
www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

CSS
Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

FOURTH EDITION

CSS
Pocket Reference

Eric A. Meyer

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

www.it-ebooks.info

http://www.it-ebooks.info

CSS Pocket Reference, Fourth Edition
by Eric A. Meyer

Copyright © 2011 O’Reilly Media, Inc. All rights reserved.
Printed in Canada.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promo-
tional use. Online editions are also available for most titles (http://my.safari
booksonline.com). For more information, contact our corporate/institutional
sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Simon St. Laurent
Production Editor: Teresa Elsey
Proofreader: Teresa Elsey
Indexer: Potomac Indexing, LLC
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
May 2001: First Edition.
July 2004: Second Edition.
October 2007: Third Edition.
July 2011: Fourth Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are
registered trademarks of O’Reilly Media, Inc. CSS Pocket Reference, the im-
ages of salmon, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear
in this book, and O’Reilly Media, Inc., was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the
publisher and authors assume no responsibility for errors or omissions, or
for damages resulting from the use of the information contained herein.

ISBN: 978-1-449-39903-0

[TM]

1310134087

www.it-ebooks.info

http://my.safaribooksonline.com/?portal=oreilly
http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://www.it-ebooks.info

Contents

Preface vii

Chapter 1: Basic Concepts 1
Adding Styles to HTML and XHTML 1
Rule Structure 5
Comments 6
Style Precedence 6
Element Classification 9
Element Display Roles 10
Basic Visual Layout 12
Floating 16
Positioning 17
Table Layout 23

Chapter 2: Values 31
Keywords 31
Color Values 32
Number Values 34
Percentage Values 34
Length Values 34
URIs 37
Angles 37

v

www.it-ebooks.info

http://www.it-ebooks.info

Times 38
Frequencies 38
Strings 38

Chapter 3: Selectors 39
Selectors 39
Structural Pseudo-Classes 45
The Negation Pseudo-Class 52
Interaction Pseudo-Classes 53
Pseudo-Elements 57
Media Queries 59

Chapter 4: Property Reference 65
Universal Values 65
Visual Media 66
Paged Media 203
Aural Media 214

Index 231

vi | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info

Preface

Cascading Style Sheets (CSS) is the W3C standard for the visual
presentation of web pages (although it can be used in other
settings as well). After a short introduction to the key concepts
of CSS, this pocket reference provides an alphabetical reference
to all CSS3 selectors, followed by an alphabetical reference to
CSS3 properties.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Used to indicate new terms, URLs, filenames, file exten-
sions, directories, commands and options, and program
names. For example, a path in the filesystem will appear
as C:\windows\system.

Constant width
Used to show the contents of files or the output from
commands.

Constant width italic
Shows text that should be replaced with user-supplied
values or by values determined by context.

vii

www.it-ebooks.info

http://www.it-ebooks.info

Using Code Examples
This book is here to help you get your job done. In general, you
may use the code in this book in your programs and docu-
mentation. You do not need to contact us for permission unless
you’re reproducing a significant portion of the code. For ex-
ample, writing a program that uses several chunks of code from
this book does not require permission. Selling or distributing
a CD-ROM of examples from O’Reilly books does require per-
mission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a
significant amount of example code from this book into your
product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution
usually includes the title, author, publisher, and ISBN. For ex-
ample: “CSS Pocket Reference by Eric A. Meyer (O’Reilly).
Copyright 2011 O’Reilly Media, Inc., 978-1-449-39903-0.”

If you feel your use of code examples falls outside fair use or
the permission given above, feel free to contact us at
permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital
library that lets you easily search over 7,500
technology and creative reference books and
videos to find the answers you need quickly.

With a subscription, you can read any page and watch any
video from our library online. Read books on your cell phone
and mobile devices. Access new titles before they are available
for print, and get exclusive access to manuscripts in develop-
ment and post feedback for the authors. Copy and paste code
samples, organize your favorites, download chapters, book-
mark key sections, create notes, print out pages, and benefit
from tons of other time-saving features.

viii | Preface

www.it-ebooks.info

mailto:permissions@oreilly.com
http://www.it-ebooks.info

O’Reilly Media has uploaded this book to the Safari Books
Online service. To have full digital access to this book and
others on similar topics from O’Reilly and other publishers,
sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Visit Eric A. Meyer’s website at http://meyerweb.com/ or follow
@meyerweb on Twitter.

Please address comments and questions concerning this book
to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, exam-
ples, and any additional information. You can access this page
at:

http://oreilly.com/catalog/9781449399030/

To comment or ask technical questions about this book, send
email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences,
and news, see our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | ix

www.it-ebooks.info

http://my.safaribooksonline.com/?portal=oreilly
http://meyerweb.com/
http://twitter.com/#!/meyerweb
http://oreilly.com/catalog/9781449399030/
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1

Basic Concepts

Adding Styles to HTML and XHTML
Styles can be applied to documents in three distinct ways, as
discussed in the following sections.

Inline Styles
In HTML and XHTML, style information can be specified for
an individual element via the style attribute. The value of a
style attribute is a declaration block (see the section “Rule
Structure” on page 5) without the curly braces:

<p style="color: red; background: yellow;">Look out!
This text is alarmingly presented!</p>

Note that, as of this writing, a full style sheet cannot be placed
into a style attribute. Only the content of a single declaration
block can be used as a style attribute value. For example, it is
not possible to place hover styles (using :hover) in a style at-
tribute, nor can one use @import in this context.

Although typical XML document languages (e.g., XHTML 1.0,
XHTML 1.1, and SVG) support the style attribute, it is
unlikely that all XML languages will support a similar capabil-
ity. Because of this and because it encourages poor authoring

1

www.it-ebooks.info

http://www.it-ebooks.info

practices, authors are generally discouraged from using the
style attribute.

Embedded Style Sheets
A style sheet can be embedded at the top of an HTML or
XHTML document using the style element, which must ap-
pear within the head element:

<html><head><title>Stylin'!</title>
<style type="text/css">
h1 {color: purple;}
p {font-size: smaller; color: gray;}
</style>
</head>
 ...
</html>

XML languages may or may not provide an equivalent capa-
bility; always check the language DTD to be certain.

External Style Sheets
Styles can be listed in a separate file. The primary advantage to
a separate file is that by collecting commonly used styles in a
single file, all pages using that style sheet can be updated by
editing a single style sheet. Another key advantage is that ex-
ternal style sheets are cached, which can help reduce band-
width usage. An external style sheet can be referenced in one
of the following three ways:

@import directive
One or more @import directives can be placed at the beginning
of any style sheet. For HTML and XHTML documents, this
would be done within an embedded style sheet:

<head><title>My Document</title>
<style type="text/css">
@import url(site.css);
@import url(navbar.css);
@import url(footer.css);
body {background: yellow;}

2 | Chapter 1: Basic Concepts

www.it-ebooks.info

http://www.it-ebooks.info

</style>
</head>

Note that @import directives can appear at the top (and, ac-
cording to the specification, only at the top) of any style sheet.
Thus, one style sheet could import another, which in turn
would import a third.

link element
In HTML and XHTML documents, the link element can be
used to associate a style sheet with a document. Multiple
link elements are permitted. The media attribute can be used
to restrict a style sheet to one or more media:

<head>
<title>A Document</title>
<link rel="stylesheet" type="text/css" href="basic.css"
 media="all">
<link rel="stylesheet" type="text/css" href="web.css"
 media="screen">
<link rel="stylesheet" type="text/css" href="paper.css"
 media="print">
</head>

It is also possible to link to alternate style sheets. If alternate
style sheets are supplied, it is up to the user agent (or the au-
thor) to provide a means for the user to select one of the
alternates:

<head>
<title>A Document</title>
<link rel="stylesheet" type="text/css" href="basic.css">
<link rel="alternate stylesheet" title="Classic"
 type="text/css" href="oldschool.css">
<link rel="alternate stylesheet" title="Futuristic"
 type="text/css" href="3000ad.css">
</head>

As of this writing, most or all known user agents load all linked
style sheets, including the alternate style sheets, regardless of
whether the user ever implements them. This can have impli-
cations for bandwidth use and server load.

Adding Styles to HTML and XHTML | 3

www.it-ebooks.info

http://www.it-ebooks.info

xml-stylesheet processing instruction
In XML documents (such as XHTML documents sent with a
mime-type of “text/xml,” “application/xml,” or “application/
xhtml+xml”), an xml-stylesheet processing instruction can be
used to associate a style sheet with a document. Any xml-style
sheet processing instructions must be placed in the prolog of
an XML document. Multiple xml-stylesheet processing in-
structions are permitted. The media pseudo-attribute can be
used to restrict a style sheet to one or more forms of media:

<?xml-stylesheet type="text/css" href="basic.css"
 media="all"?>
<?xml-stylesheet type="text/css" href="web.css"
 media="screen"?>
<?xml-stylesheet type="text/css" href="paper.css"
 media="print"?>

It is also possible to link to alternate style sheets with the xml-
stylesheet processing instruction:

<?xml-stylesheet type="text/css" href="basic.css"?>
<?xml-stylesheet alternate="yes" title="Classic"
 type="text/css" href="oldschool.css"?>
<?xml-stylesheet alternate="yes" title="Futuristic"
 type="text/css" href="3000ad.css"?>

HTTP Link headers
The last (and least common by far) way of associating an ex-
ternal style sheet with your pages is to use an HTTP Link
header. In CSS terms, this is a way of replicating the effects of
a link element using HTTP headers.

Adding a line such as this to the .htaccess file at the root level
of your server will make this happen for all pages on the site:

Header add Link
 "</style.css>;rel=stylesheet;type=text/css;media=all"

As an alternative to using .htaccess, which has been known to
cause performance hits, you can edit your httpd.conf file to
do the same thing:

<Directory /usr/local/username/httpdocs>
Header add Link

4 | Chapter 1: Basic Concepts

www.it-ebooks.info

http://www.it-ebooks.info

 "</ style.css>;rel=stylesheet;type=text/css;media=all"
</Directory>

...where /usr/local/username/httpdocs is replaced with the
UNIX pathname of your website’s actual home directory.

As of this writing, HTTP headers were not supported by all
user agents, most notably Internet Explorer and Safari. Thus,
this technique is usually limited to production environments
based on other user agents and the occasional Easter egg for
Firefox and Opera users.

Rule Structure
A style sheet consists of one or more rules that describe
how page elements should be presented. Every rule has two
fundamental parts: the selector and the declaration block.
Figure 1-1 illustrates the structure of a rule.

Figure 1-1. Rule structure

On the left side of the rule, we find the selector, which selects
the parts of the document to which the rule should be applied.
On the right side of the rule, we have the declaration block.
A declaration block is made up of one or more declarations;
each declaration is a combination of a CSS property and a
value of that property.

The declaration block is always enclosed in curly braces. A
declaration block can contain several declarations; each dec-
laration must be terminated with a semicolon (;). The excep-
tion is the final declaration in a declaration block, for which
the semicolon is optional.

Rule Structure | 5

www.it-ebooks.info

http://www.it-ebooks.info

Each property, which represents a particular stylistic parame-
ter, is separated from its value by a colon (:). Property names
in CSS are not case-sensitive. Legal values for a property
are defined by the property description. Chapter 4 provides
details on acceptable values for CSS properties.

Comments
Including comments in CSS is simple. You open with /* and
end with */, like this:

/* This is a comment! */

Comments can be multiple lines long:

/* This is a comment!
 This is a continuation of the comment.
 And so is this. */

They can also occur anywhere within a style sheet except in the
middle of a token (property name or value):

h1/* heading-level-1 */ {color /* foreground color */:
 rgba(23,58,89,0.42) /* RGB + opacity */;}

HTML (properly SGML) comments (<!-- such as this -->)
are permitted in style sheets so as to hide the styles from brows-
ers so old that they don’t understand HTML 3.2. They do
not act as CSS comments; that is, anything contained in an
HTML comment will be seen and interpreted by the CSS
parser.

Style Precedence
A single HTML or XHTML document can import and link to
multiple external style sheets, contain one or more embedded
style sheets, and make use of inline styles. In the process, it is
quite possible that some rules will conflict with one another.
CSS uses a mechanism called the cascade to resolve any such
conflicts and arrive at a final set of styles to be applied to the

6 | Chapter 1: Basic Concepts

www.it-ebooks.info

http://www.it-ebooks.info

document. Two key components of the cascade are specificity
and inheritance.

Specificity Calculations
Specificity describes the weight of a selector and any declara-
tions associated with it. The following table summarizes the
components of specificity summation.

Selector type Example Specificity

Universal selector

Combinator

*

+

0,0,0,0

Element identifier

Pseudo-element identifier

div

::first-line

0,0,0,1

Class identifier

Pseudo-class identifier

Attribute identifier

.warning

:hover

[type="checkbox"]

0,0,1,0

ID identifier #content 0,1,0,0

Inline style attribute style="color: red;" 1,0,0,0

Specificity values are cumulative; thus, a selector containing
two element identifiers and a class identifier (e.g.,
div.aside p) has a specificity of 0,0,1,2. Specificity values are
sorted in right-to-left precedence; thus, a selector containing
11 element identifiers (0,0,0,11) has a lower specificity than a
selector containing just a single class identifier (0,0,1,0).

The !important directive gives a declaration more weight than
nonimportant declarations. The declaration retains the specif-
icity of its selectors and is used only in comparison with other
important declarations.

Inheritance
The elements in a document form a treelike hierarchy with the
root element at the top and the rest of the document structure

Style Precedence | 7

www.it-ebooks.info

http://www.it-ebooks.info

spreading out below it (which makes it look more like a tree
root system, really). In an HTML document, the html element
is at the top of the tree, with the head and body elements
descending from it. The rest of the document structure de-
scends from those elements. In such a structure, elements
lower down in the tree are descendants of the ancestors, which
are higher in the tree.

CSS uses the document tree for the mechanism of inheritance,
in which a style applied to an element is inherited by its de-
scendants. For example, if the body element is set to have a
color of red, that value propagates down the document tree to
the elements that descend from the body element. Inheritance
is interrupted only by a style rule that applies directly to an
element. Inherited values have no specificity at all (which is
not the same as having zero specificity).

Note that some elements are not inherited. A property will al-
ways define whether it is inherited. Some examples of nonin-
herited properties are padding, border, margin, and background.

The Cascade
The cascade is how CSS resolves conflicts between styles; in
other words, it is the mechanism by which a user agent decides,
for example, what color to make an element when two different
rules apply to it and each one tries to set a different color. The
following steps constitute the cascade:

1. Find all declarations that contain a selector that matches
a given element.

2. Sort by explicit weight all declarations applying to the el-
ement. Those rules marked !important are given greater
weight than those that are not. Also, sort by origin all
declarations applying to a given element. There are three
origins: author, reader, and user agent. Under normal cir-
cumstances, the author’s styles win out over the reader’s
styles. !important reader styles are stronger than any other

8 | Chapter 1: Basic Concepts

www.it-ebooks.info

http://www.it-ebooks.info

styles, including !important author styles. Both author
and reader styles override the user agent’s default styles.

3. Sort by specificity all declarations applying to a given el-
ement. Those elements with a higher specificity have more
weight than those with lower specificity.

4. Sort by order all declarations applying to a given element.
The later a declaration appears in a style sheet or a docu-
ment, the more weight it is given. Declarations that appear
in an imported style sheet are considered to come before
all declarations within the style sheet that imports them,
and have a lower weight than those in the importing style
sheet.

Any presentational hints that come from non-CSS sources
(e.g., the preference dialog within a browser) are given the same
weight as the user agent’s default styles (see step 2 above).

Element Classification
Broadly speaking, CSS groups elements into two types: non-
replaced and replaced. Although the types may seem rather ab-
stract, there actually are some profound differences in how the
two types of elements are presented. These differences are
explored in detail in Chapter 7 of CSS: The Definitive Guide,
third edition (O’Reilly).

Nonreplaced Elements
The majority of HTML and XHTML elements are nonreplaced
elements, which means their content is presented by the user
agent inside a box generated by the element itself. For example,
hi there is a nonreplaced element, and the text
hi there will be displayed by the user agent. Paragraphs, head-
ings, table cells, lists, and almost everything else in HTML and
XHTML are nonreplaced elements.

Element Classification | 9

www.it-ebooks.info

http://oreilly.com/catalog/9780596527334/
http://www.it-ebooks.info

Replaced Elements
In contrast, replaced elements are those whose content is re-
placed by something not directly represented by document
content. The most familiar HTML example is the img element,
which is replaced by an image file external to the document
itself. In fact, img itself has no actual content, as we can see by
considering a simple example:

There is no content contained in the element—only an element
name and attributes. Only by replacing the element’s lack of
content with content found through other means (in this case,
loading an external image specified by the src attribute) can
the element have any presentation at all. Another example is
the input element, which may be replaced with a radio button,
checkbox, or text input box, depending on its type. Replaced
elements also generate boxes in their display.

Element Display Roles
In addition to being replaced or not, there are two basic types
of element display roles in CSS3: block-level and inline-level.
All CSS3 display values fall into one of these two categories. It
can be important to know which general role a box falls into,
since some properties only apply to one type or the other.

Block-Level
Block-level boxes are those where the element box (by default)
fills its parent element’s content area width and cannot have
other elements to its sides. In other words, block-level elements
generate “breaks” before and after the element box. The most
familiar block elements from HTML are p and div. Replaced
elements can be block-level elements but usually are not.

List items are a special case of block-level elements. In addition
to behaving in a manner consistent with other block elements,

10 | Chapter 1: Basic Concepts

www.it-ebooks.info

http://www.it-ebooks.info

they generate a marker—typically a bullet for unordered lists
or a number for ordered lists—which is “attached” to the ele-
ment box. Except for the presence of this marker, list items are
identical to other block elements.

The display values that create block boxes are: block, list-
item, table, table-row-group, table-header-group, table-
footer-group, table-row, table-column-group, table-column,
table-cell, table-caption, and (as of this writing) all CSS
Advanced Layout templates.

Inline-Level
Inline-level boxes are those where an element box is generated
within a line of text and does not break up the flow of that line.
Perhaps the best-known inline element is the a element in
HTML and XHTML. Other examples are span and em. These
elements do not generate a break before or after themselves, so
they can appear within the content of another element without
disrupting its display.

Note that although the CSS block and inline elements have a
great deal in common with HTML and XHTML block- and
inline-level elements, there is an important difference. In
HTML and XHTML, block-level elements cannot descend
from inline-level elements, whereas in CSS, there is no restric-
tion on how display roles can be nested within each other.

The display values that create inline boxes are: inline, inline-
block, inline-table, and ruby. As of this writing, it was not
explicitly defined that the various Ruby-related values (e.g.,
ruby-text) also generate inline boxes, but this seems the most
likely outcome.

Run-In
A special case is run-in boxes, defined by display: run-in,
which can generate either a block or an inline box depending
on the situation. The rules that decide the outcome are:

Element Display Roles | 11

www.it-ebooks.info

http://www.it-ebooks.info

1. If the run-in itself contains a block box, the run-in gener-
ates a block box.

2. If that’s not the case, and the run-in is immediately fol-
lowed by a sibling block box that is neither floated nor
absolutely positioned, the run-in box becomes the first
inline box of the sibling block box.

3. If neither condition applies, the run-in generates a block
box.

In the case where a run-in is inserted as the first inline of its
sibling block box (rule 2 above), it does not inherit property
values from that block box. Instead, it continues to inherit from
its structural parent element. Thus, if the sibling block box has
color: green applied to it, the green will not be inherited by
the run-in element even though it is visually a part of the block
box.

Basic Visual Layout
CSS defines algorithms for laying out any element in a docu-
ment. These algorithms form the underpinnings of visual pre-
sentation in CSS. There are two primary kinds of layout, each
with very different behaviors: block-level and inline-level
layout.

Block-Level Layout
A block-level box in CSS generates a rectangular box called the
element box, which describes the amount of space occupied by
an element. Figure 1-2 shows the various components of an
element box. The following rules apply to an element box:

• The background of the element box extends to the outer
edge of the border, thus filling the content, padding, and
border areas. If the border has any transparent portions
(e.g., it is dotted or dashed), the background will be visible
in those portions. The background does not extend into

12 | Chapter 1: Basic Concepts

www.it-ebooks.info

http://www.it-ebooks.info

the margin areas of the box. Any outlines are drawn in the
margin area and do not affect layout.

• Only the margins, height, and width of an element box
may be set to auto.

• Only margins can be given negative values.

• The padding and border widths of the element box default
to 0 (zero) and none, respectively.

• If box-sizing is content-box (the default value), the prop-
erty width defines only the width of the content area; any
padding, borders, or margins are added to it. The same is
true for height with respect to the height.

• If box-sizing is border-box, the property width defines the
total width of the content, padding, and borders; any
margins are added to it. The same is true for height with
respect to the height.

Figure 1-2. Box model details

Basic Visual Layout | 13

www.it-ebooks.info

http://www.it-ebooks.info

Inline Layout
An inline-level box in CSS generates one or more rectangular
boxes called inline boxes, depending on whether the inline box
is broken across multiple lines. The following rules apply to
inline box:

• For the properties left, right, top, bottom, margin-left,
margin-right, margin-top, and margin-bottom, any value
of auto is converted to 0 (zero).

• width and height do not apply to nonreplaced inline
boxes.

• For replaced inline boxes, the following rules apply:

— If height and width are both auto and the element has
an intrinsic width (e.g., an image), that value of width
is equal to the element’s intrinsic width. The same
holds true for height.

— If height and width are both auto and the element does
not have an intrinsic width but does have an intrinsic
height and layout ratio, then width is set to be the in-
trinsic height times the ratio.

— If height and width are both auto and the element does
not have an intrinsic height but does have an intrinsic
width and layout ratio, then height is set to be the in-
trinsic width divided by the ratio.

There are a few rules even more obscure than those last two,
which are too lengthy to include here; see http://w3.org/TR/css3
-box/#inline-replaced for details.

All inline elements have a line-height, which has a great deal
to do with how the elements are displayed. The height of a line
of text is determined by taking into account the following
factors:

Anonymous text
Any string of characters not contained within an inline
element. Thus, in the markup:

14 | Chapter 1: Basic Concepts

www.it-ebooks.info

http://w3.org/TR/css3-box/#inline-replaced
http://w3.org/TR/css3-box/#inline-replaced
http://www.it-ebooks.info

<p> I'm so happy!</p>

…the sequences “I’m ” and “ happy!” are anonymous text.
Note that the spaces are part of the anonymous text, as a
space is a character like any other.

Em-box
The em-box defined in the given font; otherwise known
as the character box. Actual glyphs can be taller or shorter
than their em-boxes, as discussed in Chapter 5 of CSS: The
Definitive Guide, third edition (O’Reilly). In CSS, the
value of font-size determines the height of each em-box.

Content area
In nonreplaced elements, the content area can be the box
described by the em-boxes of every character in the ele-
ment, strung together, or else the box described by the
character glyphs in the element. The CSS2.1 specification
allows user agents to choose either. This text uses the em-
box definition for simplicity’s sake. In replaced elements,
the content area is the intrinsic height of the element plus
any margins, borders, or padding.

Leading
The leading is the difference between the values of font-
size and line-height. Half this difference is applied to the
top and half to the bottom of the content area. These ad-
ditions to the content area are called, not surprisingly,
half-leading. Leading is applied only to nonreplaced
elements.

Inline box
The box described by the addition of the leading to the
content area. For nonreplaced elements, the height of the
inline box of an element will be equal to the value for line-
height. For replaced elements, the height of the inline box
of an element will be equal to the content area, as leading
is not applied to replaced elements.

Line box
The shortest box that bounds the highest and lowest
points of the inline boxes that are found in the line. In

Basic Visual Layout | 15

www.it-ebooks.info

http://oreilly.com/catalog/9780596527334/
http://oreilly.com/catalog/9780596527334/
http://www.it-ebooks.info

other words, the top edge of the line box will be placed
along the top of the highest inline box top, and the bottom
of the line box is placed along the bottom of the lowest
inline box bottom. (See Figure 1-3.)

Figure 1-3. Inline layout details

Floating
Floating allows an element to be placed to the left or right of
its containing block (which is the nearest block-level ancestor
element), with following content flowing around the element.
Any floated element automatically generates a block box, re-
gardless of what type of box it would generate if not floated. A
floated element is placed according to the following rules:

• The left (or right) outer edge of a floated element may not
be to the left (or right) of the inner edge of its containing
block.

• The left (or right) outer edge of a floated element must be
to the right (or left) of the right (left) outer edge of a left-
floating (or right-floating) element that occurs earlier in
the document’s source, unless the top of the later element
is below the bottom of the former.

16 | Chapter 1: Basic Concepts

www.it-ebooks.info

http://www.it-ebooks.info

• The right outer edge of a left-floating element may not be
to the right of the left outer edge of any right-floating el-
ement to its right. The left outer edge of a right-floating
element may not be to the left of the right outer edge of
any left-floating element to its left.

• A floating element’s top may not be higher than the inner
top of its containing block.

• A floating element’s top may not be higher than the top
of any earlier floating or block-level element.

• A floating element’s top may not be higher than the top
of any line box with content that precedes the floating
element.

• A left (or right) floating element that has another floating
element to its left (right) may not have its right (left) outer
edge to the right (left) of its containing block’s right (left)
edge.

• A floating element must be placed as high as possible.

• A left-floating element must be put as far to the left as
possible, and a right-floating element as far to the right as
possible. A higher position is preferred to one that is far-
ther to the right or left.

Positioning
When elements are positioned, a number of special rules come
into play. These rules govern not only the containing block of
the element, but also how it is laid out within that element.

Types of Positioning
Static positioning

The element’s box is generated as normal. Block-level el-
ements generate a rectangular box that is part of the docu-
ment’s flow, and inline-level boxes generate one or more
line boxes that flow within their parent element.

Positioning | 17

www.it-ebooks.info

http://www.it-ebooks.info

Relative positioning
The element’s box is offset by some distance. Its contain-
ing block can be considered to be the area that the element
would occupy if it were not positioned. The element re-
tains the shape it would have had were it not positioned,
and the space that the element would ordinarily have oc-
cupied is preserved.

Absolute positioning
The element’s box is completely removed from the flow
of the document and positioned with respect to its con-
taining block, which may be another element in the docu-
ment or the initial containing block (described in the next
section). Whatever space the element might have occu-
pied in the normal document flow is closed up, as though
the element did not exist. The positioned element gener-
ates a block box, regardless of the type of box it would
generate if it were in the normal flow.

Fixed positioning
The element’s box behaves as though set to absolute, but
its containing block is the viewport itself.

The Containing Block
The containing block of a positioned element is determined as
follows:

1. The containing block of the root element (also called the
initial containing block) is established by the user agent. In
HTML, the root element is the html element, although
some browsers may use body.

2. For nonroot elements, if an element’s position value is
relative or static, its containing block is formed by the
content edge of the nearest block-level, table-, cell-, or
inline-block ancestor box. Despite this rule, relatively
positioned elements are still simply offset, not positioned
with respect to the containing block described here, and
statically positioned elements do not move from their
place in the normal flow.

18 | Chapter 1: Basic Concepts

www.it-ebooks.info

http://www.it-ebooks.info

3. For nonroot elements that have a position value of
absolute, the containing block is set to the nearest ances-
tor (of any kind) that has a position value other than
static. This happens as follows:

a. If the ancestor is block-level, the containing block is
that element’s outer padding edge; in other words, it
is the area bounded by the element’s border.

b. If the ancestor is inline-level, the containing block is
set to the content edge of the ancestor. In left-to-right
languages, the top and left of the containing block are
the top and left content edges of the first box in the
ancestor, and the bottom and right edges are the bot-
tom and right content edges of the last box. In right-
to-left languages, the right edge of the containing block
corresponds to the right content edge of the first box,
and the left is taken from the last box. The top and
bottom are the same.

c. If there are no ancestors as described in 3a and 3b, the
absolutely positioned element’s containing block is
defined to be the initial containing block.

Layout of Absolutely Positioned Elements
In the following sections, these terms are used:

Shrink-to-fit
Similar to calculating the width of a table cell using the
automatic table layout algorithm. In general, the user
agent attempts to find the minimum element width that
will contain the content and wrap to multiple lines only if
wrapping cannot be avoided.

Static position
The place where an element’s edge would have been
placed if its position were static.

Positioning | 19

www.it-ebooks.info

http://www.it-ebooks.info

Horizontal layout of absolutely positioned elements
The equation that governs the layout of these elements is:

left + margin-left + border-left-width + padding-left +
width + padding-right + border-right-width +
margin-right + right + vertical scrollbar width (if any) =
width of containing block

The width of any vertical scrollbar is determined by the user
agent and cannot be affected with CSS.

For nonreplaced elements, the steps used to determine hori-
zontal layout are:

1. If all of left, width, and right are auto, first reset any
auto values for margin-left and margin-right to 0. Then,
if direction is ltr, set left to the static position and apply
the rule given in step 3c. Otherwise, set right to the static
position and apply the rule given in step 3a.

2. If none of left, width, and right is auto, pick the rule that
applies from the following list:

a. If both margin-left and margin-right are set to auto,
solve the equation under the additional constraint that
the two margins get equal values.

b. If only one of margin-left or margin-right is set to
auto, solve the equation for that value.

c. If the values are overconstrained (none is set to auto),
ignore the value for left if direction is rtl (ignore
right if direction is ltr) and solve for that value.

3. If some of left, width, and right are auto, but others are
not, reset any auto values for margin-left and margin-
right to 0. From the following list, pick the one rule that
applies:

a. If left and width are auto and right is not, the width
is shrink-to-fit. Solve the equation for left.

b. If left and right are auto and width is not, then if
direction is ltr, set left to the static position (other-
wise, set right to the static position). Solve the equa-

20 | Chapter 1: Basic Concepts

www.it-ebooks.info

http://www.it-ebooks.info

tion for left (if direction is rtl) or right (if direction
is ltr).

c. If width and right are auto and left is not, the width
is shrink-to-fit. Solve the equation for right.

d. If left is auto and width and right are not, solve the
equation for left.

e. If width is auto and left and right are not, solve the
equation for width.

f. If right is auto and left and width are not, solve the
equation for right.

For replaced elements, the steps used to determine horizontal
layout are:

1. Determine the value of width as described for inline re-
placed elements (see “Inline Layout” on page 14).

2. If both left and right are set to auto, then if direction is
ltr, set left to the static left position. If direction is rtl,
set right to the static right position.

3. If either or both of left and right are set to auto, reset any
auto values for margin-left and margin-right to 0.

4. If neither left nor right is set to auto and both margin-
left and margin-right are set to auto, solve the equation
under the additional constraint that the two margins get
equal values.

5. If the values are overconstrained (none is set to auto), ig-
nore the value for left if direction is rtl (ignore right if
direction is ltr) and solve for that value.

Vertical layout of absolutely positioned elements
The equation that governs the layout of these elements is:

top + margin-top + border-top-width + padding-top + height
+ padding-bottom + border-bottom-width + margin-bottom +
bottom + horizontal scrollbar height (if any) =
height of containing block

The height of any horizontal scrollbar is determined by the user
agent and cannot be affected with CSS.

Positioning | 21

www.it-ebooks.info

http://www.it-ebooks.info

For nonreplaced elements, the steps used to determine vertical
layout are:

1. If all of top, height, and bottom are auto, set top to the
static position and apply the rule given in step 3c.

2. If none of top, height, and bottom is auto, pick the one rule
that applies from the following list:

a. If both margin-top and margin-bottom are set to auto,
solve the equation under the additional constraint that
the two margins get equal values.

b. If only one of margin-top or margin-bottom is set to
auto, solve the equation for that value.

c. If the values are overconstrained (none is set to auto),
ignore the value for bottom and solve for that value.

3. If some of top, height, and bottom are auto, but others are
not, pick the one rule that applies from the following list:

a. If top and height are auto and bottom is not, the height
is based on the element’s content (as it would be in the
static flow). Reset any auto values for margin-top and
margin-bottom to 0 and solve the equation for top.

b. If top and bottom are auto and height is not, set top to
the static position. Reset any auto values for margin-
top and margin-bottom to 0 and solve the equation for
bottom.

c. If height and bottom are auto and top is not, the height
is based on the element’s content (as it would be in the
static flow). Reset any auto values for margin-top and
margin-bottom to 0 and solve the equation for bottom.

d. If top is auto and height and bottom are not, reset any
auto values for margin-top and margin-bottom to 0 and
solve the equation for top.

e. If height is auto and top and bottom are not, reset any
auto values for margin-top and margin-bottom to 0 and
solve the equation for height.

22 | Chapter 1: Basic Concepts

www.it-ebooks.info

http://www.it-ebooks.info

f. If bottom is auto and top and height are not, reset any
auto values for margin-top and margin-bottom to 0 and
solve the equation for bottom.

For replaced elements, the steps used to determine vertical lay-
out are:

1. Determine the value of height as described for inline re-
placed elements (see “Inline Layout” on page 14).

2. If both top and bottom are set to auto, set top to the static
top position.

3. If the values are overconstrained, ignore the value for
bottom and solve for that value.

Table Layout
The layout of tables can get quite complicated, especially be-
cause CSS defines two different ways to calculate table and cell
widths, as well as two ways to handle the borders of tables and
elements internal to the table. Figure 1-4 illustrates the com-
ponents of a table.

Table Arrangement Rules
In general, a table is laid out according to the following
principles:

• Each row box encompasses a single row of grid cells. All
of the row boxes in a table fill the table from top to bottom
in the order they occur in the source document. Thus, the
table contains as many grid rows as there are row
elements.

• A row group’s box encompasses the same grid cells as the
row boxes that it contains.

• A column box encompasses one or more columns of grid
cells. Column boxes are placed next to each other in the
order they occur. The first column box is on the left for

Table Layout | 23

www.it-ebooks.info

http://www.it-ebooks.info

left-to-right languages and on the right for right-to-left
languages.

• A column group’s box encompasses the same grid cells as
the column boxes that it contains.

• Although cells may span several rows or columns, CSS
does not define how that happens. It is instead left to the
document language to define spanning. Each spanned cell
is a rectangular box one or more grid cells wide and high.
The top row of this rectangle is in the row that is parent
to the cell. The cell’s rectangle must be as far to the left as
possible in left-to-right languages, but it may not overlap
any other cell box. It must also be to the right of all cells
in the same row that are earlier in the source document
in a left-to-right language. In right-to-left languages, a
spanned cell must be as far to the right as possible without
overlapping other cells and must be to the left of all cells
in the same row that come after it in the document
source.

• A cell’s box cannot extend beyond the last row box of a
table or row group. If the table structure causes this con-
dition, the cell must be shortened until it fits within the
table or row group that encloses it.

Fixed Table Layout
The fixed-layout model is fast because its layout doesn’t de-
pend on the contents of table cells; it’s driven by the width
values of the table, columns, and cells within the first row of
the table. The fixed-layout model uses the following simple
steps:

1. Any column element whose width property has a value
other than auto sets the width for that column.

2. If a column has an auto width, but the cell in the first row
of the table within that column has a width other than
auto, that cell sets the width for that column. If the cell

24 | Chapter 1: Basic Concepts

www.it-ebooks.info

http://www.it-ebooks.info

spans multiple columns, the width is divided equally
among the columns.

3. Any columns that are still auto-sized are sized so that their
widths are as equal as possible.

At that point, the width of the table is set to be either the value
of width for the table or the sum of the column widths, which-
ever is greater. If the table turns out to be wider than the column
widths, the difference is divided by the number of columns and
added to each of them.

Automatic Table Layout
The automatic-layout model, although not as fast as the fixed-
layout, is likely to be much more familiar to authors because
it’s substantially the same model that HTML tables have used
for years. In most current user agents, use of this model will be
triggered by a table with a width of auto, regardless of the value
of table-layout—although this is not assured.

Figure 1-4. Table layout components

Table Layout | 25

www.it-ebooks.info

http://www.it-ebooks.info

The details of the model can be expressed in the following
steps:

1. For each cell in a column, calculate both the minimum
and maximum cell width.

2. Determine the minimum width required to display the
content. In determining the minimum content width, the
content can flow to any number of lines, but it may not
stick out of the cell’s box. If the cell has a width value that
is larger than the minimum possible width, the minimum
cell width is set to the value of width. If the cell’s width
value is auto, the minimum cell width is set to the mini-
mum content width.

3. For the maximum width, determine the width required to
display the content without any line-breaking, other than
that forced by explicit line-breaking (e.g., due to the

 element). That value is the maximum cell width.

4. For each column, calculate both the minimum and max-
imum column width.

a. The column’s minimum width is determined by the
largest minimum cell width of the cells within the col-
umn. If the column has been given an explicit width
value that is larger than any of the minimum cell widths
within the column, the minimum column width is set
to the value of width.

b. For the maximum width, take the largest maximum
cell width of the cells within the column. If the column
has been given an explicit width value that is larger
than any of the maximum cell widths within the col-
umn, the maximum column width is set to the value
of width. These two behaviors recreate the traditional
HTML table behavior of forcibly expanding any col-
umn to be as wide as its widest cell.

5. In cases where a cell spans more than one column, the sum
of the minimum column widths must be equal to the min-
imum cell width for the spanning cell. Similarly, the sum
of the maximum column widths must equal the spanning

26 | Chapter 1: Basic Concepts

www.it-ebooks.info

http://www.it-ebooks.info

cell’s maximum width. User agents should divide any
changes in column widths equally among the spanned
columns.

In addition, the user agent must take into account that when
a column width has a percentage value for its width, the per-
centage is calculated in relation to the width of the table—even
though that width is not known yet. The user agent must hang
on to the percentage value and use it in the next part of the
algorithm. Once the user agent has determined how wide or
narrow each column can be, it can calculate the width of the
table. This happens as follows:

1. If the computed width of the table is not auto, the com-
puted table width is compared to the sum of all the column
widths plus any borders and cell-spacing. (Columns with
percentage widths are likely calculated at this time.) The
larger of the two values is the final width of the table. If
the table’s computed width is larger than the sum of the
column widths, borders, and cell-spacing, all columns are
increased in width by an equal amount so they fill the
computed width of the table.

2. If the computed width of the table is auto, the final width
of the table is determined by summing up the column
widths, borders, and cell-spacing. This means the table
will be only as wide as needed to display its content, just
as with traditional HTML tables. Any columns with per-
centage widths use that percentage as a constraint, but it
is a constraint that a user agent does not have to satisfy.

Once the last step is completed, then (and only then) can the
user agent actually lay out the table.

Collapsing Cell Borders
The collapsing cell model largely describes how HTML tables
have always been laid out when they have no cell-spacing. The
following rules govern this model:

Table Layout | 27

www.it-ebooks.info

http://www.it-ebooks.info

• Table elements cannot have any padding, although they
can have margins. Thus, there is never separation between
the border around the outside of the table and its outer-
most cells.

• Borders can be applied to cells, rows, row groups, col-
umns, and column groups. The table element itself can,
as always, have a border.

• There is never any separation between cell borders. In fact,
borders collapse into each other where they adjoin so that
only one of the collapsing borders is actually drawn. This
is somewhat akin to margin-collapsing, where the largest
margin wins. When cell borders collapse, the “most in-
teresting” border wins.

• Once they are collapsed, the borders between cells are
centered on the hypothetical grid lines between the cells.

Collapsing borders
When two or more borders are adjacent, they collapse into
each other, as shown in Figure 1-5. There are strict rules gov-
erning which borders will win and which will not:

1. If one of the collapsing borders has a border-style of
hidden, it takes precedence over all other collapsing bor-
ders: all borders at this location are hidden.

2. If one of the collapsing borders has a border-style of
none, it takes the lowest priority. There will be no border
drawn at this location only if all of the borders meeting at
this location have a value of none. Note that none is the
default value for border-style.

3. If at least one of the collapsing borders has a value other
than either none or hidden, narrow borders lose out to
wider ones. If two or more of the collapsing borders have
the same width, the border style is taken in the following
order, from most preferred to least: double, solid, dashed,
dotted, ridge, outset, groove, inset. Thus, if two borders
with the same width collapse and one is dashed while the
other is outset, the border at that location will be dashed.

28 | Chapter 1: Basic Concepts

www.it-ebooks.info

http://www.it-ebooks.info

4. If collapsing borders have the same style and width but
differ in color, the color used is taken from an element in
the following list, from most preferred to least: cell, row,
row group, column, column group, table. Thus, if the
borders of a cell and a column—identical in every way
except color—collapse, the cell’s border color (and style
and width) will be used. If the collapsing borders come
from the same type of element—such as two row borders
with the same style and width, but different colors—the
one farthest to the left and top wins in left-to-right lan-
guages; in right-to-left languages, the cell farthest to the
right and top wins.

Vertical Alignment Within Cells
The following describes the detailed process for aligning cell
contents within a row:

1. If any of the cells are baseline-aligned, the row’s baseline
is determined and the content of the baseline-aligned cells
is placed.

Figure 1-5. Collapsing cell borders model

Table Layout | 29

www.it-ebooks.info

http://www.it-ebooks.info

2. Any top-aligned cell has its content placed. The row now
has a provisional height, which is defined by the lowest
cell bottom of the cells that have already had their content
placed.

3. If any remaining cells are middle- or bottom-aligned, and
the content height is taller than the provisional row height,
the height of the row is increased by lowering the baseline
in order to enclose the tallest of those cells.

4. All remaining cells have their content placed. In any cell
with contents shorter than the row height, the cell’s pad-
ding is increased in order to match the height of the row.

30 | Chapter 1: Basic Concepts

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 2

Values

There are a variety of value types in CSS, most of which use
units. Combining basic value types (such as numbers) with
units (such as pixels) makes it possible to do any number of
interesting things with CSS.

Keywords
Keywords are defined on a per-property basis and have a mean-
ing specific only to a given property. For example, normal has
totally unique meanings for the properties font-variant and
letter-spacing. Keywords, like property names, are not case-
sensitive. A special case is the keyword inherit, which is al-
lowed on all properties and always has the same meaning (get
the associated property’s value from the element’s parent).
There is a second special universal keyword, initial, which is
meant to represent the initial or default value for a given prop-
erty. Thus, declaring font-family: initial would return the
browser’s preferences-based default font family. (Times, for
most people.) The status and application of initial is unclear
as of this writing and may be unreliable.

31

www.it-ebooks.info

http://www.it-ebooks.info

Color Values
#RRGGBB

This is a hex-pair notation familiar to authors using tra-
ditional HTML. In this format, the first pair of digits cor-
responds to the red level, the second pair to the green, and
the third pair to the blue. Each pair is in hexadecimal
notation in the range 00-FF. Thus, a “pure” blue is written
#0000FF, a “pure” red is written #FF0000, and so on.

#RGB
This is a shorter form of the six-digit notation described
previously. In this format, each digit is replicated to arrive
at an equivalent six-digit value; thus, #F8C becomes
#FF88CC.

rgb(rrr,ggg,bbb)
This format allows the author to use RGB values in the
range 0-255; only integers are permitted. Not coinciden-
tally, this range is the decimal equivalent of 00-FF in
hexadecimal. In this format, “pure” green is rgb
(0,255,0), and white is represented as rgb (255,255,255).

rgb(rrr.rr%,ggg.gg%,bbb.bb%)
This format allows the author to use RGB values in the
range 0% to 100%, with decimal values allowed (e.g.,
75.5%). The value for black is thus rgb (0%,0%,0%),
whereas “pure” blue is rgb (0%,0%,100%).

hsl(hhh.hh,sss.ss%,lll.ll%)
This format permits authors to specify a color by its hue
angle, saturation, and lightness (thus HSL). The hue angle
is always a unitless number in the range 0 to 360 and the
saturation and brightness values are always percentages.
Hue angles 0 and 360 are equivalent, and are both red. Hue
angles greater than 360 can be declared but they are nor-
malized to the 0–360 range; thus, setting a hue angle of
454 is equivalent to setting an angle of 94. Any HSL value,
regardless of color angle, will be rendered as a shade of
gray if the saturation value is 0%; the exact shade will de-
pend on the lightness value. Any HSL value, regardless of

32 | Chapter 2: Values

www.it-ebooks.info

http://www.it-ebooks.info

the hue angle, will be rendered solid black if lightness
is 0% and solid white if lightness is 100%. The “normal”
lightness value—that is, the value associated with most
common colors—is 50%.

rgba(rrr,ggg,bbb,a.aa)
rgba(rrr.rr%,ggg.gg%,bbb.bb%,a.aa)
hsla(hhh.hh,sss.ss%,lll.ll%,a.aa)

This extends the previous three formats to include an
alpha (opacity) value. The alpha value must be a real
number between 0 and 1 inclusive; percentages are not
permitted for the alpha value. Thus, rgba(0,0,255,0.5)
and rgba(0,0,100%,0.5) and hsla(0,100%,50%,0.5) are
equivalent half-opaque red. There is no hexadecimal no-
tation for RGBA.

<keyword>
One of 17 recognized keywords based largely on the
original Windows VGA colors. These keywords are aqua,
black, blue, fuchsia, gray, green, lime, maroon, navy, olive,
orange, purple, red, silver, teal, white, and yellow.
Browsers generally also recognize other keywords, such
as the 147 X11 color keywords documented in section 4.3
of the W3C CSS3 Color Module specification (http://www
.w3.org/TR/css3-color). The CSS3 Color Module drops
orange from the list of recognized basic keywords, but it
appears in the X11 list and all known browsers support it
for historical reasons.

currentColor
A special keyword that represents the current computed
value of the element’s color property. This means that you
could declare background-color: currentColor and set the
element’s background the same color as its foreground
(not recommended). When applied to the color property,
it is equivalent to declaring color: inherit. It can also be
used on borders; border: 1px solid is equivalent to
border: 1px solid currentColor. This can be quite useful
when (un)setting a border’s color via DOM scripting.

Color Values | 33

www.it-ebooks.info

http://www.w3.org/TR/css3-color
http://www.w3.org/TR/css3-color
http://www.it-ebooks.info

transparent
A special keyword that is a shorthand (just barely) for
rgba(0,0,0,0), which is the computed value any time
transparent is used.

Number Values
A number value is expressed as a positive or negative number
(when permitted). Numbers can be either real (represented as
<number>) or integers (<integer>). They may also restrict the
range of acceptable values, as with color values that accept only
integers in the range 0–255. A more common range restriction
is to limit a number to be non-negative. These are sometimes
represented as <non-negative number> or <non-negative
integer>.

Percentage Values
A percentage value is expressed as a <number> followed imme-
diately by a percent sign (%). There should never be any space
between the number and the percent sign. A percentage value
will always be computed relative to something else. For exam-
ple, declaring font-size: 120%; for an element sets its font size
to 120% of the computed font-size of its parent element. Some
properties may restrict the values to be non-negative.

Length Values
A length value is expressed as a positive or negative number
(when permitted), followed immediately by a two-letter ab-
breviation that represents the units to be used. There should
never be any space between the number and the unit designa-
tor. A value of 0 (zero) does not require a unit designator.
Length units are divided into two types: absolute units, which
are (in theory) always measured in the same way, and relative
units, which are measured in relation to other things.

34 | Chapter 2: Values

www.it-ebooks.info

http://www.it-ebooks.info

Absolute Length Units
Inches (in)

As you might expect, the same inches found on typical US
rulers. The mapping from inches to a monitor or other
display device is usually approximate at best because
many systems have no concept of the relation of their dis-
play areas to “real-world” measurements such as inches.
Thus, inches should be used with extreme caution in
screen design.

Centimeters (cm)
The centimeters found on rulers the world over. There are
2.54 centimeters to an inch, and 1 centimeter equals 0.394
inches. The same mapping warnings that applied to inches
also apply to centimeters.

Millimeters (mm)
There are 10 millimeters to a centimeter, so you get 25.4
millimeters to an inch, and 1 millimeter equals 0.0394
inches. Bear in mind the previous warnings about map-
ping lengths to monitors.

Points (pt)
Points are standard typographical measures used by print-
ers and typesetters for decades and by word-processing
programs for many years. By modern definition, there are
72 points to an inch. Therefore, the capital letters of text
set to 12 points should be one-sixth of an inch tall. For
example, p {font-size: 18pt;} is equivalent to p {font-
size: 0.25in;}, assuming proper mapping of lengths to
the display environment (see previous comments).

Picas (pc)
Another typographical term. A pica is equivalent to 12
points, which means there are 6 picas to an inch. The cap-
ital letters of text set to 1 pica should be one-sixth of an
inch tall. For example, p {font-size: 1.5pc;} would set
text to be the same size as the example declarations found
in the definition of points. Keep in mind previous
warnings.

Length Values | 35

www.it-ebooks.info

http://www.it-ebooks.info

Relative Length Units
Em-height (em)

This refers to the em-height of a given font. In CSS, the
em-height is equivalent to the height of the character box
for a given font, which is to say that computed value of
font-size. Ems can be used to set relative sizes for fonts;
for example, 1.2em is the same as saying 120%.

Root element em-height (rem)
This refers to the em-height of the root element (in HTML
and XHTML, the html element). Otherwise it is the same
as em.

X-height (ex)
This refers to the x-height of the font. However, the vast
majority of fonts do not include their x-height, so many
browsers approximate it (poorly) by simply setting 1ex to
be equal to 0.5em. The exception is IE5/Mac, which at-
tempts to determine the actual x-height of a font by in-
ternally bitmapping a very large “x” and counting pixels!

ZERO width (ch)
This refers to the width of a single zero (Unicode +0300,
“ZERO”) in the current font family and size.

Pixels (px)
A pixel is a small box on screen, but CSS defines pixels
more abstractly. In CSS terms, a pixel is defined to be
about the size required to yield 96 pixels per inch. Many
user agents ignore this definition in favor of simply ad-
dressing the pixels on the monitor. Scaling factors are
brought into play when page zooming or printing, where
an element 100px wide can be rendered more than 100
device dots wide.

Viewport width unit (vw)
This unit is calculated with respect to the viewport’s
width, which is divided by 100. If the viewport is 937 pix-
els wide, for example, 1vw is equal to 9.37px. If the view-
port’s width changes, say by dragging the browser

36 | Chapter 2: Values

www.it-ebooks.info

http://www.it-ebooks.info

window wider or more narrow, the value of vw changes
along with it.

Viewport height unit (vh)
This unit is calculated with respect to the viewport’s
height, which is divided by 100. If the viewport is 650
pixels tall, for example, 1vh is equal to 6.5px. If the view-
port’s height changes, say by dragging the browser win-
dow taller or shorter, the value of vh changes along with it.

Viewport minimum unit (vm)
This unit is 1/100 of the viewport’s width or height,
whichever is lesser. Thus, given a viewport that is 937 pix-
els wide by 650 pixels tall, 1vm is equal to 6.5px.

URIs
A URI value (<uri>) is a reference to a file such as a graphic or
another style sheet. CSS defines a URI as relative to the style
sheet that contains it. URI stands for Uniform Resource Iden-
tifier, which is the more recent name for URLs. (Technically,
URLs are a subset of URIs.) In CSS, which was first defined
when URIs were still called URLs, this means that references
to URIs will actually appear in the form url(<uri>). Fun!

Angles
The format of an <angle> is expressed as a <number> followed
immediately by an angle unit. There are four types of angle
units: degrees (deg), grads (grad), radians (rad), and turns
(turn). For example, a right angle could be declared as 90deg,
100grad, 1.571rad, or 0.25turn; in each case, the values are
translated into degrees in the range 0 through 360. This is also
true of negative values, which are allowed. The measure
−90deg is the same as 270deg.

Angles | 37

www.it-ebooks.info

http://www.it-ebooks.info

Times
A time value (<time>) is expressed as a non-negative <number>
followed immediately by a time unit. There are two types of
time units: seconds (s) and milliseconds (ms). Time values ap-
pear in aural styles, which are not widely supported, and in the
much better supported transitions and animations.

Frequencies
A frequency value (<frequency>) is expressed as a non-negative
<number> followed immediately by a frequency unit. There are
two types of frequency units: hertz (Hz) and kilohertz (kHz). The
unit identifiers are case-insensitive, so 6kHz and 6khz are equiv-
alent. As of this writing, frequency values are only used with
aural styles, which are not well supported.

Strings
A string (<string>) is a series of characters enclosed by either
single or double quotes. If a string needs to include the same
quote that encloses it, it must be escaped. For example, 'That
\'s amazing!' or "Deploy the \"scare quotes\" at once!". If
a newline is needed within a string, it is represented as \A,
which is the Unicode codepoint for the line feed character. Any
Unicode character can be represented using an escaped code-
point reference; thus, a left curly double quotation mark is
represented \201C. If a string does contain a linefeed for legi-
bility reasons, it must be escaped and will be removed when
processing the string.

38 | Chapter 2: Values

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 3

Selectors

Selectors

Universal Selector

Pattern:
*

Description:
This selector matches any element name in the document’s lan-
guage. If a rule does not have an explicit selector, the universal
selector is inferred.

Examples:
* {color: red;}
div * p {color: blue;}

Type Selector

Pattern:
element1

39

www.it-ebooks.info

http://www.it-ebooks.info

Description:
This selector matches the name of an element in the document’s
language. Every instance of the element name is matched. (CSS1
referred to these as “element selectors.”)

Examples:
body {background: #FFF;}
p {font-size: 1em;}

Descendant Selector

Pattern:
element1 element2

Description:
This allows the author to select an element based on its status as
a descendant of another element. The matched element can be a
child, grandchild, great-grandchild, etc., of the ancestor element.
(CSS1 referred to these as “contextual selectors.”)

Examples:
body h1 {font-size: 200%;}
table tr td div ul li {color: purple;}

Child Selector

Pattern:
element1 > element2

Description:
This type of selector is used to match an element based on its status
as a child of another element. It is more restrictive than a descendant
selector, as only a child will be matched.

Examples:
div > p {color: cyan;}
ul > li {font-weight: bold;}

40 | Chapter 3: Selectors

www.it-ebooks.info

http://www.it-ebooks.info

Adjacent Sibling Selector

Pattern:
element1 + element2

Description:
This allows the author to select an element that is the following
adjacent sibling of another element. (Sibling elements, as the name
implies, share the same parent element.) Any text between the two
elements is ignored; only elements and their positions in the docu-
ment tree are considered.

Examples:
table + p {margin-top: 2.5em;}
h1 + * {margin-top: 0;}

General Sibling Selector

Pattern:
element1 ~ element2

Description:
This allows the author to select an element that is a sibling of an-
other element and follows it in the document tree. Any text or other
elements between the two elements are ignored; only elements and
their positions in the document tree are considered.

Examples:
h1 ~ h2 {margin-top: 2.5em;}
div#navlinks ~ div {margin-top: 0;}

Class Selector

Pattern:
element1.classname
element1.classname1.classname2

Selectors | 41

www.it-ebooks.info

http://www.it-ebooks.info

Description:
In languages that permit it, such as HTML, XHTML, SVG, and
MathML, a class selector using “dot notation” can be used to select
elements that have a class attribute containing a specific value or
values. The name of the class value must immediately follow the
dot. Multiple class values can be chained together, although there
are support problems in Internet Explorer previous to IE7. If no
element name precedes the dot, the selector matches all elements
bearing that class value or values.

Examples:
p.urgent {color: red;}
a.external {font-style: italic;}
.example {background: olive;}
.note.caution {background: yellow;}

Note:
Internet Explorer previous to IE7 does not support the chained se-
lector syntax, though it does permit multiple words in class values
in the markup.

ID Selector

Pattern:
element1#idname

Description:
In languages that permit it, such as HTML or XHTML, an ID
selector using “hash notation” can be used to select elements that
have an ID containing a specific value or values. The name of the
ID value must immediately follow the octothorpe (#). If no element
name precedes the octothorpe, the selector matches all elements
containing that ID value.

Examples:
h1#page-title {font-size: 250%;}
body#home {background: silver;}
#example {background: lime;}

42 | Chapter 3: Selectors

www.it-ebooks.info

http://www.it-ebooks.info

Simple Attribute Selector

Pattern:
element1[attr]

Description:
This allows authors to select any element based on the presence of
an attribute, regardless of the attribute’s value.

Examples:
a[rel] {border-bottom: 3px double gray;}
p[class] {border: 1px dotted silver;}

Exact Attribute Value Selector

Pattern:
element1[attr="value"]

Description:
This allows authors to select any element based on the precise and
complete value of an attribute.

Examples:
a[rel="Start"] {font-weight: bold;}
p[class="urgent"] {color: red;}

Partial Attribute Value Selector

Pattern:
element1[attr~="value"]

Description:
This allows authors to select any element based on a portion of the
space-separated value of an attribute. Note that [class~="value"]
is equivalent to .value (see above).

Selectors | 43

www.it-ebooks.info

http://www.it-ebooks.info

Examples:
a[rel~="friend"] {text-transform: uppercase;}
p[class~="warning"] {background: yellow;}

Beginning Substring Attribute Value Selector

Pattern:
element1[attr^="substring"]

Description:
This allows authors to select any element based on a substring at
the very beginning of an attribute’s value.

Examples:
a[href^="/blog"] {text-transform: uppercase;}
p[class^="test-"] {background: yellow;}

Ending Substring Attribute Value Selector

Pattern:
element1[attr$="substring"]

Description:
This allows authors to select any element based on a substring at
the very end of an attribute’s value.

Example:
a[href$=".pdf"] {font-style: italic;}

Arbitrary Substring Attribute Value Selector

Pattern:
element1[attr*="substring"]

44 | Chapter 3: Selectors

www.it-ebooks.info

http://www.it-ebooks.info

Description:
This allows authors to select any element based on a substring
found anywhere within an attribute’s value.

Examples:
a[href*="oreilly.com"] {font-weight: bold;}
div [class*="port"] {border: 1px solid red;}

Language Attribute Selector

Pattern:
element1[lang|="lc"]

Description:
This allows authors to select any element with a lang attribute
whose value is a hyphen-separated list of values, starting with the
value provided in the selector.

Example:
html[lang|="tr"] {color: red;}

Structural Pseudo-Classes
Strictly speaking, all pseudo-classes (like all selectors) are
structural: they are, after all, dependent on document structure
in some fashion. What sets the pseudo-classes listed here apart
is that they are intrinsically about patterns found in the struc-
ture of the document, like selecting every other paragraph or
elements that are the last children of their parent element.

:empty

Applies to:
Any element

Structural Pseudo-Classes | 45

www.it-ebooks.info

http://www.it-ebooks.info

Description:
Matches elements that have no child nodes; that is, no child ele-
ments or content nodes. Content nodes are defined as any text,
whitespace, entity reference, or CDATA nodes. Thus, <p> </p> is
not empty; nor is the element empty if the space is replaced with a
newline. Note that this pseudo-class does not apply to empty ele-
ments such as br, img, input, and so on.

Examples:
p:empty {padding: 1em; background: red;}
li:empty {display: none;}

:first-child

Applies to:
Any element

Description:
Matches an element when it is the first child of another element.
Thus, div:first-child will select any div that is the first child of
another element, not the first child element of any div.

Examples:
td:first-child {border-left: 1px solid;}
p:first-child {text-indent: 0; margin-top: 2em;}

:first-of-type

Applies to:
Any element

Description:
Matches an element when it is the first child of its type of another
element. Thus, div:first-of-type will select any div that is the first
child div of another element.

46 | Chapter 3: Selectors

www.it-ebooks.info

http://www.it-ebooks.info

Examples:
td:first-of-type {border-left: 1px dotted;}
h2:first-of-type {color: fuchsia;}

:lang

Applies to:
Any element with associated language-encoding information.

Description:
This matches elements based on their human-language encoding.
Such language information must be contained within or otherwise
associated with the document; it cannot be assigned from CSS. The
handling of :lang is the same as for |= attribute selectors. For ex-
ample, in an HTML document, the language of an element is de-
termined by its lang attribute. If the document does not have one,
the language of an element is determined by the lang attribute of its
nearest ancestor that does have one, and lacking that, by the
Content-Language HTTP header response field (or the respective
meta http-equiv) for the document.

Examples:
html:lang(en) {background: silver;}
*:lang(fr) {quotes: '« ' ' »';}

:last-child

Applies to:
Any element

Description:
Matches an element when it is the last child of another element.
Thus, div:last-child will select any div that is the last child of
another element, not the last child element of any div.

Examples:
td:last-child {border-right: 1px solid;}
p:last-child {margin-bottom: 2em;}

Structural Pseudo-Classes | 47

www.it-ebooks.info

http://www.it-ebooks.info

:last-of-type

Applies to:
Any element

Description:
Matches an element when it is the last child of its type of another
element. Thus, div:last-of-type will select any div that is the last
child div of another element.

Examples:
td:last-of-type {border-right: 1px dotted;}
h2:last-of-type {color: fuchsia;}

:nth-child(an+b)

Applies to:
Any element

Description:
Matches every nth child with the pattern of selection defined by the
formula an+b, where a and b are <integer>s and n represents an
infinite series of integers, counting forward from the first child.
Thus, to select every fourth child of the body element, starting with
the first child, you write body > *:nth-child(4n+1). This will select
the first, fifth, ninth, fourteenth, and so on children of the body. If
you literally wish to select the fourth, eighth, twelfth, and so on
children, you would modify the selector to body > *:nth-
child(4n). It is also possible to have b be negative, so that body >
*:nth-child(4n-1) selects the third, seventh, eleventh, fifteenth,
and so on children of the body.

In place of the an+b formula, there are two keywords permitted:
even and odd. These are equivalent to 2n and 2n+1, respectively.

Examples:
*:nth-child(4n+1) {font-weight: bold;}
tbody tr:nth-child(odd) {background-color: #EEF;}

48 | Chapter 3: Selectors

www.it-ebooks.info

http://www.it-ebooks.info

:nth-last-child(an+b)

Applies to:
Any element

Description:
Matches every nth child with the pattern of selection defined by the
formula an+b, where a and b are <integer>s and n represents an
infinite series of integers, counting backward from the last child.
Thus, to select every fourth-to-last child of the body element, start-
ing with the last child, you write body > *:nth-last-child(4n+1).
This is in effect the mirror image of :nth-child.

In place of the an+b formula, there are two keywords permitted:
even and odd. These are equivalent to 2n and 2n+1, respectively.

Examples:
*:nth-last-child(4n+1) {font-weight: bold;}
tbody tr:nth-last-child(odd) {background-color: #EEF;}

:nth-last-of-type(an+b)

Applies to:
Any element

Description:
Matches every nth child that is of the same type as the element
named, with the pattern of selection defined by the formula an+b,
where a and b are <integer>s and n represents an infinite series of
integers, counting backward from the last such element. Thus, to
select every third-to-last paragraph (p) that is a child of the body
element, starting with the first such paragraph, you write body >
p:nth-last-of-type(3n+1). This holds true even if other elements
are interspersed between the various paragraphs, such as lists,
tables, or other elements.

In place of the an+b formula, there are two keywords permitted:
even and odd. These are equivalent to 2n and 2n+1, respectively.

Structural Pseudo-Classes | 49

www.it-ebooks.info

http://www.it-ebooks.info

Examples:
td:nth-last-of-type(even) {background-color: #FCC;}
img:nth-last-of-type(3n) {float: left; border: 2px solid;}

:nth-of-type(an+b)

Applies to:
Any element

Description:
Matches every nth child that is of the same type as the element
named, with the pattern of selection defined by the formula an+b,
where a and b are <integer>s and n represents an infinite series of
integers, counting forward from the first such element. Thus, to
select every third paragraph (p) that is a child of the body element,
starting with the first such paragraph, you write body > p:nth-of-
type(3n+1). This will select the first, fourth, seventh, tenth, and so
on child paragraphs of the body. This holds true even if other ele-
ments are interspersed between the various paragraphs, such as
lists, tables, or other elements.

In place of the an+b formula, there are two keywords permitted:
even and odd. These are equivalent to 2n and 2n+1, respectively.

Examples:
td:nth-of-type(even) {background-color: #FCC;}
img:nth-of-type(3n) {float: right; margin-left: 1em;}

:only-child

Applies to:
Any element

Description:
Matches an element that is the only child element of its parent ele-
ment. A common use case for this selector is to remove the border
from any linked image, assuming that said image is the only element
in the link. Note that an element can be selected by :only-child

50 | Chapter 3: Selectors

www.it-ebooks.info

http://www.it-ebooks.info

even if it has its own child or children. It must only be the only child
of its parent.

Examples:
a img:only-child {border: 0;}
table div:only-child {margin: 5px;}

:only-of-type

Applies to:
Any element

Description:
Matches an element that is the only child element of its type to its
parent element. Note that an element can be selected by :only-of-
type even if it has its own child or children of its own type (such as
divs within a div). It must only be the only child of its type to its
parent.

Examples:
p em:only-of-type {font-weight: bold;}
section article:only-of-type {margin: 2em 0 3em;}

:root

Applies to:
The root element

Description:
This matches the document’s root element, which in HTML and
XHTML is always the html element. In XML formats, the root ele-
ment can have any name; thus, a generic root-element selector is
needed.

Examples:
:root {font: medium serif;}
:root > * {margin: 1.5em 0;}

Structural Pseudo-Classes | 51

www.it-ebooks.info

http://www.it-ebooks.info

The Negation Pseudo-Class
There is but one pseudo-class that handles negation, but it is
so unique that it deserves its own subsection.

:not(e)

Applies to:
Any element

Description:
Matches every element that is not described by the simple selector
e. This allows authors to select, say, every element that is not a
paragraph by stating *:not(p). More usefully, negation can be used
within the context of descendant selectors. An example of this
would be selecting every element within a table that was not a
data cell using table *:not(td). Another example would be selecting
every element with an ID that was not “search” by using
[id]:not([id="search"]).

Note that there is one exception to the “simple selector” definition
of e: it cannot be a negation pseudo-class. That is, it is impermissible
to write :not(:not(div)). This is no great loss, since the equivalent
of that would be div.

Because :not() is a pseudo-class, it can be chained with other
pseudo-classes as well as with instances of itself. For example, to
select any focused element that isn’t an a element, use
*:focus:not(a). To select any element that isn’t either a paragraph
or a div, use *:not(p):not(div).

As of mid-2011, the “simple selector” restriction means that
grouped and descendant selectors are not permitted within :not()
expressions. This restriction is likely to be loosened or eliminated
in future versions of the CSS Selectors module.

Examples:
ul *:not(li) {text-indent: 2em;}
fieldset *:not([type="checkbox"]):not([type="radio"])
 {margin: 0 1em;}

52 | Chapter 3: Selectors

www.it-ebooks.info

http://www.it-ebooks.info

Interaction Pseudo-Classes
The pseudo-classes listed here are all related to the user’s in-
teraction with the document: whether styling different link
states, highlighting an element that’s the target of a fragment
identifier, or styling form elements based on their being ena-
bled or disabled.

:active

Applies to:
An element that is being activated

Description:
This applies to an element during the period in which it is being
activated. The most common example is clicking on a hyperlink in
an HTML document: while the mouse button is being held down,
the link is active. There are other ways to activate elements, and
other elements can in theory be activated, although CSS doesn’t
define them.

Examples:
a:active {color: red;}
*:active {background: blue;}

:checked

Applies to:
Any element

Description:
Matches any user interface element that has been “toggled on,” such
as a checked checkbox or a filled radio button.

Examples:
input:checked {outline: 3px solid rgba(127,127,127,0.5);}
input[type="checkbox"]:checked {box-shadow: red 0 0 5px;}

Interaction Pseudo-Classes | 53

www.it-ebooks.info

http://www.it-ebooks.info

:disabled

Applies to:
Any element

Description:
Matches user interface elements that are not able to accept user
input because of language attributes or other nonpresentational
means; for example, <input type="text" disabled> in HTML5.
Note that :disabled does not apply when an input element has
simply been removed from the viewport with properties like posi
tion or display.

Examples:
input:disabled {opacity: 0.5;}

:enabled

Applies to:
Any element

Description:
Matches user interface elements that are able to accept user input
and that can be set to “enabled” and “disabled” states through the
markup language itself. This includes any form input element in
(X)HTML, but does not include hyperlinks.

Examples:
input:enabled {background: #FCC;}

:focus

Applies to:
An element that has focus

54 | Chapter 3: Selectors

www.it-ebooks.info

http://www.it-ebooks.info

Description:
This applies to an element during the period in which it has focus.
One example from HTML is an input box that has the text-input
cursor within it such that when the user starts typing, text will be
entered into that box. Other elements, such as hyperlinks, can also
have focus; however, CSS does not define which elements may have
focus.

Examples:
a:focus {outline: 1px dotted red;}
input:focus {background: yellow;}

Note:
:focus support in Internet Explorer applies only to hyperlinks and
does not extend to form controls.

:hover

Applies to:
An element that is in a hovered state

Description:
This applies to an element during the period in which it is being
hovered (when the user is designating an element without activating
it). The most common example of this is moving the mouse pointer
inside the boundaries of a hyperlink in an HTML document. Other
elements can in theory be hovered, although CSS doesn’t define
which ones.

Examples:
a[href]:hover {text-decoration: underline;}
p:hover {background: yellow;}

Note:
:hover support in Internet Explorer applies only to hyperlinks in
versions previous to IE7.

Interaction Pseudo-Classes | 55

www.it-ebooks.info

http://www.it-ebooks.info

:link

Applies to:
A hyperlink to another resource that has not been visited

Description:
This applies to a link to a URI that has not been visited; that is, the
URI to which the link points does not appear in the user agent’s
history. This state is mutually exclusive with the :visited state.

Examples:
a:link {color: blue;}
*:link {text-decoration: underline;}

:target

Applies to:
Any element

Description:
Matches an element which is itself matched by the fragment iden-
tifier portion of the URI used to access the page. Thus, http://
www.w3.org/TR/css3-selectors/#target-pseudo would be matched
by :target and would apply the declared styles to any element with
the id of target-pseudo. If that element was a paragraph, it would
also be matched by p:target.

Examples:
:target {background: #EE0;}

:visited

Applies to:
A hyperlink to another resource that has already been visited

56 | Chapter 3: Selectors

www.it-ebooks.info

http://www.it-ebooks.info

Description:
This applies to a link to a URI that has been visited; that is, the URI
to which the link points appears in the user agent’s history. This
state is mutually exclusive with the :link state.

Examples:
a:visited {color: purple;}
*:visited {color: gray;}

Pseudo-Elements
In CSS1 and CSS2, pseudo-elements were preceded by single
colons, just as pseudo-classes were. In CSS3, pseudo-elements
use double colons to distinguish them from pseudo-classes.
For historical reasons, browsers will support both single- and
double-colons on pseudo-elements, but the double-colon
syntax is recommended.

::after

Generates:
A pseudo-element containing generated content placed after the
content in the element

Description:
This allows the author to insert generated content at the end of an
element’s content. By default, the pseudo-element is inline, but it
can be changed using the property display.

Examples:
a.external:after {content: " " url(/icons/globe.gif);}
p:after {content: " | ";}

Pseudo-Elements | 57

www.it-ebooks.info

http://www.it-ebooks.info

::before

Generates:
A pseudo-element containing generated content placed before the
content in the element

Description:
This allows the author to insert generated content at the beginning
of an element’s content. By default, the pseudo-element is inline,
but that can be changed using the property display.

Examples:
a[href]:before {content: "[LINK] ";)
p:before {content: attr(class);}
a[rel|="met"]:after {content: " *";}

::first-letter

Generates:
A pseudo-element that contains the first letter of an element

Description:
This is used to style the first letter of an element. Any leading punc-
tuation should be styled along with the first letter. Some languages
have letter combinations that should be treated as a single character,
and a user agent may apply the first letter style to both. Prior to
CSS2.1, :first-letter could be attached only to block-level ele-
ments. CSS2.1 expanded its scope to include block, list-item, table-
call, table caption, and inline-block elements. There is a limited set
of properties that can apply to a first letter.

Examples:
h1:first-letter {font-size: 166%;}
p:first-letter {text-decoration: underline;}

58 | Chapter 3: Selectors

www.it-ebooks.info

http://www.it-ebooks.info

::first-line

Generates:
A pseudo-element that contains the first formatted line of an
element

Description:
This is used to style the first line of text in an element, regardless of
how many or how few words may appear in that line. :first-line
can be attached only to block-level elements. There is a limited set
of properties that can apply to a first line.

Example:
p.lead:first-line {font-weight: bold;}

Media Queries
With media queries, an author can define the media environ-
ment in which a given style sheet is used by the browser. In the
past, this was handled by setting media types with the media
attribute on link elements or the media descriptor on
@import declarations. Media queries take this concept several
steps further by allowing authors to choose style sheets based
on the features of a given media type.

Basic Concepts
The placement of media queries will be very familiar to any
author who has ever set a media type. Here are two ways of
applying an external style sheet when rendering the document
on a color printer:

<link href="print-color.css" type="text/css"
 media="print and (color)" rel="stylesheet">

@import url(print-color.css) print and (color);

Media Queries | 59

www.it-ebooks.info

http://www.it-ebooks.info

Anywhere a media type can be used, a media query can be used.
This means that it is possible to list more than one query in a
comma-separated list:

<link href="print-color.css" type="text/css"
 media="print and (color), projection and (color)"
 rel="stylesheet">

@import url(print-color.css) print and (color),
 projection and (color);

In any situation where one of the media queries evaluates to
“true,” the associated style sheet is applied. Thus, given the
previous @import, print-color.css will be applied if rendering
to a color printer or a color projection environment. If printing
on a black-and-white printer, both queries will evaluate to
“false” and print-color.css will not be applied to the docu-
ment. The same holds for any screen medium, a grayscale pro-
jection environment, an aural media environment, and so
forth.

Each query is composed of a media type and one or more listed
media features. Each media feature is enclosed in parentheses,
and multiple features are linked with the and keyword. There
are two logical keywords in media queries:

and
Links together two or more media features in such a way
that all of them must be true for the query to be true.
For example, (color) and (orientation: landscape) and
(min-device-width: 800px) means that all three condi-
tions must be satisfied: if the media environment has
color, is in landscape orientation, and the device’s display
is at least 800 pixels wide, the style sheet is used.

not
Negates the entire query so that if all of the conditions are
true, the style sheet is not applied. For example, not
(color) and (orientation: landscape) and (min-device-
width: 800px) means that if the three conditions are
satisfied, the statement is negated. Thus, if the media en-
vironment has color, is in landscape orientation, and the

60 | Chapter 3: Selectors

www.it-ebooks.info

http://www.it-ebooks.info

device’s display is at least 800 pixels wide, the style sheet
is not used. In all other cases, it will be used. Note that the
not keyword can only be used at the beginning of a media
query. It is not legal to write something like (color) and
not (mid-device-width: 800px). In such cases, the query
will be ignored. Note also that browsers too old to under-
stand media queries will always skip a style sheet whose
media descriptor starts with not.

There is no or keyword for use within a given query. The com-
mas that separate a list of queries do serve the function of an
or—screen, print means “apply if the media is screen or
print.” Thus, instead of screen and (max-color: 2) or (mono
chrome), which is invalid and thus ignored, you should write
screen and (max-color: 2), screen and (monochrome).

There is one more keyword, only, which is designed to create
deliberate backward incompatibility.

only
Used to hide a style sheet from browsers too old to un-
derstand media queries. For example, to apply a style
sheet in all media, but only in those browsers that under-
stand media queries, you write something like @import
url(new.css) only all. In browsers that do understand
media queries, the only keyword is ignored. Note that the
only keyword can only be used at the beginning of a media
query.

Media Query Values
There are two new value types introduced by media queries,
which (as of early 2011) are not used in any other context.

<ratio>
A ratio value is two positive <integer> values separated
by a solidus (/) and optional whitespace. The first value
refers to the width, and the second to the height. Thus, to
express a width-to-height ratio of 16:9, you can write
16/9 or 16 / 9.

Media Queries | 61

www.it-ebooks.info

http://www.it-ebooks.info

<resolution>
A resolution value is a positive <integer> followed by ei-
ther of the unit identifiers dpi or dpcm. As usual, white-
space is not permitted between the <integer> and the
identifier.

Media Features
Note that none of the following values can be negative.

width, min-width, max-width
Values: <length>

Refers to the width of the display area of the user agent.
In a screen-media web browser, this is the width of the
viewport plus any scrollbars. In paged media, this is the
width of the page box. Thus, (min-width: 850px) applies
when the viewport is greater than 850 pixels wide.

device-width, min-device-width, max-device-width
Values: <length>

Refers to the width of the complete rendering area of the
output device. In screen media, this is the width of the
screen. In paged media, this is the width of the page. Thus,
(max-device-width: 1200px) applies when the device’s
output area is less than 1200 pixels wide.

height, min-height, max-height
Values: <length>

Refers to the height of the display area of the user agent.
In a screen-media web browser, this is the height of the
viewport plus any scrollbars. In paged media, this is the
height of the page box. Thus, (height: 567px) applies
when the viewport’s height is precisely 567 pixels tall.

device-height, min-device-height, max-device-height
Values: <length>

Refers to the height of the complete rendering area of the
output device. In screen media, this is the height of the
screen. In paged media, this is the height of the page. Thus,
(max-device-height: 400px) applies when the device’s
output area is less than 400 pixels tall.

62 | Chapter 3: Selectors

www.it-ebooks.info

http://www.it-ebooks.info

aspect-ratio, min-aspect-ratio, max-aspect-ratio
Values: <ratio>

Refers to the ratio that results from comparing the width
media feature to the height media feature (see the defini-
tion of <ratio>). Thus, (min-aspect-ratio: 2/1) applies
to any viewport whose width-to-height ratio is at least 2:1.

device-aspect-ratio, min-device-aspect-ratio, max-device-
aspect-ratio
Values: <length>

Refers to the ratio that results from comparing the device-
width media feature to the device-eight media feature (see
the definition of <ratio>). Thus, (device-aspect-ratio:
16/9) applies to any output device whose display area
width-to-height is exactly 16:9.

color, min-color, max-color
Values: <integer>

Refers to the presence of color-display capability in the
output device, with an optional number representing the
number of bits used in each color component. Thus,
(color) applies to any device with any color depth at all,
whereas (min-color: 4) means there must be at least four
bits used per color component. Any device that does not
support color will return 0.

color-index, min-color-index, max-color-index
Values: <integer>

Refers to the total number of colors available in the output
device’s color lookup table. Any device that does not use
a color lookup table will return 0. Thus, (min-color-
index: 256) applies to any device with a minimum of 256
colors available.

monochrome, min-monochrome, max-monochrome
Values: <integer>

Refers to the presence of a monochrome display, with an
optional number of bits-per-pixel in the output device’s
frame buffer. Any device that is not monochrome will re-
turn 0. Thus, (monochrome) applies to any monochrome
output device, whereas (min-monochrome: 2) means any

Media Queries | 63

www.it-ebooks.info

http://www.it-ebooks.info

monochrome output device with a minimum of 2 bits per
pixel in the frame buffer.

resolution, min-resolution, max-resolution
Values: <resolution>

Refers to the resolution of the output device in terms of
pixel density, measured in either dots-per-inch (dpi) or
dots-per-centimeter (dpcm). If an output device has pixels
that are not square, the least dense axis is used; for exam-
ple, if a device is 100dpcm along one axis and 120dpcm
along the other, 100 is the value returned. Additionally, a
bare resolution feature query can never match (though
min-resolution and max-resolution can).

orientation
Values: portrait | landscape

Refers to the output device’s total output area, where
portrait is returned if the media feature height is equal to
or greater than the media feature width. Otherwise, the
result is landscape.

scan
Values: progressive | interlace

Refers to the scanning process used in an output device
with a media type of tv.

grid
Values: 0 | 1

Refers to the presence (or absence) of a grid-based output
device, such as a tty terminal. A grid-based device will
return 1; otherwise, 0 is returned.

64 | Chapter 3: Selectors

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 4

Property Reference

Universal Values
Any user agent that has fully implemented the “cascading
and inheritance” module will honor the values inherit and
initial on all properties. In practice (as of mid-2011), support
for inherit is much more widespread than initial.

inherit
Forces the value for the property to be inherited from the
element’s parent element, even if the property in question
is not inherited (e.g., background-image). Another way to
think of this is that the value is copied from the parent
element.

initial
Forces the value of the property to be the initial value
defined by the relevant CSS module. For example, font-
style: initial sets the value of font-style to normal
regardless of the font-style value that would have been
inherited from the parent element. In cases where the in-
itial value is defined as determined by the user agent, such
as font-size, the value is set to the “default” defined by
the user agent’s preferences.

65

www.it-ebooks.info

http://www.it-ebooks.info

Visual Media

animation

Values:
[<animation-parameters>] [, [<animation-parameters>]]*

Expansions:
<animation-parameters>

<'animation-name'> || <'animation-duration'> || <'animation-
timing-function'> || <'animation-delay'> || <'animation-iteration-
count'> || <'animation-direction'>

Initial value:
Refer to individual properties

Applies to:
Block-level and inline-level elements

Inherited:
No

Computed value:
Same as declared value

Description:
A shorthand property encompassing all the aspects of one or more
comma-separated CSS animations. The parts of the value can occur
in any order. As a result, beware possible ambiguity in the delay and
duration values. As of this writing, it is most likely that the first time
value will be taken to define the duration and the second to define
the delay, but this cannot be guaranteed.

Examples:
div#slide {animation: 'slide' 2.5s linear 0 1 normal;}
h1 {animation: 'bounce' 0.5s 0.33s
 ease-in-out infinite alternate;}

66 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

animation-delay

Values:
<time> [, <time>]*

Initial value:
0ms

Applies to:
Block-level and inline-level elements

Inherited:
No

Computed value:
Same as declared value

Description:
Defines the amount of time that the user agent waits before starting
the CSS animation(s). The timer starts when the UA applies the
animation CSS. For a noninteractive element, this is likely (but not
guaranteed) to be at the end of page load.

Examples:
body {animation-delay: 1s, 2000ms, 4s;}
a:hover {animation-delay: 400ms;}

Note:
As of mid-2011, the actual default value in the specification is 0. It
is given as 0ms here for clarity’s sake, as only length values and
numbers are permitted unitless zeroes.

animation-direction

Values:
normal | alternate [, normal | alternate]*

Visual Media | 67

www.it-ebooks.info

http://www.it-ebooks.info

Initial value:
normal

Applies to:
Block-level and inline-level elements

Inherited:
No

Computed value:
Same as declared value

Description:
Specifies whether a CSS animation with more than one cycle (see
animation-iteration-count) should always go the same direction
or should reverse direction on every other cycle. For example, an
alternate animation that moves an element 300 pixels to the right
would move it 300 pixels to the left on every other cycle, thus re-
turning it to its starting position. Setting that same animation to
normal would cause the element to move 300 pixels right, then jump
back to its starting place and move 300 pixels right again, and over
and over until the animation stops (assuming it ever does).

Examples:
body {animation-direction: alternate, normal, normal;}
#scanner {animation-direction: normal;}

animation-duration

Values:
<time> [, <time>]*

Initial value:
0ms

Applies to:
Block-level and inline-level elements

68 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

Inherited:
No

Computed value:
Same as declared value

Description:
Defines the length of time it should take for each cycle of a CSS
animation to run from start to finish. Therefore, in animations with
only one cycle, it defines the total time of the animation. The default
value, 0ms, means that there will be no animation besides moving
the element from its start state to its end state. Negative values are
converted to 0ms.

Examples:
h1 {animation-duration: 10s, 5s, 2.5s, 1250ms;}
.zip {animation-duration: 90ms;}

Note:
As of mid-2011, the actual default value in the specification is 0. It
is given as 0ms here for clarity’s sake, as only length values and
numbers are permitted unitless zeroes.

animation-iteration-count

Values:
infinite | <number> [, infinite | <number>]*

Initial value:
1

Applies to:
Block-level and inline-level elements

Inherited:
No

Visual Media | 69

www.it-ebooks.info

http://www.it-ebooks.info

Computed value:
Same as declared value

Description:
Defines the number of cycles in the animation(s). The initial value,
1, means that the animation will run exactly once, going from the
start state to the end state. A fractional value (e.g., 2.75) means the
animation will be halted midway through its final cycle. A value of
0 means that there will be no animation; negative values are con-
verted to 0. As its name implies, infinite means the animation will
never end. Use with caution.

Examples:
body {animation-iteration-count: 2, 1, 7.5875;}
ol.dance {animation-iteration-count: infinite;}

animation-name

Values:
none | IDENT [, none | IDENT]*

Initial value:
none

Applies to:
Block-level and inline-level elements

Inherited:
No

Computed value:
Same as declared value

Description:
Defines the declared name(s) of CSS animation(s). Each IDENT
refers to a CSS animation keyframe at-rule. If an IDENT has not
been declared or the keyword none is supplied, the animation is not
run regardless of the values of any other animation properties. For

70 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

example, given animation-name: 'bounce', none, 'jumper'; and
that the animation name jumper has not been defined, the first ani-
mation will run but the second and third will not.

Examples:
html {animation-name: 'turn', 'slide', none;}
h2 {animation-name: 'flip';}

animation-play-state

Values:
running | paused [, running | paused]*

Initial value:
running

Applies to:
Block-level and inline-level elements

Inherited:
No

Computed value:
Same as declared value

Description:
Defines the run state of one or more CSS animations. The default
state of running is the most useful in static CSS environments, but
it can be used to easily stop or start animations via DOM scripting
or interactive CSS (e.g., :hover).

Examples:
pre {animation-play-state: running, paused, running;}
table {animation-play-state: running;}

Note:
As of mid-2011, this property was being considered for removal
from the CSS Animations Module.

Visual Media | 71

www.it-ebooks.info

http://www.it-ebooks.info

animation-timing-function

Values:
<timing-function> [, < timing-function >]*

Expansions:
<timing-function>

ease | linear | ease-in | ease-out | ease-in-out | cubic-
bezier(<number>, <number>, <number>, <number>)

Initial value:
ease

Applies to:
Block-level and inline-level elements

Inherited:
No

Computed value:
Same as declared value

Description:
Defines how an animation is run over the course of an animation’s
full cycle or within an individual keyframe, depending on where
the property is used. The keywords are all defined to have cubic-
bezier() equivalents; for example, linear is equivalent to cubic-
bezier(0,0,1,1). They should therefore have consistent effects
across user agents, though, as always, authors are cautioned to
avoid dependency on consistency.

Examples:
h1 {animation-timing-function:
 ease, ease-in, cubic-bezier(0.13,0.42,0.67,0.75)}
p {animation-timing-function: linear;}

72 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

backface-visibility

Values:
visible | hidden

Initial value:
visible

Applies to:
Block-level and inline-level elements

Inherited:
No

Computed value:
Same as declared value

Description:
Defines whether the back side of an element is visible once the el-
ement has been rotated in a simulated 3D space and is “facing away”
from the viewer. If the value is hidden, the element will be effectively
invisible until it is rotated such that the front side of the element is
once more “facing toward” the viewer.

Examples:
div.card {backface-visibility: hidden;}
span.cubeside {backface-visibility: visible;}

background

Values:
[<bg-layer> ,]* <final-bg-layer>

Expansions:
<bg-layer>

<bg-image> || <bg-position> [/ <bg-size>]? || <bg-repeat> || <bg-
attachment'> || < bg-box>{1,2}

Visual Media | 73

www.it-ebooks.info

http://www.it-ebooks.info

<final-bg-layer>

<bg-image> || <bg-position> [/ <bg-size>]? || <bg-repeat> || <bg-
attachment'> || < bg-box>{1,2} || <bg-color>

Initial value:
Refer to individual properties

Applies to:
All elements

Inherited:
No

Percentages:
Allowed for <bg-position> (see background-position) and refer to
both the dimensions of the element’s background area and the di-
mensions of the origin image

Computed value:
See individual properties

Description:
A shorthand way of expressing the various background properties
of one or more element backgrounds using a single declaration.
As with all shorthands, this property will set all of the allowed values
(e.g., the repeat, position, and so on) to their defaults if the values
are not explicitly supplied. Thus, the following two rules will have
the same appearance:

 background: yellow;
 background: yellow none top left repeat;

Furthermore, these defaults can override previous declarations
made with more specific background properties. For example,
given the following rules:

 h1 {background-repeat: repeat-x;}
 h1, h2 {background: yellow url(headback.gif);}

…the repeat value for both h1 and h2 elements will be set to the
default of repeat, overriding the previously declared value of
repeat-x.

74 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

When declaring multiple backgrounds, only the last may have a
background color. In cases where multiple background images
overlap, the images are stacked with the first highest and the last
lowest. This is the exact reverse of how overlapping is handled in
CSS positioning, and so may seem counterintuitive.

Examples:
body {background: white url(bg41.gif)
 fixed center repeat-x;}
p {background:
 url(/pix/water.png) center repeat-x,
 top left url(/pix/stone.png) #555;}
pre {background: yellow;}

background-attachment

Values:
<bg-attachment> [, <bg-attachment>]*

Expansions:
<bg-attachment>

scroll | fixed | local

Initial value:
scroll

Applies to:
All elements

Inherited:
No

Computed value:
Same as declared value

Description:
Defines whether background images scroll along with the element
when the document is scrolled. This property can be used to create

Visual Media | 75

www.it-ebooks.info

http://www.it-ebooks.info

“aligned” backgrounds; for more details, see Chapter 9 of CSS: The
Definitive Guide, third edition (O’Reilly).

Examples:
body {background-attachment: scroll, scroll, fixed;}
div.fixbg {background-attachment: fixed;}

Note:
In versions of Internet Explorer before IE7, this property is suppor-
ted only for the body element.

background-clip

Values:
<bg-box> [, <bg-box>]*

Expansions:
<bg-box>

border-box | padding-box | content-box

Initial value:
border-box

Applies to:
All elements

Inherited:
No

Computed value:
Same as declared value

Description:
Defines the boundary within the element box at which the back-
ground is clipped; that is, no longer drawn. Historically, this has
been equivalent to the default value of border-box, where the back-
ground goes to the outer edge of the border area. This property

76 | Chapter 4: Property Reference

www.it-ebooks.info

http://oreilly.com/catalog/9780596527334/
http://oreilly.com/catalog/9780596527334/
http://www.it-ebooks.info

allows more constrained clipping boxes at the outer edge of the
padding area and at the content edge itself.

Examples:
body {background-clip: content-box;}
.callout {
 background-clip: content-box, border-box,
 padding-box;}

background-color

Values:
<color>

Initial value:
transparent

Applies to:
All elements

Inherited:
No

Computed value:
Same as declared value

Description:
Defines a solid color for the background of the element. This color
fills the box defined by the value of background-clip—by default,
the content, padding, and border areas of the element, extending
to the outer edge of the element’s border. Borders that have trans-
parent sections (such as dashed borders) will show the background
color through the transparent sections in cases where the back-
ground color extends into the border area.

Examples:
h4 {background-color: white;}
p {background-color: rgba(50%,50%,50%,0.33);}
pre {background-color: #FF9;}

Visual Media | 77

www.it-ebooks.info

http://www.it-ebooks.info

background-image

Values:
<bg-image> [, <bg-image>]*

Expansions:
<bg-image>

<image> | none

Initial value:
none

Applies to:
All elements

Inherited:
No

Computed value:
Absolute URI

Description:
Places one or more images in the background of the element. De-
pending on the value of background-repeat, the image may tile in-
finitely, along one axis, or not at all. The initial background image
(the origin image) is placed according to the value of background-
position.

Examples:
body {
 background-image: url(bg41.gif), url(bg43.png),
 url(bg51.jpg);}
h2 {background-image: url(http://www.pix.org/dots.png);}

background-origin

Values:
<bg-box> [, <bg-box>]*

78 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

Expansions:
<bg-box>

border-box | padding-box | content-box

Initial value:
padding-box

Applies to:
All elements

Inherited:
No

Computed value:
Same as declared value

Description:
Defines the boundary within the element box against which
background-image positioning is calculated. Historically, this has
been equivalent to the default value of padding-box. This property
allows for different positioning contexts. Note that if the value of
background-origin is “further out” than the value for background-
clip, and the image is positioned to an edge, part of it may be clip-
ped. For example:

div#example {background-origin: border-box;
 background-clip: content-box;
 background-position: 100% 100%;}

In this case the image will be placed so that its bottom-right corner
aligns with the bottom-right corner of the outer border edge, but
the only parts of it that will be visible are those that fall within the
content area.

Examples:
html, body {background-origin: border-box;}
h1 {background-origin: content-box, padding-box;}

Visual Media | 79

www.it-ebooks.info

http://www.it-ebooks.info

background-position

Values:
<bg-position> [, <bg-position>]*

Expansions:
<bg-position>

[[top | bottom] | [<percentage> | <length> | left | center |
right] [<percentage> | <length> | top | center | bottom]? |
[center | [left | right] [<percentage> | <length>]?] &&
[center | [top | bottom] [<percentage> | <length>]?]]

Initial value:
0% 0%

Applies to:
All elements

Inherited:
No

Percentages:
Refer to the corresponding point on both the element and the origin
image

Computed value:
The absolute length offsets if <length> is declared; otherwise, per-
centage values

Description:
Defines the position(s) of one or more backgrounds’ origin images
(as defined by background-image); this is the point from which any
background repetition or tiling will occur. Percentage values define
not only a point within the element, but also the same point in the
origin image itself, thus allowing (for example) an image to be cen-
tered by declaring its position to be 50% 50%. When percentage or
length values are used, the first is always the horizontal position,
and the second the vertical. If only one value is given, it sets the
horizontal position, while the missing value is assumed to be either

80 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

center or 50%. Negative values are permitted and may place the ori-
gin image outside the element’s content area without actually ren-
dering it. The context within which an origin image is placed can
be affected by the value of background-origin.

Examples:
body {background-position: top center;}
div#navbar {background-position: right, 50% 75%, 0 40px;}
pre {background-position: 10px 50%;}

background-repeat

Values:
<bg-repeat-style> [, <bg-repeat-style>]*

Expansions:
<bg-repeat-style>

repeat-x | repeat-y | [repeat | space | round | no-repeat]{1,2}

Initial value:
repeat

Applies to:
All elements

Inherited:
No

Computed value:
Same as declared value

Description:
Defines the tiling pattern for one or more background images. The
repetition begins from the origin image, which is defined as the
value of background-image and is placed according to the value of
background-position (and possibly background-origin). For the
keywords space and round, the image is tiled as many times as it will
fit in the background area without being clipped and then the first

Visual Media | 81

www.it-ebooks.info

http://www.it-ebooks.info

and last images are placed against their respective background
edges. The difference is that space causes the intervening images to
be regularly spaced, and round causes them to be stretched to touch
each other. Note that repeat-x is equivalent to repeat no-repeat,
and repeat-y is equivalent to no-repeat repeat.

Examples:
body {background-repeat: no-repeat;}
h2 {background-repeat: repeat-x, repeat-y, space;}
ul {background-repeat: repeat-y, round space, repeat;}

background-size

Values:
<bg-size> [, <bg-size>]*

Expansions:
<bg-repeat-style>

[<length> | <percentage> | auto]{1,2} | cover | contain

Initial value:
auto

Applies to:
All elements

Inherited:
No

Computed value:
See description

Description:
Defines the size of one or more background origin images. If two
keywords are used (e.g., 50px 25%), the first defines the horizontal
size of the image and the second defines the vertical size. The origin
image can be deformed to exactly cover the background with 100%
100%. By contrast, cover scales up the image to cover the entire

82 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

background even if some of it exceeds the background area and is
thus clipped, and contain scales up the origin image so that at least
one of its dimensions exactly fills the corresponding axis of the
background area.

Examples:
body {background-size: 100% 90%;}
div.photo {background-size: cover;}

border

Values:
<'border-width'> || <'border-style'> || <color>

Initial value:
Refer to individual properties

Applies to:
All elements

Inherited:
No

Computed value:
Same as declared value

Description:
A shorthand property that defines the width, color, and style of an
element’s border. Note that while none of the values are actually
required, omitting a border style will result in no border being ap-
plied because the default border style is none.

Examples:
h1 {border: 2px dashed olive;}
a:link {border: blue solid 1px;}
p.warning {border: double 5px red;}

Visual Media | 83

www.it-ebooks.info

http://www.it-ebooks.info

border-bottom

Values:
<'border-width'> || <'border-style'> || <color>

Initial value:
Not defined for shorthand properties

Applies to:
All elements

Inherited:
No

Computed value:
See individual properties

Description:
A shorthand property that defines the width, color, and style of the
bottom border of an element. As with border, omission of a border
style will result in no border appearing.

Examples:
ul {border-bottom: 0.5in groove green;}
a:active {border-bottom: purple 2px dashed;}

border-bottom-color

Values:
<color>

Initial value:
The value of color for the element

Applies to:
All elements

84 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

Inherited:
No

Computed value:
If no value is declared, use the computed value of the property
color for the same element; otherwise, same as declared value

Description:
Defines the color for the visible portions of the bottom border of an
element. The border’s style must be something other than none or
hidden for any visible border to appear.

Examples:
ul {border-bottom-color: green;}
a:active {border-bottom-color: purple;}

border-bottom-left-radius

Values:
[<length> | <percentage>] [<length> | <percentage>]?

Initial value:
0

Applies to:
All elements

Inherited:
No

Percentages:
Refer to the dimensions of the element’s border box

Computed value:
Same as declared value

Visual Media | 85

www.it-ebooks.info

http://www.it-ebooks.info

Description:
Defines the rounding radius for the bottom-left corner of an ele-
ment’s border. If two values are supplied, the first is the horizontal
radius and the second is the vertical radius. See border-radius for
a description of how the values create the rounding shape.

Examples:
h1 {border-bottom-left-radius: 10%;}
h2 {border-bottom-left-radius: 1em 10px;}

border-bottom-right-radius

Values:
[<length> | <percentage>] [<length> | <percentage>]?

Initial value:
0

Applies to:
All elements

Inherited:
No

Percentages:
Refer to the dimensions of the element’s border box

Computed value:
Same as declared value

Description:
Defines the rounding radius for the bottom-right corner of an ele-
ment’s border. If two values are supplied, the first is the horizontal
radius and the second is the vertical radius. See border-radius for
a description of how the values create the rounding shape.

86 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

Examples:
h1 {border-bottom-right-radius: 10%;}
h2 {border-bottom-right-radius: 1em 10px;}

border-bottom-style

Values:
none | hidden | dotted | dashed | solid | double | groove | ridge |
inset | outset

Initial value:
none

Applies to:
All elements

Inherited:
No

Computed value:
Same as declared value

Description:
Defines the style for the bottom border of an element. The value
must be something other than none for any border to appear.

Examples:
ul {border-bottom-style: groove;}
a:active {border-bottom-style: dashed;}

border-bottom-width

Values:
thin | medium | thick | <length>

Initial value:
medium

Visual Media | 87

www.it-ebooks.info

http://www.it-ebooks.info

Applies to:
All elements

Inherited:
No

Computed value:
Absolute length; 0 if the style of the border is none or hidden

Description:
Defines the width for the bottom border of an element, which will
take effect only if the border’s style is something other than none. If
the border style is none, the border width is effectively reset to 0.
Negative length values are not permitted.

Examples:
ul {border-bottom-width: 0.5in;}
a:active {border-bottom-width: 2px;}

border-collapse

Values:
collapse | separate

Initial value:
separate

Applies to:
Elements with a display value of table or inline-table

Inherited:
Yes

Computed value:
Same as declared value

88 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

Description:
Defines the layout model used in laying out the borders in a table—
i.e., those applied to cells, rows, and so forth. Although the property
applies only to tables, it is inherited by all the elements within the
table and actually used by them.

Examples:
table {border-collapse: separate; border-spacing: 3px 5px;}

Note:
In CSS2.0, the default value was collapse.

border-color

Values:
<color>{1,4}

Initial value:
Not defined for shorthand properties

Applies to:
All elements

Inherited:
No

Computed value:
See individual properties

Description:
A shorthand property that sets the color for the visible portions of
the overall border of an element or sets a different color for each of
the four sides. Remember that a border’s style must be something
other than none or hidden for any visible border to appear.

Examples:
h1 {border-color: purple;}
a:visited {border-color: maroon;}

Visual Media | 89

www.it-ebooks.info

http://www.it-ebooks.info

border-image

Values:
<'border-image-source'> || <'border-image-slice'> [/ <'border-
image-width'>? [/ <'border-image-outset'>]?]? || <'border-image-
repeat'>

Initial value:
See individual properties

Applies to:
All elements except table elements where border-collapse is
collapse

Inherited:
No

Computed value:
See individual properties

Description:
A shorthand property that defines the source, slicing pattern, bor-
der width, degree of extension, and repetition of an image-based
border. The syntax is somewhat unusual compared to the rest of
CSS, so take extra time with it. For example, three of the five values
possible are slash-separated and must be listed in a specific order.

Note that it is effectively impossible to take a simple image (say, a
star) and repeat it around the edges of an element. To create that
effect, you must create a single image that contains nine copies of
the image you wish to repeat in a 3×3 grid. It may also be necessary
to set border-width (not border-image-width) to be large enough to
show the image, depending on the value of border-image-outset.

Examples:
div.starry {border-image: url(stargrid.png) 5px repeat;}
aside {
 border-image: url(asides.png) 100 50 150 / 8 3 13 /
 2 stretch round;}

90 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

Note:
As of early 2011, browser support for border-image was incomplete
and inconsistent, whereas none of the related properties (e.g.,
border-image-source) were supported at all. They are included be-
cause browsers were expected to harmonize support by the end of
2011.

border-image-outset

Values:
[<length> | <number>]{1,4}

Initial value:
0

Applies to:
All elements except table elements where border-collapse is
collapse

Inherited:
No

Computed value:
Same as declared value (but see description)

Description:
Defines the distance by which a border image may exceed the bor-
der area of the element. The values define distances from the top,
right, bottom, and left edges of the border image, in that order.
Numbers are calculated with respect to the image’s intrinsic coor-
dinate system; thus, for a raster image, the number 7 is taken to
mean seven pixels. Images in formats such as SVG may have dif-
ferent coordinate systems. Negative values are not permitted.

Examples:
aside {border-image-outset: 2;}
div#pow {border-image-outset: 10 17 13 5;}

Visual Media | 91

www.it-ebooks.info

http://www.it-ebooks.info

Note:
As of early 2011, browsers did not support border-image-outset. It
is included because border-image (which encompasses border-
image-outset) was supported and browsers were expected to add
border-image-outset support by the end of 2011.

border-image-repeat

Values:
[stretch | repeat | round]{1,2}

Initial value:
stretch

Applies to:
All elements except table elements where border-collapse is
collapse

Inherited:
No

Computed value:
Same as declared value

Description:
Defines the repetition pattern (or lack thereof) of the sides of a bor-
der image. stretch causes a single copy of the image to be stretched
to fit the border segment (top, right, bottom, or left). repeat “tiles”
the image in a manner familiar from background images, though
border images are only ever tiled along one axis. round “tiles” the
border image as many times as it will fit without clipping, then (if
necessary) scales the entire set of tiled images to exactly fit the bor-
der segment.

Examples:
div.starry {border-image-repeat: repeat;}
aside {border-image-repeat: stretch round;}

92 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

Note:
As of early 2011, browsers did not support border-image-repeat. It
is included because border-image (which encompasses border-
image-repeat) was supported and browsers were expected to add
border-image-repeat support by the end of 2011.

border-image-slice

Values:
[<number> | <percentage>]{1,4} && fill?

Initial value:
100%

Applies to:
All elements except table elements where border-collapse is
collapse

Inherited:
No

Percentages:
Refer to the size of the border image

Computed value:
Same as declared value

Description:
Defines “slice distances,” which are offsets from the top, right, bot-
tom, and left edges of the border image. Taken together, they divide
the image into nine regions, which correspond to the eight segments
of the element’s border (four corners and four sides) and the ele-
ment’s background area.

In cases where two opposite regions combine to exceed the total of
the dimension they share, both are made completely transparent.
For example, if the top slice offset value is 10 and the bottom slice
offset value is 20, but the source image is only 25 pixels tall, the two
exceed the height of the image. Thus, both the top and bottom

Visual Media | 93

www.it-ebooks.info

http://www.it-ebooks.info

segments of the border will be entirely transparent. The same holds
for right and left slices and width. Corners are never forcibly made
transparent, even in cases where their slices may overlap in the
source image.

Examples:
div.starry {border-image-slice: 5px;}
aside {border-image-slice: 100 50 150;}

Note:
As of early 2011, browsers did not support border-image-slice. It
is included because border-image (which encompasses border-
image-slice) was supported and browsers were expected to add
border-image-slice support by the end of 2011.

border-image-source

Values:
none | <uri>

Initial value:
none

Applies to:
All elements except table elements where border-collapse is
collapse

Inherited:
No

Percentages:
Refer to the size of the border image

Computed value:
Same as declared value

94 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

Description:
Supplies the location of the image to be used as an element’s border
image.

Examples:
div.starry {border-image-source: url(stargrid.png);}
aside {border-image-source: url(asides.png);}

Note:
As of early 2011, browsers did not support border-image-source. It
is included because border-image (which encompasses border-
image-source) was supported and browsers were expected to add
border-image-source support by the end of 2011.

border-image-width

Values:
[<length> | <percentage> | <number> | auto]{1,4}

Initial value:
1

Applies to:
All elements except table elements where border-collapse is
collapse

Inherited:
No

Percentages:
Refer to the size of the border image area

Computed value:
Same as declared value (but see description)

Description:
Defines an image width for each of the four sides of an image border.
Border image slices that have a different width than the border

Visual Media | 95

www.it-ebooks.info

http://www.it-ebooks.info

image width value are scaled to match it, which may impact how
they are repeated. For example, if the right edge of an image border
is 10 pixels wide, but border-image-width: 3px; has been declared,
the border images along the right side are scaled to be three pixels
wide.

Note that border-image-width is different from border-width: a
border image’s width can be different than the width of the border
area. In cases where the image is wider or taller than the border area,
it will be clipped by default (but border-image-outset may prevent
this). If it is narrower or shorter than the border area, it will not be
scaled up.

Examples:
aside {border-image-width: 8 3 13;}
div#pow{border-image-width: 25px 35;}

Note:
As of early 2011, browsers did not support border-image-width. It
is included because border-image (which encompasses border-
image-width) was supported and browsers were expected to add
border-image-width support by the end of 2011.

border-left

Values:
<'border-width'> || <'border-style'> || <color>

Initial value:
Not defined for shorthand properties

Applies to:
All elements

Inherited:
No

Computed value:
See individual properties

96 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

Description:
A shorthand property that property defines the width, color, and
style of the left border of an element. As with border, omission of a
border style will result in no border appearing.

Examples:
p {border-left: 3em solid gray;}
pre {border-left: double black 4px;}

border-left-color

Values:
<color>

Initial value:
The value of color for the element

Applies to:
All elements

Inherited:
No

Computed value:
If no value is declared, use the computed value of the property
color for the same element; otherwise, same as declared value

Description:
Defines the color for the visible portions of the left border of an
element. The border’s style must be something other than none or
hidden for any visible border to appear.

Examples:
p {border-left-color: gray;}
pre {border-left-color: black;}

Visual Media | 97

www.it-ebooks.info

http://www.it-ebooks.info

border-left-style

Values:
none | hidden | dotted | dashed | solid | double | groove | ridge |
inset | outset

Initial value:
none

Applies to:
All elements

Inherited:
No

Computed value:
Same as declared value

Description:
Defines the style for the left border of an element. The value must
be something other than none for any border to appear.

Examples:
p {border-left-style: solid;}
pre {border-left-style: double;}

border-left-width

Values:
thin | medium | thick | <length>

Initial value:
medium

Applies to:
All elements

98 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

Inherited:
No

Computed value:
Absolute length; 0 if the style of the border is none or hidden

Description:
Defines the width for the left border of an element, which will take
effect only if the border’s style is something other than none. If the
border style is none, the border width is effectively reset to 0. Neg-
ative length values are not permitted.

Examples:
p {border-left-width: 3em;}
pre {border-left-width: 4px;}

border-radius

Values:
[<length> | <percentage>]{1,4} [/ [<length> | <percentage>]
{1,4}

Initial value:
0

Applies to:
All elements except table elements where border-collapse is
collapse

Inherited:
No

Percentages:
Refer to the dimensions of the element’s border box (see
description)

Computed value:
Same as declared value

Visual Media | 99

www.it-ebooks.info

http://www.it-ebooks.info

Description:
A shorthand property that defines the rounding radius for the bot-
tom-right corner of an element’s border. The actual corners will be
the height and width declared. For example, suppose the following:

.callout {border-radius: 10px;}

Each corner of an element with a class of callout will have a round-
ing that is 10 pixels across, as measured from the beginning of the
rounding to the outer side edge of the element, and similarly 10
pixels high. This can be visualized as if the element has 10-pixel-
radius (20-pixel-diameter) circles drawn in its corners and the bor-
der then bent along the circles’ edges.

Note that, given the way the syntax is defined, if two values are
supplied, the first applies to the top-left and bottom-right corners,
and the second to the top-right and bottom-left corners. To create
oval-shaped rounding by supplying one value for the horizontal ra-
dius of each corner and a second value for the vertical radii, separate
them with a slash:

.callout {border-radius: 10px / 20px;}

That will cause each of the four corners’ rounding to be 10 pixels
across and 20 pixels tall. This extends out to setting the four corners
uniquely, like so:

.callout {border-radius: 10px 20px 30px 40px /
 1em 2em 3em 4em;}

This is equivalent to declaring:

.callout {border-top-left-radius: 10px 1em;
 border-top-right-radius: 20px 2em;
 border-bottom-right-radius: 30px 3em;
 border-bottom-left-radius: 40px 4em;}

Using fewer than four values causes the supplied values to be re-
peated in the familiar pattern (see margin, padding, etc.) but with
a slight offset. Rather than being Top-Right-Bottom-Left (TRBL,
or “trouble”), the pattern is TopLeft-TopRight-BottomRight-
BottomLeft (TLTRBRBL, or “tilter burble”). Otherwise, the repeat
pattern is the same: 1em is the same as 1em 1em 1em 1em, 1em 2em is
the same as 1em 2em 1em 2em, and so on. Thus, there can be differing
numbers of values to either side of the slash, as the following two
declarations are equivalent:

100 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

.callout {border-radius: 2em 3em 4em / 5%;}

.callout {border-radius: 2em 3em 4em 3em / 5% 5% 5% 5%;}

Percentages, when used, are calculated with respect to the size of
the element’s border box (the box defined by the outer edges of the
element’s border area) dimension on the related axis. Thus, in
the previous declarations, the 5% values are calculated to be 5% of
the height of the element’s border box because values after the slash
define vertical radii. Any percentages used before the slash are cal-
culated as percentages of the width of the element’s border box.

Examples:
a[href] {border-radius: 0.5em 50%;}
.callout {
 border-radius: 10px 20px 30px 40px /
 1em 2em 3em 4em;}

border-right

Values:
<'border-width'> || <'border-style'> || <color>

Initial value:
See individual properties

Applies to:
All elements

Inherited:
No

Computed value:
See individual properties

Description:
A shorthand property that defines the width, color, and style of the
right border of an element. As with border, omission of a border
style will result in no border appearing.

Visual Media | 101

www.it-ebooks.info

http://www.it-ebooks.info

Examples:
img {border-right: 30px dotted blue;}
h3 {border-right: cyan 1em inset;}

border-right-color

Values:
<color>

Initial value:
The value of color for the element

Applies to:
All elements

Inherited:
No

Computed value:
If no value is declared, use the computed value of the property
color for the same element; otherwise, same as declared value

Description:
Defines the color for the visible portions of the right border of an
element. The border’s style must be something other than none or
hidden for any visible border to appear.

Examples:
img {border-right-color: blue;}
h3 {border-right-color: cyan;}

border-right-style

Values:
none | hidden | dotted | dashed | solid | double | groove | ridge |
inset | outset

102 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

Initial value:
none

Applies to:
All elements

Inherited:
No

Computed value:
Same as declared value

Description:
Defines the style for the right border of an element. The value must
be something other than none for any border to appear.

Examples:
img {border-right-style: dotted;}
h3 {border-right-style: inset;}

border-right-width

Values:
thin | medium | thick | <length>

Initial value:
medium

Applies to:
All elements

Inherited:
No

Computed value:
Absolute length; 0 if the style of the border is none or hidden

Visual Media | 103

www.it-ebooks.info

http://www.it-ebooks.info

Description:
Defines the width for the right border of an element, which will take
effect only if the border’s style is something other than none. If the
border style is none, the border width is effectively reset to 0. Neg-
ative length values are not permitted.

Examples:
img {border-right-width: 30px;}
h3 {border-right-width: 1em;}

border-spacing

Values:
<length> <length>?

Initial value:
0

Applies to:
Elements with a display value of table or inline-table

Inherited:
Yes

Computed value:
Two absolute lengths

Description:
Defines the distance between table cell borders in the separated
borders table layout model. The first of the two length values is the
horizontal separation and the second is the vertical. This property
is only honored when border-collapse is set to separate; otherwise,
it is ignored. Although the property applies only to tables, it is in-
herited by all of the elements within the table.

104 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

Examples:
table {border-collapse: separate; border-spacing: 0;}
table {border-collapse: separate;
 border-spacing: 3px 5px;}

border-style

Values:
[none | hidden | dotted | dashed | solid | double | groove | ridge |
inset | outset]{1,4}

Initial value:
Not defined for shorthand properties

Applies to:
All elements

Inherited:
No

Computed value:
See individual properties

Description:
A shorthand property used to define the styles for the overall border
of an element or for each side individually. The value of any border
must be something other than none for the border to appear. Note
that setting border-style to none (its default value) will result in no
border at all. In such a case, any value of border-width will be ig-
nored and the width of the border will be set to 0. Any unrecognized
value from the list of values should be reinterpreted as solid.

Examples:
h1 {border-style: solid;}
img {border-style: inset;}

Visual Media | 105

www.it-ebooks.info

http://www.it-ebooks.info

border-top

Values:
<'border-width'> || <'border-style'> || <color>

Initial value:
See individual properties

Applies to:
All elements

Inherited:
No

Computed value:
See individual properties

Description:
A shorthand property that defines the width, color, and style of the
top border of an element. As with border, omission of a border style
will result in no border appearing.

Examples:
ul {border-top: 0.5in solid black;}
h1 {border-top: dashed 1px gray;}

border-top-color

Values:
<color>

Initial value:
The value of color for the element

Applies to:
All elements

106 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

Inherited:
No

Computed value:
If no value is declared, use the computed value of the property
color for the same element; otherwise, same as declared value

Description:
Sets the color for the visible portions of the top border of an element.
The border’s style must be something other than none or hidden for
any visible border to appear.

Examples:
ul {border-top-color: black;}
h1 {border-top-color: gray;}

border-top-left-radius

Values:
[<length> | <percentage>] [<length> | <percentage>]?

Initial value:
0

Applies to:
All elements

Inherited:
No

Percentages:
Refer to the dimensions of the element’s border box

Computed value:
Same as declared value

Visual Media | 107

www.it-ebooks.info

http://www.it-ebooks.info

Description:
Defines the rounding radius for the top-left corner of an element’s
border. If two values are supplied, the first is the horizontal radius
and the second is the vertical radius. See border-radius for a de-
scription of how the values create the rounding shape.

Examples:
h1 {border-top-left-radius: 10%;}
h2 {border-top-left-radius: 1em 10px;}

border-top-right-radius

Values:
[<length> | <percentage>] [<length> | <percentage>]?

Initial value:
0

Applies to:
All elements

Inherited:
No

Percentages:
Refer to the dimensions of the element’s border box

Computed value:
Same as declared value

Description:
Defines the rounding radius for the top-right corner of an element’s
border. If two values are supplied, the first is the horizontal radius
and the second is the vertical radius. See border-radius for a de-
scription of how the values create the rounding shape.

108 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

Examples:
h1 {border-top-right-radius: 10%;}
h2 {border-top-right-radius: 1em 10px;}

border-top-style

Values:
none | hidden | dotted | dashed | solid | double | groove | ridge |
inset | outset

Initial value:
none

Applies to:
All elements

Inherited:
No

Computed value:
Same as declared value

Description:
Defines the style for the top border of an element. The value must
be something other than none for any border to appear.

Examples:
ul {border-top-style: solid;}
h1 {border-top-style: dashed;}

border-top-width

Values:
thin | medium | thick | <length>

Initial value:
medium

Visual Media | 109

www.it-ebooks.info

http://www.it-ebooks.info

Applies to:
All elements

Inherited:
No

Computed value:
Absolute length; 0 if the style of the border is none or hidden

Description:
Defines the width for the top border of an element, which will take
effect only if the border’s style is something other than none. If the
style is none, the width is effectively reset to 0. Negative length values
are not permitted.

Examples:
ul {border-top-width: 0.5in;}
h1 {border-top-width: 1px;}

border-width

Values:
[thin | medium | thick | <length>]{1,4}

Initial value:
Not defined for shorthand properties

Applies to:
All elements

Inherited:
No

Computed value:
See individual properties

110 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

Description:
A shorthand property that defines the width for the overall border
of an element or for each side individually. The width will take effect
for a given border only if the border’s style is something other than
none. If the border style is none, the border width is effectively reset
to 0. Negative length values are not permitted.

Examples:
h1 {border-width: 2ex;}
img {border-width: 5px thick thin 1em;}

bottom

Values:
<length> | <percentage> | auto

Initial value:
auto

Applies to:
Positioned elements (that is, elements for which the value of
position is something other than static)

Inherited:
No

Percentages:
Refer to the height of the containing block

Computed value:
For relatively positioned elements, see description; for static ele-
ments, auto; for length values, the corresponding absolute length;
for percentage values, the declared value; otherwise, auto

Description:
Defines the offset between the bottom outer margin edge of a posi-
tioned element and the bottom edge of its containing block. For
relatively positioned elements, if both bottom and top are auto, their

Visual Media | 111

www.it-ebooks.info

http://www.it-ebooks.info

computed values are both 0; if one of them is auto, it becomes the
negative of the other; if neither is auto, bottom will become the neg-
ative of the value of top.

Examples:
div#footer {position: fixed; bottom: 0;}
sup {position: relative; bottom: 0.5em;
 vertical-align: baseline;}

box-align

Values:
stretch | start | end | center | baseline

Initial value:
stretch

Applies to:
Elements with a display value of box or inline-box

Inherited:
No

Computed value:
As declared

Description:
Defines how flexible boxes are laid out along the axis perpendicular
to the axis of orientation (see box-orient). The default, stretch,
means that the children of the box are stretched to its height (if
its box-orient is horizontal) or its width (if its box-orient is
vertical). start and end refer to the top and bottom edges of hor-
izontal boxes, and most likely the left and right edges of vertical
boxes in left-to-right languages (though this is not specified). cen
ter aligns the center of the flexible boxes with the centerline of the
axis of orientation.

112 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

Examples:
div#layout {box-align: stretch;}
.icicle {box-align: start;}

Note:
This property is from the 2009 version of the Flexible Box specifi-
cation. It is expected to be deprecated by a new version of the spec-
ification, and potentially retired from browsers some time after.

box-decoration-break

Values:
slice | clone

Initial value:
clone

Applies to:
All elements

Inherited:
No

Computed value:
Same as declared value

Description:
Defines whether the decorations—the background, padding, bor-
ders, rounded corners, border image, and box shadow—of a box
that has been rendered in multiple pieces are applied to each piece
separately or applied to the entire box before it is broken apart.

The most common case is an inline element that wraps across one
or more line breaks. With the default behavior, slice, the pieces of
the inline element are drawn as though the whole element was laid
out in a single line and then sliced apart at each line break. If
clone is declared, then each piece of the element is decorated as
though they were separate elements sharing the same styles.

Visual Media | 113

www.it-ebooks.info

http://www.it-ebooks.info

box-decoration-break also applies to block boxes that are split
across columns or pages.

Examples:
span {box-decoration-break: clone;}
a {box-decoration-break: slice;}

box-direction

Values:
normal | reverse

Initial value:
normal

Applies to:
Elements with a display value of box or inline-box

Inherited:
No

Computed value:
As declared

Description:
Defines the direction in which the children of a box are laid out. If
the value is reverse, then the children are laid out from right to left
in a horizontal box, and from bottom to top in a vertical box.

Examples:
#tower {box-direction: reverse;}

Note:
This property is from the 2009 version of the Flexible Box specifi-
cation. It is expected to be deprecated by a new version of the
specification, and potentially retired from browsers some time after.

114 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

box-flex

Values:
<number>

Initial value:
0

Applies to:
Normal-flow children of an element with a display value of box or
inline-box

Inherited:
No

Computed value:
As declared

Description:
Defines the “flexibility” of an element that is the child of a box. The
box-flex values for all the flexible boxes in a group are added to-
gether, and then each is divided by that total to get the flexibility.
Thus, for example, if three flexible boxes in a group all have a value
of 1, then each has a flexibility of 0.33. If one of them has its box-
flex value changed to 2, then it would have a flexibility of 0.5 and
the other two would each have a flexibility of 0.25. The default value
of 0 indicates that the box is inflexible.

After the flexible boxes are laid out as normal, any extra space left
over within the parent box is distributed to the flexible boxes ac-
cording to its flexibility. To continue the previous example, if there
are 100 pixels of space left over, then the flex-box: 2 element gets
50 pixels added to it, and the other two each get 25 pixels. Similarly,
if the flexible boxes overflow the parent box, they are reduced in
size proportionately.

Examples:
#nav li {box-flex: 1;}

Visual Media | 115

www.it-ebooks.info

http://www.it-ebooks.info

Note:
This property is from the 2009 version of the Flexible Box specifi-
cation. It is expected to be deprecated by a new version of the
specification, and potentially retired from browsers some time after.

box-lines

Values:
single | multiple

Initial value:
single

Applies to:
Elements with a display value of box or inline-box

Inherited:
No

Computed value:
As declared

Description:
Defines how flexible boxes are laid out if they are too wide to fix in
a horizontal box (see box-orient). Given the value multiple, they
will be laid out in as many “lines” as necessary to display them all.
This is reminiscent of float layout when multiple floats cannot fit
next to one another, though the mechanism is not exactly the same.

Examples:
div#gallery {box-lines: multiple;}

Note:
This property is from the 2009 version of the Flexible Box specifi-
cation. It is expected to be deprecated by a new version of the
specification, and potentially retired from browsers some time after.

116 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

box-ordinal-group

Values:
<integer>

Initial value:
1

Applies to:
Normal-flow children of an element with a display value of box or
inline-box

Inherited:
No

Computed value:
As declared

Description:
Defines the ordinal group to which flexible boxes belong. Authors
can assign flexible boxes to arbitrary group numbers. When laying
out the boxes, the groups are laid out in numeric order, with the
flexible boxes within each group arranged according to their source
order and the value of box-direction. This allows authors to arrange
flexible boxes within their parent box in a manner completely in-
dependent of their source order.

Examples:
.sticky {box-ordinal-group: 1;}
.footer {box-ordinal-group: 13;}

Note:
This property is from the 2009 version of the Flexible Box specifi-
cation. It is expected to be deprecated by a new version of the
specification, and potentially retired from browsers some time after.

Visual Media | 117

www.it-ebooks.info

http://www.it-ebooks.info

box-orient

Values:
horizontal | vertical | inline-axis | block-axis

Initial value:
inline-axis

Applies to:
Elements with a display value of box or inline-box

Inherited:
No

Computed value:
As declared

Description:
Defines the direction in which flexible boxes are arranged within
their parent box. horizontal boxes arrange the flexible boxes from
left to right, and vertical boxes from top to bottom. inline-axis
and block-axis have language-dependent effects; in a left-to-right,
top-to-bottom language such as English, they are equivalent to
horizontal and vertical.

Examples:
#nav {box-orient: horizontal;}
#sidebar {box-orient: vertical;}

Note:
This property is from the 2009 version of the Flexible Box specifi-
cation. It is expected to be deprecated by a new version of the
specification, and potentially retired from browsers some time after.

box-pack

Values:
start | end | center | justify

118 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

Initial value:
start

Applies to:
Elements with a display value of box or inline-box

Inherited:
No

Computed value:
As declared

Description:
Defines how flexible boxes are laid out when the sum of their di-
mensions along the axis of orientation (see box-orient) is less than
the total amount of space available.

Examples:
#gallery {box-pack: center;}
.subcolumns {box-pack: left;}

Note:
This property is from the 2009 version of the Flexible Box specifi-
cation. It is expected to be deprecated by a new version of the
specification, and potentially retired from browsers some time after.

box-shadow

Values:
none | <shadow> [, <shadow>]*

Expansions:
<shadow>

inset? && [<length>{2,4} && <color>?]

Initial value:
none

Visual Media | 119

www.it-ebooks.info

http://www.it-ebooks.info

Applies to:
All elements

Inherited:
No

Computed value:
As declared with lengths made absolute and colors computed

Description:
Defines one or more shadows that are derived from the shape of the
element box. Either outset (“drop”) shadows or inset shadows can
be defined, the latter with use of the optional inset keyword. With-
out that keyword, the shadow will be outset.

The four length values that can be declared are, in order: horizontal
offset, vertical offset, blur distance, and spread distance. When
positive, the offset values go down and the right; when negative,
back and to the left. Positive spread values increase the size of the
shadow and negative values contract it. Blur values cannot be
negative.

Note that all shadows are clipped by the element’s border edge.
Thus, an outset shadow is only drawn outside the border edge. A
semitransparent or fully transparent element background will not
reveal an outset shadow “behind” the element. Similarly, inset
shadows are only visible inside the border edge and are never drawn
beyond it.

Examples:
h1 {box-shadow: 5px 10px gray;}
table th {
 box-shadow: inset 0.5em 0.75em 5px −2px
 rgba(255,0,0,0.5);}

box-sizing

Values:
content-box | border-box

120 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

Initial value:
content-box

Applies to:
All elements that accept the width or height properties

Inherited:
No

Computed value:
Same as declared value

Description:
Defines whether the height and width of the element define the di-
mensions of the content box (the historical behavior) or the border
box. If the latter, the value of width defines the distance from the
left outer border edge to the right outer border edge; similarly,
height defines the distance from the top outer border edge to the
bottom outer border edge. Any padding or border widths are “sub-
tracted” from those dimensions instead of the historical “additive”
behavior. Thus, given:

body {box-sizing: border-box; width: 880px;
 padding: 0 20px;}

…the final width of the content area will be 840 pixels (880-20-20).

Examples:
body {box-sizing: border-box;}

caption-side

Values:
top | bottom

Initial value:
top

Visual Media | 121

www.it-ebooks.info

http://www.it-ebooks.info

Applies to:
Elements with a display of table-caption

Inherited:
Yes

Computed value:
Same as declared value

Description:
Defines the placement of a table caption with respect to the table
box. The caption is rendered as though it were a block-level element
placed just before (or after) the table.

Examples:
caption {caption-side: top;}

Note:
The values left and right appeared in CSS2 but were dropped from
CSS2.1 because of a lack of widespread support. Some versions of
Firefox support left and right.

clear

Values:
left | right | both | none

Initial value:
none

Applies to:
Block-level elements

Inherited:
No

Computed value:
Same as declared value

122 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

Description:
Defines to which side (or sides) of an element no floating element
may be placed. If normal layout of a cleared element would result
in a floated element appearing on the cleared side, the cleared ele-
ment is pushed down until it sits below (clears) the floated element.
In CSS1 and CSS2, this is accomplished by automatically increasing
the top margin of the cleared element. In CSS2.1, clearance space
is added above the element’s top margin, but the margin itself is not
altered. In either case, the end result is that the element’s top outer
border edge is just below the bottom outer margin edge of a floated
element on the declared side.

Examples:
h1 {clear: both;}
p + h3 {clear: right;}

clip

Values:
rect(top, right, bottom, left) | auto

Initial value:
auto

Applies to:
Absolutely positioned elements (in CSS2, clip applied to block-
level and replaced elements)

Inherited:
No

Computed value:
For a rectangle, a set of four computed lengths representing the
edges of the clipping rectangle; otherwise, same as declared value

Description:
Defines a clipping rectangle inside of which the content of an ab-
solutely positioned element is visible. Content outside the clipping

Visual Media | 123

www.it-ebooks.info

http://www.it-ebooks.info

area is treated according to the value of overflow. The clipping area
can be smaller or larger than the content area of the element, the
latter being accomplished with negative length values.

In current browsers, the clipping area is defined by using the
rect() value to define the offsets of the top, right, bottom, and left
edges of the clipping areas with respect to the top-left corner of the
element. Thus, the value rect(5px, 10px, 40px, 5px) would place
the top edge of the clipping area 5px down from the top edge of the
element, the right edge of the clipping area 10 pixels to the right of
the left edge of the element, the bottom edge of the clipping area 40
pixels down from the top edge of the element, and the left edge of
the clipping area 5 pixels to the right of the left edge of the element.

Examples:
div.sidebar {overflow: scroll; clip: 0 0 5em 10em;}
img.tiny {overflow: hidden; clip: 5px 5px 20px 20px;}

color

Values:
<color>

Initial value:
User agent–specific

Applies to:
All elements

Inherited:
Yes

Computed value:
See description

Description:
Defines the foreground color of an element, which in HTML ren-
dering means the text of an element; raster images are not affected
by color. This is also the color applied to any borders of the element,

124 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

unless overridden by border-color or one of the other border color
properties (border-top-color, etc.).

In the case of color keywords (such as navy) and RGB hex values
(such as #008800 or #080), the computed value is the rgb() equiva-
lent. For transparent, the computed value is rgba(0,0,0,0); for
currentColor, the computed value is inherit. For all other values,
the computed value is the same as the declared value.

Examples:
strong {color: rgb(255,128,128);}
h3 {color: navy;}
p.warning {color: #ff0000;}
pre.pastoral {color: rgba(0%,100%,0%,0.33334);}

column-count

Values:
<integer> | auto

Initial value:
auto

Applies to:
Nonreplaced block-level elements (except table elements), table
cells, and inline-block elements

Inherited:
No

Computed value:
Same as declared value

Description:
Defines the number of columns used in a multicolumn layout of an
element. Besides the default auto, only positive nonzero integers are
permitted.

Visual Media | 125

www.it-ebooks.info

http://www.it-ebooks.info

Examples:
body {column-count: 2;}

column-fill

Values:
auto | balance

Initial value:
balance

Applies to:
Elements laid out using multiple columns

Inherited:
No

Computed value:
Same as declared value

Description:
Defines how the columns in an element laid out with multiple col-
umns are height-balanced (or not). This property’s value only takes
hold in cases where the column lengths have been in some way
constrained. The obvious case of this would be if the element’s
height has been explicitly set. In all other cases, the columns are
automatically balanced. The value auto means columns are filled
sequentially, which is to say each column is filled to the full column
height until the last, which is either under- or over-filled as
necessary.

Examples:
body {height: 50em; column-fill: auto;}

126 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

column-gap

Values:
<length> | normal

Initial value:
normal

Applies to:
Elements laid out using multiple columns

Inherited:
No

Computed value:
Same as declared value

Description:
Defines the width of the gap between adjacent columns in an ele-
ment laid out with multiple columns. Any column rule (see column-
rule) is centered within each gap. Gap lengths cannot be negative.

Examples:
body {column-gap: 2em;}

column-rule

Values:
<'column-rule-width'> || <'border-style'> || [<color>

Initial value:
See individual properties

Applies to:
Elements laid out using multiple columns

Visual Media | 127

www.it-ebooks.info

http://www.it-ebooks.info

Inherited:
No

Computed value:
Same as declared value

Description:
A shorthand property that defines the width, style, and color of the
“rules” (vertical lines) drawn between columns in an element laid
out with multiple columns. Any value omitted is set to the default
value of the corresponding property. Note that if no border style is
defined, it will default to none and no column rule will be drawn.

Examples:
#d01 {column-rule: 5px solid red;}
#d02 {column-rule: 2em dashed green;}

column-rule-color

Values:
<color>

Initial value:
User agent–specific

Applies to:
Elements laid out using multiple columns

Inherited:
No

Computed value:
Same as declared value

Description:
Defines the color of the “rules” (vertical lines) drawn between col-
umns in an element laid out with multiple columns.

128 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

Examples:
#d01 {column-rule-color: red;}
#d02 {column-rule-color: green;}

column-rule-style

Values:
<'border-style'>

Initial value:
none

Applies to:
Elements laid out using multiple columns

Inherited:
No

Computed value:
Same as declared value

Description:
Defines the style of the “rules” (vertical lines) drawn between col-
umns in an element laid out with multiple columns. The values are
the same as for the property border-style. Either of the values
none (the default) or hidden means no rule will be drawn.

Examples:
#d01 {column-rule-style: solid;}
#d02 {column-rule-style: dashed;}

column-rule-width

Values:
thin | medium | thick | <length>

Visual Media | 129

www.it-ebooks.info

http://www.it-ebooks.info

Initial value:
medium

Applies to:
Elements laid out using multiple columns

Inherited:
No

Computed value:
Absolute length; 0 if the style of the border is none or hidden

Description:
Defines the width of the “rules” (vertical lines) drawn between col-
umns in an element laid out with multiple columns.

Examples:
#d01 {column-rule-width: 5px;}
#d02 {column-rule-width: 2em;}

column-span

Values:
none | all

Initial value:
none

Applies to:
Static-position nonfloating elements

Inherited:
No

Computed value:
Same as declared value

130 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

Description:
Defines the number of columns an element spans in an element laid
out with multiple columns. There are only two options: to span
no columns at all (none) or to span all columns (all). When an
element spans multiple columns, content that comes before it is
balanced above it across the columns. Content that comes after is
balanced below the spanning element.

Examples:
h2 {column-span: all;}

column-width

Values:
<length> | auto

Initial value:
auto

Applies to:
Nonreplaced block-level elements (except table elements), table
cells, and inline-block elements

Inherited:
No

Computed value:
Absolute length

Description:
Defines the optimal widths of the columns in an element laid out
with multiple columns. Note that this describes an optimal width,
and as such, user agents may modify or ignore the value if they see
fit. The obvious example is if the sum total of the width of the col-
umns and their gaps does not equal the width of the multicolumn
element. In such cases, the column widths will be altered to make
the columns fit the element. This is somewhat similar in nature to

Visual Media | 131

www.it-ebooks.info

http://www.it-ebooks.info

altering the width of table cells so that the table columns fit the
table’s total width.

Length values must be greater than zero. For some reason, percen-
tages are not permitted.

Examples:
body {column-width: 23em;}

columns

Values:
<'column-width'> || <'column-count'>

Initial value:
See individual properties

Applies to:
Nonreplaced block-level elements (except table elements), table
cells, and inline-block elements

Inherited:
No

Computed value:
Same as declared value

Description:
A shorthand property used to define the number and width of the
columns in an element laid out with multiple columns. Omitted
values are set to the default values for the corresponding properties.

Examples:
body {columns: 3 23em;}
div {columns: 200px 5;}

132 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

content

Values:
normal | none | [<string> | <uri> | <counter> | attr(<identifier>) |
open-quote | close-quote | no-open-quote | no-close-quote]+

Initial value:
normal

Applies to:
::before and ::after pseudo-elements

Inherited:
No

Computed value:
For <uri> values, an absolute URI; for attribute references, the re-
sulting string; otherwise, same as declared value

Description:
Defines the generated content placed before or after an element. By
default, this is likely to be inline content, but the type of box the
content creates can be defined using the property display.

Examples:
p::before {content: "Paragraph...";}
a[href]::after {content: "(" attr(href) ")";
 font-size: smaller;}

counter-increment

Values:
[<identifier> <integer>?]+ | none

Initial value:
none

Visual Media | 133

www.it-ebooks.info

http://www.it-ebooks.info

Applies to:
All elements

Inherited:
No

Computed value:
Same as declared value

Description:
With this property, counters can be incremented (or decremented)
by any value, positive or negative or 0. If no <integer> is supplied,
it defaults to 1.

Examples:
h1 {counter-increment: section;}
*.backward li {counter-increment: counter −1;}

counter-reset

Values:
[<identifier> <integer>?]+ | none

Initial value:
none

Applies to:
All elements

Inherited:
No

Computed value:
Same as declared value

134 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

Description:
With this property, counters can be reset (or set for the first time)
to any value, positive or negative. If no <integer> is supplied, it
defaults to 0.

Examples:
h1 {counter-reset: section;}
h2 {counter-reset: subsec 1;}

cursor

Values:
[<uri> [<number> <number>]?,]* [auto | default | auto | default |
none | context-menu | help | pointer | progress | wait | cell | cross
hair | text | vertical-text | alias | copy | move | no-drop | not-
allowed | e-resize | n-resize | ne-resize | nw-resize | s-resize |
se-resize | sw-resize | w-resize | ew-resize | ns-resize | nesw-
resize | nwse-resize | col-resize | row-resize | all-scroll]

Initial value:
auto

Applies to:
All elements

Inherited:
Yes

Computed value:
For <uri> values, given that a <uri> resolves to a supported file
type, a single absolute URI with optional X,Y coordinates; other-
wise, same as declared keyword

Description:
Defines the cursor shape to be used when a mouse pointer is placed
within the boundary of an element (although CSS2.1 does not de-
fine which edge creates the boundary). Authors are cautioned to
remember that users are typically very aware of cursor changes and

Visual Media | 135

www.it-ebooks.info

http://www.it-ebooks.info

can be easily confused by changes that seem counterintuitive. For
example, making any noninteractive element switch the cursor state
to pointer is quite likely to cause user frustration.

Note that the value syntax makes URI values optional, but the key-
word mandatory. Thus you can specify any number of URIs to ex-
ternal cursor resources, but the value must end with a keyword.
Leaving off the keyword will cause conforming user agents to drop
the declaration entirely.

CSS3 allows two numbers to be supplied with a <uri> value. These
define the X,Y coordinates of the cursor’s “active point”; that is, the
point in the cursor that is used for determining hover states, active
actions, and so forth. If no numbers are supplied and the cursor
image has no “intrinsic hotspot” (to quote the specification), the
top-left corner of the image is used (equivalent to 0 0). Note that
the numbers are unitless and are interpreted relative to the “cursor’s
coordinate system” (to quote again).

Examples:
a.moreinfo {cursor: help;}
a[href].external {cursor: url(globe.png), auto;}

direction

Values:
ltr | rtl

Initial value:
ltr

Applies to:
All elements

Inherited:
Yes

Computed value:
Same as declared value

136 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

Description:
Defines the base writing direction of blocks and the direction of
embeddings and overrides for the unicode bidirectional algorithm.
Furthermore, it changes the way a number of properties and layout
decisions are handled, including but not limited to the placement
of table cells in a table row and the layout algorithms for block
boxes.

For a variety of reasons, authors are strongly encouraged to use the
HTML attribute dir rather than the CSS property direction. User
agents that do not support bidirectional text are permitted to ignore
this property.

Examples:
*:lang(en) {direction: ltr;}
*:lang(ar) {direction: rtl;}

display

CSS2.1 values:
none | inline | block | inline-block | list-item | table | inline-
table | table-row-group | table-header-group | table-footer-
group | table-row | table-column-group | table-column | table-
cell | table-caption

CSS3 values:
none | inline | block | inline-block | list-item | run-in | compact |
table | inline-table | table-row-group | table-header-group |
table-footer-group | table-row | table-column-group | table-
column | table-cell | table-caption | ruby | ruby-base | ruby-text
| ruby-base-container | ruby-text-container

Initial value:
inline

Applies to:
All elements

Visual Media | 137

www.it-ebooks.info

http://www.it-ebooks.info

Inherited:
No

Computed value:
Varies for floated, positioned, and root elements (see CSS2.1, sec-
tion 9.7); otherwise, same as declared value

Description:
Defines the kind of display box an element generates during layout.
Gratuitous use of display with a document type such as HTML can
be tricky, as it upsets the display hierarchy already defined in
HTML, but it can also be very useful. In the case of XML, which
has no such built-in hierarchy, display is indispensable.

The value none is often used to make elements “disappear,” since it
removes the element and all of its descendant elements from the
presentation. This is true not just in visual media, but in all media;
thus, setting an element to display: none will prevent it from being
spoken by a speaking browser.

The value run-in was long a part of CSS2.1 but was dropped in early
2011 because of inconsistencies among browsers. It is still listed as
part of CSS3. The values compact and marker appeared in CSS2 but
were dropped from CSS2.1 because of a lack of widespread support.

Examples:
h1 {display: block;}
li {display: list-item;}
img {display: inline;}
.hide {display: none;}
tr {display: table-row;}

empty-cells

Values:
show | hide

Initial value:
show

138 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

Applies to:
Elements with a display value of table-cell

Inherited:
Yes

Computed value:
Same as declared value

Description:
Defines the presentation of table cells that contain no content. If
shown, the cell’s borders and background are drawn. This property
is only honored if border-collapse is set to separate; otherwise, it
is ignored.

Examples:
th, td {empty-cells: show;}

float

Values:
left | right | none

Initial value:
none

Applies to:
All elements

Inherited:
No

Computed value:
Same as declared value

Description:
Defines the direction in which an element is floated. This has tra-
ditionally been applied to images in order to let text flow around

Visual Media | 139

www.it-ebooks.info

http://www.it-ebooks.info

them, but in CSS, any element may be floated. A floated element
will generate a block-level box no matter what kind of element it
may be. Floated nonreplaced elements should be given an explicit
width, as they otherwise tend to become as narrow as possible.
Floating is generally well supported by all browsers, but the nature
of floats can lead to unexpected results when they are used as a page
layout mechanism. This is largely due to subtle differences in the
interpretation of statements like “as narrow as possible.”

Examples:
img.figure {float: left;}
p.sidebar {float: right; width: 15em;}

font

Values:
[[<'font-style'> || <'font-variant'> || <'font-weight'>]? <'font-
size'> [/ <'line-height'>]? <'font-family'>] | caption | icon | menu |
message-box | small-caption | status-bar

Initial value:
Refer to individual properties

Applies to:
All elements

Inherited:
Yes

Percentages:
Calculated with respect to the parent element for <font-size> and
with respect to the element’s <font-size> for <line-height>

Computed value:
See individual properties

140 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

Description:
A shorthand property used to set all the aspects of an element’s font
at once. It can also be used to set the element’s font to match an
aspect of the user’s computing environment using keywords such
as icon. If keywords are not used, the minimum font value must
include the font size and family in that order, and any font value
that is not a keyword must end with the font family. Otherwise, the
font declaration will be ignored.

Examples:
p {font: small-caps italic bold small/
 1.25em Helvetica,sans-serif;}
p.example {font: 14px Arial;} /* technically correct,
 although generic font-families are encouraged for
 fallback purposes */
.figure span {font: icon;}

font-family

Values:
[<family-name> | <generic-family>] [, <family-name>| <generic-
family>]*

Expansions:
<generic-family>

serif | sans-serif | monospace | cursive | fantasy

Initial value:
User agent–specific

Applies to:
All elements

Inherited:
Yes

Computed value:
Same as declared value

Visual Media | 141

www.it-ebooks.info

http://www.it-ebooks.info

Description:
Defines a font family to be used in the display of an element’s text.
Note that use of a specific font family (e.g., Geneva) is wholly de-
pendent on that family being available, either on the user’s com-
puter or thanks to a downloadable font file, and the font family
containing the glyphs needed to display the content. Therefore, us-
ing generic family names as a fallback is strongly encouraged. Font
names that contain spaces or nonalphabetic characters should be
quoted to minimize potential confusion. In contrast, generic fall-
back family names should never be quoted.

Examples:
p {font-family: Helvetica, Arial, sans-serif;}
li {font-family: Times, TimesNR, "New Century Schoolbook",
serif;}
pre {font-family: Courier, "Courier New", "Andale Mono",
Monaco, monospace;}

font-size

Values:
xx-small | x-small | small | medium | large | x-large | xx-large |
smaller | larger | <length> | <percentage>

Initial value:
medium

Applies to:
All elements

Inherited:
Yes

Percentages:
Calculated with respect to the parent element’s font size

Computed value:
An absolute length

142 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

Description:
Defines the size of the font. The size can be defined as an absolute
size, a relative size, a length value, or a percentage value. Negative
length and percentage values are not permitted. The dangers of
font-size assignment are many and varied, and points are particu-
larly discouraged in web design, as there is no certain relationship
between points and the pixels on a monitor. It’s a matter of histor-
ical interest that because of early misunderstandings, setting the
font-size to medium led to different results in early versions of
Internet Explorer and Navigator 4.x. Some of these problems are
covered in Chapter 5 of CSS: The Definitive Guide, third edition
(O’Reilly); for further discussion, refer to http://style.cleverchimp
.com/. For best results, authors are encouraged to use either per-
centages or em units for font sizing. As a last resort, pixel sizes can
be used, but this approach has serious accessibility penalties be-
cause it prevents users from resizing text in IE/Win, even when it is
too small to read comfortably. Most other browsers allow users to
resize text regardless of how it has been sized.

Examples:
h2 {font-size: 200%;}
code {font-size: 0.9em;}
p.caption {font-size: 9px;}

font-size-adjust

Values:
<number> | none

Initial value:
none

Applies to:
All elements

Inherited:
Yes

Visual Media | 143

www.it-ebooks.info

http://oreilly.com/catalog/9780596527334/
http://style.cleverchimp.com/
http://style.cleverchimp.com/
http://www.it-ebooks.info

Computed value:
Same as declared value

Description:
Defines an aspect value for the element, which is used to scale fonts
such that they more closely match each other in cases where fallback
fonts are used. The proper aspect value for a font is its true x-height
divided by its font size.

How font-size-adjust actually works is to size fonts according to
their x-height, which is to say according to the height of lowercase
letters. For example, consider a hypothetical font (let’s call it
“CSSType”) that, when set to a font size of 100 pixels, has an x-
height of 60 pixels; that is, its lowercase “x” letterform is 60 pixels
tall. The appropriate font-size-adjust value for CSSType is thus
0.6. Declaring:

p {font: 20px "CSSType", sans-serif;
 font-size-adjust: 0.6;}

…means that paragraph text should be sized so that lowercase let-
ters are 12 pixels tall (20 × 0.6 = 12), no matter what font family is
used. If CSSType is unavailable and the user agent falls back to (for
example) Helvetica, the Helvetica text will be sized so that lower-
case letters are 12 pixels tall and the uppercase letters will be what-
ever size results. Since the aspect value of Helvetica is 0.53, its
uppercase letters will be 22.6 pixels tall (or a rounded-off value, if
the user agent can’t handle fractional pixels). If some other sans-
serif font is used and its aspect value is 0.7, the uppercase letters of
that text will be 17.1 pixels tall while its lowercase letters will still
be 12 pixels tall.

Examples:
body {font-family: Helvetica, sans-serif;
 font-size-adjust: 0.53;}

font-style

Values:
italic | oblique | normal

144 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

Initial value:
normal

Applies to:
All elements

Inherited:
Yes

Computed value:
Same as declared value

Description:
Defines whether the font uses an italic, oblique, or normal font face.
Italic text is generally defined as a separate face within the font
family. It is theoretically possible for a user agent to compute a
slanted font face from the normal face. In reality, user agents rarely
(if at all) recognize the difference between italic and oblique text
and almost always render both in exactly the same way.

Examples:
em {font-style: oblique;}
i {font-style: italic;}

font-variant

Values:
small-caps | normal

Initial value:
normal

Applies to:
All elements

Inherited:
Yes

Visual Media | 145

www.it-ebooks.info

http://www.it-ebooks.info

Computed value:
Same as declared value

Description:
Defines whether text is set in the small-caps style. It is theoretically
possible for a user agent to compute a small-caps font face from the
normal face.

Examples:
h3 {font-variant: small-caps;}
p {font-variant: normal;}

font-weight

Values:
normal | bold | bolder | lighter | 100 | 200 | 300 | 400 | 500 | 600 |
700 | 800 | 900

Initial value:
normal

Applies to:
All elements

Inherited:
Yes

Computed value:
One of the numeric values (100, etc.) or one of the numeric values
plus one of the relative values (bolder or lighter)

Description:
Defines font weight used in rendering an element’s text. The nu-
meric value 400 is equivalent to the keyword normal, and 700 is
equivalent to bold. If a font has only two weights—normal and
bold—the numbers 100 through 500 will be normal, and 600
through 900 will be bold. In general terms, the visual result of each

146 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

numeric value must be at least as light as the next lowest number
and at least as heavy as the next highest number.

Examples:
b {font-weight: 700;}
strong {font-weight: bold;}
.delicate {font-weight: lighter;}

height

Values:
<length> | <percentage> | auto

Initial value:
auto

Applies to:
All elements except nonreplaced inline elements, table columns,
and column groups

Inherited:
No

Percentages:
Calculated with respect to the height of the containing block

Computed value:
For auto and percentage values, as declared; otherwise, an absolute
length, unless the property does not apply to the element (then auto)

Description:
Defines the height of either an element’s content area or its border
box, depending on the value of box-sizing. Negative length and
percentage values are not permitted.

Examples:
img.icon {height: 50px;}
h1 {height: 1.75em;}

Visual Media | 147

www.it-ebooks.info

http://www.it-ebooks.info

left

Values:
<length> | <percentage> | auto

Initial value:
auto

Applies to:
Positioned elements (that is, elements for which the value of
position is something other than static)

Inherited:
No

Percentages:
Refer to the width of the containing block

Computed value:
For relatively positioned elements, left always equals –right; for
static elements, auto; for length values, the corresponding absolute
length; for percentage values, the declared value; otherwise, auto

Description:
Defines the offset between the left outer margin edge of an abso-
lutely positioned element and the left edge of its containing block;
or, for relatively positioned elements, the distance by which the
element is offset to the right of its starting position.

Examples:
div#footer {position: fixed; left: 0;}
*.hanger {position: relative; left: −25px;}

letter-spacing

Values:
[normal | <length> | <percentage>]{1,3}

148 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

Initial value:
normal

Applies to:
All elements

Inherited:
Yes

Percentages:
Refer to the width of the Unicode space glyph (U+0020) of the
element’s font face

Computed value:
For length values, the absolute length; otherwise, normal

Description:
Defines the amount of whitespace to be inserted between the char-
acter boxes of text. Because character glyphs are typically narrower
than their character boxes, length values create a modifier to the
usual spacing between letters. Thus, normal is (most likely)
synonymous with 0. Negative length and percentage values are per-
mitted and will cause letters to bunch closer together.

The three possible values correspond to the minimum, maximum,
and optimal spacing between letters. If two values are listed, the
first corresponds to the minimum and optimal spacing and the sec-
ond to the maximum spacing. If a single value is listed, it is used for
all three. If the text is justified, the user agent may exceed the max-
imum spacing if necessary, but it is never supposed to go below the
minimum spacing. For nonjustified text, the optimal spacing is al-
ways used.

Examples:
p.spacious {letter-spacing: 6px;}
em {letter-spacing: 0.2em;}
p.cramped {letter-spacing: −0.5em;}

Visual Media | 149

www.it-ebooks.info

http://www.it-ebooks.info

Note:
In CSS2.1, letter-spacing only accepts a single value: a length or
normal.

line-height

Values:
<length> | <percentage> | <number> | normal | none

Initial value:
normal

Applies to:
All elements (but see text regarding replaced and block-level
elements)

Inherited:
Yes

Percentages:
Relative to the font size of the element

Computed value:
For length and percentage values, the absolute value; otherwise,
same as declared value

Description:
This property influences the layout of line boxes. When applied to
a block-level element, it defines the minimum (but not the maxi-
mum) distance between baselines within that element. When ap-
plied to an inline element, it is used to define the leading of that
element.

The difference between the computed values of line-height and
font-size (called “leading” in CSS) is split in half and added to the
top and bottom of each piece of content in a line of text. The shortest
box that can enclose all those pieces of content is the line box.

150 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

A raw number value assigns a scaling factor, which is inherited in-
stead of a computed value. Negative values are not permitted.

Examples:
p {line-height: 1.5em;}
h2 {line-height: 200%;}
ul {line-height: 1.2;}
pre {line-height: 0.75em;}

Note:
The keyword none was added in CSS3 and is not supported as of
early 2011.

list-style

Values:
<list-style-type> || <list-style-image> || <list-style-position>

Initial value:
Refer to individual properties

Applies to:
Elements whose display value is list-item

Inherited:
Yes

Computed value:
See individual properties

Description:
A shorthand property that defines the marker type, whether a sym-
bol or an image, and its (crude) placement. Because it applies to any
element that has a display of list-item, it will apply only to li
elements in ordinary HTML and XHTML, although it can be ap-
plied to any element and subsequently inherited by list-item
elements.

Visual Media | 151

www.it-ebooks.info

http://www.it-ebooks.info

Examples:
ul {list-style: square url(bullet3.gif) outer;}
 /* values are inherited by 'li' elements */
ol {list-style: upper-roman;}

list-style-image

Values:
<uri> | none

Initial value:
none

Applies to:
Elements whose display value is list-item

Inherited:
Yes

Computed value:
For <uri> values, the absolute URI; otherwise, none

Description:
Specifies an image to be used as the marker on an ordered or un-
ordered list item. The placement of the image with respect to the
content of the list item can be crudely controlled using list-style-
position.

Examples:
ul {list-style-image: url(bullet3.gif);}
ul li {list-style-image: url(http://example.org/pix/
checkmark.png);}

list-style-position

Values:
inside | outside

152 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

Initial value:
outside

Applies to:
Elements whose display value is list-item

Inherited:
Yes

Computed value:
Same as declared value

Description:
Defines the position of the list marker with respect to the content
of the list item. Outside markers are placed some distance from the
border edge of the list item, but the distance is not defined in CSS.
Inside markers are treated as though they were inline elements in-
serted at the beginning of the list item’s content.

Examples:
li {list-style-position: outside;}
ol li {list-style-position: inside;}

list-style-type

CSS2.1 values:
disc | circle | square | decimal | decimal-leading-zero | upper-
alpha | lower-alpha | upper-latin | lower-latin | upper-roman |
lower-roman | lower-greek | georgian | armenian | none

CSS3 values:
<glyph> | <algorithmic> | <numeric> | <alphabetic> | <symbolic>
| <non-repeating> | normal | none

Expansions:
<glyph>

box | check | circle | diamond | disc | hyphen | square

Visual Media | 153

www.it-ebooks.info

http://www.it-ebooks.info

<algorithmic>

armenian | cjk-ideographic | ethiopic-numeric | georgian | hebrew
| japanese-formal | japanese-informal | lower-armenian | lower-
roman | simp-chinese-formal | simp-chinese-informal | syriac |
tamil | trad-chinese-formal | trad-chinese-informal | upper-
armenian | upper-roman

<numeric>

arabic-indic | binary | bengali | cambodian | decimal | decimal-
leading-zero | devanagari | gujarati | gurmukhi | kannada | khmer |
lao | lower-hexadecimal | malayalam | mongolian | myanmar | octal |
oriya | persian | telugu | tibetan | thai | upper-hexadecimal | urdu

<alphabetic>

afar | amharic | amharic-abegede | cjk-earthly-branch | cjk-
heavenly-stem | ethiopic | ethiopic-abegede | ethiopic-abegede-
am-et | ethiopic-abegede-gez | ethiopic-abegede-ti-er | ethiopic-
abegede-ti-et | ethiopic-halehame-aa-er | ethiopic-halehame-aa-
et | ethiopic-halehame-am-et | ethiopic-halehame-gez | ethiopic-
halehame-om-et | ethiopic-halehame-sid-et | ethiopic-halehame-
so-et | ethiopic-halehame-ti-er | ethiopic-halehame-ti-et |
ethiopic-halehame-tig | hangul | hangul-consonant | hiragana |
hiragana-iroha | katakana | katakana-iroha | lower-alpha |
lower-greek | lower-norwegian | lower-latin | oromo | sidama |
somali | tigre | tigrinya-er | tigrinya-er-abegede | tigrinya-et |
tigrinya-et-abegede | upper-alpha | upper-greek | upper-norwe
gian | upper-latin

<symbolic>

asterisks | footnotes

<non-repeating>

circled-decimal | circled-lower-latin | circled-upper-latin |
dotted-decimal | double-circled-decimal | filled-circled-
decimal | parenthesised-decimal | parenthesised-lower-latin

Initial value:
disc

154 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

Applies to:
Elements whose display value is list-item

Inherited:
Yes

Computed value:
Same as declared value

Description:
Defines the type of marker system to be used in the presentation of
a list. CSS3 provides a greatly expanded number of list types, but
as of early 2011, support for these newer list types was spotty. Use
extra caution when using list types beyond those provided by
CSS2.1.

There is no defined behavior for what happens when a list using an
alphabetic ordering exceeds the letters in the list. For example, once
an upper-latin list reaches “Z,” the specification does not say what
the next bullet should be. (Two possible answers are “AA” and
“ZA.”) This is the case regardless of the alphabet in use. Thus, there
is no guarantee that different user agents will act consistently.

Examples:
ul {list-style-type: square;}
ol {list-style-type: lower-roman;}

Note:
As of this writing, the only CSS2.1 values with widespread support
are disc, circle, square, decimal, upper-alpha, lower-alpha, upper-
latin, upper-roman, and lower-roman.

margin

Values:
[<length> | <percentage> | auto]{1,4}

Initial value:
Not defined

Visual Media | 155

www.it-ebooks.info

http://www.it-ebooks.info

Applies to:
All elements

Inherited:
No

Percentages:
Refer to the width of the containing block

Computed value:
See individual properties

Description:
A shorthand property that defines the width of the overall margin
for an element or sets distinct widths for the individual side margins.
Vertically adjacent margins of block-level elements are collapsed,
whereas inline elements effectively do not take top and bottom
margins. The left and right margins of inline elements do not col-
lapse, nor do margins on floated elements. Negative margin values
are permitted, but caution is warranted because negative values can
cause elements to overlap other elements or to appear to be wider
than their parent elements.

Examples:
h1 {margin: 2ex;}
p {margin: auto;}
img {margin: 10px;}

margin-bottom

Values:
<length> | <percentage> | auto

Initial value:
0

Applies to:
All elements

156 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

Inherited:
No

Percentages:
Refer to the width of the containing block

Computed value:
For percentages, as declared; for length values, the absolute length

Description:
Defines the width of the bottom margin for an element. Negative
values are permitted, but caution is warranted (see margin).

Examples:
ul {margin-bottom: 0.5in;}
h1 {margin-bottom: 2%;}

margin-left

Values:
<length> | <percentage> | auto

Initial value:
0

Applies to:
All elements

Inherited:
No

Percentages:
Refer to the width of the containing block

Computed value:
For percentages, as declared; for length values, the absolute length

Visual Media | 157

www.it-ebooks.info

http://www.it-ebooks.info

Description:
Defines the width of the left margin for an element. Negative values
are permitted, but caution is warranted (see margin).

Examples:
p {margin-left: 5%;}
pre {margin-left: 3em;}

margin-right

Values:
<length> | <percentage> | auto

Initial value:
0

Applies to:
All elements

Inherited:
No

Percentages:
Refer to the width of the containing block

Computed value:
For percentages, as declared; for length values, the absolute length

Description:
Defines the width of the right margin for an element. Negative val-
ues are permitted, but caution is warranted (see margin).

Examples:
img {margin-right: 30px;}
ol {margin-right: 5em;}

158 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

margin-top

Values:
<length> | <percentage> | auto

Initial value:
0

Applies to:
All elements

Inherited:
No

Percentages:
Refer to the width of the containing block

Computed value:
For percentages, as declared; for length values, the absolute length

Description:
Defines the width of the top margin for an element. Negative values
are permitted, but caution is warranted (see margin).

Examples:
ul {margin-top: 0.5in;}
h3 {margin-top: 1.5em;}

max-height

Values:
<length> | <percentage> | none

Initial value:
none

Visual Media | 159

www.it-ebooks.info

http://www.it-ebooks.info

Applies to:
All elements except inline nonreplaced elements and table
elements

Inherited:
No

Percentages:
Refer to the height of the containing block

Computed value:
For percentages, as declared; for length values, the absolute length;
otherwise, none

Description:
Defines a maximum constraint on the height of the element (the
exact nature of that height is dependent on the value of box-
sizing). Thus, the element can be shorter than the declared value
but not taller. Negative values are not permitted.

Example:
div#footer {max-height: 3em;}

max-width

Values:
<length> | <percentage> | none

Initial value:
none

Applies to:
All elements except inline nonreplaced elements and table
elements

Inherited:
No

160 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

Percentages:
Refer to the height of the containing block

Computed value:
For percentages, as declared; for length values, the absolute length;
otherwise, none

Description:
Defines a maximum constraint on the width of the element (the
exact nature of that width is dependent on the value of box-
sizing). Thus, the element can be narrower than the declared value
but not wider. Negative values are not permitted.

Example:
#sidebar img {width: 50px; max-width: 100%;}

min-height

Values:
<length> | <percentage>

Initial value:
0

Applies to:
All elements except inline nonreplaced elements and table
elements

Inherited:
No

Percentages:
Refer to the width of the containing block

Computed value:
For percentages, as declared; for length values, the absolute length

Visual Media | 161

www.it-ebooks.info

http://www.it-ebooks.info

Description:
Defines a minimum constraint on the height of the element (the
exact nature of that height is dependent on the value of box-
sizing). Thus, the element can be taller than the declared value, but
not shorter. Negative values are not permitted.

Example:
div#footer {min-height: 1em;}

min-width

Values:
<length> | <percentage>

Initial value:
0

Applies to:
All elements except inline nonreplaced elements and table
elements

Inherited:
No

Percentages:
Refer to the width of the containing block

Computed value:
For percentages, as declared; for length values, the absolute length;
otherwise, none

Description:
Defines a minimum constraint on the width of the element (the
exact nature of that width is dependent on the value of box-
sizing). Thus, the element can be wider than the declared value,
but not narrower. Negative values are not permitted.

162 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

Example:
div.aside {float: right; width: 13em; max-width: 33%;}

opacity

Values:
<number>

Initial value:
1

Applies to:
All elements

Inherited:
No

Computed value:
Same as declared (or a clipped value if declared value must be
clipped)

Description:
Defines an element’s degree of opacity using a number in the range
0–1, inclusive. Any values outside that range are clipped to the
nearest edge (0 or 1). This property affects every visible portion of
an element. If it is necessary to have the content of an element
semiopaque but not the background, or vice versa, use alpha color
types such as rgba().

An element with opacity of 0 is effectively invisible and may not
respond to mouse or other DOM events. Because of the way
semiopaque elements are expected to be drawn, an element with
opacity less than 1.0 creates its own stacking context even if it is
not positioned. For similar reasons, an absolutely positioned ele-
ment with opacity less than 1 and a z-index of auto force-alters the
z-index value to 0.

Visual Media | 163

www.it-ebooks.info

http://www.it-ebooks.info

Examples:
h2 {opacity: 0.8;}
.hideme {opacity: 0;}

outline

Values:
<'outline-color'> || <'outline-style'> || <'outline-width'>

Initial value:
Not defined for shorthand properties

Applies to:
All elements

Inherited:
No

Computed value:
See individual properties

Description:
This is a shorthand property that defines the overall outline for an
element. The most common use of outlines is to indicate which
form element or hyperlink currently has focus (accepts keyboard
input). Outlines can be of irregular shape, and no matter how thick,
they do not change or otherwise affect the placement of elements.

Examples:
*[href]:focus {outline: 2px dashed invert;}
form:focus {outline: outset cyan 0.25em;}

outline-color

Values:
<color> | invert

164 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

Initial value:
invert (see description)

Applies to:
All elements

Inherited:
No

Computed value:
Same as declared value

Description:
Defines the color for the visible portions of the overall outline of an
element. Remember that the value of outline-style must be some-
thing other than none for any visible border to appear. User agents
are permitted to ignore invert on platforms that don’t support color
inversion. In that case, the outline’s color defaults to the value of
color for the element.

Examples:
*[href]:focus {outline-color: invert;}
form:focus {outline-color: cyan;}

outline-offset

Values:
<length>

Initial value:
0

Applies to:
All elements

Inherited:
No

Visual Media | 165

www.it-ebooks.info

http://www.it-ebooks.info

Computed value:
An absolute length value

Description:
Defines the offset distance between the outer border edge and inner
outline edge. Only one length value can be supplied and it applies
equally to all sides of the outline. Values can be negative, which
causes the outline to “shrink” inward toward the element’s center.
Note that outline-offset cannot be set via the shorthand outline.

Examples:
*[href]:focus {outline-offset: 0.33em;}
form:focus {outline-offset: −1px;}

outline-style

Values:
none | dotted | dashed | solid | double | groove | ridge | inset | outset

Initial value:
none

Applies to:
All elements

Inherited:
No

Computed value:
Same as declared value

Description:
Defines the style for the overall border of an element. The style must
be something other than none for any outline to appear.

Examples:
*[href]:focus {outline-style: dashed;}
form:focus {outline-style: outset;}

166 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

outline-width

Values:
thin | medium | thick | <length>

Initial value:
medium

Applies to:
All elements

Inherited:
No

Computed value:
Absolute length; 0 if the style of the border is none or hidden

Description:
Defines the width for the overall outline of an element. The width
will take effect only for a given outline if the value of outline-
style is something other than none. If the style is none, the width is
effectively reset to 0. Negative length values are not permitted.

Examples:
*[href]:focus {outline-width: 2px;}
form:focus {outline-width: 0.25em;}

overflow

Values:
[visible | hidden | scroll | auto | no-display | no-content]{1,2}

Initial value:
Not defined for shorthand properties (visible in CSS2.1)

Applies to:
Nonreplaced elements with a display value of block or inline-
block

Visual Media | 167

www.it-ebooks.info

http://www.it-ebooks.info

Inherited:
No

Computed value:
Same as declared value

Description:
A shorthand property that defines what happens to content that
overflows the content area of an element. For the value scroll, user
agents should provide a scrolling mechanism whether or not it is
actually needed; for example, scrollbars would appear even if all
content can fit within the element box. If two values are supplied,
the first defines the value of overflow-x and the second defines
overflow-y; otherwise a single value defines both.

Examples:
#masthead {overflow: hidden;}
object {overflow: visible scroll;}

Note:
In CSS2.1, overflow was a standalone property, not a shorthand
property. As of mid-2011, no-display and no-content were not sup-
ported by any major browser.

overflow-x

Values:
visible | hidden | scroll | auto | no-display | no-content

Initial value:
visible

Applies to:
Nonreplaced elements with a display value of block or inline-
block

Inherited:
No

168 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

Computed value:
Same as declared value

Description:
Defines the overflow behavior along the horizontal (X) axis of the
element; that is, the left and right edges of the element.

Examples:
#masthead {overflow-x: hidden;}
object {overflow-x: visible;}

Note:
As of mid-2011, no-display and no-content were not supported by
any major browser.

overflow-y

Values:
visible | hidden | scroll | auto | no-display | no-content

Initial value:
visible

Applies to:
Nonreplaced elements with a display value of block or inline-
block

Inherited:
No

Computed value:
Same as declared value

Description:
Defines the overflow behavior along the vertical (Y) axis of the el-
ement; that is, the top and bottom edges of the element.

Visual Media | 169

www.it-ebooks.info

http://www.it-ebooks.info

Examples:
#masthead {overflow-y: hidden;}
object {overflow-y: scroll;}

Note:
As of mid-2011, no-display and no-content were not supported by
any major browser.

padding

Values:
[<length> | <percentage>]{1,4}

Initial value:
Not defined for shorthand elements

Applies to:
All elements

Inherited:
No

Percentages:
Refer to the width of the containing block

Computed value:
See individual properties

Description:
A shorthand property that defines the width of the overall padding
for an element or sets the widths of each individual side’s padding.
Padding set on inline nonreplaced elements does not affect line-
height calculations; therefore, such an element with both padding
and a background may visibly extend into other lines and poten-
tially overlap other content. The background of the element will
extend throughout the padding. Negative padding values are not
permitted.

170 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

Examples:
img {padding: 10px;}
h1 {padding: 2ex 0.33em;}
pre {padding: 0.75em 0.5em 1em 0.5em;}

padding-bottom

Values:
<length> | <percentage>

Initial value:
0

Applies to:
All elements

Inherited:
No

Percentages:
Refer to the width of the containing block

Computed value:
For percentage values, as declared; for length values, the absolute
length

Description:
Defines the width of the bottom padding for an element. Bottom
padding set on inline nonreplaced elements does not affect line-
height calculations; therefore, such an element with both bottom
padding and a background may visibly extend into other lines and
potentially overlap other content. Negative padding values are not
permitted.

Examples:
ul {padding-bottom: 0.5in;}
h1 {padding-bottom: 2%;}

Visual Media | 171

www.it-ebooks.info

http://www.it-ebooks.info

padding-left

Values:
<length> | <percentage>

Initial value:
0

Applies to:
All elements

Inherited:
No

Percentages:
Refer to the width of the containing block

Computed value:
For percentage values, as declared; for length values, the absolute
length

Description:
Defines the width of the left padding for an element. Left padding
set for an inline nonreplaced element will appear only on the left
edge of the first inline box generated by the element. Negative pad-
ding values are not permitted.

Examples:
p {padding-left: 5%;}
pre {padding-left: 3em;}

padding-right

Values:
<length> | <percentage>

Initial value:
0

172 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

Applies to:
All elements

Inherited:
No

Percentages:
Refer to the width of the containing block

Computed value:
For percentage values, as declared; for length values, the absolute
length

Description:
Defines the width of the right padding for an element. Right pad-
ding set for an inline nonreplaced element will appear only on the
right edge of the last inline box generated by the element. Negative
padding values are not permitted.

Examples:
img {padding-right: 30px;}
ol {padding-right: 5em;}

padding-top

Values:
<length> | <percentage>

Initial value:
0

Applies to:
All elements

Inherited:
No

Visual Media | 173

www.it-ebooks.info

http://www.it-ebooks.info

Percentages:
Refer to the width of the containing block

Computed value:
For percentage values, as declared; for length values, the absolute
length

Description:
Defines the width of the top padding for an element. Top padding
set on inline nonreplaced elements does not affect line-height cal-
culations; therefore, such an element with both top padding and a
background may visibly extend into other lines and potentially
overlap other content. Negative padding values are not permitted.

Examples:
ul {padding-top: 0.5in;}
h3 {padding-top: 1.5em;}

perspective

Values:
none | <number>

Initial value:
none

Applies to:
Block-level and inline-level elements

Inherited:
No

Computed value:
Same as declared value

Description:
Defines the amount of apparent 3D perspective of an element’s
transformed children, but not for the element itself. Numbers define

174 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

a foreshortening depth in pixels; smaller numbers define more ex-
treme perspective effects. Negative values are treated the same as
none.

Examples:
body {perspective: 250;} /* middlin' */
#wrapper {perspective: 10;} /* extreme */

Note:
As of early 2011, this property was only supported in a prefixed
form by WebKit.

perspective-origin

Values:
[[<percentage> | <length> | left | center | right] [<percentage>
| <length> | top | center | bottom]?] | [[left | center | right] ||
[top | center | bottom]]

Initial value:
50% 50%

Applies to:
Block-level and inline-level elements

Inherited:
No

Percentages:
Refer to the size of the element box

Computed value:
Same as declared value

Description:
Defines the origin point of the apparent 3D perspective within the
element. In effect, it defines the point in the element that appears
to be directly in front of the viewer.

Visual Media | 175

www.it-ebooks.info

http://www.it-ebooks.info

Examples:
body {perspective-origin: bottom right;}
#wrapper div {perspective-origin: 0 50%;}

Note:
As of early 2011, this property was only supported in a prefixed
form by WebKit.

position

Values:
static | relative | absolute | fixed

Initial value:
static

Applies to:
All elements

Inherited:
No

Computed value:
Same as declared value

Description:
Defines the positioning scheme used to lay out an element. Any
element may be positioned, although an element positioned with
absolute or fixed will generate a block-level box regardless of what
kind of element it is. An element that is relatively positioned is offset
from its default placement in the normal flow.

Examples:
#footer {position: fixed; bottom: 0;}
*.offset {position: relative; top: 0.5em;}

176 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

Note:
Fixed positioning is supported by Internet Explorer only in versions
7 and later.

quotes

Values:
[<string> <string>]+ | none

Initial value:
User agent–dependent

Applies to:
All elements (CSS2); all elements, ::before, ::after, ::alter
nate, ::marker, ::line-marker, margin areas, and @footnote areas
(CSS3)

Inherited:
Yes

Computed value:
Same as declared value

Description:
Defines the quotation pattern used with quotes and nested quotes.
The actual quote marks are inserted via the content property’s open-
quote and close-quote values. Note that several of the pseudo-
elements to which quotes applies, such as ::alternate, ::marker,
and ::line-marker, are new in CSS3 and may not be supported.

Example:
q {quotes: '\201C' '\201D' '\2018' '\2019';}

resize

Values:
none | both | horizontal | vertical

Visual Media | 177

www.it-ebooks.info

http://www.it-ebooks.info

Initial value:
none

Applies to:
Elements whose overflow value is not visible

Inherited:
No

Computed value:
Same as declared value

Description:
Defines how (or whether) an element can be resized by the user.
The actual appearance and operation of any resize mechanism is
left to the user agent and is likely dependent on the writing
direction.

Examples:
textarea {resize: vertical;}
iframe {resize: both;}

right

Values:
<length> | <percentage> | auto

Initial value:
auto

Applies to:
Positioned elements (that is, elements for which the value of
position is something other than static)

Inherited:
No

178 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

Percentages:
Refer to the width of the containing block

Computed value:
For relatively positioned elements, see the note; for static ele-
ments, auto; for length values, the corresponding absolute length;
for percentage values, the declared value; otherwise, auto.

Description:
Defines the offset between the right outer margin edge of a posi-
tioned element and the right edge of its containing block.

Examples:
div#footer {position: fixed; right: 0;}
*.overlapper {position: relative; right: −25px;}

Note:
For relatively positioned elements, the computed value of left al-
ways equals right.

ruby-align

Values:
auto | start | left | center | end | right | distribute-letter |
distribute-space | line-edge

Initial value:
auto

Applies to:
All elements and generated content

Inherited:
Yes

Computed value:
Same as declared value

Visual Media | 179

www.it-ebooks.info

http://www.it-ebooks.info

Description:
Defines the relative alignment of ruby text as compared to ruby base
contents.

Examples:
ruby {ruby-align: start;}
rubytext {ruby-align: distribute-space;}

Note:
A “ruby” is a short run of text that goes alongside base text, which
is common in written East Asian languages. As of early 2011, this
property was supported only by Internet Explorer.

ruby-overhang

Values:
auto | start | end | none

Initial value:
none

Applies to:
The parent elements of elements with a display value of ruby-text

Inherited:
Yes

Computed value:
Same as declared value

Description:
Defines whether, and to which side of the base text, a ruby wider
than its base text is allowed to overhang text adjacent to its base.

Examples:
rubytext {ruby-overhang: none;}

180 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

Note:
A “ruby” is a short run of text that goes alongside base text, which
is common in written East Asian languages. As of early 2011, this
property was supported only by Internet Explorer.

ruby-position

Values:
before | after | right

Initial value:
before

Applies to:
The parent elements of elements with a display value of ruby-text

Inherited:
Yes

Computed value:
Same as declared value

Description:
Defines the position of ruby text in relation to its base text.

Examples:
rubytext {ruby-position: before;}

Note:
A “ruby” is a short run of text that goes alongside base text, which
is common in written East Asian languages. As of early 2011, this
property was supported only by Internet Explorer.

ruby-span

Values:
attr(x) | none

Visual Media | 181

www.it-ebooks.info

http://www.it-ebooks.info

Initial value:
none

Applies to:
Elements with a display value of ruby-text

Inherited:
No

Computed value:
A number

Description:
Defines the number of ruby base text elements that can be spanned
by the ruby text. The attribute value must be a number and is eval-
uated as such. The values 0 and none are both equivalent to 1, which
indicates no spanning.

Examples:
rubytext {ruby-span: attr(span);}

Note:
A “ruby” is a short run of text that goes alongside base text, which
is common in written East Asian languages. As of early 2011, this
property was supported only by Internet Explorer.

table-layout

Values:
auto | fixed

Initial value:
auto

Applies to:
Elements with a display value of table or inline-table

182 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

Inherited:
No

Computed value:
Same as declared value

Description:
Defines whether a table element should be laid out using an auto-
matic layout algorithm or a fixed-layout algorithm. The benefit of
the automatic algorithm is that it’s more like what authors are used
to from more than a decade of browser behavior. The fixed-layout
algorithm is theoretically faster and more predictable.

Examples:
table.data {table-display: fixed;}
table.directory {table-display: auto;}

text-align

CSS2 values:
left | center | right | justify | <string>

CSS2.1 values:
left | center | right | justify

CSS3 values:
[start | end | left | center | right | justify | match-parent] ||
<string>

Initial value:
User agent–specific, often based on writing direction (CSS2.1);
start (CSS3)

Applies to:
Block-level elements

Inherited:
Yes

Visual Media | 183

www.it-ebooks.info

http://www.it-ebooks.info

Computed value:
Same as declared value

Description:
Defines the horizontal alignment of text within a block-level ele-
ment by defining the point to which line boxes are aligned. The
value justify is supported by allowing user agents to programmat-
ically adjust the word (but not letter) spacing of the line’s content;
results may vary by user agent.

Examples:
p {text-align: justify;}
h4 {text-align: center;}

Note:
CSS2 included a <string> value that was dropped from CSS2.1
because of a lack of support but returned in CSS3. As of mid-2011,
it still lacked browser support.

text-decoration

Values:
none | [underline || overline || line-through || blink]

Initial value:
none

Applies to:
All elements

Inherited:
No

Computed value:
Same as declared value

184 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

Description:
Defines text-decoration effects such as underlining. These decora-
tions will span descendant elements that don’t have decorations of
their own, in many cases making the child elements appear to be
decorated. Combinations of the values are legal. Any time two
text-decoration declarations apply to the same element, the values
of the two declarations are not combined. For example:

h1 {text-decoration: overline;}
h1, h2 {text-decoration: underline;}

Given these styles, h1 elements will be underlined with no overline
because the value of underline completely overrides the value of
overline. If h1 should have both overlines and underlines, use the
value overline underline for the h1 rule and move it after the h1,
h2 rule or extend its selector to raise its specificity.

User agents are not required to support blink.

Examples:
u {text-decoration: underline;}
.old {text-decoration: line-through;}
u.old {text-decoration: line-through underline;}

text-indent

CSS2 Values:
<length> | <percentage>

CSS3 Values:
[<length> | <percentage>] && [hanging || each-line]?

Initial value:
0

Applies to:
Block-level elements

Inherited:
Yes

Visual Media | 185

www.it-ebooks.info

http://www.it-ebooks.info

Percentages:
Refer to the width of the containing block

Computed value:
For percentage values, as declared; for length values, the absolute
length

Description:
Defines the indentation of the first line of content in a block-level
element. It is most often used to create a tab effect. Negative values
are permitted and cause outdent (or hanging indent) effects. In
CSS3, the value each-line will apply the indentation to any new line
that results from a forced line break (e.g., due to a
 element)
within the element, not just the first line. The value hanging inverts
the defined pattern of indentation, allowing for the creation of an
outdent effect without using a negative length value.

Examples:
p {text-indent: 5em;}
h2 {text-indent: −25px;}

text-overflow

Values:
clip | ellipsis

Initial value:
clip

Applies to:
Block-level elements

Inherited:
No

Computed value:
Same as declared values

186 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

Description:
Defines the behavior when inline content overflows its parent ele-
ment’s box in cases where the parent element does not have an
overflow value of visible. The default value is the historical behav-
ior, where the content is simply clipped to the edges of the parent’s
box. The value ellipsis means the content should be clipped but
an ellipsis (…) is inserted at or near the “end” of the element. In a
top-to-bottom, left-to-right language such as English, this would
place the ellipsis at or near the bottom-right corner of the element.

Examples:
pre {text-overflow: clip;}
article {text-overflow: ellipsis;}

text-shadow

Values:
none | [<length>{2,4} <color>?,] * <length>{2,4} <color>?

Initial value:
none

Applies to:
All elements

Inherited:
Yes

Computed value:
One or more sets of a color plus three absolute lengths

Description:
Defines one or more shadows to be “cast” by the text of an element.
Shadows are always painted behind the element’s text, but in front
of the element’s background, borders, and outline. Shadows are
drawn from the first on top to the last on the bottom.

The four length values that can be declared are, in order: horizontal
offset, vertical offset, blur distance, and spread distance. When

Visual Media | 187

www.it-ebooks.info

http://www.it-ebooks.info

positive, the offset values go down and to the right; when negative,
back and to the left. Positive spread values increase the size of the
shadow and negative values contract it. Blur values cannot be
negative.

Examples:
h1 {text-shadow: 0.5em 0.33em 4px 2px gray;}
h2 {text-shadow: 0 −3px 0.5em blue;}

text-transform

Values:
uppercase | lowercase | capitalize | none

Initial value:
none

Applies to:
All elements

Inherited:
Yes

Computed value:
Same as declared value

Description:
Defines the pattern for changing the case of letters in an element,
regardless of the case of the text in the document source. The de-
termination of which letters are to be capitalized by the value
capitalize is not precisely defined, as it depends on user agents
knowing how to recognize a “word.”

Examples:
h1 {text-transform: uppercase;}
.title {text-transform: capitalize;}

188 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

top

Values:
<length> | <percentage> | auto

Initial value:
auto

Applies to:
Positioned elements (that is, elements for which the value of
position is something other than static)

Inherited:
No

Percentages:
Refer to the height of the containing block

Computed value:
For relatively positioned elements, see note; for static elements,
auto; for length values, the corresponding absolute length; for per-
centage values, the declared value; otherwise, auto

Description:
Defines the offset between the top outer margin edge of a positioned
element and the top edge of its containing block.

Note:
For relatively positioned elements, if both top and bottom are auto,
their computed values are both 0; if one of them is auto, it becomes
the negative of the other; if neither is auto, bottom becomes the neg-
ative of the value of top.

Examples:
#masthead {position: fixed; top: 0;}
sub {position: relative; top: 0.5em;
 vertical-align: baseline;}

Visual Media | 189

www.it-ebooks.info

http://www.it-ebooks.info

transform

Values:
none | <transform-function> [<transform-function>]*

Expansions:
<transform-function>

See description.

Initial value:
none

Applies to:
Block- and inline-level elements

Inherited:
No

Computed value:
Same as declared value

Description:
Defines one or more transforms of an element. These transforms
can occur in a 2D or a simulated 3D space, depending on how the
transforms are declared.

The permitted values for <transform-function> are lengthy and
complex. For a full list with minimalist descriptions, please consult
http://w3.org/TR/css3-3d-transforms/#transform-functions.

Examples:
table th {transform: rotate(45deg);}
li {transform: scale3d(1.2,1.7,0.85);}

190 | Chapter 4: Property Reference

www.it-ebooks.info

http://w3.org/TR/css3-3d-transforms/#transform-functions
http://www.it-ebooks.info

transform-origin

Values:
[[[<percentage> | <length> | left | center | right] [<percentage>
| <length> | top | center | bottom]?] <length>?] | [[[left | center |
right] || [top | center | bottom]] <length>?]

Initial value:
50% 50% 0

Applies to:
Block- and inline-level elements

Inherited:
No

Percentages:
Refer to the size of the element box

Computed value:
For <length>, an absolute length; otherwise a percentage

Description:
Defines the origin point for an element’s transforms in either 2D or
simulated 3D space. The marked-as-optional <length> values are
what define a 3D origin point; without them, the value is necessarily
in 2D space.

Examples:
table th {transform-origin: bottom left;}
li {transform-origin: 10% 10px 10em;}

Note:
As of mid-2011, there were separate working drafts for 2D and 3D
transforms, each of which defined its own value syntax for
transform-origin. What is listed here is an attempt to harmonize
the two without having to write out two separate but nearly iden-
tical value syntaxes.

Visual Media | 191

www.it-ebooks.info

http://www.it-ebooks.info

transform-style

Values:
flat | preserve-3d

Initial value:
flat

Applies to:
Block- and inline-level elements

Inherited:
No

Computed value:
Same as declared value

Description:
Defines whether an element transformed in simulated 3D space
should have its children rendered using a flat style, thus putting
them all in the same 2D plane as the element, or attempt to use a
3D effect where children with positive or negative z-index values
may be rendered “in front of” or “behind” the element’s plane as it
rotates. Elements whose overflow value is hidden cannot preserve
3D effects and are treated as though the value of transform-style
is flat.

Examples:
li {transform-style: preserve-3d;}

transition

Values:
[<'transition-property'> || <'transition-duration'> || <'transition-
timing-function'> || <'transition-delay'> [, [<'transition-property'>
|| <'transition-duration'> || <'transition-timing-function'> ||
<'transition-delay'>]]*

192 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

Initial value:
Not defined for shorthand properties

Applies to:
All elements plus the ::before and ::after pseudo-elements

Inherited:
No

Computed value:
Same as declared value

Description:
A shorthand property that defines the aspects of one or more of an
element’s transitions from one state to another.

Even though it is not (as of this writing) explicitly defined in the
value syntax, descriptive text in the specification defines that when
two <time> values are declared, the first is the duration and the
second is the delay. If only one is declared, it defines only the
duration.

Examples:
a[href]:hover {transition: color 1s 0.25s ease-in-out;}
h1 {transition: linear all 10s;}

transition-delay

Values:
<time> [, <time>]*

Initial value:
0

Applies to:
All elements plus the ::before and ::after pseudo-elements

Visual Media | 193

www.it-ebooks.info

http://www.it-ebooks.info

Inherited:
No

Computed value:
Same as declared value

Description:
Defines a delay between when a transition could theoretically first
start and when it actually starts. For example, if a transition is de-
fined to begin on hover but has a delay of 0.5s, the transition will
actually begin half a second after the element is first hovered. Neg-
ative time values are permitted, but rather than creating a paradox,
this simply jumps the transition to the point it would have reached
had it been started at the defined time offset in the past. In other
words, it will be started partway through the transition and run to
its conclusion.

Examples:
a[href]:hover {transition-delay: 0.25;}
h1 {transition-delay: 0;}

transition-duration

Values:
<time> [, <time>]*

Initial value:
0

Applies to:
All elements plus the ::before and ::after pseudo-elements

Inherited:
No

Computed value:
Same as declared value

194 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

Description:
Defines the length of time it takes for the transition to run from start
to finish. The default 0 means the transition is instantaneous and
no animation occurs. Negative time values are treated as 0.

Examples:
a[href]:hover {transition-duration: 1s;}
h1 {transition-duration: 10s;}

transition-property

Values:
none | all | [<IDENT>] [',’ <IDENT>]*

Initial value:
all

Applies to:
All elements plus the ::before and ::after pseudo-elements

Inherited:
No

Computed value:
Same as declared value

Description:
Defines one or more properties that are transitioned from one state
to another; for example, color means that the foreground color of
an element is transitioned from the start color to the finish color. If
a shorthand property is declared, the transition parameters meant
for that property are propagated to all the properties represented
by the shorthand.

The keyword all means all properties are transitioned. The key-
word none prevents any properties from being transitioned, effec-
tively shutting down the transition.

Visual Media | 195

www.it-ebooks.info

http://www.it-ebooks.info

Examples:
a[href]:hover {transition-property: color;}
h1 {transition-property: all;}

transition-timing-function

Values:
<transition-timing> [, <transition-timing>]*

Expansions:
<transition-timing>

ease | linear | ease-in | ease-out | ease-in-out | cubic-
bezier(<number>, <number>, <number>, <number>)

Initial value:
ease

Applies to:
All elements plus the ::before and ::after pseudo-elements

Inherited:
No

Computed value:
Same as declared value

Description:
Defines the way in which intermediate states of a transition are cal-
culated. The value keywords (ease, linear, etc.) are shorthands for
specific cubic-bezier() values defined in the specification, so in
effect all values of this property are cubic-bezier() values.

Examples:
a[href]:hover {transition-timing-function: ease-in-out;}
h1 {transition-timing-function: linear;}

196 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

unicode-bidi

Values:
normal | embed | bidi-override

Initial value:
normal

Applies to:
All elements

Inherited:
No

Computed value:
Same as declared value

Description:
Allows the author to generate levels of embedding within the uni-
code bidirectional algorithm. User agents that do not support bi-
directional text are permitted to ignore this property.

Examples:
span.name {direction: rtl; unicode-bidi: embed;}

vertical-align

Values:
baseline | sub | super | top | text-top | middle | bottom | text-
bottom | <percentage> | <length>

Initial value:
baseline

Applies to:
Inline elements and table cells

Visual Media | 197

www.it-ebooks.info

http://www.it-ebooks.info

Inherited:
No

Percentages:
Refer to the value of line-height for the element

Computed value:
For percentage and length values, the absolute length; otherwise,
same as declared value

Description:
Defines the vertical alignment of an inline element’s baseline with
respect to the baseline of the line in which it resides. Negative length
and percentage values are permitted, and they lower the element
instead of raising it.

In table cells, this property sets the alignment of the content of the
cell within the cell box. When applied to table cells, only the values
baseline, top, middle, and bottom are recognized.

Examples:
sup {vertical-align: super;}
.fnote {vertical-align: 50%;}

visibility

Values:
visible | hidden | collapse

Initial value:
inherit

Applies to:
All elements

Inherited:
No

198 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

Computed value:
Same as declared value

Description:
Defines whether the element box generated by an element is ren-
dered. This means authors can have the element take up the space
it would ordinarily take up, while remaining completely invisible.
The value collapse is used in tables to remove columns or rows
from the table’s layout.

Examples:
ul.submenu {visibility: hidden;}
tr.hide {visibility: collapse;}

white-space

Values:
normal | nowrap | pre | pre-wrap | pre-line

Initial value:
normal

Applies to:
All elements (CSS2.1); block-level elements (CSS2)

Inherited:
No

Computed value:
Same as declared value

Description:
Defines how whitespace within an element is handled during lay-
out. normal acts as web browsers have traditionally treated text, in
that it reduces any sequence of whitespace to a single space. pre
causes whitespace to be treated as in the HTML element pre, with
both whitespace and line breaks fully preserved. nowrap prevents an
element from line-breaking, as in the “nowrap” attribute for td and

Visual Media | 199

www.it-ebooks.info

http://www.it-ebooks.info

th elements in HTML4. The values pre-wrap and pre-line were
added in CSS2.1; the former causes the user agent to preserve
whitespace while still automatically wrapping lines of text, and the
latter honors newline characters within the text while collapsing all
other whitespace as per normal.

Examples:
td {white-space: nowrap;}
tt {white-space: pre;}

width

Values:
<length> | <percentage> | auto

Initial value:
auto

Applies to:
Block-level and replaced elements

Inherited:
No

Percentages:
Refer to the width of the containing block

Computed value:
For auto and percentage values, as declared; otherwise, an absolute
length, unless the property does not apply to the element (then auto)

Description:
Defines the width of an element’s content area, outside of which
padding, borders, and margins are added. This property is ignored
for inline nonreplaced elements. Negative length and percentage
values are not permitted.

200 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

Examples:
table {width: 80%;}
#sidebar {width: 20%;}
.figure img {width: 200px;}

word-spacing

Values:
[normal | <length> | <percentage>]{1,3}

Initial value:
normal

Applies to:
All elements

Inherited:
Yes

Percentages:
Refer to the width of the Unicode space glyph (U+0020) of the
element’s font face

Computed value:
For length values, the absolute length; otherwise, normal

Description:
Defines the amount of whitespace to be inserted between words.
Note that the specification does not define what constitutes a
“word.” In typical practice, user agents will apply this to the col-
lapsed whitespace between strings of nonwhitespace characters.
Negative length values are permitted and will cause words to bunch
closer together.

Examples:
p.spacious {letter-spacing: 6px;}
em {letter-spacing: 0.2em;}
p.cramped {letter-spacing: −0.5em;}

Visual Media | 201

www.it-ebooks.info

http://www.it-ebooks.info

Note:
In CSS2.1, word-spacing only accepts a single value: either a
<length> or normal.

word-wrap

Values:
normal | break-word

Initial value:
normal

Applies to:
All elements

Inherited:
Yes

Computed value:
Same as declared value

Description:
Defines how text should be wrapped in situations where it would
not ordinarily be wrapped; for example, a very long string of num-
bers containing no spaces, such as the first thousand digits of pi.
The value break-word permits user agents to break a word at arbi-
trary points if it cannot find regular breakpoints within the “word”
(text string).

Examples:
td {word-wrap: break-word;}
p {word-wrap: normal;}

z-index

Values:
<integer> | auto

202 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

Initial value:
auto

Applies to:
Positioned elements

Inherited:
No

Computed value:
Same as declared value

Description:
Defines the placement of a positioned element along the z-axis,
which is defined to be the axis that extends perpendicular to the
display area. Positive numbers are closer to the user, and negative
numbers are farther away.

Example:
#masthead {position: relative; z-index: 10000;}

Paged Media

break-after

Values:
auto | always | avoid | left | right | page | column | avoid-page |
avoid-column

Initial value:
auto

Applies to:
Block-level elements

Paged Media | 203

www.it-ebooks.info

http://www.it-ebooks.info

Inherited:
No

Computed value:
Same as declared value

Description:
Defines whether a column or page break should or should not be
placed after the element. Although it is theoretically possible to
force breaks with always, it is not possible to guarantee prevention;
the best an author can do is ask the user agent to avoid inserting a
column or page break after the element. The keywords avoid-
column and avoid-page attempt to prevent insertion after the ele-
ment of column or page breaks, respectively. The keyword left is
used to insert enough breaks after the element to make the next
page be a left-hand page; similarly, right is used for a right-hand
page. page and always insert a page break after the element; col
umn and always, a column break.

Examples:
h3 {break-after: avoid;}
div.col {break-after: column;}

break-before

Values:
auto | always | avoid | left | right | page | column | avoid-page |
avoid-column

Initial value:
auto

Applies to:
Block-level elements

Inherited:
No

204 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

Computed value:
Same as declared value

Description:
Defines whether a column or page break should or should not be
placed before the element. Although it is theoretically possible to
force breaks with always, it is not possible to guarantee prevention;
the best an author can do is ask the user agent to avoid inserting a
column or page break before the element. The keywords avoid-
column and avoid-page attempt to prevent insertion before the ele-
ment of column or page breaks, respectively. The keyword left is
used to insert enough breaks before the element to make the page
be a left-hand page; similarly, right is used for a right-hand page.
page and always insert a page break before the element; column and
always, a column break.

Examples:
h2 {break-before: always;}
h3 {break-before: avoid;}

break-inside

Values:
auto | avoid | avoid-page | avoid-column

Initial value:
auto

Applies to:
Block-level elements

Inherited:
No

Computed value:
Same as declared value

Paged Media | 205

www.it-ebooks.info

http://www.it-ebooks.info

Description:
Defines whether a column or page break should be avoided within
the element. Note that such avoidance may not be possible; for
example, declaring body {break-inside: avoid-page;} for a lengthy
document will not prevent the insertion of page breaks by the user
agent.

Examples:
table {break-inside: avoid;}
ul {break-inside: avoid-column;}

image-orientation

Values:
auto | <angle>

Initial value:
auto

Applies to:
Image elements

Inherited:
N/A

Computed value:
Same as declared value

Description:
Defines a clockwise rotation angle for images when displayed in
paged media. The intent is to allow authors to rotate images that
may have come from devices such as cell phones that do not auto-
matically rotate images that are taken “sideways.” User agents are
required to support angle values that compute to 0deg, 90deg,
180deg, and 270deg. Other angle values may be ignored. Note that
the property is not needed to rotate images when switching from
portrait to landscape layout or vice versa; such rotation should be
done automatically by the user agent.

206 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

Examples:
img.oldphone {image-orientation: 90deg;}

marks

Values:
[crop || cross] | none

Initial value:
none

Applies to:
The page context

Inherited:
No

Computed value:
Same as declared value

Description:
Defines whether cross or crop marks should be added to the display
of a page.

Examples:
@page {marks: cross crop;}

orphans

Values:
<integer>

Initial value:
2

Applies to:
Block-level elements

Paged Media | 207

www.it-ebooks.info

http://www.it-ebooks.info

Inherited:
Yes

Computed value:
Same as declared value

Description:
Defines the minimum number of text lines within an element that
can be left at the bottom of a page. This can affect the placement of
page breaks within the element.

Examples:
p {orphans: 4;}
ul {orphans: 2;}

page

Values:
auto | <identifier>

Initial value:
auto

Applies to:
Block-level elements

Inherited:
Yes

Computed value:
Same as declared value

Description:
Defines the page type that should be used when displaying the ele-
ment. The emphasis of the word “should” is taken directly from the
specification, so author beware.

208 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

The intended effect is that if an element has a value of page that is
different than that of the preceding element, at least one page break
is inserted before the element and a new page started using the page
type declared by page. (Multiple page breaks may be used if other
styles call for using a right- or left-hand page when starting the new
page.)

Examples:
@page wide {size: landscape;}
table.summary {page: wide;}

page-break-after

Values:
auto | always | avoid | left | right

Initial value:
auto

Applies to:
Block-level elements

Inherited:
No

Computed value:
Same as declared value

Description:
Defines whether one or more page breaks should be placed after an
element. Although it is theoretically possible to force breaks with
always, it is not possible to guarantee prevention; avoid asks the
user agent to avoid inserting a page break if possible. The keyword
left is used to insert enough breaks after the element to make the
next page be a left-hand page; similarly, right is used for a right-
hand page.

This property is essentially replaced by break-after, but browser
support for page-break-after may be stronger.

Paged Media | 209

www.it-ebooks.info

http://www.it-ebooks.info

Examples:
section {page-break-after: always;}
h1 {page-break-after: avoid;}

page-break-before

Values:
auto | always | avoid | left | right

Initial value:
auto

Applies to:
Block-level elements

Inherited:
No

Computed value:
Same as declared value

Description:
Defines whether one or more page breaks should be placed before
an element. Although it is theoretically possible to force breaks with
always, it is not possible to guarantee prevention; avoid asks the
user agent to avoid inserting a page break if possible. The keyword
left is used to insert enough breaks before the element to make the
page be a left-hand page; similarly, right is used for a right-hand
page.

This property is essentially replaced by break-before, but browser
support for page-break-before may be stronger.

Examples:
section {page-break-before: always;}
h2 {page-break-before: avoid;}

210 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

page-break-inside

Values:
auto | avoid

Initial value:
auto

Applies to:
Block-level elements

Inherited:
No

Computed value:
Same as declared value

Description:
Defines whether a page break should be avoided within the element.
Note that such avoidance may not be possible; for example, de-
claring body {page-break-inside: avoid;} for a lengthy document
will not prevent the insertion of page breaks by the user agent.

This property is essentially replaced by break-inside, but browser
support for page-break-inside may be stronger.

Examples:
table {page-break-inside: avoid;}

page-policy

Values:
start | first | last

Initial value:
start

Paged Media | 211

www.it-ebooks.info

http://www.it-ebooks.info

Applies to:
@counter and @string blocks

Inherited:
N/A

Computed value:
Same as declared value

Description:
Defines how to determine the value of a counter or string value with
regards to a page-based element. For example, an author may define
a CSS counter to express section numbers. The author then might
want to have the header of every page contain the section number
of the first section found on each page. This would be done using
@counter secnum {page-policy: first;} (plus related CSS needed
to create the counter pattern). If the desire is to use the last instance
of the counter on the page, then page-policy: last would be used
instead. The value start uses the value before anything is done with
the page; to continue the example, it would use the counter number
as carried over from the previous page, not the first instance of the
counter on the current page.

Examples:
@counter chapter {page-policy: first;}
@string section-title {page-policy: start;}

size

Values:
auto | <length>{1,2} | [<page-size> || [portrait | landscape]]

Expansions:
<page-size>

A5 | A4 | A3 | B5 | B4 | letter | legal | ledger

Initial value:
auto

212 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

Applies to:
The page context

Inherited:
N/A

Computed value:
Same as declared value

Description:
Defines the size and orientation of a page box. The keywords auto,
portrait, and landscape cause the page box to fill the available ren-
dering space on the page. Page boxes set to portrait have the con-
tent printed with the long sides of the page box being the right and
left sides; in the case of landscape, the content is printed with the
longer sides of the page box being the top and bottom sides.

If a page box is specified using lengths or one of the <page-size>
keywords (e.g., A4) and the page box cannot be fit onto the actual
page used for display, the page box and its contents may be scaled
down to fit. If only one length value is declared, it sets both dimen-
sions and thus defines a square page box. Length values that use
em or ex units are calculated with respect to the computed font size
of the page context.

Examples:
body {page-size: landscape;}

widows

Values:
<integer>

Initial value:
2

Applies to:
Block-level elements

Paged Media | 213

www.it-ebooks.info

http://www.it-ebooks.info

Inherited:
Yes

Computed value:
Same as declared value

Description:
Defines the minimum number of text lines within an element that
can be left at the top of a page. This can affect the placement of page
breaks within the element.

Examples:
p {widows: 4;}
ul {widows: 2;}

Aural Media

cue

Values:
<'cue-before'> || <'cue-after'>

Initial value:
Not defined for shorthand properties

Applies to:
All elements

Inherited:
No

Percentages:
Apply to the inherited value for voice-volume

Computed value:
See individual properties (cue-before, etc.)

214 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

Description:
A shorthand property that defines audio cues that precede and fol-
low the audio rendering of an element’s content. A cue is something
like an auditory icon.

Examples:
table.layout {
 cue: url(shattered-glass.ogg) url(sad-trombone.wav);}
pre {cue: url(raygun.mp3);}

cue-after

Values:
none | <uri> [<number> | <percentage> | silent | x-soft | soft |
medium | loud | x-loud]

Initial value:
none

Applies to:
All elements

Inherited:
No

Percentages:
Apply to the inherited value for voice-volume

Computed value:
For <uri> values, the absolute URI; otherwise, none

Description:
Defines an audio cue that follows the audio rendering of an ele-
ment’s content.

Examples:
table.layout {cue-after: url(sad-trombone.wav);}
pre {cue-after: url(raygun.mp3);}

Aural Media | 215

www.it-ebooks.info

http://www.it-ebooks.info

cue-before

Values:
none | <uri> [<number> | <percentage> | silent | x-soft | soft |
medium | loud | x-loud]

Initial value:
none

Applies to:
All elements

Inherited:
No

Percentages:
Apply to the inherited value for voice-volume

Computed value:
For <uri> values, the absolute URI; otherwise, none

Description:
Defines an audio cue that precedes the audio rendering of an ele-
ment’s content.

Examples:
table.layout {cue-before: url(shattered-glass.ogg);}
pre {cue-before: url(raygun.mp3);}

pause

Values:
<'pause-before'> || <'pause-after'>

Initial value:
Not defined for shorthand properties

216 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

Applies to:
All elements

Inherited:
No

Computed value:
See individual properties

Description:
A shorthand property that defines pauses that precede and follow
the audio rendering of an element’s content. A pause is an interval
in which no content is audibly rendered, although background
sounds may still be audible. See pause-before and pause-after for
details on the placement of the pauses.

Examples:
h1 {pause: 1s 500ms;}
ul {pause: 250ms;}

pause-after

Values:
none | x-weak | weak | medium | strong | x-strong | <time>

Initial value:
User agent–dependent

Applies to:
All elements

Inherited:
No

Computed value:
The absolute time value

Aural Media | 217

www.it-ebooks.info

http://www.it-ebooks.info

Description:
Defines the length of a pause that follows the audio rendering of an
element’s content. A pause is an interval in which no content is
audibly rendered, although background sounds may still be audi-
ble. The pause is rendered after any cue that follows the element
(see cue-after and related properties).

Examples:
h1 {pause-after: 500ms;}
ul {pause-after: 250ms;}

pause-before

Values:
none | x-weak | weak | medium | strong | x-strong | <time>

Initial value:
User agent–dependent

Applies to:
All elements

Inherited:
No

Computed value:
The absolute time value

Description:
Defines the length of a pause that precedes the audio rendering of
an element’s content. A pause is an interval in which no content is
audibly rendered, although background sounds may still be audi-
ble. The pause is rendered before any cue that precedes the element
(see cue-before and related properties).

Examples:
h1 {pause-before: 1s;}
ul {pause-before: 250ms;}

218 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

phonemes

Values:
<string>

Initial value:
User agent–dependent

Applies to:
All elements

Inherited:
No

Computed value:
Not specified, but likely as declared

Description:
Defines a phonetic pronunciation for the content of the element.
The <string> value uses the International Phonetic Alphabet by
way of escaped Unicode codepoints.

Examples:
#tomato {phonemes: "t\0252 m\0251 to\028a ";}

rest

Values:
<'rest-before'> || <'rest-after'>

Initial value:
Not defined for shorthand properties

Applies to:
All elements

Aural Media | 219

www.it-ebooks.info

http://www.it-ebooks.info

Inherited:
No

Computed value:
Not specified, but likely a pair of absolute time values

Description:
A shorthand property that defines rests that precede and follow the
audio rendering of an element’s content. A rest is an interval in
which no content is audibly rendered, although background sounds
may still be audible. See rest-before and rest-after for details on
the placement of the rests.

Examples:
th {rest: 0.5s;}
strong {rest: 333ms 250ms;}

rest-after

Values:
none | x-weak | weak | medium | strong | x-strong | <time>

Initial value:
User agent–dependent

Applies to:
All elements

Inherited:
No

Computed value:
Not specified, but likely an absolute time value

Description:
Defines the length of a rest that follows the audio rendering of an
element’s content. A rest is an interval in which no content is au-
dibly rendered, although background sounds may still be audible.

220 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

The rest is rendered after the element’s content but before any cue
that follows the element (see cue-after and related properties).

Examples:
th {rest-after: 0.5s;}
strong {rest-after: 250ms;}

rest-before

Values:
none | x-weak | weak | medium | strong | x-strong | <time>

Initial value:
User agent–dependent

Applies to:
All elements

Inherited:
No

Computed value:
Not specified, but likely an absolute time value

Description:
Defines the length of a rest that precedes the audio rendering of an
element’s content. A rest is an interval in which no content is au-
dibly rendered, although background sounds may still be audible.
The rest is rendered before the element’s content but after any cue
that precedes the element (see cue-before and related properties).

Examples:
th {rest-before: 0.5s;}
strong {rest-before: 333ms;}

Aural Media | 221

www.it-ebooks.info

http://www.it-ebooks.info

speak

Values:
normal | spell-out | digits | literal-punctuation | no-punctuation

Initial value:
normal

Applies to:
All elements

Inherited:
Yes

Computed value:
Not specified

Description:
Defines how an element’s contents will be audibly rendered. The
value spell-out is typically used for acronyms and abbreviations,
such as W3C or CSS. Declaring digits means that numbers are
spoken one digit at a time; for example, the number 13 is spoken
as “one three.” The value literal-punctuation causes punctuation
marks to be spoken literally, as in the words “period” and “semi-
colon”; no-punctuation causes punctuation to be skipped entirely
and no pauses are rendered in their place.

Examples:
abbr {speak: spell-out;}
*.tel {speak: digits;}

speakability

Values:
auto | none | normal

Initial value:
auto

222 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

Applies to:
All elements

Inherited:
Yes

Computed value:
Not specified

Description:
Defines whether an element’s contents will be rendered aurally. If
the value is normal, the element is aurally rendered regardless of the
value of display. If the value is none, the element, including any
cues, pauses, or rests associated with the element, is skipped (takes
no time to be audibly rendered). However, descendant elements
may override the value, causing them to be aurally rendered. The
value auto resolves to none if the value of display is none; otherwise
it resolves to normal.

Examples:
abbr {speak: spell-out;}
*.tel {speak: digits;}

voice-balance

Values:
<number> | left | center | right | leftwards | rightwards

Initial value:
center

Applies to:
All elements

Inherited:
Yes

Aural Media | 223

www.it-ebooks.info

http://www.it-ebooks.info

Computed value:
Not specified, but most likely an absolute number

Description:
Defines the stereo balancing of a speaking voice. This allows a voice
to be shifted all the way to one side or the other, or (with a
<number>) to some mix of the two sides. For example, −50 would
cause the voice to sound as if it is coming from the center-left po-
sition. <number> values are constrained to the range −100 to 100,
inclusive. The keyword left is equivalent to −100; right to 100. The
keyword leftwards subtracts 20 from the inherited value of voice-
balance; rightwards add 20.

This property applies to audio cues (see cue and related properties).

Examples:
.beck {voice-balance: right;}
.moore {voice-balance: left;}

voice-duration

Values:
<time>

Initial value:
User agent–dependent

Applies to:
All elements

Inherited:
No

Computed value:
Not specified

224 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

Description:
Defines the length of time it should take to audibly render the con-
tent of the element. The result will override the value of voice-
rate. Only positive <time> values are permitted.

Examples:
.tel {voice-duration: 3s;}
big {voice-duration: 10s;}

voice-family

Values:
<voice> [, <voice>]*

Expansions:
<voice>

<specific-voice> | [<age>? <generic-voice> <non-negative-
number>?]

<age>

child | young | old

<generic-voice>

male | female | neutral

Initial value:
User agent–dependent

Applies to:
All elements

Inherited:
Yes

Computed value:
Same as declared value

Aural Media | 225

www.it-ebooks.info

http://www.it-ebooks.info

Description:
Defines one or more voice families that can be used in the audio
rendering of an element’s content. It is comparable to font-
family in that it can be used to supply a list of families, including
generic alternatives.

Examples:
body {voice-family:
 "Karla", "Jenny", young female, female, neutral;}
small {voice-family: male child, child;}

voice-pitch

Values:
<number> | <percentage> | x-low | low | medium | high | x-high

Initial value:
medium

Applies to:
All elements

Inherited:
Yes

Percentages:
Refer to the inherited value

Computed value:
Not specified, but likely an absolute number

Description:
Defines the average pitch (frequency) of the speaking voice used to
audibly render the element’s content. The average pitch of a voice
will depend greatly on the voice family. <number> values define an
average pitch in hertz.

226 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

Examples:
big {voice-pitch: 100;}
small {voice-pitch: high;}

voice-pitch-range

Values:
<number> | <percentage> | x-low | low | medium | high | x-high

Initial value:
User agent–dependent

Applies to:
All elements

Inherited:
Yes

Percentages:
Refer to the inherited value

Computed value:
Not specified, but likely an absolute number

Description:
Defines the variation in average pitch used by the speaking voice
while audibly rendering the element’s content. The higher the var-
iation, the more animated the voice will sound. <number> values
define a pitch range in hertz.

Examples:
em {voice-pitch-range: high;}
code {voice-pitch-range: 50;}

Aural Media | 227

www.it-ebooks.info

http://www.it-ebooks.info

voice-rate

Values:
<percentage> | x-slow | slow | medium | fast | x-fast

Initial value:
medium

Applies to:
All elements

Inherited:
Yes

Percentages:
Refer to the default value

Computed value:
Not specified (in the previous incarnation, speech-rate, it was an
absolute number)

Description:
Defines the average rate at which words are spoken when an ele-
ment’s content is audibly rendered.

Examples:
h1 {voice-rate: 33%;}
.legalese {voice-rate: x-fast;}

voice-stress

Values:
strong | moderate | reduced | none

Initial value:
moderate

228 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

Applies to:
All elements

Inherited:
Yes

Computed value:
Not specified (but likely the declared value)

Description:
Affects the height of peaks in the intonation of a speaking voice,
which are in turn generated by stress marks within a language.

Examples:
strong {voice-stress: strong;}
footer {voice-stress: reduced;}

voice-volume

Values:
<number> | <percentage> | silent | x-soft | soft | medium | loud |
x-loud

Initial value:
medium

Applies to:
All elements

Inherited:
Yes

Percentages:
Refer to the inherited value

Computed value:
Not specified (in the previous incarnation, volume, it was an abso-
lute number)

Aural Media | 229

www.it-ebooks.info

http://www.it-ebooks.info

Description:
Defines the median volume level for the waveform of the audibly
rendered content. Thus, a waveform with large peaks and valleys
may go well above or below the volume level set with this property.
<number> values are clipped to the range of 0 to 100, inclusive.
Note that 0 is the same as silent and 100 is the same as x-loud.

Examples:
big {voice-volume: x-loud;}
footer {voice-volume: 15;}

230 | Chapter 4: Property Reference

www.it-ebooks.info

http://www.it-ebooks.info

Index

Symbols
< for child selector, 40
<!-- ... --> for HTML comments,

6
* selector, 39
[] for attribute selectors, 43
: (colon) (in style rules), 6
for ID selector, 42
. for class selector, 42
+ for adjacent sibling selector, 41
; (semicolon) (in style rules), 5
/* ... */ for CSS comments, 6
~ for general sibling selector, 41

A
absolute length units, 35
absolute positioning, 18, 19
:active pseudo-class, 53
adjacent sibling selector, 41
::after pseudo-element, 57
alignment

box alignment, 112
ruby alignment, 179
table cell contents, 29
text alignment, 183
vertical, 197

alternate style sheets, 3, 4
angle units, 37
animation property, 66
animation-delay property, 67
animation-direction property, 67
animation-duration property, 68
animation-iteration count

property, 69
animation-name property, 70
animation-play-state property,

71
animation-timing-function

property, 72
aural media properties, list of,

214–230
auto value

with block-level layout, 13
with inline layout, 14

automatic table layout, 25–27

B
backface-visibility property, 73
background property, 73
background-attachment

property, 75
background-clip property, 76
background-color property, 77

We’d like to hear your suggestions for improving our indexes. Send email to
index@oreilly.com.

231

www.it-ebooks.info

http://www.it-ebooks.info

background-image property, 78
background-origin property, 78
background-position property,

80
background-repeat property, 81
background-size property, 82
balance, voice, 223
basic visual layout, 12–16
::before pseudo-element, 58
beginning substring attribute

value selector, 44
block-level boxes, 10
block-level layout, 12
border property, 83
border-bottom property, 84
border-bottom-color property,

84
border-bottom-left-radius

property, 85
border-bottom-right-radius

property, 86
border-bottom-style property, 87
border-bottom-width property,

87
border-collapse property, 88
border-color property, 89
border-image property, 90
border-image-outset property, 91
border-image-repeat property, 92
border-image-slice property, 93
border-image-source property,

94
border-image-width property, 95
border-left property, 96
border-left-color property, 97
border-left-style property, 98
border-left-width property, 98
border-radius property, 99
border-right property, 101
border-right-color property, 102
border-right-style property, 102
border-right-width property, 103
border-spacing property, 104
border-style property, 105
border-top property, 106
border-top-color property, 106

border-top-left-radius property,
107

border-top-right-radius property,
108

border-top-style property, 109
border-top-width property, 109
border-width property, 110
bottom property, 111
box-align property, 112
box-decoration-break property,

113
box-direction property, 114
box-flex property, 115
box-lines property, 116
box-ordinal-group property, 117
box-orient property, 118
box-pack property, 118
box-shadow property, 119
box-sizing property, 13, 120
break-after property, 203
break-before property, 204
break-inside property, 205
bulleted lists (see entries at list)

C
caption-side property, 121
cascade mechanism, 6, 8
cells, table (see table layout)
centimeter (length unit), 35
:checked pseudo-class, 53
child selector, 40
class selector, 42
classifications of elements, 9
clear property, 122
clip property, 123
collapsing cell borders model, 27–

29
color

background color, 77
border color, 84, 89, 97, 102,

106
column rule color, 128
outline color, 164

color property, 33, 124
color keywords, 33

232 | Index

www.it-ebooks.info

http://www.it-ebooks.info

color values, 32–34
column breaks, 203
column-count property, 125
column-fill property, 126
column-gap property, 127
column-rule property, 127
column-rule-color property, 128
column-rule-style property, 129
column-rule-width property, 129
column-span property, 130
column-width property, 131
columns property, 132
columns, table (see table layout)
comments, 6
conflict resolution (see cascade

mechanism)
containing blocks, 18
content property, 133
contextual selector, 40
counter-increment property, 133
counter-reset property, 134
cue property, 214
cue-after property, 215
cue-before property, 216
currentColor keyword, 33
cursor property, 135
cycles, animation (see entries at

animation)

D
declaration block (in style rules),

5
declarations (in style rules), 5
decoration, box, 113
decoration, text, 184
decrementing counters, 133
delay, animation, 67
delay, transition, 193
descendant selector, 40
direction

animation, 67
base direction, 136
box, 114

direction property, 136
:disabled pseudo-class, 54

display property, 10–12, 137
display roles, element, 10–12
duration

animation, 68
transition, 194
voice, 224

E
element boxes, 12
element classifications, 9
element display roles, 10–12
element layout basics, 12–16
element positioning, 17–23
element selector, 40
em-boxes, 15
em-height (length unit), 36
embedded style sheets, 2

style precedence, 6
empty-cells property, 138
:empty pseudo-class, 46
:enabled pseudo-class, 54
ending substring attribute value

selector, 44
exact attribute value selector, 43
external style sheets, 2

style precedence, 6

F
fill, column, 126
:first-child pseudo-class, 46
::first-letter pseudo-element, 58
::first-line pseudo-element, 59
:first-of-type pseudo-class, 46
fixed positioning, 18
fixed table layout, 24
float property, 139
floating, 16
:focus pseudo-class, 55
font property, 140
font-family property, 141
font-size property, 142
font-size-adjust property, 143
font-style property, 144
font-variant property, 145
font-weight property, 146

Index | 233

www.it-ebooks.info

http://www.it-ebooks.info

frequency values, 38

G
gap, column, 127
general sibling selector, 41
graphics (see image)

H
half-leading, 15
height (see size)
height property, 147
hex-pair color notation, 32
horizontal alignment (see

alignment)
horizontal layout of absolutely

positioned elements, 20–
21

:hover pseudo-class, 55
HSL color notations, 32
.htaccess file, 4
HTML element classifications, 9
HTML element display roles, 10–

12
HTML, adding styles to, 1–5
HTML-style comments, 6
HTTP Link headers, 4
httpd.conf file, 4
hue (color), 32

I
ID selector, 42
image

background image, 78
border image, 90
list item image, 152

image-orientation property, 206
@import directive, 2
!important directive, 7
inch (length unit), 35
incrementing counters, 133
indent, text, 185
inherit keyword, 31
inheritance (in style precedence),

7

initial keyword, 31
inline layout (inline boxes), 14
inline styles, 1

style precedence, 6
inline-level boxes, 11
interaction pseudo-classes, list of,

53–57

K
keywords, 31

L
lang attribute, 45
:lang pseudo-class, 47
language attribute selector, 45
:last-child pseudo-class, 47
:last-of-type pseudo-class, 48
leading, 15
left property, 148
length (see size)
length values, 34–37
letter-spacing property, 148
lightness (color), 32
line-height property, 14, 150
<link> element, 3
Link headers (HTTP), 4
:link pseudo-class, 56
linking to style sheets, 2
list items, 10
list-style property, 151
list-style-image property, 152
list-style-position property, 152
list-style-type property, 153

M
margin property, 155
margin-bottom property, 156
margin-left property, 157
margin-right property, 158
margin-top property, 159
marks property, 207
max-height property, 159
max-width property, 160
media attribute (<link>), 3

234 | Index

www.it-ebooks.info

http://www.it-ebooks.info

media pseudo-attribute (xml-
stylesheet), 4

media queries, 59–64
millimeter (length unit), 35
min-height property, 161
min-width property, 162

N
negation pseudo-class, 52
nested quotes, 177
nonreplaced elements, 9

absolutely positioned, layout
of, 20, 22

:not pseudo-class, 52
:nth-child pseudo-class, 48
:nth-last-child pseudo-class, 49
:nth-last-of-type pseudo-class, 49
:nth-of-type pseudo-class, 50
number values, 34
numbered lists (see entries at list)

O
offset, outline, 165
:only-child pseudo-class, 50
:only-of-type pseudo-class, 51
opacity property, 163
ordered lists (see entries at list)
ordinal groups, 117
orientation

box, 118
image, 206

origin
for background, 78
for 3D perspective, 175
for transformation, 191

orphans property, 207
outline property, 164
outline-color property, 164
outline-offset property, 165
outline-style property, 166
outline-width property, 167
outset, border image, 91
overflow property, 167
overflow-x property, 168
overflow-y property, 169

overflow, text, 186
overhang, ruby, 180

P
padding property, 170
padding-bottom property, 171
padding-left property, 172
padding-right property, 172
padding-top property, 173
page property, 208
page-break-after property, 209
page-break-before property, 210
page-break-inside property, 211
page breaks, 203, 209
page-policy property, 211
paged media properties, list of,

203–214
partial attribute value selector,

43
pause property, 216
pause-after property, 217
pause-before property, 218
percentage values, 34
perspective property, 174
perspective-origin property, 175
phonemes property, 219
pica (length unit), 35
pitch, voice, 226
pixel (length unit), 36
point (length unit), 35
position, 80

(see also origin)
background, 80
list item marker, 152
ruby, 181

position property, 176
positioning, 17–23
precedence, style, 6
properties (in style rules), 5
properties, complete list of, 65–

230
aural media, 214–230
paged media, 203–214
universal values, 65
visual media, 66–203

Index | 235

www.it-ebooks.info

http://www.it-ebooks.info

pseudo-classes, list of, 45–57
interaction, 53–57
negation, 52
structural, 45–51

pseudo-elements, list of, 57–59

Q
quotes property, 177

R
radius, border box, 85, 86, 99,

107, 108
range, voice, 227
rate, voice, 228
relative length units, 36
relative positioning, 18
repeat

background, 81
border image, 92

replaced elements, 10
absolutely positioned, layout

of, 21, 23
resetting counters, 134
resize property, 177
rest property, 219
rest-after property, 220
rest-before property, 221
RGB color notations, 32
right property, 178
root element em-height, 36
:root pseudo-class, 51
rounding radius, border box, 85,

86, 99, 107, 108
rows, table (see table layout)
ruby-align property, 179
ruby-overhang property, 180
ruby-position property, 181
ruby-span property, 181
rule structure in style sheets, 5
rule, column, 127
run-in boxes, 11

S
saturation (color), 32

selector (in style rules), 5
selectors, complete list of, 39–45
shadow

box, 119
text, 187

shape, cursor, 135
shrink-to-fit, 19
simple attribute selector, 43
size

background, 82
border, 87, 98, 103, 109, 110
border image, 95
box, 120
column, 131
column rule, 129
elements, 147, 200
font, 142
line height, 150
margin, 155
maximum, defining, 159, 160
minimum, defining, 161, 162
outline, 167
padding, 170
page box, 212
resize functionality, 177

size property, 212
slice distances, 93
source, image, 94
spacing

border spacing, 104
letter spacing, 148
word spacing, 201

span, column, 130
span, ruby, 181
speak property, 222
speakability property, 222
specificity (in style precedence),

7
static positioning, 17, 19
stereo balance, 223
stress, voice, 228
strings, 38
structural pseudo-classes, list of,

45–51
structure of style sheets, 5
style attribute, 1

236 | Index

www.it-ebooks.info

http://www.it-ebooks.info

<style> element, 2
style inheritance, 7
style precedence, 6
style sheet structure, 5
style sheets, types of, 1–5
styles, adding, 1–5

T
table captions, 121
table cells, empty, 138
table columns (see entries at

column)
table layout, 23–30

automatic layout, 25–27
collapsing cell borders, 27–29
fixed layout, 24
vertical alignment within cells,

29
table-layout property, 182
:target pseudo-class, 56
text-align property, 183
text-decoration property, 184
text-indent property, 185
text-overflow property, 186
text-shadow property, 187
text style (see entries at font;

letter; word)
text-transform property, 188
3D perspective, 174
time values, 38
top property, 189
transform property, 190
transform-origin property, 191
transform-style property, 192
transform, element, 190
transform, text, 188
transition property, 192
transition-delay property, 193
transition-duration property, 194
transition-property property, 195
transition-timing-function

property, 196
transparent keyword, 34
type selector, 40

U
unicode-bidi property, 197
universal selector, 39
unordered lists (see entries at list)
URIs (URI values), 37

V
values, 31–38

angle values, 37
color values, 32–34
frequency values, 38
keywords, 31
length values, 34–37
number values, 34
percentage values, 34
strings, 38
time values, 38
URI values, 37

values for properties (in style
rules), 5

vertical-align property, 197
vertical alignment (see alignment)
vertical layout of absolutely

positioned elements, 21–
23

VGA color keywords, 33
viewport height unit, 37
viewport minimum unit, 37
viewport width unit, 36
visibility property, 198
:visited pseudo-class, 57
visual layout basics, 12–16
visual media properties, list of,

66–203
voice-balance property, 223
voice-duration property, 224
voice-family property, 225
voice-pitch property, 226
voice-pitch-range property, 227
voice-rate property, 228
voice-stress property, 228
voice-volume property, 229
volume, voice, 229

Index | 237

www.it-ebooks.info

http://www.it-ebooks.info

W
weight, font, 146
white-space property, 199
widows property, 213
width (see size)
width property, 200
word-spacing property, 201
word-wrap property, 202
wrap, text, 202

X
x-height (length unit), 36
XHTML element classifications,

9
XHTML element display roles,

10–12
XHTML, adding styles to, 1–5
xml-stylesheet instruction, 4

Z
z-index property, 202
ZERO width, 36

238 | Index

www.it-ebooks.info

http://www.it-ebooks.info

	Table of Contents
	Preface
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	Chapter 1. Basic Concepts
	Adding Styles to HTML and XHTML
	Inline Styles
	Embedded Style Sheets
	External Style Sheets
	@import directive
	link element
	xml-stylesheet processing instruction
	HTTP Link headers

	Rule Structure
	Comments
	Style Precedence
	Specificity Calculations
	Inheritance
	The Cascade

	Element Classification
	Nonreplaced Elements
	Replaced Elements

	Element Display Roles
	Block-Level
	Inline-Level
	Run-In

	Basic Visual Layout
	Block-Level Layout
	Inline Layout

	Floating
	Positioning
	Types of Positioning
	The Containing Block
	Layout of Absolutely Positioned Elements
	Horizontal layout of absolutely positioned elements
	Vertical layout of absolutely positioned elements

	Table Layout
	Table Arrangement Rules
	Fixed Table Layout
	Automatic Table Layout
	Collapsing Cell Borders
	Collapsing borders

	Vertical Alignment Within Cells

	Chapter 2. Values
	Keywords
	Color Values
	Number Values
	Percentage Values
	Length Values
	Absolute Length Units
	Relative Length Units

	URIs
	Angles
	Times
	Frequencies
	Strings

	Chapter 3. Selectors
	Selectors
	Universal Selector
	Type Selector
	Descendant Selector
	Child Selector
	Adjacent Sibling Selector
	General Sibling Selector
	Class Selector
	ID Selector
	Simple Attribute Selector
	Exact Attribute Value Selector
	Partial Attribute Value Selector
	Beginning Substring Attribute Value Selector
	Ending Substring Attribute Value Selector
	Arbitrary Substring Attribute Value Selector
	Language Attribute Selector

	Structural Pseudo-Classes
	:empty
	:first-child
	:first-of-type
	:lang
	:last-child
	:last-of-type
	:nth-child(an+b)
	:nth-last-child(an+b)
	:nth-last-of-type(an+b)
	:nth-of-type(an+b)
	:only-child
	:only-of-type
	:root

	The Negation Pseudo-Class
	:not(e)

	Interaction Pseudo-Classes
	:active
	:checked
	:disabled
	:enabled
	:focus
	:hover
	:link
	:target
	:visited

	Pseudo-Elements
	::after
	::before
	::first-letter
	::first-line

	Media Queries
	Basic Concepts
	Media Query Values
	Media Features

	Chapter 4. Property Reference
	Universal Values
	Visual Media
	animation
	animation-delay
	animation-direction
	animation-duration
	animation-iteration-count
	animation-name
	animation-play-state
	animation-timing-function
	backface-visibility
	background
	background-attachment
	background-clip
	background-color
	background-image
	background-origin
	background-position
	background-repeat
	background-size
	border
	border-bottom
	border-bottom-color
	border-bottom-left-radius
	border-bottom-right-radius
	border-bottom-style
	border-bottom-width
	border-collapse
	border-color
	border-image
	border-image-outset
	border-image-repeat
	border-image-slice
	border-image-source
	border-image-width
	border-left
	border-left-color
	border-left-style
	border-left-width
	border-radius
	border-right
	border-right-color
	border-right-style
	border-right-width
	border-spacing
	border-style
	border-top
	border-top-color
	border-top-left-radius
	border-top-right-radius
	border-top-style
	border-top-width
	border-width
	bottom
	box-align
	box-decoration-break
	box-direction
	box-flex
	box-lines
	box-ordinal-group
	box-orient
	box-pack
	box-shadow
	box-sizing
	caption-side
	clear
	clip
	color
	column-count
	column-fill
	column-gap
	column-rule
	column-rule-color
	column-rule-style
	column-rule-width
	column-span
	column-width
	columns
	content
	counter-increment
	counter-reset
	cursor
	direction
	display
	empty-cells
	float
	font
	font-family
	font-size
	font-size-adjust
	font-style
	font-variant
	font-weight
	height
	left
	letter-spacing
	line-height
	list-style
	list-style-image
	list-style-position
	list-style-type
	margin
	margin-bottom
	margin-left
	margin-right
	margin-top
	max-height
	max-width
	min-height
	min-width
	opacity
	outline
	outline-color
	outline-offset
	outline-style
	outline-width
	overflow
	overflow-x
	overflow-y
	padding
	padding-bottom
	padding-left
	padding-right
	padding-top
	perspective
	perspective-origin
	position
	quotes
	resize
	right
	ruby-align
	ruby-overhang
	ruby-position
	ruby-span
	table-layout
	text-align
	text-decoration
	text-indent
	text-overflow
	text-shadow
	text-transform
	top
	transform
	transform-origin
	transform-style
	transition
	transition-delay
	transition-duration
	transition-property
	transition-timing-function
	unicode-bidi
	vertical-align
	visibility
	white-space
	width
	word-spacing
	word-wrap
	z-index

	Paged Media
	break-after
	break-before
	break-inside
	image-orientation
	marks
	orphans
	page
	page-break-after
	page-break-before
	page-break-inside
	page-policy
	size
	widows

	Aural Media
	cue
	cue-after
	cue-before
	pause
	pause-after
	pause-before
	phonemes
	rest
	rest-after
	rest-before
	speak
	speakability
	voice-balance
	voice-duration
	voice-family
	voice-pitch
	voice-pitch-range
	voice-rate
	voice-stress
	voice-volume

	Index

