

Learn

HTML5 and JavaScript
for Android

Gavin Williams

Create HTML5 and JavaScript based web apps
for Android devices and browsers

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

iv

Contents at a Glance

■ About the Author..x
■ About the Technical Reviewer ..xi
■ Introduction ...xii
■ Chapter 1: Getting Started .. 1
■ Chapter 2: An Introduction to Creating Mobile Web Apps for Android... 13
■ Chapter 3: HTML5.. 37
■ Chapter 4: Starting Your Project Using HTML5................................... 85
■ Chapter 5: CSS3 for Mobile ... 119
■ Chapter 6: Laying the CSS3 Foundations.. 157
■ Chapter 7: JavaScript for Mobile .. 175
■ Chapter 8: JavaScript: Models, Views, and Controllers 219
■ Chapter 9: Testing and Deploying Your Mobile Web App.................. 317
■ Appendix ... 351
■ Index ... 363

xii

Introduction

Welcome to Learn HTML5 and JavaScript for Android. This book will provide an introduction to
HTML5, JavaScript, and CSS3 for Android Browser for version 4.0 of the Android operating
system (called Ice Cream Sandwich). This book will take you through how to leverage the best
mobile web technologies and methodologies to develop solid mobile web sites, not just for
Android but for other platforms too.

Instead of focusing on readily available frameworks and libraries, this book focuses on
using vanilla JavaScript, CSS, and HTML5 in the hopes that once you complete this book, you will
be competent enough to use vanilla JavaScript for mobile, as well as JavaScript mobile web
frameworks.

Who This Book Is For
This book is for anybody who has some experience in web development or native mobile app
development and wants to get to grips with the mobile web. You will need some knowledge of
JavaScript/ActionScript or some other programming language.

How This Book Is Structured
This book is split into nine chapters.

• Chapter 1 (Getting Started): This chapter will guide you through setting up
your development environment.

• Chapter 2 (An Introduction to Creating Mobile Web Apps for Android): This

chapter will give you some insight into the history behind the mobile web
and how it differs from desktop-based web sites. It will take you through
several case studies of existing mobile web sites and explain how they
could potentially be improved or changed to make them easier for the user.

• Chapter 3 (HTML5) and Chapter 4 (Starting Your Project Using HTML5):

These chapters will take you through some of the new HTML5 tags,
available specifically for mobile. This chapter will also show you how to
encode video and audio for mobile and embed it using HTML5. After you
complete the HTML5 chapter, the workshop will take you through creating
the HTML foundation of your mobile web app, in the form of a movie
reminder mobile web app.

INTRODUCTION

 xiii

• Chapter 5 (CSS3 for Mobile) and Chapter 6 (Laying the CSS3 Foundations):
These chapters will show you some of the new CSS3 mobile-compatible
features such as transforms, animations, shadows, and rounded corners.
You will also learn how to use SASS, a CSS3 precompiler. The workshop will
take you through styling your mobile web app using SASS and best
practices while using the precompiler.

• Chapter 7 (JavaScript for Mobile) and Chapter 8 (JavaScript: Models, Views,

and Controllers): These chapters will take you through how to use
JavaScript to enhance your mobile application. There are no libraries in
this chapter, such as jQuery, Sencha, or jQuery Mobile. The introductory
JavaScript chapter will show you how to build a basic framework using
vanilla JavaScript, and interact with canvas and audio. The workshop will
take you through enhancing the mobile web app by adding paging, and
communicating with a third-party API through JSONP.

• Chapter 9 (Testing and Deploying Your Mobile Web App): This chapter will

show you how to test your app using QUnit and deploy it using Capistrano.

Downloading the Code
The code for the examples shown in this book is available on the Apress web site, www.apress.com.
A link can be found on the book’s information page under the Source Code/Downloads tab. This
tab is located underneath the Related Titles section of the page.

Contacting the Author
Should you have any questions or comments—or even spot a mistake you think I should know
about—you can contact the author at gavin@justanotherdeveloper.co.uk, tweet @fishrodgavin
or visit http://www.justanotherdeveloper.com.

http://www.apress.com
mailto:gavin@justanotherdeveloper.co.uk
http://www.justanotherdeveloper.com

1
Chapter

Getting Started
Prior to the launch of the first Android handset in September 2008 and the
earlier release of the first iPhone handset in June 2007, there had been no
immediate drive for standardization within mobile web browsers. Playing video
required either Flash mobile or a low-quality 3GP version of the video.
Developers avoided JavaScript, as JavaScript would have been disabled by
default on the majority of mobile web browsers and others did not support
JavaScript at all. One such developer, logged in at stackoverflow.com,
commented that working with JavaScript was ‘‘a nightmare . . . like working with
web browsers in the 90s, but with the manager expectations of tomorrow.’’1

Mobile web sites were simply Wireless Markup Language (WML) pages from the
years of WAP on grayscale mobile phones, such as the Motorola V50, but with a
splash of color. Not much has changed since then, and most mobile web sites
still retain the same linear flow of information from top to bottom and are not
very interactive. There were three reasons for this style of design.

1. WAP/GPRS and EDGE were all slow protocols that could not
handle file-heavy web sites, so design and content were
restricted to deliver the web site and its message quickly.

2. The resolution and aspect ratio of old handsets were terrible,
such that you could barely fit any content onto the screen.

1 Stackoverflow.com, posted by annakata,
http://stackoverflow.com/questions/316876/using-javascript-in-mobile-web-
application#316920.

http://stackoverflow.com/questions/316876/using-javascript-in-mobile-web-application#316920
http://stackoverflow.com/questions/316876/using-javascript-in-mobile-web-application#316920
http://stackoverflow.com/questions/316876/using-javascript-in-mobile-web-application#316920

CHAPTER 1: Getting Started 2

3. You traditionally used a ball or keys to navigate around a mobile
web site. Scrolling up and down seemed more natural than
scrolling from side to side.

We are now no longer reliant on using hardware-based controls to browse
content on mobile devices. The size, quality, resolution, pixel density/PPI, and
color depth of screens are increasing with every new tablet and mobile phone
released. We are seeing desktop browser engines, such as WebKit and Geko,
being plugged into the web browsers, such as Mobile Safari, the Android
Browser, and Firefox, found right on our mobile devices. This has helped
developers to produce stunning mobile web sites that look and feel consistent
across the now popular Android and iOS handsets and tablet devices.

In addition, the most recent mobile browsers also support GPU acceleration.
This means that mobile web apps can be much more polished and interactive,
as most of the rendering can now be offloaded to the graphic processor
(something unheard of until a few years ago).

Given the most recent announcement of Adobe axing Flash Mobile, combined
with the constant race to cram faster CPUs and RAM into mobile devices, it has
never been a more exciting time to get not just into the mobile web, but also
HTML5, CSS3, and JavaScript.

As a mobile web developer, you now have the chance to produce near-native
applications based on existing web standards for what feels like a miniaturized
laptop computer.

Don’t be fooled, however; the world of the mobile web still has a long way to go
in terms of standardization. So, throughout this book I will be giving you
defensive programming tips to help you avoid common mistakes and
misconceptions when developing for the mobile web.

Before you start, you will need a tablet and/or a mobile Android-based device to
test apps with. You will also need a solid development environment to work
within.

Choosing a Device to Test With
Although not essential, having a physical Android device, such as a handset and
tablet, at hand will help----a lot. You can test your mobile web apps using the
Android SDK or a regular web browser. There are drawbacks to this, however.
The Android SDK is known for being extremely slow to start and sluggish to run;
and testing on a desktop browser will not allow you to test your web app on the
platform it was designed and built for.

CHAPTER 1: Getting Started 3

Unlike other mobile operating systems, Android suffers from a developer’s worst
nightmare, known as device fragmentation. Device fragmentation can be caused
by some of the following factors.

 More than one device vendor produces devices for a single
operating system.

 Each device has varied hardware specifications and
limitations.

 Accelerometer

 GPS

 Gyroscope

 Screen resolution

 Pixel density (PPI)

 CPU

 RAM

 Older devices do not support the most recent operating
systems with the latest features, such as the most recent
default browser with the latest APIs and rendering engines.

Because of this, it makes it extremely hard to pick a device that everybody has
and to test against. To put this into perspective, see Table 1-1 for Android’s
device stats compared to the rest of the industry, as of December 2011.

Table 1-1. Device Stats (As of December 2011)

Operating System Tablets (Including All Touch Devices) Mobiles Total Devices

Android 124 538 662

iOS 6 5 11

Windows Phone 0 26 26

Blackberry OS 1 90 91

Table 1-1 paints a clear picture that Android device vendors produce a wide
range of devices for Android users.

In an ideal world, you should pick 12 Android devices (six mobile phones and six
tablets). Also consider the following criteria.

CHAPTER 1: Getting Started 4

 A high-end device ($450 or more)

 Released within the last six months

 Released 12---18 months ago

 A mid-range device ($150--$449)

 Released within the last six months

 Released 12---18 months ago

 A low-end device (less than $150)

 Released within the last six months

 Released 12---18 months ago

There are two main reasons why you should pick your devices in this manner.

1. Device features will vary depending on the price. For instance,
more often than not, you will never see a dual core CPU in a
device for under $100. You should, however, still cater to those
who do not have the latest and greatest. This will allow you to
test against less capable devices and make sure your mobile
web app will degrade gracefully.

2. Device contracts end in cycles of 12, 18, and now 24 month.
This is the ideal time for users to upgrade their handsets and for
device vendors to release new hardware. Bearing this in mind,
you should opt to purchase a device that users will upgrade
from in 2---3 month’s time. Again, this will help you test against
devices and ensure that your mobile web app degrades
gracefully.

If you can pick only one device, pick the latest and greatest. The device itself
will last you just over a year. If you aim to upgrade your devices on a yearly
cycle, you will end up with a good collection of older devices to test against and
the same or similar device that your users will be using.

For the purpose of this book, I will be using an HTC Desire HD, an Asus Eee
Pad, and a Samsung Galaxy smartphone.

CHAPTER 1: Getting Started 5

Setting Up Your Development Environment
Now that you have chosen a device to test against, it is now time to set up your
development environment.

My operating system of choice is Mac OS X Lion; however, the setup procedure
for other platforms is quite similar.

I have chosen open source or free applications to develop with. All of the
applications can run on Mac, Windows, or Linux.

Aptana
Aptana is an Integrated Development Environment (IDE) for web development.
An IDE differs from a regular text editor, such as TextMate or BBEDIT, or web
site editors such as Dreameweaver. They will provide everything you need for
development out of the box and can be extended to suite your particular
development style or platform.

Aptana is based on Eclipse, so can support most, if not all, Eclipse plugins; it
will manage your virtual Android testing environments, perform code
completion, validate your code, and deploy it for you.

To download Aptana, head over to http://aptana.com/. You will see the
download options shown in Figure 1-1.

Figure 1-1. Aptana download options

Select ‘‘Standalone Version’’ as shown in Figure 1-1, and click the download
button. Install it and proceed to installing the Android SDK.

http://aptana.com/

CHAPTER 1: Getting Started 6

NOTE: You can alter the appearance of the editors in Aptana to suite
your preference (e.g., you might want a dark or a bright theme to your
IDE). To do this, simply go to Preferences. The preferences window
will open. Use the filter in the top-left and type Themes. Click the
themes option in the menu below the search field. The default will be
Aptana Studio, but select any theme you like and click OK.

Android SDK
The Android SDK will allow you to create virtual Android environments to
develop against with different hardware configurations and SDK/OS versions.
There is a plugin for Eclipse that will allow you to manage, create, and configure
virtual Android devices and launch them from within Aptana.

Prior to installing ADT, you will need to enable the Eclipse Helios Update Site in
Aptana. This contains dependencies for the Android ADT plugin for Eclipse.

To enable the Eclipse Helios Update Site, go to Aptana Studio 3 from the Apple
task bar, then choose Preferences  Install/Update  Available Software Sites.
A screen, similar to Figure 1-2, will appear.

Figure 1-2. Enabling Eclipse Helios Update Site

CHAPTER 1: Getting Started 7

To install ADT for Aptana, go to http://developer.android.com/sdk/eclipse-
adt.html#downloading.

Follow the instructions. After you have successfully installed ADT, Aptana will
restart and you will be presented with a screen similar to Figure 1-3.

Figure 1-3. Initial ADT launch screen

Keep all of the default options and click Next >. You can decide whether you
would like to send usage data to Android, and then click Finish. Accept all of the
options on the final screen and click Finish again. ADT will begin downloading
the most recent SDKs, which will take a few minutes.

Now that ADT has been installed, you can install all of the SDKs to test your
Android web app against. Android ADT can be found at the bottom of the
Window menu, as seen in Figure 1-4.

http://developer.android.com/sdk/eclipse-adt.html#downloading
http://developer.android.com/sdk/eclipse-adt.html#downloading
http://developer.android.com/sdk/eclipse-adt.html#downloading

CHAPTER 1: Getting Started 8

Figure 1-4. The new Android menus in Aptana

Go to the Android SDK Manager. You will be presented with a list of Android
SDKs to download, as shown in Figure 1-5. Expand all of the Android versions
and ensure that the following options are ticked for each Android version.

 Google APIs by Google Inc.

 SDK Platform

 GALAXY Tab by Samsung Electronics

Figure 1-5. The Android SDK Manager

CHAPTER 1: Getting Started 9

Click the install button to start the download and install process.

Select Accept All on the following screen and click Install. You should see a
window similar to Figure 1-6. The process to install the SDKs can take quite a
while, depending on your computer’s capabilities and your Internet speed.

Figure 1-6. The Android SDK Manager package installer

After you complete these steps, you will have every version of the Android SDK
to test your mobile web apps with.

SASS
SASS is a CSS preprocessor. It allows you to nest CSS rules, use variables
within your CSS, reuse chunks of CSS (such as setting border radius on a group
of elements with mixins), and allows CSS rules to inherit others.

SASS will be used throughout this book to write CSS. For SASS to work, the
SASS Ruby gem will need to be installed.

This is reasonably simple for OS X using Terminal. Terminal can be found in
Applications  Utilities.

After you’ve opened Terminal, enter the following command:

sudo gem install sass

CHAPTER 1: Getting Started 10

Enter your password and wait until the SASS gem has finished installing. To test
whether SASS has successfully installed enter:

sass –v

If SASS has successfully installed, you will see SASS’s version number. To
install on Windows or Linux, there are installers and instructions on SASS’s
download page at http://sass-lang.com/download.html. If you do not have
Ruby installed, you must install it first. Download it from
http://rubyinstaller.org/downloads/ and install. After Ruby is installed, run it
from Programs  Ruby [version]  Start Command Prompt With Ruby. From
there, run ‘‘gem install sass’’.

Apache
In order to test the mobile web site on Android devices outside of the
development environment a web server is required. Mac OS X comes with
Apache preinstalled, so it is just a case of turning it on.

In order to do this, go to System Preferences  Sharing and enable Web
Sharing, as shown in Figure 1-7. Click the Create Personal Website Folder
button. This will create a folder for you to store your web content within your
Mac account that can be viewed in a web browser. To test it, click on the link
above the button. This will open your web site with a welcome page.

http://sass-lang.com/download.html
http://rubyinstaller.org/downloads/

CHAPTER 1: Getting Started 11

Figure 1-7. Enabling web sharing on OS X Lion

Summary
Now that your development environment is set up, you can start writing and
testing mobile web sites for Android. This will provide you with a solid platform
to develop a mobile web application on both a small and large scale.

2
Chapter

An Introduction to
Creating Mobile Web
Apps for Android
Now that your development environment has been set up, you must be itching
to dive into some code!

Before you begin, this chapter will take you through the basic principles of the
mobile web compared to the much more traditional desktop environment.

Life would be so much simpler if you could build and deploy an application once
and make it instantly available on all devices (not just Android). The mobile web
aims to solve this. Native applications have their advantages, and they come
into their own when they require large amounts of graphics processing, CPU,
and RAM, as well as access to almost all aspects of the Android operating
system.

Browser vendors such as Mozilla are attempting to change this and tip the
balance in favor of web standards. By leveraging Android’s native APIs, and
making them available to the web developer through JavaScript APIs within the
browser, we can potentially tap into the same APIs available to native
application developers in the very near future. In the meantime, the introduction
of HTML5 to mobile devices is helping to fill the gap while we wait, and provide
a solid base to build upon. Multiple phone web-based application frameworks,

CHAPTER 2: An Introduction to Creating Mobile Web Apps for Android 14

such as PhoneGap, Rhomobile, and Appcelerator, will take the place of what
future browsers will supply us from their draft specifications for now.

By endorsing web standards, we should be able to say that the same web
application that we deploy for Android mobile handsets and tablets will also
work on iOS and Windows Phone 7 handsets and tablet devices now and in the
future.

This chapter will take you through a few basic principles about designing and
developing for the mobile web.

 What’s different about the mobile web?

You will read about how the mobile web differs from desktop
and ensuring that mobile users get the best experience from
the controls available to them-----their fingers!

 Catering to your audience

Here you will read about how audience affects how you design
and lay out your mobile web site, how to prioritize content,
and deliver the best functionality for your target audience.

 Web vs. native apps

If you are standing on the fence as to whether to develop
purely native apps, hybrid apps, or pure web apps, then this
will take you through the advantages and disadvantages of
each solution.

 The first line of code: Hello World

This final section will take you through the building blocks of
your application, such as setting up ANT for automatic
deployment, and building and compressing SASS/CSS files
and JavaScript.

What’s Different About the Mobile Web?
Catering to a potential audience of 365.4 million permanently connected users
makes the mobile web one of the most exciting platforms to develop for.
Creating web applications for the desktop environment can be satisfying.
However, users are limited to a single pointing device and a keyboard to interact
with your work. The mobile web brings a whole new world of possibilities. The
mobile device serves as a blank canvas for interactive elements that users can
simply touch to interact with. As a developer, you can create a much more

CHAPTER 2: An Introduction to Creating Mobile Web Apps for Android 15

intimate experience with the user by taking over the entire screen and immersing
them in your mobile web application’s world.

Unfortunately, for all of the real-world advantages that the mobile web brings,
there are the same development and user experience stumbling blocks found in
the desktop environment that you will face while the platform continues to
develop.

Object/Feature Detection
The fragmentation in APIs available to developers on the mobile web can be a
problem. The most common solution to fixing discrepancies in APIs across
browsers has been to use JavaScript to detect browsers, or devices, and serve
different stylesheets or execute certain pieces of JavaScript depending on the
browser being used. This method is known as User Agent (UA) sniffing or
browser sniffing. Listing 2-1 shows a common UA sniffing script.

Listing 2-1. JavaScript Code Used for UA Sniffing

// Get the user agent string
var browser = navigator.userAgent;

// Check to see whether Firefox is not in the string
if(browser.match(/Firefox/) === null){

 // If it's not Firefox, send the user to another page
 window.location.href = "sendstandardmessage.html";

} else {

 // If it is, use the Mozilla SMS API to send an SMS
 navigator.mozSms.send("01234567891", "My Message");

}

What could possibly be wrong with UA sniffing? While you will provide support
for Firefox and a fallback for other browsers, you will fail to support browsers
that might have the same APIs available as Firefox.

This particular API is also only available in Firefox 11+, so you will also need to
ensure that the version is included in the UA sniffing script.

As you begin to increase the granularity of your browser detection scripts, you
also decrease maintainability and increase complexity by having to constantly
update your sniffing code to account for new browsers and versions. Before you
know it, your JavaScript library becomes unmaintainable spaghetti code.

CHAPTER 2: An Introduction to Creating Mobile Web Apps for Android 16

A better way to do this is through object detection. The revised code can be
seen in Listing 2-2. First, we find out whether the SMS API exists. If it doesn’t
exist, we send the user to another page; if it does, then we can send our SMS.

Listing 2-2. JavaScript Code Used for Object Detection

// Check to see whether navigator.mozSms is an object (if it exists)
if (typeof navigator.mozSms === "object"){

 // If it does, send a message using the built-in SMS API
 navigator.mozSms.send("01234567891", "My Message");

} else {

 // If it doesn't, send the user to another location
 window.location.href = "sendstandardmessage.html";

}

The method of object detection also allows us to provide fallbacks for browser
specific API’s. The Firefox 11 nightlies currently only supports the SMS API, but
there may be other browsers and other devices in the future that may support
the same implementation through different methods or classes.

We can turn this into a feature of our application using a class. We can delegate
the sending of the message within a method as seen in Listing 2-3. This should
in theory allow us to use our own API’s to send messages within our application.
When browser vendors add the SMS API to their browser, we only need to add
the method to a single location rather than find and replace it in the entire
application.

Listing 2-3. Using Delegation to Send a Message with Our Own Web Service As a Fallback

var Message = function Message(message, recipient){

 this.message = message;
 this.recipient = recipient;

 this.sendSMS = function sendSMS(recipient){

 if(typeof navigator.mozSms === "object"){

 // Send SMS using the user's mobile phone
 navigator.mozSms.send(this.recipient, this.message);

 } else if (typeof navigator.otherSms === "object") {

 // Use another browser's SMS implementation
 navigator.otherSms.sendMessage(this.message, this.recipient);

CHAPTER 2: An Introduction to Creating Mobile Web Apps for Android 17

 } else {

 // If sending via the user's mobile isn't possible,
 // send the message using a third-party web service
 this.ajaxSend(this.recipient, this.message);

 }

 }

 function ajaxSend(recipient, message){
 // Send the SMS using a web-based SMS gateway via Ajax
 }

}

var messageInst = new Message("my message!", "01234567891");
messageInst.sendSMS();

As you can see from Listing 2-3, no matter what the capability of the browser,
we can use object detection to ensure the user gets the same or similar
experience regardless of what the device is capable of.

Detecting these niche features using JavaScript can be quite easy. But what
about testing for CSS3 or HTML5 capabilities, and providing backward
compatibility for features such as CSS3 animations and 3D transforms?

A JavaScript library called Modernizr can help to facilitate this for you. It uses
the same object detection methods to detect the HTML/CSS/JavaScript
capabilities of the user’s web browser.

It modifies the DOM (Document Object Model) by adding classes to the HTML
tag in order to provide hooks for your own CSS and JavaScript feature
detection. Figure 2-1 shows this in action on haz.io. This will be covered in more
detail in Chapter 7.

CHAPTER 2: An Introduction to Creating Mobile Web Apps for Android 18

Figure 2-1. Using Modernizr to detect features on haz.io

Screen Sizes and Pixel Density
When developing a mobile web application, you might want to create a single
application that has the same functionality for both tablet devices and mobile
devices, but present a different view or layout to make use of the extra space or
orientation of the device. Media queries can help to facilitate this.

Using a combination of media queries and elastic design, you can produce
views that respond to the display of the user, rather than detecting the user’s
type of device and providing a view for it. This is known as responsive web
design.

This method of development is much more elegant than deciding how a user
should view your web site based on the type of device that they are using.
Instead you focus on the available space and pixel density available.

CHAPTER 2: An Introduction to Creating Mobile Web Apps for Android 19

Pixel density is a concept that allows mobile devices with the same physically
sized screens, to vary in resolution due to the number of pixels available per
square inch.

Android devices are divided into three categories of pixel density:

 Low

 Medium

 High

How does this affect your mobile web application? When you produce images
for a normal web site, you produce a single image that will not scale and work
across all screen types, as the layout will scale with the image itself to fit a fixed
width or elastic layout.

For the mobile web, you will generally create a mobile application to fit the entire
viewport and have the same dimensions regardless of what the device’s pixel
density may be.

For instance, if you make an image 500 px wide for a low pixel density screen, it
will appear smaller on a high-density screen. This is because 500 px will not
occupy as much space on the high-density screen as it does on the low-density
screen.

The solution to this for mobile browsers is to scale images up or down,
depending on the target density. For instance, if you develop your application
for a medium-density screen, the browser will scale the image down for low-
density screens and up for high-density screens. This causes an overhead when
scaling the images either way, and pixelation when scaling the image up and
potential distortion when scaling the image down.

To get around this, we can both create our applications exclusively for high-
density screens, and allow the mobile to scale images down. This can be very
expensive in terms of CPU/GPU and network activity. Both of these factors can
have an impact on rendering time and potentially the user’s pocket with
unnecessary assets being downloaded. Or we can use media queries to ensure
that the correct content gets delivered for the correct type of display. In order to
do this, you must set the target-densitydpi property of the viewport meta tag
to device-dpi and import pixel density---specific stylesheets using media
queries, as shown in Listing 2-4.

CHAPTER 2: An Introduction to Creating Mobile Web Apps for Android 20

Listing 2-4. Using Media Queries for Pixel Density–Specific Styling

// Set the viewport to match the devices pixen density and width
<meta name="viewport" content="target-densitydpi=device-dpi, width=device-width"
/>

// Pull in the main stylesheet
<link rel="stylesheet" media="screen" href="mobile.css" />

// Pull in high, medium, and low stylesheets to provide pixel density
// specific images
<link rel="stylesheet" media="screen and (-webkit-device-pixel-ratio: 1.5)"
href="hdpi.css" />
<link rel="stylesheet" media="screen and (-webkit-device-pixel-ratio: 1.0)"
href="mdpi.css" />
<link rel="stylesheet" media="screen and (-webkit-device-pixel-ratio: 0.75)"
href="ldpi.css" />

As you can see in Listing 2-4, the pixel ratios for each category of display are as
follows.

 Low: 0.75

 Medium: 1.0

 High: 1.5

We use a generic mobile stylesheet so that we can provide fallback images just
in case a device doesn’t match any of the pixel ratios. We then use the
stylesheets for each pixel density category to override the images.

Pixel density can be a pain, as it means that for every image that you use within
your application, you must produce two more in varying sizes. It also means that
even if you create graphics for the highest pixel density available today,
tomorrow you will probably have to re-export everything for another display with
a much higher pixel density. Be sure to bear this in mind when choosing
graphics packages to create your mobile web designs.

Catering to Your Audience
It is as important to remember whom you are writing your application for just as
much as what they will be using to interact with your work. The first step is
ensuring that you understand what your users will be doing with your
application. To do so, you must categorize it.

Categorizing your application will help you to formulate general interaction rules
based on how other applications within your category are designed and what

CHAPTER 2: An Introduction to Creating Mobile Web Apps for Android 21

features they have. This might sound like copying, but it will help users to
quickly and intuitively figure out how to use your application based on their
previous experiences and, thus, get it up and running in the least amount of
time.

It is important to remember that you can build on top of these rules and you do
not have to stick to them. As long as you can get your users to open your
mobile web application, play with it for several minutes, and immediately say ‘‘I
get it,’’ you have done your job.

There are many categories for mobile web applications, but most of them will fall
under the following.

 Task based

 Social

 Entertainment

Task Based
Task-based applications are quite simple in their nature. They are built as time
savers for everyday use. This can be anything from finding train times to finding
out where the closest pub or bar is.

There are times when I have stood in the middle of the London Waterloo train
station staring at train time boards, looking dazed and confused, only to whip
out my handset to launch the Train Times app to find train times quicker.

The important thing to remember is that if a user cannot perform a task in the
least amount of time with your application, they will close your browser window
and find another that can perform the same task much quicker.

For task-based applications, there are two basic pieces of information you can
use to help a user perform a task faster.

 Where is the user?

 What device are they using?

These two key pieces of information are readily available to your application and
knowing them will make all the difference.

Finding out the physical location of the user and what they are doing will help
you to preempt what the user is going to do when they go to your mobile web
application.

CHAPTER 2: An Introduction to Creating Mobile Web Apps for Android 22

As an example, if you are creating a journey planner, there are several things
about your user that you should take into consideration.

 Where is the user? Do they have limited network connectivity
(e.g., 3G/EDGE or, even worse, GPRS).

 Is the user on the move? Do they have time to fill out a form
while walking and using their thumbs to input data?

These factors affect not just how you present interactive elements, such as input
forms, but how you write code to reduce the amount of effort the user has to
make to complete the task ahead.

In Figures 2-2 and 2-3, you can see how much of a difference knowing and
using a user’s location and understanding their situation can make when
creating a location-based utility application.

CHAPTER 2: An Introduction to Creating Mobile Web Apps for Android 23

Figure 2-2. TFL mobile web site user journey

In Figure 2-2 you can see the TFL Journey Planner mobile web site. The user
journey above depicts a worst-case scenario. This user is on the move, and is
prone to making data entry mistakes. As a result of this, the user must go
through two extra page loads with more form fields in order to complete the
task.

What is wrong with having two extra pages to help the user with validation? Two
extra pages will equate to 4+ seconds of loading time over 3G. You must also
factor in the time required for a user to process the page and respond to it.

CHAPTER 2: An Introduction to Creating Mobile Web Apps for Android 24

How can we improve the TFL mobile web site?

 Increase the feedback loop. We can provide suggestions to
the user as they enter from/to locations using autocomplete.
They can then select a suggestion that suits them to prefill the
journey planner form fields.

 We can use the user’s current location as a suggestion for a
start/end point of their journey.

 If we use local storage, we can also suggest to the user a list
of recent destinations. For example, if we know that they have
just planned a journey to get to somewhere, there’s a big
chance that they will want to know how to get back when they
reopen the mobile web application.

CHAPTER 2: An Introduction to Creating Mobile Web Apps for Android 25

Figure 2-3. BUSit mobile web site user journey

Figure 2-3 shows a good example from busitlondon.co.uk. Upon first launching
the mobile web application, it will attempt to find your current location for you.
As users type Start and End locations, it will suggest options for the user to
select using the Google Maps API and autocomplete. You also always have the
option available to select the user’s current location.

After you have planned your destination, it will then suggest routes to you. All of
this information is contained on a single page with no page reloads. A user can
easily change or modify the view without having to wait for graphics (apart from
map tiles) to load. This offers more of a ‘‘native application’’ look and feel.

CHAPTER 2: An Introduction to Creating Mobile Web Apps for Android 26

Social
A social application’s primary goal is to facilitate the ability to connect and
communicate with friends or other people of interest. The time spent interacting
with social mobile web applications is usually significantly higher than time
spent using utility-based applications.

The primary goals for social media applications are usually threefold.

 Users visit to consume content.

 Users visit to contribute content.

 Users visit to participate.

These three fundamental rules underpin nearly every social mobile application
available today. If users do not contribute content, there will be no content for
other users to consume and participate with.

Just because users spend more time on social mobile web applications does
not mean that the path to complete a task, such as sharing content, should be
any more different than that of a task-based application. The same
considerations for the user’s situation should be accounted for. It should be
both easy to share content and easy to consume content.

As an example, Twitter and Facebook are poles apart in terms of feature set, but
the primary goal for both applications on the mobile web is to make it easy for
users to consume, contribute, and participate.

Figure 2-4 shows three screens from the Facebook touch-based mobile web
site (to the left). Upon login, you are presented with the Facebook news feed, so
you can immediately consume content. You are also presented with three clear
and distinct buttons to share content such as your status, photos, and current
location (check-in). You also have a toolbar at the top to provide you with
content and updates related specifically to you (Friend Requests, Messages,
and Notifications) in the form of modal menus or pop-outs. Further features are
in the hidden menu, which leaves scope to add more secondary features and
actions without cluttering the rest of the application.

CHAPTER 2: An Introduction to Creating Mobile Web Apps for Android 27

Figure 2-4. Facebook Touch and Twitter mobile web sites make it easy to share and consume content.

Twitter’s core functionality can be found in its top toolbar. A clear action button
to share content is highlighted in blue with a distinctive icon. Upon logging in,
the user knows that this is a button to share content if they have used the twitter
web site. This same design pattern now resonates through the desktop, mobile,
and web versions of Twitter.

Entertainment
Entertainment-based applications are primarily created to satisfy a need to
overcome some form of boredom. The solution to this comes in many forms,
from the obvious games to delivering music and video content. Entertainment
applications are usually designed to immerse the user within the application’s
environment. This can be achieved even with the most basic HTML5 games
available on the mobile web today.

Web Apps vs. Native Apps
A cause for great debate and discussion during the past few years has been
whether to build a project as a native app or a mobile web app. There are
advantages and disadvantages to both. However, it is important to remember
that the solution you choose should be picked based on the requirements for
your specific project and your own capabilities as a developer. Most importantly,
pick the solution that will get your project finished the quickest!

There are a few factors that will help you make the decision as to whether to
create a mobile web app or a native application.

CHAPTER 2: An Introduction to Creating Mobile Web Apps for Android 28

 Whether you already know how to develop for the target
platform

 Whether your application relies on network connectivity or
some form of dynamic data stored online

 What type of device features your application relies on (e.g.,
GPS, Accelerometer, Gyroscope, Address Book, Calendar,
intensive CPU/GPU operations)

 Whether there is scope within your project to port functionality
to other platforms now or in the future (e.g., iOS, Blackberry,
Windows Phone, desktop)

 How frequently you will be releasing the application, and how
you will handle users not updating your application on their
devices

 Time and budget

If you know how to develop using web standards already, then a mobile web
app might be the best solution. However, if you can develop for the target
platform already, it might be advantageous to make a native application. This
will, however, ever so slightly close the door to making an application that will
work on other platforms, as the same app will need to be re-created for all
platforms unless you use a cross-platform application framework such as
Marmalade.

Making a mobile web app can be a cost effective way to test or prototype your
application across all platforms before turning it native. By using analytics, you
can see which platforms you should target with a native app. By doing user
research, you can see whether creating a native application with platform-
specific features will be advantageous to your users.

If your application relies on APIs that cannot be accessed through the web
browser, such as the Phone Book, Calendar, Gyroscope, or Accelerometer, then
a mobile web application might be out of the question, as these APIs are not
currently available through most mobile web browsers.

If your application relies on dynamic data, it might be a sensible choice to
develop an application using web standards, as you can use Ajax to quickly
deliver content to your application over the network. You can also cache and
store files with a mobile web application, so your application can still be used
offline when there is no network connectivity.

If you frequently provide updates to your mobile application, you might
experience issues with users not updating to the latest version as often as you
would like. By creating a mobile web application, you can simply push updates

CHAPTER 2: An Introduction to Creating Mobile Web Apps for Android 29

to your web server, and all of your users will instantly have the latest version of
your application.

In Figure 2-5 you can see how the Twitter native application (left) and mobile
web application (right) show the difference between a social application as a
native application and as a mobile web application. As you can see, there is no
real difference. The main feature to be dropped in the mobile web application is
the ability to share content using third-party native applications. Twitter has also
removed the ability to share photos on the mobile web application.
Object/feature detection could provide the ability to upload photos on certain
devices.

Figure 2-5. Twitter native application (left) and Twitter mobile web application (right)

The information gathered so far in this section should help you decide whether
to go native or mobile web.

There is, however, a third option. Multiple phone web-based application
frameworks, such as PhoneGap, Appcelerator, and Rhomobile, will allow you to
build your applications in XHTML/JavaScript and CSS, but leverage some of the
APIs that might only be available to native web apps.

These frameworks provide a web view for you to develop your app within, and
provide a proxy to the mobile’s APIs by using JavaScript as a bridge between
the two. Figure 2-6 shows the structure of multiple phone web-based
application frameworks.

CHAPTER 2: An Introduction to Creating Mobile Web Apps for Android 30

Figure 2-6. The structure of a multiple phone web-based application framework

Deploying your mobile web application this way leads you to new opportunities.
We know that at some point, mobile web browsers will provide APIs to interact
with third-party applications and take advantage of the mobile device’s
hardware such as CPU/GPU and camera. So it makes sense to continue
development for the browser. However, multiple phone web-based application
frameworks help to bring the APIs and services that are available to native
applications to web applications as well.

By building your application in this manner, you can build once and deploy a
mobile web application that has limited functionality. You can then progressively
enhance that same application using object/feature detection within a multiple
phone web-based application framework as a native application. This gives you
the best of both worlds.

The First Line of Code: Hello World
It’s now time for you to write your first line of code. In this Hello World
application, you will simply create an HTML web page with ‘‘Hello World!’’ and
display it on the Android Virtual Device.

Setting Up
Start by opening Aptana Studio. You will need to create a new project, so go to
File  New  Web Project.

You will be presented with a screen similar to the one in Figure 2-7. Enter a
project name and click Finish. I have chosen Chapter-2 as mine.

CHAPTER 2: An Introduction to Creating Mobile Web Apps for Android 31

Figure 2-7. Aptana’s New Web Project wizard

This will create a new empty project in Aptana. The new project will appear in
the App Explorer panel on the left-hand side.

HTML
Writing for the mobile web is not dissimilar to writing for desktop web
applications. We’ll start by creating a basic HTML5 document.

Create a new file in much the same way as creating a new folder, except select
File instead of Folder. Name this file index.html. It’s important to make sure that
this file exists in the root of your project. The following code will form the basis
of our HTML file.

CHAPTER 2: An Introduction to Creating Mobile Web Apps for Android 32

Listing 2-5. HTML Source Code for Hello World!

<!DOCTYPE html>
<html lang="en-GB" dir="ltr">

 <head>

 <meta charset="UTF-8" />
 <meta name="viewport" content="width=device-width; initial-scale=1.0;
 maximum-scale=1.0; user-scalable=0; target-densitydpi=device-dpi;"/>
 <title>My First Mobile Web App</title>

 </head>

 <body>

 <h1>Hello World!</h1>

 </body>

</html>

If you are not familiar with some of the HTML elements shown in Listing 2-5, the
first line is the new HTML5 doctype. In HTML5, you do not need to specify a
DTD, which can usually be found in XHTML 1.1 pages. Listing 2-6 shows the
difference between an XHTML 1.1 doctype declaration and an HTML5 doctype
declaration.

Listing 2-6. The Difference Between an XHTML 1.1 Doctype Declaration and an HTML5 Doctype
Declaration

<!-- HTML4 Doctype Decleration -->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<!-- HTML5 Doctype Decleration -->
<!DOCTYPE html>

As you can see, there is now no need to Google or memorize the location of the
DTD path or specify the HTML version.

In the HTML tag, I have added two attributes: <html lang="en-GB" dir="ltr">.
lang will specify the language used within the document, and dir dictates the
reading direction. dir has been set to ltr for left to right, and lang has been set
to en-GB for English - Great Britian.

Proceeding to the head element, there are two meta tags, as shown in
Listing 2-7.

http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd

CHAPTER 2: An Introduction to Creating Mobile Web Apps for Android 33

Listing 2-7. Meta Elements from the Source Code

<meta charset="UTF-8" />
<meta name="viewport" content="width=device-width; initial-scale=1.0; maximum-
scale=1.0; user-scalable=no; target-densitydpi=device-dpi;"/>

The first meta tag specifies the character set used within the document. This
should usually be UTF-8, which will cover the majority of language characters.

The second meta tag is specifically used to control the layout or viewport on
mobile web sites. With this meta tag, we can set the width of the page to be the
same, smaller, or bigger than the viewport (visible area of the browser screen)
using the width property.

You can also use this tag to control how much a user can zoom into your web
application with the initial-scale and maximum-scale properties.

The user-scalable property is a flag used to enable or disable users from
pinching or tapping to zoom into or out of your mobile web application.

Finally, the target-densitydpi property is used to dictate how the web page
should scale based on the pixel density of the user’s screen. Setting this
property to device-dpi will prevent images from automatically scaling up for
devices with a high pixel density or down for devices with a low pixel density.
This helps to prevent pixilation in images commonly found when images are
scaled by the device. In Chapter 3, you will discover how to use media queries
to prevent images from becoming pixelated on high/medium and low-density
devices. Listing 2-8 shows the full definition for the viewport meta tag.

Listing 2-8. Full Viewport Meta Tag Definition

<meta name="viewport"
 content="
 height = [pixel value | device-height] ,
 width = [pixel value | device-width] ,
 initial-scale = float value ,
 minimum-scale = float value ,
 maximum-scale = float value ,
 user-scalable = [yes | no] ,
 target-densitydpi = [dpi value | device-dpi |
 high-dpi | medium-dpi | low-dpi]
 " />

CHAPTER 2: An Introduction to Creating Mobile Web Apps for Android 34

Listing 2-9 shows the <title /> tag, which contains the title of the page.

Listing 2-9. Title Tag

<title>My First Mobile Web App</title>

Finally, as shown in Listing 2-10, within the body, there is an <h1 /> tag
containing the text ‘‘Hello World!’’.

Listing 2-10. Title and Link Tags

<body>

 <h1>Hello World!</h1>

</body>

Testing
Before continuing, you should create an Android Virtual Device (AVD) using the
Android SDK in Aptana to test your web site and to see its progress. For the
purpose of this chapter, you will create a simple AVD with minimal functionality.

Start by going to Window  AVD Manager, as shown in Figure 2-8.

Figure 2-8. Creating a new Android Virtual Device

CHAPTER 2: An Introduction to Creating Mobile Web Apps for Android 35

When the AVD dialog window appears, click new, which can be found on the
right-hand side of the window.

In the Create new Android Virtual Device (AVD) dialog box, use the following
parameters.

 Name: My-Test

 Target: Android 4.0 -- API Level 14

 SD Card: Size: 100 MiB

 Snapshot: Enabled

 Skin: Built-in: WVGA800

 Hardware:

 Abstracted LCD density: 240

 Max VM application heap size: 24

 Device ram size: 1024

After all options have been set, click the Create AVD button. Your new AVD will
appear in the Android Virtual Device Manager. Select it and click Start. A new
dialog will appear, in which you should accept the defaults and click Launch.
The AVDs are known to be extremely slow to start and run. There are
alternatives, but they will not be covered in this book.

After several minutes, you should have a virtual Android device up and running.
Click the Internet icon to launch the browser.

You now need to deploy your application to your web server. In the Chapter 3,
you will find out more about automatically deploying your application, but for
now you can use Aptana to export the project to the appropriate folder. Go to
File  Export. In the Export dialog, select General  File System and click Next.
Select Chapter-2 and select Browse in the ‘‘To directory’’. Browse to your Sites
folder within your home directory and select Open. Click Finish and Aptana will
begin to publish documents to that directory.

You can now visit the web site using the AVD’s built-in browser and the URL
you took a note of in Chapter 1 (http://your-ip-address/~username/Chapter-
2/). If everything is working, as it should, you should see what is shown in Figure
2-9 inside the AVD’s screen.

CHAPTER 2: An Introduction to Creating Mobile Web Apps for Android 36

Figure 2-9. Hello World!

Summary
In this chapter, you should have learned about the three different types of web
applications: task based, social, and entertainment.

You should have an understanding as to how users may interact with your
application. You should have an understanding of how to take a user’s potential
situation into consideration when developing mobile web applications beyond
this book, and how this can impact your features, design, and user experience.

This chapter should have given you an insight into best practices in JavaScript
development, as well as scratching the surface of responsive design.

Finally, this chapter should have given you some bearings on whether to start
your project as a native, web, or multiple phone web-based application
framework project.

3
Chapter

HTML5
With the demand to produce cross-platform mobile applications, HTML5 has
never been so important to the mobile industry. It is one of the best candidates
for creating simple, yet feature rich applications that can be built and deployed
once to support every major smartphone handset and tablet device available
today.

The common misconception for HTML5-based applications is that they can be
slow, unresponsive, and do not live up to the speed and quality that users have
come to expect of native mobile applications. This is only half true, as you might
have seen from the previous chapter; it depends on the type of application
being built. For example, the Financial Times app available on the App Store
appears to be a native application. However, if you look closely, you will see that
the Financial Times app is simply the Financial Times mobile web app
(app.ft.com) wrapped in a WebView within the native app.

As you can see from Figure 3-1, both apps for the iPhone and Android look
similar. Putting aside several platform-specific enhancements brought out by the
UI, they are in fact the same application.

NOTE: There is nothing wrong with building a web app and exposing it to

the various app markets using multiple phone web-based application

frameworks such as PhoneGap. It increases exposure for your application

and makes it more accessible to your users. Making your applications in

this way can also provide you with an immediate solution should the App

Store’s terms and conditions change to not be in your favor.

CHAPTER 3: HTML5 38

Figure 3-1. The native Financial Times android app (left) and the iOS web app (right)

In this chapter, you will learn the key fundamentals of HTML5 and how to
leverage it for the mobile web.

You will also learn how to encode video and audio content for mobile and the
types of services that are available to facilitate the delivery of that content to
your users.

The chapter will go into more depth on how to use media queries to style your
content based on screen attributes.

Finally, you will learn about the new form elements and how to hint at certain
types of input data to affect the keyboard in the browser.

What’s New?
HTML5 has made a significant leap from HTML4/XHTML1.1. It provides new
HTML tags such as header, footer, hgroup, nav, section, and article in a step
to improve the way we mark up documents. This has allowed us to produce
more meaningful and machine-readable content. For example, we can now use
<. Along with this, HTML5 also brings the standardization of access to APIs,
such as geolocation, canvas, web sockets, and web storage.

CHAPTER 3: HTML5 39

There are many new changes to the HTML5 spec, but for this chapter, we will
focus on the changes that are applicable to mobile.

The changes in the HTML5 spec will be apparent in code examples provided.
But you may ask yourself, what’s the point? Your users will see the same thing
regardless of whether you use the new HTML5 elements. There are several
reasons why making this change will have an impact on your users.

 You can produce cleaner code that is easier to maintain.

 Machine consumers will have an easier time reading and
understanding your code. Machines include search engine
bots, browser plugins, and features that rely on understanding
how your document’s content is structured.

 You don’t have to define as many classes and IDs within your
document. You can rely more on the cascade to do much of
the work for you.

NOTE: Although the examples do not show <body />, <html />, or
<head /> tags, all elements can be placed within the body of the
document unless otherwise specified.

<article />
The <article /> element is used to represent independent content on a page,
such as a blog post, news article, or comment. In principle, an article should
contain its own header, content, and footer. You may also nest information
about the article’s author within the element. You can also nest article elements
within another article element to help further structure content such as article
comments.

Figure 3-2 shows where an <article /> element may be placed in relation to an
HTML5 document. Listing 3-1 shows the structure of some basic HTML5
elements, and where the <article /> element fits into this hierarchy.

CHAPTER 3: HTML5 40

Figure 3-2. <article /> element (highlighted in gray) in relation to elements found in a mobile web
site document

Listing 3-1. Proposed Structure of an Article in HTML5

<article>

 <header>

 <h1>Article Title</h1>

 <p>

 Created by Daniel Carpenter on
 <time pubdate="2012-03-15">March 15th 2012</time>

 </p>

 </header>

CHAPTER 3: HTML5 41

 <p>Article Content</p>

 <footer>

 <address>

 <p>

 Written by

 Daniel Carpenter

 Follow him on
 Twitter

 </p>

 </address>

 </footer>

</article>

The elements shown in Listing 3-1 appear to have meaning. The <header />
element contains all of the header information related to the article, such as the
title, author, and the time of publishing. Notice that the content within the article
does not need to be wrapped in another element. Finally, the <footer />
contains information about the author, which is nested within an <address />
element.

Compare this to Listing 3-2, which shows how you might have written this in
previous versions of HTML.

4

mailto:daniel.carpenter@somewhere.com
http://www.twitter.com/mrdanc

CHAPTER 3: HTML5 42

Listing 3-2. Proposed Structure of an Article in HTML4 and Prior

<div class="article">

 <div class="header">

 <h1>Article Title</h1>

 <p>

 Created by Daniel Carpenter on
 March 15th 2012

 </p>

 </div>

 <p>Article Content</p>

 <div class="footer">

 <div class="author-details">

 <p>

 Written by

 Daniel Carpenter

 Follow him on
 Twitter

 </p>

 </div>

 </div>

</div>

As you can see from Listing 3-2, there is no real apparent structure to the
markup. There are a lot of divs with classes associated with them; however,
there is no real standard for creating a document like this.

mailto:daniel.carpenter@somewhere.com
http://www.twitter.com/mrdanc

CHAPTER 3: HTML5 43

<aside />
The <aside /> element can be used to represent content unrelated to the main
content of the web site, such as tweets, related links, tags, and navigation
elements. These normally appear to the left or right side of the document, as
shown in Figure 3-3.

Figure 3-3. Structure of a document with the <aside /> element (highlighted in gray)

We can make use of the aside element for mobile by hiding it based on the
screen size, and revealing it when a user clicks a button to show it. This design
pattern can be found on the facebook mobile web app, and will be explored in
more depth with the workshop in Chapter 4.

Listing 3-3 shows how the aside element should be used, and Listing 3-4 shows
how you might have written the same code in HTML4.

CHAPTER 3: HTML5 44

Listing 3-3. Proposed Structure of Aside in HTML5

<aside>

 <nav>

 <h2>Places To Go</h2>

 Somewhere

 Somewhere Else

 </nav>

</aside>

<section class="content">

 <!-- Your Content Goes Here -->

</section>

As you can see from Listing 3-3, we use the <aside /> element to house
navigation for the web site, as it exists outside of the content section defined by
the <section class="content" /> element. The <aside /> element would be
floated to the left of the content.

The same markup written for HTML4 would look like Listing 3-4.

Listing 3-4. Proposed Structure of Aside in HTML4

<div class="sidebar">

 <div class="navigation">

 Somewhere

 Somewhere Else

 </div class="navigation">

</div>

CHAPTER 3: HTML5 45

<div class="content">

 <!-- Your Content Goes Here -->

</div>

As you can see, using divs instead of meaningful markup makes it harder to
understand the content at first glance.

<audio />
The <audio /> element is used to embed audio content within a web page. This
is new to HTML5 and is not available in HTML4. For browsers not supporting
HTML5 audio, you can provide a link to a 3gp version of the audio file within the
<audio /> tag. Listing 3-5 shows how to embed an audio file.

Listing 3-5. How to Use the Audio Tag in HTML5

<audio controls="controls">

 <source src="media/audio.oga" type="application/ogg">

 <source src="media/audio.mp3" type="audio/mpeg">

 <p>

 Your browser does not support HTML5 Audio,
 click here to download

 </p>

</audio>

This will render the native audio player for the handset. Within the <audio /> tag,
you will see several <source /> elements. These are used to provide different
audio formats for the browser, such as MP3, OGG, or WAV. You should specify
the mime type of the audio file in order for the browser to pick the correct audio
file.

Figure 3-4 shows what an <audio /> element looks like in Android 4.

CHAPTER 3: HTML5 46

Figure 3-4. <audio /> element in Android 4 Ice Cream Sandwich

The <audio /> tag also supports several additional media-based attributes.
Table 3-1 shows these attributes and their descriptions.

Table 3-1. HTML5 Audio Attributes

Attribute Value Description

src — Used to specify a single audio file instead of using
the <source /> tags.

preload none | metadata |
auto

Used to specify whether to preload the audio file.
It’s advisable to set this to either none or
metadata. This will prevent the browser from
downloading the entire audio file without the user’s
knowledge.

autoplay autoplay Used to tell the browser to automatically play the
audio file. If you do not want the audio to play
automatically, do not add this element.

loop loop Used to specify whether the audio should
continuously loop. This attribute will not accept a
number. If you would like your audio to loop for a
specific number of times, you can do this using the
JavaScript audio API.

muted muted This will mute the audio. Note that this does not
appear to be supported in Android Browser.

controls controls Used to tell the browser whether to render the
default controls. If you produce your own UI for
your audio player, this can be handy.

CHAPTER 3: HTML5 47

Supported Media Formats
Not all media formats will work on Android. Table 3-2 shows the formats that
should work with most, if not all, Android handsets.

Table 3-2. Supported HTML5 Audio Formats

Format Mime Type File Name Extension

OGG Vorbis Audio application/ogg .ogg

MP4 Audio audio/mp4 .m4a, .mp4, .3gp, .aac

WMA Audio audio/x-ms-wma .wma

MP3 Audio audio/mpeg .mp3

<canvas />
The <canvas /> element provides a context/stage in HTML for you to draw
shapes within. You will learn how to draw with the canvas JavaScript API in
Chapter 7.

The canvas API will give you an alternative to using DOM elements for graphic-
intensive animation or drawing. The <canvas /> element supports width and
height attributes. Any text within the <canvas /> element will be shown to
browsers that do not support it.

Listing 3-6 shows how to draw a simple semitransparent square using canvas.

Listing 3-6. Drawing a Simple Square in HTML5 Canvas

<canvas id="test-canvas" width="400" height="400">
 <p>Your browser does not support HTML5 Canvas :(</p>
</canvas>

<script type="text/javascript">

 var canvas = document.getElementById("test-canvas");
 var context = canvas.getContext("2d");

 context.fillStyle = "rgba(0, 0, 0, 0.5)"
 context.fillRect(0, 0, 400, 400);

</script>

CHAPTER 3: HTML5 48

As you can see, you define the canvas in HTML using the <canvas /> element.
Any text within the <canvas /> element will be visible to browsers that do not
support canvas. You then use JavaScript to draw paths onto the canvas. Figure
3-5 shows the result.

Figure 3-5. Rendered rectangle on the <canvas /> element

<figure /> and <figcaption />
The <figure /> and <figcaption /> elements are used to mark up figures on a
web page, such as a code sample, image, or diagram. Listing 3-7 shows how a
figcaption should be written in HTML5.

Listing 3-7. Creating a Figure and Caption

<figure id="figure-1">

 <figcaption>Figure 1. Graph showing how amazing and awesome something
is</figcaption>

</figure>

As you can see in Listing 3-7, the id attribute has been used. This will allow you
to use URL hashes to jump directly to a figure from a link. For example, Jump to Figure 1 can be used to link directly to a figure
within a page.

CHAPTER 3: HTML5 49

Notice that <figcaption /> has been nested within the <figure /> element.
This allows you to provide a caption for the item being used as the figure. If you
are referencing text, you can also use the <cite /> element to reference the
source of the text. Listing 3-8 shows how you can use this.

Listing 3-8. Citing a Source

<figure id="figure-2">

 <figcaption>
 Figure 2. A scan from my mothers magazine <cite>The Notebook</cite>
 </figcaption>

</figure>

<footer />
The <footer /> element can be used to replace a <div /> element, and is
commonly used to create a footer within a document. The <footer /> element
will usually be used to contain contact and copyright information and links to
privacy policies or terms and conditions. Listing 3-9 shows how to create a
<footer />. You can also use more than a single footer within a document, such
as within a section or article.

Listing 3-9. Creating a Footer in HTML5

<footer>

 <p class="copyright">© 2012 My Company</p>

</footer>

Listing 3-10 shows how you would achieve the same thing in HTML4.

Listing 3-10. Creating a Footer in HTML4

<div id="footer">

 <p class="copyright">© 2012 My Company</p>

</div>

Figure 3-6 shows where the <footer /> would normally be rendered within the
DOM.

CHAPTER 3: HTML5 50

Figure 3-6. Structure of a document with the <footer /> element

<header />
The <header /> element can be used to create a header within the document.
The <header /> tag can be used more than once within a document. It will
usually contain a logo and/or a group of header elements. The most common
use for a <header /> element would be to add a logo and navigation at the top
of a page. Listing 3-11 shows how to do this.

Although not required, you can wrap the commonly used for navigation
with a <nav /> element. This makes it clear to consumers reading your code that
it is a navigation element.

Listing 3-11. Creating a Header Within an HTML5 Document

<header>

 <nav>

CHAPTER 3: HTML5 51

 Home

 About

 Contact Us

 </nav>

</header>

You can achieve the same result in HTML4 using the code in Listing 3-12.

Listing 3-12. Creating a Header in HTML4

<div id="header ">

 <ul class="navigation">

 Home

 About

 Contact Us

</div>

<hgroup />
The <hgroup /> element can be used to group together related headings, such
as an <h1 /> element for a title, and an <h2 /> element for a subtitle. <hgroup />
elements should not contain any elements other than header elements (i.e., <h1
/>, <h2 />, <h3 />, <h4 />, etc.).

The rank of an <hgroup /> within a document is defined by the highest ranked
header element within that <hgroup />.

Listing 3-13 shows how to use an <hgroup /> in HTML5, and Listing 3-14 shows
how you may have grouped headings in HTML4.

CHAPTER 3: HTML5 52

Listing 3-13. Defining Headers in HTML5 Using Hgroup

<hgroup>

 <h1>My Header</h1>

 <h2>My Subheader</h2>

</hgroup>

Listing 3-14. Defining a Group of Headers in HTML4

<div class="header-grouping">

 <h1>My Header</h1>

 <h2>My Subheader</h2>

</div>

<mark />
The <mark /> element can be used to highlight text within a document. Listing
3-15 shows how this can be used in HTML5, and Listing 3-16 shows how this
would have been achieved in HTML4 using a combination of CSS and HTML.

Listing 3-15. Using the Mark Tag in HTML5

<p>This is an <mark>important</mark> reminder for Inga Lyon</p>

Listing 3-16. Highlighting Text in HTML4

<p>This is an <em class="highlight">important reminger for Inga Lyon</p>

<style type="text/css">

 em.highlight {
 background: yellow;
 }

</style>

<nav />
The <nav /> element can be used to define navigation links within a page. The
<nav /> element should only be used to define major navigation elements within

CHAPTER 3: HTML5 53

a page, such as the primary navigation or side/sub navigation. You can add any
content within the <nav /> element, as long as it contains links to content within
the web site. Listing 3-17 shows how to use the <nav /> element in HTML5, and
Listing 3-18 shows how you may have defined a navigation in HTML4.

Listing 3-17. Creating a Nav in HTML5

 <nav>

 Home

 About

 Contact Us

 </nav>

Listing 3-18. Creating a Navigation in HTML4

<ul class="navigation">

 Home

 About

 Contact Us

<output />
The <output /> element can be used to show the results of a calculation. The
<output /> element can come in handy when displaying the result of a
dynamic/AJAX form. Rather than showing the results by modifying the inner
HTML of a element, you can set the value in much the same way as
any other HTML form-based input element.

NOTE: Submitting a form with the <output /> tag will not send the
value of the output. If you wish to do this, you must set the value of a
hidden field to be the result of the calculation.

CHAPTER 3: HTML5 54

Listing 3-19 shows how to implement this in HTML5, and Listing 3-20 shows
how you might have done this in HTML4. The for attribute can be used to
specify the related inputs used for the calculation.

Listing 3-19. Using the Output Element in HTML5

<form action="calculate.php" name="calculate">

 <input type="number" name="a" value="0" /> +
 <input type="number" name="b" value="0" /> =
 <output name="c" for="a b" />

</form>

<script type="text/javascript" charset="utf-8">

 function calculate(){
 var form = document.calculate;
 form.c.value = form.a.valueAsNumber + form.b.valueAsNumber;
 }

 document.calculate.addEventListener("input", calculate);

</script>

Listing 3-20. Creating Something Similar to Output in HTML4

<form action="calculate.php" name="calculate">

 <input type="number" name="a" value="0" /> +
 <input type="number" name="b" value="0" /> =

</form>

<script type="text/javascript" charset="utf-8">

 function calculate(){
 var form = document.calculate;
 document.getElementById('c').innerText = form.a.valueAsNumber +
form.b.valueAsNumber;
 }

 document.calculate.addEventListener("input", calculate);

</script>

CHAPTER 3: HTML5 55

<section />
The <section /> element can be used to define a section within an HTML5
document. You can use the <section /> tag to group together common
elements, such as chapters for a blog post or product information for an
ecommerce web site. A common misconception is to replace all <div />
elements with <section /> elements. If you are using <section /> elements to
help with styling or scripting and not for creating a semantic document, you
should probably use a <div /> with a class.

Listing 3-21 shows how to use a <section /> element to group together
comments on a blog post.

Listing 3-21. Using a Section Element in HTML5

<article>

 <header>

 <h1>Article Title</h1>

 <p>

 Created by Daniel Carpenter on
 <time pubdate="2012-03-15">March 15th 2012</time>

 </p>

 </header>

 <p>Article Content</p>
 <section class="comments">

 <article id="comment-1">

 <header>
 <p>
 From Becci Buckley on
 <time pubdate="2012-03-15">March 20th 2012</time>
 </p>
 </header>

 <p>This is a great article Dan, it might need some work :D</p>

 </article>

 </section>

CHAPTER 3: HTML5 56

 <footer>

 <address>

 <p>

 Written by

 Daniel Carpenter

 Follow him on
 Twitter

 </p>

 </address>

 </footer>

</article>

As you can see from Listing 3-21, you can nest <article /> elements within a
<section /> element. In fact, you can add any HTML element you like within a
<section /> tag.

<time />
The <time /> element can be used to specify time within a document. It does
not appear to do much at the moment other than provide semantic markup for
time-based elements. The <time /> element supports a datetime attribute that
can be used to give the date or time in a machine-readable format. It also
supports the pubdate attribute that will relate to the closest parent <article />
element. Listing 3-22 shows how to use the <time /> element.

Listing 3-22. Using the Time Element to Show the Publish Time for an Article

<article>

 <header>

 <h1>Article Title</h1>

 <p>

mailto:daniel.carpenter@somewhere.com
http://www.twitter.com/mrdanc

CHAPTER 3: HTML5 57

 Created by Daniel Carpenter on
 <time pubdate="2012-03-15">March 15th 2012</time>

 </p>

 </header>

</article>

<video />
The <video /> element can be used to embed video within a page. I cover this
in the section ‘‘Embedding Video with HTML5’’ later in this chapter.

The <video /> element provides an alternative to using Flash to embed video
within an HTML document. It also has several JavaScript APIs to control the
playback of the video.

The video being played will automatically enter full screen in Android Browser on
versions lower than Android 4 Ice Cream Sandwich, but will remain in place in
Android 4 and above.

Table 3-3 shows the attributes available for the <video /> element.

Table 3-3. HTML5 Video Attributes

Attribute Value Description

src — Used to specify a single video file instead of using
the <source /> tags.

preload none | metadata |
auto

Used to specify whether to preload the video file.
It’s advisable to set this to either none or
metadata. This will prevent the browser from
downloading the entire video file without the user’s
knowledge.

autoplay autoplay Used to tell the browser to automatically play the
video file. If you do not want the video to play
automatically, do not add this element.

loop loop Used to specify whether the video should
continuously loop. This attribute will not accept a
number. If you would like your audio to loop for a
specific number of times, you can do this using the
JavaScript video API.

CHAPTER 3: HTML5 58

Attribute Value Description

muted muted This will mute the audio. Note that this does not
appear to be supported in Android Browser.

controls controls Used to tell the browser whether to render the
default controls. If you produce your own UI for
your video player, this can be handy.

height height in pixels Specifies the initial height of the video element.

width width in pixels Specifies the initial width of the video element.

poster url to poster
image

This is the path to the image used within the video
tag prior to the video playing.

The <video /> element also currently supports most popular video containers
and codecs.

Table 3-4 shows the formats and mime types that are currently supported by
Android Browser. How to encode for these formats will be covered later in this
chapter.

Table 3-4. HTML5 Video Supported Formats

Container Extensions Mime Notes

MPEG-1 .mpg, .mpeg, .mpv video/mpeg —

MP4 .mp4 video/mp4 —

OGG .ogv, .ogg application/ogg —

WebM .webm video/webm Supported only in
Android 4 (Ice Cream
Sandwich)

MKV .mkv video/x-matroska —

Windows Media
Video

.wmv video/x-ms-wmv —

CHAPTER 3: HTML5 59

Handling Multimedia in HTML5
With the ever-increasing speeds available on mobile devices, and mobile web
browsers supporting more and more video and audio containers and codecs,
there has never been a better time to explore adding video to a mobile web
application.

There are several things you need to think about when adding video to a mobile
web site. It’s unfortunately not as simple as encoding video and audio for a
certain file extension or format.

When encoding video and audio for HTML5, there are four things you should
take into consideration.

 The supported containers for the device

 The supported codecs and decoders on the device

 The quality of the final video and audio

 The file size of the final video and audio

In order to play back video, you will need to encode the video and audio using a
codec that the target device can understand and play back.

NOTE: A codec comes in two parts: an encoder and a decoder. When
you compress a video using a specific codec, that same codec is
required to decompress the video ready for playback. The different
codecs are capable of different types and qualities of compression
(e.g., H.264 will encode video differently to VP8). The different codecs
have an effect on file size and quality due to how they compress video.

The quality of the encoded video depends on the bitrate you set; this also has
an immediate impact on the file size. If you have a target file size in mind, you
can calculate what the bitrate for the video should be and work from there. The
following formula should help you work this out.

((video bitrate [kb/sec] + audio bitrate [kb /sec]) * length [seconds]) * 0.125)
= file size [Kb]

There are various bitrate calculators available online that will help you to
calculate what bitrate a video or audio file should be, based on a number of
other factors. This can be useful when using command-line encoding tools such
as FFMPEG or Mencoder.

CHAPTER 3: HTML5 60

Surrounding the compressed/uncompressed video and audio is a container. The
container will usually provide details on the multiple tracks for video. One track
will be used for the video itself, and the second track will be used for the video’s
audio. A container will not necessarily describe how a video or audio file has
been encoded, but may define a certain standard as to how a video should be
encoded for that specific container.

When picking a container, it’s important to pick one that supports a limited
number of codecs. This will make encoding much simpler, as you will not have
to research which codecs are supported on current and newer devices. For
example, the Matroska (MKV) container supports almost any video and audio
codec available today, so it’s a much bigger task to choose which codecs to
use within the container; whereas WebM will only support the VP8 video codec
and Vorbis audio codec. This makes it a simpler task when encoding for a
device that supports the WebM container.

To avoid confusion, Table 3-5 shows the most popular codecs and containers
that you should provide support for when embedding video for mobile.

Table 3-5. HTML5 Video Suggested Containers and Codec Combinations

Container Video Codec Audio Codec Mime

MP4 H.264 AVC (Baseline)AAC video/mp4

WebM VP8 Vorbis video/webm

The Android documentation also suggests the following resolutions, shown in
Table 3-6, based on quality.

Table 3-6. HTML5 Video Suggested Resolutions

Quality Resolution Frames Per Second (FPS)

SD (low quality) 176 × 144px 12

SD (high quality) 480 × 360px 30

HD (not for all devices) 1280 × 720px 30

Table 3-7 shows the recommended supported containers and codecs for audio
on Android.

CHAPTER 3: HTML5 61

Table 3-7. HTML5 Audio Suggested Containers and Codec Combinations

Container Audio Codec Mime

MP3 MP3 audio/mpeg

OGG Vorbis application/ogg

Supporting these two containers and codecs should provide enough support for
all Android devices without requiring you to do mass amounts of batch
encoding and testing.

Optimizing Video for the Mobile Web
You should now have an understanding of the complexities of encoding video
for the mobile web. There are dozens of applications that will allow you to
encode video for the web. Some of these are free and open source desktop
applications (such as Easy HTML5 Video for Mac/Windows, and the new Miro
Video Encoder for Mac/Windows), and others are hosted, web-based solutions
that also provide support to host your videos online (such as bitsontherun.com,
zencoder.com, or encoding.com).

You should use the best encoding solution to suit your needs.

Hosted Solutions
Hosted solutions are perfect for on-demand encoding, and if you wish to offload
a lot of your site traffic to another server. Most of the hosting solutions provide
APIs that allow you to push videos to their service over the web. After the video
has finished encoding, you will be given a URL, which can be used to embed
your video. They will usually consume a video encoded in any format, and
encoding usually takes minutes. The hosted solutions will also provide a list of
common encoding options based on device or format.

The simplest to use of these hosted solutions is bitsontherun.com, though
encoding.com and zencoder.com offer more control over how you encode your
videos, as shown in Figure 3-7.

CHAPTER 3: HTML5 62

Figure 3-7. Encoding options on encoding.com

As you can see, bitsontherun.com is much more simplistic when creating
encoding settings by providing basic options, as shown in Figure 3-8. If you
want to have more control over the compression options for your video, then
encoding.com and zencoder.com will provide the best options. If you simply
want to encode video and not worry about the various compression options,
then bitsontherun.com is the best option. Hosted encoding solutions provide the
best solution if you do not have a very powerful machine and want to encode
video quickly, or if you have a mass amount of video to encode. The presets
available on the hosted solutions are also constantly refined and tuned.

The downside to using a hosted solution is that you pay based on how much
you upload and download, and in the case of zencoder.com, you pay based on
how many hours of video you encode.

CHAPTER 3: HTML5 63

Figure 3-8. Encoding options on bitsontherun.com

Desktop Solutions
Desktop encoding solutions are perfect for small encoding runs. If you have a
low-spec computer, be prepared to head to the closest pub for a beer or two
while you leave a fan on next to your computer to stop it from overheating!
Encoding videos requires large amounts of processing power and can take
several seconds to render a single frame. This process can be time consuming.
The better the processor in your computer, the shorter the encoding time will be.

Using the command-line tools, such as FFMPEG and Mencoder, instead of the
GUIs that provide an interface for them, can have its advantages. For instance, it
gives you the ability to trigger encoding jobs from a server-side script written in
Python, PHP, or Ruby. You can also wrap the various encoding parameters in a
bash script. This allows you to potentially batch encode a folder full of videos, all
at once.

The simplest free desktop solution for Windows and Mac is Miro Video
Converter, shown in Figure 3-9.

CHAPTER 3: HTML5 64

Figure 3-9. Miro Video Converter for Mac

As you can see, it has a simple drag-and-drop UI, and can convert to a number
of different formats. When encoding video for desktop-based HTML5 web sites,
Miro is perfect; however, you will want to squeeze as much as you can out of
the videos for the mobile web without compromising on quality. Miro, at the
moment, doesn’t allow you to adjust any of the settings for output.

Because of this, the best option for now is to use bitsontherun.com to encode
video for the mobile web.

CHAPTER 3: HTML5 65

Encoding Videos with Bits on the Run
The first thing to do is to head over to www.bitsontherun.com and create a free
account. A free account will give you up to one hour of video storage and 20
hours of streaming time per month. This should be just enough for this book. If
you require more, you can always upgrade to a pro account.

After you have created your account, you will want to create templates for your
encoding jobs.

Templates allow you to create custom encoding templates for your videos and
audio. You can create a template once, and use it for all of your video and audio
files.

NOTE: Unfortunately, if you create a template, you must manually re-
encode any videos with the new template. There is a way around this
by using the Bits on the Run API.

Log in and go to the account page, as shown in Figure 3-10.

Figure 3-10. Account options on bitsontherun.com

Click the properties tab on the account page (also shown in Figure 3-10). Under
account properties, click the Templates tab.

From here, you will create two templates. One will be for MP4 (H.264) and the
other will be for WebM (VP8).

Click on the ‘‘Add new template’’ button, which you can find toward the bottom
of the page, as shown in Figure 3-11.

Figure 3-11. “Add new template” button

h

http://www.bitsontherun.com

CHAPTER 3: HTML5 66

You should then be presented with a ‘‘Create new template’’ dialog similar to
that shown in Figure 3-12. Ensure the following settings have been set:

 Name: HTML5 MP4

 Format: MP4 Video (H.264/AAC)

Click Create.

Figure 3-12. “Create new template” dialog

The ‘‘Template properties’’ page, similar to Figure 3-13, will then be presented
to you. Ensure the following options are set.

 Automate: Automatically apply this template to new videos

 Target Width: 480

 Upscaling: Always build this template, even if the original is
smaller

 Video Quality: Good quality-filesize tradeoff (recommended)

 Audio Quality: Good quality-filesize tradeoff (recommended)

 Watermark: No Watermark

Click Save.

You will need to repeat the process again for WebM. Except enter the following
information on the ‘‘Create new template’’ dialog.

 Name: HTML5 WebM

 Format: WebM Video (VP8/Vorbis)

Enter the following information on the ‘‘Template properties’’ page.

 Automate: Automatically apply this template to new videos

 Target Width: 480

CHAPTER 3: HTML5 67

 Upscaling: Always build this template, even if the original is
smaller

 Video Quality: Good quality-filesize tradeoff (recommended)

 Audio Quality: Good quality-filesize tradeoff (recommended)

 Watermark: No watermark

Figure 3-13. Template properties

You should now be ready to begin uploading videos to your Bits on the Run
account. In order to do this, go to the videos tab, and click ‘‘Upload new video’’
from the right sidebar, as shown in Figure 3-14.

Figure 3-14. “Upload new video” button

CHAPTER 3: HTML5 68

You will be presented with the ‘‘Upload new video: Step 1’’ dialog box, similar to
that shown in Figure 3-15.

Figure 3-15. “Upload new video: Step 1” dialog

Enter the appropriate information into the fields. As this is a test video, you can
choose anything you like. From here on, ‘‘My Video’’ will refer to the video that
you have just uploaded. Click the ‘‘Continue to upload’’ button.

You should now be in Step 2 of the ‘‘Upload new video’’ dialog. Click the
Browse button, as shown in Figure 3-16, and select any video you wish to use
as a sample video. Ensure you select a video that is less than 100 MB;
otherwise, you might have to wait quite a while for the test video to upload.

Figure 3-16. “Upload new video: Step 2” dialog

After the upload completes, Bits on the Run will begin the encoding process.
Your video will now be ready for embedding. You can both download the video
and copy it to your mobile web project or link directly to it using the src attribute
in the <video /> element. The advantage of downloading it is that you do not

CHAPTER 3: HTML5 69

have to worry about your data allowance with Bits on the Run cutting out when
you reach your limit.

Embedding Video with HTML5
Embedding video on the web used to be a very long-winded process. Before
Flash became popular, all of the browsers, computers, and even the same
version of the same operating system had varying support for codecs and
containers. There was no real common format, and you could not simply embed
several formats of the same video so that the browser could choose the correct
video for the user.

Flash came along and fixed most of those problems. By requiring only one
plugin to play all formats, it was the ‘‘knight in shining armor’’ for video on the
web. So much so that almost every web site used it to deliver videos to their
users.

Then smartphones came about and Flash for mobile became a nightmare. It
required high amounts of CPU, which would drain the mobile phone’s battery
like a vampire. The same could be said for Flash on almost any portable device,
racking up large amounts of CPU power, which had an effect on not just the
performance of the machine but the battery draw from cooling the CPU and
powering it. To this day, Flash still consumes large amounts of CPU on Macs.

In addition to this, developers often didn’t produce Flash-based content with
mobile phone handsets in mind. So when watching a video on a mobile that was
targeted for desktop, you would usually get a 500 MB HD video that wasn’t
really optimized for your handset. This also has an effect on user’s pockets, as
that 500 MB per month data plan would be consumed by a single video in
minutes.

Along came HTML5. Finally, the focus was on the browser, standards, and
hardware acceleration without the need for third-party plugins.

HTML5 brought about HTML5 video. HTML5 video provides a way for browsers
to support decoding video within the browser regardless of the codecs
supported on the platform. This now means that if a user is using Android
Browser, they will definitely have support for WebM or MP4; and if they are
using Safari browser, they will definitely support MP4 but not WebM. Not only
this, but HTML5 video also supports multiple video sources of different types.
This means that you can provide video files that are optimized for each codec
and container. The browser will pick the best codec and container from the list
of sources, sudo-stream it, and deliver it to the user’s browser.

CHAPTER 3: HTML5 70

New to the HTML5 spec is also the support of media queries within video
sources. This can ensure that if you are using a tablet device, you can get a
much higher resolution video delivered to you without having to choose the
quality of the media you wish to view. If you are on a mobile handset, you will
get video that is optimized for your handset with a smaller file size so that it
doesn’t consume all of your data allowance.

NOTE: Video media queries exists within the HTML5 spec, but it
doesn’t seem to be supported by any browsers yet.

Embedding your video in HTML5 is relatively simple. You use the video tag and
specify the width and height attributes of the video. You can then specify the
poster frame for the video. The poster frame is a single still from the video that
you can use to display to the user prior to them clicking on the play button.

Create a new folder called tutorials in Aptana, and within that create a folder
called video. This folder will be used for this exercise. Within the video folder,
create a folder called media. Copy the video and poster image files you have
encoded and downloaded from Bits on the Run to the media folder and rename
them as follows.

 video.webm

 video.mp4

 poster.jpg

Create a new file in the video folder called index.html. Your folder structure
should look similar to the following:

 tutorials

 video

 media

 video.webm

 video.mp4

 poster.jpg

 index.html

Open index.html in Aptana and enter the HTML from Listing 3-23.

CHAPTER 3: HTML5 71

Listing 3-23. Embedding a Video in HTML5

<!DOCTYPE html>
<html>

 <head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, initial-scale=1,
maximum-scale=1">
 <title>Exercise Video</title>
 </head>

 <body>

 <video controls width="480" height="270" poster="media/poster.jpg">
 <source src="media/video.mp4" type="video/mp4">
 <source src="media/video.webm" type="video/webm">

 <p>
 Your browser does not support HTML5 Video, click here
 to download
 </p>

 </video>

 </body>

</html>

Save and export your video. Go to the file in your Android browser. The URL
should be http://<your computer ip address>/tutorials/video/media/. You
should be presented with a screen similar to Figure 3-17.

CHAPTER 3: HTML5 72

Figure 3-17. HTML5 video inline with the content

Tap the play button and the video will begin to buffer and play. As of Android
4+, Android Browser will play video inline with content instead of automatically
going to full screen. This poses a small problem, as it presents inconsistencies
between how video is handled with newer and legacy devices. The solution to
this is to automatically enlarge video using the JavaScript video API to full
screen. This will be covered in Chapter 7.

Optimizing Audio for the Mobile Web
Fortunately, Bits on the Run also supports audio encoding and hosting for the
web. However, as encoding audio is significantly less CPU intensive than
encoding video, you can use desktop software to do this. The most popular
free, cross-platform audio application is Audacity. You can download and install
the current stable beta version from the Audacity web site at
http://audacity.sourceforge.net/download/.

The same rules apply when encoding audio for the mobile web.

 Ensure the file size is small.

 Ensure the quality of the final audio is good enough to be
heard through headphones and small speakers.

As with video encoding, you will need to find a happy medium between quality
and file size. Unlike video, where the user must focus on both the audio and

b

http://audacity.sourceforge.net/download/

CHAPTER 3: HTML5 73

video, with just audio, the user will primarily be focused on listening to your
audio, so the quality of the audio is of the utmost importance. This means that
more care must be taken to ensure that each track is transcoded and
compressed in the right way.

A lot of trial and error will be required, but depending on the type of audio you
wish to transcode, you can begin to build presets within Audacity. For instance,
you will use different settings for audio content only containing voice, such as an
audiobook, as compared to audio content containing a music track. The number
of frequencies that you hear from a human voice is much narrower than what
you might hear from a rock band, for example. This means that the file size for
an audiobook may potentially be smaller than that of a music track using lossy
compression.

NOTE: There are two types of compression types: lossless and lossy.
Lossless compression tries to encode the audio in such a way that it
has a smaller file size when encoded, but when it is decoded it will still
be the same as it was prior to compression. Lossy compression will
analyze the audio content and remove parts of it that might not be
audible. This means that with lossy compression, you will lose
information regardless of the decompression technique.

Encoding Audio with Audacity
Encoding audio with Audacity can be a simple process. For the sake of this
example, you will need to download an uncompressed audio file, so head over
to SoundCloud (www.soundcloud.com). Using SoundCloud, perform a search for
any music track you like and ensure that the following options are selected, as
shown in Figure 3-18.

 An uncompressed file

 Track should be: Downloadable

 Search only for Creative Commons licensed tracks

 They should be: Free to use commercially

http://www.soundcloud.com

CHAPTER 3: HTML5 74

Figure 3-18. soundcloud.com search options

Pick any song that has a high frequency range (something from the dub step
genre would be a good choice) and download it. This should give you an
uncompressed WAV or AIFF file to experiment with.

Our aim for this music track is to get the file size to between 0.5 and 1 MB for
every minute of audio. This should equate to taking 4---8 seconds to load 1
minute of audio on HSDPA or 1---2 seconds on 3G. Table 3-8 should be used
when trying to calculate how long it may take to download 1 MB of data on
mobile data networks.

Table 3-8. Average Download Times for Audio

Connection Type Average Download Speed Average Download Time (per MB)

3G 4 Mbps 2 seconds

HSDPA 1 Mbps 8 seconds

The sample track for this book is a WAV file with these settings: 86.1 MB, 4:59 in
time size, averaging at 18.75 MB per minute. The target file size for this track for
each format will be between 4 and 5 MB.

Encoding OGG
You will encode the audio file in the OGG format first. It’s the simpler of the two,
as Audacity provides a single option to configure. Open Audacity and open your
file by going to File  Open, and select the file you have just downloaded. If you
are presented with the warning shown in Figure 3-19, ensure that ‘‘Make a copy
of the files before editing (safer)’’ and ‘‘Don’t warn again and always use my
choice above’’ are both checked.

CHAPTER 3: HTML5 75

Figure 3-19. Warning dialog from Audacity

When the file has finished processing, you should be presented with a waveform
for the file, similar to Figure 3-20.

You can now export the audio file as an OGG Vorbis audio file. Go to File 
Export. Under format, select ‘‘Ogg Vorbis Files’’ and click the ‘‘Options…’’
button to the right of the selection.

l

CHAPTER 3: HTML5 76

Figure 3-20. Waveform of the track

You will be presented with an options dialog similar to Figure 3-21. Select the
lowest quality and click OK. Vorbis is a form of Variable Bit Rate (VBR)
encoding. VBR will use different bit rates throughout the track, depending on the
complexity of the audio for each segment. This can potentially produce a very
small file with reasonable quality as compared to a file encoded at a constant
bitrate with the same or less quality but a much bigger file size due to the
complexity of the audio.

Figure 3-21. Ogg Vorbis export options

The result of this encoding should be an audio track that should sound similar to
the original WAV file but with a file size less than 3 MB. The result from the test
track used for this book when encoding in OGG’s lowest quality setting is a file
size of 2.5 MB with no noticeable difference in sound quality.

CHAPTER 3: HTML5 77

Encoding MP3
The process for encoding MP3 audio is similar to exporting audio for Vorbis.
Follow the same steps to open the original WAV file, and go to File  Export.
Select MP3 Files from the Format drop-down (instead of Ogg Vorbis Files). Click
the Options… button.

You will be presented with an export dialog similar to that shown in Figure 3-22.
MP3 VBR encoding doesn’t appear to perform as well as OGG Vorbis. Even at
its highest compression setting, the audio file size is still double that of the
output of the OGG Vorbis compression. Using the average bit rate mode at 128
kbps will give you the same or similar quality as the lowest OGG Vorbis
compression option, but with a file size that’s larger and still within the
acceptable file size of 0.5 to 1 MB per minute of audio.

Figure 3-22. MP3 export options

Click OK and save. If you wish to enter metadata on the next screen, go ahead
and enter it; otherwise, click OK once more and the audio file will begin to
export.

Embedding Audio with HTML5
Embedding audio with HTML5 is quite simple. Prior to HTML5, there was no real
standard way to embed audio with different codecs, especially in mobile. With
mobile, the preferred way was to either use Flash or provide a link to a 3GP file,
a format that is widely supported by mobile devices. As the ability to deliver and
play high-quality music on mobile devices becomes more popular, the audio tag
will begin to be widely used.

The process to embed audio in HTML5 is similar to embedding video. You use
the audio tag and specify several sources for the browser to pick the correct
one.

CHAPTER 3: HTML5 78

Create a new folder in the tutorials folder called audio, then create a new folder
within the audio folder called media, and create a new file called index.html.
Copy your converted audio files to the media folder and rename them to
audio.ogg and audio.mpg.

Your folder structure should look similar to this.

 tutorials

 audio

 media

 audio.mp3

 audio.ogg

 index.html

Open the index.html file and use the code from Listing 3-24.

Listing 3-24. Embedding Audio in HTML5

<!DOCTYPE html>
<html>

 <head>

 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, initial-scale=1,
maximum-scale=1">
 <title>Testing Audio</title>

 </head>

 <body>

 <audio controls>

 <source src="media/audio.ogg" type="application/ogg">

 <source src="media/audio.mp3" type="audio/mpeg">

 <p>
 Your browser does not support HTML5 Audio, click
 here to download
 </p>

 </audio>

CHAPTER 3: HTML5 79

 </body>

</html>

Open the page in your device’s browser; you will see something similar to
Figure 3-23.

Figure 3-23. Audio in HTML5

Click the play button and you will hear audio through your device’s speakers or
headphones. You can create a custom player with your own UI using the
HTML5 audio tag. This will be covered in Chapter 7.

HTML5 Mobile Forms
Forms can be a dull and boring subject, both for the user filling them out and the
developer creating them. Remember how irritating it was the last time you filled
out a registration form on a computer, and now imagine how irritating filling out
that same form would be if you were on a device with a small screen and
without a mouse and keyboard.

Working with forms for mobile is no different than working with forms for the
general web. Consideration must be taken for the layout of the form due to the
restricted screen size and how much information you really need to collect from
your users. Figure 3-24 shows the difference between confused.com’s car
insurance quote forms for mobile and desktop.

CHAPTER 3: HTML5 80

Figure 3-24. Car insurance quote form for mobile (left) and desktop (right)

As you can see, the same questions are asked, but consideration is taken for
the screen size by repositioning the field labels and fields themselves to take
advantage of the narrow but long screen.

Fields for Different Data Types
Depending on the type of field and data required, you can use different types of
input fields for Android browsers. Table 3-9 shows which HTML5 field types are
currently supported on Android Browser.

Table 3-9. Supported Field Types on Android Browser

Field Type Support

color no

datalist no

date no

datetime no

CHAPTER 3: HTML5 81

week no

time no

email yes

number yes

range no

search no

tel yes

url no

As you can see, the only field types currently supported by Android Browser are
email, number, and tel. The other field types should be implemented at some
point in the future. You can choose to implement them now and work around
the lack of support, but you could experience issues after support finally arrives.

You can test this out on your device by creating a new folder for this exercise
within your project called forms. Create a new file within that called index.html.

Listing 3-25 shows the code that will produce the three different input form
types.

Listing 3-25. Input Type Code

<!DOCTYPE html>
<html>

 <head>
 <meta charset="utf-8">
 <title>Form Fields</title>
 <meta name="viewport" content="width=device-width, initial-scale=1,
maximum-scale=1">
 </head>
 <body>

 <form>

 <fieldset>

 <legend>HTML5 Input Types</legend>

CHAPTER 3: HTML5 82

 <p>
 <label for="email">Email</label>
 <input type="email" name="email"
placeholder="someone@somewhere.com">
 </p>

 <p>
 <label for="number">Number</label>
 <input type="number" name="number">
 </p>

 <p>
 <label for="telephone">Telephone</label>
 <input type="tel" name="telephone" placeholder="+44
012345678901">
 </p>

 </fieldset>

 </form>

 </body>

</html>

This is just a standard HTML5 form. You might notice that there is an attribute
on some of the fields called placeholder. The placeholder attribute allows you
to display useful example text for a form input to help the user figure out what
they need to put in the form field. When a user taps to fill the form field out, the
placeholder text will disappear.

Depending on the input type, you will be presented with different keyboards to
help the user input their information much faster. Figure 3-25 shows the different
keyboard layouts used for the three supported input types.

Figure 3-25. Keyboard layouts for number (left), tel (center), and email (right)

Load the new web page in your mobile phone’s browser to test it out.

mailto:someone@somewhere.com

CHAPTER 3: HTML5 83

Summary
This concludes HTML5 for Android. From this chapter, you should have gained
a large amount of knowledge related to encoding video and audio for the web
and mobile web. You should also now have a basic understanding about the
different ways you can encode media, and that you don’t need a powerful
machine just to encode media, but simply a fast Internet connection.

This chapter has taken you through all of the new HTML5 elements that are
currently supported by Android Browser and how to use them effectively.

Hopefully, this chapter will prepare you for the rest of the book as we begin to
explore interactivity in a little more detail. HTML itself provides the foundation
that we build upon using CSS for presentation, and JavaScript for interaction,
further into this book.

In the next chapter, you will focus on the beginnings of your mobile web
application by creating the HTML framework. Throughout this book, you will
learn about a particular aspect of mobile web development and then use that
knowledge to build and enhance your application. This is known as progressive
enhancement, and is a practice adopted for the web to ensure that your
applications work across all platforms regardless of their capabilities.

You will also learn the three different types of presentation solutions for the
mobile web, including using standard HTML pages for each page of your
application, using a card-based system where all pages are located in a single
HTML file, and loading each page using Ajax.

The next chapter is very practical, so load up Aptana Studio and get ready to
code!

4
Chapter

Starting Your Project
Using HTML5
HTML provides a good starting point for any web project. It essentially gives you
a skeleton for you to work with when enhancing the web page with CSS (visual
style) and JavaScript (interactivity). For the three workshops in this book
(HTML5, CSS, and JavaScript), you will progressively enhance a mobile web
application called MoMemo. MoMemo will take advantage of the following
HTML/HTML5 features.

 Canvas

 JavaScript APIs

 CSS3 transitions

 Media queries

 HTML5 video/audio

 Offline storage

In this chapter, you will learn three different methods to lay out your web pages,
depending on the type of mobile web application you are making.

You will also begin to create the framework for the MoMemo application in
HTML. Before this, you will learn how to take a mobile application from an idea,
to requirements gathering, to IA, and finally coding it in HTML5. You will also
briefly touch upon application caching, a feature that allows you to dictate what
elements get cached on the user’s mobile device and how to fall back onto files
that shouldn’t be cached when there is no network connection.

CHAPTER 4: Starting Your Project Using HTML5 86

Paging Strategies
There are three main ways to create pages in HTML.

 Standard HTML: Creating standard HTML pages and linking
to them

 Single-page Ajax: Using a single page and loading
subsequent pages using AJAX

 Single-page container: Using a single page as a container
with multiple pages being held within a container <div /> and
moving between them using JavaScript

Each method has its advantages and disadvantages. For example, a mobile web
application that has many pages and resources (images, CSS, JavaScript) could
have performance issues when using the single-page container method, as all
resources and pages will be loaded upon the first page load. Therefore, the Ajax
or standard HTML method might offer better performance and load times.

For small applications and for prototyping, the single-page container method
might be preferred. CSS3/JavaScript can handle animated transitions between
pages and, as the number of resources may be minimal, it will not have a large
impact on page loading. This might be preferred, as the end user does not have
to wait for pages to load through Ajax or the standard HTML methods. This
creates a much more app-like experience.

For simpler applications, the standard HTML method might be preferred.
However, animation between pages could become impractical and there will be
a slight wait time while pages and resources load when navigating through
pages.

NOTE: To work with the exercises in this chapter, create a new folder
within your Aptana project called exercises and one within that called
chapter4. We will refer to this as the “chapter folder” in the examples.

Paging with Standard HTML
The method to create standard HTML paging is simple. To start with, create a
new folder in chapter folder in your project called standard and create two basic
mobile-friendly web pages called index.html and index2.html, as shown in
Listing 4-1.

CHAPTER 4: Starting Your Project Using HTML5 87

Listing 4-1. Basic HTML Mobile Web Page

<!DOCTYPE html>
<html lang="en-GB" dir="ltr">

 <head>

 <meta charset="UTF-8" />
 <meta name="viewport" content="width=device-width; initial-scale=1.0;
maximum-scale=1.0; user-scalable=0; target-densitydpi=device-dpi;"/>
 <title>Standard Paging</title>

 </head>

 <body>

 </body>

</html>

There is nothing special here, as explained in Chapter 1 we set the charset and
viewport meta tags to ensure that the page scales accordingly and to prevent
the user from zooming in with their fingers. We also set the page title for good
measure. Within the body of index.html, create a link and header, as shown in
Listing 4-2.

Listing 4-2. Creating a Link in index.html

<h1>Page 1</h1>
Page 2

In index2.html, create another link in the body linking back to the previous
page, as shown in Listing 4-3.

Listing 4-3. Creating a Link Back to index.html in index2.html

<h1>Page 2</h1>
Page 1

Load it up in your mobile browser and test it out. It’s as simple as that. There’s
nothing special about creating links to other standard HTML pages for mobile.

CHAPTER 4: Starting Your Project Using HTML5 88

Paging with Single-Page Ajax
Creating a mobile application with single-page Ajax requires a little bit more
thought and effort. Ajax allows content to be dynamically pulled in from a file or
page outside of the current web page that the user is on. This can make an
application a little bit more scalable, as you do not have to house several pages
on a single page. Instead, you pull them in as and when you need them. The
benefit of this is that you can use CSS3 to apply animations as the user moves
between pages. Listing 4-4 shows the very basics of what is required to load an
HTML page via Ajax.

Listing 4-4. Loading HTML Using Ajax

<div id="container">
 <div id="card">
 <h1>Page 1</h1>
 Page 2
 </div>
</div>

<script>

 /**
 * This method will bind find all links within the div with the ID of
 * container. The query will also only match those links with the data-method
 * attribute with a value of xhr.
 * i.e., Page 2
 */
 function bindLinks(){

 /**
 * This will call forEach within the context of the query
 * selector. If you're familiar with jQuery, it's the equivelant to
 * $('#container a[data-method="xhr"]).each(...);
 */
 [].forEach.call(document.querySelectorAll('#container a[data-method="
xhr"]'), function(el){
 /**
 * For every matched element, this anonymous method will be
 * called. The forEach method callback accepts the returned
 * object as a parameter. In this case, it will be the
 * matched element now set to el.
 */

 /**
 * Here you add an event listener to the object. There are
 * several touch event listeners such as touchend, touchcancel,

CHAPTER 4: Starting Your Project Using HTML5 89

 * and touchstart, all of which are explained in Chapter 5.
 */
 el.addEventListener("touchend", function requestCard(event){
 /**
 * This will call the loadCard method with the target
 * link location as the parameter (index2.html).
 */
 loadCard(event.target.href);

 /**
 * This prevents the original path of the link from
 * being handled by the browser.
 */
 event.preventDefault();
 });
 });

 }

 /**
 * This method will dynamically load a card from the deck based on the path
 * that is passed to it through the path parameter.
 */
 function loadCard(path){

 /**
 * This creates a new XMLHttpRequest object request. This will be
 * used to pull the html page in dynamically using JavaScript.
 */
 var xhr = new XMLHttpRequest();

 /**
 * Creates a GET request (this can either be POST or GET). A POST
 * request is useful for sending large amounts of data; a GET request
 * should be used to get information from a server using a parameter-
 * based URI. The third parameter sets the request to be asyncronous.
 * Setting this as false or not including it will block the UI and
 * prevent the user from interacting with the application. This will
 * not send the request straight away. You must call xhr.send();
 */
 xhr.open("GET", path, true);

 /**
 * This sets callbacks for when the state of the request has changed.
 * The state can be determined by the this.readyState. In
 * this instance, it is event. The different states are:
 *
 * DONE – Request complete
 * LOADING – Request loading
 * HEADERS RECIEVED – Headers have loaded but the request body hasn’t

CHAPTER 4: Starting Your Project Using HTML5 90

 * OPENED – The open method has been called
 * UNSENT – The XMLHttpRequest object has been instantiated
 *
 * You can create conditions for each readyState using a switch
 * statement.
 */

 xhr.onreadystatechange = function contentLoaded(){
 /** Here you check the request state **/
 if (this.readyState === this.DONE) {

 /**
 * Here you select the container element that will be
 * populated with the new content.
 */
 var container = document.querySelector("#container");

 /**
 * This will check the response status, 200 is OK.
 * You can find the various HTTP status codes at
 * http://www.w3.org/Protocols/HTTP/HTRESP.html
 */
 if (this.status === 200) {

 /**
 * Here you create a DOMParser object that will
 * parse the returned HTML so that is can be
 * traversed.
 */
 var domParser = new DOMParser(),
 /**
 * For now, HTML retrieved by XMHHttpRequest is
 * returned as a string. To convert it to a
 * traversible DOM document, it needs to be
 * converted.
 */
 externalDocument = domParser.parseFromString(this.responseText,
'text/html'),

 /**
 * The next thing to do is select the card from
 * the DOM Document returned by parseFromString.
 * DOMParser allows you to use DOM methods to
 * traverse any HTML returned by an
 * XMLHttpRequest.
 */
 card = externalDocument.querySelector("#card").outerHTML;

 /**
 * Next you simply call the setCardContent

http://www.w3.org/Protocols/HTTP/HTRESP.html

CHAPTER 4: Starting Your Project Using HTML5 91

 * method, which is defined below passing in the
 * HTML as a string from the card.
 */
 setCardContent(card);

 /**
 * Finally, you rebind all of the links, so that
 * any new content links are bound to
 * XMLHttpRequest calls.
 */
 bindLinks();

 } else {

 /**
 * If the request fails, you simply set the
 * contents of the div to show an error message.
 */
 setCardContent('<div id="card"><h1>Oops</h1><p>Something went
wrong!</p></div>');

 }
 }

 }

 /**
 * Finally, send the request. As the request's state changes, the
 * callback method will be called.
 */
 xhr.send();
 }

 /**
 * This will set the content of the container to be the card from the
requested
 * HTML file. POSH is simply an acronym for Plain Old Semantic HTML.
 */
 function setCardContent(posh){
 container.innerHTML = posh;
 }

 /**
 * Finally, you call bindLinks(), which will bind the links currently
displayed
 * on the page.
 */
 bindLinks();

 /**

CHAPTER 4: Starting Your Project Using HTML5 92

 * Unfortunately, some Android browsers do not support DOMParser's text/html
 * type. The method below from Eli Grey will allow browsers that do not
support
 * the text/html type to support it via prototype.
 */

 /*
 * DOMParser HTML extension
 * 2012-02-02
 *
 * By Eli Grey, http://eligrey.com
 * Public domain.
 * NO WARRANTY EXPRESSED OR IMPLIED. USE AT YOUR OWN RISK.
 */

 /*! @source https://gist.github.com/1129031 */
 /*global document, DOMParser*/

 (function(DOMParser) {
 "use strict";
 var DOMParser proto = DOMParser.prototype
 ,real parseFromString = DOMParser proto.parseFromString;

 // Firefox/Opera/IE throw errors on unsupported types
 try {
 // WebKit returns null on unsupported types
 if ((new DOMParser).parseFromString("", "text/html")) {
 // text/html parsing is natively supported
 return;
 }
 } catch (ex) {}

 DOMParser proto.parseFromString = function(markup, type) {
 if (/^\s*text\/html\s*(?:;|$)/i.test(type)) {
 var doc = document.implementation.createHTMLDocument("")
 ,doc elt = doc.documentElement
 ,first elt;

 doc elt.innerHTML = markup;
 first elt = doc elt.firstElementChild;

 // are we dealing with an entire document or a fragment?
 if (doc elt.childElementCount === 1 &&
first elt.localName.toLowerCase() === "html") {
 doc.replaceChild(first elt, doc elt);
 }

 return doc;
 } else {
 return real parseFromString.apply(this, arguments);

http://eligrey.com
https://gist.github.com/1129031

CHAPTER 4: Starting Your Project Using HTML5 93

 }
 };
 }(DOMParser));

</script>

The code in Listing 4-4 might look slightly confusing and long-winded, but it will
allow you to load external HTML documents and traverse its DOM like a regular
HTML document and pick out elements from it. It also binds any links with the
data-method attribute set to xhr.

The benefit to doing it this way, compared to using XML or JSON, is that if you
want to degrade the web application to work on devices without JavaScript
support, you don’t have to do as----you do not need to make a different view,
you can simply remove the JavaScript code to move between pages.

To do this, the first thing we do is set up the page as shown in the following
snippet.

<div id="container">
 <div id="card">
 <h1>Page 1</h1>
 Page 2
 </div>
</div>

This creates a container to house the cards. Within the container, there is a
basic card with a header and link. HTML5 allows us to set custom attributes in
the markup using data attributes.

Next, you must bind all of the links to a JavaScript method using the following
code snippet.

function bindLinks(){

 [].forEach.call(document.querySelectorAll("#container a[data-method]"),
function(el){

 if(el.getAttribute("data-method") == "xhr"){
 el.addEventListener("click", function requestCard(event){
 loadCard(this.href);
 event.preventDefault();
 });
 }
 });

}

This functionality is contained within a function called bindLinks so that it can
be used a little latter. The second line in this method iterates through the list of

CHAPTER 4: Starting Your Project Using HTML5 94

HTML elements or the NodeList returned from the query selector. The method of
doing this looks slightly complicated. You first begin by creating a new empty
array object using []. From here, you use the call method to run the Array
object’s forEach method within the context of the NodeList returned from the
query. The forEach method accepts a callback function as the first parameter.
The callback function also accepts the following three arguments:

 The current element being iterated

 The current element’s index within the array

 The actual array

You will only need the current element so that you can use it within your
callback function; this is called el.

The third line within this method checks to see whether the attribute data-
method exists and that the value is xhr. If this is true, it adds an event listener to
the link. This allows you to manually specify which links should be pulled in via
Ajax.

The fourth line adds an event listener to the click event. The click event acts in
much the same way as it does on the desktop, with the exception that if a user
drags his finger away from the link, it will cancel the event. You use a named
function for this so that it can be tracked in a call stack when debugging in
Android Browser or Chrome for Android.

Within the event listener function, when the user taps the link, the method
loadCard is called with a parameter containing the link’s intended path
event.target.getAttribute("href"). This is taken from the link’s href attribute.
event.preventDefault(); stops the link from being followed through in the
browser, and the next page from loading in the usual way.

The loadCard function shown in the next code snippet will load the html from the
path parameter using an XMLHttpRequest, fetch the card within the page, and
replace the card on the current page with the new content using the
setCardContent method. After that is complete, the method will rebind the links
with the event handlers so that all further pages are loaded in the same way, as
any new links in the new content will not have event handlers attached to them.

function loadCard(path){

 var xhr = new XMLHttpRequest();
 xhr.open("GET", path, true);
 xhr.onreadystatechange = function contentLoaded(){

 if (this.readyState === this.DONE) {

CHAPTER 4: Starting Your Project Using HTML5 95

 var container = document.querySelector("#container");

 if (this.status === 200) {

 var domParser = new DOMParser(),
 externalDocument = domParser.parseFromString(this.responseText,
'text/html'),
 card = externalDocument.querySelector("#card").outerHTML;

 setCardContent(card);
 bindLinks();

 } else {

 setCardContent('<div id="card"><h1>Oops</h1><p>Something went
wrong!</p></div>');

 }

 }

 }

 xhr.send();

}

The first line in this function instantiates a new XMLHttpRequest (xhr) object. The
second line sets up the xhr request. The open method accepts the following five
parameters:

 Method----GET, POST

 URL

 Async----true, false (defaults to true and will continue to run
JavaScript after the send method is called. If set to false, it will
freeze the browser until the request is complete after running
the send method)

 User (if the request is protected by an HTTP username and
password, you can enter the username here)

 Password (if the request is protected by an HTTP username
and password, you can enter the password here)

Calling open does not make the Ajax request. The fourth line sets the handler for
the onreadystatechange event.

CHAPTER 4: Starting Your Project Using HTML5 96

Paging with a Single-Page Container
Paging with a single-page container allows you to create a set of cards within a
deck in a single HTML page and navigate between them using JavaScript. As
your application grows, this could produce potential problems with trying to
manage numerous sections/features containing several cards. The solution to
this would be to split each deck or set of features into several HTML pages.
Within each HTML page, would be a deck of cards related to that particular
feature. To navigate between the different decks, you could either pull them in
via Ajax, or use standard HTML to navigate to and from them without animation.

Creating a single-page container mobile web application is simple, and works in
much the same way as the Ajax method.

First, create a folder within the exercise folder called container. Within this
folder, create a folder called css. Create a new CSS file called mobile.css and
add the CSS from Listing 4-5.

Listing 4-5. CSS for Single-Page Container

/**
 * Sets the body, html, and deck element styles
 */
body, html, #deck {
 height: 100%; /** Sets the height of the document to 100% of the viewport **/
 overflow: hidden; /** Set so that all content that flows outside is hidden
**/
 margin: 0; /** The body's margin is usually never 0, so this removed any
margin **/
 position: realtive; /** The card will be positioned relative to the deck **/
}

/**
 * The card within the deck’s styles
 */
#deck .card {
 overflow: auto; /** If there is too much content, this lets the user scroll
**/
 height: 100%; /** Sets the height of the card to be 100% **/
 position: absolute; /** Allows the card to be absolutely positioned **/
 left: -100%; /** Sets the default position to be off the screen (hidden) **/
 width: 100%; /** Sets the width of the card to be the width of the deck **/
}

/**
 * Sets the active card style so that it is visible when the class is added to
it
 */

CHAPTER 4: Starting Your Project Using HTML5 97

#deck .card.active {
 left: 0; /** moves the card back into view **/
}

The first rule in this CSS will set the body, html, and deck to a height of 100%. This
will fill the web browser’s viewport with the deck and cards. From here, you set
the overflow to hidden so that any content outside of these elements will be cut
off and not display scroll bars. You also set the margin to 0; this will apply only
to the body, but this saves having to write a new CSS rule specifically for the
body.

The second rule sets the style for the cards themselves. Every card has the
overflow set to auto. This will allow users to scroll with their fingers for more
content within the card when the content flows beyond the visible height of the
screen. Each card has a position of absolute so that its position can be placed
anywhere within the deck itself. Doing this allows cards to be placed off screen
when they are not needed. Setting the left CSS rule to -100% will push all non-
active cards within the deck to the width of the viewport to the left so that it isn’t
visible to the user.

The third rule sets the CSS rule to active cards. This will set the card’s left
position to 0, which will bring the card back in view for the user. Showing the
card is as simple as adding and removing the active class for the card you want
to present to the user using JavaScript. Listing 4-6 shows how to do this.

 Listing 4-6. JavaScript to Show and Hide a Card

function goToCard(to) {
 /**
 * Gets all cards with the active class and removes it. This hides the card
 * from view.
 */
 document.querySelectorAll('.card.active')[0].classList.remove('active');

 /**
 * Adds the active CSS class to the target card and brings it into view.
 */
 document.querySelectorAll(to)[0].classList.add('active');
}

From the goToCard method, you can see that it takes a to parameter. The to
parameter is a hash taken from the URL in a link from the HTML shown in
Listing 4-7

Listing 4-7. HTML for a Link to Load a Card from the Deck

<a data-method="push" href="#card-index">Page 1

CHAPTER 4: Starting Your Project Using HTML5 98

From this, you can see that the data attribute is used to identify links to be used
to push content to the top of the deck. In this instance, push is used; however,
any other attribute can be used to your requirements. The href attribute is
associated with the ID of the card, as shown in Listing 4-8.

Listing 4-8. HTML for a Deck

<section class="card" id="card-index">
 <h1>Page 1</h1>
 <a data-method="push" href="#card-second-page">Page 2
</section>

As you can see from this section of code, the id of the card is set to card-index.
You use card as a prefix to help namespace the deck cards. This will prevent
you from inadvertently using index for instance on another HTML element,
causing issues with paging. Listing 4-9 shows how to use JavaScript to activate
the pages.

Listing 4-9. Activating Cards within a Deck

/**
 * Works in much the same way as the previous method. It will iterate over all
matched
 * elements and call the callback method.
 */
[].forEach.call(document.querySelectorAll('.card a[data-method="push"]'),
function(el){
 /**
 * As you can see, the callback method is named. Instead of function(event){
 * function pushCard(event) is used. This can help with debugging; e.g., in
 * the JavaScript stack trace you can see the function’s name rather than
 * anonymous.
 */
 el.addEventListener("click", function pushCard(event){
 /**
 * This gets the hash (#card-second-page) element of the href in
 * the link and assigns it to pageid. The href object has various
 * properties, all of which can be found at
 * http://www.w3.org/TR/html5-author/urls.html#url-decomposition-idl-
 * attributes.
 */
 var pageid = this.href.hash;
 /**
 * This calls the goToCard method that will load the content with the
 * specified pageID.
 */
 goToCard(pageid);

CHAPTER 4: Starting Your Project Using HTML5 99

 /**
 * This will prevent the browser from following the URL.
 */
 event.preventDefault();
 });
});

You use the same style of JavaScript as the Ajax method to bind events to links
with the push data attribute. Within the event listener, you get the hash from the
link using this.href.hash. This is passed to the goToCard method from Listing
4-5, which removed the active class from the visible card and adds it to the
card to be shown to the user. The complete code example can be seen in
Listing 4-10.

Listing 4-10. Complete Single-Page Container Example

<!DOCTYPE html>
<html lang="en-GB" dir="ltr">

<head>
 <meta charset="UTF-8" />
 <meta name="viewport" content="width=device-width; initial-scale=1.0;
maximum-scale=1.0; user-scalable=0; target-densitydpi=device-dpi;"/>
 <title>Single Page Container</title>
 <link rel="stylesheet" type="text/css" href="css/mobile.css" />
</head>

<body>
 <div id="deck">
 <section class="card active" id="card-index">
 <h1>Page 1</h1>
 <a data-method="push" href="#card-second-page">Page 2
 </section>

 <section class="card" id="card-second-page">
 <h1>Page 2</h1>
 <a data-method="push" href="#card-third-page">Page 3
 </section>

 <section class="card" id="card-third-page">
 <h1>Page 3</h1>
 <a data-method="push" href="#card-index">Page 1
 </section>

 </div>

 <script>
 [].forEach.call(document.querySelectorAll('.card a[data-method="push"]'),
function(el){

CHAPTER 4: Starting Your Project Using HTML5 100

 el.addEventListener("click", function pushCard(event){
 var pageid = this.href.hash;
 goToCard(pageid);
 event.preventDefault();
 });
 });

 function goToCard(to){

document.querySelectorAll('.card.active')[0].classList.remove('active');
 document.querySelectorAll(to)[0].classList.add('active');
 }

 </script>

</body>

</html>

As you can see, there are several useful methods for paging for mobile.
Although the examples are presented as separate, you can combine them. For
instance, you can combine the container and Ajax methods to separate the
different sections and functionality of your application. You can also use Ajax to
load content and data dynamically using JSON/XML with any of the methods
mentioned within this chapter to generate new dynamic views.

The next section will take you through the first stages of creating the MoMemo
application.

Creating the App
The key to creating a usable mobile web application is in the planning. Deciding
what key functionality your mobile web application has, and how users will get
to the important features and data, will help you to decide how to implement the
application itself, using paging techniques, design, and UI. If you do not like
planning, this can be a laborious and boring task, but it will help you iron out
problems before you start development and design.

Planning MoMemo
The first step in this process is to define the application in a single sentence.
When defining an application in a single sentence, you should try to avoid

CHAPTER 4: Starting Your Project Using HTML5 101

including features or technical details. The sentence should simply describe the
app and its goal. For MoMemo, the application definition would be as follows:

MoMemo is an application that allows users to quickly note down movie trailers
that they see in the cinema and be reminded when the movie is released.

The next step is to define the must-have features that will help to satisfy the
primary goal for the application. MoSCoW (Must have, Should have, Could have,
Won’t have) can be a good method to define the core features and functionality
of the application. It will allow you to define the core features (must have), the
features that provide added value (should have), the features that would be nice
to implement if there is time left over at the end of the project (could have), and
the features that you can’t afford to implement due to time or funding
restrictions but could implement in the very near future (won’t have). This will
help to prevent scope creep and the ‘‘never-ending project’’ syndrome, where
developers constantly talk about an app and its extremely long list of impossible
features, but never actually create it.

For MoMemo to be successful, the application must:

 Allow users to quickly add and remove movies to and from a
personal list

 Allow users to view movies in the list

It should:

 Provide a list of movie suggestions while the user types

 Show information about the movie including

 Synopsis

 Release date

 Cast list

It could:

 Allow users to view the movie trailer

 Allow users to play sound clips from the movie

 Allow users to share items added to their list on social
networks

 Display a map of the closest cinemas to the user when viewing
a movie memo

CHAPTER 4: Starting Your Project Using HTML5 102

It won’t:

 Send notifications to users when movies are released

 Allow users to rate movies after they have been seen

 Allow users to invite other users to the cinema to see movies

Now that the core features and functionality have been defined, we can start to
create a user journey based on the must-have, should-have, and could-have
feature set.

To begin with, we should build upon our core feature set from the must-have
category. Figure 4-1 shows how the core functionality of the application should
function. The user should launch the app and be presented with a list of movies
that they have added. From here, they can add to the list or delete from it. They
will then be taken back to the Movie List.

Figure 4-1. Primary features of the application

Now you can build upon this and start adding the should-have features. In
Figure 4-2, you can see that only the Movie Info feature has been added. We still
need to provide a list of movie suggestions while the user is typing, but this list
of movie suggestions will be a feature of the Add Movie feature, rather than the
Movie Info feature.

CHAPTER 4: Starting Your Project Using HTML5 103

Figure 4-2. Secondary features of the application

Finally, you can add the could-have or value add features, as shown in
Figure 4-3.

Figure 4-3. Value add features

As you can see from Figure 4-3, the Movie Info feature has three subfeatures
that will allow you to navigate to and from the main Movie Info feature. This adds
complexity to your application and suggests that the Movie Info should
potentially be broken out into its own page or deck.

CHAPTER 4: Starting Your Project Using HTML5 104

Now that we have a clear insight as to how the application should currently
function, we can begin to create the UI.

Creating the UI and HTML
If you have ever developed an app (native or web) for Android specifically, you
will know that some design principles differ from what you may expect from
other mobile operating systems such as iOS or Windows Mobile. For instance,
on the Google Galaxy Nexus and Samsung Galaxy Tab, the system bars
(Navigation Bar and Combined Bar) are found at the bottom of the screen and
are always active or visible when using Android Browser. A good design
principle is not to stack toolbars on top of the system bar; this will prevent users
from inadvertently tapping on system buttons when they actually meant to
interact with your application.

In order to make it easy for the user to use this application, it makes sense to
present a clear way for users to add and view their movies while also providing
the ability for you to add new features in the future.

LinkedIn provides a good and clear example of this. As you can see from Figure
4-4, it is clear that the primary use for the mobile web application is to search for
people and see the most recent updates. If you want to access more
functionality, there is a toolbar hidden under the ‘‘in’’ icon next to the search bar.
If you want to update your LinkedIn status, you click on the message balloon
icon at the top right.

Figure 4-4. LinkedIn’s solution for an uncluttered landing/home page

CHAPTER 4: Starting Your Project Using HTML5 105

This top bar is visible on every page within the application. When designing any
mobile-based web site, you should keep in mind that it will be viewed on a
variety of screen sizes in either landscape or portrait mode.

NOTE: To date, there is no known way to lock the web browser’s
orientation to landscape or portrait. So when you design a mobile web
application, you should take into consideration that the orientation will
change.

Creating the Movie List
The UI for the MoMemo application revolves around the search bar at the top of
the screen. Figure 4-5 and Figure 4-6 show the Movie List section of the
application, including the taskbar for both tablet and mobile devices.

Figure 4-5. Movie List for landscape tablet

As you can see from Figure 4-5, the ability to search for and add movies can be
accessed while browsing through movies previously added to the list. It is also
clear to the user that this will add items to the list rather than search through the
existing list, as the button to submit the form is marked as ADD rather than
search.

CHAPTER 4: Starting Your Project Using HTML5 106

Figure 4-6 presents the information in the same way, but for a smaller screen;
however, the list items are slightly larger to accommodate for the user’s
situation in which finger-tapping accuracy might be low. Although the list items
are bunched together, the target that the user has to tap to view more
information about a movie is reasonably large. Placing the taskbar at the top
also allows a user to thumb through their list of saved movies naturally and with
ease, and not worry so much about accidentally activating another part of the
application. Both UI mock-ups for the application are the same in terms of
HTML; however, we can use CSS media queries to target specific display sizes
and orientations. You can also utilize a fluid layout to ensure the application
reacts correctly to changes in orientation and screen size.

Figure 4-6. Movie List for portrait mobile

CHAPTER 4: Starting Your Project Using HTML5 107

Marking this up in HTML is quite simple. First, create a folder in the root of your
project called application. Within that folder, create three more called css, img,
and js. The css folder will store your CSS/SASS, img will store all of your images
and sprites, and js will store all of your library and application JavaScript.

You will also need to create two folders called lib and app within js, a file in the
js/app/ folder called bootstrap.js, and a file in the css folder called
mobile.scss.

Create a new file called index.html within the application folder; the code in
Listing 4-11 will help to bootstrap the application.

Listing 4-11. Initial Bootstrap HTML

<!DOCTYPE html>
<html lang="en-GB" dir="ltr">

 <head>

 <meta charset="UTF-8" />
 <meta name="viewport" content="width=device-width; initial-scale=1.0;
maximum-scale=1.0; user-scalable=0; target-densitydpi=device-dpi;"/>
 <title>Mo Memo</title>
 <link rel="stylesheet" type="text/css" href="css/mobile.css" />
 <link rel="apple-touch-icon-precomposed" href="img/home-screen-icon.png">
 </head>

 <body>

 <div id="shoe">

 <div id="deck">

 </div>

 </div>

 <!-- This script will instantiate any JavaScript necessary -->
 <script src="js/app/bootstrap.js"></script>

 </body>

</html>

As you can see, there is a div that surrounds the deck called shoe. This will help
to contain the global elements that appear on every page, such as the top
taskbar, and it will hold multiple decks should the application need to expand in

CHAPTER 4: Starting Your Project Using HTML5 108

the future. You can use any hierarchical naming convention other than that
related to casinos and playing cards.

NOTE: This is simply a naming convention that I have adopted to
make it easier for me and other developers to understand the structure
of my applications. This also makes it semantically clear when writing
CSS and JavaScript to hook into the functionality of the mobile web
application. You can use any IDs or classes you wish, or you can
follow suite and use mine. Just make sure that they are meaningful.

You will notice that the CSS doesn’t link to mobile.scss. This is because the
SCSS file will need to be compiled and converted to CSS by SASS. Once the
compilation is complete, the mobile.css file will appear. Open the mobile.scss
file and press Shift + CMD + R and then press 1. This will compile the SASS file
into a CSS file. (SASS will be covered in Chapter 5.)

It’s time to create the header for the application. The code shown in Listing 4-12
should be added just inside the <div id="shoe"> element but just before the
<div id="deck"> element.

Listing 4-12. Header Code

<header id="taskbar">

 <h1 class="branding">Mo Memo</h1>

 <form method="post">
 <input type="text" name="query" placeholder="enter your movie
name…" />
 <input type="submit" value="ADD" />
 </form>

</header>

This will simply create a title and form for the user to search, as shown in Figure
4-7. Using CSS, this will be placed at the top of the screen.

CHAPTER 4: Starting Your Project Using HTML5 109

Figure 4-7. Taskbar with no styling

Now it’s time to add the first card to the deck, the Movie List card. This is simple
and is done by creating an unordered list of data, as shown in the code in
Listing 4-13.

Listing 4-13. List of Saved Movies

<ul class="list alternating medium">

 <video poster="img/video.jpg" title="Movie Title">
 <source type="video/webm" src="path/to/video.webm" />
 </video>
 <h2>My Movie Title</h2>
 <p>My Movie Description</p>

 <video poster="img/video.jpg" title="Movie Title">
 <source type="video/webm" src="path/to/video.webm" />
 </video>
 <h2>My Movie Title</h2>
 <p>My Movie Description</p>

In HTML5, you can surround block-level elements with the href tag. This makes
it easier to make the entire content of a list item a link to another resource.

CHAPTER 4: Starting Your Project Using HTML5 110

As you can see from Figure 4-8, the page looks pretty boring. The next
workshop will cover using CSS to style the application.

Figure 4-8. Full movie listing page

Movie Search and Add
With the Movie List feature in place, it’s now time to cover the task of searching
and adding movies. This can be performed in one of two ways.

 The user searches for a movie and is presented with a list.
From this list, the user taps the movie, which then brings them
to the Movie Info screen. From this screen, the user can then
add the movie to the list and return to the Movie List.

 The second option is to present the user with suggestions,
allow them to tap the suggestion that suites them, and click on
the add button. The user can then view the Movie Info at a
later date.

There is nothing wrong with either option, but the most optimal one lies again in
the situation the user is in when searching for movies. To answer this, you need
to refer back to the MoSCoW requirements for the project. One of the must-
have requirements is to ‘‘Allow users to quickly add and remove movies to and
from a personal list’’. Chances are that the user will open the application, search
for the movie, add it, close the application, and look at the list of movies in more
detail at a later date. Figures 4-9 and 4-10 show what the search functionality
will look like for tablet and mobile, based on this.

CHAPTER 4: Starting Your Project Using HTML5 111

Figure 4-9. Movie list for tablet

Searching and showing the search results will be a task for JavaScript (covered
in Chapter 8).

s

CHAPTER 4: Starting Your Project Using HTML5 112

Figure 4-10. Movie list for mobile

Movie Info
The final part of the MoMemo application is the Movie Info section. It has
several subfeatures including the movie synopsis, clips, cast, soundtrack, and
closest cinema. You could present this information on separate cards, however
you will end up with lots of empty space when viewing small sections (such as
the synopsis) on a device with a large screen (such as a tablet). To get around
this, you can place all of the content within the same view, but allow users to
side scroll to content on portrait-orientated devices to make use of the vertical
space, and scroll normally in landscape mode. Figures 4-11 and 4-12 show how
this should be presented.

CHAPTER 4: Starting Your Project Using HTML5 113

Figure 4-11. Movie info on a portrait mobile device

Figure 4-12. Movie info on a landscape tablet device

Although both views are presented slightly differently, the content is the same
and can be repositioned using CSS media queries to suit the orientation of the
device. Create a new card with an id of card-movie info and add the HTML
from Listing 4-14.

CHAPTER 4: Starting Your Project Using HTML5 114

Listing 4-14. Movie Info Header

<header>

 <hgroup>
 <h2>My Movie Title</h2>
 <p>Released: Monday 10th March 2012</p>
 </hgroup>

</header>

This will create the markup for a header that can be presented differently using
CSS, depending on the orientation of the device. You use the hgroup to group
the release date info, which shouldn’t be contained in the h2 element.

Listing 4-15 shows the synopsis block, which will simply contain text. There is a
div with a class of content surrounding the content within a block but excluding
the main header. This is so that the content can scroll, but the header remains in
view at all times.

Listing 4-15. Synopsis Block

<section class="block" id="block-synopsis">
 <div class=”content”>
 <p>Hello world, this is my synopsis</p>
 </div>
</section>

Listing 4-16 shows the cast block. From the designs, the cast list should be
scrollable within its block; however, the header should remain at the top at all
times. This block also shows that the lists will be standardized to reduce the
amount of bloat in the CSS.

Listing 4-16. Cast Block

<section class="block" id="block-cast">
 <h3>Cast List</h3>
 <div class=”content”>
 <ul class="list scrolling medium">

 <p>Actor Name</p>

 </div>
</section>

CHAPTER 4: Starting Your Project Using HTML5 115

You then move on to the video block, as shown in Listing 4-17. In both
wireframes the videos are displayed in a grid format, but they are flexible in that
a row may contain two or four videos, which makes using a table inflexible. For
this, you would opt to use a regular list and format it using CSS, depending on
the device’s orientation.

Listing 4-17. Video Block

<section class="block" id="block-video">

 <h3>Video Clips</h3>

 <div class="content">
 <ul class="list grid">

 <video poster="path/to/posterframe.jpg" title="Clip Title">
 <source type="video/webm" src="path/to/video.webm" />
 </video>
 <p>Clip name - 00:38</p>

 </div>

</section>

The soundtrack block is quite simple, as it’s similar in both orientations, and on
both tablet and mobile. This is shown in Listing 4-18.

Listing 4-18. The Soundtrack Block

<section class="block" id="block-soundtrack">

 <h3>Soundtrack</h3>

 <div class="content">

 <table class="alternating">

 <thead>
 <tr>
 <th> </th>
 <th>Title</th>
 <th>Artist</th>
 </tr>
 </thead>

CHAPTER 4: Starting Your Project Using HTML5 116

 <tbody>
 <tr>
 <td>
 <canvas class="audio"></canvas>
 </td>
 <td>
 A Ridiculously Long Track Title
 </td>
 <td>
 Track Artist
 </td>
 </tr>
 <tr>
 <td>
 <canvas class="audio"></canvas>
 </td>
 <td>
 A Ridiculously Long Track Title
 </td>
 <td>
 Track Artist
 </td>
 </tr>
 </tbody>

 </table>

 </div>

</section>

As you can see, there is a canvas element in the first column of each row. We
will be using HTML canvas to generate the play button and animate the
progress bar.

Finally, Listing 4-19 shows the closest cinemas block. This consists of a div with
a class of map. The Google Maps API will be used for this task.

Listing 4-19. The Closest Cinemas Block

<section class="block" id="block-closest cinemas">

 <h3>Closest Cinemas</h3>

 <div class="content">
 <div class="map"></div>
 </div>

</section>

CHAPTER 4: Starting Your Project Using HTML5 117

This concludes creating the markup for MoMemo. How the taskbars react to the
application will be covered in Chapter 8 on JavaScript.

Do not be alarmed if you see something similar to what is shown in Figure 4-13.
You will learn how to use SASS to generate modular CSS in Chapter 5.

Figure 4-13. The complete markup on the Samsung Galaxy Tab

The last and final thing that you might wish to do is start to implement the offline
caching capabilities of the application. This will allow users to browse their
movie list while they have no reception.

The first step is to add the manifest attribute to the html tag, as shown in
Listing 4-20.

Listing 4-20. Application manifest Attribute

<!DOCTYPE html>
<html lang="en-GB" dir="ltr" manifest="momemo.cache">

Now create a file in the root of the application directory called momemo.cache.
Within this file, add the code from Listing 4-21.

CHAPTER 4: Starting Your Project Using HTML5 118

Listing 4-21. Cache Manifest File

CACHE MANIFEST
index.html
js/app/bootstrap.js
css/mobile.css

This will ensure that the index.html, bootstrap.js, and mobile.css files are
cached for offline viewing. As you build the application, more files and rules will
be added to the cache manifest file.

Summary
From this chapter, you should have gained an understanding of how to manage
paging in mobile web applications, and how to pick the appropriate paging
strategy, depending on the requirements of the project. You should also have an
understanding o f how to begin building an application----from an idea through to
requirements, from IA/wireframes through to coding the foundation in HTML,
and how the device’s orientation and screen size will affect how you design your
application.

In Chapter 5, you will next learn how CSS can change the way you style,
animate, and increase the performance of your mobile web application, as well
as how SASS can help to organize your CSS rules and produce a structured set
of CSS files.

5
Chapter

CSS3 for Mobile
One of the most exciting aspects of developing for mobile is the support for
CSS3 through browsers on the latest smartphones. Prior to CSS3, we relied
upon using JavaScript to provide eye-popping animations and transitions,
simply applying styles to DOM elements such as the last element within a parent
element or alternating table rows.

In this chapter, you will learn some of the new CSS3 features, such as
animations and transitions. You will learn how CSS3 can provide similar features
to the most basic of animation concepts, called keyframing.

You will learn how to import new font faces within your mobile web application,
which will provide a much broader set of typefaces for your audience. You will
also take a look at some of the key CSS3 features, such as text shadows,
selectors, gradients, and new border properties. In addition, you will briefly
touch upon CSS media queries that will help you apply styles based on screen
resolution and pixel density.

Finally, you will see the power of CSS precompilers in the form of Syntactically
Awesome Stylesheets (SASS), with which you will learn how to streamline your
CSS workflow and reduce time coding.

Vendor-Specific Properties
At the time of this writing, many CSS3 properties, such as border-radius and
opacity, have been standardized. However, browser manufacturers can develop
their own implementations of new CSS properties. To avoid conflicts caused by
differences in syntax, new CSS properties that have not been standardized will
usually be preceded by a vendor prefix. For instance, prior to the

CHAPTER 5: CSS3 for Mobile 120

standardization of border-radius, there were several possible ways to declare it
in CSS3.

 -moz-border-radius

 -o-border-radius

 -webkit-border-radius

 border-radius

As you can see, the last declaration in this list is the now-standardized version,
and the vendor-specific implementations are prefixed with -moz- for Gecko-
based browsers (Firefox), -o- for Opera, and -webkit- for Webkit-based
browsers (Chrome, Android Browser, Dolphin).

There are more vendor-specific prefixes, but in general, for Android, -moz-, -o-,
and -webkit- should suffice. It’s important to always include the standard
implementation.

There are ways to overcome having to declare all four CSS properties when you
need them, which I explain in the section ‘‘CSS Precompilers (SASS),’’ later in
this chapter.

CSS Animations and Transitions
CSS3 introduces CSS transitions and transforms for DOM elements. You can
use these to replace the traditional method of animating DOM elements by
manipulating their CSS properties using timers in JavaScript. You may be asking
yourself, why should I use CSS for animation instead of JavaScript? Surely, CSS
should be used for styling, and JavaScript for interaction. The truth is that by
using CSS3 for animations, you can offload a lot of the heavy lifting often
passed onto the device’s CPU using JavaScript, to the device’s GPU if it has
one. This can make for much smoother animations.

Transitions
CSS transitions allow you to create transitions between two CSS styles. You
invoke the transition by creating a CSS style and adding another to it. The CSS
transition will handle the changes between the two states.

Creating a transition in CSS3 is quite simple. First you create your div element.

<div class="test"></div>

CHAPTER 5: CSS3 for Mobile 121

Next, create a style for the CSS element. Within this style, you set the width and
the height to 100px, and set the position to absolute, as you will be moving
the element to different positions on the page. You can also make the square
into a circle by setting the border-radius to 50px. You also explicitly set the top
and left positions to 0px, and the background-color to blue.

.test {
 width: 100px;
 height: 100px;
 position: absolute;
 top: 0px;
 left: 0px;
 border-radius: 50px;
 background-color: blue;
}

This will render something similar to the image shown in Figure 5-1.

Figure 5-1. Rendering of a CSS circle

Now you need to set the next state for the ball. This is as simple as creating a
new style with different properties.

.second-position {
 left: 50%;
 background-color: yellow;
}

As you can see, the new properties set the circle to be positioned in the middle
of the screen with a background-color of yellow. Add this CSS class to the test
div.

CHAPTER 5: CSS3 for Mobile 122

<div class="test second-position"></div>

Now you will see a screen similar to the one shown in Figure 5-2.

Figure 5-2. Final position for the test div

The final thing to do is to add a transition to the .test class. This will dictate
how and what properties should be transitioned, as well as the timings for the
transition.

The transition property is currently vendor specific and, as always, it is good
practice to include all of the vendor properties. The following code will create a
transition for all properties of the test element.

.test {
 width: 100px;
 height: 100px;
 position: absolute;
 top: 0px;
 left: 0px;
 border-radius: 50px;
 background-color: blue;
 transition: all 2s;
 -moz-transition: all 2s;
 -webkit-transition: all 2s;
 -o-transition: all 2s;
}

In order for the transition to work, you need to dynamically add the second-
position class to the element. You can do this using JavaScript. The following
script will search for the first element with a class name of test and append the
second-position class to it. You should place it underneath the test element, as
shown.

CHAPTER 5: CSS3 for Mobile 123

<div class="test"> </div>

<script>
 document.getElementsByClassName('test')[0].classList.add('second-position');
</script>

When you load the page on your mobile device, the circle should animate to the
center of the screen and gradually change color to yellow.

You can also control which properties should be transitioned by specifying the
property, the duration, timing function, and delay, as shown in the following
example.

[-moz-|-o-|-webkit-]transition: property transition-duration transition-timing-
function transition-delay [, property duration timing-function delay]

You can specify as many properties as you wish to animate using this shorthand
method. Table 5-1 lists the possible values.

Table 5-1. CSS Transition Properties

Property Description Values/Options

[-moz-|-webkit-|-o-
]transition-property

The CSS property to animate all, width, height, opacity,
etc.

[-moz-|-webkit-|-o-
]transition-duration

The duration of the transition
in seconds; the default is 0

Xs

[-moz-|-webkit-|-o-
]transition-timing-
function

The timing function to use;
the default is ease

linear, ease, ease-in, ease-
out, ease-in-out, cubic-
bezier

[-moz-|-webkit-|-o-
]transition-delay

The number of seconds to
delay the transition by

Xs

For example, you might want to begin transitioning the left position five seconds
after the color transition begins and ease the left position out. In that case you
would use the following code.

.test {
 width: 100px;
 height: 100px;
 position: absolute;
 top: 0px;
 left: 0px;
 border-radius: 50px;
 background-color: blue;
 transition: left 5s ease-out 5s, background-color 5s ease 0s;

CHAPTER 5: CSS3 for Mobile 124

 -moz-transition: left 5s ease-out 5s, background-color 5s ease 0s;
 -webkit-transition: left 5s ease-out 5s, background-color 5s ease 0s;
 -o-transition: left 5s ease-out 5s, background-color 5s ease 0s;
}

Animations
At times, you might want more control over your animations. For instance,
wouldn’t it be nice if you could animate from one position to another while
altering certain CSS properties at certain points in your animation? This is better
known as keyframing. If you have experience in Flash animation, you will know it
better as creating significant alterations to an object in the flash timeline and
creating tweens between them. Keyframes are now available in CSS. As always,
this is vendor specific at the time of writing, so use all of the available vendors
for compatibility. For this demo, you will animate a circle on the screen and
make it bounce.

Before diving into creating the bouncing ball animation, look at the intended
animation shown in Figure 5-3.

Figure 5-3. Desired animation sequence

As you can see from the animation sequence in Figure 5-3, the intention is to
mimic a bouncing ball. The CSS keyframes feature allows you to specify the

CHAPTER 5: CSS3 for Mobile 125

CSS styles that you would like to animate at percentage increments. We can
use the information shown in Figure 5-3 to create the keyframe rule.

You begin by creating a new keyframe definition using the @keyframes rule and a
name for the keyframe as shown in the following code.

@keyframes bouncyball {
}

Next, you specify where you would like the animation’s attached element to
start using the percentage marker and CSS styles.

@keyframes bouncyball {
 0% { top: 0px; left: 0px; }
}

Here, you have specified that the associated element should start from the top
left.

Next, you specify the individual segments within the animation. Using Figure 5-3
as a guide, there are CSS rules for 0%, 12.5%, 25%, 37.5%, 50%, 62.5%, 75%,
87.5%, and 100%.

@keyframes bouncyball {
 0% { bottom: 100%; left: 0px; }
 12.5% { bottom: 0px; left: 12.5%; }
 25% { bottom: 50%; left: 25%; }
 37.5% { bottom: 0px; left: 37.5%; }
 50% { bottom: 25%; left: 50%; }
 62.5% { bottom: 0px; left: 62.5% }
 75% { bottom: 12.5%; left: 75% }
 87.5% { bottom: 0px; left: 87.5% }
 100% { bottom: 0px; left: 100% }
}

Now it’s time to create a new CSS rule for your ball. The following code will
create a circle from a square, and apply the animation to the element.

.ball {
 background: black;
 width: 100px;
 height: 100px;
 position: absolute;
 border-radius: 50px;
 animation: bouncyball 2s ease-in-out;
 -moz-animation: bouncyball 2s ease-in-out;
 -webkit-animation: bouncyball 2s ease-in-out;
}

CHAPTER 5: CSS3 for Mobile 126

The animation CSS property in this example is written in shorthand and is, once
again, vendor specific. Table 5-2 lists the parameters that the animation
property takes in order.

Table 5-2. CSS Animation Properties

Property Description Values/Options

[-moz-|-webkit-]animation-
name

The name of the animation to
apply to the element

—

[-moz-|-webkit-]animation-
duration

The duration of the animation
in seconds

Xs

[-moz-|-webkit-]animation-
timing-function

The timing function to use;
the default is ease

linear, ease, ease-in, ease-
out, ease-in-out, cubic-
bezier

[-moz-|-webkit-]animation-
delay

The number of seconds to
delay the transition by

Xs

[-moz-|-webkit-]animation-
iteration-count

The number of times to
repeat the animation; the
default is 1

Integer

[-moz-|-webkit-]animation-
direction

Tells the animation whether
or not to play the animation
back in reverse on alternate
cycles; e.g., if you specify 2
as the animation-iteration-
count, the animation will play
backward on the second
iteration

normal, alternate

[-moz-|-webkit-]animation-
play-state

Specifies whether the
animation is playing or not;
this can be modified using
JavaScript

running, paused

When you load the animation on your device, it should automatically play. It’s
not a very smooth bouncing ball, but this is just to prove that CSS can be a very
powerful tool for animations, with little effort. You can also use JavaScript to
dynamically script CSS animations. For more intensive animations there is also
HTML5 Canvas.

CHAPTER 5: CSS3 for Mobile 127

New CSS3 Features
Along with animations, transforms, and transitions, there are several new
noteworthy features to the CSS3 spec. In this section, you will learn how to use
@font-face to introduce new typefaces to your mobile web application by
importing the font files.

You will also learn how to use several new border styling elements, such as
border-radius (which will allow you to create rounded borders on elements
without requiring extra markup or JavaScript), box-shadow, and border-image.
You will also learn how to create CSS3 gradients that will scale, depending on
the size of the document, without requiring repeating background images and
saving on bandwidth.

This section also covers several of the new CSS3 selectors that make it easier to
style DOM elements based on state and hierarchy.

@font-face
@font-face is a new, standardized feature of CSS3 that allows you to use fonts
outside of the web-safe font list (fonts such as Arial and Times New Roman,
which are typically found on most devices). This gives you the freedom to
become much more creative with your typefaces. Prior to @font-face,
nonstandardized methods of using fonts that were not web safe included cufon
(a technique taking advantage of Canvas and SVG), sIFR (although now no
longer being maintained, sIFR made use of Flash), and standard CSS image
replacement (a method that makes use of prerendered images of text as a
background image for the text that should be displayed on the screen).

It’s important to remember that although you have complete freedom over the
typefaces that you use, you must make sure that the typeface really relates to
your content and audience. It’s also important to remember that some typefaces
are suitable for headings, but not suitable for body text as it becomes
unreadable at smaller font sizes (see Figure 5-4). For instance, Comic Sans is a
bad font choice for body text.

‘‘Comic Sa ns is uniq ue: used t he w orld o ver, it's a typefa ce that
doesn't really w ant to be t ype. It l ooks hom ely and h andwritten,
something perfect for things we deem t o be fun a nd liberating. Great
for th e awni ngs of toysh ops, le ss goo d o n n ews w ebsites or o n
gravestones and the sides of ambulances.’’

www.bbc.co.uk/news/magazine-11582548

http://www.bbc.co.uk/news/magazine-11582548

CHAPTER 5: CSS3 for Mobile 128

Figure 5-4. Hello World with a web font

There are several caveats to using @font-face for the Web. The biggest one is
regarding licensing. In order to render fonts in the browser, the font has to be
downloadable. This poses potential problems when using purchased fonts that
could have a license attached. Before using a web font for your project, you
should check to see whether the license allows for the font to be downloaded or
delivered using @font-face. If you can’t use the font you want, you may use the
Google font directory and use any font from its growing collection of open
source web fonts (see Figure 5-5). Google also provides a handy way to embed
web fonts that are hosted on its server.

CHAPTER 5: CSS3 for Mobile 129

Figure 5-5. Google web fonts

The second caveat with web fonts is their file size. Using a single web font won’t
have too much of an impact on loading time, but should you use several active
web fonts or a web font with lots of font styles, you could run into issues with
slow page loading times. It is, therefore, important to only include the character
set and font style that you require for your web application, so as to reduce the
font payload.

Android Browser is smart enough to only load a font family when it is actually
used on the page. For example, if you define an h4 element to use a web font,
the web font will not download unless that element exists on the page, even if
there is a definition for that font in a CSS class.

Android Browser, at the time of this writing, supports only TTF and SVG fonts,
two of the biggest and uncompressed font formats available. Other formats
include EOT and WOFF. It is important to include all font formats when declaring
@font-face to support other browsers and, so that as Android Browser begins
to support other formats, they can be loaded without requiring a change in your
code. The order should be in size preference (with the smallest first), as Android
Browser will select the first usable format to use. On the off chance that Android
might have included the font that you would like to use on the device, you can

CHAPTER 5: CSS3 for Mobile 130

also specify the local name of the font first. If the font is found, the font will not
need to be loaded and downloaded from the Web.

Figure 5-6. Font payload in Google Chrome for Android

The @font-face declaration is used to declare a new font. You use @font-face
{} for every new font declaration in your CSS document.

@font-face {
 font-family: "MyFont";
 src: url('/path/to/my/font.otf');
}

From here, you then define the font-family that will be used to to reference the
font in your CSS. Finally, you declare the source of the font. This can either be a
path on the server or a font hosted on a remote server.

You are then free to use the font family anywhere in your CSS using the
traditional method.

h1 {
 font-family: "MyFont";
}

CHAPTER 5: CSS3 for Mobile 131

The following code example shows a full declaration of how to use @font-face.

@font-face {
 font-family: "My Font With Spaces";
 src: local("My Font With Spaces"),
 url("/path/to/fonts/my-font-with-spaces.woff") format("woff"),
 url("/path/to/fonts/my-font-with-spaces.eot") format("embedded-opentype"),
 url("/path/to/fonts/my-font-with-spaces.svg") format("svg"),
 url("/path/to/fonts/my-font-with-spaces.ttf") format("truetype");
 font-style: normal;
 font-weight: normal;
}

text-shadow and text-stroke
text-shadow allows you to create varying amounts of shadow behind text using
CSS. text-stroke allows you to draw an outline on the inside edge of text.
text-shadow and text-stroke can also be used on @font-face typefaces.

To create a basic shadow around text, you simply need to add the text-shadow
property to your CSS. The property accepts the following values and format.

text-shadow: horizontal-offset vertical-offset blur color;

For instance, the following CSS style will produce results similar to that shown in
Figure 5-7.

h1 {
 text-shadow: 10px 10px 10px #000000;
}

You can also use negative numbers for the shadow’s position. This will offset
the shadow to the left for the horizontal offset, and toward the top for the
vertical offset.

You define the text-stroke property by specifying the stroke width in pixels and
its color. The text-stroke property accepts the following values with the
following format.

text-stroke: width color;

It is used in much the same way as text-shadow, as shown in the next code
snippet.

h1 {
 text-stroke: 1px #000000;
}

CHAPTER 5: CSS3 for Mobile 132

Figure 5-7. Text shadow effect (left) and stroke effect (right)

Selectors
Selectors allow you to apply styles to DOM elements using CSS. There are
usually two types of selectors: regular CSS class and element and ID selectors,
such as .elementclass, #elementid, and element. There are also
pseudoselectors, such as :link, :visited, :hover, and :active.

CSS3 introduces several new selectors that allow you to select elements based
on attribute values, input state, and an element’s position within the DOM.

Useful Form Selectors
Form selectors will enable you to style form inputs based on their state or type.
Prior to CSS3, you needed to manually assign classes to text, checkbox, radio,
and submit fields and buttons, as there was no clear way to apply styles to
those fields. This is because they are all <input /> elements, so any attempt to
create a global style for an input element would style all field types exactly the
same.

With CSS3, you can now apply styles to specific input types using the new
attribute selectors. Table 5-3 gives the attribute selector formats.

CHAPTER 5: CSS3 for Mobile 133

Table 5-3. Attribute Selectors

Selector Description

element[attribute="value"] This will match all elements with attributes that exactly
match the specified value.

element[attribute*="value"] This will match and apply a style to all attributes that
contain the specified value. * acts as a wildcard attribute
selector.

element[attribute^="value"] This will match and apply a style to all attributes that begin
with the specified value. ^ acts as a starting indicator for
the selector.

element[attribute$="value"] This will match and apply a style to all elements with
attributes that end with the specified value. $ acts as an
end flag for the element’s attribute value.

You can change the attribute and value to match any element. For instance, to
select all text fields in a form you would use the following CSS.

input[type="text"] {
 border: 1px solid #000000;
}

This will create a one-pixel border around all text elements.

You can also select all elements that are checked, enabled, or disabled using
the pseudoselectors given in Table 5-4.

Table 5-4. Pseudoselectors

Selector Description

:enabled Selects all form elements that are enabled

:disabled Selects all form elements that are disabled

:checked Selects all form elements that are checked

You can combine and and chain CSS selectors. For instance, if you wanted to
select all text form fields that were disabled, you could use the following CSS.

input[type="text"]:disabled {
 opacity: 0.5;
}

CHAPTER 5: CSS3 for Mobile 134

Useful Selectors to Replace JavaScript
It was commonplace to select the last child element of another element using
JavaScript, and apply a class to it to remove margin or padding to floated
elements. If you had a three-column layout with multiple rows, you could have
also selected every third child within an element using JavaScript and applying
classes to it. With CSS3, you no longer need to do this.

You can select the last child of an element using the :last-child pseudoclass.
For instance, if you wanted to select the last li within a ul, you would use the
following CSS.

ul li:last-child {
 margin-right: 0px;
}

You can also do the same to select the nth child of any element. Using the :nth-
child, :nth-last-child, :nth-of-type, and :nth-last-of-type, you can make
selections based on child index and child type and index, as shown in Table 5-5.

Table 5-5. nth Selectors

Selector Description

:nth-child(index) Selects elements that are at the specified index of its
parent

:nth-last-child(index) Selects elements that are at the specified index, starting
from the end of its parent

:nth-of-type(index) Selects elements that are at the specified index of its
parent, while only including elements of the same type
when comparing indexes

:nth-last-of-type(index) Selects elements that are at the specified index of its
parent, starting from the end, while only including
elements of the same type when comparing indexes

For example, if you wanted to select every third li in a ul and make the text
gray, you would use the following CSS style.

ul li:nth-child(3) {
 color: #CCCCCC;
}

As you can see, there are many new CSS selectors available to make styling
your mobile web app easier. There are much more advanced selectors to
choose from.

CHAPTER 5: CSS3 for Mobile 135

Gradients
CSS3 gradients allow you to add background gradients to elements without
needing to use repeating images. This can save bandwidth and allow you to
create gradient backgrounds that scale, depending on screen size and
orientation. CSS3 gradients are vendor specific for now. Each vendor appears to
have their own way to produce CSS3 gradients. This section will focus on the
WebKit implementation.

There are two types of gradients that you may use in CSS3: linear and radial.
Linear gradients will flow from one side of the screen to the other, and radial
gradients will emanate from a central point outward, as shown in Figure 5-8.

Figure 5-8. Linear (left) and radial (right) gradients

Linear Gradients
A linear gradient has the following syntax and must be applied as a background
using the background property.

.box {
 background: -webkit-linear-gradient(start, start-color, end-color);
}

You may specify the start position as either a single position (left, top, right,
bottom) or a combination of these positions. For instance, to start a linear
gradient from the bottom-left corner, you can use the following code.

.box {
 background: -webkit-linear-gradient(bottom left, green, red);
}

CHAPTER 5: CSS3 for Mobile 136

Figure 5-9 shows the result of this snippet.

Figure 5-9. Linear gradient with a bottom-left starting point

You can also specify the gradient’s start point in degrees. For instance, setting
the start point to be 45deg will have the same results as setting the start point as
bottom left.

.box {
 background: -webkit-linear-gradient(45deg, green, red);
}

Along with standard two-color gradients, you can also use several colors within
a gradient background. You simply specify more colors after the position. For
instance, the following code will create an Irish flag using a linear gradient, as
shown in Figure 5-10.

.box {
 background: -webkit-linear-gradient(left, green, white, orange);
}

CHAPTER 5: CSS3 for Mobile 137

Figure 5-10. Creating an Irish flag using CSS3 gradients

CSS3 gradients also support color stops. Color stops allow you to specify
where the gradient should stop along the gradient line. For instance, you can
create a true Irish flag in CSS3 without any gradient, using stops. In order to do
this, you would specify that the green color would stop at 33% (one-third) of the
element, a white color would then start at 33% and stop at 33%. This would
create an immediate line of color between green and white, instead of a
gradient. From here, you would then use another white color and specify the
stop at 66% of the screen; and finally orange, which will stop at 66%, creating
another line of color.

The code would look similar to the following, and you can see the result in
Figure 5-11.

.box {
 background: -webkit-linear-gradient(left, green 33.3%, white 33.3%, white
66.6%, orange 66.6%);
}

CHAPTER 5: CSS3 for Mobile 138

Figure 5-11. Creating an Irish flag using CSS3 gradient color stops

Radial Gradients
Radial gradients are slightly more complex than linear gradients. You can
specify where the gradient’s position should start from and its shape. Radial
gradients have the following syntax.

.box {
 background: -webkit-radial-gradient(center, [circle|elipse]
 [closest-side|closest-corner|farthest-side|farthest-corner|contain|cover],
 start-color, stop-color);
}

You can specify the center position in pixels, or percentage left and top
positions. The second argument accepts a shape keyword, and this can be
either a circle or an ellipse. The second argument also accepts a size keyword,
these are closest-side, closest-corner, farthest-side, farthest-corner,
contain, and cover. Finally, the gradient also accepts a start and stop color as
hex, keyword, RGB, or RGBA colors.

For instance, you can make a Japanese flag using CSS3 using the following
code, the result of which can be seen in Figure 5-12.

.box {
 background: -webkit-radial-gradient(center, circle contain, red, white);
}

CHAPTER 5: CSS3 for Mobile 139

Figure 5-12. Japanese flag with a radial gradient

You can use the same color stop technique as found in the linear gradient
example to remove the gradient on the radial gradient and create a full circle.
You can use the following code to achieve this, and Figure 5-13 shows the
result.

.box {
 background: -webkit-radial-gradient(center, circle contain, #C00C00 70%,
white 70%);
}

Figure 5-13. Japanese flag with radial gradient removed

CHAPTER 5: CSS3 for Mobile 140

Borders
With CSS3, you can now apply new border styles, such as border-radius and
box-shadow.

border-radius
The border-radius property allows you to create rounded corners on elements.
Prior to having the ability to do this, in order to make flexible elements with
rounded corners, you would either use several images to simulate rounded
corners, or use a JavaScript helper, such as Curvy Corners, which would
generate lots of div elements and position them to simulate a rounded corner.

border-radius allows you to generate rounded corners using CSS3 without any
additional help from images or JavaScript. It is now part of the CSS3 spec, and
using the following CSS can create a rounded border.

.box {
 border-radius: 10px;
}

This will create a border with a radius of 10 pixels. You can also specify the
radius for each corner of your element using the following syntax, the result of
which you can see in Figure 5-14.

.box {
 border: 1px solid #000000;
 border-top-left-radius: 5px;
 border-top-right-radius: 10px;
 border-bottom-left-radius: 15px;
 border-bottom-right-radius: 20px;
 width: 100px;
 height: 100px;
}

CHAPTER 5: CSS3 for Mobile 141

Figure 5-14. Border radius

box-shadow
The box-shadow property allows you to create shadows on block-level elements.
This can be handy when designs call for drop shadows with varying sizes.
Rather than using several images for different shadow styles, you can now use a
few lines of CSS.

The box-shadow property has the following format.

box-shadow: horizontal-offset vertical-offset blur spread color inset;

The horizontal-offset and vertical-offset properties dictate the position of
the shadow in pixels, blur sets the amount of blur in pixels, spread sets the
shadows spread in pixels, color sets the shadow’s color, and inset sets
whether the shadow should be on the inside or outside of the element. The
inset property has a value of inset or nothing.

For instance, the following CSS will produce results similar to Figure 5-15.

.box {
 width: 100px;
 height: 100px;
 border: 1px solid #000000;
 box-shadow: 10px 10px 20px 5px #000000;
}

CHAPTER 5: CSS3 for Mobile 142

Figure 5-15. Box shadow

The values for box-shadow act in the same way as text-shadow, in that if you
specify negative offset values, the shadow will be rendered to the left and top of
the screen.

CSS Media Queries
CSS media queries allow you to pull in CSS styles, depending on certain
conditions. These conditions can include those shown in Table 5-3.

Table 5-3 Media Query Properties

Property Description Values/Options

media The type of media for the
query

screen, print, braille,
embossed, handheld,
projection, speech, tty, tv,
and other custom options

[max-|min-]width The width of the viewport cm (for print), pixels, em

[max-|min-]height The height of the viewport cm(for print), pixels, em

[max-|min-]device-width The width of the device’s
screen (equivalent to
screen.width in JavaScript)

pixels

CHAPTER 5: CSS3 for Mobile 143

Property Description Values/Options

[max-|min-]device-height The height of the device’s
screen (equivalent to
screen.height in JavaScript)

pixels

orientation The orientation of the device landscape, portrait

[max-|min-]aspect-ratio The aspect ratio of the
viewport (based on
height/width)

cm (for print), pixels

[max-|min-]device-aspect-
ratio

The aspect ratio of the
device’s screen (based on
device-width, device-
height)

cm (for print), pixels

[max-|min-]device-pixel-
ratio

[max-|min-]-moz-device-
pixel-ratio

-o-[max-|min-]device-
pixel-ratio

-webkit-[max-|min-]device-
pixel-ratio

The pixel ratio of the device;
this can be used to pull in
high-resolution images for
devices with a high-pixel
density; this property is also
vendor specific

The idea behind creating media queries is not necessarily to build media queries
to target specific devices (e.g., not to specifically target tablets or mobile
phones), but to cater for specific screen sizes and adjust the content to fit it.

By doing this, you can ensure that your CSS applies to the available space
instead of the target device. We call this responsive web design.

Daniel Vane’s web site (http://danielvane.com/) shows a great example of
responsive web design. By providing styles for all viewport sizes, styles for
displays up to 480px, and styles for displays up to 768px, the web site responds
appropriately to the available space on any handset or tablet-based device, as
shown in Figure 5-16 and Figure 5-17.

http://danielvane.com/

CHAPTER 5: CSS3 for Mobile 144

Figure 5-16. Daniel Vane’s responsive web site in landscape mode (tablet on left, mobile on right)

Figure 5-17. Daniel Vane’s responsive web site in portrait mode (tablet on left, mobile on right)

Andy Clarke and Keith Clark have devised a set of media queries that you can
use to target progressively larger displays. The idea behind this is to style for the
smallest screen sizes with color and typography, and then progressively
enhance the web site at specific screen increments until you reach screen sizes

CHAPTER 5: CSS3 for Mobile 145

above 992px. The set of media queries also includes a media query to target
displays with a high-pixel density.

<!-- For all browsers -->
<link rel="stylesheet" href="css/style.css">
<link rel="stylesheet" media="print" href="css/print.css">
<!-- For progressively larger displays -->
<link rel="stylesheet" media="only screen and (min-width: 480px)"
href="css/480.css">
<link rel="stylesheet" media="only screen and (min-width: 600px)"
href="css/600.css">
<link rel="stylesheet" media="only screen and (min-width: 768px)"
href="css/768.css">
<link rel="stylesheet" media="only screen and (min-width: 992px)"
href="css/992.css">
<!-- For Retina displays -->
<link rel="stylesheet" media="only screen and (-webkit-min-device-pixel-ratio:
1.5), only screen and (-o-min-device-pixel-ratio: 3/2), only screen and (min-
device-pixel-ratio: 1.5)" href="css/2x.css">

You should check their GitHub project for updates to this set of rules, found at
https://github.com/malarkey/320andup/.

CSS Precompilers (SASS)
If you have had experience with CSS in the past, you know some of its
limitations. For instance, you cannot define variables that may affect the way in
which your CSS is presented or reuse elements of code. Producing and
maintaining a long chain of inheritance within your CSS can also prove to be a
pain as your application grows, as shown in the code below where there are
several elements within an element that require similar styling.

/**
 * A common way to style a block in CSS
 **/

.block {
 /** style your block here **/
}

.block h1.heading {
 /** style your header here **/
}

.block ul.alternating {
 /** style your block ul here **/
}

https://github.com/malarkey/320andup/

CHAPTER 5: CSS3 for Mobile 146

.block ul.alternating li {
 /** style your alternating li here **/
}

.block ul.alternating li a {
 /** style your li link here **/
}

/** and the story continues **/

Syntactically Awesome Stylesheets (SASS) helps to get rid of this bulk with the
use of nesting, variables, mixins, and selector inheritance. SASS isn’t CSS, and
requires a compiler to compile it into CSS.

As you can see from the preceding CSS, a lot of code is repeated.
Unfortunately, there is no way to remove the bulk in a way that can be
recognized by the browser, but there is a way to do this in a way that the CSS
you write is easier to maintain and port. This is known as nesting in SASS.

In this section, you will learn how to use SASS to produce organized, reusable,
and concrete CSS. You will learn how SASS can improve your development
workflow and change the way you think about CSS.

You will also learn how SASS can take a lot of the repetitive work out of using
similar CSS styles throughout your stylesheet and pave the way toward object-
orientated CSS, a way of thinking about the relationship between CSS and
HTML that treats each design element as its own independent design object.

Nesting
Nesting allows you to nest CSS styles within each other. As an example, the
previous code as nested SASS code would look like the following.

/**
 * The SASS way to style a block in CSS
 **/

.block {
 /** style your block here **/

 h1.heading {
 /** style your header here **/
 }

 ul.alternating {
 /** style your block ul here **/

CHAPTER 5: CSS3 for Mobile 147

 li {
 /** style your alternating li here **/

 a {
 /** style your li link here **/
 }
 }
 }
}

/** and the story continues **/

This code is much easier to maintain. Should you change the classname for your
block, it’s a simple case of changing the classname once within the nested
style. If you need to add more elements, you just need to add another class or
element that you would like to style in the appropriate place. For instance, if you
wanted to style a link within the heading, you can do the following using the
preferred SCSS format.

.block {
 /** style your block here **/

 h1.heading {
 /** style your header here **/
 a {
 /** style your heading link here **/
 }
 }

 ul.alternating {
 /** style your block ul here **/

 li {
 /** style your alternating li here **/

 a {
 /** style your li link here **/
 }
 }
 }
}

Compiling
The preceding code will need to be compiled into CSS for it to be
understandable by the web browser. You do not link SASS files directly into
your HTML document; instead, you link the generated CSS file. You can compile
SASS files directly from Aptana Studio using the built-in tools.

CHAPTER 5: CSS3 for Mobile 148

To compile a SASS file within Aptana Studio, create a new file called
mobile.scss anywhere in your project (you can delete it after) and add the
following code.

.test {
 background: #000000;

 .test2 {
 background: #FFFFFF;
 }
}

Click on Commands Sass Compile SASS. This will generate a new CSS file in
the same location as the SCSS file. You will need to refresh the App Explorer to
see the new file. The shortcut to Compiling SASS is cmd + shift + r (CTRL +
Shift + r on Windows and Linux). Press 1 when the dialog shown in Figure 5-18
appears.

Figure 5-18. Compiling SASS using the cmd + shift + r command

After your new CSS file appears, open it. You should see the following code.

.test {
 background: #000000; }
.test .test2 {
 background: #FFFFFF; }

Partials
A big SASS file can become hard to maintain and very long to scroll through! In
Aptana Studio, you can use code folding to show and hide SASS styles to make
it easier to browse, as shown in Figure 5-10.

CHAPTER 5: CSS3 for Mobile 149

Figure 5-19. Code folding in Aptana with SCSS files

While this is convenient, SASS also supports importing partial stylesheets from
external SASS files using the same @import syntax found in regular CSS. The
difference between the SASS implementation and the implementation found in
regular stylesheets is that SASS will pull the files in on compile time rather than
loading all files in a regular CSS file one by one using HTTP requests. This
provides scope for importing object- or section-specific partials at compile time.
The following code shows an example.

/** mobile.scss **/

@import "partials/tablet";
@import "partials/phone";

/** partials/ tablet.scss **/

.test-tablet {
 background: url('../themes/mytheme/common/logo.png') no-repeat top left
#FFFFFF;
}

/** partials/ phone.scss **/
.test-phone {
 background: url('../themes/mytheme/common/logo.png') no-repeat top left
#FFFFFF;
}

Once compiled, the CSS will look like the following.

.test-tablet {
 background: url("../themes/mytheme/common/logo.png") no-repeat top left
white; }

.test-phone {
 background: url("../themes/mytheme/common/logo.png") no-repeat top left
white; }

CHAPTER 5: CSS3 for Mobile 150

As you can see from this example, the file name for each partial should be
prefixed with an _ (underscore) and the reference in the import should contain
the relative folder and partial name without the _ prefix or SCSS file name. You
might notice that SASS also converts #FFFFF to white in the compiled CSS.

Variables and Interpolation
You are bound to eventually produce stylesheets that are color/theme based
(i.e., the same stylesheet may reference the same images, but from a separate
image folder, or have a different color theme).

Traditionally, you would use something like PHP, Python, or .NET to generate
these stylesheets on the fly. SASS removes this need with the use of variables.

A variable in SASS acts in much the same way as in any other language. They
can be of any type (string, CSS property value, integer, measurement such as
pixel, em, %) and be added to the SCSS styles to make global changes to your
stylesheet.

As an example, taking the code from the example in the partials section, we can
modify this so that you can change the theme folder and colors from the master
(mobile) stylesheet.

/** mobile.scss **/

$theme: "bentley";
$color: #000000;

@import "partials/tablet";
@import "partials/phone";

/** partials/ tablet.scss **/

.test-tablet {
 background: url('../themes/#{$theme}/common/logo.png') no-repeat top left
$color;
}

/** partials/ phone.scss **/

.test-phone {
 background: url('../themes/#{$theme}/common/logo.png') no-repeat top left
$color;
}

CHAPTER 5: CSS3 for Mobile 151

As you can see in mobile.scss, you define a theme variable with a string of
"bentley". You then define a black color on the line below that. @import is then
used to import the partials. Within each partial, you will notice that the
background declaration has been modified as follows.

background: url('../themes/#{$theme}/common/logo.png') no-repeat top left
$color;

There are two ways to add variables to SASS files. To add a variable as part of a
CSS string, such as a background image path, you use the following syntax.

#{$myvariable}

This is known as interpolation, and you can also use this to change a CSS
property instead of its value. For example, border-#{$position}-radius: where
position is the position defined by the variable.

The second method is simply to repeat the variable name using $myvariable.
This is what you should use when defining a CSS property value such as a
color, width, or height.

Mixins
One of the more popular features of SASS is mixins. Mixins allow you to define a
piece of code in a single place and use it anywhere in your SASS stylesheet. For
example, you might have a big CSS declaration for a cross browser gradient, as
shown in the following code.

.myelement {
 background: rgb(206,220,231);
 background: -moz-linear-gradient(-45deg, rgba(206,220,231,1) 0%,
 rgba(89,106,114,1) 100%);
 background: -webkit-gradient(linear, left top, right bottom,
 color-stop(0%,rgba(206,220,231,1)),
 color-stop(100%,rgba(89,106,114,1)));
 background: -o-linear-gradient(-45deg, rgba(206,220,231,1) 0%,
 rgba(89,106,114,1) 100%);
 background: -ms-linear-gradient(-45deg, rgba(206,220,231,1) 0%,
 rgba(89,106,114,1) 100%);
 background: linear-gradient(-45deg, rgba(206,220,231,1) 0%,
 rgba(89,106,114,1) 100%);
}

That’s a lot of code. What if you want to use it somewhere else? The most
efficient way would be to simply add more classes to the definition that you
want to use it with.

CHAPTER 5: CSS3 for Mobile 152

.myelement, .mysecondelement {
 background: rgb(206,220,231);
 background: -moz-linear-gradient(-45deg,
 rgba(206,220,231,1) 0%, rgba(89,106,114,1) 100%);
 background: -webkit-gradient(linear, left top, right bottom,
 color-stop(0%,rgba(206,220,231,1)),
 color-stop(100%,rgba(89,106,114,1)));
 background: -o-linear-gradient(-45deg,
 rgba(206,220,231,1) 0%,rgba(89,106,114,1) 100%);
 background: -ms-linear-gradient(-45deg,
 rgba(206,220,231,1) 0%,rgba(89,106,114,1) 100%);
 background: linear-gradient(-45deg,
 rgba(206,220,231,1) 0%,rgba(89,106,114,1) 100%);
}

You could use a mixin to define the gradient and include it in your styles using
the following code.

@mixin specialgradient {
 background: rgb(206,220,231);
 background: -moz-linear-gradient(-45deg,
 rgba(206,220,231,1) 0%, rgba(89,106,114,1) 100%);
 background: -webkit-gradient(linear, left top, right bottom,
 color-stop(0%,rgba(206,220,231,1)), color-stop(100%, rgba(89,106,114,1)));
 background: -o-linear-gradient(-45deg, rgba(206,220,231,1) 0%,
 rgba(89,106,114,1) 100%);
 background: -ms-linear-gradient(-45deg, rgba(206,220,231,1) 0%,
 rgba(89,106,114,1) 100%);
 background: linear-gradient(-45deg, rgba(206,220,231,1) 0%,
 rgba(89,106,114,1) 100%);
}

#my-first-element {
 @include specialgradient;
}

#my-second-element {
 @include specialgradient;
}

However, that would be a bad idea, as the resulting CSS would include the
gradient twice in the stylesheet, which increases bloat and isn’t what we want.
Selector inheritance should be the preferred option for this. Mixins come in
handy when you have a chunk of CSS that will be repeated in other CSS rules,
or, even better, when you have CSS that is repeated throughout your stylesheet,
such as vendor-specific styles (e.g., gradients and border images) that require
the same CSS to be defined several times for each browser.

CHAPTER 5: CSS3 for Mobile 153

To achieve this, you can pass parameters into mixins. You can now produce
CSS gradients anywhere in your SASS file in a single line using the following
code.

@mixin gradient($start, $stop, $degrees) {
 background: rgba($start, 1);
 background: -moz-linear-gradient($degrees, $start 0%, $stop 100%);
 background: -webkit-gradient(linear, left top, right bottom,
 color-stop(0%, $start), color-stop(100%, $stop));
 background: -o-linear-gradient($degrees, $start 0%,$stop 100%);
 background: -ms-linear-gradient($degrees, $start 0% $stop 100%);
 background: linear-gradient($degrees, $start 0%, $stop 100%);
}

#my-first-element {
 @include gradient(rgba(206,220,231,0.5), rgba(89,106,114,1), -45deg);
}

#my-second-element {
 @include gradient(rgba(206,220,231,1), rgba(89,106,114,1), -45deg);
}

As you can see, you first define a mixin called gradient that takes three
parameters: $start, $stop, and $degrees. Within this mixin, you first define the
standard background for devices that do not support gradients. You define the
value of the background color using the rgba SASS function. In here, you
explicitly set the background color to be the start color with no alpha
transparency. Using the following lines, you simply pass in the start color, stop
color, and degrees to the appropriate vendor gradient declarations. You can
now pull the gradient with the parameters anywhere in your stylesheet using
@include gradient(start-color, finish-color, degrees);. The resulting CSS
looks like the following.

#my-first-element {
 background: #cedce7;
 background: -moz-linear-gradient(-45deg, rgba(206, 220, 231, 0.5) 0%, #596a72
100%);
 background: -webkit-gradient(linear, left top, right bottom,
 color-stop(0%, rgba(206, 220, 231, 0.5)), color-stop(100%, #596a72));
 background: -o-linear-gradient(-45deg, rgba(206, 220, 231, 0.5) 0%, #596a72
100%);
 background: -ms-linear-gradient(-45deg, rgba(206, 220, 231, 0.5) 0% #596a72
100%);
 background: linear-gradient(-45deg, rgba(206, 220, 231, 0.5) 0%, #596a72
100%); }

#my-second-element {
 background: #cedce7;
 background: -moz-linear-gradient(-45deg, #cedce7 0%, #596a72 100%);

CHAPTER 5: CSS3 for Mobile 154

 background: -webkit-gradient(linear, left top, right bottom,
 color-stop(0%, #cedce7), color-stop(100%, #596a72));
 background: -o-linear-gradient(-45deg, #cedce7 0%, #596a72 100%);
 background: -ms-linear-gradient(-45deg, #cedce7 0% #596a72 100%);
 background: linear-gradient(-45deg, #cedce7 0%, #596a72 100%); }

Notice how the CSS in #my-first-element has the background color in the first
descriptor as a regular hex color and the rest are RGBA colors. In addition, even
though the stop color was set using RGBA in the mixin call, it is also a hex color,
as the opacity has been set to 1 while the start color was set to 0.5. SASS will
pick the most efficient way to output your colors.

Selector Inheritance
Of course, it is tempting to use mixins throughout your SASS file, even though
the CSS may well be exactly the same. Selector inheritance allows you to use
the same CSS rules in a rule placed elsewhere in the SASS file. For instance, in
CSS you can use the following.

.my-element-one, .my-element-two, .my-element-three {
 /** insert common CSS style here **/
}

While efficient, it can be easy to lose track of which CSS rules are associated
with a group of rules. You might have to hunt around the document to find that
group of rules and which elements, classes, and ids are associated with it. To
add to the confusion, styles could be located in separate CSS files.

Selector inheritance helps to overcome this. Selector inheritance allows you to
generate the same code as just shown, but in a much more developer-friendly
way.

Using the example from the mixins section, you can define one type of gradient
and use it anywhere in your SASS file on related rules without the resulting
gradient being generated more than once in the CSS file.

.block {
 @include gradient(rgba(206,220,231,0.5), rgba(89,106,114,1), -45deg);
}
.sidebar-block {
 border-radius: 10px;
 @extend .block;
}

As you can see, the .sidebar-block is similar to the .block rule, aside from the
rounded border. The resulting CSS looks like the following.

CHAPTER 5: CSS3 for Mobile 155

.block, .sidebar-block {
 background: #cedce7;
 background: -moz-linear-gradient(-45deg, rgba(206, 220, 231, 0.5) 0%, #596a72
100%);
 background: -webkit-gradient(linear, left top, right bottom,
 color-stop(0%, rgba(206, 220, 231, 0.5)), color-stop(100%, #596a72));
 background: -o-linear-gradient(-45deg, rgba(206, 220, 231, 0.5) 0%, #596a72
100%);
 background: -ms-linear-gradient(-45deg, rgba(206, 220, 231, 0.5) 0% #596a72
100%);
 background: linear-gradient(-45deg, rgba(206, 220, 231, 0.5) 0%, #596a72
100%); }

.sidebar-block {
 border-radius: 10px; }

You can see that SASS has separated the border-radius property and placed it
within its own CSS rule for .sidebar-block.

You can also add chained classes to the block element and it will generate the
edge cases for both the .sidebar-block and .block rules.

/**
 * mobile.scss
 */

.block {
 @include gradient(rgba(206,220,231,0.5), rgba(89,106,114,1), -45deg);
}

.block.wide {
 width: 100px;
}

.sidebar-block {
 border-radius: 10px;
 @extend .block;
}

/**
 * mobile.css
 */

.block, .sidebar-block {
 background: #cedce7;
 background: -moz-linear-gradient(-45deg, rgba(206, 220, 231, 0.5) 0%, #596a72
100%);
 background: -webkit-gradient(linear, left top, right bottom,
 color-stop(0%, rgba(206, 220, 231, 0.5)), color-stop(100%, #596a72));

CHAPTER 5: CSS3 for Mobile 156

 background: -o-linear-gradient(-45deg, rgba(206, 220, 231, 0.5) 0%, #596a72
100%);
 background: -ms-linear-gradient(-45deg, rgba(206, 220, 231, 0.5) 0% #596a72
100%);
 background: linear-gradient(-45deg, rgba(206, 220, 231, 0.5) 0%, #596a72
100%); }

.block.wide, .wide.sidebar-block {
 width: 100px; }

.sidebar-block {
 border-radius: 10px; }

Summary
From this chapter, you should have gained a good understanding of the new
features of CSS3. You should be armed with a small toolbox from which you
can expand upon, which includes how to perform basic animations, how to
‘‘tween’’ and create keyframes for animations, and how to apply them to
elements. You should also have an understanding that some of the CSS3
features are supported by most browsers, but are still in their draft stages,
which is why sometimes you need to write the same code several times.

You should also have a solid understanding of SASS, and how it can improve
your productivity by drastically reducing the amount of code that you have to
write.

6
Chapter

Laying the CSS3
Foundations
In the last chapter, you focused on learning some of the new features of CSS3
and how to use SASS to make your life much easier. In this chapter you will put
some of this new knowledge into practice to begin creating the visual
foundations of your mobile web application. Most of the elements within the
momemo application such as searching, viewing and favouriting movies are
handled and generated with JavaScript, so styling those elements will be
covered in Chapter 8.

Before you begin to create any application, you will usually have to go through
the laborious task of bootstrapping. This entails setting everything up such as
the framework of the application from which you will build upon. Although this is
a very menial and boring task, it’s important to get it right, as the rest of your
application can really benefit from a solid foundation to work from.

In this chapter you will learn how to take advantage of partials in SASS to allow
you to organize your CSS in separate files in such a way that it doesn’t have an
impact on load time. You will also create the basic framework of your
application including creating a stylesheet to improve the quality of images on a
high resolution display and creating the basic layout of your application.

You will need to download the image pack for the application and place this in
your applications image (img) folder.

CHAPTER 6: Laying the CSS3 Foundations 158

Getting Organized
Let’s begin by creating the relevant folders within the application folder. In the
CSS folder within your application folder, create two folders called mixins and
partials and a new sass file in the CSS folder called mobile.scss. Your folder
structure should look similar to Figure 6-1 below.

Figure 6-1. CSS Folder Structure

This folder structure will allow you to separate your CSS for forms, layout and
typography into separate SASS files. The mobile.scss file is simply a master
SASS file that will pull in all of the partials. This means that if you wanted to
create a stylesheet for older mobile devices with just typography, you can create
a new master SASS file and pull in just the typography SASS file and not have to
duplicate any CSS.

Open the mobile.scss file and add the following SASS code:

@import 'mixins/animations';
@import 'mixins/gradient';
@import 'mixins/box-sizing';
@import 'partials/reset';
@import 'partials/typography';
@import 'partials/layout';
@import 'partials/forms';

@media only screen and (-webkit-min-device-pixel-ratio : 1.5),
 only screen and (min-device-pixel-ratio : 1.5) {
 @import 'partials/highres';
}

As shown in Chapter 5, this will import the appropriate SASS files when the
SASS file is compiled.

You will also notice that there is a media query in the code above. This media
query will allow you to pull in high-resolution graphics for high resoloution
devices. Within the media query, you can see that rather than explicitly adding
CSS, a highres partial is imported. This helps to prevent any CSS from being
added to the master mobile.scss file. The mobile.scss file should simply be seen
as a SASS file used to bring everything together and idealy should only contain
media queries and imports.

CHAPTER 6: Laying the CSS3 Foundations 159

Before compiling the mobile.scss file, you will need to create the appropriate
SASS files.

 mixins/_animations.scss

 mixins/_box-sizing.scss

 mixins/_gradient.scss

 partials/_forms.scss

 partials/_highres.scss

 partials/_layout.scss

 partials/_reset.scss

 partials/_typography.scss

Go ahead and create them, remember that SASS partials require an _
(underscore) at the beginning of their file name in order for them to be
recognized for importing.

You will need to create the empty files shown in Figure 6-2.

Figure 6-2. SASS partials

You will notice that there is a file called _reset.scss. If you’re not familiar with
Eric Meyer’s reset css file, reset stylesheets are used to create a level playing
field for CSS styling across browsers. This is because browsers can have varied
default stylings for certain elements such as different margins, padding and font
size. Reset stylesheets set new predictable defaults for the most used HTML
elements. Be warned that some, particularly Eric Meyer’s will reset fonts so that
they have no stying whatsoever, this is useful, but you have to remember that
for elements that have default font styling such as <pre /> will have the same
typeface as the <body />.

CHAPTER 6: Laying the CSS3 Foundations 160

In the mixins folder, you will see that there are several files that look like they
should be CSS properties such as _animation.scss and _gradient.scss. These
files are there to help remove some of the vendor specific CSS from polluting
the main SASS files by using mixins to create universal versions of the
properties. You can begin adding content to these files.

Open the empty _animations.scss file. This mixin will be used to create
animations and apply them across all vendors. If a new vendor specific
animation property is created, it can be added in one place rather than several
across your SASS files. Add the following code to the opened file.

@mixin animation ($values) {
 animation: $values;
 -moz-animation: $values;
 -webkit-animation: $values;
}

As you can see, it simply acts as a proxy for the standards based, Mozilla and
webkit animation properties by accepting a set of properties and then passing
them to the vendor specific animation properties. Save the file and close it.

Open the empty _box-sizing.scss file. This mixin provides support for box-
sizing. One of the most frustrating problems about flexible layouts in CSS is that
when you set an element to be 100% wide (the width of the parent element) with
padding, the browser will usually add the padding to the width of the element
even when the width is specified as 100%, so the result is that your element will
overstretch by the amount of padding that you add, sometimes pushing the
element off screen slightly or outside of it’s parent element. The box-sizing
property helps to overcome this by:

 Excluding any padding, margin or border from the width and
height of the element when using the content-box value

 Including any padding with the width and height of the
element when using the padding-box value

 Including any padding and border width with the width and
height of the element when using the border-box value

@mixin box-sizing ($value) {
 -moz-box-sizing: $value;
 -webkit-box-sizing: $value;
 box-sizing: $value;
}

Again, this mixin simply acts as a proxy to the vendor specific properties by
passing the values to the property.

Finally, open the _gradient.scss file and add the following code to it.

CHAPTER 6: Laying the CSS3 Foundations 161

@mixin gradient($start, $stop, $degrees) {
 background: rgba($start, 1);
 background: -moz-linear-gradient($degrees, $start 0%, $stop 100%);
 background: -webkit-gradient(linear, left top, left bottom, color-stop(0%,
$start), color-stop(100%, $stop));
 background: -o-linear-gradient($degrees, $start 0%,$stop 100%);
 background: -ms-linear-gradient($degrees, $start 0% $stop 100%);
 background: linear-gradient($degrees, $start 0%, $stop 100%);
}

You may have seen this mixin from the previous chapter. It simply creates CSS
gradients for vendor specific gradient code. It’s a little bit more complex than
the other mixins as each vendor at the time of writing has their own
implementation for CSS gradients, which makes accepting a single value and
passing it to the vendor properties impossible.

Creating the Partials
With the mixins created, it’s now time to create the partials. As explained before,
the partials will help to separate different parts of your CSS into different files
without impacting on your end user by using the traditional @import in regular
CSS files, which have a big impact on load time.

You can begin by opening the empty _reset.scss file in the partials directory.
You do not have to manually type the code below into this SASS file, you can
copy it from Eric Mayar’s website
http://meyerweb.com/eric/thoughts/2011/01/03/reset-revisited/. The code is
listed below just for your reference.

/* http://meyerweb.com/eric/tools/css/reset/
 v2.0b1 | 201101
 NOTE: WORK IN PROGRESS
 USE WITH CAUTION AND TEST WITH ABANDON */

html, body, div, span, applet, object, iframe,
h1, h2, h3, h4, h5, h6, p, blockquote, pre,
a, abbr, acronym, address, big, cite, code,
del, dfn, em, img, ins, kbd, q, s, samp,
small, strike, strong, sub, sup, tt, var,
b, u, i, center,
dl, dt, dd, ol, ul, li,
fieldset, form, label, legend,
table, caption, tbody, tfoot, thead, tr, th, td,
article, aside, canvas, details, figcaption, figure,
footer, header, hgroup, menu, nav, section, summary,
time, mark, audio, video {
 margin: 0;

http://meyerweb.com/eric/thoughts/2011/01/03/reset-revisited/
http://meyerweb.com/eric/tools/css/reset/

CHAPTER 6: Laying the CSS3 Foundations 162

 padding: 0;
 border: 0;
 outline: 0;
 font-size: 100%;
 font: inherit;
 vertical-align: baseline;
}
/* HTML5 display-role reset for older browsers */
article, aside, details, figcaption, figure,
footer, header, hgroup, menu, nav, section {
 display: block;
}
body {
 line-height: 1;
}
ol, ul {
 list-style: none;
}
blockquote, q {
 quotes: none;
}
blockquote:before, blockquote:after,
q:before, q:after {
 content: '';
 content: none;
}

/* remember to define visible focus styles!
:focus {
 outline: ?????;
} */

/* remember to highlight inserts somehow! */
ins {
 text-decoration: none;
}
del {
 text-decoration: line-through;
}

table {
 border-collapse: collapse;
 border-spacing: 0;
}

Save and close the file. The next file that you need to add code to will be the
_typography.scss file. Open it in Aptana Studio. The _typography.scss file will
simply style how text should be displayed within the application. As you can see
from the code below, you will simply style the body and headings.

CHAPTER 6: Laying the CSS3 Foundations 163

body {
 font-size: 0.75em;
 font-family: Arial, Helvetica, sans-serif;
}

h1, h2, h3, h4 {
 font-family: 'Arimo', sans-serif;
 font-weight: bold;
 margin-bottom: 0.5em;
 font-size: 1em;
}

h3 { font-size: 1.25em; }
h2 { font-size: 1.5em; }
h1 { font-size: 1.9em; }

You use em’s instead of pixels for the font size. Setting the body’s font-size to
0.75em is the equivelant to 12px as shown in the code snippet above where the
font-size has been declared as em’s for the body. 1em is equivelant to the
browsers default font size, which is 16px. To work out what 10px should be in
em’s, you would use 10 / 16 which would equal 0.625, so 10px would be
0.625em’s. em’s are useful as the values are relative. For instance, if you set a
div’s font size to 0.75em (12px) and then set any element within that to 1em,
that font size will be relative to the parent element’ss font size. So 1em in the
child element becomes 0.75em from the parent element. Trying to figure out
what the font sizes for EM’s should be can be a nightmare,
http://riddle.pl/emcalc/ has a soloution that allows you to build a DOM based
tree of font sizes in pixels, the web app will convert them to em’s for you and
take into account what the parent elements font size is.

Save and close the _typography.scss file. Open the _layout.scss file. The
_layout.scss file will control the positioning, dimensions, colour and general
layout of elements within the application.

The first thing to do is to style the body, html, #shoe and .deck elements of the
application. You style these at the top so that they can be overridden at a latter
point in your stylesheet.

body, html, #shoe, .deck {
 height: 100%;
 width: 100%;
 overflow: hidden;
 margin: 0px;
}

As you can see, the height and width have been set to 100% so that it spans the
width and height of the screen. overflow: hidden; has been added so that any
content that flows outside of the elements are cut off and don’t affect the layout,

http://riddle.pl/emcalc/

CHAPTER 6: Laying the CSS3 Foundations 164

and for good measure, a 0px margin has been added to prevent any gaps
between the elements.

The next thing to do is to style the #card-movie_search_results card. When
making a search, the card should show above all elements on the page. You
can do this by setting the z-index. The z-index dictates where in the stack of
elements the element should exist. Setting a high number will usually place the
element at the top of the stack. 50 is used in this case.

/**
 * Individual Card Styles
 */
#card-movie search results {
 z-index: 50;
}

The next step is to set the deck and card styles. As you can see, SASS nesting
is used here to nest the different card states within the deck. When the SASS file
is rendered the appropriate CSS will be generated. You will want to set the
decks position to relative. This will allow absoloutley positioned cards within the
deck to be positioned relatively to the parent deck rather than the whole
viewport.

/**
 * Deck styles
 */
.deck {

 position: relative;

}

You now need to style any element with the .card class too. Each card should
be the same width and height of the deck but be positioned offscreen so that
the user cannot initially see it. When the .active class is added to any .card
element, it should be brought back into view. This can be achieved by setting
the initial left position to a negative value equivelant to the width of the card, -
100% in this case. When you want the card to be brought back into view, a
position of 0px has been set for the .active styling.

/**
 * Deck styles
 */
.deck {

 position: relative;

CHAPTER 6: Laying the CSS3 Foundations 165

 .card {
 height: 100%;
 width: 100%;
 left: -100%;
 position: absolute;
 }

 .card.active {
 left: 0px;
 }

}

The next things to style are the screen bars. The screenbars will sit at the top
and bottom of the screen. These need to be styled in a uniform manner so that
users can find them easily. As you can see below, the gradient mixin is used to
create a CSS3 gradient as the background for this element.

/**
 * Header taskbar styles
 */

.screenbar {
 @include gradient(#7D9DCE, #ABC1E1, 90deg);
}

The taskbar is quite complicated as it contains the logo of the application, the
search field and a clear button. The taskbar needs to be the width of the screen
and the search field needs to be flexible so that no matter the screen size, it
ocupy’s the majority of the space.

As you can see from the code below, you set the font colour for the taskbar to
be white and the overflow has been set to hidden so that it will surround any
floated elements. The taskbar also has 10px padding and a red border at the
bottom.

header#taskbar {
 color: #FFFFFF;
 overflow: hidden;
 padding: 10px;
 border-bottom: 1px solid #BF2628;
}

You will now want to style the branding/logo for the app. In order to do this, you
can use a header (h1) element and then use an image replacement technique to
show the logo. This can be achieved by setting the width and the height of the
h1 to the same width and height as the logo, setting the text-indent property to

CHAPTER 6: Laying the CSS3 Foundations 166

a high negative arbritary value so that the text is positioned off screen, -10000px
is used in this case. Finally, the logo’s background is set to the logo.

The h1 element is also floated to the left of the taskbar so that the search form
can occupy the remainder of the space available.

header#taskbar {
 ...

 h1.branding {
 margin: 0px;
 float: left;
 width: 73px;
 height: 32px;
 text-indent: -10000px;
 overflow: hidden;
 background: url('../img/momemo.png') no-repeat top left;
 }

}

The next thing to do is to setup the clear-search link. You use the same image
replacement technique as before to replace the text within the clear-search link.
The button is floated to the right this time and hidden so that it isn’t visible
immedietly.

header#taskbar {
 ...

 h1.branding {
 ...
 }

 .clear-search {
 float: right;
 width: 35px;
 height: 35px;
 display: none;
 overflow: hidden;
 text-indent: -10000px;
 background: url('../img/clear.png') 50% 50% no-repeat;
 }

}

The final thing to add to the _layout.scss file is the searchactive override. When
you add the css class .searchactive to the header#taskbar element, it will show
the clearsearch button and provide enough space for it by adding a right margin
to the add-movie form. This prevents the .searchactive buttom from dropping
down onto a new line.

CHAPTER 6: Laying the CSS3 Foundations 167

header#taskbar {
 ...
}

header#taskbar.searchactive {

 .clear-search {
 display: block;
 }

 form#add-movie {
 margin-right: 40px;
 }

}

Your final _layout.scss file should look like the code below.

header#taskbar {
 color: #FFFFFF;
 overflow: hidden;
 padding: 10px;
 border-bottom: 1px solid #BF2628;

 h1.branding {
 margin: 0px;
 float: left;
 width: 73px;
 height: 32px;
 text-indent: -10000px;
 overflow: hidden;
 background: url('../img/momemo.png') no-repeat top left;
 }

 .clear-search {
 float: right;
 width: 35px;
 height: 35px;
 display: none;
 overflow: hidden;
 text-indent: -10000px;
 background: url('../img/clear.png') 50% 50% no-repeat;
 }

}

header#taskbar.searchactive {

 .clear-search {
 display: block;
 }

CHAPTER 6: Laying the CSS3 Foundations 168

 form#add-movie {
 margin-right: 40px;
 }

}

The next thing to do is to style the forms. So open the _forms.scss file. The first
thing that you will want to do is set the box sizing for all of your form elements
so that any padding or borders added form part of the overall width. The
following line will use the box-sizing mixin to achieve this.

input, select, textarea, button {
 @include box-sizing(border-box);
}

You will then need to style the text inputs, you can do this using the new CSS3
attribute selector rather than the old way of adding CSS classes to every text
input element. As you can see from the code snippet below, the text input below
has a 1 pixel black border and has a 5 pixel padding whilst the submit input
simply has a 10 pixel padding. There are no submit buttons used in the
application so it makes no sense in styling it yet.

input[type="text"] {
 border: 1px solid #000000;
 padding: 5px;
}

At present there is only one input element that should span the full width of its
parent element. You may want to add more elements like this in the future, so
it’s a good idea to turn this into a CSS class that can be re-used.

input.full-width {
 width: 100%;
}

By adding a left margin of 80px (greater or equal to the width of the logo) to the
search form, any content within the form will appear next to the logo.

form#add-movie {
 margin-left: 80px;
}

This is a much better solution than floating the add-movie form as it will no
longer be able to have the full width of it’s parent task bar element without using
JavaScript to calculate the size it should be.

The code below simply styles the search field. As you can see, background-size
is used for the first time here. The background-size property allows you to

CHAPTER 6: Laying the CSS3 Foundations 169

specify how big the background should be in pixels, or as a percentage of the
element the background is being added to.

input.search {
 padding-left: 30px;
 background: url('../img/search.png') 5px 50% no-repeat transparent;
 background-size: auto 50%;
 border: none;
 border-bottom: 1px solid #BF2628;
 color: #FFFFFF;
 font-size: 1.5em;
}

The background-size property accepts a width and a height, both properties
can be different units. For instance, the width has been set to auto and the
height has been set to 50% in this example. This allows the height to be 50% of
the height of the element but the width will adjust in proportion to the height of
the background image so that it doesn’t appear distorted.

The following styles use vendor specific pseudo’s. -webkit-input-placeholder
and -moz-placeholder allow you to style the placeholder text used on input
elements. For instance, the background for the search box is transparent on a
blue background, so the default grey colour is barely visible. The text needs to
be white, so the placeholder pseudo’s allow you to customize the way the
placeholder text is presented.

input.search::-webkit-input-placeholder, input.search::-moz-placeholder {
 color: rgba(255, 255, 255, 0.5);
}

Although this will not be visible immedietly on Android 4, the style below will
show a loading indicator in the search box whilst movies are being searched for
in the background.

input.search.loading {
 background-image: url('../img/loading.gif');
}

Your final forms SASS file should look like the code below.

input, select, textarea, button {
 @include box-sizing(border-box);
}

input[type="text"] {
 border: 1px solid #000000;
 padding: 5px;
}

CHAPTER 6: Laying the CSS3 Foundations 170

input.full-width {
 width: 100%;
}

form#add-movie {
 margin-left: 80px;
}

input.search {
 padding-left: 30px;
 background: url('../img/search.png') 5px 50% no-repeat transparent;
 background-size: auto 50%;
 border: none;
 border-bottom: 1px solid #BF2628;
 color: #FFFFFF;
 font-size: 1.5em;
}

input.search::-webkit-input-placeholder, input.search::-moz-placeholder {
 color: rgba(255, 255, 255, 0.5);
}

input.search.loading {
 background-image: url('../img/loading.gif');
}

Save and close your file. Finally, you will need to open the _highres.scss file.
This file will simply be used to replace any graphics for high resoloution displays
so that they appear crisp. Add the following code to the file.

header#taskbar {

 h1.branding {
 background-image: url('../img/highres/momemo.png');
 background-size: 73px 32px;
 }

}

As you can see, background-size needs to be used here as CSS will still use the
images full size when used as a background image despite the highres file being
double the resoloution of the low resoloution image. This will ensure that the
background image is scalled down to the correct pixel size. The difference
between not using this and using it can be shown below in Figure 6-3.

CHAPTER 6: Laying the CSS3 Foundations 171

Figure 6-3. High-resolution images (bottom) vs low resolution (top) on a high density display

Automatically Compiling Sass in Aptana
Until now, you haven’t compiled any SASS in Aptana Studio. In the previous
chapter you saw how to use SASS’s built in SASS compiler command to
compile SASS files. This can become labourious everytime you want to make a
change to your SASS files. You can get around this by automatically compiling
your SASS files using the SASS command line. In order to do this, click on your
application folder in the App Explorer in Aptana Studio and click on the
Commands icon, it looks like a cog and can be seen in Figure 6-4.

Figure 6-4. Commands menu

Click on the Open Terminal menu item. This will open a terminal view similar to
Figure 6-5.

Figure 6-5. The terminal view

CHAPTER 6: Laying the CSS3 Foundations 172

In the terminal view, enter the following command and press enter.

sass --watch css/*.scss

This will look for any changes in your SASS files and automatically generate the
CSS file for you. You should see something similar to Figure 6-6.

Figure 6-6. sass --watch output

This will also look for changes in your partial files and then automatically
overwrite mobile.css with the new changes.

You will need to run this command everytime you open Aptana Studio and you
should also keep this terminal view open at all times.

Now that your CSS file has succesfully been generated, run your website in
Aptana Studio by right clicking on index.html going to Run As ➤ JavaScript Web
Application. It will launch in Firefox, visit the URL displayed in the address bar on
your mobile device. You should now see something similar to Figure 6-7.

Figure 6-7. Momemo with CSS

If you’re not seeing the new styles, head back to Aptana Studio, click on the
CSS folder and refresh it by pressing F5 on your keyboard. The new mobile.css

CHAPTER 6: Laying the CSS3 Foundations 173

file should appear. Refresh the web page on your mobile and everything should
look as it should.

Summary
Although this chapter is short, you should have a greater understanding as to
how to really take advantages of partilals and mixins within SASS and how to lay
the foundations to start building your CSS/SASS on top of.

You should also now know how partials can be used within CSS media queries
in your master SASS file (mobile.scss).

7
Chapter

JavaScript for Mobile
JavaScript for mobile has come quite a long way since the dawn of the first
consumer WAP mobile phone, the Nokia 7110, in 1999. From having absolutely
no support to having full support and more in just over 10 years, JavaScript has
made our mobile web experience much more interactive, interesting, and
fulfilling.

The problem today is, with so much JavaScript support, how do we leverage it
to our advantage, make it unobtrusive, and provide a good and smooth
experience for our users?

This chapter will guide you through how to integrate JavaScript into your
projects, using the different types of libraries available to make it easier for you
to produce mobile web applications that should work on any platform. You will
also learn about the new HTML5 JavaScript APIs (such as geolocation), storage,
and how to leverage it to draw vector-based graphics for Android using the
HTML5 Canvas element.

Object-Oriented JavaScript
JavaScript is a fantastic language for handling and processing user interaction
in mobile web sites. In much the same way as you write JavaScript for the
desktop web, you can also make use of the same design patterns and method
of writing for mobile. You can write JavaScript in one of two ways. One of these
methods is procedural, as shown in the following code.

function sayHelloWorld(foo){
 alert(foo);
}

CHAPTER 7: JavaScript for Mobile 176

The second method, which is object oriented, is shown next.

var World = function(){
 this.say = function say(hello){
 alert(hello);
 }
}

var myworld = new World();
myworld.say('Hello');

As you can see, you might need to write more code for the object-oriented
approach, but there are several benefits.

 The object-oriented approach allows for expansion of your
code.

 The object-oriented approach can be much more organized.

 The object-oriented approach allows for encapsulation, which
means that variables or properties within your objects can be
public or private.

 The object-oriented approach allows you to pass objects into
other objects. This is known more commonly as object
dependencies.

NOTE: In class based languages such as Java, Objective-C and PHP
a class is an object before it is instantiated by using new ClassName.
An object is an instance of a class after it has been instantiated.
JavaScript has basic methods for creating objects and, unfortunately,
doesn’t fully support encapsulation, inheritance, abstraction, and
interfaces out of the box. You might need to create your own methods
and practices for implementing this. JavaScript is also an object based
language, so although it feels like you’re creating classes, you’re
actually creating structures in code for your objects to take form from.

Both of the preceding code snippets have the same result; however, the object-
oriented approach treats World as an object, and the function within that object,
this.say, as a method that can be performed on it.

The object-oriented approach also allows you to create multiple instances of an
object. For example, you can create several World instances, and by modifying

CHAPTER 7: JavaScript for Mobile 177

the preceding code, you can begin to create instance variables that exist only
within the scope of each World object, such as its name.

var World = function(name){

 var name = name;

 this.greet = function(guest){
 alert('Hello ' + guest + ' my name is ' + name);
 }
}

var venus = new World('Venus');
var mars = new World('Mars');

venus.greet('Antony');
venus.greet('Dan');

From the preceding examples, you can see that in order to create an object in
JavaScript, it’s as simple as creating a function. Using the function’s
parameters, you create what is called a constructor. A constructor is a method
to pass parameters to the object upon instantiation. These parameters are
usually used to assign variables to properties within the object itself.

A property can be declared as public or private in normal object orientation. In
JavaScript there are no such declerations available for properties. So a property
can either be an instance variable (private) or a public property (public). In this
instance, the name property is an instance variable, which means that you cannot
access it from outside of the object using, for example, venus.name. This is
generally known as encapsulation. A property of an object is a variable that can
be accessed either by using this.propertyname from within the object’s scope,
or by using object.propertyname from outside of the object. For example, if you
attempted to access the name instance variable from outside of the object, you
would get undefined as the output.

You can also create object methods, which are functions that can be accessed
from within or outside of the object using this from within the object or the
variable assigned to the instantiated object from outside. Using the previous
examples, this.greet is a public object method and can be accessed outside of
the object.

From here, you can see that objects allow for much more maintainable code.
The object’s properties live outside of the global namespace, so you avoid
clashing variable names and other details for specific objects. You can go
beyond this and create your own namespace for your application objects. This
helps to avoid other JavaScript libraries from potentially overwriting them. The

CHAPTER 7: JavaScript for Mobile 178

following example shows the most basic method for creating an application-
level namespace for your objects.

var app = app || {};
app.world = function(name){

 var name = name;

 this.greet = function(guest){
 alert('Hello ' + guest + ' my name is ' + name);
 }
}

This allows you to create classes that belong to your application in separate
files. The first line on the preceding code sample declares the variable app in the
global namespace, and assigns the app global variable to it if it already exists. If
it doesn’t exist, it creates an empty object for you to begin populating with your
objects. This can be handy if you organize your objects in such a way that they
are held in separate files during development, and then merged for production.
You can even go further and namespace your objects based on functionality.

These are the basics of object-oriented JavaScript, which modern mobile
browsers support.

You code in this manner (instead of, for instance, creating jQuery plugins)
because it separates your application code from vendor-specific code and
reduces the reliance on a third-party code. You can go further than this and
follow the model view controller (MVC) pattern to separate your user interaction
from your domain logic (real-world objects) and the resulting view that is
presented to the user.

Along with design patterns and object orientation, JavaScript is an event-driven
language. This means that an event triggered in one part of your application can
trigger a piece of code in a completely different part of your application at
runtime.

In its simplest form, events can be triggered by user interaction. In mobile, this is
commonly seen as touch events where a user interacts with your application
through the browser using their fingers. The browser registers the event and
then passes the event and its information, such as the element that the event
originated from, to any subscribers in your application. For the desktop
environment, these are known as mouse events.

CHAPTER 7: JavaScript for Mobile 179

Handling Touch Events
JavaScript is no slouch when it comes to handling events on the desktop, and
the same can be said for mobile. Events can consist of user-level events (such
as touch and drag), or device-level events (such as orientation changes or
changes in the device’s location). The most basic of events are user-level
events. They can be tracked on any DOM element. For mobile devices, there are
four main touch events:

 touchstart

 touchend

 touchmove

 touchcancel

The touchstart event will fire when a user touches an element on the screen.
The touchend event will fire when a user lifts their finger off an element on the
screen after touching it. The touchmove event will track the user’s movement,
and fire the event with every movement. The touchcancel event will fire when
the user cancels the touch event by moving outside of the target’s bounds and
releasing the screen. This event seems to be unpredictable.

In order to respond to events, you must create event listeners for them using
element.addEventListener(event, callbackfunction);. This method takes the
event name (touchstart, touchend, etc.) and the callback function. At times, you
might want to prevent the default action for the event from firing. For instance, if
you add an event listener to a link, you might not want the link to open a new
page when it’s tapped. To do this, you must add a parameter to the callback
function called e, and call e.preventDefault() at the end of the callback
function. This will also prevent the element from scrolling and interfering with
touchmove events, as shown in the following code snippet.

<div id="touch-plane" style="width: 100%; height: 100%; background: #000000;
color: #FFFFFF;">x: 0 y: 0 - <span
id="touching">not touching</div>

<script>
 document.getElementById('touch-plane').addEventListener('touchmove',
function(e){
 document.getElementById('coordinates').innerText = 'x: ' +
e.touches[0].clientX
 + ' y: ' + e.touches[0].clientY;
 e.preventDefault();
 });

CHAPTER 7: JavaScript for Mobile 180

 document.getElementById('touch-plane').addEventListener('touchstart',
function(e){
 document.getElementById('touching').innerText = 'touching';
 });

 document.getElementById('touch-plane').addEventListener('touchend',
function(e){
 document.getElementById('touching').innerText = 'not touching';
 });
</script>

This code will fill the screen with black, with white text containing the current
coordinate of the user’s finger and whether the user is touching the screen or
not. You can get the current coordinates by tapping into the touches list from
the event passed to the touchmove event listener. You can get the first touch
from the list, and use clientX and clientY to retrieve the X and Y coordinates,
like so:

e.touches[0].clientX, e.touches[0].clientY

As you can see, you can prevent the document from scrolling by calling
e.preventDefault().

The other two event listeners for touchstart and touch end will be called when
the user touches and lifts their finger off of the screen.

Figure 7-1. Detecting touches and movement

CHAPTER 7: JavaScript for Mobile 181

Getting a User’s Location
It can be handy to get a user’s location when you know that they will need to
enter their current location into the application. This can be useful for finding
and searching for things around them such as events, places, and other people.
The location API is quite simple and makes use of the mobile device’s built-in
GPS chip.

To get the location of the user, you can use the following code. It is
asynchronous and nonblocking, so you can continue to process JavaScript
events in the foreground or background while the device searches for the users
location.

var showCurrentPosition = function(position){
 alert('Lat: ' + position.coords.longitude + ' Lon: ' +
position.coords.latitude);
}

This is a function that will be called after the mobile device has the position of
the user. The parameter passed back to the callback function is an object that
extends the Coordinates interface and has the properties shown in Table 7-1.

CHAPTER 7: JavaScript for Mobile 182

Table 7-1. Coordinates Object Properties

To then retrieve the coordinates of the device, it is a simple case of querying the
device for the user’s location, like so:

navigator.geolocation.getCurrentPosition(showCurrentPosition);

If the user hasn’t already authorized your application to access their location,
they will first be required to approve the location request. Figure 7-2 shows what
this dialog will look like.

Property Description

Coordinates.timestamp The time that the position was retrieved

Coordinates.coords A coordinates object

Coordinates.coords.accuracy The level of accuracy of the latitude and
longitude result

Coordinates.coords.altitude If available, the altitude of the device in
meters; if this cannot be determined, null is
returned

Coordinates.coords.altitudeAccuracy The accuracy of the altitude result; if this
cannot be determined, null is returned

Coordinates.coords.heading The heading of the device, or the direction
of the device in degrees. If the heading
cannot be determined, the value of this
property is null

Coordinates.coords.latitude The latitude of the device in decimal degrees

Coordinates.coords.longitude The longitude of the device in decimal
degrees

Coordinates.coords speed The horizontal speed of travel in meters per
second; if this cannot be determined, null is
returned

CHAPTER 7: JavaScript for Mobile 183

Figure 7-2. Location request

This presents a problem, as you should expect that some users might not wish
to share their current location and might tap the decline button; or there could
simply be an issue with retrieving the current location of the user. This can be
handled with an error event handler, which is the second parameter of the
getCurrentPosition() method. In order to handle errors in retrieving the user’s
current location, you must create an error handler, which will accept the error
object.

var handleLocationError = function(error){
 alert(error.message);
}

navigator.geolocation.getCurrentPosition(showCurrentPosition,
handleLocationError);

The error object is part of the PositionError interface, and has the properties
shown in Table 7-2.

CHAPTER 7: JavaScript for Mobile 184

Table 7-2. PositionError Properties and Constants

Property/Constant Description

PositionError.code The code returned by the error; use the
following constants to determine the error
code

PositionError.PERMISSION DENIED The user rejected the request to get their
permission

PositionError.POSITION UNAVAILABLE The position could not be determined due to
some other device issue

PositionError.TIMEOUT The position could not be determined, as
the request timed out

PositionError.message The message from the error

You should use the PositionError constants PERMISSION DENIED,
POSITION UNAVAILABLE, and TIMEOUT to handle the errors appropriately rather than
relying on the error message or comparing the error code to hard-coded
integers. The next code sample shows how errors should be handled using the
handleLocationError function and a switch statement.

var handleLocationError = function(error){
 switch(error.code){
 case error.PERMISSION DENIED:
 /**
 * Handle permission denied response here,
 * potentially display a dialog to the user
 */
 var confirmed = confirm("We really need your location!");
 if(confirmed){
 navigator.getCurrentPosition(showCurrentPosition,
handleLocationError);
 }
 break;
 case error.POSITON UNAVAILABLE:
 /**
 * Handle position unavailable response here,
 * potentially display a dialog to the user and
 * ask them to enter their location manually
 */
 var tryagain = confirm("Sorry, something serious is wrong, would
 you like to try again?");
 if(tryagain){

CHAPTER 7: JavaScript for Mobile 185

 navigator.getCurrentPosition(showCurrentPosition,
handleLocationError);
 }
 break;
 case error.TIMEOUT:
 /**
 * Appologizies to the user for the delay and attempts
 * to retrieve their location again
 */
 navigator.geolocation.getCurrentPosition(showCurrentPosition,
 handleLocationError);
 break;
 }
}

These are very simple error handlers and they can be expanded upon to give a
much better experience to users, should an error occur.

You can then pass the coordinates onto a mapping service, such as Google
Maps, to show the user’s current location. The following example uses the
Google Maps static API to generate an image of the user’s current location to be
displayed on the mobile device.

<script>
 var showCurrentPosition = function(position){
 document.getElementById('map').src =
 'http://maps.google.com/maps/api/staticmap?center=' +
 position.coords.latitude + ',' + position.coords.longitude +
 '&zoom=10&markers=' + position.coords.latitude + ',' +
 position.coords.longitude + '&size=' + window.innerWidth + 'x' +
 window.innerHeight + '&sensor=true';
 }

 var handleLocationError = function(error){
 alert(error.message);
 }

 navigator.geolocation.getCurrentPosition(showCurrentPosition,
handleLocationError);
</script>

The result can be seen in Figure 7-3. You can, of course, also subscribe to
significant changes to the user’s current position. You can do this with the
navigator.geolocation.watchPosition method. This will listen for significant
changes to the user’s current position, and call a callback function every time
the user’s position changes. The watchPosition method takes the same
parameters as the getCurrentPosition method.

http://maps.google.com/maps/api/staticmap?center=

CHAPTER 7: JavaScript for Mobile 186

Figure 7-3. Showing the user’s current position on Google Maps

Drawing with Canvas
HTML5 Canvas allows you to draw vector-based shapes using JavaScript. The
HTML5 Canvas element doesn’t provide much inherent functionality, but it does
provide a base for you to begin drawing objects upon. Think of it as a
whiteboard for your device. This next exercise will take you through how to
create a canvas, how to begin drawing basic shapes using JavaScript, and how
to animate them.

First, create a new folder within this chapter folder called canvas. Create a js
folder containing a new JavaScript file called canvas.js and an index.html file in
the canvas folder directory root with the following contents.

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="UTF-8" />
 <meta name="viewport" content="width=device-width; initial-scale=1.0;
 maximum-scale=1.0; user-scalable=0; target-densitydpi=device-dpi;"/>
 <title>Canvas</title>
 <style type="text/css" media="screen">
 body, html {
 margin: 0;
 height: 100%;
 width: 100%;
 }

CHAPTER 7: JavaScript for Mobile 187

 </style>
 </head>
 <body>

 <canvas id="play" width="100" height="100"></canvas>
 <script src="js/canvas.js"></script>

 </body>
</html>

This will create a Canvas element with an id of play that is 100 pixels wide and
100 pixels high. You should never attempt to size a Canvas element using CSS,
as it will not work as expected. This HTML will also link to the canvas.js file.

Open the canvas.js file, which will be used to control your canvas. You will use
object-oriented JavaScript to create and control your play button.

In this example, you will require two objects: a track object (which will simulate
an actual audio track) and a playButton object (which will control displaying
track progress and playing/pausing the track). The track object should be
responsible for the following:

 Keeping track of the total length of the track

 Keeping the current state of the track
(playing/paused/stopped)

 Keeping the current time of the track if it is playing

 Playing, pausing, and stopping the track

The playButton object for this example will be responsible for the following:

 Drawing the play button

 Showing the playback progress

 Showing the track playback state

 Representing the track’s state by showing the play or stop
symbol

 Representing the track’s playback progress by moving a play
head

Inspired by the iTunes playback controls, as shown in Figure 7-4, you will create
something similar.

CHAPTER 7: JavaScript for Mobile 188

Figure 7-4. iTunes preview playback control

To begin with, create the two objects in your canvas.js file, as shown in the
following code snippet:

var app = app || {};

app.playButton = function(id, track){

}

app.track = function(length){

}

As you can see, the constructor for the playButton takes an id, which will be the
ID of the Canvas element, and a track, which will be an instance of the
app.track class. The track constructor simply takes the length of the track in
seconds.

As the track needs to be instantiated first, you will begin by creating the code
for the track class. To begin with, create a new property within the track class
called this.state, as follows:

app.track = function(length){
 this.state = {
 STOPPED: 0,
 PLAYING: 1,
 PAUSED: 2
 };
}

The state property contains variables that can be used to determine the current
state of the application. The alternative to doing this is to store the current state
as a string (i.e., playing, paused, or stopped). This can be problematic as you
add more states or change the state names in your application. By doing this, to
change the application’s state it’s as simple as using state =
this.state.STOPPED. This helps, too, because as you type this.state. the code
completion will appear to show you the possible states, which is better and
more efficient than having to dig through your code to find out what the
available states are.

Next, you define a few variables within the scope of the track class, as shown in
the following code snippet:

CHAPTER 7: JavaScript for Mobile 189

app.track = function(length){

 ...

 var length = (length * 1000),
 currentTime = 0,
 interval,
 _self = this,
 state = this.state.STOPPED,
 updateInterval = 1000 / 30;
}

In JavaScript, you can declare variables in a single line, by separating them with
commas. This also works on mobile.

Your first variable, length, will convert the track length passed to the class from
seconds to milliseconds by multiplying it by 1000. You also set the currentTime
to 0, and declare a variable called interval. The interval variable is responsible
for holding a reference to the interval declared to repeatedly adjust the timing of
the track.

It seems strange, but you also declare a variable called self and assign this to
it. This creates a global variable so that any callback events that are called out
of the scope of the object by event listeners will still be able to access the
parent class, as this will be in the scope of the callback event or target and not
the parent class (which, in this case, is track).

You then declare the current state of the application and set its default state to
this.state.STOPPED.

Finally, you create a new variable called updateInterval, which will be used to
set the number of times per second the time will be updated. For instance, if you
wanted to update the interval 500 times per second, you would set the
updateInterval as updateInterval = 1000 / 500. Increasing this time will have
an impact on performance, as this affects the frame rate of the Canvas
animation.

You will need to update the currentTime. setCurrentTime is a private method
that will allow you to set the current time for the playback head. It will also make
a callback to any function or method that has assigned itself as the callback to
that method using self.callbacks.didUpdateTime.call(self,
currentTime);. call is a method that allows you to invoke a function within the
scope of another object. This will allow the callback function to use this within
its code, and this will be a reference back to the object that made the callback,
rather than the callback function’s parent object. The first parameter for call is
the object that you would like to pass scope from. The parameters after that are
the parameters that the callback method will accept.

CHAPTER 7: JavaScript for Mobile 190

Next, you must create the private method called updateTime. This will update the
current playback time for the track. This method also checks to see whether the
total track length has been reached by the currentTime. If it has, then it will stop
the track.

app.track = function(length){

 ...

 var setCurrentTime = function(time){
 currentTime = time;
 _self.callbacks.didUpdateTime.call(_self, currentTime);
 };

 var updateTime = function(){

 if(currentTime < length){
 setCurrentTime(currentTime + updateInterval);
 } else {
 _self.stop();
 }

 };
}

You will notice that self is being used here. This is not a global JavaScript
variable but the self variable that you declared earlier. updateTime is called out
of the scope of the track class/object, so self maintains a reference back to it.
This is better known as a closure.

Next, you will declare several getter and setters. You create this so that you can
access the private variables outside of the scope of the object. This is handy
when you do not want objects to change properties of another object. For
instance, the currentTime should never be manipulated outside of the object,
but outside objects should be able to find out the current playback time of the
track. Using a getter without a setter prevents outside objects from changing
this value.

app.track = function(length){

 ...

 this.getCurrentTime = function(){
 return currentTime;
 };

 this.getLength = function(){
 return length;
 };

CHAPTER 7: JavaScript for Mobile 191

 this.getState = function(){
 return state;
 };
}

The getters in this example will simply return the private variable; however, you
may define a getter, such as getCurrentTimeInSeconds, that will modify the
return value so that the function returns the playback time in seconds. For
example:

this.getCurrentTimeInSeconds = function(){
 return (currentTime / 1000);
}

Next, you must define the controls for the track, such as play, pause, and stop.

app.track = function(length){

 ...

 this.stop = function(){
 window.clearInterval(interval);
 state = _self.state.STOPPED;
 setCurrentTime(0);
 _self.callbacks.didStop.call(_self);
 };

 this.play = function(){
 if(state != _self.state.PLAYING){
 interval = window.setInterval(updateTime, updateInterval);
 state = _self.state.PLAYING;
 _self.callbacks.didStartPlaying.call(_self);
 }
 };

 this.pause = function(){
 window.clearInterval(interval);
 state = _self.state.PAUSED;
 _self.callbacks.didPause.call(_self);
 };
}

this.stop will stop the track and clear the interval timer using
window.clearInterval(interval). The stop method will also set the current
state of the track to 0 or STOPPED using state = self.state.STOPPED. This
method will also reset the current time and make a call to the didStop callback
method.

CHAPTER 7: JavaScript for Mobile 192

this.play will check to see whether the track is playing by checking the current
state. If the track is not playing, then it will create a new interval timer.
window.setInterval takes two parameters: the callback method and the interval
time in milliseconds. If you wish to assign a callback that takes a parameter from
the function that set the initial interval, you could use the following:

var globalParam = 'foo';
window.setInterval(function(){
 callbackFunction.call(this, globalParam);
}, intervaltime);

Remember that globalParam must be declared with var in order for it to exist
within the closure.

Finally, you define the default callback functions.

app.track = function(length){
 ...
 this.callbacks = {
 didUpdateTime: function(time){},
 didStartPlaying: function(){},
 didPause: function(){},
 didStop: function(){}
 };
};

As you can see, these are empty functions. This allows you to call the callback
functions even if they haven’t been assigned. There are four callback functions:
this.callbacks.didUpdateTime, this.callbacks.didStartPlaying,
this.callbacks.didPause, and this.callbacks.didStop.

Now it’s time to start creating the play button and digging into Canvas! Before
you begin, it’s important to understand how Canvas really works. In order to
draw on the canvas, you need to get its context. If you are not familiar with what
a context is, it is like a hidden space where you can draw. The context will be
presented to the user after you have finished drawing onto it. There is currently
only one context in the Canvas API, and all shapes are drawn onto it. In an ideal
world, you would have several contexts, draw individual components onto them,
and merge each context onto one single context. For now, this is not possible,
and will be explained further into this chapter.

The Canvas context works on a coordinate-based system with 0,0 starting at
the top left, as shown in Figure 7-5.

CHAPTER 7: JavaScript for Mobile 193

Figure 7-5. Canvas grid

To begin, you will need to define a few global variables.

app.playButton = function(id, track){
 var canvas = document.getElementById(id),
 context = canvas.getContext('2d'),
 track = track,
 _self = this;
}

As you can see, you get the Canvas element by using getElementById. You then
get the Canvas context by using canvas.getContext('2d'), which will return a
2d Canvas context for you to draw on. You then explicitly declare the track
variable and again define self as this for any callback methods.

You can make it easier to calculate certain aspects of the canvas by creating
new properties for the Canvas element. This is done using the following code:

app.playButton = function(id, track){

 ...

 canvas.center = {
 x: (canvas.offsetHeight / 2),
 y: (canvas.offsetHeight / 2)
 };

CHAPTER 7: JavaScript for Mobile 194

 canvas.dimensions = {
 width: (canvas.offsetWidth),
 height: (canvas.offsetHeight)
 };
}

This will now allow you to quickly retrieve the center coordinates and the width
and height of the canvas without storing them in global variables. You simple
use canvas.center.x, for example, to get the center x coordinate for the canvas.

Next you will need to assign callbacks for when the track updates its timer and
for when the track is paused.

app.playButton = function(id, track){

 ...

 track.callbacks.didUpdateTime = function(time){
 _self.draw();
 };

 track.callbacks.didPause = function(){
 _self.draw();
 }

}

As you can see, both callbacks simply call the draw method within the
playButton class.

Next, you will need to create the playback control methods. This will be used to
play and stop the track via the play button. This also allows other objects or
function to start or stop the track through the play button.

app.playButton = function(id, track){

 ...

 this.togglePlay = function(){

 switch(track.getState()){
 case track.state.STOPPED:
 case track.state.PAUSED:
 _self.play();
 break;
 case track.state.PLAYING:
 _self.stop();
 break;
 }

 };

CHAPTER 7: JavaScript for Mobile 195

 this.play = function(){
 track.play();
 };

 this.stop = function(){
 track.pause();
 };
}

As you can see, there is a method called this.togglePlay. The toggle play
method will check the track’s state. If it is stopped or paused, it will trigger the
play method; if it is playing, it will trigger the stop method. These conditions are
wrapped within a switch statement. The switch statement is a good alternative
to using if statements to reduce clutter. The statement is formed of the
following:

switch(value){
 case condition:
 /** condition code **/
 break;
 case condition:
 /** condition code **/
 break;
 default:
 /** default code **/
 break;
}

As you can see, it takes a value. Each case represents a condition to compare
the value to. If the condition matches, it executes the code within the case and
then breaks out of the switch. If none of the conditions match, you can specify
a default action to take using default:. It’s best practice to only compare integer
values in a switch statement.

With the togglePlay method complete, the this.play and this.stop methods
both act as wrappers to pause or play the track.

The full code for the track is as follows:

app.track = function(length){

 this.state = {
 STOPPED: 0,
 PLAYING: 1,
 PAUSED: 2
 };

CHAPTER 7: JavaScript for Mobile 196

 var length = (length * 1000),
 currentTime = 0,
 interval,
 self = this,
 state = this.state.STOPPED,
 updateInterval = 1000 / 30;

 var setCurrentTime = function(time){
 currentTime = time;
 self.callbacks.didUpdateTime.call(self, currentTime);
 };

 var updateTime = function(){

 if(currentTime < length){
 setCurrentTime(currentTime + updateInterval);
 } else {
 self.stop();
 }

 };

 this.getCurrentTime = function(){
 return currentTime;
 };

 this.getLength = function(){
 return length;
 };

 this.getState = function(){
 return state;
 };

 this.stop = function(){
 window.clearInterval(interval);
 state = self.state.STOPPED;
 self.setCurrentTime(0);
 self.callbacks.didStop.call(self);
 };

 this.play = function(){
 if(state != self.state.PLAYING){
 interval = window.setInterval(updateTime, updateInterval);
 state = self.state.PLAYING;
 self.callbacks.didStartPlaying.call(self);
 }
 };

CHAPTER 7: JavaScript for Mobile 197

 this.pause = function(){
 window.clearInterval(interval);
 state = self.state.PAUSED;
 self.callbacks.didPause.call(self);
 };

 this.callbacks = {
 didUpdateTime: function(time){},
 didStartPlaying: function(){},
 didPause: function(){},
 didStop: function(){}
 };

};

Now it’s time to draw the stop button. The draw methods are called in the
this.draw method and the context is taken from the private variable within the
class.

Drawing the Stop Icon
The stop button is 20px × 20px and should be a filled rectangle. To draw a
rectangle of any proportion, you can use the context.fillRect() method. The
fillRect method takes the four parameters shown in Table 7-3.

Table 7-3. fillRect Method Parameters

To draw a simple rectangle, 20px × 20px, you would use the following code:

context.fillStyle = '#000000';
context.fillRect(0, 0, 20, 20);

This would produce a rectangle similar to that shown in Figure 7-6.

Parameter Description

x Where to place the upper-left x coordinate
of the rectangle in relation to the canvas

y Where to place the upper-left y coordinate
of the rectangle in relation to the canvas

width The width of the rectangle

height The height of the rectangle

CHAPTER 7: JavaScript for Mobile 198

Figure 7-6. A 20px × 20px rectangle

context.fillStyle will set the fill for any new closed shape, such as a rectangle
or a circle, to black or #000000.

In the code to draw the rectangle on the play button for the stop symbol, you
need to take into consideration the position of the stop symbol in relation to the
canvas. You will want to place the stop symbol directly in the center of the
canvas. To center the stop symbol, you will need to calculate the x and y offsets
for the top-left corner of the stop symbol. To calculate this, you need to divide
the canvas width and height in half to give you the offsets. You can then
subtract the canvas centers from the center of the shape to give you the x and y
coordinates. This method simply aligns the center of the shape to be drawn with
the center of the canvas.

The following code will center the stop icon on the canvas in relation to the size
of the canvas itself.

app.playButton = function(id, track){

 ...

CHAPTER 7: JavaScript for Mobile 199

 this.drawStop = function(){
 var width = 20,
 height = 20,
 x = canvas.center.x - (width / 2),
 y = canvas.center.y - (height / 2);

 context.beginPath();
 context.fillStyle = '#A0A0A0';
 context.fillRect(x, y, width, height);

 };
}

As you can see, you declare the width and height of the stop icon as 20, so that
they can be referenced later. You also calculate the x coordinate by getting the
canvas’s center x coordinate minus half of the width of the rectangle. This will
center the stop icon horizontally.

Next, the y coordinate is set in much the same way, by halving the height of the
canvas (its center) and subtracting half of the stop icon’s height. This then
places the stop icon in the center of the canvas vertically, as shown in Figure
7-7. Combining these two calculations will completely center the stop icon
within the canvas.

CHAPTER 7: JavaScript for Mobile 200

Figure 7-7. Centering the stop icon along the x and y axes

Before you begin to draw new shapes in Canvas, it’s a good idea to call
context.beginPath(). This will create a new path within the context for you to
start drawing. It’s the equivalent of lifting your pen off of the page before you
draw a new shape on a piece of paper.

Next, you will need to set the fillStyle of the shape you are about to draw. The
2D context API has several methods for drawing. The API’s most basic methods
and properties are shown in Tables 7-4 and 7-5.

CHAPTER 7: JavaScript for Mobile 201

Table 7-4. Basic 2D Context API Properties

Table 7-5. Basic 2D Context API Methods

With the style properties set, you can now draw the stop icon using
context.fillRect().

Property Description

context.fillStyle Sets the fill color of the shape to be drawn.
This can be a solid color using either a hex
color (#000000), an RGB color (rgb(0,0,0)), or
an alpha color (rgba(0,0,0,0.5)).

context.lineWidth This will set the width of any lines drawn
after this is set. Values are doubles, such as
1.5.

context.lineCap This will set the cap style of any line. Valid
values are butt, round, and square.

context.strokeStyle This is the stroke style for the context. It sets
the color of any line drawn after setting this.
This can be a solid color using either a hex
color (#000000), an RGB color (rgb(0,0,0)), or
an alpha color (rgba(0,0,0,0.5)).

Method Description

context.fillRect(x, y, width, height) This will create a rectangle with the
properties specified.

context.strokeRect(x, y, width, height) This will create a rectangle with no fill, but a
stroke with the properties specified.

context.clearRect(x, y, width, height) This will draw a “white” rectangle with the
properties specified.

context.arc(x, y, center, start angle,
end angle, anticlockwise)

This will draw an arc using the properties
specified. The start and end angles are
defined as radians. anticlockwise is a
Boolean value and is used to specify in
which way to draw the arc.

CHAPTER 7: JavaScript for Mobile 202

The method defined will draw a rectangle within the current context. Next, you
will need to create a method to draw the play button.

Drawing the Play Icon
The play button is slightly more complex. To draw the play button you will need
to drop down to drawing paths on the context.

In order to draw paths, you use the moveTo and lineTo methods. These methods
allow you to move to a certain point without drawing a line, and draw a line
between two points.

app.playButton = function(id, track){

 ...

 this.drawPlay = function(){
 var width = 20,
 height = 20,
 x = canvas.center.x - (width / 2),
 y = canvas.center.y - (height / 2);

 context.beginPath();
 context.moveTo(x, y);
 context.lineTo(x + width, y + (height / 2));
 context.lineTo(x, (y + height))
 context.fillStyle = '#A0A0A0';
 context.fill();
 };
}

To begin with, you set the width and the height of the play icon to 20 (i.e., 20px
× 20px). You then set the center point to be half of the width of the canvas,
minus half of the width of the play button. You also do the same for the y axis,
just as you did for the stop icon.

In order to draw the play button, you will essentially premap three points on the
canvas to draw lines from and to. Figure 7-8 shows the approximate
coordinates for this on a 20px × 20px drawing context.

CHAPTER 7: JavaScript for Mobile 203

Figure 7-8. Drawing a triangle

As you can see, there are three points to the triangle: (0,0), (20,10), and (0,20). In
much the same way as you did on the square, you must calculate where the
points on the triangle should be, based on its width and height. You know that
the first point should begin at 0,0. The second point should be positioned where
x = shape width and y = shape height / 2. With this in mind, the third and final
point should be positioned where x = origin x and y = shape height. This will
create an equilateral triangle. The following code will create this:

var width = 20, height = 20, startx = 0, starty = 0;
context.beginPath();
context.fillStyle = '#A0A0A0';

context.moveTo(startx, starty);
context.lineTo((startx + width), (starty + (height / 2)));
context.lineTo(startx, (starty + height));
context.fill();

As you can see, you draw two lines to form the equilateral triangle. You do not
have to draw another line to connect the final position to the original position. By
calling context.fill(), you will automatically close the gap between the original
and final point and fill the rectangle with the context.fillStyle color. The
preceding method also takes into consideration the starting point to draw the

CHAPTER 7: JavaScript for Mobile 204

shape. You can change the startx or starty values and it will always draw an
equilateral triangle at that position.

With the icons created, it’s now time to set up the playback head. The playback
head is simply a circle that gradually opens. Below the semicircle is another
circle with a contrasting color to help distinguish the progress of the audio
playback, as shown in Figure 7-9.

Figure 7-9. The playback head

Drawing the Playback Head
The problem with Canvas is that you cannot animate each shape on its own.
Moving or animating Canvas elements requires a complete redraw of the
canvas. Animating in Canvas requires keeping track of each object’s state in
JavaScript and then rendering it with each call to draw. It’s a long and laborious
process, but with the correct implementation, it can be less time consuming..

To track the progress of the track, you first need to work out its current progress
as a percentage.

CHAPTER 7: JavaScript for Mobile 205

app.playButton = function(id, track){
 ...
 this.draw = function(){
 var percentage = 100 - ((track.getCurrentTime() / track.getLength())
* 100);

 };
}

This is simply calculated as (current time / length) * 100. This will give you a
predictable number between 1 and 100. You will need to return a percentage,
where 100% is when the track is at the beginning, and 0% is when the track is
at the end. To do this, you simply subtract the percent played from 100 to give
you the percent of the track that is remaining.

The next step is to calculate the angle of the playback head based on the
percentage of track remaining. You know that the result of 2 * π (PI) will equal
the angle of a full circle in radians. 0 * π (PI) will result in 0, which will result in an
empty circle.

app.playButton = function(id, track){
 ...
 this.draw = function(){
 var percentage = 100 - ((track.getCurrentTime() / track.getLength()) *
100);
 var endradians = (percentage * (2 / 100)) * Math.PI;

 };
}

Figure 7-10 shows the significant positions of the PI calculations.

CHAPTER 7: JavaScript for Mobile 206

Figure 7-10. n * π radians

As you can see, 0 starts at the immediate right of the circle, and 2 will also result
in the same position. If you set the start position of the arc to 0 and the end
position as 2 * PI, the result will be nothing, as the circle will have no
circumference due to the 0° angle.

You will be redrawing the canvas at regular intervals, so you will need to clear
the canvas with every redraw to prevent displaying the previous context shapes
below the new ones. This can be achieved by calling context.clearRect(0, 0,
canvas width, canvas height);. This will essentially draw a clear rectangle over
the whole canvas. You don’t have to worry about memory or shapes existing
after the rectangle is drawn, as only the current context is held within memory.

app.playButton = function(id, track){
 ...
 this.draw = function(){
 var percentage = 100 - ((track.getCurrentTime() / track.getLength()) *
100);
 var endradians = (percentage * (2 / 100)) * Math.PI;

 context.clearRect(0, 0, canvas.dimensions.width,
canvas.dimensions.height);
 };
}

CHAPTER 7: JavaScript for Mobile 207

The next step is to draw the circle that will provide the background of the play
button. Drawing a full circle and filling it with the color black achieve this.

app.playButton = function(id, track){
 ...
 this.draw = function(){
 var percentage = 100 - ((track.getCurrentTime() / track.getLength()) *
100);
 var endradians = (percentage * (2 / 100)) * Math.PI;

 context.clearRect(0, 0, canvas.dimensions.width,
canvas.dimensions.height);

 /**
 * Draw the play button backdrop
 */
 context.beginPath();
 context.fillStyle = '#000000';
 context.arc(canvas.center.x, canvas.center.y,
 canvas.center.x - 10, 0, 2 * Math.PI, false);
 context.fill();

 };
}

The next step is to draw the circle with no fill and apply a stroke to it to provide
the background that will be revealed as the play head moves.

app.playButton = function(id, track){
 ...
 this.draw = function(){
 var percentage = 100 - ((track.getCurrentTime() / track.getLength()) *
100);
 var endradians = (percentage * (2 / 100)) * Math.PI;

 context.clearRect(0, 0, canvas.dimensions.width,
canvas.dimensions.height);

 /**
 * Draw the play button backdrop
 */
 context.beginPath();
 context.fillStyle = '#000000';
 context.arc(canvas.center.x, canvas.center.y,
 canvas.center.x - 10, 0, 2 * Math.PI);
 context.fill();

 /**
 * Draw the background for the play head
 */
 context.beginPath();

CHAPTER 7: JavaScript for Mobile 208

 context.arc(canvas.center.x, canvas.center.y,
 canvas.center.x - 20, 0, 2 * Math.PI);
 context.lineWidth = 5;
 context.strokeStyle = "#FFFFFF";
 context.stroke();

 };
}

Finally, it’s a case of drawing the play head based on the track’s current
playback position. The code is the same as that of drawing the background for
the play head, except the end angle is set to the endradians previously declared
in the code to represent the progress of the track.

app.playButton = function(id, track){
 ...
 this.draw = function(){
 var percentage = 100 - ((track.getCurrentTime() / track.getLength()) *
100);
 var endradians = (percentage * (2 / 100)) * Math.PI;

 context.clearRect(0, 0, canvas.dimensions.width,
canvas.dimensions.height);

 /**
 * Draw the play button backdrop
 */
 context.beginPath();
 context.fillStyle = '#000000';
 context.arc(canvas.center.x, canvas.center.y,
 canvas.center.x - 10, 0, 2 * Math.PI);
 context.fill();

 /**
 * Draw the background for the play head
 */
 context.beginPath();
 context.lineWidth = 5;
 context.strokeStyle = "#FFFFFF";

 context.arc(canvas.center.x, canvas.center.y,
 canvas.center.x - 20, 0, 2 * Math.PI);

 context.stroke();

 /**
 * Draw the progress head
 */
 context.beginPath();
 context.lineWidth = 5;

CHAPTER 7: JavaScript for Mobile 209

 context.strokeStyle = "#A8A8A8";
 context.arc(canvas.center.x, canvas.center.y,
 canvas.center.x - 20, 0, endradians);
 context.stroke();

 };
}

The final step in this method is to decide whether to draw the stop or the play
icons on the button with every canvas redraw. This is achieved with a switch
statement.

app.playButton = function(id, track){
 ...
 this.draw = function(){
 var percentage = 100 - ((track.getCurrentTime() / track.getLength()) *
100);
 var endradians = (percentage * (2 / 100)) * Math.PI;

 context.clearRect(0, 0, canvas.dimensions.width,
canvas.dimensions.height);

 /**
 * Draw the play button backdrop
 */
 context.beginPath();
 context.fillStyle = '#000000';
 context.arc(canvas.center.x, canvas.center.y,
 canvas.center.x - 10, 0, 2 * Math.PI);
 context.fill();

 /**
 * Draw the background for the play head
 */
 context.beginPath();
 context.lineWidth = 5;
 context.strokeStyle = "#FFFFFF";

 context.arc(canvas.center.x, canvas.center.y,
 canvas.center.x - 20, 0, 2 * Math.PI);

 context.stroke();

 /**
 * Draw the progress head
 */
 context.beginPath();
 context.lineWidth = 5;
 context.strokeStyle = "#A8A8A8";
 context.arc(canvas.center.x, canvas.center.y,

CHAPTER 7: JavaScript for Mobile 210

 canvas.center.x - 20, 0, endradians);
 context.stroke();

 /**
 * Decide whether to draw the play or the stop button
 */
 switch(track.getState()){
 case track.state.PAUSED:
 case track.state.STOPPED:
 this.drawPlay();
 break;
 case track.state.PLAYING:
 this.drawStop();
 break;
 }

 };
}

As you can see, if the track state is paused or stopped, the play icon is drawn; if
the track is playing, the stop icon is drawn.

The full code for the playButton follows. You will notice that at the bottom of the
code sample, there is an event listener to bind the touch event for the canvas.
This will trigger the togglePlay() method.

app.playButton = function(id, track){

 var canvas = document.getElementById(id),
 context = canvas.getContext('2d'),
 track = track,
 self = this;

 canvas.center = {
 x: (canvas.offsetHeight / 2),
 y: (canvas.offsetHeight / 2)
 };

 canvas.dimensions = {
 width: (canvas.offsetWidth),
 height: (canvas.offsetHeight)
 };

 /**
 * Track callback methods
 */
 track.callbacks.didUpdateTime = function(time){
 self.draw();
 };

CHAPTER 7: JavaScript for Mobile 211

 track.callbacks.didPause = function(){
 self.draw();
 }

 /**
 * Track controls
 */

 this.togglePlay = function(){

 switch(track.getState()){
 case track.state.STOPPED:
 case track.state.PAUSED:
 self.play();
 break;
 case track.state.PLAYING:
 self.stop();
 break;
 }

 }

 this.play = function(){
 track.play();
 };

 this.stop = function(){
 track.pause();
 };

 this.drawStop = function(){
 var width = 20,
 height = 20,
 x = canvas.center.x - (width / 2),
 y = canvas.center.y - (height / 2);

 context.beginPath();
 context.fillStyle = '#A0A0A0';
 context.fillRect(x, y, width, height);

 };

 this.drawPlay = function(){
 var width = 20,
 height = 20,
 x = canvas.center.x - (width / 2),
 y = canvas.center.y - (height / 2);

 context.beginPath();
 context.moveTo(x, y);

CHAPTER 7: JavaScript for Mobile 212

 context.lineTo(x + width, y + (height / 2));
 context.lineTo(x, (y + height))
 context.fillStyle = '#A0A0A0';

 context.fill();

 };

 this.draw = function(){
 // Draw the progress bar based on the
 // current time and total time of the track
 var percentage = 100 - ((track.getCurrentTime() / track.getLength()) *
100);
 var endradians = (percentage * (2 / 100)) * Math.PI;

 context.clearRect(0, 0, canvas.dimensions.width,
canvas.dimensions.height);

 context.beginPath();
 context.fillStyle = '#000000';
 context.arc(canvas.center.x, canvas.center.y,
 canvas.center.x - 10, 0, 2 * Math.PI);
 context.fill();

 context.beginPath();
 context.arc(canvas.center.x, canvas.center.y,
 canvas.center.x - 20, 0, 2 * Math.PI);
 context.lineWidth = 5;
 context.strokeStyle = "#FFFFFF";
 context.stroke();

 context.beginPath();
 context.arc(canvas.center.x, canvas.center.y,
 canvas.center.x - 20, 0, endradians);
 context.lineWidth = 5;
 context.strokeStyle = "#A8A8A8";
 context.stroke();

 switch(track.getState()){
 case track.state.PAUSED:
 case track.state.STOPPED:
 this.drawPlay();
 break;
 case track.state.PLAYING:
 this.drawStop();
 break;
 }

 };

CHAPTER 7: JavaScript for Mobile 213

 canvas.addEventListener('touchend', function(e){
 self.togglePlay();
 e.preventDefault();
 });

 this.draw();
};

Figure 7-11. Final play button

Storing Data
Traditionally, to persist data (such as a user’s name) within a mobile web
application, you would store this information within a cookie. The problem with
cookies is that while they are prefect for storing small amounts of data, they
quickly become hard to manage for large amounts of data, such as a JavaScript
object. This can be perfect for when you wish to store the current state of the
application so that when the users come back it it, they can pick up from where
they left off, much like a native application.

Unfortunately, local storage does not support storing objects, only string values.
But you can convert objects into strings using JSON.stringify and convert them
back into objects using JSON.parse.

To store data using local storage, simply use the localStorage APIs. These
consist of the properties and methods shown in Table 7-6.

CHAPTER 7: JavaScript for Mobile 214

Table 7-6. Local Storage Methods and Properties

For example, if you wanted to store an object with a user’s name, e-mail
address, and contact phone number, you would create something like this:

var user = {name: "John Seagate", email: "john.seagate@hello.com",
contactNumber: "012345678910"}
localStorage.setItem('user', JSON.stringify(user));

To retrieve the item, you would use the following code:

var user = JSON.parse(localStorage.getItem('user'));

JavaScript Libraries for Mobile
JavaScript libraries can help with some of the heavy lifting of any type of front-
end development. They can help with providing a consistent API for anything
from DOM manipulation to all the way through to the kitchen sink. There are
three libraries that will be used as examples in this chapter.

 XUI

 jQuery Mobile

 Sencha Touch

API Method Description

localStorage.clear() Clears all data in the local storage

localStorage.setItem(key, value) Sets a key value pair in local storage

localStorage.getItem(key) Gets an item from local storage based on its
key

localStorage.key(0) Gets an item from local storage based on its
index value; you can get the last item in
local storage by calling
localStorage.key(localStorage.length)

localStorage.removeItem(key) Removes an item from local storage based
on its key

localStorage.length Returns the number of items in local storage

mailto:john.seagate@hello.com

CHAPTER 7: JavaScript for Mobile 215

Figure 7-12. jQuery Mobile (left), and Sencha Touch (right)

XUI is targeted specifically for mobile and provides a jQuery-like syntax with
lightweight DOM manipulation, simple API abstraction for making and
processing Ajax requests, and performs basic JavaScript-based animation. It
has a plugin architecture much like jQuery, so you can extend XUI to suit your
needs and create additional plugins for your project.

jQuery Mobile and Sencha Touch are both heavyweights, in the sense that they
can provide not just an abstraction from what you might call ‘‘vanilla
JavaScript,’’ but also a framework from which you can easily build mobile web
applications.

jQuery mobile can help you to rapidly prototype projects and then skin them
further on down the line. Its UI relies on Plain Old Simple HTML (POSH). The
POSH is then enhanced with CSS and JavaScript. jQuery works on both phone-
and tablet-based devices through the use of CSS media queries to alter layout.

Sencha Touch offers a much more complex and fully featured development
methodology. You do not write cards or pages in HTML. Instead, you configure
each page and provide content through JavaScript. Sencha Touch offers lots of
UI enhancements and widgets including the ability to store data offline and

CHAPTER 7: JavaScript for Mobile 216

online out of the box through the use of proxies. This allows you to store and
retrieve data through a common interface and specify the type of store you use
in the configuration.

jQuery and Sencha Touch are great; however, what you end up creating is an
application built in the jQuery mobile or the Sencha way of thinking. There is
nothing wrong with using a mobile library to complete a mobile-based project,
but you should be aware of the things you should look for when picking a
framework or library.

File Size
It is important to ensure that any library has a small footprint. Some mobile
operators, unfortunately, do not offer unlimited data plans, so it’s important to
make sure that accessing your mobile web site doesn’t have a large impact on
your user’s pockets. It’s also important to remember that although 3G and LTE
offer relatively high data speeds, not all users will have access to 3G or LTE all
of the time. This has an impact on load time, as a 500kB library along with your
entire application’s image and CSS assets could take several seconds to
download through 3G/LTE; it could take much longer on EDGE. So, cater for the
lowest common denominator, which would be EDGE in this case.

Number of Files
At the time of writing, the number of requests that a mobile browser can make is
quite restricted. This means that if you have many assets to download to the
browser, this can affect loading time. You can overcome this by ensuring that
the JavaScript library you are using offers the following:

 A minified and concatenated version of the source

 A sprite sheet for things such as icons and buttons

 A content delivery network (CDN) hosted version of the library

Activity
You should check to see when the most recent update was for the library and
how often new versions are released (the release cycle). This has an effect on
your development, and if you’re one for keeping up to date with bug fixes and
major releases, you might find yourself constantly updating your code with the
latest release; or even worse, if the library is abandoned and no longer

CHAPTER 7: JavaScript for Mobile 217

maintained, it means that you will have to learn a new library or maintain the one
that has just been abandoned.

CSS3 Support
Many libraries are now updating their code to take advantage of the
enhancement in GPU support for CSS3 animations and transitions. You should
check your library to ensure that it supports or has a roadmap for CSS3
transitions and animations over JavaScript animations and transitions. This will
provide performance enhancements for your application.

Summary
From this chapter, you should have a much greater understanding of JavaScript
in general and the new capabilities that mobile brings you.

You should be able to distinguish the difference between procedural JavaScript
and object-oriented JavaScript, and that passing objects into each other is a
much better concept and principle than calling functions in the global
namespace.

You should also have a brief understanding of scope within JavaScript and how
to maintain it between objects through closures and the use of self = this.

You should also have a brief understanding of how to handle touch events in
JavaScript and that by tapping into this, you can produce much richer
applications.

This chapter has touched on Canvas in great detail. You should have an
understanding of how HTML5 Canvas works and the idea behind context and
the drawing APIs, such as arc, fillRect, and the style APIs, such as lineStyle
and fillStyle.

8
Chapter

JavaScript: Models,
Views, and Controllers

There are many development design patterns. One that has really stood out and
can be applied across almost all programming languages is MVC (Model View
Controller). MVC breaks down how an application should be structured into
various layers of responsibility.

It’s all too common that we, as developers, jump in and begin working on a
project with no real understanding of how that project will eventually evolve or
grow. For example, we pull in data from external resources using Ajax and then
simply render that data in HTML in the same code block. What happens when
you then want to use that same HTML in another part of your application, but for
a different purpose, using a different data source? The quickest thing to do is to
copy and paste that code and alter the variables.

As you begin to bolt more features onto your application in this manner, it might
begin to look more like you’ve built your application out of jelly and chocolate
rather than code and logic. As tasty as that sounds, the point is that if you build
your application from the beginning in such a way that it can easily be built upon
later, it will cost less time and money to add more features in the future.

Part of making this happen is to standardize or create rules for certain aspects
of your application. This can make the code longer to write, but easier to work
with by developers other than yourself. By adopting MVC, you adopt a method
of working that’s easy to understand. Your skill level shouldn’t dictate whether
you should learn about design patterns. You may implement MVC any way that
you like; however, this chapter will show you only one way of working with MVC
in JavaScript.

Through this chapter, you will learn how to create and implement your own MVC
framework. You will learn what models are and how they act as the lifeblood of

CHAPTER 8: JavaScript: Models, Views, and Controllers 220

your application. You will learn how a controller can help to bind and manage
events in your application and how view can be built to be reused.

NOTE: Before you begin, you will need a Rotten Tomatoes developer
account. To create one, head over to
http://developer.rottentomatoes.com and follow the steps to create
a developer account and get an API key.

Cleaning Up Your Code
Before you begin to write any code for this chapter, you will need to clean up
index.html in the root directory of your application that you made for Chapter 4.
Most of the HTML, such as the favorites list and the movie preview list, will now
be generated using JavaScript. We’ll be covering quite a bit in this chapter; in
order to focus on all these issues in detail, looking for cinemas and playing back
audio tracks will be removed from the final feature list.

Open index.html and ensure your HTML looks like the following code.

<!DOCTYPE html>
<html lang="en-GB" dir="ltr">

 <head>

 <meta charset="UTF-8" />
 <meta name="viewport" content="width=device-width; initial-scale=1.0;
 maximum-scale=1.0; user-scalable=0; target-densitydpi=device-dpi;"/>
 <title>Mo Memo</title>
 <link rel="stylesheet" type="text/css" href="css/mobile.css" />
 <link rel="apple-touch-icon-precomposed" href="img/home-screen-icon.png">
 </head>

 <body>

 <div id="shoe">

 <!-- Begin Taskbar -->

 <header id="taskbar" class="screenbar">
 <h1 class="branding">Mo Memo</h1>
 <!-- Taskbar Search form -->
 <form method="post" id="add-movie" class="horizontal">
 <input type="text" class="full-width search" name="query"
 placeholder="enter your movie name…" />

http://developer.rottentomatoes.com

CHAPTER 8: JavaScript: Models, Views, and Controllers 221

 </form>

 </header>

 <!-- End Taskbar -->

 <!-- Begin Movie List Deck -->

 <div class="deck">

 <div class="card active" id="card-favorite list">

 </div>

 <div class="card" id="card-movie search results">

 </div>

 <div class="card" id="card-movie info">

 </div>

 </div>

 <!-- End Movie List Deck -->

 </div>
 </body>

</html>

As you can see from the preceding code, there are several changes to <div />
IDs and classes. The content from the individual cards has also been removed.
This is because, in this chapter, you will learn about how to create reusable
HTML snippets, called views, in JavaScript. This will allow you to keep your
HTML and view logic outside of the application’s main code and in its own
maintainable file.

MVC and a JavaScript Primer
JavaScript is based on the ECMAScript standard. We were blessed by
JavaScript’s popularity toward the end of the twentieth century, when the web
site dynamicdrive.com helped to bring JavaScript to the forefront of the Web.
Then, just as Web 2.0 was the buzzword for the collection of popular web
technologies (such as Ajax, JavaScript, CSS, and HTML) and concepts
(including APIs, RSS, social media, and mass content production and
consumption) several years ago, DHTML became the buzzword for making use

CHAPTER 8: JavaScript: Models, Views, and Controllers 222

of JavaScript, DOM manipulation, and CSS (e.g., making web pages with
snowflakes that float on top of them).

Soon, JavaScript became much more popular and, in the hands of serious
developers with experience in enterprise software development in languages
such as Java and C/C++, JavaScript matured. However, browsers were
inconsistent in implementation; JavaScript developers often coded in hatred,
knowing that other browsers’ implementation of Ajax/XMLHttpRequest was
completely different to the then-popular Internet Explorer (the opposite of what
we see today). Even simple tasks such as binding events or selecting elements
could be a pain, as you had to do them twice----once for Internet Explorer and
once for everybody else.

We later got libraries such as MooTools, DoJo, JQuery, and YUI to take a lot of
the heavy lifting away from us. These did away with many of the browser
inconsistencies by providing one method for us to use to perform simple tasks
(such as DOM selection and manipulation), which worked across all browsers.
For example, rather than writing several lines of code to create an Ajax request
that was compatible with both Internet Explorer and Firefox, you could cover
both at once with jQuery, as follows.

$.ajax('/my/data/provider.json');

What this unfortunately left us with was a group of new developers who had
every right to believe that jQuery, DoJo, MooTools, or YUI was true
JavaScript----because that’s the way they were taught or self-taught.

Procedural JavaScript mixed with library code became the norm, and cramming
$(document).ready(function(){}); with spaghetti code would eventually
become hard to maintain for growing web applications.

These tools are amazing and powerful, but it’s easy to become reliant on them
and not understand how they really work and why you should or shouldn’t use
one or the other for mobile. If you primarily work with jQuery, then that’s great. I
have been working with jQuery as a developer since 2007/version 1.1, and
script.aculo.us (although I hate to admit it) since 2005. However, I learned
JavaScript first, and I looked through jQuery and script.aculo.us’s code before I
even began to use it.

This is even more important in mobile, as the majority of the code found in the
libraries will be barely used by your mobile web application. At a minimum, you
might potentially use DOM selectors, traversal, event binding, and Ajax, which
accounts for a small percentage of the libraries code. That said, it doesn’t make
sense to pull the whole thing down a network that’s already struggling with
supply and demand.

CHAPTER 8: JavaScript: Models, Views, and Controllers 223

Instead, sometimes it’s actually much more beneficial to roll your own mini
JavaScript library or framework. You’re never too much of a novice to learn how
to do this; in fact, it’s actually better to get set in your ways now.

A framework is simply a method, standard, or practice for working with your
code. You create a framework to also separate the vital parts of your application
so they’re easier to manage as your application grows. The framework also
manages how data flows through your application. You will mainly see
JavaScript objects passed from one method to another for presentation. These
objects will usually represent some form of entity, and are known as models.
The models will usually be passed to a method or a function that will then
display that to the user. In MVC, the method that handles and manipulates the
model for presentation is called the controller, and the code that generates the
HTML incorporating the model is called the view. Figure 8-1 shows how the
MVC framework is structured.

Figure 8-1. MVC diagram for JavaScript

CHAPTER 8: JavaScript: Models, Views, and Controllers 224

The Model
The M in MVC stands for Model. A model is the part of the application that
dictates how different types of data are handled. A model is simply a JavaScript
object that can represent an entity of some kind. For instance, you might create
a model for a user within your application, like so:

var user = function user(){}

TIP: You will notice that I have named the function, as well as
assigned it to a variable. This essentially creates a named function
instead of an anonymous one. This is useful in many instances, such
as debugging, as you can see the method name in a stack trace.

A user will typically have attributes, such as name, password, and pet. It’s best
to create these attributes by using instance variables (variables that are only
accessible from within the object/model) and then creating privileged getters
and setters to modify or retrieve those values. This allows you to then create
rules around those attributes. For instance, you can have a setter for the
password that accepts a plain text password and then encrypts its value within
the object. By omitting a getter, you can also prevent the user’s password from
being retrieved from the user object by another piece of code. The next code
example shows the evolution of the user model.

var user = function user(name, password, pet){

 var name = null,
 password = null,
 pet = null,
 self = this;

 this.setName(name);
 this.setPassword(password);
 this.setPet(pet);

 name = null;
 password = null;
 pet = null;

 /**
 * Returns the user's name
 */
 this.getName = function(){
 return name;
 }

CHAPTER 8: JavaScript: Models, Views, and Controllers 225

 /**
 * Sets the user's name
 */
 this.setName = function(name){
 name = name;
 }

 /**
 * Sets the user's password and encrypts it before assignment
 */
 this.setPassword = function(password){
 password = password.encrypt(); // .encrypt() doesn’t really exist!
 }
 /**
 * Returns the user's favorite pet
 */
 this.getPet = function(){
 return pet;
 }

 /**
 * Sets the user's favorite pet
 */
 this.setPet = function(pet){
 pet = pet;
 }

}

As you can see, there’s a significant amount of code here to achieve what feels
like very little. However, the idea is that you can use this new user model
anywhere in your application, and no matter what data you provide to it, it will
act in a predictable manner throughout your application.

The beauty of using models is that you can create relationships between them.
For instance, using the previous example, every user has a pet, but wouldn’t it
be nice to find a way to describe that pet? To do this, you can create a pet
model.

You could just as easily add pet attributes to the user model, but if you need to
describe the pet in more detail in the future, you end up with a cluttered user
model. Having a separate model allows you to create new pet attributes in the
future, without damaging the integrity of your application. The pet model is as
follows .

var pet = function pet(name, type){
 var name = null,
 type = null;

CHAPTER 8: JavaScript: Models, Views, and Controllers 226

 this.setName(name);
 this.setType(type);

 /**
 * Gets the pet's name
 */
 this.getName = function(){
 return name;
 }

 /**
 * Sets the pet's name
 */
 this.setName = function(name){
 name = name;
 }

 /**
 * Gets the pet's type
 */
 this.getType = function(){
 return type;
 }

 /**
 * Sets the pet's type
 */
 this.setType = function(type){
 type = type;
 }
}

As you can see, the pet model follows the exact same structure as the user
model. To use these together, you can do the following.

var sue = new user('Suzanne', 'password', null); // First create a new user with
no pet
var jack = new pet('Jack', 'dog'); // Create a new pet
sue.setPet(jack); // Assign the new pet to the user

/**
 * By calling getPet, you now have access to all of the pet's methods and
 * attributes from the user
 */

alert(sue.getName() + 'has a favorite ' + sue.getPet().getType() + ' called ' +
sue.getPet().getName());

CHAPTER 8: JavaScript: Models, Views, and Controllers 227

You might want to go further and allow a user to have many pets. You can do
this by creating an array of pets within the user model. You will have to create
several new methods to manage the pets array from outside of the user object.

 addPet will add a single pet to the pet array.

 getPet gets a single pet at a specific index from the pet array.

 removePet removes a single pet using an index value.

 setPets sets the pet array using an array of pets, overwriting
the existing pet array.

 getPets retrieves all of the pets assigned to a user object.

The new changes to the user object are as follows.

/**
 * Now that you can have multiple pets, it doesn't make sense to add it to
 * the constructor
 */
var user = function user(name, password){

 var name = null,
 password = null,
 pets = [], // The default value is now an array instead of null
 self = this;

 this.setName(name);
 this.setPassword(password);
 // favoritePet is not part of the constructor anymore, so it doesn't need to
be set

 name = null;
 password = null;

 ...

 /**
 * Adds a pet to the pet array
 */
 this.addPet = function(pet){
 // You can add object validation here before adding to the pet array
 pets.push(pet);
 }

 /**
 * Gets a pet from the array at a specific index
 */
 this.getPet = function(index){
 return pets[index];

CHAPTER 8: JavaScript: Models, Views, and Controllers 228

 }

 /**
 * Removes a pet from the array
 */
 this.removePet = function(index){
 /**
 * Splice can remove items from an array. It accepts a start index
 * and number of items
 */
 pets.splice(index, 1);
 }

 /**
 * Sets the pet array
 */
 this.setPets = function(pets){
 /**
 * Clear the pets array, using Array.length = 0 will remove
 * every element in the array as apposed to creating a new array
 * using pets = [];
 */
 pets.length = 0;

 /**
 * Instead of completely replacing the pets array with the new array,
 * each pet should go through the same validation in the addPet method.
 * Instead of duplicating any validation code, it makes sense to just
 * call the addPet method for every pet using a for loop.
 */
 for(var i = 0; i < pets.length; i++){
 self.addPet(pets[i]);
 }
 }

 /**
 * Gets the pet array
 */
 this.getPets = function(){
 return pets;
 }

}

As you can see from the preceding code, most of the methods are fairly self-
explanatory, except for the setPets method. From the setPets code, you can
see that you have to first clear the pets array using pets.length = 0. This is
slower than assigning a new empty array to the pets variable using pets = [];
however, it will simply remove all of the array elements rather than create a new

CHAPTER 8: JavaScript: Models, Views, and Controllers 229

empty array. Rather than assigning the pets array passed to the method to the
pets array in the pets object, you iterate through every pet in the new array and

call the addPet method. The reason for this is to ensure that any new pets still
pass through the same code used to add a pet to the user object, which may
contain validation or modify each pet object. To make use of the new code, you
can do something similar to the following JavaScript code.

var user = new user('Suzanne', 'password');
var pet1 = new pet('Jack', 'dog');
var pet2 = new pet('Snoop', 'dog');
user.appPet(pet1);
user.addPet(pet2);

var message = user.name + ' has ' + user.getPets().length + ' pets. ' +
user.name + ' has';
for(var i = 0; i < user.getPets().length; i++){
 message += ' a ' user.getPet(i).getType() + ' called ' +
user.getPet(i).getName();
}

alert(message);

This should output something similar to ‘‘Suzanne has 2 pets. She has a dog
called Jack a dog called Snoop’’.

It’s important to remember that your models are simply JavaScript objects, so
you can add any methods to manipulate the variables within them or output
things in a certain way.

There aren’t that many models within MoMemo. The best way to explain how
the models work with each other is through a class diagram.

Although JavaScript is a classless language, you can still use the class analogy
to describe how an object is formed through creating a constructor, methods,
and instance variables within that object.

A class diagram shows what methods and properties a class will have, and how
they interact with other classes.

NOTE: To keep things as simple as possible in this book, I will only
cover how to read basic UML class diagrams including properties,
methods, and common associations. If you’d like to learn more about
UML and the different diagrams available, feel free to check out
www.agilemodeling.com/essays/umlDiagrams.htm.

http://www.agilemodeling.com/essays/umlDiagrams.htm

CHAPTER 8: JavaScript: Models, Views, and Controllers 230

A basic class diagram for MoMemo is shown in Figure 8-2.

Figure 8-2. Classes in a class diagram

As you can see from Figure 8-2, each box shows a name at the top (e.g., Movie,
Actor, etc.), which represents the name of each class. Just below the box name
are several lines prefixed with a - symbol. These are attributes of the class. The
symbol before the name of the attribute dictates whether the attribute should be
public (+) or private (-). You can specify types as well as other properties for
attributes in UML class diagrams.

Just below the attributes, there is a line followed by a method name. In the
example in Figure 8-2, you can see that the only method for Movie is
isFavorite, which returns a Boolean and determines whether the movie is a
favorite.

The black diamonds next to the class indicate that there is an association
between the Movie class and the Actor and Video classes. The black diamond
tells you that the association is a composite, meaning that the Movie class owns
an Actor and Video, and that the Actor and/or Video cannot exist without the
Movie within the context of this application. The composite association also says
that if the parent (Movie, in this case) dies, then child (Actor/Video) will cease to
exist. It’s always important to remember that, when creating associations
between classes, they are made within the context of the application. There are
other types of associations, which are listed in Table 8-1.

CHAPTER 8: JavaScript: Models, Views, and Controllers 231

Table 8-1. The Different UML Association Types

Symbol Name Description

 Composite This is when a parent owns the child, and the child
cannot exist without the parent. If the parent is
destroyed, the child is destroyed too. This is known
as a “contains a” relationship.

Aggregate This is when the parent does not own the child, but

the child can exist without the parent. If the parent is
destroyed, the child will still exist. For instance, an
Actor can exist without a Movie. This is known as a
“has a” relationship. A child in an aggregate
association can only belong to a single parent entity
(i.e., an Actor cannot belong to more than one Movie).

Association This is a loose association, meaning that there is no

ownership between entities and that they can exist
without each other. Each entity can be associated
with many other entities.

Next to the association line you will see either a 1 or 0..*. This is called
multiplicity. It indicates what the type of association is between each class. A 1
indicates that there is only one associated object, 0..* indicates that there are
zero or more associated objects.

In the example in Figure 8-2, an Actor only has one Movie, but a Movie has zero
or more Actors. A Movie has zero or more Videos, but a Video can only have a
single Movie.

In general, a UML diagram will also never show getters and setters for attributes.
Using the previous model, you can begin to create your models for MoMemo.

Let’s start with the smallest and most insignificant model, VideoSource.

The Video Source Model
The video source model is the simplest of all of the models used within the
MoMemo application. The video source model is used to store the different
video formats for a video. Rather than adding webm, mp4, and ogv attributes to
the Video model, it makes sense to associate the video with video sources for
flexibility.

Imagine a new mobile web browser has just been released with support for
several new formats. If you wanted to support those formats, you would need to

CHAPTER 8: JavaScript: Models, Views, and Controllers 232

modify the Video model, which could have an adverse effect on your
application. By creating an association with a video source, you don’t need to
worry about modifying your code if new formats appear, as you can simply
create new instances for the new video formats, and then add them to the
association with the Video model. To make life even easier, you can create a
loop in your view (which will be discussed further into this chapter) so that you
don’t have to modify the application to support the new video formats.

To begin, create a new JavaScript file, called videosource.js, for the video
source model within the js/app/model/ folder. You can now begin to define your
model’s structure using the following code.

var app = app || {};

app.model = app.model || {};

/**
 * A video source used within a video
 * You must add this object to a video once instantiated
 * @param {String} url
 * @param {app.type.format} format
 */
app.model.videosource = function appModelVideoSource(url, format){
 // Your implementation goes here
}

As you can see, the model is declared in much the same way as the pets model,
except you use the app.model namespace for all of your models.

The constructor accepts a URL for the video, and a format that could be webm,
ogv, mp4, and so forth.

The next thing to do will be to declare the instance variables. Just to recap, an
instance variable is a variable that exists only within the scope of the object
instance. The instance variables aren’t accessible or modifiable outside of the
instance, unless a getter or setter is created for the instance variable.

...
app.model.videosource = function appModelVideoSource(url, format){

 /**
 * The video source's instance variables
 */
 var url,
 format,
 self = this;

}

CHAPTER 8: JavaScript: Models, Views, and Controllers 233

As you can see, there are only two instance variables that corrospond to the
constructor parameters. The instance variables are prefixed with underscores ()
so that they don’t clash with variables passed through the constructor. You also
declare a reference to the instance using self = this, as the this keyword
references the privileged method and not the object.

The next thing to do is to create an instantiation method, which gets called
toward the end of the model. The code is as follows.

...
app.model.videosource = function appModelVideoSource(url, format){
...

 /**
 * Set the instance variables using the constructor's arguments
 */
 this.init = function(){
 this.setUrl(url);
 this.setFormat(format);
 }

 // Insert getters and setters

 this.init();

}

As you can see, the init method simply calls the setters for the attributes
passed through the constructor.

NOTE: Variables passed through a constructor are within the scope of
the constructor and privileged methods that are contained within the
constructor. This means that constructor parameters can be used and
modified within privileged methods. When you create new variables
within privileged methods, it’s important to declare them using var to
prevent the privileged method from modifying the constructor
parameter.

This prevents code repetition, as you might perform other operations when
modifying instance variables from outside of the object, such as error checking
or changing the value based on a condition.

You might be thinking, why not simply call the setters without wrapping them
with the init method at the top of the JavaScript object as shown in the

CHAPTER 8: JavaScript: Models, Views, and Controllers 234

previous code sample. The simple answer is that the setters haven’t been
declared yet, so calling the methods will create a JavaScript error.

When you declare a normal named function in JavaScript, the interpreter will
look for the function when it’s called, regardless of its placement in the script.
However, when you assign a function to a variable, you have to wait until that
assignment happens before calling the function.

To get around this, you must either put all of your initialization code at the end of
the object, or wrap it in a method at the top and call it from the bottom. I have
opted for the later, as getters and setters tend to create a lot of white noise, and
scrolling through lots of what feels like pointless code to get to your main code
is a bit irritating. You can see that the init method is called toward the end of
the object in the previous example.

The next thing to do is to create the getters and setters.This is a really simple
task. Just to recap, the getters return an instance variable, and the setters
assign values to instance variables as anything outside the object can’t modify
the instance variables from outside of the object.

The getters and setters are fairly self explanitory, you can see in the following
code.

...
app.model.videosource = function appModelVideoSource(url, format){
...
 /**
 * Getters and setters
 */

 /**
 * Gets the url of the video source
 * @return {String}
 */
 this.getUrl = function(){
 return url;
 }

 /**
 * Sets the url of the video source
 * @param {String} url
 */
 this.setUrl = function(url){
 url = url;
 }

 /**
 * Gets the mimetype of the video source
 * @return {app.type.format}

CHAPTER 8: JavaScript: Models, Views, and Controllers 235

 */
 this.getFormat = function(){
 return format;
 }

 /**
 * Sets the mimetype of the video source
 * @param {app.type.format} format
 */
 this.setFormat = function(format){
 format = format;
 }
...
}

That concludes the VideoSource model. As you can see, it’s very simple. Next,
you’ll create the Video model, which is also relatively simple.

The Video Model
The Video model is also relatively simple, except that it has a composite
association with the VideoSource model in which it can be composed of many
video sources.

Create a new empty file called video.js within js/app/model. This will contain
the new video model.

The constructor accepts a title, length in milliseconds, and a URL to a
posterframe or preview frame, which will be an image.

var app = app || {};

app.model = app.model || {};

/**
 * A video associated with a movie
 * You must add video sources in order for videos to play
 * @param {String} title
 * @param {Integer} length
 * @param {String} posterframe
 */
app.model.video = function appModelVideo(title, length, posterframe){
 // Code implementation goes here
}

The instance variables for this object are title, length, posterframe, and an
array of sources. As you can see from the following code snippet, the sources
variable isn’t part of the constructor’s parameters.

CHAPTER 8: JavaScript: Models, Views, and Controllers 236

app.model.video = function appModelVideo(title, length, posterframe){
 /**
 * The video's instance variables
 */
 var title,
 length,
 posterframe,
 sources = [],
 self = this;
}

You can create accessors for the sources instance variable. As it isn’t
imperative toward the function of the object’s immediate instance, it doesn’t
need to be in the constructor.

The accessors for the sources instance variable consists of a method to add
single source instances, remove and get instances from the array based on an
index, retrieve the full array, or overwrite the array with a new array. The
accessors can be seen in the following code snippet.

app.model.video = function appModelVideo(title, length, posterframe){
 ...

 /**
 * Gets all of the video sources used for embedding video
 * in POSH
 * @return {Array}
 */
 this.getSources = function(){
 return sources;
 }

 /**
 * Sets all video sources using an array
 * @param {Array} sources
 */
 this.setSources = function(sources){

 /**
 * Clears the sources array
 */
 sources.length = 0;

 /**
 * Rather than setting the sources all in one go,
 * you use the addSource method, which can handle
 * any validation for each source before it's
 * added to the object

CHAPTER 8: JavaScript: Models, Views, and Controllers 237

 */
 for(var i = 0; i < sources.length; i++){
 self.addSource(sources[i]);
 }
 }

 /**
 * Adds a source to the sources array
 * @param {app.model.videosource} source
 */
 this.addSource = function(source){
 sources.push(source);
 }

 ...
}

As you can see, the accessors follow the same implementation from the pet
example shown earlier in this chapter.

You might also want to add some type of filtering on the length setter so that
any value is parsed as an integer to prevent any issues within the model. You
can use the parseInt method in the setter’s implementation. This will ensure
that any value passed to the model will be an integer or zero. The setter can be
seen in the following code snippet.

app.model.video = function appModelVideo(title, length, posterframe){
 ...
 /**
 * Sets the length of the video in milliseconds
 * @param {Integer} length
 */
 this.setLength = function(length){
 /**
 * Use parseInt here just to ensure the length
 * is an integer. If it's not, then it will
 * return NaN. The isNaN method will check to
 * see whether the value is not a number.
 */
 length = parseInt(length);

 if(isNaN(length)){
 length = 0;
 }
 }
 ...
}

You can now complete the Video model, which should look like the following.

CHAPTER 8: JavaScript: Models, Views, and Controllers 238

var app = app || {};

app.model = app.model || {};

/**
 * A video associated with a movie
 * You must add video sources in order for videos to play
 * @param {String} title
 * @param {Integer} length
 * @param {String} posterframe
 */

app.model.video = function appModelVideo(title, length, posterframe){

 /**
 * The video's instance variables
 */
 var title,
 length,
 posterframe,
 sources = [],
 self = this;

 /**
 * Set the instance variables using the constructor's arguments
 */

 this.init = function(){
 this.setTitle(title);
 this.setLength(length);
 this.setPosterframe(posterframe);
 }

 /**
 * The getters and setters
 */

 /**
 * Gets the title of the video
 * @return {String}
 */
 this.getTitle = function(){
 return title;
 }

 /**
 * Sets the title of the video
 * @param {String} title
 */
 this.setTitle = function(title){

CHAPTER 8: JavaScript: Models, Views, and Controllers 239

 title = title;
 }

 /**
 * Gets the length of the video in milliseconds
 * @return {Integer}
 */
 this.getLength = function(){
 return length;
 }

 /**
 * Sets the length of the video in milliseconds
 * @param {Integer} length
 */
 this.setLength = function(length){
 /**
 * Use parseInt here just to ensure the length
 * is an integer. If it's not, then it will
 * return NaN. The isNaN method will check to
 * see whether the value is not a number.
 */
 length = parseInt(length);

 if(isNaN(length)){
 length = 0;
 }
 }

 /**
 * Gets all of the video sources used for embedding video
 * in POSH
 * @return {Array}
 */
 this.getSources = function(){
 return sources;
 }

 /**
 * Sets all video sources using an array
 * @param {Array} sources
 */
 this.setSources = function(sources){

 sources.length = 0;

 /**
 * Rather than setting the sources all in one go,
 * you use the addSource method, which can handle
 * any validation for each source before it's

CHAPTER 8: JavaScript: Models, Views, and Controllers 240

 * added to the object
 */
 for(var i = 0; i < sources.length; i++){
 self.addSource(sources[i]);
 }
 }

 /**
 * Gets the source at a specific index
 * @param {Integer} index
 * @return {app.model.videosource} source
 */
 this.getSource = function(index){
 return sources[index];
 }

 /**
 * Removes a source at a specific index
 * @param {Integer} index
 */
 this.removeSource = function(index){
 sources.splice(index, 1);
 }

 /**
 * Adds a source to the sources array
 * @param {app.model.videosource} source
 */
 this.addSource = function(source){
 sources.push(source);
 }

 this.init();

}

With the Video model complete, you can move onto the last small model, the
Actor model.

The Actor Model
The Actor model is another simple object, which contains only the actor’s name
and role within the Movie. Create a new file within js/app/models/ called
actor.js. There’s not much to explain here, so go ahead and create the model.
It should have two instance variables called name and role that are set through
the constructor. Your complete code will look like the following.

CHAPTER 8: JavaScript: Models, Views, and Controllers 241

var app = app || {};

app.model = app.model || {};

/**
 * The actor object handles the actors for a movie
 * Actors should only be included in a full movie listing
 * @param {String} name
 * @param {String} role
 */
app.model.actor = function appModelActor(name, role){

 /**
 * The actor's instance variables
 */
 var name,
 role,
 self = this;

 /**
 * Set the instance variables using the constructor's arguments
 */
 this.init = function(){
 this.setName(name);
 this.setRole(role);
 }

 /**
 * Getters and setters
 */

 /**
 * Returns the full name of the actor
 * @return {String}
 */
 this.getName = function(){
 return name;
 }

 /**
 * Sets the actor's full name
 * @param {String} name
 */
 this.setName = function(name){
 name = name;
 }

 /**
 * Gets the role of the actor in
 * relation to the associated film

CHAPTER 8: JavaScript: Models, Views, and Controllers 242

 * @return {String}
 */
 this.getRole = function(){
 return role;
 }

 /**
 * Sets the actor's role in relation
 * to the associated film
 * @param {String} role
 */
 this.setRole = function(role){
 role = role;
 }

 this.init();

}

The Movie Model
The Movie model is one of the biggest models within the MoMemo application. It
has composite associations with the Actor and Video models, so if the movie is
destroyed, the associated object instances will also be destroyed. The attributes
for the associations are also arrays, so you will need to create add and remove
methods for the arrays objects, which aren’t outlined in the UML class diagram.

To begin with, create the movie.js model file within js/app/model/. The Movie
model will mimic some of the properties available from the Rotten Tomatoes
API.

NOTE: Only some of the Rotten Tomatoes APIs will be covered in this
book. You can find out more about what the APIs are capable of at
http://developer.rottentomatoes.com/.

The following code snippet shows the instance variables that you will need to
create accessors for.

var app = app || {};

app.model = app.model || {};

/**
 * A movie model used for all movies within the application
 *

http://developer.rottentomatoes.com/

CHAPTER 8: JavaScript: Models, Views, and Controllers 243

 * @alias app.model.movie
 * @constructor
 * @param {String} title
 * @param {String} rtid
 * @param {String} posterframe
 * @param {String} synopsis
 */
app.model.movie = function appModelMovie(title, rtid, posterframe, synopsis) {

 /**
 * The video's instance variables
 */
 var title,
 rtid,
 posterframe,
 synopsis,
 releaseDate,
 videos = [],
 actors = [],
 rating,
 favorite = false,
 self = this;

}

Your complete Movie model should look like the code snippet in Listing A-1 in
the appendix.

The code for this model is very simplistic. For something that’s quite crucial to
the application, it makes sense to validate values passed to accessors to
prevent the application from falling over when the wrong type is passed to a
model.

Validation
JavaScript, unfortunately, doesn’t support what is known as type hinting. Type
hinting is the process of specifying what type of parameter a method can
accept. Type hinting in other languages will allow you to specify that a
parameter for a method should be a certain type in the method declaration. For
instance, in PHP, you can specify that a parameter should be an array or object
type as shown in the following code snippet.

function doSomething(MyObject $object, array $myarray){
 /** some implementation **/
}

CHAPTER 8: JavaScript: Models, Views, and Controllers 244

This eases the need to perform vast amounts of validation to check to see
whether an object passed to a method is of a certain type, as upon execution, if
it isn’t, the method will automatically throw an exception or error.

To get around this, you need to validate parameters passed to your accessors.
The most common type of validation will be to validate against type. You can
check to see whether a value is an object, array, number, or string.

You will want to use some of these validators more than once, so it’s worth
creating an object to store all of the validation methods. To do this, create a new
JavaScript file called validator.js within the js/app/utility folder (if the folder
doesn’t exist, create it).

You will create a constructorless object. This will allow you to use the object’s
methods without having to instantiate it. Use the following code snippet to start
creating your validation object.

var app = app || {};

app.utility = app.utility || {};

/**
 * Validator object has static methods
 * to check to easily validate values
 */

app.utility.validator = {}

With the validator utility in place, we can begin to create the validation methods.

isEmpty
The first easy validation method will be to check to see whether a value is
empty. Create a new method within the validator called isEmpty, as shown in the
following code example.

...
app.utility.validator = {

 /**
 * Checks to see whether a value is empty or not
 * Returns true if it is, or false if it isn't
 * @param {String|Object} value
 * @return {Bool}
 */
 isEmpty: function(value){
 return false;
 }

CHAPTER 8: JavaScript: Models, Views, and Controllers 245

}

As you can see, the isEmpty method accepts a single parameter, which is the
value to be validated. By default, it will return false unless the rest of the
implementation returns true.

Use the following validation code to complete the validator.

...
app.utility.validator = {

 /**
 * Checks to see whether a value is empty or not
 * Returns true if it is, or false if it isn't
 * @param {String|Object} value
 * @return {Bool}
 */
 isEmpty: function(value){
 if(value == '' || value == null || value === false){
 return true;
 }
 return false;
 }

}

From the preceding implementation, you can see that the conditional statement
returns true if the value is an empty string, null, or false.

NOTE: As you can see, I have used === to compare the value with
false. A == comparison loosely compares values. For example, 0 ==
false will return true. 0 is not necessarily an empty value, so using 0
=== false will return false, as 0 and false are two completely different
types.

isTypeOf
The next validator will check to see whether a value is a type of object. This is a
relatively simple method. It uses instanceof to see whether an object is an
instance of another object. The method accepts a value and a type. However,
the type must not be a string but the original object, as shown in the following
code snippet.

CHAPTER 8: JavaScript: Models, Views, and Controllers 246

...
app.utility.validator = {
 ...
 /**
 * Checks to see whether a value is a type of object
 * Returns true if it is, or false if it isn't
 * @param {Object} value
 * @param {Object} type
 * @return {Bool}
 */
 isTypeOf: function(value, type){

 if(value instanceof type){
 return true;
 }

 return false;
 }
}

This is great, but what happens when you want to check primitive types like
Booleans, strings, and numbers? Creating a new method just to check those
would be confusing and slightly annoying. To get around this, you can use the
typeof operator. This will check the type of a variable. As strings, numbers, and
Booleans are primitive types, you can check for these by allowing the type
parameter to accept a string. To do this, simply add the following code.

...
app.utility.validator = {
 ...
 /**
 * Checks to see whether a value is a type of object
 * Returns true if it is, or false if it isn't
 * @param {Object} value
 * @param {Object} type
 * @return {Bool}
 */
 isTypeOf: function(value, type){

 // First check to see if the type is a string
 if(typeof type == "string"){
 // If it is, we're probably checking against a primative type
 if(typeof value == type){
 return true;
 }
 } else {
 // We're dealing with an object comparison
 if(value instanceof type){
 return true;
 }

CHAPTER 8: JavaScript: Models, Views, and Controllers 247

 }
 return false;
 }
}

As you can see from the preceding code, the main changes are that the
isTypeOf method checks to see whether the type parameter is a string type or
not. If it’s a string, the assumption is that you want to check for a primitive type;
otherwise, you’re going to check for an object type. If the primitive type is the
same as the type you require, it will return true.

This is by no means a bulletproof solution. There are libraries available that can
do even better type checking. The idea is that as you begin to require more
validation techniques, you can add to the validation object as and when you
need to. If a validation method that you create doesn’t quite match up to a
specific edge case, you can adjust to compensate. With these in place, we can
now enforce type in the models’ accessor methods based on the UML class
diagrams.

Applying Validation to Models
When you apply validation to models, you have one of two choices: either you
fail silently if the validation fails, or you throw an exception and allow the caller
to handle it. I prefer the later. Nothing is more frustrating than when something
seriously bad happens in your application and you have no idea about it and,
thus, can’t react to it in your code.

Throwing and Handling Exceptions
Exceptions should be known as critical errors that can be thrown by user code.
You shouldn’t throw an exception in every bit of code that you write, as you
have to wrap that code from the caller in try/catch blocks in the code calling it.
An uncaught thrown exception will appear in the console of the browser.
Throwing an exception is fairly simple. It consists of the throw operator along
with either a string, Boolean, integer, or (believe it or not) an object.

// Throwing a string
if(true !== false){
 throw "True definitely isn't equal to false"
}

// Throwing an object
if(true !== false){
 throw {
 message: "True definitely isn't equal to false",

CHAPTER 8: JavaScript: Models, Views, and Controllers 248

 type: "pointless exception",
 code: 1000
 }
}

If you want to see what type of exception has been thrown, it’s usually better to
throw an object. As you can see from the preceding code, you can put pretty
much anything in there, including a code, type, and a message. If you were to
throw a primitive type exception (string, Boolean, integer), nobody other than
you will probably be able to figure out what the exception was, what it meant,
and most importantly, how to handle it. By using an object, you have the ability
to check against a code or type, rather than trying to compare a complex string.

The next step is to catch the exception after it’s been thrown. This is a simple
task. To test this out, you can wrap your conditional statement in a function and
call it from the try/catch block, just to show you how it would work in a real-
world situation.

function doSomething(){
if(true !== false){
 throw {
 message: "True definitely isn't equal to false",
 type: "pointless exception",
 code: 1000
 }
}
}

try {
 doSomething();
} catch (e){
 alert(e.message);
}

If you try out this code, you’ll find that the exception is thrown, and e.message
will retrieve the message for you and alert it.

It’s important to understand that exceptions should be used only when there is
no other way to handle the error in your block of code.

The next section will take you through hardening the models so that the setters
will throw exceptions if the wrong type of value is passed to them. The getters
have been omitted to make it easier to read.

Strengthening the Models
The new validation rules (shown in bold in the following code) simply check the
type. If the value is not of a certain type, it will throw a validation exception and

CHAPTER 8: JavaScript: Models, Views, and Controllers 249

break out of the method. This prevents the instance variable from being set by
the invalid value.

Also, for convenience, the app.utility.validator object has been assigned to
the validator variable. This makes it a little bit easier to access validation
methods, rather than having to constantly type out the extremely long
namespace. Because it’s an instance variable, it’s also accessible to privileged
methods.

app.model.videosource = function appModelVideoSource(url, format){

/**
 * The video source's instance variables
 */
var url,
 format,
 self = this,
 validator = app.utility.validator;

...
 /**
 * Sets the url of the video source
 * @param {String} url
 */
 this.setUrl = function(url){

 // Check to see whether the value is a primitive string type
 if(!validator.isTypeOf(url, "string")){
 throw {
 message: "The url property in the videosource model requires a
'string' type",
 type: "validation_exception"
 }
 return;
 }

 url = url;
 }

 ...
 /**
 * Sets the mimetype of the video source
 * @param {app.type.format} format
 */
 this.setFormat = function(format){

 // Check to see whether the value is an app.type.format
 if(!validator.isTypeOf(format, app.type.format)){
 throw {

CHAPTER 8: JavaScript: Models, Views, and Controllers 250

 message: "The format property in the videosource model requires
a 'app.type.format' type",
 type: "validation_exception"
 }
 return;
 }

 format = format;
 }

 this.init();

}

Based on this example, you should now be able to add validation to your setters
based on the code comments from this book. Feel free to add them for each
model.

Creating New Types
The types currently available in JavaScript are great. However, sometimes you
might find yourself in a situation where you would like to pass a structured
object to a model that might not necessarily be a model itself. These are usually
known as types, and have the same structure throughout your application. For
instance, you might want to create a new location type to store location
information and retrieve it in a predictable way.

From the models comments, you would have seen that there are two custom
types in the application: format and releaseDate. format simply allows you to
store a video format so that it’s easy to get the mime type, file format (such as
mp4, webm, etc.), and the name of the format for reference. The releaseDate
type simply stores a film’s cinema release date and DVD release date.

To create the new types, simply create two new files within the js/app/type
directory called format.js and releaseDate.js. (If the directory doesn’t exist,
you should create it.)

In the format.js file, add the following code.

var app = app || {};

app.type = app.type || {};

/**
 * The media type, can be used to
 * define mime types of objects
 * @param {String} name

CHAPTER 8: JavaScript: Models, Views, and Controllers 251

 * @param {String} format
 * @param {String} mime
 */

app.type.format = function(name, format, mime){

 /**
 * The media's instance variables
 */
 var name,
 format,
 mime,
 self = this;

 /**
 * Set the instance variables using the constructor's arguments
 */
 this.setName(name);
 this.setFormat(format);
 this.setMime(mime);

 /**
 * Getters and setters
 */

 /**
 * Gets the name of the media type
 * @return {String}
 */
 this.getName = function(){
 return name;
 }

 /**
 * Sets the name of the media type
 * @param {String} name
 */
 this.setName = function(name){
 name = name;
 }

 /**
 * Gets the format of the media (e.g., webm, ogv)
 * @return {String}
 */
 this.getFormat = function(){
 return format;
 }

 /**

CHAPTER 8: JavaScript: Models, Views, and Controllers 252

 * Sets the format of the media
 * @param {String} format
 */
 this.setFormat = function(format){
 format = format;
 }

 /**
 * Gets the mime type of the media
 * @return {String}
 */
 this.getMime = function(){
 return mime;
 }

 /**
 * Sets the mime type of the media
 * @param {String} mime
 */
 this.setMime = function(mime){
 mime = mime;
 }

}

As you can see, there are just three instance variables called mime, format, and
name. With accessors, that’s all that is required to create a new type. You can
create the release type in just the same way, by adding the following code to
releaseDate.js.

var app = app || {};

app.type = app.type || {};

/**
 * The movie release date
 * The constructor takes the cinema release date and dvd release date
 * @param {Date} cinema
 * @param {Date} dvd
 */
app.type.releaseDate = function(cinema, dvd){

 /**
 * The release date instance variables
 */
 var dvd,
 cinema;

 /**
 * Sets the instance variables using setters

CHAPTER 8: JavaScript: Models, Views, and Controllers 253

 */
 this.setDvd(dvd);
 this.setCinema(cinema);

 /**
 * Gets the DVD release date
 */
 this.getDvd = function(){
 return dvd;
 }

 /**
 * Sets the DVD release date
 */
 this.setDvd = function(dvd){
 dvd = dvd;
 }

 /**
 * Gets the cinema release date
 */
 this.getCinema = function(){
 return cinema;
 }

 /**
 * Sets the cinema release date
 */
 this.setCinema = function(cinema){
 cinema = cinema;
 }

}

Again, the model works in just the same manner as the format type.

Application Utilities
As you have seen from the validator utility, a utility allows you to place code that
may not necessarily belong to a controller, model, view, or type in its own
object. A utility object will usually perform some kind of repetitive action. In this
application, there are three other utilities, in addition to the validator utility.
These are:

 deck.js-----This utility is used to manage the cards within a
deck. It allows you to show and hide cards.

CHAPTER 8: JavaScript: Models, Views, and Controllers 254

 layout.js-----This utility allows you to refresh the layout when
the orientation of the device changes. Some elements require
a dynamic width and height, which this utility facilitates.

 jsonp.js-----This utility allows you to make cross-site requests
for web services that support the JSONP (JavaScript Object
Notation with Padding) format.

Managing the Deck
The deck manager is a simple object used to show and hide cards. This utility
was created to avoid having to repetitively type out class names in the
application’s main code. The reason for this is because a class name might
change and it would mean having to update that class name throughout the
application and retest all of the code. The other reason for doing this is that you
might want to change the way in which cards are shown or hidden. For
example, you might use CSS3 animations to flip cards, fade them out, and so
forth.

Create a new file within js/app/utility called deck.js that contains the
following code.

var app = app || {};

app.utility = app.utility || {};

app.utility.deck = (function(){

 // Keep all of the cards in a local scope
 var cards = document.getElementsByClassName('card');

 // Return an object with methods
 return {
 // Shows a card by adding the active class
 showCard: function(id){
 document.getElementById(id).classList.add('active');
 },
 // Hides a card by removing the active class
 hideCard: function(id){
 document.getElementById(id).classList.remove('active');
 },
 /*
 * Hides all cards by iterating through the card list
 * and removing the active classname
 */
 hideAllCards: function(){
 for(var i = 0; i < cards.length; i++){

CHAPTER 8: JavaScript: Models, Views, and Controllers 255

 cards[i].classList.remove('active');
 }
 }
 }

})();

This object simply exposes methods that allow you to add or remove the active
class name from an element with a specific ID. There is also a method to
facilitate hiding all cards within the deck. The cards instance variable holds a
list of all cards within the deck.

As you can see, rather than creating an anonymous function, the function itself
is wrapped in parentheses, and the function itself returns an object with
methods. This is known as the revealing module pattern. It differs from the
normal way of creating objects in JavaScript by creating a function and using
this.methodName to create methods. The code within the function is
automatically executed when the script loads, and returns an object.

var myObject = (function(){
 return {
 sayHi: function(){
 alert('Hi!');
 }
 }
})();

This means that you don’t have to create a new object using the new operator.
You can simply call the object by using its assigned variable (myObject, in this
case), as the constructor has already executed. You can then access the
‘‘public’’ methods in much the same way as any object.

myObject.sayHi();

The downside to this method is that there is no obvious way to create a new
object and assign it to a new variable.

Sending Cross-Site Requests
There might be times when you need to pull in data from external web services
other than your own. To do this, you would normally use Ajax. If the other server
supports Cross-Origin Resource Sharing (CORS), you will be able to make
remote Ajax requests. Unfortunately, not all web services support this.

To get around this issue, some web services support JSONP. JSONP allows
you to send a callback parameter to a web service. Normally, you’ll receive a
JSON object as part of a JSON request much like the following.

CHAPTER 8: JavaScript: Models, Views, and Controllers 256

{
 " name": " Dave",
 "occupation": " General Manager"
}

With JSONP, this data become inaccessible, due to the method used to create
the request.

With an Ajax request, you send the request and create a callback method as an
event listener. With JSONP, you actually embed the request as a <script /> in
the web page. As part of the script source, you will append a callback method.
The resulting HTML looks like the following code snippet.

<script src="http://myservice.com/staff/101/?callback=showProfile"
async="async"></script>

This will load the script, the web service will wrap the result in the method, and
the response will look like the following.

showProfile({
 "name": "Dave",
 "occupation": " General Manager"
});

The showProfile function will then be executed with the data as its parameter.

Creating a JSONP request can be a laborious task, and one which jsonp.js can
handle for you.

Begin by creating a new JavaScript file called jsonp.js within js/app/utility/.
Add the following code.

var app = app || {};

app.utility = app.utility || {};

app.utility.jsonp = function(url, callbackmethod){

 /**
 * Create a new src variable to append the callback param to the url
 */
 var src = url + '&callback=' + callbackmethod;

 /**
 * Create the script element
 */
 var script = document.createElement('script');

 /**
 * Set the source of the script element to be the same as the one specified
above

http://myservice.com/staff/101/?callback=showProfile

CHAPTER 8: JavaScript: Models, Views, and Controllers 257

 */
 script.src = src;

 /**
 * To prevent the script from blocking other requests, load it
 * asynchronously where possible
 */
 script.async = "async";

 /**
 * Once the script has loaded, the function will execute and the
 * script tag can be removed from the head of the document
 */
 script.onload = script.onreadystatechange = function(load){
 var script = document.head.removeChild(load.target);
 script = null;
 }

 /**
 * This privileged method will send the request by appending the script to
the
 * DOM
 */
 this.send = function(){
 document.head.appendChild(script);
 }
}

The utility itself isn’t very complicated. It simply creates a script element and
embeds it into the document. After the script has finished loading, the onload
event listener will automatically remove it from the DOM.

To make a request, it’s as simple as calling.

var request = new app.utility.jsonp(“http://myservice.com/staff/101/”,
“showProfile”);
request.send();

The problem with JSONP is that unlike Ajax, you can’t cancel a request. So if
you are sending requests frequently for an autocomplete field, you may find that
several requests are sent, but they do not come back in the order that you
expect. How to handle this will be covered in the Movies Controller further into
this chapter.

http://myservice.com/staff/101/%E2%80%9D

CHAPTER 8: JavaScript: Models, Views, and Controllers 258

Controlling the Layout and Handling Resizes
Sometimes, you might find a circumstance where using CSS alone can’t
produce the layout that you want. For instance, you might have three elements
on a page that have unpredictable heights. Using JavaScript to handle this
should really be seen as a last resort, as there may be a delay between when
your page loads and when the layout utility adjusts the dimensions of the
elements.

The code for this utility looks slightly different than the other objects. It uses a
self-executing function so that as soon as the script finishes loading, it
automatically executes. Create a new file within js/app/utility/ called
layout.js that contains the following code.

var app = app || {};

app.utility = app.utility || {};

app.utility.layout = (function(){

 /**
 * This method will adjust the height of all decks
 * so that there is space at the top for the taskbar,
 * which has an unpredictable height
 */
 var fixdeckheight = function(){

 /**
 * First loop through each deck
 */
 [].forEach.call(document.getElementsByClassName('deck'), function(el){
 /**
 * And set the height of the deck by subtracting the height of
 * the taskbar from the height of the document body
 */
 el.style.height = (document.body.offsetHeight –
 document.getElementById('taskbar').offsetHeight) + 'px';
 });

 };

 /**
 * Create a timeout variable, as it may take a while
 * for the new sizes to update in some browsers
 */
 var timeout;

CHAPTER 8: JavaScript: Models, Views, and Controllers 259

 /**
 * Add an event listener to the window so that when
 * it's resized, it will clear the timeout
 */
 window.addEventListener('resize', function(){
 // Clear the timeout just in case it's set, to prevents multiple calls
 clearTimeout(timeout);
 /*
 * Set the timeout to 100ms and execute fixdeckheight at the end of
 * the timeout
 */
 timeout = setTimeout(function(){ fixdeckheight(); }, 100);
 });

 // Call fixdeckheight for the first time
 fixdeckheight();

})();

As you can see from the code comments, the self-executing function contains a
method called fixdeckheight. This simply sets the height of the deck to be the
size of the viewport, taking into account the size of the taskbar. The event
listener will listen for the resize event to fire and call the fixdeckheight function.
A timer is used, as the viewport size isn’t immediately available when the resize
event is fired.

The View
When I first encountered views in MVC for JavaScript, I assumed that the view
was simply a piece of HTML defined on an HTML web page, just like MVC in
PHP. My ideas on views have since evolved. The best explanation that I can
give for a view in JavaScript MVC is that it is a piece of HTML that will be reused
within your application.

The view may contain some kind of logic, but not much. The idea behind a view
is that no piece of HTML is ever visible in a model or controller. With this in
mind, the view is usually a piece of HTML, encapsulated in a JavaScript object,
with logic to modify it before it’s rendered. The controller will create a new view
object and pass appropriate variables to the constructor. An example of a view
object is as follows.

var view = function(name){

 /**
 * Create a root element. This allows you to add to it using innerHTML
 * so that you don't need to manually create new DOM elements for large
 * chunks of HTML.

CHAPTER 8: JavaScript: Models, Views, and Controllers 260

 */
 var rootElement = document.createElement('div');

 /**
 * You can use innerHTML here to add content to the root element. As you can
see,
 * rather than concatenating a very long string, an array is used. This is
 * cleaner and easier to read than a long string. .join('') is used to merge
the
 * array into a string with no spaces.
 */
 rootElement.innerHTML = [
 '<p>Hello, my name is ', name, '</p>'
].join('');

 this.render = function(){
 return rootElement;
 }
}

As you can see, the constructor accepts a parameter called name. You can have
any number of parameters you like, which can then be used in the view itself.

The second line creates a new element and assigns it to the rootElement
instance variable. This is useful, as a DOM parser won’t be needed to traverse
the DOM for any new elements added to the root element.

The third line of code sets the innerHTML of the root element using an array. This
is preferable to using a long string, as it’s far easier to read and maintain.
join('') is used to merge the array into a string so that innerHTML can accept it.

The only privileged method within the view is this.render, which simply returns
the rootElement. You can add methods later to manipulate the view after it has
been instantiated. To retrieve the complete view, you can run the render method
on the object from your controller, which will return a DOM object.

It’s important to remember that views do not have to be full cards to be used
within a deck; they can also be partial views that are used within other views.
For instance, in MoMemo, there are two types of movie lists: favorite movies
and movie search results.

The presentation of the list itself might differ, but because the individual movie
rows are the same, it doesn’t make sense to duplicate the HTML for each movie
list item. This is where using a view within a view comes in handy. Our controller
doesn’t need to know how each type of list is rendered; the view is responsible
for that.

CHAPTER 8: JavaScript: Models, Views, and Controllers 261

We can take the HTML used in the original HTML file to create the views for us.
There are three views in the MoMemo application: movielistitem, movielist,
and movie. We’ll discuss these next.

The Movie List Item View
The movie list item view is quite simple. Rather than having to create the same
movie list item for various movie lists in the future, the movie list item view can
be used in different movie lists to avoid having to rewrite the POSH for every
view.

Create a new file within js/app/view called movielistitem.js. (If the folder
doesn’t exist, then create it.)

Add the following code to the file.

var app = app || {};
app.view = app.view || {};

/**
 * Creates a new view for a movie list item
 * @param {app.model.movie} movie
 */
app.view.movielistitem = function(movie){

 var movie = movie,
 rootElement = document.createElement('li');
 rootElement.innerHTML = [
 '<a data-controller="movies" data-action="find"
 data-params="{"id": "', movie.getRtid() ,'"}"
 class="more" href="movie/view/", movie.getRtid() ,'">',
 '<div class="preview-image">',
 '<img src="', movie.getPosterframe(), '" alt="',
movie.getTitle(), '" height="82" />',
 '</div>',
 '<h2>', movie.getTitle(), '</h2>',
 '<p>', movie.getSynopsis(), '</p>',
 ''
].join('');

 this.render = function(){
 return rootElement;
 }
}

As you can see, it follows the same standard structure as a regular view. The
root element is a list item (li), and the view accepts a movie model. Within the
array for the POSH, you can see that array value separators (commas) are used

CHAPTER 8: JavaScript: Models, Views, and Controllers 262

to separate the movie accessors from the POSH itself. This is much easier to
read and maintain than using concatenated strings. Within the link for the movie,
you can see that various data attributes have been created.

<a data-controller="movies" data-action="find"
 data-params="{"id": "', movie.getRtid() ,'"}"
 class="more" href="movie/view/", movie.getRtid() ,'">

The params will be used for the event delegate for the application to trigger
controller events/actions and pass parameters to them.

The rest of the code is quite simple and creates a list item to hold the movie’s
title, synopsis, and preview image/posterframe.

The Movie List View
The movie list view is simply an unordered list used to hold the various movies.
In this application, the movie list view is used once for the favorites list and once
for the search results list. Again, this outlines the benefit of using views. If you
didn’t create this view, you would have to create and maintain the same POSH
in two places within your application.

Create a new file within the js/app/view/ folder called movielist.js and add
the following code.

var app = app || {};

app.view = app.view || {};

/**
 * Creates a new view based on the search results
 * @param {Array} results
 */
app.view.movielist = function(results){

 var results = results,
 rootElement;

 // Create the root UL element
 rootElement = document.createElement('ul');
 rootElement.classList.add('list');
 rootElement.classList.add('movie-list');

 for(var i = 0; i < results.length; i++){
 var itemView = new app.view.movielistitem(results[i]);
 rootElement.appendChild(itemView.render());
 }

CHAPTER 8: JavaScript: Models, Views, and Controllers 263

 this.render = function(){
 return rootElement;
 }

}

As you can see, the view constructor accepts an array of results. No error
checking is done within this view to verify each model within the array, but you
can use the validator utility to enforce this. From the code, you can see that the
root element is an unordered list.

rootElement = document.createElement('ul');
rootElement.classList.add('list');
rootElement.classList.add('movie-list');

From here, several classes are added for styling later.

You then loop through each model within the array and create a new
movielistitem object with the model. It’s then simple to append the
movielistitem by calling the appendChild method and rendering the list item.

for(var i = 0; i < results.length; i++){
 var itemView = new app.view.movielistitem(results[i]);
 rootElement.appendChild(itemView.render());
}

The result is an unordered list filled with a list of movies.

The Movie View
The movie view simply holds the full view for the movie when a user taps on a
movie item from their favorites or a search. It’s slightly more complicated than
the other views, as it side scrolls so that a user can get more information about
a movie. This works especially well when you want to add new content blocks
for a model. There is a limit, however, as adding too many blocks and side
scrolling forever can be a pain for the user.

As it’s quite a large view, we’ll go through it line by line.

First, create the standard view object layout in js/app/view/movie.js with the
following code.

var app = app || {};
app.view = app.view || {};

/**
 * Creates a new view for a movie list item
 * @param {app.model.movie} movie
 */

CHAPTER 8: JavaScript: Models, Views, and Controllers 264

app.view.movie = function(movie){

 var rootElement = document.createElement('div');
 rootElement.innerHTML = [].join('');

 this.render = function(){
 return rootElement;
 }

}

As you can see, the root element is a div. The first section that should be
created is the header for the movie view. This contains the posterframe, the
movie title, a button to add/remove the movie from your favorites, and the movie
release date.

...
app.view.movie = function(movie){

 ...
 rootElement.innerHTML = [
 '<header class="movie-header">',
 '<img src="', movie.getPosterframe() ,'" alt="', movie.getTitle() , '"
 class="poster" width="100%" />',
 '<hgroup class="movie-title">',
 '<a href="#" class="btn-favorite add" data-controller="favorites"
 data-action="add" data-params=\'{"id": "', movie.getRtid() ,'",
"title": "',
 escape(movie.getTitle()) ,'", "synopsis": "',
escape(movie.getSynopsis()) ,
 '", "posterframe": "', movie.getPosterframe() ,'"}\'>favorite',
 '<h2>', movie.getTitle(),'</h2>',
 '<p class="movie-release-date">Cinematic Release - ',
 movie.getReleaseDate().getCinema().getDate(), '/',
 movie.getReleaseDate().getCinema().getMonth() + 1 , '/',
 movie.getReleaseDate().getCinema().getFullYear() ,'</p>',
 '</hgroup>',
 '</header>',
].join('');
 ...
}

As you can see, the movie header <header /> contains the posterframe, which
spans the width of the header. It also contains the movie information such as
the title and release date. The Date object returns a month number starting from
zero, so you will need to increase its value by one to get the correct month
number.

movie.getReleaseDate().getCinema().getMonth() + 1 , '/',

CHAPTER 8: JavaScript: Models, Views, and Controllers 265

The next thing to create will be the movie content blocks. These blocks contain
the movie information, such as the synopsis, cast, and videos.

...
app.view.movie = function(movie){

 ...
 rootElement.innerHTML = [
 ...
 '<div class="movie-content">',
 '<div class="block-container span-three">',
 '<section class="block" id="block-synopsis">',
 '<div class="content">',
 '<p>', movie.getSynopsis() ,'</p>',
 '</div>',
 '</section>',

 '<section class="block" id="block-cast">',
 '<div class="content">',
 '<h3>Cast List</h3>',
 '<ul class="list">',
 '</div>',
 '</section>',

 '<section class="block" id="block-video">',
 '<div class="content">',
 '<h3>Video Clips</h3>',
 '<ul class="list grid">',
 '</div>',
 '</section>',
 '</div>',
 '</div>',
].join(‘’);
 ...
}

The POSH is quite simple for this section; it simply outputs the synopsis of the
movie. The cast list and video clips remain empty, as these will be populated a
bit later.

Finally, you will need to create a footer navigation button to return to the
favorites screen.

...
app.view.movie = function(movie){

 ...
 rootElement.innerHTML = [
 ...
 '<footer class="footer screenbar">',

CHAPTER 8: JavaScript: Models, Views, and Controllers 266

 '<a class="back" href="/" data-controller="favorites" data-
action="list">my favorites',
 '</footer>'
].join('');
 ...
}

The next lines of code will check to see whether a movie is in the user’s
favorites. If it is, it will change the state, data attributes, and text within the
favorite button.

...
app.view.movie = function(movie){

 ...
 // Check to see whether the movie is in the user's favorites
 if(movie.isFavorite()){
 var favoriteButton = rootElement.querySelector('a.btn-favorite');
 favoriteButton.setAttribute('data-action', 'remove');
 favoriteButton.classList.remove('add');
 favoriteButton.classList.add('remove');
 favoriteButton.textContent = 'un-favorite';
 }
 ...
}

Last but not least, you will need to loop through all of the actors that are in the
movie and append them to the cast list.

...
app.view.movie = function(movie){

 ...
 for(var i = 0; i < movie.getActors().length; i++){
 var actor = movie.getActor(i);
 var element = document.createElement('li');
 element.innerHTML = [
 '<p>', actor.getName(), '
',
 '', actor.getRole(), '</p>'
].join('');
 rootElement.querySelector('#block-cast ul.list').appendChild(element);
 }
 ...
}

CHAPTER 8: JavaScript: Models, Views, and Controllers 267

The Bootstrap and Controller
Unlike other MVC frameworks, the controller doesn’t necessarily have to be
assigned to a route or URI/URL in JavaScript. In this book, controllers can be
assigned to events too. A controller manages the flow of data through your
application, passes that information on to the view, and then is responsible for
rendering that back to the user using DOM manipulation. The controller is also
responsible for handling user events. In my previous attempts at creating an
MVC framework for JavaScript, events were handled outside of the controller,
which became cluttered. Common events (such as binding to links to trigger
controller actions) should be handled in one place; however, other unique events
(such as form events) should be bound by the controller itself. There are other
more efficient ways of doing this, but for the purpose of the application being
developed for this book, it makes sense to do it this way. Other alternatives
include using a library called Sammy.js, which can be used to create restful URLs
based on hashbangs (e.g., index.html#/mypage). Sammy can pick up these
URLs and then execute JavaScript based on routing rules. If you would like to
find out more about Sammy.js, head over to http://sammyjs.org.

The construction of a controller is quite simple; it’s simply an object with
privileged methods that act as event actions. A controller can be related to a
specific entity in your application. In MoMemo, there is a single controller to
manage movies and a controller to manage your favorites.

The Bootstrap
The bootstrap is a big object, as it handles delegating link events to various
parts of the application. It’s responsible for initializing all of the controllers, and
becomes the one place to go to access controllers from the rest of the
application.

Begin by creating a new file within js/ called bootstrap.js with the following
code.

var app = app || {};

app.bootstrap = (function(){

})();

Begin by declaring an instance variable called controller.

var app = app || {};

http://sammyjs.org

CHAPTER 8: JavaScript: Models, Views, and Controllers 268

app.bootstrap = (function(){

 /**
 * Create the controller object
 * You explicitly declare the movies and favorites
 * controllers
 */
 var controller = {
 movies: null,
 favorites: null
 }

})();

This will hold the controller objects. It’s a good idea to explicitly create this so
that you know which controllers should exist within your application.

The next step is to create a click event listener for the whole document. This will
pick up any taps and check to whether the element tapped is a link with a
request to trigger an action within a controller.

var app = app || {};

app.bootstrap = (function(){
 ...
 /**
 * Add a click event listener over the entire document
 * It will delegate clicks for controllers to the
 * controller and action
 */
 document.addEventListener("click", function(event){
 });

})();

When you tap an item on the screen, the event listener won’t necessarily return
the link that you tapped on; it will more than likely return an element within the
link itself. As you will want to grab data from the link itself, you will need to
traverse up the DOM tree to either grab the link and set it as the target or set the
target as null if the user didn’t tap on a link.

To do this, you will need to create a while loop. This will assign the target to the
current target’s parent and gradually loop up the DOM tree. If the target is a link,
contains the data-controller attribute, and has a data-action attribute, then it will
break out of the while loop and continue with the execution. If the DOM element
is the HTML element (at the top of the DOM tree) it will break out of the while
loop and assign the target to a null value as the link hasn’t been found.

var app = app || {};

CHAPTER 8: JavaScript: Models, Views, and Controllers 269

app.bootstrap = (function(){
 ...
 /**
 * Add a click event listener over the entire document
 * It will delegate clicks for controllers to the
 * controller and action
 */
 document.addEventListener("click", function(event){
 var target = event.target;

 /**
 * Crawl up the DOM tree from the target element until
 * the link surrounding the target element is found
 */

 while(target.nodeName !== "A" && target.getAttribute('data-controller')
 == null && target.getAttribute('data-action') == null){
 // We've reached the body element break!
 if(target.parentNode.nodeName == 'HTML'){
 target = null;
 break;
 }

 // Assign the target.paretNode to the target variable
 target = target.parentNode;
 }

 });
})();

If you have a target, you now need to call the controller’s action and pass the
parameters (if there are any) to it.

var app = app || {};

app.bootstrap = (function(){
 ...
 /**
 * If there's a target, then process the link action
 */
 if(target){

 /**
 * You have the target link, so it makes sense to prevent the
 * link from following through now.
 * This will allow any JavaScript to fail silently!
 */

 event.preventDefault();
 }

CHAPTER 8: JavaScript: Models, Views, and Controllers 270

 ...

})();

The first thing to do is to prevent the event from being handled by the browser.
This will prevent the browser from attempting to load a dead link. You will then
need to get the controller, action, and params data attributes from the element.

var app = app || {};

app.bootstrap = (function(){
 ...
 /**
 * If there's a target, then process the link action
 */
 if(target){
 ...

 // Get the controller, action, and params from the element
 var controller = target.getAttribute('data-controller'),
 action = target.getAttribute('data-action'),
 params = target.getAttribute('data-params');

 }
 ...

})();

You will then need to verify that the controller and action exists. Check to see
whether the controller exists in the controller instance variable, and that the
action exists within the controller, as shown in the following conditional
statement.

var app = app || {};

app.bootstrap = (function(){
 ...
 /**
 * If there's a target, then process the link action
 */
 if(target){
 ...
 /*
 * Check to see whether the controller exists in
 * the bootstrap and the action is available
 */

 if(typeof controller[controller] === 'undefined'
 || typeof controller[controller][action] === 'undefined'){

CHAPTER 8: JavaScript: Models, Views, and Controllers 271

 // If they don't exist, throw an exception
 throw "Action " + action + " for controller " + controller + " doesn't
appear to exist";
 return;
 }
 }
 ...

})();

You can access properties within an object much like an array. Except rather
than passing an index, you can pass a string or a variable. For example:

controller["movie"]["show"]

is the same as calling

controller.movie.show

except you can now use variables to make the call within the brackets in the first
example.

The parameters passed to the controller’s action will need to be converted from
a string to a JSON object. You can do this with the JSON.parse() method, as
shown in the following code.

var app = app || {};

app.bootstrap = (function(){
 ...
 /**
 * If there's a target, then process the link action
 */
 if(target){
 ...
 // Check to see whether the params exist
 if(params){
 try {
 // If they do, then parse them as JSON
 params = JSON.parse(params);
 } catch (e) {

 /*
 * If there's a parsing exception, set the
 * params to be null
 */
 params = null;
 return;
 }

CHAPTER 8: JavaScript: Models, Views, and Controllers 272

 }
 }
 ...

})();

JSON.parse will throw an exception if the JSON validation fails. You will need to
catch this and set the params to null.

The final thing to do is to execute the controller action.

app.bootstrap = (function(){
 ...
 /**
 * If there's a target, then process the link action
 */
 if(target){
 ...
 /**
 * Execute the controller within the context of the target.
 * This will allow you to access the original element from
 * the controller action. Also pass the parameters from the
 * data-params attribute.
 */
 controller[controller][action].call(target, params);

 }
 ...

})();

Because the application uses localStorage to store movie favorites, you will
need to initialize the local storage variables.

app.bootstrap = (function(){
 ...
 /**
 * Set up the local storage by checking to see whether
 * the favorites item exists
 */
 if(!localStorage.getItem('favorites')){
 // if it doesn't, create an empty array and assign it to the storage
 var favorites = [];
 localStorage.favorites = JSON.stringify(favorites);
 }

})();

As mentioned before, you will need to create methods to access the controllers
and initialize them.

CHAPTER 8: JavaScript: Models, Views, and Controllers 273

The getController method accepts a string parameter representing the name of
the controller with its namespace. It will split the string into parts using the dot
character (fullstop) and then loop through the separate namespaces, gradually
building it up into an object.

app.bootstrap = (function(){
 ...
 return {
 /**
 * Create an accessor for the controller,
 * which accepts a string representation of the
 * controller's namespace
 */
 getController: function(name){

 /**
 * Split the string into an array using the .
 * character to separate the string
 */
 var parts = name.split('.');

 /**
 * Initially set the returned controller to null
 */
 var returnController = null;

 /**
 * If the number of parts is greater than 0
 */
 if(parts.length > 0){
 /**
 * Set the return controller to the parent object
 */
 returnController = controller;
 /**
 * Loop through each part, gradually assigning the
 * action to the return controller
 */
 for(var i = 0; i < parts.length; i++){
 returnController = returnController[parts[i]];
 }
 }

 /**
 * Return the controller
 */
 return returnController;
 },

 /**

CHAPTER 8: JavaScript: Models, Views, and Controllers 274

 * Initializes all of the controllers. You might not want to do this
 * automatically, so you can use the initScripts method to execute it.
 */
 initScripts: function(){
 controller.movies = new app.controller.movies();
 controller.favorites = new app.controller.favorites();
 controller.favorites.list();
 }
 }
})();

The init method will simply initialize all of the controllers and load the first
controller.

For your convenience, the full bootstrap is shown next.

var app = app || {};

app.bootstrap = (function(){

 /**
 * Create the controller object
 * You explicitly declare the movies and favorites
 * controllers
 */
 var controller = {
 movies: null,
 favorites: null
 }

 /**
 * Add a click event listener over the entire document
 * It will delegate clicks for controllers to the
 * controller and action
 */
 document.addEventListener("click", function(event){

 var target = event.target;

 /**
 * Crawl up the DOM tree from the target element until
 * the link surrounding the target element is found
 */
 while(target.nodeName !== "A" && target.getAttribute('data-controller')
 == null && target.getAttribute('data-action') == null){

 // We've reached the body element break!
 if(target.parentNode.nodeName == 'HTML'){
 target = null;
 break;
 }

CHAPTER 8: JavaScript: Models, Views, and Controllers 275

 // Assign the target.paretNode to the target variable
 target = target.parentNode;
 }

 /**
 * If there's a target, then process the link action
 */
 if(target){

 /**
 * You have the target link, so it makes sense to prevent the link from
following through now.
 * This will allow any JavaScript to fail silently!
 */
 event.preventDefault();

 // Get the controller, action, and params from the element
 var controller = target.getAttribute('data-controller'),
 action = target.getAttribute('data-action'),
 params = target.getAttribute('data-params');

 // Check to see whether the controller exists in the bootstrap and the
action is available
 if(typeof controller[controller] === 'undefined'
 || typeof controller[controller][action] === 'undefined'){
 // If they don't exist, throw an exception
 throw "Action " + action + " for controller " + controller + "
doesn't appear to exist";
 return;
 }

 // Check to see whether the params exist
 if(params){
 try {
 // If they do, then parse them as JSON
 params = JSON.parse(params);
 } catch (e) {
 // If there's a parsing exception, set the params to be null
 params = null;
 return;
 }

 /**
 * Execute the controller within the context of the target.
 * This will allow you to access the original element from
 * the controller action. Also pass the parameters from the
 * data-params attribute.
 */
 controller[controller][action].call(target, params);

CHAPTER 8: JavaScript: Models, Views, and Controllers 276

 }

 });

 /**
 * Set up the local storage by checking to see whether
 * the favorites item exists
 */
 if(!localStorage.getItem('favorites')){
 // if it doesn't, create an empty array and assign it to the storage
 var favorites = [];
 localStorage.favorites = JSON.stringify(favorites);
 }

 return {
 /**
 * Create an accessor for the controller,
 * which accepts a string representation of the
 * controller's namespace
 */
 getController: function(name){

 /**
 * Split the string into an array using the .
 * character to separate the string
 */
 var parts = name.split('.');

 /**
 * Initially set the returned controller to null
 */
 var returnController = null;

 /**
 * If the number of parts is greater than 0
 */
 if(parts.length > 0){
 /**
 * Set the return controller to the parent object
 */
 returnController = controller;
 /**
 * Loop through each part, gradually assigning the action to the
 * return controller
 */
 for(var i = 0; i < parts.length; i++){
 returnController = returnController[parts[i]];
 }
 }

CHAPTER 8: JavaScript: Models, Views, and Controllers 277

 /**
 * Return the controller
 */
 return returnController;
 },

 /**
 * Initializes all of the controllers. You might not want to do this
 * automatically, so you can use the initScripts method to execute it.
 */
 initScripts: function(){
 controller.movies = new app.controller.movies();
 controller.favorites = new app.controller.favorites();
 controller.favorites.list();
 }
 }

})();

The Movies Controller
The movies controller is quite complex, as it handles searching for movies
through the Rotten Tomatoes API, and providing a list of results as the user
types through JSONP.

First, start by creating a new controller within js/app/controller called
movies.js with the following code.

var app = app || {};

app.controller = app.controller || {};

app.controller.movies = function(){

this.init = function(){}

this.init();

}

All controllers contain an init method that is executed at the end of the object.

You will want to declare a few instance variables.

 searchfield-----contains the DOM element for the search field

 searchform-----contains the DOM element for the search form

CHAPTER 8: JavaScript: Models, Views, and Controllers 278

 searchresultcard-----contains the DOM element for the search
results card

 searchTimeout-----contains the search timeout timer

 viewScrolls-----contains the iScroll objects for the views

 searchScroll-----contains the iScroll object for the search
results

Declare these instance variables using the following code.

var app = app || {};

app.controller = app.controller || {};

app.controller.movies = function(){

var self = this,
 searchfield = document.querySelector('#add-movie input[name="query"]'),
 searchform = document.getElementById('add-movie'),
 searchresultscard = document.getElementById('card-movie search results'),
 searchTimeout,
 viewScrolls = [],
 searchScroll = null;

this.init = function(){}

this.init();

}

Binding the Search Form
The first method you will create will bind the event listeners to the search form.

var app = app || {};

app.controller = app.controller || {};

app.controller.movies = function(){

 ...
 /**
 * Binds the search form
 */
 this.bindSearchForm = function(){

 }
 ...

CHAPTER 8: JavaScript: Models, Views, and Controllers 279

}

When a user focuses on the search field, if there is a search query in
the text box, you will want to show the current results to the user using
the deck utility.

var app = app || {};

app.controller = app.controller || {};

app.controller.movies = function(){

 ...
 /**
 * Binds the search form
 */
 this.bindSearchForm = function(){
 /**
 * Here you add an event listener to the search filed using
 * the focus event listener. If there's a value, then show the
 * results.
 */
 searchfield.addEventListener('focus', function(){
 if(this.value.length > 0){
 app.utility.deck.showCard('card-movie search results');
 }
 });

 }
 ...
}

The next event that you will need to bind is the submission of the form.
This is to prevent a user from accidentally pressing the go button on
the Android keyboard and submitting the form through the browser.
Instead, a search will be performed and the application will no longer
wait for the input timeout.

var app = app || {};

app.controller = app.controller || {};

app.controller.movies = function(){

 ...
 /**
 * Add an event listener to the submission of the form.
 * This will prevent the form from being submitted
 * and sent to another page. Instead, we capture the
 * event and trigger the search action.

CHAPTER 8: JavaScript: Models, Views, and Controllers 280

 */
 searchform.addEventListener('submit', function(e){

 e.preventDefault();

 // Clear the searchTimeout timeout
 clearTimeout(searchTimeout);

 var value = searchfield.value;

 if(value.length > 0){
 self.search(value);
 }

 });

 ...
}

Finally, you will need to bind an event to the actual input field. This will take the
value from the field, clear the searchtimeout (if it is set), check to see whether
the length of the string for the value is greater than zero, and then set a timeout
to perform a search.

var app = app || {};

app.controller = app.controller || {};

app.controller.movies = function(){

 ...
 searchfield.addEventListener('input', function(){

 /**
 * This is the value of the input field
 */
 var value = this.value;

 /**
 * This will clear the search timeout
 */
 clearTimeout(searchTimeout);

 /**
 * You don't want to run search straight after every
 * key press. This will set a timeout of 1 second
 * (1000 ms) before the search function is called.
 */

CHAPTER 8: JavaScript: Models, Views, and Controllers 281

 if(value.length > 0){
 document.getElementById('taskbar').classList.add('searchactive');
 } else {
 document.getElementById('taskbar').classList.remove('searchactive');
 }

 searchTimeout = setTimeout(function(){
 self.search(value);
 }, 1000);
 });
 ...
}

The reason for setting a timeout on the input is so that a request isn’t
sent as soon as a user types a letter. As you can’t cancel a JSONP
request and the request may come back in a random order, it’s best to
avoid a situation where lots of requests are made at any one time by
setting a one-second timer.

The full code for the bind method can be seen next.

/**
 * Binds the search form
 */
this.bindSearchForm = function(){

 /**
 * Here you add an event listener to the search filed using
 * the focus event listener. If there's a value, then show the
 * results.
 */
 searchfield.addEventListener('focus', function(){
 if(this.value.length > 0){
 app.utility.deck.showCard('card-movie search results');
 }
 });

 /**
 * Add an event listener to the submission of the form.
 * This will prevent the form from being submitted
 * and sent to another page. Instead, we capture the
 * event and trigger the search action.
 */
 searchform.addEventListener('submit', function(e){

 e.preventDefault();

 clearTimeout(searchTimeout);

 var value = searchfield.value;

CHAPTER 8: JavaScript: Models, Views, and Controllers 282

 if(value.length > 0){
 self.search(value);
 }

 });

 searchfield.addEventListener('input', function(){

 /**
 * This is the value of the input field
 */
 var value = this.value;

 /**
 * This will clear the search timeout
 */
 clearTimeout(searchTimeout);

 /**
 * You don't want to run search straight after every key press.
 * This will set a timeout of 1 second (1000 ms) before the
 * search function is called.
 */

 if(value.length > 0){
 document.getElementById('taskbar').classList.add('searchactive');
 } else {
 document.getElementById('taskbar').classList.remove('searchactive');
 }

 searchTimeout = setTimeout(function(){
 self.search(value);
 }, 1000);
 });

}

Performing a Search
The search action will be used to perform a JSONP request to Rotten Tomatoes,
based on a search value.

var app = app || {};

app.controller = app.controller || {};

app.controller.movies = function(){

CHAPTER 8: JavaScript: Models, Views, and Controllers 283

 ...
 this.search = function(query){
 // Check to see whether the query length is longer than 0 characters
 if(query.length > 0){

 /*
 * Encode the query so that it can be passed
 * through the URL
 */
 query = encodeURIComponent(query);

 /**
 * Create a new JSONP request
 */
 var jsonp = new app.utility.jsonp(
 'http://api.rottentomatoes.com/api/public/v1.0/movies.json?apikey=
 YOURAPIKEY&q=' + query, 'app.bootstrap.getController(
 "movies").showSearchResults');

 /**
 * Send the request
 */
 jsonp.send();

 /**
 * Add the loading class to the search field
 */
 searchfield.classList.add('loading');
 }

 }
 ...
}

You will need to replace YOURAPIKEY in the JSONP request URI with your API key
for Rotten Tomatoes. As you can see, you use the bootstrap to get the movies
controller and execute the showSearchResults after the results have loaded.

Showing the Results
The showSearchResults action/event accepts a Rotten Tomatoes result set.

http://api.rottentomatoes.com/api/public/v1.0/movies.json?apikey=

CHAPTER 8: JavaScript: Models, Views, and Controllers 284

NOTE: If you would like to see all of the values in the Rotten Tomatoes
API result set, check out the API documentation at
http://developer.rottentomatoes.com/docs/read/json/v10/Movies S

earch.

Next, it will loop through the results and create movie models to be used within
the application, based on the data. It will then create the view for the results,
and then replace the contents of the search results div with the results HTML.

var app = app || {};

app.controller = app.controller || {};

app.controller.movies = function(){

 ...
 /**
 * Shows the search results in the search results card
 */
 this.showSearchResults = function(rtresults){

 /**
 * This is the Rotten Tomatoes API data.
 * The following code will process the data
 * returned and convert it to models
 * that the application will understand.
 * You could wrap these API calls into
 * a separate library, but for now having
 * them in the controller will suffice.
 */

 // First, create an empty array to hold the results
 var results = [];

 // Next, loop through the results from Rotten Tomatoes
 for(var i = 0; i < rtresults.movies.length; i++){
 var rtmovie = rtresults.movies[i];
 // For every result you create a new movie object
 var title = rtmovie.title || '', rtid = rtmovie.id, posterframe =
 rtmovie.posters.original || '', synopsis = rtmovie.synopsis || '';
 results.push(new app.model.movie(title, rtid, posterframe, synopsis));
 }

 // Create the view using the data
 var view = new app.view.movielist(results);

http://developer.rottentomatoes.com/docs/read/json/v10/Movies_S

CHAPTER 8: JavaScript: Models, Views, and Controllers 285

 // Set the contents of the search results div
 searchresultscard.innerHTML = '';
 searchresultscard.appendChild(view.render());
 // Controlling page needs to be handled by it's own utility or class
 searchresultscard.classList.add('active');
 searchfield.classList.remove('loading');
 results = null;

 // Check to see whether the search scroll is null
 if(searchScroll !== null){
 // If it isn't, destroy it
 searchScroll.destroy();
 searchScroll = null;
 }

 // Initialize the search scroll for the results card
 searchScroll = new iScroll(searchresultscard);

 }
 ...
}

As you can see, a JavaScript library called iScroll handles the scrolling
functionality. Android browsers below Honeycomb do not support overflow,
hidden in CSS, so iScroll is used to facilitate this. You will need to download the
latest version of iScroll and place it in the js/lib/cubiq folder (create the
directory, if it doesn’t already exist). Name the file iscroll.js.

Viewing a Movie
In order to view a movie, you will need to make a request for the movie info from
Rotten Tomatoes and then process the results with an event handler within the
controller. Add the following code to the controller.

var app = app || {};

app.controller = app.controller || {};

app.controller.movies = function(){

 ...

 this.find = function(data){

 // Check to see whether the ID exists in the action params/data
 if(typeof data.id === 'undefined'){
 throw "No ID supplied to find action in view controller";
 return;

CHAPTER 8: JavaScript: Models, Views, and Controllers 286

 }

 // Create a new JSONP request
 var jsonp = new app.utility.jsonp(
 'http://api.rottentomatoes.com/api/public/v1.0/movies/' +
 data.id + '.json?apikey=YOURAPIKEY,
'app.bootstrap.getController("movies").view');

 // Send the request
 jsonp.send();
 }

 this.view = function(rtresult){

 // Check to see whether an object has been returned
 if(!app.utility.validator.isTypeOf(reresult, 'object')){
 // If it's not an object, don't show the movie
 return;
 }

 // Create a new movie object
 var movie = new app.model.movie(rtresult.title,
 rtresult.id, rtresult.posters.original, rtresult.synopsis),
 // Get the movie info card
 viewcard = document.getElementById('card-movie info');

 /**
 * Set the DVD and cinema release dates
 */

 var releaseDate = new app.type.releaseDate(
 new Date(rtresult.release dates.theater),
 new Date(rtresult.release dates.dvd));
 movie.setReleaseDate(releaseDate);

 /**
 * Set the movie's rating
 */
 movie.setRating(rtresult.mpaa rating);

 /**
 * Check to see whether the movie is in the user's favorites
 * by looping over the favorites localStorage object
 */
 var favorites = JSON.parse(localStorage.favorites);

 for(var i = 0; i < favorites.length; i++){
 if(favorites[i].id == movie.getRtid()){
 /**

http://api.rottentomatoes.com/api/public/v1.0/movies/

CHAPTER 8: JavaScript: Models, Views, and Controllers 287

 * If a match is found, set the
 * favorite flag to true
 */
 movie.setFavorite(true);
 }
 }

 /**
 * Add actors to the movie
 */
 for(var i = 0; i < rtresult.abridged cast.length; i++){
 var cast = rtresult.abridged cast[i],
 character = (typeof cast.characters === 'undefined') ? '' :
cast.characters[0];
 var actor = new app.model.actor(cast.name, character);
 movie.addActor(actor);
 }

 // Create the movie view
 var view = new app.view.movie(movie);
 viewcard.innerHTML = view.render().innerHTML;

 // Intialize iScroll
 viewScrolls.push(new iScroll(viewcard.querySelector('.movie-content'),
 {vScroll: false, vScrollbar: false}));

 [].forEach.call(viewcard.getElementsByClassName('block'), function(el){

 viewScrolls.push(new iScroll(el, {hScroll: false, hScrollbar:
false}));

 });

 /**
 * Add an event listener to the window. If it resizes,
 * reset the iScroll so that it adjusts to the new size.
 */

 window.addEventListener('resize', function(){
 setTimeout(function(){

 searchScroll.refresh();

 for(var i = 0; i < scrolls.length; i++){
 viewScrolls[i].refresh();
 }

 }, 100);
 });

CHAPTER 8: JavaScript: Models, Views, and Controllers 288

 /**
 * Hide all of the cards
 */
 app.utility.deck.hideAllCards();

 /**
 * Show the movie info card
 */
 app.utility.deck.showCard('card-movie info');

 }

 ...
}

Finally, you will need to add the this.bindSearchForm(); call to the init
method.

var app = app || {};

app.controller = app.controller || {};

app.controller.movies = function(){

 ...

 this.init = function(){
 this.bindSearchForm();
 }

 ...

 this.init();

}

The Favorites Controller
The favorites controller is much simpler than the movies controller. It will simply
handle listing the user’s favorites, adding and removing items from the user’s
favorites in localStorage.

Begin by creating a new file within js/app/controller called favorite.js with
the following code.

var app = app || {};

app.controller = app.controller || {};

CHAPTER 8: JavaScript: Models, Views, and Controllers 289

app.controller.favorites = function(){

 var listScroll = null;
 this.init = function(){}

 this.init();

}

The listScroll instance variable will hold the iScroll object for the favorites
scrolling.

Listing Favorites
The first action/event that you will need to create is the list action. This will list
all of the favorites for the user.

Begin by creating a new action within the favorites controller called list.

var app = app || {};

app.controller = app.controller || {};

app.controller.favorites = function(){

 ...
 this.list = function(){

 }
 ...

}

The next thing that you will need to do is to grab the favorites from
localStorage. As you saw in the bootstrap file, you created an empty favorites
localStorage property with an empty array. This will allow you to get the
application’s favorites without having to check whether the property exists, and
then create it throughout your code. It might be a good idea to create a
localStorage utility to store your data; this won’t be covered in this book, as
you’ll only be storing and retrieving localStorage properties in three places in
the application.

var app = app || {};

app.controller = app.controller || {};

app.controller.favorites = function(){

CHAPTER 8: JavaScript: Models, Views, and Controllers 290

 ...
 this.list = function(){
 // Get the favorites from local storage
 var favorites = JSON.parse(localStorage.favorites),
 // Create an empty movies variable
 movies = [],
 // Get the favoritesList card from the DOM
 favoriteslist = document.getElementById('card-favorite list');
 }
 ...

}

You can see from the code, that you also created an empty movies array. This
will be used to hold all of the movie models created from the user’s favorites
further into the code. You’ll also get the favorite card list DOM element.

The next thing to do is to loop through each of the favorites retrieved from
localStorage. The for loop might look a little strange, as you are subtracting a
value of one from the iterator each time the for loop is run. This essentially
reverses the array, so that the last/most recent element is looped over first.

var app = app || {};

app.controller = app.controller || {};

app.controller.favorites = function(){

 ...
 this.list = function(){
 ...
 /**
 * Loop through each of the favorites backward
 * to ensure that the most recent favorite
 * is displayed at the top of the list
 */

 for(var i = favorites.length; i > 0; i--){
 var favorite = favorites[i - 1];

 // Push the movie model to the movies array

 movies.push(new app.model.movie(unescape(favorite.title),
 favorite.id, favorite.posterframe, unescape(favorite.synopsis)))
 }
 ...
 }
 ...

}

CHAPTER 8: JavaScript: Models, Views, and Controllers 291

As you can see from the code, the unescape method is used to escape the
characters used for each of the favorites properties. This is because the add
method escapes each property value so that the object can be stored in local
storage.

The next step is to create a movies view from the array of movies.

var app = app || {};

app.controller = app.controller || {};

app.controller.favorites = function(){

 ...
 this.list = function(){
 ...
 /**
 * Create a new movielist view with the movies model
 */
 var view = new app.view.movielist(movies);

 // Set the contents of the search results div
 favoriteslist.innerHTML = '';

 // Append the view to the favorites list
 favoriteslist.appendChild(view.render());
 ...
 }
 ...

}

Finally, you will need to create a new iScroll object for the view and show it. This
will allow users on devices older than Honeycomb to be able to scroll for long
lists.

var app = app || {};

app.controller = app.controller || {};

app.controller.favorites = function(){

 ...
 this.list = function(){
 ...

 // Destroy the listScroll if it exists
 if(listScroll !== null){
 listScroll.destroy();
 listScroll = null;

CHAPTER 8: JavaScript: Models, Views, and Controllers 292

 }

 // Create a new one
 listScroll = new iScroll(favoriteslist);

 // Hide all of the cards
 app.utility.deck.hideAllCards();
 // Show only the favorites card
 app.utility.deck.showCard('card-favorite list');

 ...
 }
 ...

}

Your final list method should look like the following code.

var app = app || {};

app.controller = app.controller || {};

app.controller.favorites = function(){

 ...
 this.list = function(){

 // Get the favorites from local storage
 var favorites = JSON.parse(localStorage.favorites),
 // Create an empty movies variable
 movies = [],
 // Get the favoritesList card from the DOM
 favoriteslist = document.getElementById('card-favorite list');

 /**
 * Loop through each of the favorites backward
 * to ensure that the most recent favorite
 * is displayed at the top of the list
 */

 for(var i = favorites.length; i > 0; i--){
 var favorite = favorites[i - 1];

 // Push the movie model to the movies array

 movies.push(new app.model.movie(unescape(favorite.title),
 favorite.id, favorite.posterframe, unescape(favorite.synopsis)))
 }

 /**
 * Create a new movielist view with the movies model

CHAPTER 8: JavaScript: Models, Views, and Controllers 293

 */
 var view = new app.view.movielist(movies);

 // Set the contents of the search results div
 favoriteslist.innerHTML = '';
 // Append the view to the favorites list
 favoriteslist.appendChild(view.render());

 // Destroy the listScroll if it exists
 if(listScroll !== null){
 listScroll.destroy();
 listScroll = null;
 }

 // Create a new one
 listScroll = new iScroll(favoriteslist);

 // Hide all of the cards
 app.utility.deck.hideAllCards();
 // Show only the favorites card
 app.utility.deck.showCard('card-favorite list');

 }
 ...

}

Adding Favorites
With the movie list complete, you will now need an action to add favorites to the
list. This is a really simple action, as it will loop through the user’s favorites from
localStorage to check whether it exists. If it doesn’t, it will then proceed to add
the movie to the user’s favorites and change the state of the button that called
it, so that the user can remove the movie from his favorites without having to
refresh the page.

var app = app || {};

app.controller = app.controller || {};

app.controller.favorites = function(){
 ...
 this.add = function(data){

 // Get the movie data
 var movie = data;
 // Load the favorites from localStorage
 var favorites = JSON.parse(localStorage.favorites);

CHAPTER 8: JavaScript: Models, Views, and Controllers 294

 /**
 * Check to see whether the movie
 * is already in the user's favorites
 */
 for(var i = 0; i < favorites.length; i++){
 if(favorites[i].id == movie.id){
 return;
 }
 }

 /**
 * Change the button’s attributes
 */
 if(this.nodeName == 'A'){
 this.setAttribute('data-action', 'remove');
 this.classList.remove('add');
 this.classList.add('remove');
 this.textContent = 'un-favorite';
 }

 // Push the movie to the favorites array
 favorites.push(movie);

 // Save it back to localStorage
 localStorage.favorites = JSON.stringify(favorites);

 }
 ...
}

Removing Favorites
Now that adding is in place, you will need to write the action to remove items
from the user’s favorites. This is quite a simple process and the method looks
similar to that of the add action. The difference is that when you loop to check
whether a favorite already exists, if the favorite exists in the array, you will
remove it. The code can be seen here.

var app = app || {};

app.controller = app.controller || {};

app.controller.favorites = function(){
 ...
 this.remove = function(data){
 // Get the ID of the favorite to remove
 var id = data.id;

CHAPTER 8: JavaScript: Models, Views, and Controllers 295

 // Get the user's favorites from localStorage
 var favorites = JSON.parse(localStorage.favorites);

 // Loop through the favorites
 for(var i = 0; i < favorites.length; i++){
 // If there's a match
 if(favorites[i].id == id){
 // Remove the item from the favorites using splice
 favorites.splice(i, 1);
 }
 }

 // Save the changed favorites object back to localStorage
 localStorage.favorites = JSON.stringify(favorites);

 /**
 * Change the add/remove favorites button
 * so that it will either add/remote the item
 * from the favorites
 */
 if(this.nodeName == 'A'){
 this.setAttribute('data-action', 'add');
 this.classList.remove('remove');
 this.classList.add('add');
 this.textContent = 'favorite';
 }

 }
 ...
}

Styling the Content
Even with all the hard work you’ve put into the JavaScript framework, MoMemo
looks pretty ugly. In Chapter 6, we touched upon using SASS to create a basic
framework to work from. We’re now going to put that into practice to style the
various elements of the application a bit further.

We’ll start by styling the movie list, as it’s the first thing that a user will interact
with.

Styling the Movie List
The movie list will be used in two places within the MoMemo application. One of
these places will be in the search results, and the second will be in the favorites
list on the main screen. As there are two lists, you might want to style these

CHAPTER 8: JavaScript: Models, Views, and Controllers 296

differently. We can break out common styles for a list, such as each list item’s
size and its common child elements’ positions in a ‘‘global’’ list class, which can
be overridden using specificity.

First, create the global style for lists.

.list {

 margin: 0;
 padding: 0;

 li {

 padding: 10px;
 overflow: hidden;
 height: 82px;
 display: block;
 border-bottom: 1px solid #CCCCCC;
 background: #FFFFFF;

 .preview-image {
 float: left;
 width: 60px;
 height: 82px;
 text-align: center;
 margin-right: 10px;
 }

 }

}

The .list style will provide a framework for all lists to be styled upon. This is a
good way to design your web applications if you know that a particular design
component may be used multiple times, but not necessarily look the same. You
could create just a movie-list style and then override it using specificity, but
there could be certain CSS styles that you don’t want in your new style, which
will mean extra code to reset them. Add the SASS style in the previous code
snippet just below the deck style in the css/partials/ layout.scss SASS file.

Recompile the SASS file and reload the web app in your mobile browser and
search for a movie. The results should look like Figure 8-3.

CHAPTER 8: JavaScript: Models, Views, and Controllers 297

Figure 8-3. Vanilla search results

The next thing to do is to style the movie list so that it looks a bit better. In the
view for the movie list, you can see that there are multiple classes assigned to it,
as follows.

rootElement.classList.add('list');
rootElement.classList.add('movie-list');

These provide essential hooks that the CSS styles can latch onto. The following
SASS/CSS style will style the additional content within each list item, such as
cutting off the synopsis so that it doesn’t flow beyond the size of the list item’s
height.

.movie-list {

 li {

 background: #A5CCEB;
 border-bottom-colour: #FFFFFF;

 .more {

 display: block;
 height: 100%;
 overflow: hidden;
 text-decoration: none;

 h2 {
 margin: 0 0 10px;
 color: #BF2628;
 }

CHAPTER 8: JavaScript: Models, Views, and Controllers 298

 p {
 margin: 0;
 color: #000000;
 }

 }

 }

 li:nth-child(odd) {
 background: #97B2D9;
 }

}

Add the preceding code to your SASS file just underneath the .list style. If you
place it before the .list style, the styles that you intended to overwrite will be
overridden by the styles placed below the .movie-list style, which in this case
is .list. As you can see, there’s a li:nth-child(odd) style, which will style
every odd list item. This will style the background color of every odd list item
differently to help the user distinguish the different items in the list and make it
easier for them to target where to tap.

Your final movie-list and list SASS should look like the following code.

/**
 * Standard list
 */

.list {

 margin: 0;
 padding: 0;

 li {

 padding: 10px;
 overflow: hidden;
 height: 82px;
 display: block;
 border-bottom: 1px solid #CCCCCC;

 .preview-image {
 float: left;
 width: 60px;
 height: 82px;
 text-align: center;
 margin-right: 10px;
 }

CHAPTER 8: JavaScript: Models, Views, and Controllers 299

 }

}

/**
 * Movie list
 */

.movie-list {

 li {

 background: #A5CCEB;
 border-bottom-color: #FFFFFF;

 .more {

 display: block;
 height: 100%;
 overflow: hidden;
 text-decoration: none;

 h2 {
 margin: 0 0 10px;
 color: #BF2628;
 }

 p {
 margin: 0;
 color: #000000;
 }

 }

 }

 li:nth-child(odd) {
 background: #97B2D9;
 }

}

With this in place, reload your mobile browser and perform another search. The
results view will look like Figure 8-4. You can now move on to style the movie
view.

CHAPTER 8: JavaScript: Models, Views, and Controllers 300

Figure 8-4. Final search results view

Styling the Movie View
The movie view is slightly different than the movie list view as it’s slightly more
complex. The idea is that you can side-scroll through content using iScroll.
When the content is too long for the size of the viewport, the user can then scroll
down.

In order for the user to understand that there is more content, the width of each
content block has to be smaller than the size of the screen, so the next content
element peaks out a bit from the left- or right-hand side.

We’ll also make the poster image animate within the header using CSS. This will
make the view a bit more interesting.

Let’s begin by styling the header. Declare a new style just under the movie-list
style, as shown in the following code.

.movie-header {

 position: relative;
 overflow: hidden;
 height: 20%;

}

This code will position the movie header relative to its parent element and any
absolutely positioned element within it will be contained within the .movie-

CHAPTER 8: JavaScript: Models, Views, and Controllers 301

header. The height is set to 20%, which will ensure that it will appear just as big
on a tablet device as it would on a mobile device. The overflow has been set to
hidden to prevent the poster from being visible outside of the element, as it’s
quite big.

Within the movie style, we can begin to style the poster. Create a new style
within the .movie-header style, as shown in the following code.

.movie-header {
 ...
 .poster {
 position: absolute;
 top: 0%;
 @include animation(posteranimation 10s ease 0 infinite alternate);
 }

}

This will place the poster image at the top of the element. You can see that
there’s an animation attached to it. We’ll get to that in a bit. Now, it’s time to
style the movie title element. Add the following code within the .movie-header
style.

.movie-header {
 ...
 .movie-title {
 position: absolute;
 bottom: 0px;
 background: rgba(255, 255, 255, 0.75);
 padding: 5px;
 bottom: 0;
 left: 0;
 width: 100%;
 @include box-sizing(border-box);
 }

}

This will position the movie title at the bottom of the movie header. It will take up
100% of the width of the header, and has a slightly transparent white background
color so that the text can be seen even on dark poster images. You can see that
we’re also using the box-sizing trick to ensure the padding doesn’t affect the
specified width of the element.

Within the .movie-title, you will also need to style the the favorite button. This
can be done using the code highlighted next.

.movie-header {
 ...
 .movie-title {

CHAPTER 8: JavaScript: Models, Views, and Controllers 302

 ...
 .btn-favorite {
 float: right;
 padding: 10px;
 color: #FFFFFF;
 background: #7D9DCE;
 font-weight: bold;
 border-radius: 5px;
 text-decoration: none;
 border: 1px solid #A5CCEB;
 }
 }

}

This will create a blue button, floated to the right of the movie title. You will also
want to alter the release date a bit, so that it stands out from the title of the
movie. You can see the additions next.

.movie-header {
 ...
 .movie-title {
 ...
 .movie-release-date {
 text-transform: uppercase;
 font-weight: bold;
 }
 }

}

Your full movie header style should look like the following code.

.movie-header {

 position: relative;
 overflow: hidden;
 height: 20%;

 .poster {
 position: absolute;
 top: 0%;
 @include animation(posteranimation 10s ease 0 infinite alternate);
 }

 .movie-title {
 position: absolute;
 bottom: 0px;
 background: rgba(255, 255, 255, 0.75);
 padding: 5px;
 bottom: 0;

CHAPTER 8: JavaScript: Models, Views, and Controllers 303

 left: 0;
 width: 100%;
 @include box-sizing(border-box);

 .btn-favorite {
 float: right;
 padding: 10px;
 color: #FFFFFF;
 background: #7D9DCE;
 font-weight: bold;
 border-radius: 5px;
 text-decoration: none;
 border: 1px solid #A5CCEB;
 }

 .movie-release-date {
 text-transform: uppercase;
 font-weight: bold;
 }

 }

}

Refresh your mobile browser and take a look by searching for a movie and
taping on it. It should now look like Figure 8-5.

Figure 8-5. Movie header

The next task is to style the actual content for the movie itself. Because the
blocks are relatively the same, there’s not a lot of code required to achieve this.

CHAPTER 8: JavaScript: Models, Views, and Controllers 304

Let’s start by styling the .movie-content element.

.movie-content {
 height: 80%;
 width: 100%;
 padding-bottom: 40px;
 @include box-sizing(border-box);
}

There’s nothing special to see here. We’re just setting the height to be 80% of
the screen height to accommodate for the movie header’s 20 percent height.

There’s also a padding-bottom of 40px that allows the movie footer to sit at the
bottom and have no content appear behind it.

The block container, which holds all of the block elements, needs to be the
width of the screen × the number of elements -- the difference between the
width of each block element. This is really easy to do in SASS, as you can
create a variable to hold the width of each block element and then create an
equation to set the width of the container element, as follows.

 $blockWidth: 33%;
 $blocks: 3;
 ...
 .block-container {
 width: (100% * $blocks) - (100% - 33%);
 ...

We can now style the block and its content. This parts really simple and the only
complex thing is to ensure that the width of the block is set based on the
variable set previously. Add the following code to the movie-content style.

.movie-content {
 ...
 .block-container {

 $blockWidth: 33%;
 $blocks: 3;

 width: (100% * $blocks) - (100% - 33%);
 height: 100%;

 .block {
 width: 33%;
 float: left;
 height: 100%;

 font-size: 1.3em;
 line-height: 2em;

CHAPTER 8: JavaScript: Models, Views, and Controllers 305

 .content {
 @include box-sizing(border-box);
 }

 h3 {
 padding: 10px 10px 0 10px;
 }

 .content {
 padding: 10px;
 }

 }

 }
}

Refresh your browser, and your web application should now look like Figure 8-6.

Figure 8-6. Movie block styling

You’ll need to create the keyframes for the header animation. All this does is
move the poster image up and down repeatedly. We use percentages so that,
depending on the screen size, the image will move in proportion to it. Add the
following code to your SASS file.

@keyframes posteranimation {
 0% { top: 0%; }
 100% { top: -80%; }
}

CHAPTER 8: JavaScript: Models, Views, and Controllers 306

@-moz-keyframes posteranimation {
 0% { top: 0%; }
 100% { top: -80%; }
}

@-webkit-keyframes posteranimation {
 0% { top: 0%; }
 100% { top: -80%; }
}

Last but not least, we need to style the movie footer, which is a really simple
style. It will position the footer at the bottom of the view. The footer can also
contain a back button which needs to be styled with an image. Place the code
from Listing A-2, found in the appendix, at the end of the SASS file.

Your final movie view should look like Figure 8-7.

Figure 8-7. Final movie info page

Putting It All Together
With all of your JavaScript and SASS files in place, it’s now time to update your
HTML to make use of all of the new code.

This is a really simple process. Open the index.html file and add the following
code to the bottom, just before the closing body tag.

...
 <!-- Load all of the JavaScript dependencies -->

CHAPTER 8: JavaScript: Models, Views, and Controllers 307

 <!-- Load any lib files -->
 <script src="js/lib/eligrey/classlist.js"></script>
 <script src="js/lib/cubiq/iscroll.js"></script>

 <!-- Load the utility files -->
 <script src="js/app/utility/validator.js"></script>
 <script src="js/app/utility/layout.js"></script>
 <script src="js/app/utility/deck.js"></script>
 <script src="js/app/utility/jsonp.js"></script>

 <!-- Load the custom types -->
 <script src="js/app/type/format.js"></script>
 <script src="js/app/type/releaseDate.js"></script>

 <!-- Load the models -->
 <script src="js/app/model/actor.js"></script>
 <script src="js/app/model/movie.js"></script>
 <script src="js/app/model/video.js"></script>
 <script src="js/app/model/videosource.js"></script>

 <!-- Load the views -->
 <script src="js/app/view/movie.js"></script>
 <script src="js/app/view/movielistitem.js"></script>
 <script src="js/app/view/movielist.js"></script>

 <!-- Load the controllers -->
 <script src="js/app/controller/movies.js"></script>
 <script src="js/app/controller/favorites.js"></script>

 <!-- Bootstrap the application -->
 <script src="js/app/bootstrap.js"></script>
 <script>
 app.bootstrap.initScripts();
 </script>
 </body>
</html>

You will also need to load a new font from Google’s font directory. This is a
simple enough task. In the <head /> tag, add the following code, just after the
mobile.css link declaration.

<!DOCTYPE html>
<html lang="en-GB" dir="ltr">
 <head>

 <meta charset="UTF-8" />
 <meta name="viewport" content="width=device-width; initial-scale=1.0;
 maximum-scale=1.0; user-scalable=0; target-densitydpi=device-dpi;"/>
 <title>Mo Memo</title>
 <link rel="stylesheet" type="text/css" href="css/mobile.css?v=22" />

CHAPTER 8: JavaScript: Models, Views, and Controllers 308

 <link href='http://fonts.googleapis.com/css?family=Arimo' rel='stylesheet'
 type='text/css'>
 <link rel="apple-touch-icon-precomposed" href="img/home-screen-icon.png">
 </head>
 ...

Reload your mobile web browser, and everything should be working as
expected.

Concatenating, Minifying, and Caching
Although having several JavaScript files can be useful for development and
debugging purposes, it’s not a good idea to send each and every JavaScript file
to the user while in production, as it could create a loading bottleneck in the
application. To get around this and to achieve the best performance, it’s a good
idea to concatenate all of the JavaScript files into a single JS file, much like we
have done with the CSS files using SASS.

To improve performance, you can also minify the JavaScript and CSS files. This
is the process of removing as much unused data (such as spaces and carriage
returns) as possible to create a much more compact file.

To further improve performance, you will need to update the cache’s manifest
file. This will allow your application to store JavaScript and images on the user’s
mobile device, reducing the need to constantly fetch them from the server every
time the page is loaded. This also allows the user to use parts of the web
application while there is no connection to the network or your server.

Concatenating
Concatenating JavaScript can be done in several ways. The most popular is to
use server-side script to automatically combine all of the files and cache the
final result on the server. The least popular is to manually combine all of the files
by copying them all into a single JavaScript file. This section will cover manually
concatenating the application’s JavaScript files.

Create a new file within the js directory called app.dev.js. Begin by copying
and pasting the code from the application’s JavaScript file into app.dev.js in the
following order, and where the JavaScript file at the top of the list appears at the
top of the file.

 js/lib/eligrey/classlist.js

 js/lib/cubiq/iscroll.js

http://fonts.googleapis.com/css?family=Arimo

CHAPTER 8: JavaScript: Models, Views, and Controllers 309

 js/app/utility/validator.js

 js/app/utility/layout.js

 js/app/utility/deck.js

 js/app/utility/jsonp.js

 js/app/type/format.js

 js/app/type/releaseDate.js

 js/app/model/actor.js

 js/app/model/movie.js

 js/app/model/video.js

 js/app/model/videosource.js

 js/app/view/movie.js

 js/app/view/movielistitem.js

 js/app/view/movielist.js

 js/app/controller/movies.js

 js/app/controller/favorites.js

 js/app/bootstrap.js

Save the file and remove the current list of JavaScript files from the bottom of
index.html.

The following code snippet shows how this should now look.

 ...
 <!-- Load the applications JavaScript -->
 <script src="js/app.dev.js"></script>
 <script>
 app.bootstrap.initScripts();
 </script>
 </body>
</html>

If you refresh your mobile browser, everything should be working correctly.

Minifying
Minifying/minification is the process of removing as much white space and
comments as possible from your code. It sounds silly, but that extra data can
account for a large part of your JavaScript’s file size.

CHAPTER 8: JavaScript: Models, Views, and Controllers 310

Have a look at the size of your app.dev.js file by right-clicking on it in Aptana
and selecting Properties. It should weigh in at around 54,000 bytes, which is
about 53KB. You can further reduce the size of the file for production by running
it through a minification script.

Just like concatenation, you can also minify your JavaScript automatically at
server-side or using YUI compressor. For the example in this book, you will use
the online JavaScript compression tool found at http://jscompress.com.

Create a new file within js/ called app.min.js. This will contain your production-
ready minified code. Copy the code from app.dev.js and paste it into the text
box called ‘‘Javascript Code Input’’ at http://jscompress.com. Then press the
‘‘Compress Javascript’’ button.

Copy the compressed output and paste it into app.min.js. Save the file, and
then right-click on it in the app explorer and select Properties. You should see a
big reduction in the file size, from about 54,000 bytes down to about 24,318
bytes. That’s a file size reduction of about a half.

You can also compress your CSS files using SASS by taking advantage of the --
style compress option. To do this, open up the terminal from the application
folder and enter the following command.

sass ./css/*.scss ./css/mobile.min.css --style compress

This will output a minified version of the CSS file to the CSS directory. To use it,
change the href of the CSS stylesheet in the head of index.html from
mobile.css to mobile.min.css. Your new head should now look like the
following code.

<head>
 <meta charset="UTF-8" />
 <meta name="viewport" content="width=device-width; initial-scale=1.0;
 maximum-scale=1.0; user-scalable=0; target-densitydpi=device-dpi;"/>
 <title>Mo Memo</title>
 <link rel="stylesheet" type="text/css" href="css/mobile.min.css" />
 <link href='http://fonts.googleapis.com/css?family=Arimo' rel='stylesheet'
type='text/css'>
 <link rel="apple-touch-icon-precomposed" href="img/home-screen-icon.png">
</head>

Caching
All of the file-saving techniques work perfectly for reducing the amount of
bandwidth that your application takes up per page load. Now, wouldn’t it be
perfect if the user only ever had to make a request for assets that changed only
once in a blue moon? You can do this with the cache manifest.

http://jscompress.com
http://jscompress.com
http://fonts.googleapis.com/css?family=Arimo

CHAPTER 8: JavaScript: Models, Views, and Controllers 311

We briefly touched upon this in Chapter 4. Caching can be useful, but can also
be a pain when you need to clear it. Fortunately, application caching has a
JavaScript API that allows you to dynamically clear it.

Not only can you cache files from your web application, but you can also cache
files that you pull in from external web sites, such as the user’s favorite movie
images. Be warned, however, as your application’s cache may be limited to a
certain size on some devices.

Open the momemo.cache file that you created in Chapter 4. We know that the
application files (such as the images, JavaScript files, and CSS) will need to be
cached, so update the momemo.cache so that the following files are cached.

 index.html

 css/mobile.min.css

 js/app.min.css

 img/

Your manifest file should now look like the following code.

CACHE MANIFEST

We'll make these files cachable
CACHE:
index.html
css/mobile.min.css
js/app.min.js
img/highres/momemo.png
img/lowres/momemo.png
img/back.png
img/clear.png
img/loading.gif
img/search.png

You can see that every file that needs to be cached has been explicitly
specified. Unfortunately, you can’t use wildcards, as the browser cache will
cache all of the files in the manifest file before the page is loaded. It doesn’t
know which files exist on your server, so using a wildcard (*) won’t have any
effect.

We’re caching the minified CSS and JS files, instead of the JavaScript and CSS
files that haven’t been minified. This will prevent frustration when you need to
change files for development, so that you don’t have to manually change the
manifest file to bring in the changed files.

With the cache manifest, you can also specify which files require a network
connection. We definitely want the Rotten Tomatoes API to have the latest data.

CHAPTER 8: JavaScript: Models, Views, and Controllers 312

To do this, you have to place the URL or location of the files under the
NETWORK definition in the manifest file. Your new cache file should look like the
following.

CACHE MANIFEST

We'll make these files available offline
CACHE:
index.html
css/mobile.min.css
js/app.min.js
img/highres/momemo.png
img/lowres/momemo.png
img/back.png
img/clear.png
img/loading.gif
img/search.png

These files require a network connection
NETWORK:
http://api.rottentomatoes.com/

If you cache a file, you must remember that it has to exist on the server;
otherwise, the application cache won’t cache any of your files.

To reload the cache, simply change/amend the cache file.

Debugging with Chrome for Android
If you have experience creating web sites, you know how frustrating it used to
be debugging anything in IE6. There was no JavaScript console, DOM
inspector, profiler, and so forth. Up until now, it’s been the same for mobile, as
there has been no native way to easily run and debug a mobile web application.
Finally, Chrome for Android has introduced a smart and clever way to debug
your mobile web applications, just like your desktop web applications.

With Chrome for Android, you can initiate a remote debugging session from the
console, and use the web inspector on your computer to interact with the web
page on your android device. Unfortunately, this works only for Android 4+ (Ice
Cream Sandwich), as Chrome supports only this version of Android.

To do this, head over to the Play Store on your device, and download the free
Google Chrome browser. Remember, you’ll only find the app if you’re on
Android 4+.

You’ll need to enable Web Debugging, so in the app go to Settings Developer
tools Enable USB Web debugging.

http://api.rottentomatoes.com/

CHAPTER 8: JavaScript: Models, Views, and Controllers 313

Plug your Android device into your computer and launch Terminal in Aptana.
Navigate to the Android SDK directory, which will usually be in ~/android-
sdks/platform-tools/. Run the following command.

./adb forward tcp:9222 localabstract:chrome devtools remote

This is a port forward and will allow you to access the Chrome inspector from
your computer’s browser.

Open any web page in Chrome for Android and go to the following URL in your
desktop’s browser: localhost:9222. You will see a screen similar to Figure 8-8.

Figure 8-8. Chrome page debugging selection

Select the page that’s highlighted and a screen similar to Figure 8-9 will appear.

Figure 8-9. The debugging console

CHAPTER 8: JavaScript: Models, Views, and Controllers 314

If you now select or mouse over an element in the debugging console and look
at your mobile device, the element should be highlighted. You can see the size
and property of it, as shown in Figure 8-10. You can also double-click on the
CSS rules to alter their values, and they will appear on the device.

Figure 8-10. Highlighted element

You can even bring up the JavaScript console and type JavaScript code that will
directly affect the page on your phone, as shown in Figures 8-11 and 8-12.

CHAPTER 8: JavaScript: Models, Views, and Controllers 315

Figure 8-11. JavaScript console

Figure 8-12. Chrome alert

It’s an excellent tool to have. If you want to do rapid debugging or quickly test
changes to your CSS, it’s much quicker to tweak them directly in the browser
instead of having to constantly have to save and reload your mobile web app.

CHAPTER 8: JavaScript: Models, Views, and Controllers 316

NOTE: As Chrome for Android is still in beta, the way you eventually
debug may change. To get the most up-to-date instructions, head
over to https://developers.google.com/chrome/mobile/docs
/debugging.

Summary
This has been quite an in-depth chapter about what you can really achieve with
JavaScript, outside the world of procedural language.

You should now have a real grasp of MVC and how you can use it to provide a
solid framework from which to work. It’s really important to take the principles
behind it with you, as it will help you to further understand other JavaScript
frameworks and design patterns that can make your life much easier.

This chapter has also taken you through how to group your code together in
utility objects to reduce code repetition.

You should also have a greater understanding of JavaScript objects and scope,
and how you can use this to your advantage.

https://developers.google.com/chrome/mobile/docs

9
Chapter

Testing and Deploying
Your Mobile Web App
Believe it or not, testing and deploying your mobile web application is one of the
most important, yet overlooked, aspects of the development cycle.

The most basic testing and deployment method is to use an FTP (File Transfer
Protocol) client to upload your mobile web application to a public-facing web
server. Typically, you then test the uploaded application in your mobile’s web
browser by ‘‘playing’’ with it to make sure that everything is working as it should.
If there are any issues, then you make the amends on your local machine, test it,
and then reupload the changed files.

This works for small applications and extremely small teams; however, as your
application and development team grows, it becomes very time consuming to
test every aspect of functionality thoroughly, and to keep track of code changes.

The natural ‘‘quick-fix’’ progression is to begin using file-sharing software or
services such as AFP (Apple File Sharing Protocol), Samba, or Dropbox to
manage group code and to share projects across development teams. This
eventually becomes cumbersome, as those who are familiar with this technique
are well aware-----file conflicts aren’t unusual and resolving them is extremely
hard and laborious. There is also no code ownership or method of blame. If a
developer breaks a piece of functionality, there is no finger to point and the code
takes longer to fix or roll back.

Continuous integration principles help to solve this. Continuous integration is
comprised of SCM (Source Control Management) to manage code within a
team, automated testing, environment testing, and automated deployment.

CHAPTER 9: Testing and Deploying Your Mobile Web App 318

Some of these principles might seem alien, but will be fully covered in this
chapter. No project or development team is too large or too small to make use
of continuous integration.

This chapter begins by explaining what each of these continuous integration
elements are. You will then be given a practical exercise to show you how to
create unit tests, work with the SCM system Git, and finally deploy your
application to a production server using Capistrano.

Source Control Management
Source control management is at the heart of continuous integration. To date,
there are several SCM implementations, including the following:

 Git

 SVN (Apache Subversion)

 Mercurial

SCM provides a way to store versions of your source files. SCM does this by
storing the original file on the initial commit/save. SCM then stores only the
changes/differences between each file with every subsequent commit. This
saves on disk space and bandwidth, as the entire file isn’t saved for every
commit, unless the file is new.

When you store projects using an SCM, they are still accessible from your
computer, just like any other file. The difference is that, with an SCM-based
project, you can commit any file changes (including images, videos, etc.) so that
they can be versioned and reverted back to or compared if needed.

To commit changes using an SCM, you need an SCM client such as Git or SVN.
SCM systems will also generally store additional files as part of your project.
Having used both Git and SVN, Git is my preferred SCM, as it stores only a
single .git folder in the root directory that can be deleted easily; in contrast,
SVN will store .svn folders in every folder of your project, which can prove to be
a pain to remove.

There are currently two types of SCM: centralized and distributed. Centralized
systems store all of the code on a central server. When a developer makes a
commit, the changes are merged on the server and not on the development
machine.

SVN is a centralized SCM system. Distributed systems have no central server.
Commits can be made on any developer’s machine. If a developer wants to

CHAPTER 9: Testing and Deploying Your Mobile Web App 319

share his or her code, another developer can clone the repository to their
machine, which will contain every change from the original repository.

Git is a distributed SCM system. More often than not, Git repositories will have
one main remote repository where all developers will push and pull changes to
and from. The advantage of systems such as Git is that you can work on a
project without a network connection, but still commit changes to your local
repository as you work on a project. Once you have network access, you can
then pull and merge any changes, test them, and then push your merged
changes up to the remote repository. This is particularly helpful if you have a
central build system.

SCM also provides you with the ability to store comments with every commit so
that as you go through a project commit history, you can see who committed
changes to which files and the reason behind each commit. SCM systems such
as Git require commit comments by default, whereas SVN does not. Git is very
popular within the development community, which is why it will be the focus of
this chapter.

Branching and Tagging
Most SCM systems follow a methodology of branching and tagging. The master
branch in Git is the main code base; this is usually always production-ready and
contains the most up-to-date version of the project’s code. When a new feature
needs to be added, a branch is usually created from the master branch. These
are usually code-named; some development teams use names from popular
cartoon shows such as Peter, Meg, or Stewie, and others use planet names
such as Saturn, Jupiter, or Mars. You can use any naming convention you like,
as long as each branch has a unique name. What’s important is the comment
you make when creating a branch. It must be clear what the branch is for and
what it should contain.

The branch is simply a copy or snapshot of the master branch so that any new
features do not interfere with the production-ready code. Usually, the master
branch is periodically merged with the new branch. This is to ensure that any
changes to the main codebase are compatible with changes to the features in
the branch. After the features in the new branch have been implemented and
tested, it is then merged with the master branch, ready for production.

A tag is simply a significant snapshot of your project’s master branch that you
would like to keep for future reference. These are usually significant versions of
your project. This can be useful if other developers are constantly working on
the main branch and you would like to make a working deployment.

CHAPTER 9: Testing and Deploying Your Mobile Web App 320

Testing
Testing your mobile web application is one of the most overlooked aspects of
the development cycle for new web developers. Most new mobile web
developers will simply load their web site on a mobile device and then play with
it to see whether it works. This can be laborious as you add more features, and
you really don’t know what’s going on inside your code. As you begin to write
more object-oriented code, you begin to see the complexity of your application
grow (in an organized way). You can test each unit of code, based on what you
put in and what you expect to get out.

For instance, in previous chapters, you touched upon creating models to store
data within your application. The integrity of your presentation and the logic
behind your application really relies on how these models accept and output
data through getters, setters, and other model-based methods. You can write a
suite of tests, based around each unit of code, with what you put in and what
you expect to get back. This method of testing is known as unit testing. Unit
testing allows you to test each method in your application. The more unit tests
that you write for each aspect of your project, the more confident you should be
that the application will work. This is known as code coverage. Keep in mind
that unit tests will cover only a certain percentage of your code, and you should
aim for at least 80 percent code coverage.

By creating unit tests, you can run a series of tests all at once, which target
every target web browser. This should give you the confidence that your code is
working as it should. This is especially helpful when a new browser or browser
version is released, as you can ensure that your JavaScript code is compatible
with the new browser by running the unit tests in it.

Deploying Your Application
Your application can be deployed in many ways. The most common method is
to deploy it through FTP (File Transfer Protocol) or SFTP (Secure File Transfer
Protocol). More often than not, you will have a production server where your
production code sits, a development server where you test your latest integrated
code, and a local development server. There are other environments that you
might want to create, such as a preproduction server, which will mimic the exact
configuration of the production server, and you might want to create a staging
server where a client or testers will test your final code before it’s put into
production.

Managing all of these environments and their code base can be problematic,
and manually deploying code changes with every commit to several

CHAPTER 9: Testing and Deploying Your Mobile Web App 321

environments can become laborious and prone to human error. You might also
have to perform tasks for each environment, such as CSS precompiling,
JavaScript and CSS minification and concatenation, and so on.

You can offload much of this to a deployment application such as Capistrano.
Capistrano will allow you to write deployment scripts for each environment and
deploy your application with a single command to any environment. Capistrano
also allows you to roll back any changes to a previous working version, as with
every deployment, Capistrano will store a copy of each version so that you can
roll back at any time.

Continuous Integration Server
The glue that combines all of these applications and practices together is a
good continuous integration environment. A continuous integration environment
will detect changes in your application’s code and automatically build and
deploy it, as well as perform other tasks. This means that you can concentrate
on producing a world-class web application and leave the repetitive deployment
and testing tasks to the continuous integration server.

The continuous integration server of choice for this book is Atlassian’s Bamboo.
This product has been chosen because it’s easy to install, has many plugins, it’s
easy to set up, and is compatible with Atlassian’s other popular software
development tools, such as JIRA, Crucible, and FishEye.

Your First Continuous Integration Project
Creating a continuous integration project for the first time can be quite
laborious. You’ll begin by first creating a new project in Aptana Studio 3. To do
this, open Aptana Studio and go to File ➤ New ➤ Web Project. Name the
project ci.

Create a new folder within the project called js. Inside this folder, create two
folders called app and tests. In the app folder, create a new empty JavaScript
file called calculator.js by going to File ➤ New ➤ File. You won’t add anything to
this yet. TDD (Test Driven Development) states that you must write your unit
tests first, so that they fail before you write your code. This means that all of
your expected outcomes are written in tests, so that your code satisfies them as
you write your code. It’s a good practice. As you write your logic rules in unit
tests, it doesn’t matter how you implement your final code, as long as the output
satisfies the unit tests.

CHAPTER 9: Testing and Deploying Your Mobile Web App 322

This method of working really helps you to write much cleaner code, as your
code will now be written to satisfy only the expected output.

Writing Your First Unit Test
You can either choose to write your own unit-testing framework or use one
that’s readily available. The choice for this book is QUnit. It has been developed
by the jQuery community and has regular updates. Not only this, but it can be
run from the browser, or optionally, can be run from the command line using a
program called PhantomJS.

To set up a QUnit unit test for the calculator, first create a new file called
calculator.html in the tests folder containing the following HTML.

<!DOCTYPE html>
<html>

 <head>

 <meta http-equiv="Content-type" content="text/html; charset=utf-8"/>
 <title>calculator unit tests</title>

 <meta name="viewport" content="width=device-width; initial-scale=1.0; maximum-
scale=1.0; user-scalable=0; target-densitydpi=device-dpi;"/>

 <!-- Include the latest QUnit JavaScript file -->
 <script src="http://code.jquery.com/qunit/qunit-git.js"></script>

 <!-- Include calculator JavaScript file -->
 <script src="../app/calculator.js"></script>

 <!-- Include the latest QUnit CSS file -->
 <link href="http://code.jquery.com/qunit/qunit-git.css" rel="stylesheet"
type="text/css" />

 </head>

 <body>

 <h1 id="qunit-header">calculator unit tests</h1>
 <h2 id="qunit-banner"></h2>
 <div id="qunit-testrunner-toolbar"></div>
 <h2 id="qunit-userAgent"></h2>
 <ol id="qunit-tests">
 <div id="qunit-fixture"><!-- If you have DOM that needs to be manipulated,
 this is where it should go --></div>

http://code.jquery.com/qunit/qunit-git.css

CHAPTER 9: Testing and Deploying Your Mobile Web App 323

 </body>

</html> l

This code represents the HTML required to run a basic, empty unit test in QUnit.
As you can see, it does not contain any mobile-specific markup.

Within the body tag, you can see that there are several HTML elements with IDs.
These are described in Table 9-1.

Table 9-1. HTML Testing Elements

Element Description

qunit-header Contains the header or title of the suite of unit tests

qunit-banner Changes color depending on the state of the unit
test (green for pass, red for fail)

qunit-testrunner-toolbar Contains controls that allow you to show or hide
tests

qunit-userAgent Shows the browser information for the current test

qunit-tests Contains a list of passed or failed tests after they
have been run

qunit-fixture Used if you have any DOM that needs to be
manipulated as part of any test

You will need to run the tests in a mobile web browser. To do this, Aptana must
first be configured so that its internal server binds to the computer’s IP address
instead of its local IP address of 127.0.0.1. To do this, go to Aptana Studio 3 ➤

Preferences ➤ Aptana Studio ➤ Web Servers ➤ Built-in. You will see a screen and drop-
down menu that allows you to select what the IP address of the internal web
server should bind to, as shown in Figure 9-1.

CHAPTER 9: Testing and Deploying Your Mobile Web App 324

Figure 9-1. Built-in server preferences

Pick the one that matches your computer’s IP address (usually the top one) click
OK, quit Aptana Studio, and launch it again so that the changes apply.

After Aptana has finished launching, you can run the application in your web
browser by right-clicking on calculator.html in the Aptana Studio App Explorer
and selecting Run As ➤ JavaScript Web Application. This will launch Firefox. Type the
URL from Firefox’s address bar into your mobile device’s default browser. You
should see that the bar underneath the title bar is green, and that 0/0 tests have
been run, as shown in Figure 9-2. Now it’s time to start writing a few unit tests.

Figure 9-2. Running QUnit tests in the browser

CHAPTER 9: Testing and Deploying Your Mobile Web App 325

Open calculator.html in Aptana Studio, if it isn’t already. A unit test simply runs
several assertions that check to see whether the outcome value for a method or
property matches an expected value based on a predictable input. The
calculator example in this chapter is simple in that it’s easy to predict that 1+1
should always equal 2. There are no additional variables that should affect the
expected outcome, so 2 should always be the expected result. When 2 isn’t the
result, you know that the application is broken somewhere.

In calculator.html, create a new script tag just before the closing body tag.

 ...
 <div id="qunit-fixture"><!-- If you have DOM that needs to be manipulated,
 this is where it should go --></div>
 <!-- This is your new script tag -->
 <script>

 </script>
 </body>

</html>

Within the script tag, you can begin to write your first set of unit tests. Although
the calculator code hasn’t been written yet, you can begin to dictate what
methods and properties should exist within the code, and how they should
behave through the unit tests. A basic calculator should do the following:

 Add

 Subtract

 Divide

 Multiply

A calculator will usually take an initial value to perform these methods on and
should return a result on each method. You should also be able to clear the
calculator. On this basis, the following methods should be implemented:

 add

 subtract

 divide

 multiply

 clear

 getResult

You can then convert this description of the application into unit tests.

CHAPTER 9: Testing and Deploying Your Mobile Web App 326

So to create the appropriate unit tests, end the following code and comments
within the <script /> tag for your first unit test on the constructor.

test('calculator constructor', function(){

 /**
 * Specify how many assertions this test will run
 * If assertions do not run for any reason, this
 * test will fail
 */
 expect(1);

 /**
 * You create a new calculator instance and set
 * initial value to 10
 */
 var calculator = new app.calculator(10);

 /**
 * You then assert that 10 is being held as the
 * current result
 */
 equal(calculator.getResult(), 10, 'the result should equal 10 with no
operation');

});

As you can see, the test method is part of QUnit, and accepts a description and
callback function. When the test executes, the callback function is called and
the test is executed. Within the test, you can see several methods. expect()
specifies how many assertions will run within the test. You also instantiate the
calculator class so that it can be used within the test. Any variables that are
created per test are destroyed and cannot be used in another test. They can,
however, be used within any assertions within the test. Finally, equal() is an
assertion. An assertion simply takes a result and checks to see whether the
resulting or returned value matches an expected value. In this instance, the
equal assertion checks to see whether the new calculator has 10 as the initial
result.

That’s all there is to unit testing. There are a variety of assertions available. See
Table 9-2 for a list of the important ones.

CHAPTER 9: Testing and Deploying Your Mobile Web App 327

Table 9-2. QUnit Assertions

Assertion Description

ok(state, message) Checks to see whether a value (state) is true;
if it is true, the assertion will pass.

equal(actual, expected, message) Checks to see whether the actual value is
equal to the expected value.

notEqual(actual, expected, message) Checks to see whether the actual value is
not equal to the expected value.

deepEqual(actual, expected, message) Checks to see whether the actual value is
equal to the expected value. This assertion
is particularly useful when you would like to
compare instantiated objects and their
values.

notDeepEqual(actual, expected, message) Checks to see whether the actual value is
not equal to the expected value. This
assertion is particularly useful when you
would like to compare instantiated objects
and their values.

strictEqual(actual, expected, message) Checks to see whether the actual value is
equal to the expected value. This is much
stricter. For instance, if you set actual to
"10" (with the quotation marks, this makes
10 a string), and the expected to 10 (a
number), the assertion will fail.

strictNotEqual(actual, expected,
message)

Checks to see whether the actual value is
not equal to the expected value. This is
much stricter. For instance, if you set actual
to "10" (with the quotation marks, this
makes 10 a string), and the expected to 10 (a
number), the assertion will fail.

raises(block, expected, message) Checks to see whether code executed
within the block raises an exception, and
whether that exception matches the
expected value.

CHAPTER 9: Testing and Deploying Your Mobile Web App 328

As you can see, assertions tend to follow the same pattern of having an actual
value (which is usually the direct return value of a property or method), and an
expected value (which you specify and a message to describe the assertion).

The assertion methods can change, so it’s best to check out the QUnit
documentation, which you can find at http://docs.jquery.com/QUnit.

If you now run the first test by refreshing the web page in your mobile browser,
you can see that the green bar should now be red, as shown in Figure 9-3.

Figure 9-3. Failed unit test

As you can see, the failed test will also tell you where the test failed and why,
which can be useful for debugging purposes.

With the first assertion, you can now follow with the code that comes next to
complete the unit tests for the rest of the calculator.

<script>

 test('calculator constructor', function(){

 /**
 * Specify how many assertions this test will run.
 * If assertions do not run for any reason, this
 * test will fail
 */
 expect(1);

 /**
 * Create a new calculator instance and set the initial value to 10

http://docs.jquery.com/QUnit

CHAPTER 9: Testing and Deploying Your Mobile Web App 329

 */
 var calculator = new app.calculator(10);

 /**
 * You then assert that 10 is being held as the current result
 */
 equal(calculator.getResult(), 10, 'the result should equal 10 with no
operation');

 });

 test('calculator add', function(){

 /**
 * Specify how many assertions this test will run.
 * If assertions do not run for any reason, this
 * test will fail
 */
 expect(2);

 /**
 * Create a new calculator instance and set the initial value to 10
 */
 var calculator = new app.calculator(10);

 /**
 * Assert that both the return value of the operation and the getResult
 * method both return 20
 */
 equal(calculator.add(10), 20, '10 + 10 should equal 20');
 equal(calculator.getResult(), 20, '10 + 10 should result in 20');

 });

 test('calculator subtract', function(){

 /**
 * Specify how many assertions this test will run.
 * If assertions do not run for any reason, this
 * test will fail
 */
 expect(2);

 /**
 * Create a new calculator instance and set the initial value to 10
 */
 var calculator = new app.calculator(10);

 /**
 * Assert that both the return value of the operation and the getResult

CHAPTER 9: Testing and Deploying Your Mobile Web App 330

 * method both return 5
 */
 equal(calculator.subtract(5), 5, '10 - 5 should equal 5');
 equal(calculator.getResult(), 5, '10 - 5 should equal 5');

 });

 test('calculator divide', function(){

 /**
 * Specify how many assertions this test will run.
 * If assertions do not run for any reason, this
 * test will fail
 */
 expect(2);

 /**
 * Create a new calculator instance and set the initial value to 10
 */
 var calculator = new app.calculator(10);

 /**
 * Assert that both the return value of the operation and the getResult
 * method both return 5
 */
 equal(calculator.divide(2), 5, '10 / 2 should equal 5');
 equal(calculator.getResult(), 5, '10 / 2 should equal 5');

 });

 test('calculator multiply', function(){

 /**
 * Specify how many assertions this test will run.
 * If assertions do not run for any reason, this
 * test will fail
 */
 expect(2);

 /**
 * Create a new calculator instance and set the initial value to 10
 */
 var calculator = new app.calculator(10);

 /**
 * Assert that both the return value of the operation and the getResult
 * method both return 20
 */
 equal(calculator.multiply(2), 20, '10 * 2 should equal 20');
 equal(calculator.getResult(), 20, '10 * 2 should equal 20');

CHAPTER 9: Testing and Deploying Your Mobile Web App 331

 });

</script>

As you can see, there are lots of assertions, but this is to ensure that every
aspect of the application is covered. You can go into more depth within your
unit tests, such as making sure that errors are thrown when invalid values such
as letters are passed to the methods; this, however, won’t be covered in this
chapter.

With the unit tests complete, it’s now time to write the code for the calculator.
As this section is focused on creating the unit tests, the calculator JavaScript
code won’t be explained in great detail. The code comments should help to
explain it a little.

var app = app || {};

app.calculator = function(initialValue){

 /**
 * The current result of the calculator
 */
 var result = initialValue;

 /**
 * Gets the current result of the calculator
 */
 this.getResult = function(){
 return result;
 }

 /**
 * Adds a value to the current result and returns the new value
 */
 this.add = function(value){
 result = result + value;
 return result;
 }

 /**
 * Subtracts a value from the current result and returns the new value
 */
 this.subtract = function(value){
 result = result - value;
 return result;
 }

 /**
 * Multiplies a value from the current result and returns the new value

CHAPTER 9: Testing and Deploying Your Mobile Web App 332

 */
 this.multiply = function(value){
 result = result * value;
 return result;
 }

 /**
 * Divides a value from the current result and returns the new value
 */
 this.divide = function(value){
 result = result / value;
 return result;
 }

}

Now when you run the unit tests in your mobile browser, the result bar should
go green when you reload your mobile web browser, as shown in Figure 9-4.

You can tap on any of the unit test results to see the assertions that were run.

Figure 9-4. Passed unit tests

With the unit tests in place, it’s now time to create a local Git repository for your
calculator project.

Working with Git and GitHub
Now that you have a few files in your project, it’s time to create a local
repository. As mentioned earlier in the chapter, Git is a distributed SCM system.
This allows you to commit to a local repository with no network connection and

CHAPTER 9: Testing and Deploying Your Mobile Web App 333

then push your changes to a remote repository, such as one hosted on
github.com.

Creating a local repository is easy; simply click on the Commands icon just above
the App Explorer in Aptana Studio and click on Initialize Git Repository. This will run
the appropriate command, git init, in the background so that you can begin to
check in files.

NOTE: It’s important to remember that Git, as a system, will not
commit empty folders into a repository. If you have an empty folder
that you need to check in as part of your project, you should create an
empty file within it. Git will pick up the empty file and check the
folder in.

Initializing the Git repository does not automatically check in any new files. To
do this, click on the Commands icon again. Now that the Git repository has been
initialized, you will see a few new commands within the drop-down menu. Scroll
down to the Commit menu item and click on it. A new window will appear, as
shown in Figure 9-5.

Figure 9-5. Git commit window

CHAPTER 9: Testing and Deploying Your Mobile Web App 334

As you can see from Figure 9-5, there are four main boxes: the Commit changes
box (top), the Unstaged Changes box (bottom left), the Commit Message box
(bottom middle), and the Staged Changes box (bottom right). The Commit
changes box shows the difference between the selected file in the Unstaged
Changes box and the current version in the repository. The Unstaged Changes
box shows all of the files that have changed since the last commit. The files
have three states:

 White: New File

 Red: Deleted File

 Green: Changed File

The commit message box allows you to add a commit message; you need to
add a commit message with every commit. The Staged Changes box shows all
files that will be committed with the current commit. In order to commit files, you
must move them from the Unstaged Changes box to the Staged Changes box.
More often than not, you will want to commit all of your files. Click on the >>
button next to the Unstaged Changes box. This will automatically move all files
to the Staged Changes box. Enter a commit message and click on the Commit
button. This will commit all of the changes to the local repository.

As you change files in Aptana Studio, you will see that their colors will change in
the App Explorer, as shown in Figure 9-6.

Figure 9-6. Changed files in the App Explorer

An asterisk (*) next to a file or folder indicates a change. Depending on your
Aptana Studio theme, the file’s background will also change color to indicate
what the current state of the file is. If you would like to see what the colors mean
for your specific theme, look into the Themes preferences in the Aptana Studio
preferences pane and look for the Unstaged Files and Staged Files elements, as
shown in Figure 9-7.

CHAPTER 9: Testing and Deploying Your Mobile Web App 335

Figure 9-7. Checking the color scheme for staged/unstaged files

With your files now committed to the local repository, it’s now time to push it to
a remote repository.

It’s always good to work with a remote repository, even if you are working on
your own for a project. The main reason for this is that if something happens to
your computer, you have a constant backup of not just your project, but all of
your previous commits and changes.

The remote repository of choice for this book is GitHub. It is, without a doubt,
one of the most popular repository services available today, offering free (but
public) project source-code hosting space for hundreds and thousands of open
source development projects.

First, head over to github.com and sign up for a free account and public
repository called ci. Follow the instructions to set up your Git SSH keys for your
local machine.

 Mac: http://help.github.com/mac-set-up-git/

 Windows: http://help.github.com/win-set-up-git/

 Linux: http://help.github.com/linux-set-up-git/

After you have set up the SSH keys and successfully tested them by attempting
to log into github.com through terminal, go back to your project page on
github.com. You should see something similar to Figure 9-8.

http://help.github.com/mac-set-up-git/
http://help.github.com/win-set-up-git/
http://help.github.com/linux-set-up-git/

CHAPTER 9: Testing and Deploying Your Mobile Web App 336

Figure 9-8. Default GitHub project page

Instead of using the command line to push your project to GitHub, you can use
Aptana Studio’s built-in Git client. To do this, copy the project’s GitHub remote
URI. The address will look similar to git@github.com:gavinwilliams-
fishrod/ci.git. It’s the URI second from the bottom of the Next Steps section.

In Aptana Studio, go to Commands ➤ More ➤ Add Remote... as shown in Figure 9-9.

Figure 9-9. Adding a remote repository

mailto:git@github.com:gavinwilliams-fishrod/ci.git
mailto:git@github.com:gavinwilliams-fishrod/ci.git
mailto:git@github.com:gavinwilliams-fishrod/ci.git

CHAPTER 9: Testing and Deploying Your Mobile Web App 337

A new dialog box will appear, as shown in Figure 9-10. Paste the GitHub remote
URI into the Remote URI box and press the OK button.

Figure 9-10. Add Git Remote dialog box

Although Aptana Studio won’t be very vocal about what it has just done, it has
just added a remote repository to your project under the alias of origin. When
you now open the Commands menu, there are a few new active items such as
Push and Pull, as shown in Figure 9-11.

Figure 9-11. New active remote commands

Unfortunately, the Git client in Aptana Studio will not automatically push to the
new remote repository. In order to get around this, you will need to make your
first push through the Project Explorer. Go to Window ➤ Show View ➤ Project
Explorer. Right click on the ci project in the Project Explorer and go to Team ➤
Push to Remote ➤ Origin. Your project should now be on GitHub and you can now
use the Push and Pull commands from the Commands menu. It’s important to
commit as much as you can and push your changes at the end of your project’s
working day.

Head over to your project on github.com and you should see that your project
has been pushed up to GitHub.

There’s a lot you can do with Git and GitHub, so much so that there are many of
articles and books about how to really take advantage of the system. You can
find out more at http://help.github.com/.

Now that you understand the basics of working with GitHub, it’s time to get to
grips with Capistrano, the growing deployment platform of choice for web
applications.

http://help.github.com/

CHAPTER 9: Testing and Deploying Your Mobile Web App 338

Getting to Grips with Capistrano
Capistrano is a deployment platform that helps to remove some of the repetitive
deployment tasks. For a small mobile web application, Capistrano can be seen
as using a sledgehammer to put a nail in a piece of wood. As your application
grows and you eventually have more environments and details to configure
within your application, Capistrano suddenly feels like a breath of fresh air.

In this section, you will focus on simply deploying your application to a
production environment using Capistrano.

The preferred hosting provider for this book is theserve.com and the preferred
server OS is CentOS 5; however, you’re free to use any host of your choice that
provides SSH access.

You should have Ruby installed after following the setup guide in Chapter 1.
Capistrano is a Ruby gem. To install it, go to Commands ➤ Open Terminal from the
App Explorer. A terminal window should open to the right of the window. Enter
the following command to install Capistrano, Capistrano Rsync With Remote
Cache, and Capistrano Multistage:

 Windows: gem install capistrano
capistrano rsync with remote cache capistrano-ext

 Mac/Linux: sudo gem install capistrano
capistrano rsync with remote cache capistrano-ext

After Capistrano and all of the required gems have been installed, you can now
capify your project. Go back to the App Explorer and ensure that no items are
selected/highlighted and then go to Commands ➤ Open Terminal. A terminal
window will open, as shown in Figure 9-12.

Figure 9-12. Terminal window

This will ensure that any commands run will be run in the root of your project. To
verify this, make sure that ci is shown somewhere in the command line, as
shown in Figure 9-12.

CHAPTER 9: Testing and Deploying Your Mobile Web App 339

In order to use Capistrano, you will need to create a set of configuration files.
Capistrano can do this for you automatically through a command-line tool called
capify. To capify your project, go to your terminal and run the command capify.
You will see output similar to Figure 9-13.

Figure 9-13. Capify output

As you can see, several files and folders have been created in your project.
Refresh the App Explorer by clicking on it and pressing F5 on your keyboard to
view the changes. The new files are shown in Figure 9-14.

Figure 9-14. New Capistrano files

Before configuring capistrano, you should configure your production server so
that you can deploy your capistrano project to it using a passwordless login. As
part of this, you will need to use the public rsa key that you generated while
setting up Git. This allows capistrano to run with no intervention. Copy the
id rsa.pub files contents to your clipboard, and log into your new production
server using your server’s SSH username and password. The command, shown
in Figure 9-15, run from Aptana’s terminal or Terminal on Mac OSX should
facilitate this.

CHAPTER 9: Testing and Deploying Your Mobile Web App 340

Figure 9-15. Log into remote server using Terminal.app on a Mac

If you are running Windows, you can use the PuTTy application
(www.chiark.greenend.org.uk/~sgtatham/putty/) to log into your remote server.

You will need to change to the current user’s home directory using the
command cd ~/, as shown in Figure 9-16.

Figure 9-16. Changing to the home directory

There should be a folder called .ssh. You can check to see whether the folder
exists by running the command ls. Go into that directory by using the command
cd .ssh. If the folder doesn’t exist, you will need to create the directory using
the command mkdir .ssh, and then go into the directory by using cd .ssh, as
shown in Figure 9-17.

http://www.chiark.greenend.org.uk/~sgtatham/putty/

CHAPTER 9: Testing and Deploying Your Mobile Web App 341

Figure 9-17. Checking and creating the .ssh directory

After you are in the directory, you will need to create a new file called
authorized keys if one doesn’t already exist. Use the ls command to check
whether the file already exists.

To create the authorized keys file, if it does not exist, simply run the command
touch authorized keys. This will create an empty file, as shown in Figure 9-18.

Figure 9-18. Checking for and creating the authorized_keys file

You will then need to add your computer’s public key to the authorized keys
file. Edit the file using vi authorized keys. If there is already content within the
authorized keys file, you will need to use the arrow key to go down to the
bottom of it, and then hold down Shift + I (insert). Once at the bottom, paste the
public key into the file, as shown in Figure 9-19.

CHAPTER 9: Testing and Deploying Your Mobile Web App 342

Figure 9-19. Adding the public key

You now need to save the file. Press the Esc key on your keyboard and then
hold down Shift + :. Then type wq (write quit), and press the Enter key on your
keyboard. You should see something similar to what is shown in Figure 9-20.

Figure 9-20. Writing a file in vi

Finally, you will need to set the appropriate permissions for the new files. Move
back to the home directory by using the command cd ../. The .ssh folder
requires owner read/write/execute permissions. To do this, run the command
chmod 0700 ./.ssh.

Next, the authorized keys file requires owner read/write permissions. To do
this, run the command chmod 0600 ./ssh/authorized keys, as shown in
Figure 9-21.

CHAPTER 9: Testing and Deploying Your Mobile Web App 343

Figure 9-21. Setting permissions on the .ssh folder

Log out of your remote server by executing the exit command in the command
line. You should now be able to log back in without a password, as shown in
Figure 9-22.

Figure 9-22. SSH without a password

With passwordless SSH set up, it’s now time to configure Capistrano to deploy
to the production server.

Back in Aptana Studio, double-click on the new deploy.rb file in the config
folder. This contains the deployment configurations for your project. It’s written
in Ruby, but you don’t necessarily have to know much about Ruby in order to
understand and configure it.

The default deploy.rb file has been set up specifically for Ruby projects, which
isn’t quite what you want to use. First, delete the contents of the file. The new
first line in the deploy.rb file will be the application name. This can be
configured using the following line of Ruby:

set :application, "continuousintegration" # The application name

CHAPTER 9: Testing and Deploying Your Mobile Web App 344

This has no real functional use for now, but you can use this variable within your
configuration tasks and options.

Next, you will need to include the multistaging and Capistrano-offroad gems
using the following Ruby code:

require 'capistrano/ext/multistage'
require 'capistrano-offroad'

This will include the appropriate code to allow you to deploy and control multiple
environments from a single command line. As well as providing a standard web-
friendly deployment configuration, Capistrano-offroad allows you to use
Capistrano outside of a Ruby project.

Next you will need to configure Capistrano multistage with the following lines of
code:

set :stages, %w(production)
set :default stage, "production"

The stages line dictates which environments you would like to deploy to. You
can have as many environments as you want, as long as they are separated by
spaces as shown next:

set :stages, %w(production staging development testing preprod)

The name of the stage environment should be used as the configuration file
name, as shown a little bit further into this chapter, and you can name the
environment anything you want as long as it only contains alpha characters and
no spaces or special characters. The default stage variable sets what the
default stage environment will be, should you exclude the stage name from the
cap command.

Next, you specify which offroad modules to use for the deployment. The offroad
defaults module will override a lot of the default Capistrano hooks, such as
creating shared file/folder definitions that capistrano will share between
revisions instead of overwriting. This is usually handy for logs, configuration
options, and user data. You can reimplement these hooks if needed, but for an
application with no server side code, it doesn’t make sense to include this.

offroad modules 'defaults'

Now you have to configure Git. Capistrano will check out the latest specified
branch from Git/GitHub so that it can be uploaded. The :repository variable is
the project’s GitHub URI that will be used to check out the latest code from
GitHub.

set :repository, "git@github.com:gavinwilliams-fishrod/ci.git" # The git repo URI
set :scm, :git # Tells capistrano to use GIT
set :branch, "master" # Tells capistrano which branch to use

mailto:git@github.com:gavinwilliams-fishrod/ci.git

CHAPTER 9: Testing and Deploying Your Mobile Web App 345

The :scm variable simply tells Capistrano that Git will be used as the SCM
system.

You can specify which branch to use by amending the :branch configuration
option. For instance, to use a branch named special, use the following setting:

set :branch, "special" # Tells capistrano which branch to use

The next variable will tell Capistrano how to deploy the application. In this
instance, rsync with remote cache will be used. This will clone the Git
repository and then deploy it to the production server using rsync. This can be
handy if your server’s firewall blocks incoming Git traffic.

set :deploy via, :rsync with remote cache # Tells capistrano to deploy via rsync

Rsync is an application that will compare folders and synchronize them. You can
also use rsync on remote folders on remote servers.

rsync with remote cache, at the time of writing, has a bug that prevents you
from synching from folders with spaces. To get around this, you need to specify
an alternative temporary file location using the following configuration variable:

set :local cache, '/tmp/ci/' # The directory where you want to store the rsync cache

Finally, the following Capistrano configuration options take variables from other
configuration options:

role(:web) { domain } # Your HTTP server, Apache/etc
role(:app) { domain } # This may be the same as your `Web` server
role(:db) { domain } # This is where Rails migrations will run

set :keep releases, 5 # Tells capistrano how many releases to keep

Just to give you an overview, the complete configuration file should look
something like the following:

set :application, "continuousintegration" # The application name

require 'capistrano/ext/multistage'
require 'capistrano-offroad'

set :stages, %w(production)
set :default stage, "production"

offroad modules 'defaults'

set :repository, "git@github.com:gavinwilliams-fishrod/ci.git" # The location of the
git repo, this is the read-only url
set :scm, :git # Tells capistrano to use GIT
set :branch, "master" # Tells capistrano which branch to use
set :deploy via, :rsync with remote cache # Tells capistrano to deploy via rsync

mailto:git@github.com:gavinwilliams-fishrod/ci.git

CHAPTER 9: Testing and Deploying Your Mobile Web App 346

Or: `accurev`, `bzr`, `cvs`, `darcs`, `subversion`, `mercurial`, `perforce`,
`subversion` or `none`

set :local cache, '/tmp/ci/' # Set this to a directory where you would like to store the
rsync cache

role(:web) { domain } # Your HTTP server, Apache/etc
role(:app) { domain } # This may be the same as your `Web` server
role(:db) { domain } # This is where Rails migrations will run

set :keep releases, 5 # Tells capistrano how many releases to keep

As mentioned before, the Capistrano multistage gem is used to allow you to
control and deploy to multiple environments from the command line. This
configuration file is only set up for production. In Aptana Studio, go to the App
Explorer and create a new folder called deploy within the config folder. Inside
the deploy folder, create a new file called production.rb, as shown in
Figure 9-23.

Figure 9-23. Production stage configuration file

Open the production.rb file in Aptana Studio and add the following
configuration options:

set :domain, "ci.fishrod.co.uk" # The domain name of the application

The previous line of code sets the domain name for the application, which will
be used to log into the server.

set :deploy to, "~/application/" # The path to deploy the application

:deploy to sets the path on the remote server where the application should be
deployed to. As the web path for the SSH user in this instance lies in the users
home directory, ~ is used. If your web path is somewhere else, you should use
that path. For example, on most blank servers, it will exist under
/var/www/application/. First, you will need to create the application folder on
your server.

CHAPTER 9: Testing and Deploying Your Mobile Web App 347

set :user, "ci.fishrod.co.uk" # The SSH user for your website
set :deploy group, "ci.fishrod.co.uk"
set :use sudo, false # Tells capistrano not to run commands as root

:user will set the user used to log into your remote server. :deploy group will
set which group Capistrano will set permissions for any uploaded files to.
:use sudo will stop Capistrano from uploading and changing files as a root user.

With Capistrano fully configured, it’s now time to set up your production server
for deployments.

In order to do this, log into your remote server again, and then go to the folder
just above your web server’s document root folder. For example, your root
might be /var/www/html, so you should go to your /var/www directory. If you’re
on a shared host, you should go to ~/, which will be your home directory.

Create a new directory called application in that directory, and remove your
document root folder, as shown in Figure 9-24. Your document root folder may
be called htdocs, html, or public html; it will be referred to as public html
throughout this chapter.

Figure 9-24. Creating the application directory and deleting the document root directory

You before finalizing the Capistrano configuration, you need to set up the
Capistrano folders on the remote server. To do this, return to Aptana Studio and
open the terminal view. Run the following command:

cap production deploy:setup

This will log in to your remote server and create the appropriate files and folders
for you. You should see something similar to the output in Figure 9-25.

CHAPTER 9: Testing and Deploying Your Mobile Web App 348

Figure 9-25. Capistrano deploy:setup output

Now you can deploy your application. Running the following command will do
so:

cap production deploy

If all goes well, you will see a final output similar to that shown in Figure 9-26.

Figure 9-26. Final Capistrano deploy output

The final thing to do is to create a symbolic link between the web root directory
and the current release. This allows you to keep revisions of your code on your
server, and for Capistrano to roll back if anything fails during deployment.

To do this, return to the terminal window connected to your server (the one used
to create the application folder and delete the public html folder) and run the
following command:

ln -s application/current/ public html

CHAPTER 9: Testing and Deploying Your Mobile Web App 349

Verify that the symbolic link has been created by running the command ls, as
shown in Figure 9-27.

Figure 9-27. The new public_html symbolic link

Now, navigate to your unit test on the remote server using the following URL,
replacing yourdomain with your own domain, of course:
http://yourdomain/js/tests/calculator.html.

As you can see, Capistrano can be a powerful tool. Not only can it be used to
make deployments, but it can also be used to run commands on remote servers
without having to log directly into them. This can be useful for recompiling SASS
files or concatenating and minifying JavaScript files. What’s even better about
Capistrano, is that because it is run from the command line, it can be integrated
into continuous integration servers such as Hudson or Bamboo.

Summary
From this chapter, you should have a basic understanding about continuous
integration and how it affects how you test and deploy your application.
Although this book does not cover how to implement a continuous integration
server, it’s a subject worth pursuing, even as a lone developer. When you have
last-minute code changes, you can be confident that when you check in your
code, once it reaches the production environment, it has been fully tested. You
can also be confident in the fact that, due to the automation, if it successfully
deployed the first time, it should deploy successfully again, and again, and again
unless you have broken some element of your application. In such a case, your
failed test will point out which piece of code does not work as expected.

Through this chapter alone, you should have a real foothold into how to create
JavaScript unit tests using QUnit. There are other, more advanced testing
products out there, such as Test Swarm
(https://github.com/jquery/testswarm), Jasmine

https://github.com/jquery/testswarm

CHAPTER 9: Testing and Deploying Your Mobile Web App 350

(http://pivotal.github.com/jasmine/), and Selenium (http://seleniumhq.org
or http://code.google.com/p/selenium/wiki/AndroidDriver). It’s important to
remember that although TDD seems like a laborious task at first, it really allows
you to think about your code and the way in which it is structured, which helps
to produce cleaner, leaner JavaScript.

You should have a basic understanding as to how to use Git and GitHub
through Aptana Studio, and the benefits that it has not just for you as a lone
developer, but for others who eventually work with you.

Most important, you should now know how to set up Capistrano, a powerful
deployment application that is primarily used to deploy rails applications. It is
worth having a look at the Capistrano documentation to explore all of its
capabilities. Find it at https://github.com/capistrano/capistrano/wiki/.

This book should have set you on the right path for mobile web development.
Some of the topics might have seemed a bit advanced; however, I feel that it’s
always important to stay ahead of the curve and to challenge yourself as much
as you can with development, as the industry moves so fast. Hopefully, some of
the practices and principles that you have learned through this book have gotten
you excited about the mobile web. You should now have all of the knowledge
you need to build reasonably advanced mobile web applications for Android.

http://pivotal.github.com/jasmine/
http://seleniumhq.orgor
http://seleniumhq.orgor
http://code.google.com/p/selenium/wiki/AndroidDriver
https://github.com/capistrano/capistrano/wiki/

A
Appendix

Appendix

Listing A-1
var app = app || {};

app.model = app.model || {};

/**
 * A movie model used for all movies within the application
 *
 * @alias app.model.movie
 * @constructor
 * @param {String} title
 * @param {String} rtid
 * @param {String} posterframe
 * @param {String} synopsis
 */
app.model.movie = function appModelMovie(title, rtid, posterframe, synopsis) {

 /**
 * The video's instance variables
 */
 var title,
 rtid,
 posterframe,
 synopsis,
 releaseDate,
 videos = [],
 actors = [],
 rating,
 favorite = false,
 self = this;

APPENDIX A 352

 /**
 * Getters and setters
 */

 this.init = function(){
 /**
 * Set the instance variables using the constructor's arguments
 */
 this.setTitle(title);
 this.setRtid(rtid);
 this.setPosterframe(posterframe);
 this.setSynopsis(synopsis);
 }

 /**
 * Returns the movie title
 * @return {String}
 */
 this.getTitle = function(){
 return title;
 }

 /**
 * Sets the movie title
 * @param {String} title
 */
 this.setTitle = function(title){
 title = title;
 }

 /**
 * Returns the Rotten Tomatoes reference ID
 * @return {String}
 */
 this.getRtid = function(){
 return rtid;
 }

 /**
 * Sets the Rotten Tomatoes reference ID
 * @param {String} rtid
 */
 this.setRtid = function(rtid){
 rtid = rtid;
 }

 /**
 * Gets the posterframe URL/Path
 * @return {String}
 */

APPENDIX A 353

 this.getPosterframe = function(){
 return posterframe;
 }

 /**
 * Sets the posterframe URN/Path
 * @param {String} posterframe
 */
 this.setPosterframe = function(posterframe){
 posterframe = posterframe;
 }

 /**
 * Gets the synopsis as a string with no HTML formatting
 * @return {String}
 */
 this.getSynopsis = function(){
 return synopsis;
 }

 /**
 * Sets the synopsis, a string with no HTML must be passed
 * @param {String} synopsis
 */
 this.setSynopsis = function(synopsis){
 synopsis = synopsis;
 }

 /**
 * Gets all videos associated with the movie
 * @return {Array}
 */
 this.getVideos = function(){
 return videos;
 }

 /**
 * Sets all videos associated with the movie
 * @param {Array}
 */
 this.setVideos = function(videos){

 videos.length = 0;

 /**
 * Rather than setting the videos all in one go,
 * you use the addVideo method, which can handle
 * any validation for each video before it's
 * added to the object
 */

APPENDIX A 354

 for(var i = 0; i < videos.length; i++){
 self.addVideo(videos[i]);
 }
 }

 /**
 * Adds a video to the movie
 * @param {app.model.video} video
 */
 this.addVideo = function(video){
 /**
 * You can add any video validation here
 * before it's added to the movie
 */
 videos.push(video);
 }

 /**
 * Gets all actors associated with the movie
 * @return {Array}
 */
 this.getActors = function(){
 return actors;
 }

 /**
 * Gets an actor at a specific index
 * @param {Integer} index
 * @return {app.model.actor}
 */
 this.getActor = function(index){
 return actors[index];
 }

 /**
 * Sets all actors associated with the movie
 * @param {Array}
 */
 this.setActors = function(actors){

 actors.length = 0;

 /**
 * Rather than setting the actors all in one go,
 * you use the addActor method, which can handle
 * any validation for each actor before it's
 * added to the object
 */
 for(var i = 0; i < actors.length; i++){
 self.addActor(actors[i]);

APPENDIX A 355

 }
 }

 /**
 * Adds an actor to the movie
 * @param {app.model.actor} actor
 */
 this.addActor = function(actor){
 /**
 * You can add any actor validation here
 * before it's added to the movie
 */
 actors.push(actor);
 }

 /**
 * Sets the release date
 */
 this.setReleaseDate = function(releaseDate){
 releaseDate = releaseDate;
 }

 /**
 * Gets the release date
 * @return {app.type.releaseDate}
 */
 this.getReleaseDate = function(){
 return releaseDate;
 }

 /**
 * Gets the movie rating
 * @return {String}
 */
 this.getRating = function(){
 return rating;
 }

 /**
 * Sets the movie rating
 * @param {String} rating
 */
 this.setRating = function(rating){
 rating = rating;
 }

 /**
 * Checks to see whether the movie
 * is in the user's favorites list
 * @return {Bool}

APPENDIX A 356

 */
 this.isFavorite = function(){
 return favorite;
 }

 /**
 * Sets whether the movie is in the
 * user's favorites list
 * @param {Bool} value
 */
 this.setFavorite = function(value){
 favorite = value;
 }

 this.init();

}

Listing A-2
.footer {
 height: 40px;
 width: 100%;
 text-align: center;
 position: absolute;
 bottom: 0;

 .back {
 height: 100%;
 display: block;
 background: url('../img/back.png') no-repeat 10px 50%;
 text-indent: -10000px;
 }

}

Your final SASS file should look like the following code.

body, html, #shoe, .deck {
 height: 100%;
 width: 100%;
 overflow: hidden;
 margin: 0px;
}

/**
 * Individual Card Styles
 */

APPENDIX A 357

#card-movie search results {
 z-index: 50;
}

/**
 * Deck styles
 */

.deck {

 position: relative;

 .card {
 height: 100%;
 width: 100%;
 left: -100%;
 position: absolute;
 }

 .card.active {
 left: 0px;
 }

}

/**
 * List styles
 */

/**
 * Standard list
 */

.list {

 margin: 0;
 padding: 0;

 li {

 padding: 10px;
 overflow: hidden;
 height: 82px;
 display: block;
 border-bottom: 1px solid #CCCCCC;

 .preview-image {
 float: left;

APPENDIX A 358

 width: 60px;
 height: 82px;
 text-align: center;
 margin-right: 10px;
 }

 }

}

/**
 * Movie list
 */

.movie-list {

 li {

 background: #A5CCEB;
 border-bottom-color: #FFFFFF;

 .more {

 display: block;
 height: 100%;
 overflow: hidden;
 text-decoration: none;

 h2 {
 margin: 0 0 10px;
 color: #BF2628;
 }

 p {
 margin: 0;
 color: #000000;
 }

 }

 }

 li:nth-child(odd) {
 background: #97B2D9;
 }

}

/**

APPENDIX A 359

 * Header taskbar styles
 */

.screenbar {
 @include gradient(#7D9DCE, #ABC1E1, 90deg);
}

header#taskbar {
 color: #FFFFFF;
 overflow: hidden;
 padding: 10px;
 border-bottom: 1px solid #BF2628;

 h1.branding {
 margin: 0px;
 float: left;
 width: 73px;
 height: 32px;
 text-indent: -10000px;
 overflow: hidden;
 background: url('../img/lowres/momemo.png') no-repeat top left;
 }

 .clear-search {
 float: right;
 width: 35px;
 height: 35px;
 display: none;
 overflow: hidden;
 text-indent: -10000px;
 background: url('../img/clear.png') 50% 50% no-repeat;
 }

}

header#taskbar.searchactive {

 .clear-search {
 display: block;
 }

 form#add-movie {
 margin-right: 40px;
 }

}

/**
 * Movie view
 */

APPENDIX A 360

/**
 * Animations for the poster header
 */
@keyframes posteranimation {
 0% { top: 0%; }
 100% { top: -80%; }
}

@-moz-keyframes posteranimation {
 0% { top: 0%; }
 100% { top: -80%; }
}

@-webkit-keyframes posteranimation {
 0% { top: 0%; }
 100% { top: -80%; }
}

.movie-header {

 position: relative;
 overflow: hidden;
 height: 20%;

 .poster {
 position: absolute;
 top: 0%;
 @include animation(posteranimation 10s ease 0 infinite alternate);
 }

 .movie-title {
 position: absolute;
 bottom: 0px;
 background: rgba(255, 255, 255, 0.75);
 padding: 5px;
 bottom: 0;
 left: 0;
 width: 100%;
 @include box-sizing(border-box);

 .btn-favorite {
 float: right;
 padding: 10px;
 color: #FFFFFF;
 background: #7D9DCE;
 font-weight: bold;

APPENDIX A 361

 border-radius: 5px;
 text-decoration: none;
 border: 1px solid #A5CCEB;
 }

 .movie-release-date {
 text-transform: uppercase;
 font-weight: bold;
 }

 }

}

.movie-content {
 height: 80%;
 width: 100%;
 padding-bottom: 40px;
 @include box-sizing(border-box);

 .block-container {

 width: 280%;
 height: 100%;

 .block {
 width: 33%;
 float: left;
 height: 100%;

 font-size: 1.3em;
 line-height: 2em;

 .content {
 @include box-sizing(border-box);
 }

 h3 {
 padding: 10px 10px 0 10px;
 }

 .content {
 padding: 10px;
 }

 }

 }

APPENDIX A 362

}

.footer {
 height: 40px;
 width: 100%;
 text-align: center;
 position: absolute;
 bottom: 0;

 .back {
 height: 100%;
 display: block;
 background: url('../img/back.png') no-repeat 10px 50%;
 text-indent: -10000px;
 }

}

Index

 A
Actor model, 240–242
add method, 291
addPet method, 229
Ajax/XMLHttpRequest, 222
Android, 13, 36

audience, 14
entertainment-based

applications, 27
social application, 26, 27
task based applications (see

Task-based mobile web
applications)

Eclipse Helios Update Site, 6
Hello World, code, 14

Aptana’s new web project
wizard, 31

HTML source code, 32
meta elements, 33
testing, 34, 35
title and link tags, 34
viewport meta tag definition,

33
XHTML 1.1 vs. HTML5 doctype

declaration, 32
JavaScript APIs, 13
Mobile web (see Mobile web)
SDK

ADT launch screen, 7
Android SDK Manager, 8
Aptana, Android menus, 7, 8

web apps vs. native apps, 14

advantages, 28
factors, 27, 28
multiple phone structure, 30
Twitter native and mobile web

application, 29
Apache, 10, 11
app.utility.validator, 249
appendChild method, 263
Aptana, 5, 6
<article /> element

HTML4, 42
mobile web site document, 39, 40
nest information, 39
structure, 39–41

<aside /> element
HTML4, 44
structure, 43, 44

Audacity
average download times, 74
MP3, 77
OGG format, 74–76
SoundCloud, 73, 74

<audio /> element
Android 4 Ice Cream Sandwich,

46
attributes, 46
Audio Tag, 45
3gp version, 45
media formats, 47

Audio optimization
audacity

average download times, 74

INDEX 364

Audio optimazation, audacity (cont.)
MP3, 77
OGG, 74–76
SoundCloud, 73, 74

lossless and lossy compression,
73

rules, 72

 B
Bootstrap

bootstrap.js file, 267
click event listener, 268
controller action execution, 269,

272
controller and action verification,

270
_controller variable, 267
dead link, 270
DOM tree, 268
full bootstrap code, 274–277
getController method, 273
init method, 274
JSON object, 271
local storage variables, 272
properties access, 271
while loop, 268

Browser sniffing script, 15

 C
callback method, 256
<canvas /> element, 47
Capistrano

App Explorer, 339
authorized_keys file, 341
capify output, 339
configuration options, 345, 346
default_stage variable sets, 344
deploy.rb file, 343
deploy:setup output, 347, 348
:deploy_to sets, 346
document root folder, 347
final output, 348

home directory, 340
passwordless SSH, 343
production.rb, 346
public key, 341, 342
public_html, 347
public_html symbolic link, 349
PuTTy application, 340
repository variable, 344
rsync_with_remote_cache, 345
Ruby installation, 338
:scm variable, 345
.ssh directory, 340, 341
.ssh folder, 342, 343
Terminal on Mac OSX, 339
terminal window, 338
:use_sudo, 347
/var/www directory, 347
yourdomain, 349

Chrome for Android
Android 4+, 312
Chrome alert, 315
Chrome page debugging

selection, 313
debugging console, 313
highlighted element, 314
JavaScript console, 315

Continuous integration
Aptana Studio 3

app and tests, 321
App Explorer, 334
built-in server preferences,

324
calculator codes, 331–332
calculator.html, 322, 323, 325
Capistrano (see Capistrano)
color scheme,

staged/unstaged files, 335
debugging, 328–331
Default GitHub project page,

336
equal() assertion, 326
expect(), 326
Failed unit test, 328

INDEX 365

Firefox, 324
Git commit window, 333
Git SSH keys, 335
HTML Testing Elements, 323
http://docs.jquery.com/QUnit,

328
Initialize Git Repository, 333
js, 321
new active remote commands,

337
passed unit tests, 332
QUnit Assertions, 327
QUnit unit test, 322
remote repository, 335, 336
Remote URI box, 337
script tag, 325, 326
staged changes box, 334

server, 321
source control management

branching and tagging, 319
Git/SVN, 318

testing
Capistrano, 321
FTP, 320
unit testing, 320

Controller functions, 267
Cross-origin resource sharing

(CORS), 255
CSS3

animation, 124–126, 254
attribute selectors, 133
border-radius, 140–141
box-shadow, 141–142
@font-face

file size, 129
font payload in Google

Chrome, Android, 130
Google web fonts, 129
Hello World web font, 127,

128
new font declaration, 130
typefaces, 127

linear gradients, 135–138

media query
Daniel Vane’s web site, 143,

144
larger displays, 144
property, 142
responsive web design, 143

nth selectors, 134
pseudoselectors, 133
radial gradients, 138–139
Syntactically Awesome

Stylesheets (SASS)
compiling, 147
mixins, 151–154
nesting, 146–147
partials, 148–150
selector inheritance, 154–156
variables and interpolation,

150–151
text-shadow and text-stroke,

131–132
transitions

color transition, 123
CSS circle rendering, 121
div element creation, 120
JavaScript, 122
new property, 121, 122
shorthand method, 123
style creation, 121
test class, 122
test element code, 122

vendor-specific properties, 119–
120

 D
Date object, 264
Deck manager, 254–255
div, 264

 E
ECMAScript, 221
e.message, 248

http://docs.jquery.com/QUnit

INDEX 366

 F
Facebook touch and Twitter mobile

web sites, 26, 27
Favorite movies, 260
Favorites controller

adding favorites, 293–294
favorite.js file, 288
listing favorites

empty localStorage property,
289, 290

final code, 292–293
iScroll object creation, 291,

292
list action, 289
for loop, 290
movies view, 291

removing favorites, 294–295
<figure /> and <figcaption />

element, 48
File transfer protocol (FTP), 320
fixdeckheight function, 259
<footer /> element, 49
format, 250

 G
getController method, 273

 H
Hardware-based controls, 2
hashbangs, 267
<header /> element, 50, 51
<hgroup /> element, 51, 52
HTML mobile web page, 87
HTML5, 83

android and iOS web app, 37, 38
<article /> element

HTML4, 42
mobile web site document, 39,

40
nest information, 39
structure, 39–41

<aside /> element
HTML4, 44
structure, 43, 44

<audio /> element
Android 4 Ice Cream

Sandwich, 46
attributes, 46
Audio Tag, 45
3gp version, 45
media formats, 47

<canvas /> element, 47
elements, 39
<figure /> and <figcaption />

element, 48
<footer /> element, 49
<header /> element, 50, 51
<hgroup /> element, 51, 52
HTML4/XHTML1.1, 38
<mark /> element, 52
mobile forms

car insurance quote form,
mobile and desktop, 79, 80

data field types, 80–82
MoMemo, 85

application definition, 100,
101

never-ending project
syndrome, 101

primary features, 102
secondary features, 103
value add features, 103

movie list creation
application manifest attribute,

117
bootstrap.js file, 107
cache manifest file, 118
cast block, 114
closest cinemas block, 116
for portrait mobile, 105, 106
header code, 108
landscape tablet, 105
landscape tablet device,

mobile info, 112, 113

INDEX 367

listing page, 110
movie info header, 114
movie list card, 109
no styling taskbar, 109
portrait mobile device, mobile

info, 112, 113
samsung galaxy tab, 117
search and add, 110–112
soundtrack block, 115, 116
synopsis block, 114
UI mock-ups, 106
video block, 115

multimedia
audio embedding, 77–79
containers and codec

combinations, 60, 61
encoder and decoder, 59
mobile web (see Mobile web)
resolutions, 60
video bitrate, 59
video embedding (see Video

embedding)
Vorbis audio codec, 60
VP8 video codec, 60

<nav /> element, 52, 53
<output /> element, 53, 54
paging strategies

advantages and
disadvantages, 86

single-page Ajax creation, 86,
88–95

single-page container creation
(see single-page container
creation)

standard HTML page creation,
86, 87

<section /> element, 55, 56
<time /> element, 56
UI creation, 104, 105
<video /> element

Android 4, 57
attributes, 57
supported formats, 58

https://developers.google.com/chrom
e/mobile/docs/debugging,
316

 I
IE6, 312
innerHTML, 260
instanceof, 245
Integrated Development Environment

(IDE), 5
iScroll, 285
isEmpty, 244–245
isTypeOf, 245–247

 J, K
JavaScript MVC. See Model View

Controller (MVC)
JavaScript Object Notation with

Padding (JSONP), 255–257
jQuery, 222
JSON.parse() method, 271

 L
_listScroll variable, 289
loadCard function, 94, 95
localhost:9222, 313
localStorage, 272, 288

 M
Mac OS X Lion, 5
<mark /> element, 52
Miro video converter, 63, 64
Mobile web

audio optimization
audacity (see Audacity)
lossless and lossy

compression, 73
rules, 72

object/feature detection
haz.io action, 17
message delegation, 16

https://developers.google.com/chrom

INDEX 368

Mobile web, object/feature detection
(cont.)

SMS API, 16
UA sniffing script, 15

real-world advantages, 15
screen sizes and pixel density,

18–20
video optimization

“Add new template” button,
65

bitsontherun.com, account
options, 65

“Create new template” dialog,
66

desktop solutions, 63, 64
hosted solutions, 61–63
“Template properties” page,

66, 67
“Upload new video” button,

67, 68
Mobile web developer, 2
Mobile web sites, 1
Model

actor model, 240–242
class diagram, 229–230
movie model, 242–243
pet array within user model, 226–

229
pet model, 225
UML association types, 230–231
user model, 224–225
validation, 243–250

error handling, 247–248
isEmpty, 244–245
isTypeOf, 245–247
object creation, 244
strengthening model, 248–250
throw exception, 247–248
type hinting, 243
validator.js creation, 244

video model, 235–240
video source model, 231–235

Model view controller (MVC), 219

application utilities
cross-site requests, 255–257
deck manager, 254–255
JSONP, 255–257
layout and resizes, 257–259

cache, 310–312
clean up index.html, 220–221
concatenation, 308–309
controller

bootstrap (see Bootstrap)
favorites (see Favorites

controller)
movies (see Movies controller)

HTML updation, 306–308
minifying/minification, 309
model (see Model)
MVC and JavaScript, 221–223
MVC diagram, 223
styling (see Styling)
types

description, 250
format.js codes, 250–252
releaseDate.js code, 252–253

view (see View)
MoMemo, 230, 231, 242, 261, 295
Movie list item view, 261–262
Movie list view, 262–263
Movie model, 242–243
Movie search results, 260
Movie view

cast list, 266
footer navigation button, 265
header, 264
movie content blocks, 265
object layout code, 263
POSH, 265
user’s favorite movie, 266

Movies controller
instance variables, 277, 278
movies.js file, 277
search action, 282–283
search form

event listeners, 278

INDEX 369

full code, 281–282
search query, 279
searchtimeout, 280
submission, 279, 280

showSearchResults, 283
view movie code, 285–288

Multimedia
audio embedding, 77–79
containers and codec

combinations, 60, 61
encoder and decoder, 59
mobile web (see Mobile web)
resolutions, 60
video bitrate, 59
video embedding (see Video

embedding)
Vorbis audio codec, 60
VP8 video codec, 60

Multiplicity, 231

 N
<nav /> element, 52, 53

 O
OGG

track waveform, 76
Vorbis export options, 76
warning dialog, 74, 75

onload event listener, 257
<output /> element, 53, 54

 P, Q
params, 262
parseInt method, 237
POSH

movie list item view, 261, 262
movie view, 265

 R
releaseDate. format, 250
revealing module pattern, 255

_rootElementvariable, 260
Rotten Tomatoes API. See Movies

controller

 S
Sammy.js, 267
searchtimeout, 280
<section /> element, 55, 56
setCardContent method, 94
setPets method, 228
showProfile function, 256
Single-page Ajax

callback function, 94
event listener function, 94
HTML loading, 88–93
JavaScript method, 93
loadCard function, 94, 95
XML/JSON, 93
XMLHttpRequest (xhr) object, 95

Single-page container creation
cards activation, 98, 99
CSS file, 96
deck, card loading, 97
goToCard method, 99, 100
JavaScript, 96, 97
JSON/XML, 100

Source control management (SCM)
branching and tagging, 319
Git/SVN, 318

Styling
movie list

final code, 298–299
final search results view, 300
global style for, 296
SASS style, 296, 298
SASS/CSS styles, 297, 298

movie view
final movie info page, 306
keyframes creation for header

animation, 305
movie block and content

styling, 303–305

INDEX 370

Styling, movie view (cont.)
movie header styling, 300–303

 T
Task-based mobile web applications

BUSit mobile web site, 22, 25
journey planner, 22
TFL mobile web site, 22–24
user task performance, 21

this.bindSearchForm(), 288
this.render, 260
<time /> element, 56
Type hinting, 243

 U
unescape method, 291
User Agent (UA) sniffing script, 15

 V, W, X
Vanilla search, 297
<video /> element

Android 4, 57
attributes, 57

supported formats, 58
Video embedding

Android browser, 71
Aptana, 70, 71
CPU power, 69
flash-based content, 69
WebM/MP4, 69

Video model
accessors, 236

final code for, 237–240
instance variables, 235
setter implementation, 237
video.js creation, 235

Video optimization
“Add new template” button, 65
bitsontherun.com, account

options, 65
“Create new template” dialog, 66
desktop solutions, 63, 64
hosted solutions

bitsontherun.com, 62, 63
encoding.com, 61, 62

“Template properties” page, 66,
67

“Upload new video” button, 67,
68

Video source model
code, 232
getters and setters, 234
instance variables declaration,

232
instantiation method creation,

233
videosource.js file creation, 232

View
example, 259
movie list item view, 261–262
movie list view, 262–263
movie view, 263–266

 Y, Z
YOURAPIKEY, 283

Learn HTML5 and
JavaScript for Android

■ ■ ■

Gavin Williams

Learn HTML5 and JavaScript for Android

Copyright © 2012 by Gavin Williams

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction
on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted
from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied
specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of
the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of
the Publisher's location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to
prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-4347-2

ISBN-13 (electronic): 978-1-4302-4348-9

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion and
to the benefit of the trademark owner, with no intention of infringement of the trademark.

The images of the Android Robot (01 / Android Robot) are reproduced from work created and shared by Google and
used according to terms described in the Creative Commons 3.0 Attribution License. Android and all Android and
Google-based marks are trademarks or registered trademarks of Google, Inc., in the U.S. and other countries. Apress
Media, L.L.C. is not affiliated with Google, Inc., and this book was written without endorsement from Google, Inc

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be
made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Steve Anglin
Development Editor: Douglas Pundick
Technical Reviewer: Jim Graham
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Louise Corrigan, Morgan Ertel, Jonathan Gennick,

Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie, Jeff Olson, Jeffrey
Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing, Matt Wade, Tom Welsh

Coordinating Editors: Corbin Collins, Christine Ricketts
Copy Editor: Vanessa Moore
Compositor: Bytheway Publishing Services
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook Licensing
web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to www.apress.com/source-
code.

mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com

Dedicated to my dad, who spent hours of his retirement time reading my book and not
understanding a single line of HTML/JavaScript or CSS and still finding it interesting :D.

v

Contents

■ About the Author..x
■ About the Technical Reviewer ..xi
■ Introduction ...xii
■ Chapter 1: Getting Started .. 1
Choosing a Device to Test With..2
Setting Up Your Development Environment ...5

Aptana ..5
Android SDK..6
SASS...9
Apache..10

Summary..11
■ Chapter 2: An Introduction to Creating Mobile Web Apps for Android... 13
What’s Different About the Mobile Web? ...14

Object/Feature Detection..15
Screen Sizes and Pixel Density ..18

Catering to Your Audience ...20
Task Based ...21
Social..26
Entertainment ...27

Web Apps vs. Native Apps ...27
The First Line of Code: Hello World ..30

Setting Up...30
HTML ..31
Testing..34

Summary..36

■ Chapter 3: HTML5.. 37
What’s New?..38

<article /> ..39
<aside />..43

CONTENTS

vi

<audio /> ...45
<canvas /> ...47
<figure /> and <figcaption />..48
<footer />...49
<header /> ...50
<hgroup /> ...51
<mark /> ..52
<nav />...52
<output /> ..53
<section />...55
<time /> ...56
<video />..57

Handling Multimedia in HTML5 ..59
Optimizing Video for the Mobile Web ...61
Embedding Video with HTML5..69
Optimizing Audio for the Mobile Web ...72
Embedding Audio with HTML5 ...77

HTML5 Mobile Forms ...79
Fields for Different Data Types ...80

Summary..83

■ Chapter 4: Starting Your Project Using HTML5................................... 85
Paging Strategies...86

Paging with Standard HTML ...86
Paging with Single-Page Ajax ..88
Paging with a Single-Page Container ...96

Creating the App ..100
Planning MoMemo..100
Creating the UI and HTML...104
Creating the Movie List...105

Summary..118

■ Chapter 5: CSS3 for Mobile ... 119
Vendor-Specific Properties ..119
CSS Animations and Transitions ..120

Transitions..120
Animations..124

New CSS3 Features ...127
@font-face..127
text-shadow and text-stroke ..131
Selectors...132
Gradients ..135
Borders ...140

CONTENTS

 vii

CSS Media Queries...142
CSS Precompilers (SASS)...145

Nesting ...146
Compiling..147
Partials ...148
Variables and Interpolation...150
Mixins ...151
Selector Inheritance ...154

Summary..156

■ Chapter 6: Laying the CSS3 Foundations.. 157
Getting Organized ..158
Creating the Partials ..161
Automatically Compiling Sass in Aptana..171
Summary..173

■ Chapter 7: JavaScript for Mobile .. 175
Object-Oriented JavaScript ..175
Handling Touch Events...179
Getting a User’s Location ...181
Drawing with Canvas ...186

Drawing the Stop Icon ..197
Drawing the Play Icon...202
Drawing the Playback Head ...204

Storing Data ...213
JavaScript Libraries for Mobile ..214

File Size ..216
Number of Files ..216
Activity..216
CSS3 Support ...217

Summary..217

■ Chapter 8: JavaScript: Models, Views, and Controllers 219
Cleaning Up Your Code...220
MVC and a JavaScript Primer ..221
The Model ..224

The Video Source Model ...231
The Video Model ...235
The Actor Model ...240
The Movie Model ..243
Validation..244

CONTENTS

viii

Applying Validation to Models..248
Throwing and Handling Exceptions ..248
Strengthening the Models ..250

Creating New Types ...251
Application Utilities ..254

Managing the Deck...255
Sending Cross-Site Requests ...256
Controlling the Layout and Handling Resizes ...259

The View ..260
The Movie List Item View..262
The Movie List View..263
The Movie View ..264

The Bootstrap and Controller ...268
The Bootstrap ...268
The Movies Controller...278
The Favorites Controller ...289

Styling the Content...296
Styling the Movie List ...296
Styling the Movie View ...301

Putting It All Together ..307
Concatenating, Minifying, and Caching ...309

Concatenating...309
Minifying...310
Caching...311

Debugging with Chrome for Android..313
Summary..317

■ Chapter 9: Testing and Deploying Your Mobile Web App.................. 317
Source Control Management ...318

Branching and Tagging...319
Testing ...320
Deploying Your Application ..320
Continuous Integration Server ...321
Your First Continuous Integration Project ..321

Writing Your First Unit Test...322
Working with Git and GitHub ..332
Getting to Grips with Capistrano...338

Summary..349

CONTENTS

 ix

■ Appendix ... 351
Listing A-1..351
Listing A-2..356

■ Index ... 363

x

About the Author

 Gavin Williams has worked in the web industry from the age of 14,
when his editor of choice was Microsoft Front Page or Notepad.
Working mainly with HTML, PHP, and CSS, after finishing a
computing certification, as well as several other A-levels, he took a year
out before starting university to work for Agency.com as a web
developer. Here, he worked with clients such as IKEA, British Airways,
Channel 5, and P&G.

He then went to university to study interactive media production,
where he picked up his passion for mobile and the mobile web. He
won a British Interactive Media award for WiDrive, a remote control
car that could be controlled over WiFi, using nothing but an iPhone.
Soon after, he started Fishrod Interactive with one of his closest

university friends, Siobhan Bentley, where they developed mobile web sites, apps, and interactive
installations for British Sky Broadcasting, WWE, Johnson & Johnson, as well as several other
smaller companies, such as Soulcialize (a cupcake company based in Crystal Palace, London) and
Streetfit.tv (a street dance fitness company).

Gavin Williams is a well-rounded developer and enjoys picking up a new technology and pushing
it to its extreme. Curiosity is his weakness, as he’s easily distracted by new shiny things in the
development world.

 xi

About the Technical Reviewer

 James Graham received a Bachelor of Science in electronics with a specialty in
telecommunications from Texas A&M in 1989. While still in school, he was published in the
International Communications Association’s 1988 issue of ICA Communique (“Fast Packet
Switching: An Overview of Theory and Performance”). His work experience includes working as
an associate network engineer in the Network Design Group at Amoco Corporation in Chicago,
IL; a senior network engineer at Tybrin Corporation in Fort Walton Beach, FL; and as an
intelligence systems analyst at both 16th Special Operations Wing Intelligence and HQ U.S. Air
Force Special Operations Command Intelligence at Hurlburt Field, FL. He received a formal letter
of commendation from the 16th Special Operations Wing Intelligence in 2001.

	Cover
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Who This Book Is For
	How This Book Is Structured
	Downloading the Code
	Contacting the Author

	Getting Started
	Choosing a Device to Test With
	Setting Up Your Development Environment
	Aptana
	Android SDK
	SASS
	Apache

	Summary

	An Introduction to Creating Mobile Web Apps for Android
	What’s Different About the Mobile Web?
	Object/Feature Detection
	Screen Sizes and Pixel Density

	Catering to Your Audience
	Task Based
	Social
	Entertainment

	Web Apps vs. Native Apps
	The First Line of Code: Hello World
	Setting Up
	HTML
	Testing

	Summary

	HTML5
	What’s New?
	<article />
	<aside />
	<audio />
	<canvas />
	<figure /> and <figcaption />
	<footer />
	<header />
	<hgroup />
	<mark />
	<nav />
	<output />
	<section />
	<time />
	<video />

	Handling Multimedia in HTML5
	Optimizing Video for the Mobile Web
	Embedding Video with HTML5
	Optimizing Audio for the Mobile Web
	Embedding Audio with HTML5

	HTML5 Mobile Forms
	Fields for Different Data Types

	Summary

	Starting Your Project Using HTML5
	Paging Strategies
	Paging with Standard HTML
	Paging with Single-Page Ajax
	Paging with a Single-Page Container

	Creating the App
	Planning MoMemo
	Creating the UI and HTML
	Creating the Movie List

	Summary

	CSS3 for Mobile
	Vendor-Specific Properties
	CSS Animations and Transitions
	Transitions
	Animations

	New CSS3 Features
	@font-face
	text-shadow and text-stroke
	Selectors
	Gradients
	Borders

	CSS Media Queries
	CSS Precompilers (SASS)
	Nesting
	Compiling
	Partials
	Variables and Interpolation
	Mixins
	Selector Inheritance

	Summary

	Laying the CSS3 Foundations
	Getting Organized
	Creating the Partials
	Automatically Compiling Sass in Aptana
	Summary

	JavaScript for Mobile
	Object-Oriented JavaScript
	Handling Touch Events
	Getting a User’s Location
	Drawing with Canvas
	Drawing the Stop Icon
	Drawing the Play Icon
	Drawing the Playback Head

	Storing Data
	JavaScript Libraries for Mobile
	File Size
	Number of Files
	Activity
	CSS3 Support

	Summary

	JavaScript: Models, Views, and Controllers
	Cleaning Up Your Code
	MVC and a JavaScript Primer
	The Model
	The Video Source Model
	The Video Model
	The Actor Model
	The Movie Model
	Validation

	Applying Validation to Models
	Throwing and Handling Exceptions
	Strengthening the Models

	Creating New Types
	Application Utilities
	Managing the Deck
	Sending Cross-Site Requests
	Controlling the Layout and Handling Resizes

	The View
	The Movie List Item View
	The Movie List View
	The Movie View

	The Bootstrap and Controller
	The Bootstrap
	The Movies Controller
	The Favorites Controller

	Styling the Content
	Styling the Movie List
	Styling the Movie View

	Putting It All Together
	Concatenating, Minifying, and Caching
	Concatenating
	Minifying
	Caching

	Debugging with Chrome for Android
	Summary

	Testing and Deploying Your Mobile Web App
	Source Control Management
	Branching and Tagging

	Testing
	Deploying Your Application
	Continuous Integration Server
	Your First Continuous Integration Project
	Writing Your First Unit Test
	Working with Git and GitHub
	Getting to Grips with Capistrano

	Summary

	Appendix
	Listing A-1
	Listing A-2

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J, K
	L
	M
	N
	O
	P, Q
	R
	S
	T
	U
	V, W, X
	Y, Z

