page event) is trying to load one of the dynamic pages. On a second
load, this page will not exist, so we need to create it by demand.

Figure 6-2. Pages created dynamically work as if they were there from the beginning

158 | Chapter 6: The Framework and JavaScript

www.it-ebooks.info

http://www.it-ebooks.info/

To enhance a page injected dynamically, we can call the page() method on the jQuery
DOM element, for example $("#page1").page().

The preferred way to create dynamic pages is just by linking to them, for example, link
to #page1 and capture pagebeforechange modifying the behavior of the framework. This
event will be covered in the next pages but the following code is enough to understand
it:

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="UTF-8" />
<title>jQuery Mobile</title>
<script src="jquery.js"></script>
<link rel="stylesheet" type="text/css" href="jquery.mobile-1.0.css">
<script src="jquery.mobile-1.0.js"></script>
<script>
$(document).bind('pagebeforechange', function(event, data) {
 // We receive the destination page in data.toPage and we normalize it
 var url = $.mobile.path.parseUrl(data.toPage).hash;

 if (url!=undefined && url.length>5 && url.substring(0, 5)=="#page") {
 // We dynamically inject a new page
 var id = url.substring(5);

 // We will use a page template already in the DOM
 $("#pageTemplate h1").html("Page " + id);

 // We change to the real page template without using
 // its real page id in history
 $.mobile.changePage($("#pageTemplate"), {dataUrl: data.toPage});

 // We prevent normal page transition
 event.preventDefault();
 }

});

</script>
<meta name="viewport" content="width=device-width,user-scalable=no">

</head>

<body>
<div data-role="page">
 <div data-role="header">
 <h1>Dynamic pages</h1>
 </div>
 <div data-role="content">
 Page 1
 Page 2
 Page 3
 Page 4
 </div>
</div>

Dynamic Content | 159

www.it-ebooks.info

http://www.it-ebooks.info/

<div data-role="page" id="pageTemplate">
 <div data-role="header">
 <h1>Header</h1>
 </div>
 <div data-role="content">Content</div>
 <div data-role="footer">
 <h4>Footer</h4>
 </div>
</div>
</body>
</html>

If we try to inject other widgets using JavaScript while the page is being
rendered, they may not be rendered properly until we fire the create
event.

Creating Widgets
If we look at Figure 6-2, we can see that we have a list of four items, and it will be better
to convert the list with the ID list1 to a listview. I know you are thinking: add a data-
role="listview" to the ul. But that will not work. And that is because the page was
already loaded and our list was not detected as a list view widget in the first term.

To create a widget dynamically we have to call the widget constructor. Every widget
has its own constructor and it’s just a jQuery function with the widget name, so if we
execute $("#list1").listview(), the ul will be converted and rendered as a list view
widget immediately (Figure 6-3).

If we have a list of a elements we want to convert to buttons, we just call:

$("a").button();

Or if we are creating one dynamically:

var button = $("<a>").attr("href", "somewhere.html").button();

Updating Widgets
Now we know how to create jQuery Mobile widgets dynamically. But what happens
if the widget is already created and rendered and we are just changing its content? For
example, we are adding items to a list view, or we are changing the value of a checkbox.

In these cases, we need to refresh the widget. To do that we need to call the widget
function with the string refresh as an argument, for example:

$("#list1").listview('refresh');
$("#checkbox").val('true').checkboxradio('refresh');

Going back to our last sample, if we initially define our list1 as an empty listview, we
need to refresh the widget after adding the list elements. If not, the list elements will
not have the right rendering for the user interface:

160 | Chapter 6: The Framework and JavaScript

www.it-ebooks.info

http://www.it-ebooks.info/

<ul id="list1">

After adding items, we call:

$("#list1").listview('refresh');

Figure 6-3. Using widget constructors, we can create every widget dynamically—in this case, we create
a list view

Dynamic Content | 161

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Grids
There is a special widget that we can use to create CSS grids, as we have seen in a
previous chapter. To do so, we need to use an HTML element with children and convert
it to a grid of n columns based on the number of children.

To use it, we just call the grid jQuery function, for example:

$("#element").grid();

Based on how many children it has, it applies the right ui-grid-<letter> class to the
element and the ui-block-letter to the children.

Changing Page Contents
If we change a large group of HTML including lots of widgets, for example, creating
various collapsible elements based on a JSON file received by AJAX, we have to refresh
the whole container. The same happens if, for example, we add a couple of input ele-
ments to a current form and we want them to be converted to widgets, as if they were
in the page from the beginning.

To refresh a container, so every widget can check again if there are instances to create,
we can trigger the create event on the page.

For example:

$("#content").html(newHTMLcontentWithWidgets);
$("#page1").trigger("create");

Every widget constructor is usually handling the page’s create event, so it will detect
again if there are controls to create.

Event Handling
jQuery Mobile provides new events available using the typical jQuery methods such as
bind or live.

Page Events
We are used to normal HTML page events, such as load and DOMready events applied
by the browser for each HTTP page loaded in the current session. In a jQuery Mobile
framework, we have different elements where we apply events. As we already know, a
jQuery Mobile document will have different pages (internal or loaded externally), so
we need to think in terms of jQuery Mobile pages for loading.

Every page (element with data-role="page") has a set of different events that we can
handle globally (for all the pages at the same time) or singly for an individual page.

162 | Chapter 6: The Framework and JavaScript

www.it-ebooks.info

http://www.it-ebooks.info/

To handle page events globally, we can call $(document).bind or to be more specific
$(":jqmData(role='page')").bind. We can also use live instead of bind to allow bind-
ing to future pages to be added to the DOM in the future.

Every page has creation, loading, and showing events.

Creation events

Every page has its own creation or initialization events. The events available are:

pagebeforecreate
After the page is inserted in the DOM and before its widgets are created.

pagecreate
After the page is created but before widgets are rendered.

pageinit
After the page is fully loaded. This should be the most used event for a page.

pageremove
After the page was removed from the DOM (usually when it was an AJAX-loaded
page that is not currently the active page).

For example, we can bind a pageinit event using the jQuery live method:

$("#page2").live("pageinit", function(event) {

});

Remember that to use bind, the element must be present in the DOM
at the time of the binding. If it’s not available, we can use live instead.
jQuery 1.7 supports a new “on” function that is not available when using
jQuery Mobile 1.0 and jQuery 1.6.4.

Loading events

Not every page is loaded by default with the first jQuery Mobile document. For every
page loaded using AJAX, we have special event handlers that usually are bound to
$(document) because the pages are not in the DOM yet to bind the handler to.

The available loading events are:

pagebeforeload
Executed before any AJAX request is done

pageload
Executed after the page was loaded and inserted into the DOM

pageloadfailed
Executed when the page could not be loaded

Event Handling | 163

www.it-ebooks.info

http://www.it-ebooks.info/

Every one of these events handlers will receive two arguments: an event object and a
data object.

The first parameter will have typical event handler values, as well as methods such as
preventDefault() that will prevent default behavior. Using this idea, we can force the
framework to not show the default error message alert and provide our own UI:

$(document).bind("pageloadfailed", function(event, data) {
 data.preventDefault();
 // Custom error management
});

The second argument is an object containing different attributes, including:

url
Absolute or relative URL as it was requested by $.mobile.loadPage.

absUrl
Absolute URL.

dataUrl
The URL to be used as the page identifier.

options
All the options passed to $.mobile.loadPage, for example to know if it was a get or
post request.

xhr
The XMLHttpRequest object for low-level management.

textStatus
Used for error message.

errorThrown
Error exception object, valid only on pageloadfailed.

deferred
Valid only on pagebeforeload and pageloadfailed and only when we call event.pre
ventDefault(). In these cases, we must call the resolve() or reject() methods of
this object so the frameworks knows how to handle the situation.

If you want to handle page initialization, you should avoid using load,
ready, or even mobileinit. The right event is pageinit and is available
for every page. If you are binding it inside mobileinit, use live instead
of bind.

Showing events

A page can be initialized once but shown many times, because the user can go forward
and backwards. That is why we can handle showing and hiding events over pages.

These events are divided into change page events and transition events.

164 | Chapter 6: The Framework and JavaScript

www.it-ebooks.info

http://www.it-ebooks.info/

The available change page events are:

pagebeforechange
Executed before the change is made and before any transition begins

pagechange
Executed after the change is done

pagechangefailed
Executed if the change could not be done

Every event handler will receive two arguments:

toPage
A string with the URL of the destination page or a DOM object with the destination
page if it’s an internal page change

options
The same options sent to $.mobile.changePage

The available transition events are:

pagebeforeshow
Executed before the page is going to be shown on screen using a transition (the
page is still hidden)

pageshow
Executed after the page was transitioned in and is currently on screen

pagebeforehide
Executed before the page is hidden (while the page is still visible)

pagehide
Executed after the page has transitioned out and is currently hidden

Every event handler for transition events will receive one argument, being a DOM
jQuery object of the related page. If it’s a show event, you will receive the previous page
object; and if it’s a hide event, you will receive the next page object.

Widget Events
Every widget that shows/hides content dynamically, such as collapsible, triggers an
updatelayout event because the page layout has been changed. We may want to handle
it to update some other thing on the UI.

Orientation Event
A mobile device can be moved and it can have at least two orientations: portrait and
landscape. We may want to change some appearance or behavior when the orientation
is changed, so jQuery Mobile provides us a orientationchange event that can be at-
tached to the document.

Event Handling | 165

www.it-ebooks.info

http://www.it-ebooks.info/

This event is currently linked to resize on some platforms where native orientation
change is not supported. On some platforms, when the orientationchange event is fired,
the window frame is still old, so you will not get the right width/height values. If you
want to force this event to refresh when the values are updated, you can execute
$.mobile.orientationChangeEnabled=false.

The event handler will receive a string as the first argument with the values portrait
or landscape. This value is always the right one on every platform (it doesn’t have the
width/height problem):

$(document).bind("orientationchange", function(orientation) {
 if (orientation=="landscape") {
 // We are now in landscape
 } else {
 // We are now in portrait
 }
});

Gesture Events
jQuery Mobile offers us some gesture touch events that we can bind to any DOM
element. The gesture events offered in jQuery Mobile 1.0 includes:

tap
Executed after a quick touch on the screen.

taphold
Executed when the user touches the screen and maintains it pressed for one second.
Useful for showing contextual menus.

swipeleft
Executed when the user swipes a finger from right to left.

swiperight
Executed when the user swipes a finger from left to right.

The next example will bind a swiperight event to a page to go back:

$(document).bind("mobileinit", function() {
 $("#page2").live("swiperight", goBackToPage1);
});

function goBackToPage1() {
 $.mobile.changePage("#page1", { reverse: true });
 $("#page2").unbind("swiperight", goBackToPage1);
}

166 | Chapter 6: The Framework and JavaScript

www.it-ebooks.info

http://www.it-ebooks.info/

Virtual Clicks Events
Virtual click? That sounds strange, right? Let’s talk about it for a minute. Most mobile
touch web browsers have a delay of 300–500 milliseconds when you are using click
events (such as click, mouseover) and this delay is not there when you are using touch
events (such as touchstart, touchmove). The other problem is that not every touch
browser supports touch events.

Virtual click events are wrappers that we can use instead of touch or click events and
they will choose the right one depending on the platform you are running. It also nor-
malizes position information and can be used only for single touch (not multi-touch).

Virtual click events can be used exactly the same as the click events, but the event name
has a v prefix. The framework includes: vclick, vmouseover, vmousedown, vmousemove,
vmouseup, and vmousecancel.

Event Handling | 167

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7

Creating Themes

jQuery Mobile allows us to customize the entire user interface through themes and
CSS. We need to remember that jQuery Mobile generates HTML and CSS so every
feature can be overridden using CSS.

In Figure 7-1, we can see some jQuery Mobile websites with different user interfaces.
If you want to see more of these customized UI websites, you can check http://jqmgallery
.com.

Figure 7-1. The site shows hundreds of mobile webapps created using jQuery Mobile, including some
with a nice UI that looks really different than the standard theme

A theme is a set of color swatches defining:

• Text colors

• Background colors and gradients

• Font

We can define up to 26 color swatches, from a to z, while typically we will have at least
five different color swatches.

169

www.it-ebooks.info

http://jqmgallery.com
http://jqmgallery.com
http://www.it-ebooks.info/

A theme also has a global definition that applies to every swatch color, including:

• Text and box effects, such as shadows and rounded corners

• Active state for buttons and other controls

The idea of a global definition is to maintain the same experience not matter which
swatch color is applied. For example, in the default theme a selected button is always
blue, not matter which color swatch is used for that button.

A theme is stored in a CSS file that is included in our HTML file with the structural
CSS file provided by the framework. The structural CSS file should not be modified, as
this could cause problems with future versions. If we want to override some behaviors
defined in the structural CSS, the preferred way is to define them in another CSS file
that will be loaded after the structural one (therefore, it will override the style’s
definitions).

A theme should not define size or position for elements. That behavior
is defined in the structural file, and we should not change it unless we
know what we are doing.

ThemeRoller
The easiest way to create a theme is to use the online free tool ThemeRoller available
at http://jquerymobile.com/themeroller. As we can see in Figure 7-2, the ThemeRoller
allows us to define the color of every element in the web page using the inspector panel
at the right or with drag-and-drop gestures.

The utility interface is divided into three panes:

• Swatch color selector at the left

• Palette pane at the top

• Preview pane at the right

If you drag a color from the palette pane and drop it over the preview pane over a
background or a text snippet, it will automatically be applied to that style.

You can move the lightness and saturation sliders to get more colors in
the palette.

170 | Chapter 7: Creating Themes

www.it-ebooks.info

http://jquerymobile.com/themeroller
http://www.it-ebooks.info/

Figure 7-2. The ThemeRoller on a desktop browser

Global Settings
In the Global settings tab (as in Figure 7-3) at the right we can define:

• Font family

• Active state for buttons and other controls

• Corner radius for control groups and buttons

• Icon properties

• Box shadow

Swatch Color Settings
We can also change the tab and select one of the letters—each one representing a color
swatch (Figure 7-4). Every color swatch can be customized with:

• Header/footer bar color, shadow, and background

• Content body colors and borders

• Button colors and borders in normal, hover, and pressed states

ThemeRoller | 171

www.it-ebooks.info

http://www.it-ebooks.info/

Using the + tab we can add new color swatches to the theme.

When you are defining a background color you will see a little slider. If
you move that slider you are changing the gradient, and you will have
a live preview at the right. If you click on the little plus icon to the right
of the slider, you will get a deeper gradient configuration.

Inspector
If you turn on the inspector with the push button at the top, you can click in the preview
pane over an element and the properties for that element will open on the left side.

Figure 7-3. The Global settings tab

172 | Chapter 7: Creating Themes

www.it-ebooks.info

http://www.it-ebooks.info/

Adobe Kuler
Adobe Kuler is a service-based community from Adobe for color palettes. People share
their favorite color palettes on the system and we can browse through them on the
website http://kuler.adobe.com or inside any Creative Suite application.

jQuery Mobile ThemeRoller includes a Kuler widget (seen in Figure 7-5) that allows
us to browse and search thousands of color palettes on the network and use those colors
to drag and drop over the preview pane.

Figure 7-4. Every letter has its own declaration of colors, effects, and backgrounds for toolbars,
content, and buttons

ThemeRoller | 173

www.it-ebooks.info

http://kuler.adobe.com
http://www.it-ebooks.info/

If you have an image, for example your website logo, and you want to
get the palette color from that, you can create a palette from your image
at http://kuler.adobe.com, make it public, and search for it in the
ThemeRoller.

Exporting Your Theme
When you are done designing your theme, you can export it using the Download Theme
button at the top right of the web interface. You will be asked for a theme name (see
Figure 7-6) and you will get a code snippet to copy and paste to use your new theme.
If you press Download Zip, you will get a ZIP file with your theme CSS file inside—
minimized and ready for debugging.

Figure 7-6. Exporting a theme is as simple as defining a name and downloading a ZIP file

Figure 7-5. The Adobe Kuler widget can be opened at the top of ThemeRoller to search for great color
palettes on the Web

174 | Chapter 7: Creating Themes

www.it-ebooks.info

http://kuler.adobe.com
http://www.it-ebooks.info/

You can also import a theme into ThemeRoller to be changed easily on
the web interface. Just use the Import option and copy/paste your CSS
theme file inside.

Fireworks Theme Editor
If you are a user of Adobe Fireworks, you have the jQuery Mobile Theme editor at your
disposal. If you have version CS5.1, you can download the free plug-in: “Fireworks
CSS3 Mobile Pack” from http://labs.adobe.com.

When you have the pack installed, open Fireworks and select Commands → jQuery
Mobile → Create New Theme. You will get a new image that looks like Figure 7-7.

Figure 7-7. Adobe Fireworks can also be used to create jQuery Mobile themes

Fireworks Theme Editor | 175

www.it-ebooks.info

http://labs.adobe.com
http://www.it-ebooks.info/

If you don’t have Adobe Fireworks, you can download a 30-day trial
version from http://adobe.com/go/fireworks.

This image acts like a template that we can change, while maintaining the same instance
names. The image is divided into six pages that we can see upon opening the Pages
panel (Windows → Pages), as we can see in Figure 7-8.

Figure 7-8. If you open the Pages panel, you will find the general designer and one page per color swatch

The first page is called Global Assets and Styles and includes global styling and icons
for all color swatches, as seen in Figure 7-9. Then, we have pages from a to e for which
to define and change color swatches, as seen in Figure 7-10.

We can add more swatches by duplicating a page (right-click and select Duplicate Page)
and providing the right letter name in the Page panel, for example f. We can also delete
swatches if we don’t want them in the theme, but it is recommended that we maintain
at least from a to c.

We can select any element on screen and change it using the Fireworks user interface,
including:

• Text color

• Background (plain color or linear gradient)

• Font style and size

• Shadow filter

• Opacity (transparency)

176 | Chapter 7: Creating Themes

www.it-ebooks.info

http://adobe.com/go/fireworks
http://www.it-ebooks.info/

On the global assets page, we can define:

• Icons: low- and high-resolution icons. We can change these icons as long as we
maintain the instance name, for example ui-icon-plus for the plus sign.

• Active button style.

• Icon background: we can change its opacity.

• Box shadow: we can change color and shape of the shadow.

• Corner radius for control groups and for buttons: every corner can be changed by
selecting it and using the Properties panel to define its roundness.

• Links in all states: normal, hover, active, and visited.

On every swatch color page, we can define:

• Header and footer areas

• Content area

• Buttons in all states: normal, hover and down

Figure 7-9. The global configuration page allows us to change icons and global settings

Fireworks Theme Editor | 177

www.it-ebooks.info

http://www.it-ebooks.info/

When we are done making changes, we can preview the theme file using Commands
→ jQuery Mobile → Preview Theme. If we like the theme, we can export it using Com-
mands → jQuery Mobile → Export Theme.

We can keep the jQuery Mobile Preview panel open using Windows → Extensions →
jQuery Mobile Theme Preview as seen in Figure 7-11. If we change the swatch (changing
the current page), we must refresh the Preview panel to see it applied.

Figure 7-10. Every swatch color that we want to define is available in a page named with a letter from
a to z

178 | Chapter 7: Creating Themes

www.it-ebooks.info

http://www.it-ebooks.info/

If we only want to change the icon images and not the CSS file, on the
jQuery Mobile Theme Preview panel, we can find an icon to Export
Sprite Images.

Fireworks will export the designs to CSS3, including gradients (with prefixes for all the
browsers) and include a big image with all the icons to be used by the framework as a
CSS Sprite. We will need to provide a folder and a theme name for the export action.
We will get one CSS file and an images folder ready to include in our project.

It’s a good practice to save the file as a Fireworks PNG file so we can use it in the future
to make small changes in the theme without starting from scratch.

If we are using our own theme CSS file, we need to use the structural
CSS file in our webapp and not the CSS file that includes the default
theme.

Figure 7-11. We can open the jQuery Mobile Theme Preview and see how our theme will look on a
real webapp

Fireworks Theme Editor | 179

www.it-ebooks.info

http://www.it-ebooks.info/

Editing Themes
The theme is just a CSS file. That means we can create the CSS file from scratch or edit
one using any text editor. We need to understand how jQuery Mobile defines elements
and classes to know what to change.

jQuery Mobile uses classes to define styles. Every widget in the HTML markup will be
converted to an element with some class definitions. Therefore, our UI work will be
just defining styles for these classes.

Remember that in the content area of a page, we can have any HTML
that we want, so we can still create our own markup with CSS styles
apart from the framework CSS.

Every class is defined including a ui prefix and the color swatch as a suffix, ui-<name>-
<color-swatch>. Therefore, for example for defining the buttons, the class name is ui-
btn-a for a color swatch and ui-btn-c for c color swatch. Then, from the HTML using
data-theme or another attribute we will define which color swatch will be applied.

Table 7-1 shows the typical class names we can edit and define in a theme CSS file.

Table 7-1. Classes that we can define in the theme file to customize the UI (<x> defines the color
swatch)

Class name Description

ui-bar-<x> Headers, footers, and other bars

ui-btn-up-<x> Buttons in normal state

ui-btn-hover-<x> Buttons in hover state

ui-btn-down-<x> Buttons in pressed state

ui-btn-active Buttons in active state (all swatch colors)

ui-body-<x> Page body

ui-link-<x> Links

ui-icon-<x> Icon for buttons and other widgets

ui-corner-all Applies to all the controls that have rounded corners

ui-corner-<tl/tr/bl/br> Applies to top left/top right/bottom left/bottom right rounded
corners

ui-corner-<top/bottom> Applies to the top/bottom rounded corners

ui-corner-<left/right> Applies to the left/right rounded corners

ui-shadow Applies to any element that can use shadow

ui-disabled Applies to any element that is disabled using HTML

180 | Chapter 7: Creating Themes

www.it-ebooks.info

http://www.it-ebooks.info/

If we want to provide, for example, a different UI for the header and the
footer (both using the same class ui-bar), we should change the color
swatch that each toolbar is using from the markup.

Custom Transitions
We can create our own transitions using JavaScript (as seen in the previous chapter) or
by applying pure CSS3. If we are going to use CSS3 animations, we need to understand
how they work.

If we define a data-transition that the system doesn’t know, it looks to see if there is
a JavaScript handler for that name. If not, it tries to apply a CSS3 animation.

The transition name is used as a class name applied both to the current page and the
next one. The in class is also applied to the next page and the out class is applied to the
current page.

That means that if we define a transition called card, we should define a selector
for .card.in and .card.out. Optionally, we can define the reverse transition that will
be used when going back and the reverse class is also added, so .card.in.reverse
and .card.out.reverse should also be defined.

We don’t need to provide animation timing functions nor duration be-
cause these are already defined in the global CSS structural file.

Using CSS3 animations, we can create our own transition. Our card transition will be
similar to slide, but the idea is that all the pages are placed one over the other, and when
we go to the next card we just remove the one at the top (current page) and the other
is revealed at the back (without animation):

.card.out {
 -webkit-transform: translateY(-100%);
 -webkit-animation-name: cardout;
 z-index: 1; /* It's above */
}

.card.in {
 -webkit-transform: translateY(0);
 z-index: 0; /* It's below */
}

@-webkit-keyframes cardout {
 from {
 -webkit-transform: translateY(0%);
 }

Custom Transitions | 181

www.it-ebooks.info

http://www.it-ebooks.info/

 to {
 -webkit-transform: translateY(-100%);
 }
}

We can add this declaration to our theme CSS file or to another CSS file. To use this
transition, we just define it using data-transition or JavaScript:

Page 2

If we want this animation to work on Firefox for Android, Opera, or Internet Explorer
10, we should provide alternatives with their own prefixes, -moz, -o, and -ms.

182 | Chapter 7: Creating Themes

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8

Installation and Offline Access

Using HTML5 and some other extensions, we can enable our jQuery Mobile applica-
tion to work totally offline as if it were installed in the mobile device as a native app.

We can also package our jQuery Mobile webapp as a native app for store distribution,
but that is for a later chapter. In this chapter we are creating an offline experience of
our webapp without store distribution.

With this solution, the user can access our webapp from the mobile browser and then
install it on her device. That means that next time she accesses the same webapp
through the same URL or through an application icon, it will load from the local repos-
itory and not from our server.

Package Definition
The first thing to do is to define our package. To do that we are going to use an HTML5
API called Application Cache also known as Offline API available in the W3C draft.

This API does not currently work on every mobile browser but its compatibility includes
most tablets and smartphones. You can check current compatibility of this API at http:
//mobilehtml5.org.

Our first step is to define what we want. Do we want a full offline application? Do we
want some pages or data to be updated from the server every time? Do we want to have
a local data cache and, if we have online access, update it?

The second step is to define the package. The package is a list of files that must be
downloaded by the browser when the user accesses our website. This list must include
every JavaScript, CSS, image, or resource that we want to access offline. As we are
creating a jQuery Mobile application, we need to add to this package all the jQuery
Mobile files, including CSS structural, theme, images, and JavaScript files.

183

www.it-ebooks.info

http://mobilehtml5.org
http://mobilehtml5.org
http://www.it-ebooks.info/

HTML Manifest
The package list is delivered through a text file known as a cache manifest. This file
must have a first line with the literal text CACHE MANIFEST and then a list of URLs—
relative or absolute—of every resource to download to the device.

The main HTML file is implicit in the package, so we don’t need to add it on the
manifest.

It doesn’t matter if all the files defined are in the same server or not. This means that
we can always link the jQuery Mobile CDN for the framework files.

The manifest file supports comment lines if they start with #.

If any file of the manifest failed to download while installing the package,
then the entire package is invalidated. That means that if we are defining
resources on third-party servers, we will rely on these servers for our app
to be installed.

For example, a typical jQuery Mobile application’s manifest with one document (no
external pages), should look like:

CACHE MANIFEST:

jQuery core
http://code.jquery.com/jquery-1.6.1.min.js

jQuery Mobile files without custom theme
http://code.jquery.com/mobile/1.0/jquery.mobile-1.0.min.css
http://code.jquery.com/mobile/1.0/jquery.mobile-1.0.min.js
http://code.jquery.com/mobile/1.0/images/ajax-loader.png
http://code.jquery.com/mobile/1.0/images/icons-18-black.png
http://code.jquery.com/mobile/1.0/images/icons-18-white.png
http://code.jquery.com/mobile/1.0/images/icons-36-black.png
http://code.jquery.com/mobile/1.0/images/icons-36-white.png

My app files, relative to the HTML document
images/logo.png
data/countries.json

This file usually is stored under the name offline.appcache and must be served using
the MIME type text/cache-manifest to work properly. You should contact your
server’s administrator if you don’t know how to set up this MIME type.

If your server supports PHP, you can just change the file’s extension to PHP and use
this template and it will work without any special configuration:

<?php header('Content-Type: text/cache-manifest');
?>CACHE MANIFEST:

The next step is to define in our HTML the URL of the manifest file. This is done using
the new HTML5 manifest attribute in the html element.

184 | Chapter 8: Installation and Offline Access

www.it-ebooks.info

http://www.it-ebooks.info/

<html manifest="offline.appcache">
 <-- Rest of our webapp -->
</html>

Download Process
When a compatible browsers finds a manifest declaration, it downloads the manifest
file in the background and if it’s a valid file delivered with the valid MIME type, it starts
the webapp download process.

This background process is completely separate from the normal page load. The back-
ground process downloads every file in the manifest and it stores them locally in a
private place.

If only one manifest’s resource can’t be downloaded (it doesn’t exist,
the server is down, etc.), the entire package is invalidated and nothing
is stored locally.

If the package is installed successfully, the next time the user accesses the same URL,
the browser will load the local version instead of looking for the server’s version. The
browser will automatically enters an offline state, even if the user is online. That means
that, by default, we can’t access any other online resource not declared previously in
the manifest file.

If the package was not installed successfully, then the next time, the page will load again
from the web server. The reasons for not installing a package can be:

• The manifest file was not valid, doesn’t exist, or it has a wrong MIME type.

• At least one of the resources in the manifest couldn’t be accessed.

• The user exited the browser or the web page before all the resources were properly
downloaded.

Using a debugging tool we can see what the package contains. For iOS Simulator, you
can download the free tool iWebInspector and you will find the application cache
information in the Resources tab, as seen in Figure 8-1.

To access local resources downloaded by the application cache we
shouldn’t change our code. We just access the resource as if it were
online, using the same relative or absolute URL we define in the mani-
fest. The browser is smart enough to load the local version of that file.

Package Definition | 185

www.it-ebooks.info

http://iwebinspector.com
http://www.it-ebooks.info/

Accessing Online Resources
If we access any resource that was not originally defined in the manifest file, then the
process will fail because our application is sandboxed offline. If we know for sure that
we are going to need some information from the Web, we can define it in the manifest
file in a special section called NETWORK:. By default, all the resources are declared in an
implicit CACHE: section. A section is just a line ending with a colon. So, if we want our
countries.json file to always be delivered from the server, we can change our manifest to:

CACHE MANIFEST:

jQuery core
http://code.jquery.com/jquery-1.6.1.min.js

jQuery Mobile files without custom theme
http://code.jquery.com/mobile/1.0/jquery.mobile-1.0.min.css
http://code.jquery.com/mobile/1.0/jquery.mobile-1.0.min.js
http://code.jquery.com/mobile/1.0/images/ajax-loader.png
http://code.jquery.com/mobile/1.0/images/icons-18-black.png
http://code.jquery.com/mobile/1.0/images/icons-18-white.png
http://code.jquery.com/mobile/1.0/images/icons-36-black.png
http://code.jquery.com/mobile/1.0/images/icons-36-white.png

My app files, relative to the HTML document
images/logo.png

Figure 8-1. Here we can see the Resources tab of iWebInspector showing the application cache package
contents

186 | Chapter 8: Installation and Offline Access

www.it-ebooks.info

http://www.it-ebooks.info/

Resources that should be downloaded from the web
NETWORK:
data/countries.json

Then, countries.json will not be downloaded with the resources and will be accessed
online every time. If there is no Internet connection, we will not get this file, unless the
browser has a cached version (using the typical web cache, not the application cache).

If the browser supports this Offline API then we have two new events
available that we can handle on the document: online and offline. And
we can query the browser to see whether we have an Internet connection
or not via window.onLine Boolean property.

In the network section, we can use wildcards, such as * or folders, and every resource
in that folder will be accessible from the Web while we are in an offline operation.

So if we want to have an offline application that can access the full Web if the user has
a connection, then we can just use:

NETWORK:
*

With the previous sample only the files before NETWORK: will be loaded from the offline
package, and every other resource will be loaded from the Web.

The manifest file also supports a FALLBACK: section that is beyond the
scope of this book where we can define alternative URLs for network
resources if there is no Internet connection.

Updating Resources
We’ve said that when the package is installed all the resources—including the main
HTML document—will always be loaded from the local storage and not from the Web.
Therefore, it’s fair to ask: how can we update a resource? What happens if we want to
update the theme CSS file, change an image, or add a new page link in the HTML
document?

Well, I’ve got to admit that I lie a bit. Or did I omit something? I’m not sure if it was a
lie, but it was definitely an omission. When the user opens our webapp for the second
time—and later times—while the app is always loaded from the local storage, in the
background the browser tries to get an updated manifest file from the server.

If there is no Internet connection, nothing happens and the user always has the local
version. If there is a network connection available, then the browser compares the new
manifest file recently downloaded from the server with the local version it has from the
original webapp download. It makes a byte-by-byte comparison on the two files. If one

Package Definition | 187

www.it-ebooks.info

http://www.it-ebooks.info/

byte changed, then the whole manifest is invalidated and every resource is downloaded
again using the new manifest file.

Go back to the previous paragraph and read it again. Done? OK, let’s try to check again
what is happening. If we change a CSS file and the CSS name is the same, the manifest
will be the same so we won’t have any update on the downloaded files. We need to
change the manifest for the webapp to receive the update.

Changing the manifest when we make an update can involve adding a space, changing
the resource name (versioning it), or even having a comment line with a random value
or the last modified date, for example:

CACHE MANIFEST
webapp updated 2012-01-01

If we change a byte—for example, the date—the whole manifest will be invalidated
and the platform will download all the files again. Yes, all the files. With this API we
can’t update just one resource.

Using a mix of the Application Cache and the Web Storage API, we can
create a mechanism to download resources—such as CSS, JavaScript,
or images—and store them locally without reloading the whole webapp.

There another unpleasant problem when dealing with manifest updates: if there is an
update, the platform downloads all the resources in the manifest again. However, this
download process is done in the background while the previous files are on the screen.
So if there is an update, the user receives the previous version until she reloads the
application. Next time, the installed package has changed, so it will load the new
resources.

That means that if we change the manifest, the user must load the page twice to use
the new version. We can use events to handle this situation.

JavaScript Object
There is a global JavaScript object that helps us to know the status of the application
cache. The object is applicationCache and it has a status property that can have one
of the values listed in Table 8-1.

To be compatible with all the browsers, we should always check first to see if the object
is available:

if (window.applicationCache!=undefined) {
 // The API is available
}

188 | Chapter 8: Installation and Offline Access

www.it-ebooks.info

http://www.it-ebooks.info/

Table 8-1. Values that can have the applicationCache.status property

Value Constant Description

0 UNCACHED This is the first load of the page, or no manifest file is available.

1 IDLE The cache is idle.

2 CHECKING The local manifest file is being checked against the server’s manifest file.

3 DOWNLOADING The resources are being downloaded (first time or update).

4 UPDATEREADY There is an update that was downloaded but it will be available on next load.

We can use constants to ask about the current status, for example:

if (window.applicationCache!=undefined) {
 // The API is available
 if (applicationCache.status==applicationCache.UPDATEREADY) {
 // There is an update waiting for reload
 }
}

The applicationCache object has the methods update(), which will force an update
check and swapCache(), which will swap from the old resources cache to the new one
(if a new one was already downloaded). However, the HTML document and the re-
sources already loaded will not be there until we make a full reload with
history.reload().

Events
The applicationCache object has events that we can handle to manage every situation.
For example if the user is accessing our website for the first time, we can show a
“Downloading app” message while the resources are downloaded so the user will wait,
increasing the probability of a complete download.

The possible events that we can bind to are listed in Table 8-2.

Table 8-2. Events that we can handle using the applicationCache object

Event name Fired when

checking The browser is checking the manifest.

downloading The browser starts to download the resources on the manifest.

progress One resource was downloaded (fired for every resource, so we can create a progress bar).

cached The first download process has finished properly.

noupdate The manifest was compared with the server and no update is available.

updateready There was an update and the new resources were downloaded properly and waiting for a reload.

error There was an error downloading a resource.

obsolete When checking an update, the manifest is no longer valid, so the webapp was deleted from the storage and
will not be offline next time.

Package Definition | 189

www.it-ebooks.info

http://www.it-ebooks.info/

On a typical situation we are going to:

• Capture downloading so we can show a message to the user and optionally an ani-
mated spinner

• Capture progress to make a progress bar, as seen in Figure 8-2

• Capture cached to hide the loading message and tell the user that the app was
installed

• Capture error to hide the loading message and tell the user about the situation

• Capture updateready to inform the user that there is an update ready and ask the
user if she wants to reload now to access the updated app

We can bind to this events using addEventListener, for example:

if (window.applicationCache!=undefined) {
 // The API is available
 applicationCache.addEventListener('updateready', function() {
 // There is an update waiting for reload
 if (confirm("There is an update ready. Do you want to load it now?")) {
 history.reload();
 }
 });
}

Figure 8-2. Here we can see the Financial Times iPad application being downloaded (app.ft.com)

190 | Chapter 8: Installation and Offline Access

www.it-ebooks.info

http://www.it-ebooks.info/

Icon Installation
When the application is downloaded using the application cache, we can invite the
user to add an icon to the home screen or application’s menu. This will allow the user
to open our webapp from a shortcut icon instead of typing the URL again. Even for a
normal user, the idea of opening an offline application—one that can be used on a
plane—through the browser after typing a URL is strange.

The user can add an icon even if there is no manifest. In that case, the icon will be just
a shortcut to the online version of our webapp.

The application can also invite the user to add our webapp to book-
marks. However, in the mobile space, it’s more common to use installed
icons instead of bookmarks for a typical user.

No platform allows an automatic icon installation, so we need to invite the user to
install our webapp, providing the instructions on screen.

Invitation
We can invite the user to add the app to the home screen in different ways. For example,
YouTube, Google Maps, and Facebook on iOS invite the user with a floating div that
looks like Figure 8-3.

Usually we are going to store a cookie or an HTML5 localStorage value to know if
we’ve already invited the user so the user will see the invitation only once.

Icon Name
The icon will have a name inside the home screen menu on some platforms (as seen in
Figure 8-4) or inside the applications menu on some other platforms (as seen in Fig-
ure 8-5). The name below the icon is by default defined by the title HTML element.
That means that if we are going to invite the user to install the icon, we should always
use a very short title (one or two words) that can fit in the area.

In a jQuery Mobile document, if the user adds the webapp to the home
screen or application’s menu while not in the first page (external or
internal), the shortcut will point to the active page and not the home
page, and that page’s data-title will be used.

In Figure 8-6 we can see how the user can add our website to the home screen on
different platforms.

Icon Installation | 191

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 8-3. Many mobile websites invite the user to add an icon to the home page via a balloon

192 | Chapter 8: Installation and Offline Access

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 8-4. On iOS, the user can add an icon to the home screen

Icon Installation | 193

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 8-6. Here you can see many platforms and the menus to add the page to the home screen or
applications menu

Figure 8-5. The Nokia N9 also allows the user to add an icon to the home screen, as with Android
and iPhone

194 | Chapter 8: Installation and Offline Access

www.it-ebooks.info

http://www.it-ebooks.info/

Icon Definition
In typical web pages, the only icon definition is done using the classic favicon link
element that usually is done using rel="icon" and also rel="shortcut icon" to be com-
patible for all browsers:

<link rel="icon" type="image/png" href="favicon.png" />
<link rel="shortcut icon" type="image/png" href="favicon.png" />

The problem with this icon is that it originally used ICO format (a 16×16 bitmap image)
and now it supports other formats, such as PNG, but they are usually small (maximum
32×32 pixels), so they are small compared to the sizes of the icons on a smartphone or
tablet home screen icon. That is why usually these icons are not used or if they are used,
they are just at a corner of the real icon.

If a platform is not compatible with home screen icons, we can always
package our jQuery Mobile webapp in a hybrid application—such as
by using PhoneGap—and distribute it as a native app on our website or
in stores as we’ll see in later chapters.

There is no other standard for icon definition. However, Apple for iOS invented a
meta tag for their own icons that can be used now for other platforms, such as Android
Browser and MeeGo 1.2 (Nokia N9’s Browser). We should provide as many icons as
we can. Every platform will take only the one it supports. If a platform doesn’t support
any icon, usually they use an standard shortcut icon or a screenshot of the upper-left
part of the website—usually our logo.

The Apple de facto standard is also a link tag with a rel="apple-touch-icon" or a
rel="apple-touch-icon-precomposed" and an optional sizes attribute.

Apple, by default, applies rounded corners, a shadow and a 3D glow effect to every
icon defined with rel="apple-touch-icon". If we don’t want a shadow and 3D glow
effect (useful for transparent icons), we can use rel="apple-touch-icon-precomposed"
instead.

Android Browser supports only rel="apple-touch-icon-precomposed", as it doesn’t add
any effect to the icon.

We can provide icons in different sizes for different platforms. If we provide only one
icon, it will be resized for every platform, and the results may not be good. We can have
different link elements with different sizes using the sizes attribute, for example,
sizes="57x57". The preferred format is always PNG.

The available sizes are shown in Table 8-3.

Icon Installation | 195

www.it-ebooks.info

http://www.it-ebooks.info/

Table 8-3. Icon sizes available for home screen icons

Platform Size rel Sizes attribute

iPhone 3, 3GS iPod Touch 1-3 57×57 apple-touch-icon and
apple-touch-icon-
precomposed

Yes from 4.2

iPhone 4, 4S, iPod Touch 4 114×114 apple-touch-icon and
apple-touch-icon-
precomposed

Yes from 4.2

iPad 1, 2 72×72 apple-touch-icon and
apple-touch-icon-
precomposed

Yes from 4.2

Android Browser Any size apple-touch-icon-
precomposed

No

Nokia N9 Browser 80×80 apple-touch-icon Yes

Android Browser doesn’t support the sizes attribute, so it will ignore it. If we define
several icons, Android will use the last precomposed one. If we want iOS to ignore the
Android tag, the hack is to provide an invalid sizes attribute, for example:
sizes="android-only".

iOS devices 4.2 or below don’t understand the sizes attributes, so if we
declare different icon sizes, the latest one will be used. So it’s a good
practice to use the lower size icon below.

Therefore, to provide all the possible icons, we can use the following code on the
head element and save your icon in every size:

<link rel="icon" href="icons/icon32.png">
<link rel="shortcut icon" href="icons/icon32.png">

<link rel="apple-touch-icon" href="icons/icon57.png" sizes="57x57">
<link rel="apple-touch-icon" href="icons/icon114.png" sizes="114x114">
<link rel="apple-touch-icon" href="icons/icon72.png" sizes="72x72">
<link rel="apple-touch-icon" sizes="80x80" href="icons/icon80.png">
<link rel="apple-touch-icon-precomposed" sizes="android-only" href="icons/icon57.png">

In Figure 8-7 we can see our icon applied in the home screen of different platforms.

196 | Chapter 8: Installation and Offline Access

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 8-7. The same icon with different sizes applied in different platforms’ home or applications
screens

Full Screen
On iOS-only, including iPhone and iPad, we can go further with our webapp. We can
create a chrome-less, full-screen webapp without any Safari controls (neither address
bar nor toolbar). This will only works when the user opens the app from the home
screen and if we define the following meta tag in the HTML page:

<meta name="apple-mobile-web-app-capable"
 content="yes">

Then, when we open the page, it’s completely full screen, so we need to provide back
buttons explicitly on the user interface as seen in Figure 8-8.

Detecting Full Screen
If we are on iOS, we can force the full-screen usage of our webapp using the naviga
tor.standalone property. If this property is available, it can be false, meaning that the
user is on Safari, or true if our webapp was opened from the home screen icon.

With that idea, we can force installation and usage through a full-screen webapp. While
installed, there is no visual difference for the user between a native app downloaded
from the AppStore and our chrome-less webapp.

Full Screen | 197

www.it-ebooks.info

http://www.it-ebooks.info/

For example, we can have a special jQuery Mobile page inviting the user to install or
use our webapp from the home screen menu:

if (navigator.standalone!=undefined) {
 // It's iOS
 if (!navigator.standalone) {
 // It's in Safari
 $.mobile.changePage($("#install"), {transition: "none"});
 }
}

With the previous code inside mobileinit, then the user will see the install page when
our webapp is opened through Safari and she will not be able to use the page. If the
user opens the webapp from the home screen menu, then we leave the initial jQuery
Mobile page for the user.

Figure 8-8. One of our jQuery Mobile applications opened as a full-screen webapp in iPhone and iPad

198 | Chapter 8: Installation and Offline Access

www.it-ebooks.info

http://www.it-ebooks.info/

Styling the Webapp
Apple provides us some other meta tags to style our webapp. First thing we can change
is the status bar color (at the top of the screen) using the meta tag apple-mobile-web-
app-status-bar-style accepting values of default (gray), black, and black-translu
cent. The latest option will be a transparent black area, so it will take part of our jQuery
Mobile’s header color. In Figure 8-9 we can see the three values at work:

<meta name="apple-mobile-web-app-status-bar-style" content="black">

Figure 8-9. Here we can see different status bar styles applied on the same page

If we are using a black-translucent status bar style, we will have avail-
able the full height of the browser. That means that the status bar will
float over our web page. If we are not using fixed toolbars and we don’t
leave 20 pixels at the top, it may create a bad experience.

The other change we can make to our chrome-less webapp is to define a launch image.
A launch image is used by the operating system as the image that is animated when the
app is opening, as shown in Figure 8-10.

Full Screen | 199

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 8-10. The launch image is used in the application’s opening animation

The launch image can be defined using the link element with a rel="apple-touch-
startup-image", and the size depends on which platform is running. The possible sizes
are:

• All iPhone/iPod: 320×460

• All iPad Portrait: 748×1004

• All iPad Landscape: 748×1024 (rotated 90 degrees)

Unfortunately, using media queries to add a high definition image for
iPhone 4, 4S, and iPod Touch 4th generation is not working. The only
work-around is to use some JavaScript to create the link element dy-
namically. In this case, the image should be 640×920.

If we provide only one image, it should be 320×460 (20 pixels are used by the top status
bar) and it will work in all iPhones and iPod Touch (including high definitions). It will
not work on iPad and the normal launch image will be used (a screenshot taken on the
last usage of the webapp):

<link rel="apple-touch-startup-image" href="images/launch.png">

If you have an iOS device, you can take a screenshot by pressing the
Home button and Power button at the same time. Then, we can use this
image as the launch image, so it will coincide with the first load of the
webapp.

The different sizes can be defined in different link elements with CSS media queries
inside the media attribute. It doesn’t use the sizes attribute as in icon definition:

200 | Chapter 8: Installation and Offline Access

www.it-ebooks.info

http://www.it-ebooks.info/

<link rel="apple-touch-startup-image" href="images/launch-iphone.png"
 media="(max-device-width: 480px)">
<link rel="apple-touch-startup-image" href="images/launch-iPad-p.png"
 media="screen and (min-device-width: 481px) and (max-device-width: 1024px)
 and (orientation:portrait)">
<link rel="apple-touch-startup-image" href="images/launch-iPad-l.png"
 media="screen and (min-device-width: 481px) and (max-device-width: 1024px)
 and (orientation:landscape)">

Mixing It All Together
A jQuery Mobile template for offline access with all the icons and chrome-less webapp
configuration will look like:

<!DOCTYPE HTML>
<-- HTML definition with Offline Application Cache manifest -->
<html manifest="offline.appcache">
<head>
 <meta charset="UTF-8">
 <title>short title</title>
 <meta name="viewport" content="width=device-width,user-scalable=no">

 <-- jQuery Mobile files with custom theme -->
 <link rel="stylesheet"
 href="http://code.jquery.com/mobile/1.0/jquery.mobile.structure-1.0.min.css" />
 <link rel="stylesheet" href="custom_theme.css">
 <script src="http://code.jquery.com/jquery-1.6.4.min.js"></script>
 <script src="http://code.jquery.com/jquery-1.6.4.min.js"></script>
 <script src="http://code.jquery.com/mobile/1.0/jquery.mobile-1.0.min.js">
 </script>

 <-- Icons -->
 <link rel="icon" href="icons/icon32.png">
 <link rel="shortcut icon" href="icons/icon32.png">

 <link rel="apple-touch-icon" href="icons/icon57.png" sizes="57x57">
 <link rel="apple-touch-icon" href="icons/icon114.png" sizes="114x114">
 <link rel="apple-touch-icon" href="icons/icon72.png" sizes="72x72">
 <link rel="apple-touch-icon" sizes="80x80" href="icons/icon80.png">
 <link rel="apple-touch-icon-precomposed" sizes="android-only" href="icons/icon57.png">

 <-- If we want to have a chrome-less webapp -->
 <meta name="apple-mobile-web-app-capable" content="yes">
 <meta name="apple-mobile-web-app-status-bar-style" content="black">
 <link rel="apple-touch-startup-image" href="images/launch-iphone.png"
 media="(max-device-width: 480px)">
 <link rel="apple-touch-startup-image" href="images/launch-iPad-p.png"
 media="screen and (min-device-width: 481px) and (max-device-width: 1024px)
 and (orientation:portrait)">
 <link rel="apple-touch-startup-image" href="images/launch-iPad-l.png"
 media="screen and (min-device-width: 481px) and (max-device-width: 1024px)
 and (orientation:landscape)">

</head>

Mixing It All Together | 201

www.it-ebooks.info

http://www.it-ebooks.info/

<body>

<!-- jQuery Mobile's pages -->

</body>

Storing Offline Data
To store information locally while we are offline—or even online but we don’t want to
use AJAX— HTML5-related technologies offer us three options:

• Web Storage API

• Web SQL Database API

• IndexedDB API

You can check current compatibility of every HTML5-related API on
http://mobilehtml5.org.

In this book we are going to use the Web Storage API because it’s the simplest one and
the most compatible API between A-grade jQuery Mobile browsers. This is a very sim-
ple API supporting two key-value based collections: localStorage and sessionStorage.

localStorage is a collection of strings stored persistently on the device and session
Storage is pretty similar but it is removed from the system when the browser is closed.

Usually, we can store up to 5 Mb per host on local storage without any
problems. However, most browsers store strings in Unicode, so one
character will occupy two bytes. This means that it is safe to store 2.5
Mb of text.

The API is available as a global window attribute, called localStorage, with some meth-
ods available, such as getItem and setItem to load and save data to/from the collection.

The standard API can only store strings, but that means that we can store:

• Arrays and objects converted to a JSON-style string

• Simple values

• Comma-separated values

• JavaScript code (that we can evaluate later)

• CSS stylesheets (that we can inject later)

• HTML

• Images in base64 (data URI)

202 | Chapter 8: Installation and Offline Access

www.it-ebooks.info

http://mobilehtml5.org
http://www.it-ebooks.info/

Modern mobile browser support the JSON API that allows us to convert
objects to JSON strings using JSON.stringify(object) and from string
to objects using JSON.parse(string). If the API is not available, you can
use the free JSON2 library created by Douglas Crockford at http://github
.com/douglascrockford/JSON-js.

To store a value we use:

localStorage.setItem("name", "value");

To get a value:

var value = localStorage.getItem("name");

Storing Offline Data | 203

www.it-ebooks.info

http://github.com/douglascrockford/JSON-js
http://github.com/douglascrockford/JSON-js
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9

A Complete Webapp

In this chapter we are going to create a full application covering many topics that we’ve
seen before in this book. We are going to create a mobile webapp for a conference. The
main objectives will be:

• To be the official app for conference’s attendees

• Display an updated session list by room

• Provide useful information about the conference

If you are like me, it’s possible that you’ve attended lots of technical conferences in
your life. And, as you know, network connections are usually not working properly.
That is why our webapp will work offline on compatible devices and we will even be
able to convert it to an offline app once we get through the next chapter.

Webapp Structure
The webapp structure will be simple to cover our functionality. It will cover the
following:

• Home page

• Sessions

• Where

• Feedback

• About

Sessions will list all the available slots and every session per room per slot available.
The session list will be delivered from the server using a JSON-like object that could
be created from a server-side language, such as PHP or Java. We will not cover the
server-side generation of this JSON or the Content Management System (CMS) to
generate the database.

205

www.it-ebooks.info

http://www.it-ebooks.info/

For iPhone, iPod, and iPad we will provide a chromeless application, so we will try to
push the user to install our webapp in his system. If the user doesn’t want to install the
webapp, we will provide an online version.

Our list of files will include the following HTML documents:

• index.html (covering the most used pages)

• feedback.html

• feedback.php

We will have some images in the images folder, including:

• logo.png

• sponsors.png

• background.png

• launch-ios.png (for iOS launch image)

• icon114.png (for iPhone hi-definition icon)

• icon72.png (for iPad icon)

• icon57.png (for Android and iPhone low-definition icon)

And, of course, we will include all the jQuery Mobile’s files including JavaScript, CSS,
and images.

The only resource that we will update constantly is sessions.json, a JSON-like object
file that will be delivered from the server. A server-side script can dynamically generate
it. For performance and offline purposes, we will cache this JSON file using the HTML5
Local Storage API.

Offline Manifest
The entire webapp will be contained in an application cache manifest for compatible
devices, so our first file to create is the HTML5 cache manifest file.

Our manifest file will look like:

CACHE MANIFEST

CACHE:

jQuery Mobile's files
jquery.js
jquery.mobile.js
jquery.mobile.css
images/ajax-loader.png
images/icons-18-black.png
images/icons-18-white.png
images/icons-36-black.png
images/icons-36-white.png

206 | Chapter 9: A Complete Webapp

www.it-ebooks.info

http://www.it-ebooks.info/

HTML documents
index.html is always cached implicitly
feedback.html

Custom script and CSS
index.js
index.css

Custom images
logo.png
sponsors.png
background.png

We don't need to cache iOS icons or launch image as the
platform will cache it by itself

NETWORK:
We will go to the network only for the JSON file
and the script that will receive the feedback
replace mobilexweb.com with your own domain
http://mobilexweb.com/jqmbook/sessions.json
http://mobilexweb.com/jqmbook/feedback.php

Our webapp, once installed, will not be able to access the whole Inter-
net, as we are not supporting * in the NETWORK: section of our offline
manifest.

Pages
Let’s start with the main index.html file. It will be a typical jQuery Mobile document
with all the headers that we’ve covered in this book (including meta tags, icons, and a
viewport metatag). It will include all the pages except the form because they are the
most probable pages that the user will access every time. We can decide later to move
the internal pages to external HTML files. The #sessions page will be the master list,
and we will also have a #details page that will be the template for the session detail.

In the #main page, we’ve decided not to use a header and have replaced it with the
conference’s main logo. We will use a header on the rest of the pages.

We will not provide any session information in the HTML document,
because we are going to fill them using JavaScript from our JSON-like
object retrieved from the server using AJAX. That is why the
#sessions and #details pages are without information.

Here is the markup for the index.html file:

<!DOCTYPE HTML>
<html manifest="manifest.appcache">
<head>
<meta charset="UTF-8">

Webapp Structure | 207

www.it-ebooks.info

http://www.it-ebooks.info/

<title>jQM Conference</title>
<meta name="viewport" content="width=device-width,user-scalable=no">
<link rel="stylesheet" href="jquery.mobile-1.0.css" />
<link rel="stylesheet" href="index.css" />
<script src="jquery.js"></script>
<script src="index.js"></script>
<script src="jquery.mobile-1.0.js"></script>
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="black">
<link rel="apple-touch-icon" sizes="80x80" href="icons/icon80.png">
<link rel="apple-touch-icon" href="images/icon57.png" sizes="57x57">
<link rel="apple-touch-icon" href="images/icon114.png" sizes="114x114">
<link rel="apple-touch-icon" href="images/icon72.png" sizes="72x72">
<link rel="apple-touch-icon-precomposed" sizes="android-only"
 href="images/icon57.png">
</head>

<body>

<!-- **** HOME PAGE **** -->

<div data-role="page" id="home">

 <div data-role="content">
 <p><img src="images/logo.png" alt="jQM Conference" width="300" height="62"
 align="middle">
 </p>
 <h3>November 5th</h3>
 <div class="ui-grid-a">
 <div class="ui-block-a"><a href="http://www.twitter.com/fakeaccount"
 data-role="button" data-theme="b" target="_blank">Twitter</div>
 <div class="ui-block-b"><a href="http://www.facebook.com/fakeaccount"
 data-role="button" data-theme="b" target="_blank">Facebook</div>
 </div>
 </div>

 <div data-role="footer" data-position="fixed" data-id="toolbar">
 <div data-role="navbar">

 <a class="ui-btn-active" href="#home" data-icon="home"
 data-transition="fade">
 Home
 Sessions

 Where
 About
 Feedback

 </div>
 </div>

</div>

<!-- **** SESSIONS PAGE **** -->

208 | Chapter 9: A Complete Webapp

www.it-ebooks.info

http://www.it-ebooks.info/

<div data-role="page" id="sessions">

 <div data-role="header">
 <h1>Sessions</h1>
 <a href='javascript:refresh();' data-icon="refresh" id="refresh" data-theme="c"
 class="ui-btn-left" data-iconpos="notext">
 </div>

 <div data-role="content">
 <p id="console"></p>
 <ul data-role="list-view" data-inset="true" id="slots">

 </div>

 <div data-role="footer" data-position="fixed" data-id="toolbar">
 <div data-role="navbar">

 Home
 <a class="ui-btn-active" href="#sessions" data-icon="grid"
 data-transition="fade">Sessions
 Where
 About
 Feedback

 </div>
 </div>

</div>

<!-- **** SESSION'S DETAILS PAGE **** -->

<div data-role="page" id="details" data-add-back-btn="true">

 <div data-role="header">
 <h1>Session detail</h1>
 </div>

 <div data-role="content">
 <div id="sessionInfo"> </div>
 </div>

 <div data-role="footer" data-position="fixed" data-id="toolbar">
 <div data-role="navbar">

 Home
 Sessions
 Where
 About
 Feedback

 </div>
 </div>

Webapp Structure | 209

www.it-ebooks.info

http://www.it-ebooks.info/

</div>

<!-- **** WHERE PAGE **** -->

<div data-role="page" id="where">

 <div data-role="header">
 <h1>Where</h1>
 </div>

 <div data-role="content">
 Hasta la vista 1234, ACME City

 </div>

 <div data-role="footer" data-position="fixed" data-id="toolbar">
 <div data-role="navbar">

 Home
 Sessions

 <a class="ui-btn-active" href="#where" data-icon="info"
 data-transition="fade">Where
 About
 Feedback

 </div>
 </div>

</div>

<!-- **** ABOUT PAGE **** -->

<div data-role="page" id="about">

 <div data-role="header">
 <h1>About</h1>
 </div>

 <div data-role="content">
 <div data-role="collapsible">
 <h3>Organization</h3>
 <p>This congress is organized by ACME</p>
 </div>
 <div data-role="collapsible">
 <h3>Dates</h3>
 <p>November 5th, 2015 9am to 6pm</p>
 </div>
 <div data-role="collapsible">
 <h3>History</h3>
 <p>First edition of this congress was........</p>
 </div>
 <div data-role="collapsible">
 <h3>Sponsors</h3>

210 | Chapter 9: A Complete Webapp

www.it-ebooks.info

http://www.it-ebooks.info/

 </div>
 </div>

 <div data-role="footer" data-position="fixed" data-id="toolbar">
 <div data-role="navbar">

 Home
 Sessions

 Where
 <a class="ui-btn-active" href="#about" data-icon="star"
 data-transition="fade">About
 Feedback

 </div>
 </div>

</div>

<!-- **** iOS INSTALLATION DIALOG PAGE **** -->
<div data-role="page" id="ios">

 <div data-role="header">
 <h1>installation</h1>
 </div>

 <div data-role="content">
 <p id="consoleInstall">Complete the installation</p>
 <div id="install">
 <p>To finish the installation, you must add this webapp to your Home Screen.
 To do that, touch the arrow and select "Add to Home Screen"</p>
 </div>
 Open
 without installation
 </div>

</div>

</body>
</html>

We are using a persistent footer, so our navigation bar will not being
animated while transitioning between pages.

We can see on the sessions page that we have a blank p element, with ID console and
a listview component with the ID slots. We will fill these elements using JavaScript
after this page is shown on screen. The same happens for the map element on the
where page.

Webapp Structure | 211

www.it-ebooks.info

http://www.it-ebooks.info/

Remember that if we are using a navbar, we need to inject it on every
page (internal or external) in that page’s header or footer. If we don’t
want to duplicate code, we can inject it using JavaScript on every page.
The only optional difference we can have on every page’s navbar is the
selected element.

The form will be a dialog page in a feedback.html external file. Here is the code for that
file:

<!DOCTYPE HTML>
<html>
<head>
<meta charset="UTF-8">
<title>jQM Conference</title>
<meta name="viewport" content="width=device-width,user-scalable=no">
<link rel="stylesheet" href="jquery.mobile-1.0.css" />
<script src="jquery.js"></script>
<script src="script.js"></script>
<script src="jquery.mobile-1.0.js"></script>
</head>

<body>

<div data-role="dialog">

 <div data-role="header">
 <h1>Feedback</h1>
 </div>

 <div data-role="content">
 <form action="feedback.php" method="post" data-transition="none">

 <div data-role="fieldcontain">
 <label for="name">Name:</label>
 <input type="text" name="name" id="name" value="" required />
 </div>

 <div data-role="fieldcontain">
 <label for="email">Email:</label>
 <input type="email" name="email" id="email" value="" required />
 </div>

 <div data-role="fieldcontain">
 <label for="comments">Comments:</label>
 <textarea cols="40" rows="8" name="comments" id="comments"></textarea>
 </div>

 <div data-role="fieldcontain">
 <label for="contacted">Can we contact you?</label>
 <select name="contacted" id="contacted" data-role="slider">
 <option value="no">No</option>
 <option value="yes">Yes</option>
 </select>
 </div>

212 | Chapter 9: A Complete Webapp

www.it-ebooks.info

http://www.it-ebooks.info/

 <input type="submit" value="Send" data-theme="a">

 </form>
 </div>

</div>
</body>
</html>

We are not covering validation on the client- and server-side. Remember
always to validate a form’s data before processing it.

The feedback.php file should validate the information, store it on a database or send it
by email, and show a jQuery Mobile page as a result:

<!DOCTYPE HTML>
<html>
<head>
<meta charset="UTF-8">
<title>jQM Conference</title>
<meta name="viewport" content="width=device-width,user-scalable=no">
<link rel="stylesheet" href="jquery.mobile-1.0.css" />
<script src="jquery.js"></script>
<script src="script.js"></script>
<script src="jquery.mobile-1.0.js"></script>
</head>

<body>

<div data-role="dialog">

 <div data-role="header">
 <h1>Feedback</h1>
 </div>

 <div data-role="content">

 <?php
 // Validation and processing here

 ?>
 Thanks for your feedback.

 <a data-role="button" data-inverse="true" href="index.html">Close

 </div>

</div>
</body>
</html>

Webapp Structure | 213

www.it-ebooks.info

http://www.it-ebooks.info/

Stylesheet
We have some custom styles defined in index.css:

/* Some styles for header */
.ui-header {
 background-color: #69C;
 background-image: url('images/background.png');
 background-position: top right;
 background-repeat: no-repeat
}

/* Some styles for offline installation process */
#console, #consoleInstall {
 background-color: #FF6;
 border-radius: 10px;
 -webkit-border-radius: 10px;
 padding: 5px;
 margin: 0;
 text-align: center;
 border: 1px solid #CCC;
 font-size: small;
}

/* Home's content area */
#home [data-role=content] {
 background-color: white;
 text-align: center;
}

/* Buttons */
.openWithoutInstall {
 margin-top: 50px;
 display: block;
}

/* Navbar text */
[data-role=navbar] .ui-btn-text {
 font-size: smaller;
}

Data
The JSON file with the information about sessions will have a structure like in the
following sample:

{
 "slots":
 [
 // Some slots are special times –opening, breaks, lunch, etc.-
 { "id": 1, "time": "09:00", "message": "Opening" },
 // Some slots are session times
 { "id": 2, "time": "09:20"}
],
 "sessions":

214 | Chapter 9: A Complete Webapp

www.it-ebooks.info

http://www.it-ebooks.info/

 [
 { "id": 1, "title": "A great session", "timeId": 2,
 "description": "...", "speaker": "...", "room": "..." }
]
}

Script
We have several functionalities that will work only with JavaScript, including:

• iOS chromeless detection

• Session data download

• Session list and session details dynamic page generation

Here is the code for the index.js file:

var data;

$(document).bind("mobileinit", function() {

 if (navigator.platform=="iPhone" || navigator.platform=="iPad" ||
 navigator.platform=="iPod" || navigator.platform=="iPad" ||
 navigator.platform=="iPhone Simulator") {

 // It's an iOS device, we check if we are in chrome-less mode
 if (!navigator.standalone) {
 showIOSInvitation();
 }
 }

 /* We capture the sessions page load to check dynamic session data */
 $("#sessions").live("pageshow", function() {

 if (window.localStorage!=undefined) {
 // HTML5 Local Storage is available
 if (window.localStorage.getItem("data")!=undefined &&
 window.localStorage.getItem("data")!=null) {
 // We first load the offline stored session
 // information while checking updates
 showSessions(window.localStorage.getItem("data"));
 $("#console").html("Checking data update");
 } else {
 // There is no local storage cache
 $("#console").html("Downloading session data...");
 }
 } else {
 // No HTML5 Local Storage, downloading JSON every time
 $("#console").html("Downloading session data...");
 }

 loadSessionsAjax();
 });

});

Webapp Structure | 215

www.it-ebooks.info

http://www.it-ebooks.info/

function showIOSInvitation() {
 setTimeout(function() {
 // We hide the saving information until the whole webapp is downloaded
 $("#install").hide();
 // We open the iOS instructions for adding to the homepage
 $.mobile.changePage($("#ios"), {transition: "slideup",
 changeHash: false});
 }, 100);

 // We capture HTML5 Application Cache events to provide useful information
 if (window.applicationCache!=undefined) {
 window.applicationCache.addEventListener('checking', function() {
 $("#consoleInstall").html("Checking version");
 });

 window.applicationCache.addEventListener('downloading', function() {
 $("#consoleInstall").html("Downloading application.
 Please wait...");
 });

 window.applicationCache.addEventListener('cached', function() {
 $("#consoleInstall").html("Application downloaded");
 $("#install").show();
 });

 window.applicationCache.addEventListener('updateready', function() {
 $("#consoleInstall").html("Application downloaded");
 $("#install").show();
 });
 window.applicationCache.addEventListener('noupdate', function() {
 $("#consoleInstall").html("Application downloaded");
 $("#install").show();
 });
 window.applicationCache.addEventListener('error', function(e) {
 $("#consoleInstall").html("There was an error downloading this
 app");
 });
 window.applicationCache.addEventListener('obsolete', function(e) {
 $("#consoleInstall").html("There was an error downloading this
 app");
 });
 }

 }

function loadSessionsAjax() {
 // We bring the JSON as text so it's easy to store in Local Storage
 $.ajax(/*"http://www.mobilexweb.com/congress/*/"sessions.json", {
 complete: function(xhr) {
 if (window.localStorage!=undefined) {
 if (window.localStorage.getItem("data")!=undefined &&
 window.localStorage.getItem("data")!=null) {
 if (xhr.responseText==window.localStorage.getItem("data")) {
 // The new session downloaded is the same as the

216 | Chapter 9: A Complete Webapp

www.it-ebooks.info

http://www.it-ebooks.info/

 // one in screen
 $("#console").html("Schedule is updated");
 } else {
 // There is an update on the session data
 if (confirm("There is an update in the schedule
 available, do you want to load it now?")) {
 $("#console").html("Schedule is updated");
 showSessions(xhr.responseText);
 } else {
 $("#console").html("Schedule will be
 updated later");
 }
 }
 } else {
 // Local Storage is available but no previous
 // cache found
 $("#console").html("Schedule is updated");
 showSessions(xhr.responseText);
 }
 } else {
 // No Local Storage, show the info without saving
 $("#console").html("Schedule is updated");
 showSessions(xhr.responseText);
 }
 },
 dataType: 'text',
 error: function() {
 $("#console").html("Schedule update could not be downloaded");
 }
 });
}

var isFirstLoad = true;

function showSessions(string) {
 if (window.JSON!=undefined) {
 data = JSON.parse(string);
 } else {
 data = eval("(" + string + ")");
 }
 if (window.localStorage!=undefined) {
 // Save the new data as string
 window.localStorage.setItem("data", string);
 }

 $("#slots").html("");

 var html = "";
 for (var i=0; i<data.slots.length; i++) {

 if (data.slots[i].message!=null) {
 // This is an special slot, so we create a divider
 html += "<li data-role='list-divider' data-groupingtheme='e'>" +
 data.slots[i].time + ": " + data.slots[i].message + "";

Webapp Structure | 217

www.it-ebooks.info

http://www.it-ebooks.info/

 } else {
 // This is a normal slot with sessions
 html += "<a href='javascript:showDetails(" + i + ")'
 >Sessions of " +
 data.slots[i].time + "";
 }
 }

 $("#slots").html(html);

 if (isFirstLoad) {
 $("#slots").listview();
 isFirstLoad = false;
 } else {
 $("#slots").listview('refresh');
 }

}

function showDetails(index) {
 $("#details h1").html("Sessions of " + data.slots[index].time);
 var html = ""
 for (var i=0; i<data.sessions.length; i++) {
 if (data.sessions[i].timeId==data.slots[index].id) {
 // We create one collapsible component per session
 html += "<div data-role='collapsible'>";
 html += "<h3>" + data.sessions[i].title + "</h3>";
 html +=" <h3>" + data.sessions[i].room + "</h3>";
 html += "<h4>Speaker/s: " + data.sessions[i].speaker;
 html += "</h4>";
 html += "<p>" + data.sessions[i].description + "</p>";
 html += "</div>";
 }
 }
 // We provide the information to the details page
 $("#sessionInfo").html(html);
 $("#sessionInfo div").collapsible();

 // We change to the details page
 $.mobile.changePage($("#details"));
}

function refresh() {
 $("#console").html("Verifying...");
 loadSessionsAjax();
}

function openWithoutInstallation() {
 // We remove the dialog-like iOS installation page
 $.mobile.changePage($("#home"), {transition:"slideup", reverse:true});
}

218 | Chapter 9: A Complete Webapp

www.it-ebooks.info

http://www.it-ebooks.info/

For Android and other platforms, we can create hybrids or widgets and
provide a similar installation page linking to the native package from
our servers or from a store.

There is plenty of room here for improvement. For example, we can create a URL for
each session such as #details!22 so we can track this URL and provide deep linking
dynamic detail loading. Figure 9-1 shows our webapp working as a browser-based app
and as an offline chromeless application on iOS devices.

Figure 9-1. Our webapp

Webapp Structure | 219

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10

Extending the Framework

jQuery is well-known for its great plug-in community. jQuery Mobile is also a platform
that can be extended easily though third-party plug-ins. An updated list of jQuery
Mobile plug-ins to use can be found in http://mobilexweb.com/go/jqmplugin.

jQuery can be extended in many ways. We can create:

Themes
A CSS file and/or a couple of images

Plug-ins
A JavaScript and a CSS file that provides new widgets (data-role) to the framework

Extensions
A JavaScript file that adds new behavior to current jQuery Mobile widgets and/or
core functionality

Creating a Plug-in
jQuery Mobile architecture is based on jQuery UI framework, so creating plug-ins for
the mobile framework is similar to the UI framework.

First, we need to understand a few things to create compatible plug-ins:

• We should honor the compatibility from jQuery Mobile. Creating a plug-in that
is only compatible with one or two platforms will not be useful for the community.

• To use the plug-in, the user should just add a script file and a CSS file.

• We should use data-* attributes as much as possible to continue the framework
architecture.

• The plug-in should work properly with custom namespacing and the theming
framework.

• The plug-in should auto-initialize widgets as in the main framework.

• Use semantic HTML5 as much as possible to define your plug-in’s contents.

221

www.it-ebooks.info

http://mobilexweb.com/go/jqmplugin
http://www.it-ebooks.info/

• Use accessibility features (ARIA for example) if applicable.

• To avoid future framework incompatibilities, avoid using generic names for your
own custom data-role values. For example, avoid using tableview or datepicker,
because future versions of the framework could include some of this behavior.

HTML5, CSS3, ARIA, and other features are outside the scope of this
book. To create a good and compatible widget, you should be confident
with all these technologies.

Basic Template
A widget should be initialized in two ways:

• Auto initialization, meaning automatic creation through data roles or semantic
HTML5 code

• Explicit initialization through the widget name using jQuery syntax, for example:
$("#myelement").widgetname()

The first step in creating a widget is to select a name. Try to choose a name that will
not conflict with future widgets.

The widget should use one JavaScript file named jquery.mobile.<plugin-name>.js and
an optional +jquery.mobile.<plugin-name>.css file.

The widget template is:

(function($){
 // We wrap all the code inside this function to be sure that $ is
 // linked to the jQuery global object

 // Widget definition
 $.widget("mobile.ourWidgetName", $.mobile.widget, {
 options: {
 // Here we can create default options of our widget
 },
 // Private methods
 _create: function() {
 // The constructor function
 },

 // Public methods

 enable: function() {
 // Enable the widget
 },
 disable: function() {
 // Disable the widget
 },
 refresh: function() {
 // Refresh the widget

222 | Chapter 10: Extending the Framework

www.it-ebooks.info

http://www.it-ebooks.info/

 }
 });
 // End of widget definition

 // Auto-initialization code
 $(document).bind("pagecreate", function(event) {
 // We find data-role's and apply our widget constructor
 $(event.target).find(":jqmData(role='ourWidgetName')").ourWidgetName();

 });

}(jQuery));

Creating Our Plug-in
As a sample, we are going to create a dynamic image widget that will use the free service
Sencha IO Src. This cloud-based service takes an image source and resizes it on the
server based on the current mobile browser dimensions.

You can find the official documentation of the Sencha IO Src service at
http://mobilexweb.com/go/senchaio.

We will call our widget dynamicimage. We can take any img element and apply our
widget automatically or we can use a new data-role called dynamic-image. We will
choose the latter option in the following pages.

Usage

The idea is that we can define an img with a data-src attribute that will load a Sencha
IO Src image. We decide to not use the standard src attribute because it will cause a
double load, the original file and the resized file.

We will have two special attributes, data-width will define the percentage of the device’s
screen and data-margin will define a margin that will be deducted from current device’s
screen.

We won’t apply theming because images don’t have any jQuery Mobile visualization.

The widget

Every widget is defined as an object with properties and functions. A function starting
with underscore will be a private function. Inside a function, this will refer to the widget
object and this.element will refer to the HTML element:

$.widget("mobile.dynamicimage", $.mobile.widget, {
 options: {
 width: "100%",
 margin: 0

Creating a Plug-in | 223

www.it-ebooks.info

http://mobilexweb.com/go/senchaio
http://www.it-ebooks.info/

 }
});

The constructor is always called _create. It is called once, when the widget is initialized
for the first time. We can use this.options to access the options collection.

Our create function will be like this:

$.widget("mobile.dynamicimage", $.mobile.widget, {
 options: {
 width: 100,
 margin: 0
 },
 _create: function() {
 // We call a private function
 this._loadURL();
 }
});

Every public function (not starting with underscore) can be called using the widget
syntax and usually we need to support at least refresh, enable, and disable functions,
as they are common inside jQuery Mobile. For example, if we change a URL of an image
using JavaScript, we can call a refresh action on our widget using $("#ourImage").dynam
icimage("refresh"). It will call the public refresh function.

We will define the refresh, enable, and disable functions:

$.widget("mobile.dynamicimage", $.mobile.widget, {
 options: {
 width: 100,
 margin: 0
 },
 _create: function() {
 // We call a private function
 this._loadURL();
 },
 // Public methods
 enable: function() {
 // Enable the widget
 $(this.element).attr('disabled', '');
 },
 disable: function() {
 // Disable the widget
 $(this.element).removeAttr('disabled');
 },
 refresh: function() {
 // Refresh the widget
 this._loadURL();
 }
});

Finally, our core method, the _loadURL private function:

_loadURL: function() {
 // this.element will be our +img+ element

224 | Chapter 10: Extending the Framework

www.it-ebooks.info

http://www.it-ebooks.info/

 var url; // we create the service URL
 url = "http://src.sencha.io/";

 var parameters = "";
 if (!isNaN(this.options.width)) {
 parameters += "x" + this.options.width;
 }
 if ((!isNaN(this.options.margin)) && this.options.margin>0) {
 parameters += "-" + this.options.margin;
 }
 if (parameters.length>0) {
 url += parameters + "/";
 }

 // Sencha IO needs an absolute URL
 var originalUrl = $(this.element).jqmData("src");
 if (originalUrl.length>1) {
 var newUrl = "";
 if ($.mobile.path.isAbsoluteUrl(originalUrl)) {
 // The image URL is already absolute
 newUrl = originalUrl;
 } else {
 // The image URL is relative, we create an absolute one
 var baseUrl = $.mobile.path.parseUrl(location.href);
 var baseUrlWithoutScript = baseUrl.protocol + "//" +
 baseUrl.host + baseUrl.directory;
 newUrl = $.mobile.path.makeUrlAbsolute(originalUrl,
 baseUrlWithoutScript);
 }

 url += newUrl;

 $(this.element).attr("src", url);
 }

Auto-initialization

With this widget code, we can add the auto-initialization code that will look for every
data-role="dynamic-image" element and will create our widget:

$(document).bind("pagecreate", function(event) {
 // We find data-role's and apply our widget constructor
 $(event.target).find("img:jqmData(role='dynamic-image')").dynamicimage();
});

If we use jqmData instead of attr, we are custom namespace compatible.
Every data-* attribute on our element will be mapped automatically to
this.options inside our widget object.

Creating a Plug-in | 225

www.it-ebooks.info

http://www.it-ebooks.info/

Using our plug-in

First, we need to add the JavaScript file after the jQuery Mobile JavaScript include:

<script src="jquery.mobile-dynamicimage-1.0.js"></script>

And then we just need to create img elements with the right parameters:

<-- Image taking the device's 100% width -->

<-- Image taking the device's 40% width -->

<-- Image taking the device's 100% width with 20 pixels of margin -->

Our plug-in can be seen in Figure 10-1.

Figure 10-1. Our plug-in working properly on our jQuery Mobile page showing the same image resized
on the Sencha IO Src service

226 | Chapter 10: Extending the Framework

www.it-ebooks.info

http://www.it-ebooks.info/

Full source code

Following is the full source code for jquery.mobile-dynamicimage-1.0.js:

(function($){
 // Widget definition
 $.widget("mobile.dynamicimage", $.mobile.widget, {
 options: {
 margin: 0, width: 100
 },
 _create: function() {
 this._loadURL();
 },

 // Private methods
 _loadURL: function() {
 // this.element will be our +img+ element

 var url; // we create the service URL
 url = "http://src.sencha.io/";

 var parameters = "";
 if (!isNaN(this.options.width)) {
 parameters += "x" + this.options.width;
 }
 if ((!isNaN(this.options.margin)) && this.options.margin>0) {
 parameters += "-" + this.options.margin;
 }
 if (parameters.length>0) {
 url += parameters + "/";
 }

 // Sencha IO needs an absolute URL
 var originalUrl = $(this.element).jqmData("src");
 if (originalUrl.length>1) {
 var newUrl = "";
 if ($.mobile.path.isAbsoluteUrl(originalUrl)) {
 // The image URL is already absolute
 newUrl = originalUrl;
 } else {
 // The image URL is relative, we create an
 // absolute one
 var baseUrl = $.mobile.path.parseUrl(location.href);
 var baseUrlWithoutScript = baseUrl.protocol + "//"
 + baseUrl.host + baseUrl.directory;
 newUrl = $.mobile.path.makeUrlAbsolute(originalUrl,
 baseUrlWithoutScript);
 }

 url += newUrl;

 $(this.element).attr("src", url);
 }
 },

 // Public methods

Creating a Plug-in | 227

www.it-ebooks.info

http://www.it-ebooks.info/

 enable: function() {
 // Enable the widget
 $(this.element).attr('disabled', '');
 },
 disable: function() {
 // Disable the widget
 $(this.element).removeAttr('disabled');
 },
 refresh: function() {
 // Refresh the widget
 this._loadURL();
 }
 });
 // End of widget definition

 // Auto-initialization code
 $(document).bind("pagecreate", function(event) {
 // We find data-role's and apply our widget constructor
 $(event.target).find("img:jqmData(role='dynamic-image')").dynamicimage();

 });

}(jQuery));

Notable Plug-ins
There are some great plug-ins out there. The following list describes the most useful
plug-ins that we can use today in our jQuery Mobile projects.

Pagination
The pagination plug-in (shown in Figure 10-2) can be found on http://filamentgroup
.com/lab/jquery_mobile_pagination_plugin and allows jQuery Mobile to paginate con-
tent, such as images. It provides a right arrow and left arrow on the screen so the user
understands he can move forward and backward.

The user can move between pages with:

• Taps on the arrow buttons floating on the screen

• Using left and right arrow keys on devices with keyboards

• Swiping left and right using drag touch events

When we download the framework we will find two files

• jquery.mobile.pagination.css

• jquery.mobile.pagination.js

After including these two files on our head element, we need to create a ul element with
data-role="pagination". Every jQuery Mobile page should have a pagination widget
inside.

228 | Chapter 10: Extending the Framework

www.it-ebooks.info

http://filamentgroup.com/lab/jquery_mobile_pagination_plugin
http://filamentgroup.com/lab/jquery_mobile_pagination_plugin
http://www.it-ebooks.info/

Every pagination widget will have two li elements with a links inside to the previous
and next pages. The li elements will have two classes: ui-pagination-prev for the pre-
vious page and ui-pagination-next for the next page. For example:

<ul data-role="pagination">
 <li class="ui-pagination-prev">Prev
 <li class="ui-pagination-next">Next

Figure 10-2. Pagination plug-in in action showing a couple of images as different pages

Notable Plug-ins | 229

www.it-ebooks.info

http://www.it-ebooks.info/

Bartender
This plug-in is available for free at http://www.stokkers.mobi/valuables/bartender.html
provides a bottom tab bar navigation inspired in native iOS applications as we can see
in Figure 10-3.

This plug-in is just a CSS file and a couple of images, so there are no data-* elements
to use; just some class definitions.

The usual template code will be implemented on a fixed footer in a normal navbar
widget and it will look like:

<div data-role="navbar" data-grid="d">
 <ul class="apple-navbar-ui comboSprite">
 <-- elements -->

</div>

The plug-in also supports tabs with count bubbles, as in iOS using <span class="ui-
li-count">XXXX inside an li element.

DateBox
DateBox provides a date-picker selector (as shown in Figure 10-4) using jQuery Mobile
syntax. It is defined by a data-role="datebox" that can be applied to any <input
type="date"> element. It is fully customizable with many options, but the standard code
will look like this:

<input type="date" data-role="datebox">

The official website for download, samples, and documentation is http://dev.jtsage.com/
jQM-DateBox and it provides different modes always as a pop-up layer (Figure 10-5),
including:

• Full calendar selector

• Android mode, a calendar with numeric steppers for date, month, and year

• Slider mode, providing three horizontal sliders: for the year, month, and day

• Flip mode, providing three vertical sliders: for the year, month, and day

• Time mode

• Duration mode

230 | Chapter 10: Extending the Framework

www.it-ebooks.info

http://www.stokkers.mobi/valuables/bartender.html
http://dev.jtsage.com/jQM-DateBox
http://dev.jtsage.com/jQM-DateBox
http://www.it-ebooks.info/

Figure 10-3. Bartender provides an iOS-like tab bar navigation design

Notable Plug-ins | 231

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 10-5. DateBox provides different calendar modes for selection

Simple Dialog
With this free plug-in, we can replace the standard window.alert, window.confirm, and
window.prompt with a jQuery Mobile style window asking the user for an input as in
Figure 10-6.

Figure 10-4. With DateBox we can create nice date picker selectors, even on devices without HTML5
date input types

232 | Chapter 10: Extending the Framework

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 10-6. Simple Dialog provides jQuery Mobile-style dialogs to replace standard JavaScript pop-
up windows

The documentation and download site is http://dev.jtsage.com/jQM-SimpleDialog.

To use Simple Dialog, we have to download and add to our head the script file of the
plug-in, or use the CDN for the plug-in:

<script src="http://dev.jtsage.com/cdn/simpledialog/latest/
 jquery.mobile.simpledialog.min.js"></script>

Then when we want to create an alert, we just use the following code snippet:

$("#button").click(function() {
 $(this).simpledialog({
 mode: 'bool', // For normal alert or confirm
 prompt: "We could not open the file",
 useModal: true,
 buttons: [
 'Ok': {
 theme: "c", icon: "check"
 }
]
 });
});

For a confirmation dialog, the code should look like this:

$("#button").click(function() {
 $(this).simpledialog({

Notable Plug-ins | 233

www.it-ebooks.info

http://dev.jtsage.com/jQM-SimpleDialog
http://www.it-ebooks.info/

 mode: 'bool',
 prompt: "Do you want to delete this file?",
 useModal: true,
 buttons: [
 'Yes': {
 theme: "c", icon: "delete",
 click: function() { // Delete }
 },
 'No': {
 theme: "a", icon: "cancel"
 },
]
 });
});

And finally for a text prompt dialog:

$("#button").click(function() {
 $(this).simpledialog({
 mode: 'string',
 prompt: "What is your name?",
 useModal: true,
 buttons: [
 'No': {
 theme: "c", icon: "delete",
 click: function() {
 alert("Your name is " + $("#button").jqmData("string");
 }
 }
]
 });
});

Action Sheet
This is another plug-in inspired by iOS native controls. An Action Sheet is a modal pop-
up menu.

We can find the plug-in, both a CSS and JavaScript file at https://github.com/hiroprota
gonist/jquery.mobile.actionsheet.

To create an Action Sheet we need a button to open it that will be an a element with
data-role="actionsheet". When clicked, it will open the next sibling element or the
element with the id defined by the data-sheet attribute.

To use this plug-in, remember to add jquery.mobile.actionsheet.js and
jquery.mobile.actionsheet.css to your head.

This element should have jQuery Mobile’s buttons inside. If the user clicks outside the
sheet, it will be closed. We can also provide a button with data-rel="close" that will
act as the closing/cancel action. For example:

234 | Chapter 10: Extending the Framework

www.it-ebooks.info

https://github.com/hiroprotagonist/jquery.mobile.actionsheet
https://github.com/hiroprotagonist/jquery.mobile.actionsheet
http://www.it-ebooks.info/

<a data-role="actionsheet" data-sheet="share" data-icon="plus">Share

<div id="share">
 Share in Facebook
 Share in Twitter
 Share in Google+
 <a data-rel="close" data-role="button">Cancel
</div>

Plug-ins for Tablets
When we are delivering webapps for tablets, sometimes it’s useful to split the page in
two columns instead of using a full-width menu as in standard jQuery Mobile. That is
why two plug-ins provides us with solutions for tablet applications: SplitView and
MultiView.

SplitView
SplitView is available at http://asyraf9.github.com/jquery-mobile and it allow us to de-
fine two main areas inside a document called panels.

Each panel is a jQuery Mobile page, with a header, content, and footer. A SplitView
allows two panels to be on screen at the same time in portrait orientation as seen in
Figure 10-7. That means that we will have two pages, typically a menu at the left and
a content area at the right.

In portrait orientation, the menu panel is hidden inside a top-left button and it will
open as a pop-up menu as seen in Figure 10-8.

Every panel has a data-id attribute defining the name of the panel. This will be useful
for links:

<body>
 <div data-role="panel" data-id="menu">
 <div data-role="page">

 </div>
 </div>
 <div data-role="panel" data-id="main">
 <div data-role="page">

 </div>
 </div>
</body>

Plug-ins for Tablets | 235

www.it-ebooks.info

http://asyraf9.github.com/jquery-mobile
http://www.it-ebooks.info/

Figure 10-8. When rotating the device to portrait, SplitView and MultiView convert the two columns
in one main section with a pop-up menu at the top left corner

Figure 10-7. With SplitView, we can create tablet applications with support for multiple pages at the
same time, typically a menu and a content area

236 | Chapter 10: Extending the Framework

www.it-ebooks.info

http://www.it-ebooks.info/

After this definition, we can define in every a element the panel in which the link should
load. The transition animation will work inside every panel as if they were frames.

For example:

Demos

MultiView
MultiView is similar in purpose to SplitView but with a different implementation
(Figure 10-9). It also implements a data-role="panel" but as children of the page.

The plug-in is available as a working demo at http://www.stokkers.mobi/valuables/mul
tiview/page1.html and changes the normal behavior of jQuery Mobile. A data-
role="page" instead of content areas, contains up to four panel (data-role="panel")
areas:

• Menu panel

• Main panel

• Full-width panel (optional, for landscape)

• Popover panel (optional, for landscape)

The panel type is defined by data-id, for example: data-id="menu".

Every panel contains its own pages, so we will have pages nested inside other pages.
The structure will be page → panel → page → header/content/footer. Every panel can
have as many pages as necessary, but at least one needs to have data-show="first"
attribute.

Using data-target, we can define on a link where to open that page. It can be:

• Full page load (removing all the panels)

• Panel load (menu or main)

• Multiple load (one page on the menu and one page on the main)

The plug-in doesn’t have too much documentation but following the online demo
should not be a problem.

Compatible Plug-ins
There are some jQuery (not-mobile) plug-ins that can also be used with jQuery Mobile
but they don’t follow the rules of the framework. Therefore, no data-role or function-
ality provided using pure JavaScript code.

The following list includes some of these compatible plug-ins:

• Photoswipe (http://photoswipe.com): Photo Gallery creator for iOS, Android, and
BlackBerry 6+.

Compatible Plug-ins | 237

www.it-ebooks.info

http://www.stokkers.mobi/valuables/multiview/page1.html
http://www.stokkers.mobi/valuables/multiview/page1.html
http://photoswipe.com
http://www.it-ebooks.info/

• Diapo (http://www.pixedelic.com/plugins/diapo): Slideshow gallery with great CSS
animations

• jQuery UI Maps (http://code.google.com/p/jquery-ui-map): Provides Google Maps
integration inside our mobile webapp

• MobiScroll (http://www.mobiscroll.com): Time and date pickers as numeric step-
pers or wheels

Figure 10-9. With MultiView we can also create tablet-like applications sharing fixed footers between
panels

238 | Chapter 10: Extending the Framework

www.it-ebooks.info

http://www.pixedelic.com/plugins/diapo
http://code.google.com/p/jquery-ui-map
http://www.mobiscroll.com
http://www.it-ebooks.info/

CHAPTER 11

Packaging for Stores

Some people claim “Stores are the future of apps.” To be honest, nobody knows if the
future of app distribution will be store-based, browser-based, or a hybrid mechanism.
The great thing about using HTML5 content—and jQuery Mobile in particular—is
that we can also package our webapp as a native app for store distribution.

Therefore, if you want to distribute your app in application stores, you can definitely
do that using jQuery Mobile. There are different approaches for doing that regarding
the platform you want to target.

The first thing to understand is that we need to create one package per platform. In
some way, we need to copy our files (HTML, JavaScript, CSS, and jQuery Mobile files)
in different projects and create different packages.

There is a group inside W3C working on a future standard for packaging
webapps for distribution. The group is Native Web apps and its URL is
http://www.w3.org/community/native-web-apps/.

When we package a webapp as a native application, we usually have the ability to access
some new APIs that are not typically in HTML5, such as Camera, Contacts, or
Accelerometer.

To package our webapp for store distribution we can:

• Create a native project for every platform, add our webapp files as local resources,
and use a Web View component and bind it to our HTML content. Sometimes this
idea is called a hybrid app.

• Use an official webapp platform, which usually means packaging our files in a ZIP
archive.

• Use a native compilation framework that helps us to compile our app to multiple
platforms.

239

www.it-ebooks.info

http://www.w3.org/community/native-web-apps/
http://www.it-ebooks.info/

Compiling our webapp as a native package usually means that we need
some expertise in dealing with native code and SDK tools per platform.

Store Distribution
The first step to package our application is to decide which platforms we are going to
target and in which stores we are going to distribute our app.

Table 11-1 shows the stores available for distribution. We should create a publisher
account on each one.

Table 11-1. Application stores available for distribution

Store Owner Platforms Formats Publisher
cost

URL

AppStore Apple iOS (iPhone, iPod,
iPad)

ipa $99 per year http://developer.apple.com/
programs/ios

Android Market Google Android apk $20 once http://market.android.com/
publish

AppWorld RIM BlackBerry Smartphones/
PlayBook

cod/bar Free http://appworld.blackberry
.com/isvportal

Nokia Store Nokia Symbian/N9 wgz/deb
bar

1 euro http://info.publish.nokia
.com/

Amazon AppStore Amazon Android/Kindle Fire apk $99 per year http://developer.amazon
.com/

Marketplace Microsoft Windows Phone $99 per year http://create.msdn.com/

For each platform we will also need to gather some metadata information that we
should verify with every store documentation, including:

• Icon in high resolution (usually 512×512)

• Description text

• Category selection

• Screenshots per platform

• Distribution—device list compatibility

• Distribution—country and language

• Marketing banners

240 | Chapter 11: Packaging for Stores

www.it-ebooks.info

http://developer.apple.com/programs/ios
http://developer.apple.com/programs/ios
http://market.android.com/publish
http://market.android.com/publish
http://appworld.blackberry.com/isvportal
http://appworld.blackberry.com/isvportal
http://info.publish.nokia.com/
http://info.publish.nokia.com/
http://developer.amazon.com/
http://developer.amazon.com/
http://create.msdn.com/
http://www.it-ebooks.info/

Custom Distribution
On some platforms we can also distribute our app through our own web server with
the right MIME type configuration. Symbian and BlackBerry devices will receive and
install any webapp executable file without problems.

Android and Nokia N9 will install apps from our server if the user allows third-party
server installation in her settings.

Other platforms, such as iOS or Windows Phone will never allow the installation from
a source other than the official store.

There are some ways to configure our developer devices to install our
own apps but this is only for testing. These techniques are out of the
scope of this book.

Preparing the Package
We have to keep in mind some important things when we are creating native-like apps
with jQuery Mobile. First, there will be no browser toolbars. That means, for example,
no back button from the UI. Our webapp should have back buttons explicitly on the
header as we’ve already seen before in this book.

When compiling a native app, never use CDN as the way to load jQuery
Mobile files.

The second problem will be with loading external pages. When creating an app, we
can load local pages that are HTML files that will be distributed with the app itself.

If we want to load jQuery Mobile documents from a remote URL, we can define $.sup
port.cors=true on the mobileinit event handler. This will allow the framework access
via AJAX remote servers. We should also declare $.mobile.allowCrossDomain
Pages=true.

jQuery Mobile also recommends that you disable pushState to avoid problems with
URL management.

Therefore, our main HTML file should have:

$(document).bind("mobileinit", function() {
 $.support.cors = true;
 $.mobile.allowCrossDomainPages = true;
 $.mobile.pushState = false;
});

Preparing the Package | 241

www.it-ebooks.info

http://www.it-ebooks.info/

If we are targeting iOS 5.0+, we can also enable the real fixed toolbars functionality for
better performance and usability on fixed headers and footers.

When packaging native apps, we should prepare some other files, such
as an icon for the home or app menu and a launch image that will be
shown while our webapp is loaded. Some platforms also need an explicit
list of servers to access the network.

Packaging with PhoneGap
PhoneGap is an open source platform for compiling native apps from HTML5 code,
and it’s fully compatible with jQuery Mobile. PhoneGap (also called Apache CallBack)
is managed mainly by Adobe and other important companies. Covering PhoneGap fully
is out of the scope of this book. The idea here is to give you the basic information to
start with it.

With PhoneGap (http://phonegap.com) we can compile our jQuery Mobile apps for:

• iOS

• Android

• webOS

• Symbian

• BlackBerry

• Windows Phone

When we download PhoneGap, we will receive a ZIP file with package samples for use
with every platform SDK and a JavaScript file to include in every HTML file. Up to
PhoneGap 1.2, every platform needs its own JavaScript file. This file will normalize
some behaviors between platforms and will add some API compatibility.

If you want to compile an iOS application, you will need a Mac or a
cloud-based service. You can easily rent a Mac device using http://mac
incloud.com.

On iOS, PhoneGap provides an installation mechanism that adds a PhoneGap project
type inside Xcode, the official IDE to create native iOS applications. Table 11-2 shows
every SDK you need to have installed for compilation.

242 | Chapter 11: Packaging for Stores

www.it-ebooks.info

http://phonegap.com
http://macincloud.com
http://macincloud.com
http://www.it-ebooks.info/

Table 11-2. SDKs and IDEs required for native compilation

SDK Device platform Desktop platforms Download URL

Xcode iOS Mac OS Available on Mac AppStore

ADT for Eclipse Android Win/Mac/Linux http://developer.android.com

WebWorks SDK BlackBerry Win/Mac http:// blackberry.com/developers

Visual Studio for WP Windows Phone Win http://microsoft.com/visualstudio

Nokia Web Tools for Symbian Symbian Win/Mac http://developer.nokia.com

When we create a project for every platform, we need to copy our files (HTML, Java-
Script, CSS, images, etc.) to the right folder on every PhoneGap sample project. Usually
it is a folder called www. We will find an index.html file that we should replace with
our own jQuery Mobile webapp files.

PhoneGap Build
If we don’t want to get into the mess of creating one package per platform using SDKs,
Adobe offers a service—with free and paid plans—to compile apps in the cloud, called
PhoneGap Build, available at http://build.phonegap.com.

With this service we can upload a ZIP file with our full jQuery Mobile application
(including CSS, JavaScript, and images) with a config.xml following W3C widget stan-
dard, and PhoneGap Build will compile the right package for:

• iOS

• Android

• webOS

• BlackBerry smartphones

• Symbian

At the time of this writing, PhoneGap Build doesn’t support Windows Phone or Black-
Berry tablet, but it should be available soon.

For iOS and BlackBerry, we need to provide PhoneGap Build with our
own signing keys provided by both platforms’ publisher programs.

Packaging with PhoneGap | 243

www.it-ebooks.info

http://developer.android.com
http:// blackberry.com/developers
http://microsoft.com/visualstudio
http://developer.nokia.com
http://build.phonegap.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Index

A
a element

li element and, 99
navigating between pages, 40

absolute external page links, 49
accordion, 79–80
action attribute

about, 115
get method, 115
post method, 115

Action Sheet plug-in, 234
activeBtnClass property, 144
activePage attribute, 152
activePageClass property, 144
addBackBtn property, 149
Adobe Dreamweaver (see Dreamweaver

(Adobe))
Adobe Fireworks, 175–179
Adobe Kuler community, 173
AJAX

about, 46
external page links and, 45
form components and, 115
global configuration and, 145–146
request failures, 46

ajaxEnabled attribute, 145
allowCrossDomainPages attribute, 146
allowSamePageTransition property, 153
animation transition, 50–52
Application Cache API, 183
applicationCache object

addEventListener method, 190
event handling, 189
status property, 188

aside content, 109
auto-growing text area, 119
autoInitializePage attribute, 146

B
back button (navigation), 41
BackBtnText property, 149
BackBtnTheme property, 149
bartender plug-in, 230
browsers

animation transitions and, 52
back buttons, 41
date input types and, 122
Graded Browser Support, 12
JavaScript and, 141, 157
jQuery Mobile compatibility, 11–14
JSON API support, 202
pseudo-browsers, 11
URI schemes, 59

browsers, mobile devices, 9–11
button element

about, 83
rendering as rich controls, 116

button role, 35, 54, 83
button widget, 143, 152
buttons

about, 82
adding, 66–67
applying themes to, 85
forcing location of, 66
grouped, 83
icons and, 85, 89
inline, 83
modifying effects, 85
rendering as rich controls, 116

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

245

www.it-ebooks.info

http://www.it-ebooks.info/

split button lists, 104–107

C
cache manifest, 184
cached event, 189
caching pages, 48
CDNs (Content Delivery Networks)

about, 27–29
latest builds, 29

Champeon, Steven, 17
changeHash property, 153
changePage method, 150, 153
checkboxes, 137
checkboxradio widget, 143
checked attribute, 126
checking event, 189
code syntax assistant (Dreamweaver), 32
collapsible role

about, 35, 77–78
nesting, 78

collapsible sets, 35, 79–80
collapsible widget, 143, 151
collapsible-set role, 35, 79–80
color swatches

about, 36
customizing for search bar, 113
defining for buttons, 41, 67
defining for count bubbles, 112
defining for lists, 95
defining for logos, 68
defining for sliders, 123
displaying selected styles for, 72
ThemeRoller settings, 171

configuration
framework overview, 143–144
global, 144–148
page, 149–150
widgets, 150–152

confirmation.html sample, 56
content

adding to footers, 69
adding to headers, 66–69
aside, 109
collapsible, 35, 77–78
dynamic, 157–161
formatting, 75–80
shown in columns, 81–82

Content Delivery Networks (CDNs)
about, 27–29

latest builds, 29
content role, 35, 39
contentTheme property, 149
controlgroup role

about, 35
checkboxes and, 138
grouping, 126–128
grouping buttons, 84
radio buttons and, 136

controlgroup widget, 143
CORS (Cross Origin Resource Sharing), 146
count bubbles, 111
create event, 160, 162
creation events, 163
Crockford, Douglas, 202
Cross Origin Resource Sharing (CORS), 146
CSS

Fireworks support, 179
jQuery Mobile support, 14
overflow: property, 147
position: property, 147
pseudoclasses, 122

CSS classes, defining in theme files, 180
CSS: position: property, 66
custom data attributes feature (HTML5), 34

D
data-* attributes, 152
data-* namespacing attribute, 145
data-add-back-btn attribute, 41, 52, 66
data-ajax attribute, 49, 116
data-back-btn-text attribute, 41
data-back-btn-theme attribute, 41
data-close-btn-text attribute, 56
data-collapsed attribute, 77, 80
data-content-theme attribute, 78, 79
data-corners attribute, 85
data-count-theme attribute, 112
data-direction attribute, 52, 116
data-dom-cache attribute, 49
data-filter attribute, 113
data-filter-placeholder attribute, 113
data-filter-theme attribute, 113
data-icon attribute

about, 71, 86
applying icons to toolbar buttons, 67
creating custom icons, 87
interactive rows and, 101

data-iconpos attribute, 88, 89

246 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

data-iconshadow attribute, 89
data-id attribute, 73, 235, 237
data-inline attribute, 83
data-inset attribute, 94
data-native-menu attribute, 130
data-overlay-theme attribute, 54, 130
data-placeholder attribute, 130
data-position attribute, 64, 73
data-prefetch attribute, 48
data-rel attribute, 43, 52, 68
data-role attribute, 34, 36
data-shadow attribute, 85
data-split-icon attribute, 106
data-split-theme attribute, 105
data-src attribute, 223
data-target attribute, 237
data-theme attribute

about, 36
collapsible content, 78, 79
defining color swatches, 67, 95, 123, 126

data-title attribute, 42, 45, 191
data-track-theme attribute, 123
data-transition attribute

defining, 50, 156, 181
form elements and, 116

data-type attribute, 84
data-url attribute, 153
data-width attribute, 223
date input types, 122
DateBox, 230
defaultDialogTransition attribute, 145
defaultHomeScroll attribute, 144
defaultPageTransition attribute, 145
delete.html sample, 55
dialog role, 35, 52–56
dialog widget, 143, 151
dialogHashKey property, 146
dialogs

about, 52–54
closing pages, 54–56
opening pages from, 56

disable function, 224
disabled attribute, 131
div element

about, 34
headers and footers, 63
roles and, 34, 36

document element, 141–143
downloading event, 189

Dreamweaver (Adobe)
code syntax assistant, 32
creating HTML5 templates, 29
downloading free trial, 32
jQuery Mobile support, 32
multiscreen preview method, 32
previewing files, 33

dynamic content
about, 157
creating pages, 157–159
creating widgets, 160
updating widgets, 160

dynamic-image plug-in, 225

E
editing themes, 180
email transmission, 60
emulators

about, 20
testing webapps, 20–22

enable function, 224
error event, 189
event handling

about, 162
applicationCache object, 189
gesture events, 166
page events, 162
virtual clicks events, 167
widget events, 165

exporting themes, 174
external page links, 42, 44–50

F
facetime: scheme, 59
fade transition, 51
field containers, 35, 117
fieldcontain role, 35, 117
fieldcontain widget, 143
file extensions, 221
file uploads, 139
file: protocol, 146
filtering list data with search, 112
Fireworks Theme editor, 175–179
fixed mode (positioning toolbars), 64, 66
flip toggle switches, 124
flip transition, 51
footer role

about, 35, 37

Index | 247

www.it-ebooks.info

http://www.it-ebooks.info/

adding content, 69
toolbars and, 63

footers
adding content to, 69
inserting, 37
persistent, 73
roles supporting, 35
toolbars in, 63

footerTheme property, 149
for attribute (labels), 117
form components

about, 115
auto-growing text area, 119
file uploads and, 139
form actions, 115
new HTML5 attributes, 121–126
supported elements, 116–119

form element
action attribute, 115
target attribute, 116

formatting content
about, 75
accordion, 79–80
collapsible content, 77–78

framework
architectural overview, 34–39
changing page contents, 162
compatible plug-ins, 237
configuration considerations, 143–152
creating grids, 162
creating plug-ins, 221–227
custom transitions, 156
dialogs and, 52–57
document events, 141–143
Dreamweaver support, 32
dynamic content, 157–161
event handling, 162–167
integrating with phones, 57–61
navigating between pages, 40–52
notable plug-ins, 228–234
plug-ins for tablets, 235–237
preparing HTML5 documents, 25–32
utilities supported, 152–156

full-page mode (lists), 94
full-screen mode

about, 197
detecting, 197
positioning toolbars, 64
styling webapps for, 199, 200

G
GBS (Graded Browser Support), 12
geolocation feature (HTML5), 3
gesture events, 166
global configuration

about, 144
AJAX functionalities, 145
core functionalities, 145–146
localizable strings, 146
touch overflow, 147
user interface, 144

Graded Browser Support (GBS), 12
grid function, 162
grouping

buttons, 83
select menus, 126–128

H
hash navigation, 42, 46
hashListeningEnabled attribute, 146
head element, 29, 196
header role

about, 35, 37
adding content, 66–69
toolbars and, 63

headers
adding buttons to, 66–67
adding content to, 66–69
adding logos to, 68
customizing, 68
inserting, 37
roles supporting, 35
toolbars in, 63

headerTheme property, 149
Hijax technique, 46
History API, 46
href attribute

external page links, 47
internal page links, 42
URI schemes, 57

html element, 184
HTML Media Capture API, 140
HTML5 documents

architectural overview, 34–39
creating, 29–32
dialogs and, 52–56
Dreamweaver support, 29, 32
integrating with mobile devices, 57–61

248 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

WAI-ARIA specification, 18
HTML5 specification

custom data attributes, 34
geolocation feature, 3
jQuery Mobile support, 14, 16
new attributes, 121–126

hyperlinks
absolute external, 49
to external pages, 42, 44–50
header buttons as, 66
to internal pages, 42–43
list items and, 104
mobile special, 50

I
icon installation

about, 191
icon definition, 195
icon name, 191
invitation, 191

icons
buttons supporting, 85, 89
creating, 72, 87–88
jQuery Mobile supported, 86
navigation bars and, 71
positioning, 88
row, 107
shadow effect, 89

id element, 135
identifiable operating systems, 10
images

row icons, 107
thumbnails, 108

img element, 68, 223
initializing widgets, 222
inline buttons, 83
inline mode (positioning toolbars), 64
input element

creating buttons, 83
date field support, 122
radio buttons, 135
rendering as rich controls, 116, 118

inset mode (lists), 94
interactive rows (lists)

about, 98–101
managing importance of, 107
nested lists, 101–103
ordered, 107
split button lists, 104–107

internal page links, 42–43

J
JavaScript

browser compatibility and, 141, 157
custom transitions, 156, 181
performance considerations, 31
utilities and, 152–156

jqmData method, 152
jqmRemoveData method, 152
jQuery core

CDNs supported, 28
downloading, 25

jQuery main object ($), 143
jQuery Mobile

about, 4–5
browser compatibility, 11–14
CSS support, 14
downloading files, 25–27
HTML5 support, 14, 16
license considerations, 27
main features, 15–18
myths of mobile web, 1–4
purpose and support for, 3
testing webapps, 18–23

jquery.mobile-dynamicimage-1.0.js, 227
JSON API, 202

K
Kaneda, David, 51
Kuler widget, 173

L
label element

for attribute, 117
radio buttons and, 135

legend element, 135
li element

a element and, 99
about, 91
defining color swatches, 95
hyperlinks and, 104
list-divider role, 96
nested lists and, 102
row icons and, 107

licensing jQuery Mobile, 27
link-to-call actions, 58
linkBindingEnabled attribute, 146

Index | 249

www.it-ebooks.info

http://www.it-ebooks.info/

links (see hyperlinks)
list-divider role, 96
lists

about, 91–93
aside content, 109
count bubbles, 111
filtering data with search, 112
full-page versus inset, 94
images and, 107
interactive rows, 98–107
list views cheat sheet, 114
nested, 101–103
split button, 104–107
title and description, 111
visual separators, 96–97

listview role, 35, 91
listview widget, 143, 150
load event, 141
loading pages, 149
loadPage method, 149
localStorage collection, 202
logos, adding to headers, 68

M
mailto: protocol, 57, 60
manifest attribute, 184
max attribute, 121, 122
media attribute, 200
menus

rendering as rich controls, 116
select element and, 125–140

meta charset tag, 29
min attribute, 121, 122
minScrollBack attribute, 145
mobile devices

categories of, 6–9
emulators and simulators for, 22
integrating with, 57–61
operating systems and browsers, 9–11
remote labs, 23

mobile special links, 50
mobile web, myths of, 1–2
mobile webapps (see webapps)
mobileinit event

about, 141
jQuery main object and, 143

multiple attribute, 125, 131
MultiView plug-in, 237

N
namespaces, defining, 145
navbar role

about, 35
toolbars and, 70–73

navbar widget, 143, 151
navigating between pages

about, 40
absolute external links, 49
back button, 41
dialogs and, 54
external page links, 42, 44–50
hash navigation, 42, 46
internal page links, 42–43
mobile special links, 50
transitions and, 50–52

navigation bars
icons and, 71
roles supporting, 35
toolbars and, 70–73

nesting
collapsible contents, 78
lists, 101–103

Nielsen, Jakob, 121
nojs role, 35, 37
noupdate event, 189
ns attribute, 145

O
obsolete event, 189
offline access, 201, 202
Offline API, 183, 187
offline event, 187
ol element

about, 91–93
nested lists and, 102
ordered interactive lists and, 107

online event, 187
online resources, accessing, 186
operating systems, mobile devices, 9–11
optgroup element, 126
option element

disabled attribute, 131
empty value and, 130
rendering as rich controls, 116

ordered interactive lists, 107
orientation events, 165
orientationchange event, 165

250 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

overflow: property (CSS), 66, 147

P
package definition (offline access)

about, 183
accessing online resources, 186
applicationCache object, 188
download process, 185
HTML manifest, 184
updating resources, 187

packaging for stores
about, 239
custom distribution, 241
packaging with PhoneGap, 242
preparing packages, 241
store distribution, 240

page events
about, 162
creation events and, 163
loading events, 163
showing events, 164

page links
absolute external, 49
external, 42, 44–50
internal, 42–43
mobile special, 50

page role, 35, 36–39
page utilities, 152–154
page widget, 143
pagebeforechange event, 165
pagebeforecreate event, 163
pagebeforehide event, 165
pagebeforeload event, 163
pagebeforeshow event, 165
pagechange event, 165
pagechangefailed event, 165
pageContainer attribute, 152, 154
pagecreate event, 163
pagehide event, 165
pageinit event, 163
pageload event, 163
pageloadfailed event, 163
pageremove event, 163
pages

about, 36–39
caching, 48
configuration considerations, 149–150
creating, 157–159
dialogs and, 52–56

integrating with mobile devices, 57–61
loading, 149
navigation between, 40–52
opening from dialogs, 56
prefetching, 48
webapp example, 207–213

pageshow event, 165
pagination plug-in, 228
password text input, 121
path management utilities, 155
pattern attribute, 121
persistent footers, 73
phone calls, 58
PhoneGap Build service, 243
PhoneGap framework

about, 13
CDNs and, 27
packaging with, 242
webapp preparation and, 26

placeholder attribute, 121
platform utilities, 155
plug-ins

about, 221
compatible, 237
creating, 221–227
notable, 228–234
for tablets, 235–237

PNG files, 25, 179
pop transition, 51
position: property (CSS), 66, 147
positioning

icons, 88
toolbars, 64–65

prefetching pages, 48
progress event, 189
progressive enhancement technique, 17, 45
pseudo-browsers, 11
pseudoclasses, 122

R
radio buttons, 135
ready event, 141
refresh function, 224
reloadPage property, 154
remote labs, testing webapps, 23
required attribute, 121
Resig, John, 5
resources

offline, 202

Index | 251

www.it-ebooks.info

http://www.it-ebooks.info/

online, 186
updating, 187

reverse property, 153
reverse transition, 52, 154
RFC 5341, 58
role property, 154
roles, 96

(see also specific roles)
defining, 34, 36
list of supported, 34

row icons (images), 107

S
script element, 142
script, webapp example, 215–219
search engine optimization (SEO), 16
search, filtering list data with, 112
section element, 82
select element

flip toggle switches, 124
menus and, 125–140
rendering as rich controls, 116

selectmenu widget, 143, 151
Sencha IO Src service, 223
SEO (search engine optimization), 16
sessionStorage collection, 202
shadow effect for icons, 89
Short Message Service (SMS), 60
showLoadMsg property, 154
Simple Dialog plug-in, 232
simulators

about, 21
testing webapps, 20–22

sizes attribute, 195
Skype call links, 59
slide transition, 51
slidedown transition, 51
slider role, 35, 124
slider widget, 143, 151
sliders and slider switches, 116, 123
slideup transition, 51
smartphones

about, 7–8
icon size considerations, 195
operating systems supported, 10

SMS (Short Message Service), 60
sms: scheme, 60
smsto: scheme, 60
Souders, Steve, 31

split button lists, 104–107
split rows, 104
SplitView plug-in, 235
Stark, Jonathan, 51
store distribution, 240
storing offline data, 202

T
tablets

about, 9
emulators and simulators for, 22
operating systems supported, 10
plug-ins for, 235–237

target attribute, 47, 49, 116
tel: scheme, 58
testing webapps

emulators and simulators, 20–22
in different environments, 18
remote labs, 23

text inputs
auto-growing text area, 119
password considerations, 121
rendering as rich controls, 116, 118

textarea element
auto-growing text area, 119
rendering as rich controls, 116, 118

textinput widget, 143
ThemeRoller

about, 170
Adobe Kuler community, 173
downloading, 35
exporting themes, 174
Global Settings tab, 171
inspector, 172
swatch color settings, 171

themes
about, 35, 169, 221
applying to buttons, 85
color swatch conventions, 36
creating custom transitions, 181
editing, 180
exporting, 174
Fireworks Theme editor, 175–179

thumbnails (images), 108
title element, 42
toolbars

about, 63
adding content to footers, 69
adding content to headers, 66–69

252 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

navigation bars, 70–73
persistent footers, 73
positioning, 64–65
true fixed, 66

touchOverflowEnabled attribute, 147
transition handlers, 157
transition property, 153
transitions

about, 50–52
creating custom, 181
custom, 156
page options, 153

type attribute, 119, 149, 153

U
UI components

about, 63
buttons, 82–86
columns, 81–82
creating custom icons, 87–88
formatting content, 75–80
icon positioning, 88
icon shadow, 89
icon-only buttons, 89
toolbars, 63–73
widget architecture, 143

UI utilities, 155
ui-bar class, 69
ui-block-* classes, 82, 162
ui-btn-active class, 72, 73, 144
ui-btn-left class, 66
ui-btn-right class, 66
ui-grid-* classes, 81, 162
ui-hidden-accessible class, 117
ui-icon class, 87
ui-li-aside class, 109
ui-li-icon class, 107
ui-page class, 146
ui-page-active class, 144
ui-pagination-next class, 229
ui-pagination-prev class, 229
ui-state-persist class, 73
ul element

about, 91–93
defining color swatches, 95
nested lists and, 102

ul-li-count class, 112
updatelayout event, 165
updateready event, 189

updating
resources, 187
widgets, 160

uploading files, 139
URI schemes

for browsers, 59
making calls, 58–59
sending email, 60
sending SMSs, 60
special, 61
webapp example, 61

utilities
data-*, 152
page, 152–154
path management, 155
platform, 155
UI, 155

V
value attribute, 126
videocall link, 59
viewport

about, 30
fixed position and, 66
meta tag and, 29

virtual clicks events, 167
visual separators (lists), 96–97
VoIP calls, 59

W
W3C

Cross Origin Resource Sharing and, 146
custom data attributes and, 34
geolocation and, 3
HTML5 standard and, 14
Native Web apps groups, 239
Offline API, 183
WAI-ARIA specification, 18
widget standard, 243

WAI-ARIA specification, 18
web pages (see pages)
web performance optimization (WPO), 16, 28
Web Storage API, 188
webapp example

about, 205
data, 214
offline manifest, 206
pages, 207–213

Index | 253

www.it-ebooks.info

http://www.it-ebooks.info/

script, 215–219
stylesheet, 214
webapp structure, 205

webapps
about, 3
HTML5 support, 3, 16
jQuery Mobile example, 5
packaging for stores, 239–243
preparing HTML5 documents, 25–32
styling for full screen, 199, 200
testing, 18–23
URI scheme example, 61

widget events, 165
widgets

about, 143
configuration considerations, 150–152
creating, 160
initializing, 222
jQuery Mobile support, 143
updating, 160

WML (Wireless Markup Language) standard,
34

WPO (web performance optimization), 16, 28

X
XMLHttpRequest object, 146

254 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author
Maximiliano Firtman, @firt, is a developer focused on mobile and HTML5 devel-
opment. He is a trainer in mobile technologies and founder of ITMaster Professional
Training. He is the author of many books, including Programming the Mobile Web
(O'Reilly). He has spoken at international conferences such as OSCON, Velocity,
Breaking Development, GOTO Europe, Campus Party, QCon, and Adobe en Vivo.

He has been an Adobe Community Professional since 2011 and a Nokia Developer
Champion since 2006, and he has developed many mobile-related projects, such as
MobileHTML5.org, MobileTinyURL.com, and iWebInspector.com. He maintains a
mobile web development blog at http://www.mobilexweb.com/.

He is an expert in native and HTML5 web development, including iOS, Android, Pho-
neGap, and jQuery technologies.

Colophon
The animal on the cover of jQuery Mobile: Up and Running is a Japanese sable (Martes
zibellina brachyurus). Found on Hokkaido, the northernmost island of Japan, it is one
of the many subspecies of the sable, an inhabitant of coniferous forests across Russia
and in Mongolia and northern China.

Sables are prized for their soft, silky brown fur. Their pelts have been a staple of the fur
trade since the Middle Ages and were a favorite among early modern European royalty.
The Russian subspecies are the most highly prized, and the animals are both commer-
cially farmed and hunted wild today.

Sables are 12–18 inches long, not including a 5- to 7-inch tail, and weigh 2–5 pounds.
Their fur ranges from light to dark brown and shows a lighter patch on the throat. The
Japanese subspecies is distinguished by black markings on its legs and feet.

These omnivorous mammals are crepuscular (active at twilight) and have a varied diet
including mammals, birds, fish, eggs, insects, and plants. They may hunt animals larger
than themselves—even small deer—and also scavenge other animals’ kills. A litter of
three pups is born after an eight-month period of delayed implantation (during which
the embryos are dormant) and one month of gestation. Sables sometimes interbreed
with pine martens, producing a hybrid known as a kidus.

The cover image is from Wood’s Animate Creation. The cover font is Adobe ITC Ga-
ramond. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed;
and the code font is LucasFont’s TheSansMonoCondensed.

www.it-ebooks.info

https://twitter.com/#!/firt
http://shop.oreilly.com/product/9780596807795.do
http://mobilehtml5.org/
http://www.mobiletinyurl.com/
http://www.iwebinspector.com/
http://www.mobilexweb.com/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

	Table of Contents
	Preface
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	Chapter 1. The Mobile Platform
	Why Do We Need jQuery Mobile?
	Myths of the Mobile Web
	It’s not the mobile web; it’s just the Web!
	You don’t need to do anything special when designing for the mobile web
	One website should work for all devices (desktop, mobile, TV, etc.)
	Just create an HTML file with a width of 240 pixels, and you have a mobile website

	Mobile Webapps
	So, Again…Why Do We Need jQuery Mobile?

	What Is jQuery Mobile?
	What jQuery Mobile Is Not
	The Framework

	The Mobile and Tablet World
	Device Categories
	Mobile phones
	Low-end mobile devices
	Mid-end/high-end mobile devices
	Smartphones
	Tablets

	Operating Systems and Browsers
	jQuery Mobile Compatibility
	Mobile graded browser support

	HTML5 and CSS3
	Main Features
	Use of Nonintrusive Semantic HTML5
	Progressive Enhancement
	Accessibility Support

	Testing Webapps
	Emulators and Simulators
	Remote Labs

	Chapter 2. Starting with the Framework
	Preparing the Document
	Requirements
	Hosting the Files
	Using a CDN
	Latest builds

	Main HTML5 Template
	The viewport
	Performance on JavaScript

	Adobe Dreamweaver Support
	Previewing Files

	Architecture
	Roles
	Theming
	The Page
	The header and the footer
	The content

	Navigation
	Back Button
	Internal Page Links
	External Page Links
	Absolute External Links
	Mobile Special Links
	Transition Between Pages
	Reverse Transition

	Dialogs
	Closing or Going Back?
	Opening Pages from Dialogs

	Integrating with the Phone
	Making a Call
	Video and VoIP Calls
	Sending Email
	Sending an SMS
	Other URI Schemes
	Bringing It All Together

	Chapter 3. UI Components
	Toolbars
	Positioning
	True Fixed Toolbars
	Adding Content to the Header
	Adding buttons
	Adding a logo
	Customizing the header

	Adding Content to the Footer
	Navigation Bars
	Using icons
	Selected element

	Persistent Footer

	Formatting Content
	Collapsible Content
	Nested collapsible contents

	Accordion

	Columns
	Buttons
	Inline Buttons
	Grouped Buttons
	Effects
	Icons
	Creating Custom Icons
	Icon Positioning
	Icon-Only Buttons
	Icon Shadow

	Chapter 4. Lists
	Full-Page Lists Versus Inset Lists
	Visual Separators
	Interactive Rows
	Nested Lists
	Split Button Lists
	Managing row importance

	Ordered Interactive Lists

	Using Images
	Row Icons
	Thumbnails

	Aside Content
	Title and Description
	Using Count Bubbles
	Filtering Data with Search
	List Views Cheat Sheet

	Chapter 5. Form Components
	Form Action
	Forcing a Non-AJAX Form

	Form Elements
	Labels
	Field Containers
	Text Fields
	Auto-Growing Text Area
	New HTML5 Attributes
	Date Fields
	Slider
	Flip Toggle Switch
	Select Menus
	Grouping select menus
	Non-native select menus

	Radio Buttons
	Checkboxes
	File Uploads

	Chapter 6. The Framework and JavaScript
	Document Events
	Configuration
	Global Configuration
	User interface
	Core and AJAX functionalities
	Localizable strings
	Touch overflow

	Page Configuration
	Page loading

	Widgets Configuration

	Utilities
	Data-* Utilities
	Page Utilities
	Page transition options

	Platform Utilities
	Path Utilities
	UI Utilities

	Custom Transitions
	Dynamic Content
	Creating Pages
	Creating Widgets
	Updating Widgets

	Creating Grids
	Changing Page Contents
	Event Handling
	Page Events
	Creation events
	Loading events
	Showing events

	Widget Events
	Orientation Event
	Gesture Events
	Virtual Clicks Events

	Chapter 7. Creating Themes
	ThemeRoller
	Global Settings
	Swatch Color Settings
	Inspector
	Adobe Kuler
	Exporting Your Theme

	Fireworks Theme Editor
	Editing Themes
	Custom Transitions

	Chapter 8. Installation and Offline Access
	Package Definition
	HTML Manifest
	Download Process
	Accessing Online Resources
	Updating Resources
	JavaScript Object
	Events

	Icon Installation
	Invitation
	Icon Name
	Icon Definition

	Full Screen
	Detecting Full Screen
	Styling the Webapp

	Mixing It All Together
	Storing Offline Data

	Chapter 9. A Complete Webapp
	Webapp Structure
	Offline Manifest
	Pages
	Stylesheet
	Data
	Script

	Chapter 10. Extending the Framework
	Creating a Plug-in
	Basic Template
	Creating Our Plug-in
	Usage
	The widget
	Auto-initialization
	Using our plug-in
	Full source code

	Notable Plug-ins
	Pagination
	Bartender
	DateBox
	Simple Dialog
	Action Sheet

	Plug-ins for Tablets
	SplitView
	MultiView

	Compatible Plug-ins

	Chapter 11. Packaging for Stores
	Store Distribution
	Custom Distribution
	Preparing the Package
	Packaging with PhoneGap
	PhoneGap Build

	Index

