
www.it-ebooks.info

http://www.it-ebooks.info/

WebGL Game Development

Gain insights into game development by rendering
complex 3D objects using WebGL

Sumeet Arora

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

WebGL Game Development

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either expressed or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2014

Production Reference: 1180414

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-979-2

www.packtpub.com

Cover Image by Logic Simplified (sumeet.arora@logicsimplified.com)

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author
Sumeet Arora

Reviewers
Jose Dunia

Kevin M. Fitzgerald

Joseph Hocking

Maulik R. Kamdar

Hassadee Pimsuwan

Rodrigo Silveira

Acquisition Editors
Rebecca Pedley

Julian Ursell

Content Development Editors
Chalini Snega Victor

Arun Nadar

Technical Editors
Kunal Anil Gaikwad

Pramod Kumavat

Siddhi Rane

Faisal Siddiqui

Copy Editors
Sayanee Mukherjee

Deepa Nambiar

Project Coordinator
Kranti Berde

Proofreaders
Ting Baker

Simran Bhogal

Maria Gould

Paul Hindle

Indexer
Monica Ajmera Mehta

Graphics
Sheetal Aute

Ronak Dhruv

Disha Haria

Abhinash Sahu

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Sumeet Arora is a tech entrepreneur. He founded Evon Technologies, a
consultancy for mobile and web development, and Logic Simplified, a game
development company. He holds the position of CTO at Evon and works as a
consultant for Logic Simplified. He has worked as an architect consultant for scalable
web portals for clients across the globe. His core expertise lies in 3D rendering
technologies and collaboration tools. For the past four years, he has been working
with various clients/companies on multiplatform content delivery. His own passion
towards gaming technologies has helped him help his clients in launching games on
various platforms on both web and mobile. Currently his company, Logic Simplified,
helps new gaming ideas to launch in the market.

Thanks to my family and colleagues at Evon Technologies and
Logic Simplified for assisting me with the graphics and sharing my
workload in order to complete the book.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Jose Dunia is an experienced web developer with a passion for computer graphics.
He would like to see software, especially video games and simulations, being used
more within the various levels of education. Jose started developing web projects
at the age of 12 and his interest for programming lead him to pursue a B.E. in
Computer Engineering at the Universidad Simón Bolívar. He holds an M.S. degree in
Digital Arts and Sciences from the University of Florida where he studied Computer
Graphics and serious games. Currently, he is working at Shadow Health, a start-up
company that designs and develops interactive simulations for the advancement of
health education.

Kevin M. Fitzgerald is a Platform Architect of Okanjo.com. He has over 12 years
of development experience in education, medical systems, and startups and has been
tinkering with the web since dial-up modems were mainstream.

Kevin is active in the open source community and has contributed to the Mono
project and Umbraco communities. He continues to be active on GitHub, working
with the latest technologies and projects.

Kevin and his wife Luciana are celebrating their fifth year of marriage and enjoy long
walks on the beach and talking about Node.js, C#, and Bitcoin.

www.it-ebooks.info

http://www.it-ebooks.info/

Joseph Hocking is a software engineer living in Chicago, specializing in interactive
media development. He builds games and apps for both mobile and web using
technologies such as C#/Unity, ActionScript 3/Flash, Lua/Corona, and JavaScript/
HTML5. He works at Synapse Games as a developer of web and mobile games,
such as the recently released Tyrant Unleashed. He also teaches classes in game
development at Columbia College, Chicago. His website is www.newarteest.com.

Maulik R. Kamdar is a research scientist working at the intersection of Big Data
Visualization, Life Sciences, and Semantic Web. His primary interests revolve around
the conceptualization and development of novel, interdisciplinary approaches,
which tackle the integrative bioinformatics challenges and guide a bioscientist
towards intuitive knowledge exploration and discovery. Maulik has an M.Tech. in
Biotechnology, conferred by Indian Institute of Technology (IIT), Kharagpur, one
of the most prestigious universities in India. He qualified for the Google Summer
of Code scholarship, an annual program encouraging students across the world to
participate in open source projects, for three successive years (2010-12).

He has contributed to Drupal, a content management platform, and the Reactome
Consortium, a knowledge base of human biological pathways, on the introduction
of HTML5 canvas-based visualization modules in their frameworks. Currently, he
is employed at the Insight Center for Data Analytics, Ireland, and researches the
application of human-computer interaction principles and visualization methods to
increase the adoption and usability of semantic web technologies in the biomedical
domain. He has co-authored several scientific publications in internationally
acclaimed journals. His recent contribution, titled Fostering Serendipity through Big
Linked Data, has won the Big Data award at Semantic Web Challenge, held during
International Semantic Web Conference, Sydney, in October 2013.

www.it-ebooks.info

http://www.it-ebooks.info/

Hassadee Pimsuwan, currently the CEO and co-founder of Treebuild
(http://treebuild.com), a customizable 3D printing marketplace and Web3D
application. He was working with a Web3D company in Munich, Germany, in
2011 and a web design company in Singapore in 2012-2013. He has graduated in
Management Information System from Suranaree University of Technology with
first-class honors in 2012.

Rodrigo Silveira is a software engineer at Deseret Digital Media. He divides his
time there developing applications in PHP, JavaScript, and Android. Some of his
hobbies outside of work include blogging and recording educational videos about
software development, learning about new technologies, and finding ways to push
the web forward.

He received his Bachelor of Science degree in Computer Science from Brigham
Young University, Idaho, as well as an Associate's Degree in Business Management
from LDS Business College in Salt Lake City, Utah.

His fascination for game development began in his early teenage years, and his skills
grew as he discovered the power of a library subscription, a curious and willing
mind, and supportive parents and friends. Today, Rodrigo balances his time between
the three great passions of his life—his family, software development, and video
games (with the last two usually being mingled together).

I would like to thank my best friend, and the love of my life,
Lucimara, for supporting me in my many hobbies, her endless
wisdom, and her contagious love for life. I also wish to thank my
daughter Samira, who makes each day shine brighter.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read, and search across Packt's entire
library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents
Preface 1
Chapter 1: Getting Started with WebGL Game Development 7

Understanding WebGL 8
Differentiating WebGL from the game engine 8
Understanding basic 3D mathematics 8

Vectors 9
Matrices 10
Understanding transformations 10

Classifying into linear and affine transformations 10
Understanding transformations required to render 3D objects 12

Learning the basics of 3D graphics 15
Understanding mesh, polygon, and vertices 15
Using indices to save memory 17

Understanding WebGL's rendering pipeline 18
Framebuffers 20

A walkthrough of the WebGL API 20
Initializing the WebGL context 20

Vertex buffer objects – uploading data to GPU 21
Index buffer objects 23

Shaders 23
The vertex shader 24
The fragment shader 25

Shader variable qualifiers 25
Attributes 26
Uniforms 26
The varying qualifier 27
Compiling and linking shaders 28

Associating buffer objects with shader attributes 29
Drawing our primitive 30

Drawing using vertex buffer objects 33

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

Drawing using index buffer objects 35
Debugging a WebGL application 36
Summary 37

Chapter 2: Colors and Shading Languages 39
Understanding colors 40

Coloring our square 40
Coloring using the vertex color 41

Learning more about colors 44
Understanding surface normals for lighting calculations 45
Different types of lights used in games 49
Understanding object materials 52

Rendering 3D objects 52
Exporting a 3D object from Blender 52
Understanding and loading the Wavefront (OBJ) format 55

Understanding the material file format (MTL) 56
Converting the OBJ file to the JSON file format 57
Loading the JSON model 65
Rendering without light 67

Understanding the illumination/reflection model 68
Lambertian reflectance/diffuse reflection 69
The Blinn-Phong model 70

Understanding shading/interpolation models 72
Flat shading 72
Gouraud shading 72
Phong shading 73
Differentiating the shading models 74

Implementing Gouraud shading on a Lambertian reflection model 75
Implementing Gouraud shading – Blinn-Phong reflection 80
Implementing Phong shading – Blinn-Phong reflection 82

Summary 84
Chapter 3: Loading the Game Scene 85

Supporting multiple objects 85
Implementing Face.js 86
Implementing Geometry.js 87
Implementing parseJSON.js 92
Implementing StageObject.js 92
Implementing Stage.js 94
Using the architectural updates 95

Understanding the main code 95
Understanding WebGL – a state machine 98

Using mvMatrix states 98
Understanding request animation frames 100

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

Loading the scene 101
Understanding positional lights 103

Lighting up the scene with lamps 104
The vertex shader 105
The fragment shader 106
Understanding the main code 107

Multiple lights and shaders 108
Adding multiple lamps 109

The vertex shader 110
The fragment shader 110
Implementing Light.js 112
Applying Lights.js 113
Understanding the main code 114

Summary 116
Chapter 4: Applying Textures 117

Texturing basics 117
Understanding 2D textures and texture mapping 118
Comprehending texture filtering 120

Loading textures 121
A new data type – sampler 123
Applying a texture to the square 124

The vertex shader 125
The fragment shader 125

Texture wrapping 128
Testing the texture wrapping mode 129

The HTML 129
The event handlers 130
The redrawWithClampingMode function 130

Exporting models from Blender 131
Converting Box.obj to Box.json 134
Understanding the JSON file with UV coordinates 134

Parsing UV coordinates from the JSON file 136
The challenge and the algorithm 136

Revisiting vertices, normals, and the indices array 137
Rendering objects exported from Blender 147

Changes in our JSON parser 147
Changes in our Geometry object 148
Loading a textured object 148

Understanding mipmapping 151
Implementing mipmapping 152
Understanding the filtering methods 153

Nearest-neighbor interpolation 153
Linear interpolation 153
Nearest-neighbor with mipmapping 153

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iv]

Bilinear filtering with mipmapping 153
Trilinear filtering 154

Applying filtering modes 154
Understanding cubemaps and multi-texturing 157

Cubemap coordinates 158
Multi-texturing 158
Loading cubemaps 158

Understanding the shader code 159
Summary 161

Chapter 5: Camera and User Interaction 163
Understanding ModelView transformations 163

Applying the model transformation 164
Understanding the view transformation 165
Understanding the camera matrix 165

Comprehending the components of a camera matrix 166
Converting between the camera matrix and view matrix 167
Using the lookAt function 167
Understanding the camera rotation 169
Using quaternions 169

Understanding perspective transformations 170
Understanding the viewing frustum 171

Defining the view frustum 172
Using the basic camera 173

Implementing the basic camera 173
Understanding the free camera 176

Implementing the free camera 177
Using our free camera 182

Adding keyboard and mouse interactions 185
Handling mouse events 187

Comprehending the orbit camera 190
Implementing the orbit camera 190

Understanding the pitch function for the orbit camera 194
Understanding the yaw function for the orbit camera 196

Using an orbit camera 198
Summary 199

Chapter 6: Applying Textures and Simple Animations to
Our Scene 201

Applying textures to our scene 202
Applying a texture to the scene 204

Implementing the vertex shader code 207
Implementing the fragment shader code 208
Working with the control code 209

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[v]

Understanding the animation types in 3D games 212
Understanding time-based animation 212

Understanding frame-based animation 212
Implementing time-based animation 214

Comprehending interpolation 215
Linear interpolation 215
Polynomial interpolation 215
Spline interpolation 216

A briefing on skinned animation 217
Using first-person camera 218

Adding the first-person camera 219
Improving the first-person camera code 221

Simple bullet action – linear animation 223
Reusing objects in multiple bullets 226

Using B-spline interpolation for grenade action 228
Using linear interpolation for left-hand rotation 229

Using texture animation for an explosion effect 233
Summary 238

Chapter 7: Physics and Terrains 239
Understanding a simple terrain – plane geometry 239

Rendering our plane geometry 247
Comparing JavaScript 3D physics engines 249

Ammo.js 249
Box2dweb 250
JigLibJS 250
Comprehending the physics engine concepts 251
Updating the simulation loop 252
Learning about objects in the physics system 253

Particles 254
Rigid bodies 254
Soft bodies 255

Understanding the physics shapes 255
Adding gravity and a rigid body to the game scene 256
Implementing forces, impulse, and collision detection 260

Diving deep into collision detection 261
Revisiting the grenade and bullet actions 262
Cheating in the bullet action 267

Extending our terrain with physics 269
Implementing height maps 275

Summary 276

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[vi]

Chapter 8: Skinning and Animations 277
Understanding the basics of a character's skeleton 277

Comprehending the joint hierarchy 278
Understanding forward kinematics 279

Understanding the basics of skinning 281
Simple skinning 281
Smooth skinning 281

The binding matrix 282
The final vertex transformation 282
The final normal transformation 283

Loading a rigged JSON model 283
Understanding JSON file encoding 283
Loading the rigged model 285

Enhancing the StageObject class 286
Implementing the bone class 292
Implementing the RiggedMesh class 293
Loading the skinned model 299

Animating a rigged JSON model 303
JSON model – animation data 304
Loading the animation data 306

Exporting models from 3D software in JSON 315
Exporting from Blender 315
Converting FBX/Collada/3DS files to JSON 316
Loading MD5Mesh and MD5Anim files 316

Summary 317
Chapter 9: Ray Casting and Filters 319

Understanding the basic ray casting concepts 320
Learning the basics of picking 322

Picking based on an object's color 322
Picking using ray casting 324

Implementing picking using ray casting 325
Using a rigid body (collider) for each scene object 326
Calculating the screen coordinates of a click 330
Unproject the vector 332
Creating a ray segment 334
Checking for an intersection 335
Changing the color of the selected object 336

Offscreen rendering using framebuffers 338
Creating a texture object to store color information 339
Creating a renderbuffer for depth information 339
Associating a texture and a renderbuffer to framebuffers 340
Rendering to framebuffers 340

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[vii]

Applying filters using framebuffers 340
The vertex shader 342
The fragment shader 343
Loading and linking shaders 344

Understanding the square geometry code 346
Implementing the filter 347

Summary 350
Chapter 10: 2D Canvas and Multiplayer Games 351

Understanding canvas 2D basics and the drawing API 351
Using canvas 2D for textures 353

Adding 2D textures as model labels 354
Using the sprite texture 355
Using a square geometry 360

Implementing the Sprite class 361
Implementing the ModelSprite class 362

Understanding the main flow code 363
Communicating in real time 363

Understanding Ajax long polling 364
Understanding WebSockets 365

Understanding the WebSocket API 366
Understanding the WebSockets server 367

Using Node.js and Socket.IO for multiplayer games 367
Implementing the HTTP server using Node.js 368
Understanding Socket.IO 369

Learning the Socket.IO API 372
Understanding Socket.IO rooms 374
Storing user data on the server side 375

Implementing a multiplayer game 375
Understanding events and the code flow 377
The code walkthrough 378

The server code 378
The client code 381

Summary 385
Index 387

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
This book is your foray into building in-browser 3D games. The book starts with
an introduction to the basics of the low-level 3D rendering API, WebGL. We then
transform the low-level API to an implementation of a sample 3D rendering library.
We use this library to build components of a concept game, "5000 AD". We walk you
step by step from using 3D assets to the implementation of techniques that are used
to build a complete in-browser massive multiplayer online role-playing game.

What this book covers
Chapter 1, Getting Started with WebGL Game Development, covers basic terminologies
of 3D and the basics of WebGL, 3D mathematics, and 3D graphics. It also gives a
walkthrough of the WebGL API and discusses the structuring of a WebGL application.

Chapter 2, Colors and Shading Languages, explains how to add colors, light, and
material to objects in a scene. It discusses how to export 3D objects using tools such
as Blender and also explains the basic Wavefront OBJ file format and the JSON file
format. Also, we will learn about directional lights in this chapter.

Chapter 3, Loading the Game Scene, teaches us how to handle loading and rendering of
multiple objects through coding. This chapter also teaches you to add point lights to
your scene.

Chapter 4, Applying Textures, covers all of the topics on how to create, load, and
apply textures to 3D objects. It also teaches advanced techniques such as filtering
and cubemaps.

Chapter 5, Camera and User Interaction, focuses on evolving our own camera class
for our game scene. We will also empower our users to view the game scene from
different angles and positions by adding the mouse and keyboard interactivity.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[2]

Chapter 6, Applying Textures and Simple Animations to Our Scene, starts by simulating a
first-person camera and takes it forward by giving weapons to our character. We also
dive deep into different animations techniques used in game engines.

Chapter 7, Physics and Terrains, explains physics simulation and discusses how
physics engines control component trajectories as well as work with collision
detection in a game.

Chapter 8, Skinning and Animations, covers our study of character animation by
understanding the skeleton, which is the base of the character, upon which the body
and its motion are built. Then, we learn about skinning and how the bones of the
skeleton are attached to the vertices.

Chapter 9, Ray Casting and Filters, unveils a very powerful concept in game
development called ray casting, which is used to cover cases that cannot be handled
by collision detection. This also covers framebuffers, another very important concept
used in game development.

Chapter 10, 2D Canvas and Multiplayer Games, covers the use of 2D rendering in 3D
games through canvas 2D, a very powerful 2D drawing API. We also discuss the
technology behind HTML-based multiplayer games.

What you need for this book
To learn game development in WebGL, all you need is your favorite text editor and
any of the following browsers:

• Mozilla Firefox Version 4.0 and above (http://en.wikipedia.org/wiki/
Mozilla_Firefox)

• Google Chrome Version 9 and above (http://en.wikipedia.org/wiki/
Google_Chrome)

• Safari Version 6.0 and above (http://en.wikipedia.org/wiki/
Safari_%28web_browser%29)

Who this book is for
If you are a programmer who wants to transform the skill of blending imagination and
thought in games, this is the book for you. You need to have a good understanding of
object-oriented programming, JavaScript, and vector and matrix operations.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[3]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Open the SquareGeomtery.js file from client/primitive."

A block of code is set as follows:

<html>
<canvas id="canvasElement"></canvas>
</html>
<script>
this.canvas = document.getElementById("canvasElement");
this.ctx = this.canvas.getContext('2d');
</script>

Any command-line input or output is written as follows:

#node server.js

#npm install socket.io

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes, for example, appear in the text like this: "We can
enable the extension in the Settings menu in Google Chrome."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/ support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with
WebGL Game Development

We are in 5000 AD and you are wired in to your browser. Rivers have dried up
and you are under constant attack by the mutated human race. You are the only
hope. You have this book, and your tool is WebGL, a JavaScript API for rendering
interactive 3D and 2D graphics. Your ancestors, the non-profit technology
consortium Khronos Group, gave you this technology. This book has recipes to add
rain when you need water, add trees when you need food, generate weapons to fight
the mutated Mr. Red, and create your own army of beasts to defend your city. You
know the technology that you have is powered by the GPU and is lightning fast. All
you need are the recipes.

Wait, hold on a second. Are you a 3D expert? If not, let me teleport you to the current
year so you can read this chapter, else stay wired in and move on to Chapter 2, Colors
and Shading Language.

Since you are reading on, let's focus on the 3D terms that you need to understand for
using the recipes in this book. This chapter will cover the following topics:

• Understanding WebGL
• Understanding basic 3D mathematics
• Learning the basics of 3D graphics
• Understanding WebGL's rendering pipeline
• A walkthrough of the WebGL API
• The structuring of a WebGL application and learning shaders for debugging

your application

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with WebGL Game Development

[8]

Understanding WebGL
WebGL is a JavaScript API based on OpenGL ES 2.0. OpenGL ES 2.0 is the API
for 3D rendering on smartphones running on the iPhone and Android platforms.
WebGL enables web content to perform 3D rendering in HTML canvas in browsers
that support it. Hence, to learn game development using WebGL, you need to
understand JavaScript and HTML basics. If you have an understanding of the
mathematics involved in 3D graphics, that's great. However, it is not a must to
understand this book. The WebGL program consists of a JavaScript control code
and a shader code. The shader code executes on the computer's GPU.

Differentiating WebGL from the
game engine
WebGL only provides 3D rendering capability. It is simple, straightforward, and
insanely fast. It is good at what it does, that is, rendering 2D and 3D graphics. It is a
low-level programming interface with a very small set of commands.

WebGL is not a game engine like Unity, Cocos2D, or Jade. A game engine has many
other features, such as collision detection, ray casting, particle effects, and physics
simulation. Using WebGL, you can create your own game engine.

WebGL provides functionalities to draw basic primitives such as lines, circles, and
triangles that can be used to draw any complex 3D object. It does not provide a direct
function to add a camera to your scene. However, a camera class can be evolved
to do the same. This is what this book will help you with. It will help you create a
library on top of WebGL tailored for creating games and gaming functions.

Understanding basic 3D mathematics
Developing a WebGL game requires a good understanding of 3D mathematics.
But we will not cover 3D mathematics in its entirety, since that would require
a complete book in itself. In this section, we will cover some basic aspects of 3D
mathematics that are required to understand WebGL rendering. We will also build
an understanding of the 3D mathematics library that we intend to use in our game.
In this section, we will cover a very powerful JavaScript library called glMatrix
(http://glmatrix.net).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[9]

JavaScript or WebGL do not provide any in-built functions for vector and matrix
operations. Hence, we use a third-party library to implement them in our code.
glMatrix is designed to perform vector and matrix operations in JavaScript and
is extremely fast. So, let's walk through the basics of these operations and also
understand their corresponding implementation in glMatrix.

Vectors
3D game engines use vectors to represent points in space, such as the locations of
objects in a game or the vertices of a polygon mesh. They are also used to represent
spatial directions, such as the orientation of the camera or the surface normals of a
triangle mesh.

A point in 3D space can be represented by a vector using the x, y, and z axes.

WebGL does not provide any functions for matrix or vector operations. Hence, we
use third-party libraries for matrix manipulation.

Let's look at some vector operations provided by one of these libraries:

var out=vec3.create() //Creates an empty vector object.
var out1=vec3.create() //Creates an empty vector object.
var out2=vec3.create() //Creates an empty vector object.
var v2=vec3.fromValues(10, 12, 13); //Creates vector initialized
 with given values.
var v3=vec3.fromValues(2,3,4); //Creates vector initialized
 with given values.
vec3.cross(out, v2, v3) //Cross product of vector v2 & v3 placed
 in vector out.
vec3.normalize(out1, v2) // V2 is normalized. Converted to a unit
 vector and placed in out1.
var result=vec3.dot(v2, v3) // Calculates dot product of two
 vectors.
var v4= vec4.fromValues(x, y, z, w)// Creates a vector with w
 value
var v5= vec4(v2, w)

Downloading the example code
You can download the example code files for all
Packt books you have purchased from your account
at http://www.packtpub.com. If you purchased
this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the
files e-mailed directly to you.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with WebGL Game Development

[10]

Matrices
Matrices are primarily used to describe the relationship between two coordinate
spaces in 3D mathematics. They do this by defining a computation to transform
vectors from one coordinate space to another, for example, object space to world
space or world space to view/camera space.

Some useful matrix operations are:

var mat=mat3.create() //Creates a new identity mat3
var out=mat3.create() //Creates a new identity mat3
mat3.identity(out) //Set a mat3 to the identity matrix
var result=mat3.determinant(mat) //Calculates the determinant of a
 mat3
mat3.invert(out, mat) //Inverts a mat3
mat3.transpose(out, mat) //Transpose the values of a mat3

Understanding transformations
You will encounter the word "transformation" in all computer graphics books. This
word is mostly used to denote change in the object's state. We can apply scaling,
rotation, sheer, or translation transformations to change the state of an object. We
can apply a combination of the preceding transformations to change the state of the
object. The combinations are generally classified as linear or affine transformations.

Classifying into linear and affine transformations
Linear transformations are the most-used transformations in 3D games. Linear
transformations such as scaling, rotation, and sheer will be used throughout your
game development career. These transformations are transformations that preserve
state, if applied in any order. So, if we scale an object and then rotate it, or first rotate
it and then scale it, the end result would be the same. So, transformation is linear, if it
preserves the basic operations of addition and multiplication by a scalar.

Some useful functions for linear transformation are:

var a=mat3.create();
var out=mat3.create();
var rad=1.4; //in Radians
var v=vec2.fromValues(2,2);
mat3.rotate(out, a, rad); //Rotates "a" mat3 by the given angle
 and puts data in out.
mat3.scale(out, a, v) //Scales the mat3 by the dimensions in the
 given vec2

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[11]

An affine transformation is a linear transformation followed by translation.
Remember that 3 × 3 matrices are used for linear transformations and they do not
contain translation. Due to the nature of matrix multiplication, any transformation
that can be represented by a matrix multiplication cannot contain translation. This is
a problem because matrix multiplication and inversion are powerful for composing
complicated transformations. An example of affine transformation is as follows:

var a=mat3.create(); //Identity matrix created
var vertex=vec3.fromValues(1,1,1);
var scale=mat3.create(); //Identity Matrix created
var final=mat3.create(); //Identity Matrix created
var factor=vec2.fromValues(2,2); //Scaling factor of double create
 2x height and 2x width
mat3.scale(scale,a,factor); // a new scale create after
 multiplication
mat3.rotate(final,scale,.4);// new matrix scale created which
 contains scaling & rotation
var newVertex=final*vertex;

In the preceding code, we created a matrix, final, that contained both scaling and
rotation operations. We created a composite transformation and applied it on a
vertex to get its new position. Now, this final mat3 can be used to transform the
vertices of a 3D object. It would be nice if we could find a way to somehow extend
the standard 3 × 3 transformation matrix to be able to handle transformations
with translation. We can do this by extending our vectors to four-dimensional
homogeneous coordinates and using 4 × 4 matrices to transform them. A 4 × 4 matrix
is given in the following diagram:

Maa Mba Mca Tx

Mba Mbb Mcb Ty

Mca Mbc Mcc Tz

0 0 0 1

M T

0 1

F =

M is the matrix that contains the transformation; the fourth column gives
the translation.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with WebGL Game Development

[12]

Some useful functions for transformations are:

var a=mat4.create();//mat4 identity matrix
var final=mat4.create();//mat4 identity matrix
var rad=.5;
var v=vec3.fromValues(0.5,0.5,0.5);
var translate=vec3.fromValues(10,10,10);
mat4.rotateX(final, a, rad) //Rotates a matrix by the given angle
 around the X axis
mat4.rotateY(final, final, rad) //Rotates a matrix by the given
 angle around the Y axis
mat4.rotateZ(final, final, rad) //Rotates a matrix by the given
 angle around the Z axis
mat4.scale(final, final, v) //Scales the mat4 by the dimensions in
 the given vec3
mat4.translate(final, final, v) //Translate a mat4 by the given
 vector

Now, the final matrix contains composite transformations of rotation along the
axis, scaling, and translation.

Understanding transformations required to render
3D objects
In a game, when we load or initialize a 3D object, the coordinates of different parts of
an object are defined with respect to its pivot point. Let us say our designer created
a car in Maya and exported the model. When the model is exported, the coordinate
of each wheel is defined with respect to the car body. When we translate or rotate
our car, the same transformations have to be applied to the wheels. We then have
to project the 3D object on a 2D screen. The projection will not only depend on the
location of the camera but also on the lens of the camera. In the following section, we
will discuss the two types of transformations, ModelView and projection, to help us
implement the rendering of the model on the 2D screen.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[13]

ModelView transformation
Each model or object we want to draw on the scene has coordinates defined with
respect to its own origin and axis; we call it object space. When an object is added
to the scene and if its own origin coincides with the scene's origin, then its vertices
need not be transformed for rendering; but if we want to move the object or rotate it,
then we will have to transform its vertices to screen/world coordinates. ModelView
transformation is used to transform an object's vertices to world coordinates. An
example of this is shown in the following diagram:

Object space Object in world space

V1

V2V3

V0

Z

X(object)

Z(object)

V5

V6

V7

V4

X(world)

Y(
w

or
ld

)X

Also, if we move our camera/view around the object, or rotate our camera, then we
would need to transform its vertices, changing the world's origin to the camera's
position as the origin.

In a nutshell, first model vertices have to be transformed with respect to the scene's
origin and then transformed by switching the world's origin to the camera/view
position. The final set of all these transformations is maintained as a single 4 x 4
matrix, called the ModelView transformation matrix. The new positions of the
model's vertices are obtained via the cross product of each coordinate/vertex of the
model with the ModelView transformation matrix, Vf = Mv * V. Here, Vf is the final
vector, Mv is the [4 x 4] ModelView matrix, and V is the vector corresponding to
each vertex. Each coordinate of a vertex is denoted as [x, y, z, w], where you can put
w as 1 for all purposes of this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with WebGL Game Development

[14]

Projection transformation
Projection transformation is like setting/choosing the lens of the camera. You want
to determine the viewing volume of the scene. You want to determine how objects
appear and whether the objects are inside the viewing volume or not. The field of
view is the parameter that is used to define the viewing volume. Larger values mean
you will cover more objects in your game scene; smaller values are like a telephoto
lens (the objects will appear closer than they really are). There are two types of
projections; orthographic and perspective. In orthographic projection, the objects are
mapped directly on the screen without affecting their relative sizes. In perspective
projection, the distant objects appear smaller. In gaming, we always use perspective
projections. The following diagram explains how our primitive is projected on
the screen:

zFar

zNear

Now, to transform vertices with respect to their distance and chosen lens, we use the
projection matrix Vp = P * V. Here, Vp is the final vector, P is the [4 x 4] projection
matrix, and V is the vector corresponding to each vertex.

The following is the code to create a projection transformation:

mat4.perspective(out, fovy, aspect, near, far)

The parameters used in the preceding code are:

• fovy: Field of view
• aspect: Scene aspect ratio
• near: Near plane to create the clipping region
• far: Far plane to create the clipping region

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[15]

The following code uses the glMatrix library to calculate the perspective matrix using
the preceding parameters:

var mat=mat4.create()
mat4.perspective(30, gl.viewportWidth / gl.viewportHeight, 0.1,
1000.0, pMatrix);

Learning the basics of 3D graphics
We want to save our world in 5000 AD, and we have very little time. So, let's quickly
jump into the code and understand the basics along with it.

Understanding mesh, polygon, and vertices
A model in a 3D game is called a mesh. Each facet in a mesh is called a polygon. A
polygon is made up of three or more corners, and each corner is called a vertex. The
objective of the code provided in this chapter is to render a basic primitive quad.
The code creates a mesh with a single polygon and the polygon has four vertices.
A polygon with four vertices will form a quad. Each vertex is denoted by a location
on the screen. A location on the screen can be represented by using 2 or 3 axes. Each
location is defined by using vectors.

In the following example code, we have created an array of vertices with 12 float
values (3 per vertex).The following diagram shows the mapping of the coordinates:

(-3,3,0) (3,3,0)

(-3,-3,0) (3,-3,0)

Local Coordinates
and global Coordinates

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with WebGL Game Development

[16]

The following sample code initializes the vertices:

function initBuffers() {
...
vertices = [
 3.0, 3.0, 0.0, //Vertex 0
 -3.0, 3.0, 0.0, //Vertex 1
 3.0, -3.0, 0.0, //Vertex 2
 -3.0, -3.0, 0.0 //Vertex 3
];
...
}

The question might pop up that if we had to draw the mesh of a mutated human, as
depicted in the following diagram, then there would have been many polygons and
each polygon would have many vertices; so, do we have to define an array with all
the vertices by hand?

Well, the mutated human displayed in the preceding screenshot is created using 3D
tools such as Maya and Blender. We will export the vertices of the model in a file that
is parsed by our JavaScript code, and our program will use the vertices from that file.
So, ultimately your code will require vertices, but you will not have to provide them
by hand.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[17]

Using indices to save memory
For each vertex that we define, a numerical label is given; for example, "vertex 0" is
labeled as "0" and "vertex 1" as "1". These labels are called indices. In the following
code, we have defined four vertices in the vertices array. The next line defines the
indices array containing numbers [0, 2, 3...], the numbers in the array are labels to
each vertex in the vertices array:

function initBuffer() {
vertices = [
 3.0, 3.0, 0.0, //Vertex 0
 -3.0, 3.0, 0.0, //Vertex 1
 3.0, -3.0, 0.0, //Vertex 2
 -3.0, -3.0, 0.0 //Vertex 3
];
indices = [0,2,3,0,3,1];
...
}

If we render a sphere, the sphere mesh will be made up of polygons; if we use
quads, we will not get a smooth surface. To get a smoother surface, we will require
many quads. Hence, we use a polygon with minimum sides. A polygon can have a
minimum of three sides, and hence, we prefer triangles. WebGL uses primitives such
as points, lines, and triangles to generate complex 3D models.

When we think of a sphere, the vertices will be shared between triangles. We do not
want to repeat the shared vertices in our vertex array in order to save memory. The
following diagram displays a vertex shared between three triangles:

This vertex is shared between three triangles

V1

V2

V3

V4

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with WebGL Game Development

[18]

To explain the concept of shared vertices, we will render a square using two
triangles. A triangle will have three vertices; hence, we will need to use 2 * 3 vertices.
However, we realize that the two out of three vertices of each triangle are being
shared. Hence, we need to declare only four vertices. The following diagram explains
how we use two triangles with common vertices to render the square geometry:

V1

V2

+ =

V3

V5

V4

V6

V1

V2

V3

V4

Indices are numeric labels of vertices. They help us inform WebGL on how to
connect vertices to form a polygon or a surface. In the preceding example, we draw
one triangle with the vertices [0, 2, 3] and the other triangle with the vertices [0, 3, 1].

Understanding WebGL's rendering
pipeline
The following diagram expresses the actions that WebGL's rendering pipeline
needs to perform to project any object on a 2D display screen. The first two steps
(ModelView transformation and project transformation) are performed in the vertex
shader. Each vertex of an object has to be transformed with respect to its location as
well as the viewer's location (camera) on the scene. Then, the vertices that fall outside
the viewing area are clipped (perspective divide). Viewport transformation defines
the size and location of the final processed object, for example, whether the object
should be enlarged or shrunk:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[19]

Vertex
Coordinates

Modelview
matrix

Projection
matrix

Perspective
division

Viewport
transformation

Vertex

Eye
Coordinates

Clip
Coordinates

Normalized
Device Coordinates

Window
Coordinates

The current GPUs use a programmable rendering pipeline. The earlier graphics
card did not allow us to directly change or manipulate the vertices but had built-in
functions to rotate or scale them. The programmable rendering pipeline gives us full
flexibility to modify vertices of our objects. We can write our own functions to control
how our objects are rendered using vertex and fragment shaders. The following
diagram describes the different components of the programmable rendering pipeline.
We will cover the details of shaders in the A walkthrough of the WebGL API section.

JavaScript

- Control code
- Initialize WebGL
- Context compiling and linking

of shaders
- Enabling vertex attributes
- Creating transformation matrix
- Association of buffer objects

with attributes
- Association of Uniforms

The triangles are assembled
and passed to the rasterizer,
which interpolates the pixels
between the vertices in the
triangles. Also, culling/clipping
is perfomed in this step. We
eliminate primitives that are
hidden or partly/completely
lie outside the viewing area.

Rendering process starts when
we invoke the drawElements or
drawArray WebGL API call. The
vertex shader is executed once for
each vertex in the vertex buffer
object. Vertex shader calculates the
position of each vertex of a
primitive and stores it in varying
gl_position. It also calculates the
other attributes such as color that
are normally associated with a vertex.

Fragment shader gets data from
vertex shader in varying variables,
gets primitives from the rasterization
stage, and then interpolates color
values for each pixel between
vertices.

Pixel ownership test, depth test,
dithering performed.

Framebuffer is the
default display in our
case.

Framebuffer

Vertex shader
Primitive
assembly /
Rasterization

Fragment
shader

Pre-fragment
shader

Uniform variables

Buffers Attributes

Varying variables

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with WebGL Game Development

[20]

Framebuffers
A graphics accelerator is the hardware dedicated to drawing graphics; it has a
region of memory to maintain the contents of the display screen. Every visible pixel
is represented by several bytes of memory called display memory. This memory is
refreshed a certain number of times per second for a flicker-free display. Graphic
accelerators also provide offscreen memory, which is only used to store data. The
allocation of display memory and offscreen memory is managed by the window
system. Also, the part of the memory that can be accessed by WebGL/OpenGL is
decided by the window system. There is a small set of function calls that ties WebGL
to the particular system. This set of calls supports allocating and deallocating regions
of graphics memory, as well as the allocating and deallocating of data structures
called graphics contexts, which maintain the WebGL state.

The region of graphics memory that is modified as a result of WebGL rendering
is called framebuffer. The default framebuffer is provided by the window system
and it is the drawing surface that will be displayed on the screen. The calls to create
the WebGL drawing surfaces let you specify the width and height of the surface
in pixels, whether the surface uses color, depth, and stencil buffers, and the bit
depths of these buffers. If the application is only drawing to an onscreen surface, the
framebuffer provided by the window system is usually sufficient. However, when
we need to render to a texture, we need to create offscreen framebuffers.

The following is the function used to clear/enable color, depth, and stencil buffers:

gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);

A walkthrough of the WebGL API
This section will explain the basic functions of the WebGL API. We will first
understand buffer objects. A WebGL application has two sections: JavaScript control
code and shader functions. We will explain the WebGL API functions used in the
control code as well as cover the code of a simple shader.

Initializing the WebGL context
To render WebGL 3D content, we need an HTML canvas element. The following
HTML code establishes a canvas object that will be used to render 3D content:

<canvas id="squareWithDrawArrays" style="border: none;"
 width="500" height="500"></canvas>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[21]

The first thing we do here is obtain a reference to the canvas. We store it in a variable
called canvas. We pass the canvas object to our function initGL. This function sets
up the WebGL context:

var canvas = document.getElementById("squareWithDrawArrays");
initGL(canvas)

In the initGL function, we obtain a WebGL context for a canvas by requesting
the context named webgl from the canvas. If this fails, we try the names
experimental-webgl, webkit-3d, and moz-webgl. If all the names fail, we display
an alert to let the user know that the browser does not have WebGL support. We
try different names because different browsers use different names for their WebGL
implementation. This is shown in the following code:

functioninitGL(canvas) {

 var names = ["webgl", "experimental-webgl", "webkit-3d", "moz-
 webgl"];

 for (var i = 0; i<names.length; ++i) {
 try {
 gl = canvas.getContext(names[i]);
 }
 catch (e) { }
 if (gl) {
 break;
 }
 }
 if (gl == null) {
 alert("Could not initialise WebGL");
 return null;
 }
 gl.viewportWidth = canvas.width;
 gl.viewportHeight = canvas.height;
}

Vertex buffer objects – uploading data to GPU
A vertex buffer object (VBO) provides methods for uploading vertex attributes
(position, color, depth) directly to the video device for rendering. VBOs offer
substantial performance gains because the data resides in the video device memory
rather than the system memory, so it can be rendered directly by the video device.
Buffer objects can be created using the createBuffer() function:

vertexBuffer = gl.createBuffer();

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with WebGL Game Development

[22]

This only creates the object's name and the reference to the object. To actually create
the object itself, you must bind it to the context.

The bindBuffer() function is invoked to tell on which of the buffer objects the
subsequent functions will operate on. This function is called as follows:

gl.bindBuffer(gl.ARRAY_BUFFER, vertexBuffer);

The target hint can be ARRAY_BUFFER (vertex buffers).

There are many allocated buffer objects. We need to specify which buffer object we
want to apply the next set of operations on. The bindBuffer() function is used to
make a particular buffer object the current array buffer object or the current element
array buffer object so that the subsequent operations are applied on that buffer
object. The first time the buffer object's name is bound by calling the bindBuffer()
function, the buffer object is allocated with the appropriate default state, and if the
allocation is successful, this allocated object is bound as the current array buffer
object or the current element array buffer object for the rendering context.

However, the actual memory is only allocated when we invoke the
gl.bufferData() API call:

gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(vertices),
 gl.STATIC_DRAW);

The third parameter in the bufferData API call specifies how to use the buffer
object. The following table explains the different enum values and their usages. In
our book, we will use the gl.STATIC_DRAW value, but in cases where you might need
to animate individual vertices, you will use the gl.DYNAMIC_DRAW value:

Enum value Usage
STATIC_DRAW The buffer object data will be specified by the application

once and used many times to draw primitives.
DYNAMIC_DRAW The buffer object data will be specified by the application

repeatedly and used many times to draw primitives.
STREAM_DRAW The buffer object data will be specified by the application

once and used a few times to draw primitives.

The gl.bufferData() API call does not take reference of
the buffer object as a parameter. We do not pass the object
reference because operations are performed on the current
array buffer object or the current element array buffer object.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[23]

We can unbind buffer objects using a bindBuffer() function call by specifying null
as the buffer object parameter:

vertices = [
 3.0, 3.0, 0.0, //Vertex 0
 -3.0, 3.0, 0.0, //Vertex 1
 3.0, -3.0, 0.0, //Vertex 2
 -3.0, -3.0, 0.0 //Vertex 3
];
gl.bindBuffer(gl.ARRAY_BUFFER, null);// Deactivate the current
 buffer
vertexBuffer = gl.createBuffer();//Create a reference to the
 buffer object
gl.bindBuffer(gl.ARRAY_BUFFER, vertexBuffer);//Make the buffer the
 current active buffer for memory allocation(Subsequent command)
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(vertices),
 gl.STATIC_DRAW);//Allocate memory for the buffer object.

Index buffer objects
Similar to vertex buffer objects, we have index buffer objects to store the indices in
the GPU memory. The following code creates a vertex array and an index array. It
then creates the corresponding vertex buffer object and index buffer objects:

vertices = [
 3.0, 3.0, 0.0, //Vertex 0
 -3.0, 3.0, 0.0, //Vertex 1
 3.0, -3.0, 0.0, //Vertex 2
 -3.0, -3.0, 0.0 //Vertex 3
];
indices = [0,2,3,0,3,1];
indexBuffer = gl.createBuffer();// Create a reference to the
 buffer
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, indexBuffer);// make the
 Index buffer the active buffer notice gl.ELEMENT_ARRAY_BUFFER
 for index buffers.
gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, new Uint16Array(indices),
 gl.STATIC_DRAW);// Alocate memory for the index buffer
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, null);

Shaders
A WebGL program is divided in two components; the control code and the shader
program. The control code is executed in the system's CPU while the shader code
is executed in the system's GPU. Since the control code binds data to the GPU's
memory, it is available for processing in the shader.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with WebGL Game Development

[24]

The vertex shader
The vertex shader is a programmable unit that operates on incoming vertex values
and their associated data (normal, color, and so on). The vertex processor usually
performs graphic operations such as the following:

• Vertex transformation
• Normal transformation and normalization
• Texture coordinate generation
• Texture coordinate transformation
• Lighting
• Color material application

Vertex transformation with a basic vertex shader
The following code is the most basic vertex shader code. In this example, we have
provided two inputs to the shader from the control code:

• Attributes: Per-vertex data supplied using vertex arrays
• Uniforms: Constant data used by the vertex shader

The aVertexPosition attribute holds the vertex position and the mvMatrix and
pMatrix uniforms hold the ModelView and the projection matrices respectively,
as shown in the following code snippet:

<scriptid="shader-vs" type="x-shader/x-vertex">
 attribute vec3 aVertexPosition;

 uniform mat4 mvMatrix;
 uniform mat4 pMatrix;

 void main(void) {
 gl_Position = pMatrix * mvMatrix * vec4(aVertexPosition, 1.0);
 }
</script>

In the preceding code, we first applied a ModelView transformation on a single
vector/vertex. We then applied the projection transformation and set the result to
the varying gl_Position vector. The varying gl_Position variable is declared
automatically. The gl_Position variable contains the transformed vertex of the
object. It is called the per-vertex operation, since this code is executed for each vertex
in the scene. We will discuss shortly how we pass the vertex position (attribute) and
transformation matrix (uniform) to the vertex shader from the control code.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[25]

The fragment shader
After the vertex shader has worked on vertex attributes (such as position), the next
phase is the primitive assembly stage. In the primitive assembly stage, primitive
objects such as lines and triangles are clipped and culled. If a primitive object lies
partly outside the view frustum (the 3D region that is visible on the screen), then it is
clipped; if it lies completely outside, then it is culled. The next phase is rasterization.
In this phase, all primitives are converted to two-dimensional fragments, also called
pixels. These fragments are then processed by the fragment shader.

A fragment shader performs the following functions:

• Operations on interpolated values
• Texture access
• Texture application
• Fog
• Color sum

The following listed code is the most basic fragment shader. In this code, we simply
apply a constant color value to each fragment of our scene:

<scriptid="shader-fs" type="x-shader/x-fragment">
 precisionmediump float;

 void main(void) {
 gl_FragColor = vec4(1.0, 1.0, 1.0, 1.0);
 }
</script>

The gl_FragColor variable is declared automatically and the color for each fragment
is set. For the purpose of making this shader extremely simple, we did not load any
data to the shader; we generally passed these values to the fragment shader. The
values are as follows:

• Varying variables: Outputs of the vertex shader that are generated by the
rasterization unit for each fragment using interpolation

• Uniforms: Constant data used by the fragment shader
• Sampler: A specific type of uniform that represents textures used by the

fragment shader

Shader variable qualifiers
Shader variables can be qualified as uniform, attribute, varying, and constant.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with WebGL Game Development

[26]

Attributes
Attribute-qualified variables are used for data that is passed to shaders frequently.
Since every vertex has different attributes, we generally use this qualifier for vertex
data. Now in our case (square example), each vertex has a different position, hence,
we qualify the aVertexPosition vector as the attribute. If each vertex had a different
color value, we would have qualified another vector aVertexColor as an attribute.

The following line of code qualifies a vector as an attribute in the vertex shader code:

attribute vec3 aVertexPosition;

The following code gets the reference/index of the shader variable. The variables
(attributes) that are declared in the shaders are initialized in the main control code.
In order to initialize them, we need to get a reference to them in the control code.
The getAttribLocation function does just that, as shown in the following snippet:

function initShaders() {

 shaderProgram.vertexPositionAttribute =
 gl.getAttribLocation(shaderProgram, "aVertexPosition");//
 getting the reference to the attribute aVertexPosition from the
 flow code

}

Only floating point scalars, floating point vectors, or matrices can be qualified as
an attribute.

Uniforms
The uniform qualifier, just like the attribute qualifier, is used to pass data to the
shaders. But the uniform value should not change per fragment/primitive operation.
A primitive can have many vertices, hence, a uniform cannot be used to qualify
per vertex data. However, a primitive might have the same transformation that can
be applied to all vertices, hence, the transformation matrix is stored in a variable
qualified as a uniform.

The uniform qualified variable cannot be modified inside the shader. Also, vertex
shaders and fragment shaders have a shared global namespace for uniforms, so,
uniforms of the same name will be the same in vertex and fragment shaders. All data
types and arrays of all data types are supported for uniform qualified variables.

Let's take a look at how we load uniform data to shaders.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[27]

The following lines of code qualify a matrix as a uniform in the fragment shader code:

uniform mat4 mvMatrix;
uniform mat4 pMatrix;

The following is the code to get the reference of the shader uniform variable:

function initShaders() {
…………………………………
………………………
 shaderProgram.pMatrixUniform =
 gl.getUniformLocation(shaderProgram, "uPMatrix");
 shaderProgram.mvMatrixUniform =
 gl.getUniformLocation(shaderProgram, "uMVMatrix");
……………………………
……………………………

}

The following is the code to load data to a uniform:

function setMatrixUniforms() {
 gl.uniformMatrix4fv(shaderProgram.pMatrixUniform, false,
 pMatrix);
 gl.uniformMatrix4fv(shaderProgram.mvMatrixUniform, false,
 mvMatrix);
}

Please note that we chose to qualify the transformation matrix as a uniform because
we know that the transformation matrix will not change for one particular primitive
rendering operation.

The varying qualifier
The varying qualifier is the only way a vertex shader can communicate results to a
fragment shader. These variables form the dynamic interface between vertex and
fragment shaders. Let's consider a case where each vertex of a primitive, such as a
triangle, has a different color and we add light to our scene. Lights might change the
color at each vertex. Now, in our vertex shader, we will calculate the new color value
of each vertex and share the new color value to the fragment shader using a varying
qualified vector; the fragment shader interpolates the color between vertices and sets
the color of each fragment/pixel. A vertex shader writes to a varying variable and
that value is read in the fragment shader.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with WebGL Game Development

[28]

Compiling and linking shaders
Shaders exist as independent programs. The following code retrieves the source of
these programs by simple JavaScript functions such as getDocumentElementById.
Then, the three WebGL functions, createShader, shaderSource, and compileShader,
initialize and compile the shaders, as shown in the following code snippet:

function createShader(gl, id) {
 var shaderScript = document.getElementById(id);
 if (!shaderScript) {
 return null;
 }

 var str = "";
 var k = shaderScript.firstChild;
 while (k) {
 if (k.nodeType == 3) {
 str += k.textContent;
 }
 k = k.nextSibling;
 }

 var shader;
 if (shaderScript.type == "x-shader/x-fragment") {
 shader = gl.createShader(gl.FRAGMENT_SHADER);
 } else if (shaderScript.type == "x-shader/x-vertex") {
 shader = gl.createShader(gl.VERTEX_SHADER);
 } else {
 return null;
 }

 gl.shaderSource(shader, str);
 gl.compileShader(shader);

 if (!gl.getShaderParameter(shader, gl.COMPILE_STATUS)) {
 return null;
 }

 return shader;
}

function initShaders() {
 var fragmentShader = createShader(gl, "shader-fs");
 var vertexShader = createShader(gl, "shader-vs");
 shaderProgram = gl.createProgram();
 gl.attachShader(shaderProgram, vertexShader);
 gl.attachShader(shaderProgram, fragmentShader);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[29]

 gl.linkProgram(shaderProgram);
 if (!gl.getProgramParameter(shaderProgram, gl.LINK_STATUS)) {
 alert("Shaders cannot be initialized");
 }
 gl.useProgram(shaderProgram);
 shaderProgram.vertexPositionAttribute =
 gl.getAttribLocation(shaderProgram, "aVertexPosition");
 gl.enableVertexAttribArray
 (shaderProgram.vertexPositionAttribute);
 shaderProgram.pMatrixUniform =
 gl.getUniformLocation(shaderProgram, "uPMatrix");
 shaderProgram.mvMatrixUniform =
 gl.getUniformLocation(shaderProgram, "uMVMatrix");
}

The createShader() function parses our HTML document tree; it then loads the
shader code in the string variable before assigning it to context for compiling. The
parent function initShaders() first creates the program object and then attaches
shaders to the program object. The final step is linking. Our two different shaders
need to work together. The link step verifies that they actually match up. If the vertex
shader passes data on to the fragment shader, the link step makes sure that the
fragment shader actually accepts that input. The two shader sources are compiled
into a program, which is passed to the useProgram() function to be used. The
last few lines of the function get references/indexes to the attribute and uniform
variables so that we can later associate attributes to the buffer objects.

Associating buffer objects with shader
attributes
We know how to allocate a buffer object and have understood how to get a
reference to the shader attribute. Now, we need to associate the buffer object to
the vertex shader attribute, so that the following shader code knows where to load
its data from. The first line of the following code makes the buffer that we need
to associate as the current buffer. The second line associates the current buffer
(squareVertexPositionBuffer) with the shader attribute (shaderProgram.
vertexPositionAttribute):

gl.bindBuffer(gl.ARRAY_BUFFER, squareVertexPositionBuffer);
gl.vertexAttribPointer(shaderProgram.vertexPositionAttribute,
 squareVertexPositionBuffer.itemSize, gl.FLOAT, false, 0, 0);

The parameters of the function glVertexAttribPointer are defined as follows:

void glVertexAttribPointer(Index,Size,Type,Norm,Stride,Offset)

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with WebGL Game Development

[30]

The parameters of the function glVertexAttribPointer() are explained as follows:

• Index: This parameter specifies the reference to the vertex.
• Size: This parameter specifies the number of components specified in the

vertex. Valid values are 1 to 4.
• Type: This parameter specifies the data format. Valid values are BYTE,

UNSIGNED_BYTE, FLOAT, SHORT, UNSIGNED_SHORT, and FIXED.
• Norm: This parameter is used to indicate whether the non-floating data format

type should be normalized when converted to a floating point value. Use the
value false.

• Stride: The components of the vertex attribute specified by size are stored
sequentially for each vertex. The Stride parameter specifies the delta
between data for vertex index I and vertex (I + 1). If Stride is 0, the attribute
data for all vertices is stored sequentially. If Stride is >0, then we use the
stride value as the pitch to get vertex data for the next index.

• Offset: This is the byte position of the first element of each attribute array in
the buffer. This parameter is used to create interleaved arrays.

Drawing our primitive
We need to understand two drawing functions that we will use frequently. One of
them is the drawArray() function:

gl.drawArrays(Mode, Offset, Count)

The parameters of the drawArray() function are explained as follows:

• Mode: This relates to the primitives you would like to render. Valid values are
POINTS, LINES, LINE_STRIP, LINE_LOOP, TRIANGLES, TRIANGLE_STRIP, and
TRIANGLE_FAN.

• Offset: This is the starting vertex index in the enabled vertex array.
• Count: This is the number of indices to be drawn.

The Mode parameter needs further explanation. When drawing 3D primitives/
models, we pass the vertices array. While drawing, the interconnection of vertices is
decided by the Mode parameter. The following diagram shows the array of vertices in
the actively bound buffer:

[0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5]

V0 V1 V2 V3 V4 V5

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[31]

The drawArrays() function will treat the vertices of the preceding diagram based on
the Mode parameter. If you want to draw a wire mesh, you will use the LINE_XXXX
mode values. If you want to draw solid geometries, you will use the TRIANGLE_XXXX
mode values.

We have listed the drawArrays function call with different mode values, as follows:

gl.drawArrays(gl.LINES, 0, vertexPositionBuffer.numItems);
gl.drawArrays(gl.LINE_STRIP, 0, vertexPositionBuffer.numItems);
gl.drawArrays(gl.LINE_LOOP, 0, vertexPositionBuffer.numItems);

The following diagram shows how WebGL will draw the same set of vertices with
the LINE_XXX option:

LINES draw a series of
unconnected line
segments. Three
individual lines are drawn
given by (V0,
V1), (V2,V3), and (V4, V5).
A total of Count / 2
segments are drawn.

Lines
Line strip

Line loop

LINE_STRIP draws a series
of connected line
segments. Three line
segments are drawn given
by (VO, V1), (V1, V2), and
(V2, V3). A total of (Count
- 1) line segments are
drawn.

LINE_LOOP works similar
to GL_LINE_STRIP, except
that a final line segment is
drawn from Vn-1 to V0.
Four line segments drawn
are (V0, V1), (V1, V2),
(V2, V3), (V3, V4), and
(V4, V0). A total of Count
line segments are drawn.

V0 V1

V2

V4

V3

V5

V0

V1

V2

V3

V4

V0 V1

V2

V3

The following code shows the different parameters passed to the drawArrays
function to draw geometries:

gl.drawArrays(gl.TRIANGLES, 0, vertexPositionBuffer.numItems);
gl.drawArrays(gl.TRIANGLE_STRIP, 0,
 vertexPositionBuffer.numItems);
gl.drawArrays(gl.TRIANGLE_LOOP, 0, vertexPositionBuffer.numItems);

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with WebGL Game Development

[32]

The following diagram shows how WebGL will draw the same set of vertices with
the TRIANGLE_XXX option:

GL_Triangle GL_Triangle_Strip GL_Triangle_Fan

TRIANGLES draw a series
of separate triangles. Two
triangles given by vertices
(VO, VI, V2) and (V3, V4,
V5) are drawn. A total of
Count / 3 triangles are
drawn.

TRIANGLE_STRIP draws a
series of connected
triangles. Three triangles
are drawn given by (V0, V1,
V2), and (V2, V1, V3) (note
the order). (Count - 2)
triangles are drawn.

TRIANGLE_FAN also draws a
series of connected
triangles. The triangles
drawn are (V0, V1, V3), and
(V1, V2, V3). (Count - 2)
triangles are drawn.

V2 V3 V5

V4V1
V0

V1 V3

V0 V2

V1 V2

V0 V3

The following function shows the usage of drawArrays with the gl.POINTS
mode value:

gl.drawArrays(gl.POINTS, 0, vertexPositionBuffer.numItems);

The following diagram shows how WebGL will draw the same set of vertices with
the POINTS option:

POINTS: A point sprite is drawn for each vertex specified.
They will be generally used for rain, fire, and mainly particle
effects.

The drawArrays function is effective when we have simple geometry; for complex
geometry, we use the drawElements function call:

gl.drawElements(Mode, Count, Type, Offset)

The drawElements function uses the index buffer object and the drawArrays
function uses the vertex buffer object to read the data. The parameters of the
drawElements function are explained as follows:

• Mode: This is similar to the drawArrays function.
• Count: This specifies the number of indices to draw.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[33]

• Type: This specifies the type of element indices stored in indices. Valid values
are UNSIGNED_BYTE, UNSIGNED_SHORT, and UNSIGNED_INT.

• Offset: This is the starting vertex index in the enabled vertex array.

Drawing using vertex buffer objects
Please open the file 01-SquareWithDrawArrays.html in your favorite text editor.
The HTML page has three script sections:

• The script section marked with id="shader-fs" and type="x-shader/x-
fragment" contains the fragment shader code

• The script section marked with id="shader-vs" and type="x-shader/x-
vertex" contains the vertex shader code

• The script section marked type="text/JavaScript" contains the
control code

The HTML code invokes the start() function on loading its body. The start()
function performs the following functions :

• Gets the canvas object using the document.getElementById("squareWithD
rawArrays"); function.

• Invokes the initGL(canvas) function that obtains the WebGL context using
the canvas.getContext() function and stores it in a global variable, gl. All
WebGL API functions are accessed through the context.

• Invokes the initShaders() function, which in turn invokes the
getShader(context, type) function. The getShader() function
loads both scripts in by parsing the document object. It loads the script
in a string object, compiles it, and returns the shader object. Then, the
initShaders() function creates a program object. It then attaches both the
shaders (fragment and vertex) to the program object. Then, the program
object is linked to the WebGL context and activated using the context's
useProgram(shaderProgram) function. Then, the aVertexPosition shader
attribute provides the location that is requested in the control code using
the gl.getAttribLocation (shaderProgram, "aVertexPosition");
function. This location is stored in the vertexPositionAttribute variable of
the shaderProgram object. This vertexPositionAttribute is then activated
using the gl.enableVertexAttribArray() function. Then the location and
both uniforms (ModelView transformation and projection transformation) are
stored in the shader program object.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with WebGL Game Development

[34]

• Invokes the initBuffers() function. This function creates the vertices
array with four vertices, creates a vertex buffer object, makes it the current
buffer using the API function gl.bindBuffer (gl.ARRAY_BUFFER,
vertexPositionBuffer) , and creates the actual memory to store the
vertices in the GPU memory using the API function gl.bufferData(gl.
ARRAY_BUFFER, new Float32Array(vertices), gl.STATIC_DRAW). Then,
it clears or paints the canvas using the gl.clearColor(red,green,blue,al
pha) function. It also enables depth-testing (this will be discussed shortly).

• The final drawing happens in the drawScene() function. First, it sets
the size of the viewport equal to the size of the canvas object using the
gl.viewport(0, 0, gl.viewportWidth, gl.viewportHeight); API
function. Then, it clears the COLOR and DEPTH framebuffers (to be discussed
shortly). It initializes the projection perspective matrix using the mat4.
perspective(40, gl.viewportWidth / gl.viewportHeight, 0.1,
1000.0, pMatrix) function.

• The drawScene() function then initializes the ModelView matrix mat4.
identity(mvMatrix); and applies a translation transform to the ModelView
matrix. The matrix now contains one transformation which would move an
object to z = -7 in the world coordinate.

• The drawScene() function then makes the vertexPositionBuffer
parameter the current buffer using the gl.bindBuffer(gl.ARRAY_BUFFER,
vertexPositionBuffer) function and associates the current buffer object
to the shader attribute using the gl.vertexAttribPointer() function.
The setMatrixUniforms() function associates the ModelView matrix and
projection matrix to the corresponding shader program uniforms using the
gl.uniformMatrix4fv() function.

Finally, we invoke the drawArrays() function, which basically draws the square
with two triangles using the vertices [v0, v1, v2] and [v2, v0, v3] since the drawing
mode was TRIANGLE_STRIP.

Hence, for every WebGL application, the basic program flow would be similar to
the following:

• Create the WebGL context
• Load, compile, link, and attach shaders
• Initialize vertex buffers and index buffers
• Apply transform and associate buffer objects to shader attributes
• Call the drawArrays or drawElements functions

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[35]

Drawing using index buffer objects
Open the 01-SquareWithDrawIndexArrays.html file in your favorite text editor,
which has the following code:

function initBuffers() {

 vertexPositionBuffer = gl.createBuffer();
 indexBuffer = gl.createBuffer();
 gl.bindBuffer(gl.ARRAY_BUFFER, vertexPositionBuffer);
 gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, indexBuffer);

 vertices = [
 1.0, 1.0, 0.0, //v0
 -1.0, 1.0, 0.0, //v1
 1.0, -1.0, 0.0, //v2
 -1.0, -1.0, 0.0 //v3
];
 indices = [0,2,3,0,3,1];

 gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(vertices),
 gl.STATIC_DRAW);
 vertexPositionBuffer.itemSize = 3;
 vertexPositionBuffer.numItems = 4;

 gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, new Uint16Array(indices),
 gl.STATIC_DRAW);
 gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, null);
}

In this code, we change the initBuffer() function to create index buffers. First,
we initialize our array of indices and then create a new buffer of type gl.ELEMENT_
ARRAY_BUFFER,; we then allocate memory for it using the bufferData() function.
The process is shown in the following code snippet:

function drawScene() {
 gl.viewport(0, 0, gl.viewportWidth, gl.viewportHeight);
 gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);

 mat4.perspective(40, gl.viewportWidth / gl.viewportHeight, 0.1,
 1000.0, pMatrix);

 mat4.identity(mvMatrix);

 mat4.translate(mvMatrix, [0.0, 0.0, -7.0]);

 gl.bindBuffer(gl.ARRAY_BUFFER, vertexPositionBuffer);
 gl.vertexAttribPointer(shaderProgram.vertexPositionAttribute,
 vertexPositionBuffer.itemSize, gl.FLOAT, false, 0, 0);

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with WebGL Game Development

[36]

 setMatrixUniforms();
 gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, indexBuffer);
 gl.drawElements(gl.TRIANGLES, indices.length,
 gl.UNSIGNED_SHORT,0);

}

In the drawscene() function, we make the indexBuffer parameter our current
g1.ELEMENT_ARRAY_BUFFER constant. Then, we use a drawElements() function
with the TRIANGLES mode option.

Debugging a WebGL application
A WebGL application is divided into control code and shader code. We can easily
debug the control code using a simple JavaScript API, console.log(canvas).

The JavaScript API console.log() is not compatible with some browsers, but you
can use the wrapper library at https://code.google.com/p/console-js/ for
usage across browsers.

We cannot debug a shader code with a simple JavaScript API. If something goes
wrong, all we would see is a black window. Fortunately for us, there is a great
Chrome extension named WebGL inspector (http://benvanik.github.io/WebGL-
Inspector/) to help us debug our applications.

Simply install the extension in Google Chrome from https://chrome.google.com/
webstore/detail/webgl-inspector/ogkcjmbhnfmlnielkjhedpcjomeaghda. We
can enable the extension in the Settings menu in Google Chrome. Please refer to the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[37]

This extension helps debug, diagnose, and explore WebGL games. After enabling it,
whenever we render any WebGL scene, a tag GL will appear on the address bar on
the right-hand side. When we click on it, two tabs, Capture and UI, appear on the
right-hand side of the screen. The UI tab opens the debugging window, as shown in
the following screenshot:

The debugging window shows us complete information about the buffers, textures,
and variable state of the application.

Summary
In this chapter, we got to grips with basic terms such as vertices, indices, vectors,
and mesh. We covered a very basic shader and rendered a square using the simple
WebGL API. We covered basic variable qualifiers (attribute, uniform, and varying)
of the shader language. We covered the basics of loading and compiling a shader
program. The core concept of allocating a buffer (vertex buffer objects and index
buffer objects) and the processing of attributes in a shader was also covered.

We also discussed components of the WebGL's rendering pipeline, such as vertex
shaders, the rasterizer, and fragment shaders.

In the next chapter, we will improve our shader by adding light and material to the
objects in the scene.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Colors and
Shading Languages

We have been teleported to 5000 AD. We know the basics, but we still have to create
our survival kit to fight Mr. Green. Our survival kit's raw materials will be some
basic code packets. These code packets will form the core rendering engine of our
WebGL game. Although we will take the simplest approach, we will keep evolving
and structuring these particular code packets as we move along.

Before we dive into shading models, we will cover how to render complex
geometries. A very important aspect of 3D gaming is the ability to render 3D models
exported from tools such as Blender. We will learn how to export basic 3D models
and also understand the basic Wavefront OBJ file format. We will learn how to parse
the OBJ file format to convert to the JSON format. Then, we will load the JSON file
format in our game.

Our survival kit in 5000 AD will cover the following topics:

• Adding colors to primitive objects
• Exporting 3D objects from tools such as Blender
• Understanding directional lights
• Making our objects respond to light and reflection algorithms
• Shading models

www.it-ebooks.info

http://www.it-ebooks.info/

Colors and Shading Languages

[40]

Understanding colors
Similar to most graphics systems, WebGL also uses the RGBA model to illuminate
pixels on a screen. The alpha channel (A) is the extended attribute to denote the
opacity of an object. We will use this value for advanced techniques, such as
blending, in the following chapters. Each value of RGBA ranges from 0.0 (none) to
1.0 (full intensity) in WebGL. The value of 1.0 for the alpha channel will denote that
the object is opaque and the value of 0.0 will denote that the object is transparent.

We will store color values in the vec4 data type as follows:

var color=
 vec4.fromValues(0.0,0.0,1.0,1.0);//(red,green,blue,alpha)
//Blue color with full intensity
var color=
 vec4.fromValues(1.0,0.0,0.0,1.0);//Red color with full intensity

Colors in WebGL are used to represent object material properties, light properties,
and painting/clearing of the WebGL context.

Like vertices' positions, color values are stored for shaders in vertex buffer objects.

Coloring our square
Our example uses per-vertex coloring. Per-vertex coloring is rarely used in gaming
applications. It is mostly used in engineering applications, but it is a good example
to start with as you might run into cases where you need to use per-vertex coloring
in games.

In our previous examples, we discussed that each vertex had a position. These
positions were stored in flat arrays. In our example of the square, we had four
vertices shared between two triangles. Now, we will assign color [R, G, B] values to
each vertex so that we get the square colored as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[41]

Coloring using the vertex color
Open the 02-SqaureDrawIndexArrayColor.html file in your favorite text editor.

The shader code for the vertex color is as follows:

<script id="shader-vs" type="x-shader/x-vertex">

 attribute vec4 aVertexColor;
 //Attribute hold color for each vertex

 varying lowp vec4 vColor;
 //Varying qualifier to pass vertex color to fragment shader
 void main(void) {

 vColor = aVertexColor; //Assign attribute value to varying to
 be used in shader
 }
</script>
<script id="shader-fs" type="x-shader/x-fragment">
 precision mediump float;
 varying lowp vec4 vColor;//Varying qualifier to get values from
 vertex shader

 void main(void) {

 gl_FragColor = vColor;//Assign value to be used in shader
 }
</script>

The preceding code denotes changes to the vertex and fragment shaders used
previously in our examples. Three changes in the vertex shader are as follows:

• We create an attribute (aVertexColor) to get the vertex color value from the
control JavaScript code.

• We create a varying variable to pass this color value to the fragment shader.
You might wonder why we did not create a uniform qualifier and pass it
directly to the fragment shader from the control code. We will do this in cases
where the whole primitive has the same color value. In our case, the primitive
is the triangle, and each vertex has a different value. We only use the uniform
qualifier for variables whose value does not change across a primitive
(across the face of a triangle). Therefore, in our case, we created an attribute
which received each value of the vertex from the buffer. Then, we passed this
value to the fragment shader using the varying variable. Remember, varying
is the only qualifier used to pass values from the vertex shader to the fragment
shader. The varying values are interpolated by the hardware, as explained in
Chapter 1, Getting Started with WebGL Game Development.

www.it-ebooks.info

http://www.it-ebooks.info/

Colors and Shading Languages

[42]

• We assign the value of the aVertexColor attribute to the varying
variable vColor.

Two changes in the fragment shader are as follows:

• We create a varying variable, vColor, whose value we will receive from the
fragment shader.

• We assign the value to the predefined gl_FragColor variable.

The control code for the vertex color is as follows:

function initBuffers() {
...
...
// Array of color values, one for each vertex
 var colors = [
 1.0, 1.0, 1.0, 1.0, // white
 1.0, 0.0, 0.0, 1.0, // red
 0.0, 1.0, 0.0, 1.0, // green
 0.0, 0.0, 1.0, 1.0 // blue
];
...
...
...
 //New Buffer to hold colors
 colorBuffer = gl.createBuffer();
 //Created reference to the new buffer, made it the active buffer
 for further operations
 gl.bindBuffer(gl.ARRAY_BUFFER, colorBuffer);
 //Allocated memory for the buffer and stored color values
 gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(colors),
 gl.STATIC_DRAW);
}

The preceding code denotes changes to the initBuffer() function. In the earlier
initBuffer() function, we created and allocated a buffer for indices and the vertex
positions. In the new initBuffer() function, we allocated memory to store the color
data as well. Also, note that the buffer type is ARRAY_BUFFER to store color values; we
use ELEMENT_ARRAY_BUFFER to store only indices.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[43]

The following code gets the reference to the aVertexColor attribute and enables
it. The variables are declared in shaders but are initialized in the control flow code.
Hence, we obtain a reference to them, as shown in the following code:

function initShaders() {

 shaderProgram.vertexColorAttribute =
 gl.getAttribLocation(shaderProgram, "aVertexColor");// Getting
 the reference to the attribute aVertexColor from the flow code
 gl.enableVertexAttribArray(shaderProgram.vertexColorAttribute);
 //Enabling the vertex color attribute.

}

We just added two lines. The first line activates the buffer object and the second
line associates the buffer object to the vertex shader attribute aVertexColor
through the reference vertexColorAttribute. The following is the code for the
drawScene() function:

function drawScene() {

 //Activate the buffer object colorBuffer for operations
 gl.bindBuffer(gl.ARRAY_BUFFER,colorBuffer);
 //Associating buffer object(colorBuffer) with shader attribute
 aVertexColor whose refrence is in vertexColorAttribute
 gl.vertexAttribPointer(shaderProgram.vertexColorAttribute, 4,
 gl.FLOAT, false, 0, 0);
 gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, indexBuffer);
 gl.drawElements(gl.TRIANGLES, indices.length,
 gl.UNSIGNED_SHORT,0);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Colors and Shading Languages

[44]

We assigned four color values to each vertex. But, each vertex corresponds to each
fragment (pixel on our screen). Hence, the magic happens in the rendering pipeline.
We assign a color value to each vertex, and WebGL interpolates it by taking the
corresponding calculated color for the vertices surrounding the corresponding
fragment (pixel). Hence, you see a gradient from blue to red, green to white, and
so on, as shown in the following diagram:

The in-between colors are interpolated values by the GPU.

Learning more about colors
In the preceding example, we learned about how to color a simple object by
providing a color for each vertex, but in a game, to color an object, we do not
generally use vertex colors, but we add a material to an object instead. A material
can be modeled by defining parameters such as textures and color. In this chapter,
we will model our materials only with color. Material colors are usually modeled as
triplets in the RGB (Red, Green, and Blue) space.

However, the material does not solely decide how the object will appear in your
game. The final color of a fragment is defined by how the object is oriented in the
scene and lights in the scene. A light is defined by parameters such as direction,
position, and colors. Hence, the final color of a fragment is decided by material,
orientation (normals), and light intensity.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[45]

Understanding surface normals for lighting
calculations
A surface normal (or just normal) is a vector that is perpendicular to a surface
at a particular position. Surface normals and vector normals are explained in the
following diagram:

Vertex Normals

Surface Normals

A normal is defined as the cross-product of any two nonparallel vectors that are
tangent to the surface at a point. We have to have a normal for each vertex of an
object. To calculate the normal of a vertex, we will need to do as depicted in the
following diagram:

Vector 1 = (V -V)1 2

Vector 2 = (V -V)2 3

Normal = (V -V)X(V -V)1 2 2 3

Normal=cross product f wo on parallel vectoro t n

V1

V2

V3

N

Hence, for the vertex V2, its normal would be as follows:

V2 = (V1 - V2) x (V2 - V3)

The value of the first vector is as follows:

Vector 1 = V1 - V2

www.it-ebooks.info

http://www.it-ebooks.info/

Colors and Shading Languages

[46]

The value of the second nonparallel vector is as follows:

Vector 2 = V2 - V3

V1, V2, and V3 are the three vertices of a triangle primitive.

The calculation of the normal at a vertex shared by multiple triangles/primitives
is a little complicated as both primitives contribute to its calculation. The following
diagram shows a vertex, V4, shared between triangles 1 and 2:

N
N1

N2

V4

V1

V2

V3

1 2

N = N1 N2 ... Nn+

Hence, if two primitives, (V1, V2, V4) and (V2, V4, V3), share a common vertex,
V4, then we will calculate N1 from the primitive 1 (V1, V2, V3) and N2 from the
primitive 2 (V2, V3, V4), and the final normal N on vertex V4 would be the vector
sum of N1 and N2.

Calculating normals from vertices and indices
Open the 02-NormalCalculation.html file in your favorite text editor. A normal is
the cross-product of the vectors with common vertices as discussed in the preceding
section. The following code calculates the normals array from the vertices and
indices arrays:

function calculateVertexNormals(vertices,indices){
 var vertexVectors=[];
 var normalVectors=[];
 var normals=[];
 for(var i=0;i<vertices.length;i=i+3){
 var vector=
 vec3.fromValues(vertices[i],vertices[i+1],vertices[i+2]);
 var normal=vec3.create();//Initialized normal array
 normalVectors.push(normal);
 vertexVectors.push(vector);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[47]

 for(var j=0;j<indices.length;j=j+3)//Since we are using triads
 of indices to represent one primitive
 {
 //v1-v0
 var vector1=vec3.create();
 vec3.subtract(vector1,vertexVectors[indices[j+1]],
 vertexVectors[indices[j]]);
 //v2-v1
 var vector2=vec3.create();
 vec3.subtract(vector2,vertexVectors[indices[j+2]],
 vertexVectors[indices[j+1]]);
 var normal=vec3.create();
 //cross-product of two vectors
 vec3.cross(normal, vector1, vector2);
 //Since the normal caculated from three vertices is the same for
 all the three vertices(same face/surface), the contribution
 from each normal to the corresponding vertex is the same
 vec3.add(normalVectors[indices[j]],
 normalVectors[indices[j]],normal);
 vec3.add(normalVectors[indices[j+1]],
 normalVectors[indices[j+1]],normal);
 vec3.add(normalVectors[indices[j+2]],
 normalVectors[indices[j+2]],normal);
 }
 for(var j=0;j<normalVectors.length;j=j+1){
 vec3.normalize(normalVectors[j],normalVectors[j]);
 normals.push(normalVectors[j][0]);
 normals.push(normalVectors[j][1]);
 normals.push(normalVectors[j][2]);

 }
 return normals;
}

In the preceding code, the calculateVertexNormals function takes the vertices
and indices arrays. The triads of elements of the vertex array define a single vertex;
hence, we create a vec3 object of each triad. Each triad of the indices array defines
vertices of a triangle; hence, when we iterate over the array, we get all the vertices
of the triangle from the vertexVectors array. From these vertices, we calculate
the normal for that particular vertex. As all three vertices belong to the same face/
surface/triangle, the normal of each vertex is the same. Therefore, we calculate only
one normal and add it to all the normals of the three vertices. The last loop iterates
over the normalVector array, normalizes it, and then unpacks the vec3 object to
generate the normal array. We only need the direction of the normal and not its
magnitude, since normals are unit vectors.

www.it-ebooks.info

http://www.it-ebooks.info/

Colors and Shading Languages

[48]

Understanding normal transformation
The normal is often used in 3D rendering to determine a surface's orientation
towards a light source. The following diagram demonstrates the use of the normal
to calculate the angle of reflection. We have the direction of light and the surface
normal and we need to calculate the direction of the reflected light:

Vertex Normal

Reflected Light Ray Incoming Light Ray

Camera

C

R

N

L

γ
β α

In the upcoming sections, we will discuss how normals are used in reflection/
illumination models. These models will be used to calculate color values of the
individual fragments of an object.

Like vertices, normals have to be transformed. The normals we calculated in the
preceding section are in object space. If the model is translated or rotated, we have to
transform the vertices to world space. Similarly, normals have to be transformed to
world space as well. To transform normals, we first need to find the transpose of the
inverse of the ModelView matrix with the help of the following code:

var normalMatrix = mat3.create();
mat4.toInverseMat3(mvMatrix, normalMatrix);
mat3.transpose(normalMatrix);
gl.uniformMatrix3fv(shaderProgram.nMatrixUniform, false,
 normalMatrix);//Pass the normal(of the MV matrix) to the shader
 as a uniform

Then, we multiply the ModelView matrix with the normals of the object in the vertex
shader using the following code:

vec3 transformedNormal = nMatrix * aVertexNormal;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[49]

Different types of lights used in games
In gaming, we add light sources. These light sources can have different lighting
effects on our scene and objects. The distinct features of an object only appear if
we have added a light to our scene. A scene should have at least one light. The
appearance of an object will depend on the direction and position of the light. The
following light sources are classified by their distance and direction.

Directional lights
A directional light is produced by a light source placed at an infinite distance from
the object/scene. All of the light rays emanating from the light strike the polygons in
the scene from a single parallel direction and with equal intensity.

Sunlight is an example of a directional light. It is defined by properties such as color,
intensity, and direction.

Point lights
A point light is produced by a light source that gives off equal amounts of light in all
directions. Primitives that are closer to the light appear brighter than those that are
further away. The intensity varies with distance.

In a game, we will need point lights, similar to the street lamps shown as positional
lights in Chapter 3, Loading the Game Scene. Point lights are defined by properties such
as color, intensity, location, and falloff function.

Spotlights
A spotlight is produced by a light source that radiates light in a cone with maximum
intensity at the center, gradually tapering off towards the sides of the cone. The
simplest spotlight would just be a point light that is restricted to a certain angle
around its primary axis of direction.

A car headlight would be an example of a spotlight. It is defined by properties such
as color, intensity, location, an axis of direction, a radius about that axis, and possibly
a radial falloff function.

www.it-ebooks.info

http://www.it-ebooks.info/

Colors and Shading Languages

[50]

The three light sources are shown in the following diagram:

A

B

A A

B BDirectional Light Point Light Spotlight

Ambient lighting
All game scenes have at least one ambient light that produces a uniform
illumination. The properties of ambient light are as follows:

• It is generated by a nondirectional light source
• It simulates light that has been reflected so many times from so many

surfaces that it appears to come equally from all directions
• Its intensity is constant over a polygon's surface
• The position of the viewer is not important
• Its intensity is not affected by the position or orientation of the polygon

in the world
• It is generally used as a base lighting in combination with other lights

The following formula calculates the intensity of light after reflection from an object
which has ambient properties:

I = Ia Ka

The parameters of the preceding formula are as follows:

• I: Intensity
• Ia: The intensity of the ambient light
• Ka: The object's ambient reflection coefficient; 0.0 to 1.0 for each of the R, G,

and B values

Diffuse reflection (Lambertian reflection)
Diffuse reflection is the reflection of light from a surface such that an incident ray
is reflected at many angles rather than just one angle. The properties of diffuse
reflection are as follows:

• The brightness of a polygon depends on theta—the angle between the surface
normal (N) and the direction of the light source (L)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[51]

• The position of the viewer depends on whether we use a directional light or a
point light

The following formula calculates the intensity of the reflected diffuse light from an
object with a diffuse material component:

I = Ip Kd (N'.L')

The parameters of the preceding formula are as follows:

• I: Intensity
• Ip: The intensity of the point light
• Kd: The object's diffuse reflection coefficient; 0.0 to 1.0 for each of the R, G,

and B values
• N': The normalized surface normal/vertex normal
• L': The normalized direction to the light source
• .: Represents the dot product of the two vectors

Specular reflection
Specular reflection is the reflection of shiny surfaces. You will see a highlight on the
object/model. A shiny metal or plastic surface has a high specular component while
chalk or carpet has a very low specular component. The following diagram shows
the effect of different light components on geometry:

www.it-ebooks.info

http://www.it-ebooks.info/

Colors and Shading Languages

[52]

Understanding object materials
A material is a description of the surface of a 3D object. The properties detail a
material's diffuse reflection, ambient reflection, and specular highlight characteristics.
The diffuse and ambient properties of the material describe how a material reflects
the ambient and diffuse lights in a scene. As most scenes contain much more diffuse
light than ambient light, diffuse reflection plays the largest part in determining the
color of a primitive. Diffuse and ambient reflections work together to determine the
perceived color of an object and are usually identical values. For example, to render
Mr. Green, you create a material that reflects only the green component of the diffuse
and ambient lights. When placed in a scene with a white light, Mr. Green appears to
be green. However, in a room that has only blue light, Mr. Green would appear to be
black because its material does not reflect the blue light.

Specular reflection creates highlights on objects making them appear shiny. It is
defined by two properties that describe the specular highlight color as well as the
material's overall shininess. You establish the color of the specular highlights by
setting the specular property to the desired RGBA color—the most common colors
are white or light gray. The values you set in the power property control how sharp
the specular effects are.

Rendering 3D objects
To put our earlier knowledge to use, first we need to learn how to render 3D objects.
We will first create a 3D object, a cube or any geometry, in Blender, a free and open
source 3D creation software (http://www.blender.org/).

We will then export this 3D model as a Wavefront object file. The Wavefront .obj
format will then be parsed via a Python script and will be converted and saved as a
JSON file. We use the JSON format as it can be easily parsed by JavaScript. We can
parse an OBJ file in JavaScript as well but it would be time-consuming and slow.

Exporting a 3D object from Blender
The following are the steps we need to perform to export an object from Blender:

1. Open Blender and go to Add | Mesh | Cube, as shown in the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[53]

2. Select Cube and go to File | Export | Wavefront(.obj), as shown in the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Colors and Shading Languages

[54]

• On the left-hand side of the Export OBJ window (refer to the following
screenshot), select the following options:

 ° Include Edges
 ° Include UVs
 ° Write Materials
 ° Triangulate Faces
 ° Polygroups
 ° Objects as OBJ Objects
 ° Objects as OBJ Groups

3. Provide a file name and path to save your OBJ file and you are done.

Two files will be generated, one an OBJ file and the other an
MTL file. The OBJ file contains the geometry information and
the MTL file contains the material information.

Note that we have selected the Triangulate Faces option. This will split each polygon
into a set of three vertices.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[55]

Understanding and loading the Wavefront
(OBJ) format
Open the exported .obj file in your favorite text editor. The following is the code of
an .obj file; the inline comments are added to give you a better understanding.

We will only explain the section of the file format relevant to this chapter. We will
cover texture data in Chapter 4, Applying Textures.

The following code snippet is taken from a .obj file of a monkey model exported
from Blender:

Blender v2.64 (sub 0) OBJ File: ''
www.blender.org
Material File name
mtllib Monkey.mtl
The object name exported.
o Monkey
#These are vertex information of the above object
v 0.585466 0.897006 0.581131
v -0.289534 0.897006 0.581131

Texture coordinates, in (u, v, [w]) format, vary between 0 and 1. The w coordinate is
optional. We will cover this later in Chapter 4, Applying Textures.

The following code snippet from the .obj file lists the vertex normal and the vertex
texture data:

vt 0.500 1 [0]
...
Vertex normals information
vn 0.707 0.000 0.707
vn 0.707 0.000 0.707
...
Start mapping from the material file; Default None if no material
applied
usemtl [Material name]
Smoothing is on or off (For Shaders)
s off
#Indices of a surface in our case triangle
f 47 1 3
We checked to "triangulate" while exporting, hence we have triads in
faces
...
f 47 3 45
Vertex/Texture Mapping

www.it-ebooks.info

http://www.it-ebooks.info/

Colors and Shading Languages

[56]

f 3/1 4/2 5/3
#Vertex/Texture Mapping/Normal information
f 6/4/1 3/5/3 7/6/5
#Vertex//Normal
f 6//1 3//3 7//5

In the preceding file, the key concept to understand is the three data elements, v, vn,
and vt:

• v: This refers to the vertex indices of an object.
• vn: This refers to the vertex normal information.
• vt: This holds the texture information. We will not use this data element

now. It will be discussed in Chapter 4, Applying Textures.

The important element is f, faces. A face in an OBJ file defines the properties of each
polygon. It has indices of the vertices/normals/textures defined in the preceding
file. In the preceding example, a face has three vertices as we had selected the option
Triangulate Faces while exporting the file. If we exported without triangulation, we
would have had four vertices per face.

The relation between v, vn, and vt in f is shown in the following table:

Cases Description
Case 1: f 1 2 12 The element f holds only the vertex information of the face.
Case 2: f 2/2 3/5 4/5 The pair maps the vertices to texture coordinates; the

second vertex maps to the second texture coordinate.
Case 3: f 2/2/2 3/2/
4 3/3/4

The value 2/2/2 would mean the second vertex is
mapped to the second texture coordinate in the vt
array and the second element is the normal index in the
normal array vn.

Case 4: f 2//2 3//4 3//4 The value 2//2 would mean the second vertex is mapped
to the second normal in the v and vn data elements.

Understanding the material file format (MTL)
Open the exported MTL file in your favorite text editor. The following is the code of
an MTL file; the inline comments are added to build a better understanding:

Blender MTL File: 'None'
Material Count: 1
#Material name definition
newmtl [MaterialName]
#Specifies the specular exponent for the current material. This
defines the focus of the specular highlight.
Ns 96.078431

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[57]

#The ambient color of the material is declared using Ka. Color in RGB
where value is between 0 and 1.
Ka 0.000000 0.000000 0.000000
#The diffuse color is declared using Kd.
Kd 0.640000 0.640000 0.640000
#The specular color is declared using Ks.
Ks 0.500000 0.500000 0.500000
#Ni optical_density #Specifies the optical density for the surface.
This is also known as index of refraction.
Ni 1.000000
d 1.000000
illum 2

The illum data element in the .mtl file helps us understand the illumination model
that needs to be applied when using this material. It can be a number from 0 to 10.
The illumination models are summarized as follows:

Value Description
0 Color on and ambient off
1 Color on and ambient on
2 Highlight on
3 Reflection on and ray trace on
4 Transparency: glass on; reflection: ray trace on
5 Reflection: fresnel on and ray trace on
6 Transparency: refraction on; reflection: fresnel off and ray trace on
7 Transparency: refraction on; reflection: fresnel on and ray trace on
8 Reflection on and ray trace off
9 Transparency: glass on; reflection: ray trace off

10 Casts shadows onto invisible surfaces

Converting the OBJ file to the JSON file format
The JSON file format does not have any particular specification in WebGL. We store
our object data in JSON because it is the easiest way to parse in JavaScript. Although
we can write our own script to create a JSON file from the OBJ file, we would prefer
to use an existing script to do the same:

• Install Python 3.x from https://www.python.org/downloads/. (Macintosh
generally has Python installed.)

• Download the script convert_obj_three.py from https://github.com/
mrdoob/three.js/blob/master/utils/converters/obj/convert_obj_
three.py. (The script is already attached with the chapter code files.)

www.it-ebooks.info

http://www.it-ebooks.info/

Colors and Shading Languages

[58]

Use exported files from Blender, objectname.obj and objectname.mtl, in the
following command.

If you are using a Mac, open Terminal, or if you are using Windows, open Command
Prompt and enter the following command:

python convert_obj_three.py -i objectname.obj -o objectname.json

The JSON file
Open the Cube.json file from the model folder in your favorite text editor.
The following code is of the Cube.json file:

{
"metadata" :
 {
 "formatVersion" : 3.1,
 "sourceFile" : "Cube.obj",
 "generatedBy" : "OBJConverter",
 "vertices" : 8,
 "faces" : 12,
 "normals" : 0,
 "colors" : 0,
 "uvs" : 0,
 "materials" : 1
 },
 "scale" : 1.000000,
 "materials": [{
 "DbgColor" : 15658734,
 "DbgIndex" : 0,
 "DbgName" :"",
 "colorAmbient" : [0.0, 0.0, 0.0],
 "colorDiffuse" : [0.80000000000000004, 0.80000000000000004,
 0.80000000000000004],
 "colorSpecular" : [0.80000000000000004, 0.80000000000000004,
 0.80000000000000004],
 "illumination" : 2,
 "specularCoef" : 0.0,
 "transparency" : 1.0
 }],
 "vertices": [-0.446862,0.067651,0.815504,........],
 "morphTargets": [],
 "morphColors": [],
 "normals": [],
 "colors": [],
 "uvs": [[]],

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[59]

 "faces":
 [2,1,0,4,0,2,1,4,5,0,2,5,6,2,0,2,5,2,1,0,2,6,7,3,0,2,6,
 3,2,0,2,0,3,7,0,2,0,7,4,0,2,0,1,2,0,2,0,2,3,0,2,7,6,5,
 0,2,7,5,4,0]
}

The JSON file contains the complete information of the object. It contains information
of the materials as well as the vertices and faces arrays. Each triad of elements
in the vertices array will form a face. Also note that it supplies information on
the number of materials used to render the object. In our case, it is ''materials''
: 1 in the metadata section. However, the "materials": [] object in the JSON file
is an array. In the preceding example, this array has a single element.

Understanding the faces array is pretty exciting. First, note that there are arrays
containing UV, color, and the normal information array as well. As the name
faces denotes, it stores information on the faces of the polygon. A face will have
information on its vertices and the primitive can be a quad or a triangle. The faces
array can hold information such as a normal index denoting the face normal, material
index, and color, as well as UV indices. All indices point to their corresponding
arrays. So, a typical face set would be something like the following code snippet:

v1,v2,v3,[v4],[material_index],[face_uv],[face_vertex_uv,
 face_vertex_uv,face_vertex_uv,
 face_vertex_uv],[face_normal],[face_vertex_normal,
 face_vertex_normal,face_vertex_normal,
 face_vertex_normal],[face_color],[face_vertex_color,
 face_vertex_color,face_vertex_color, face_vertex_color],

The square brackets [] denote an optional element. Hence, from the preceding
string, we understand that a face information set may or may not have all this
information. So, how do we know whether our face set has all this information?

We learn about our face set after reading the first element of the array. The value
of the first element of the array will range from 1 to 255. We will first convert
this number to an octet. Each bit of the octet has information about the face. The
combination of bits helps us understand the number of elements we have to read to
get the information for that face, as demonstrated in the following code snippet:

00 00 00 00 = TRIANGLE
00 00 00 01 = QUAD
00 00 00 10 = FACE_MATERIAL
00 00 01 00 = FACE_UV
00 00 10 00 = FACE_VERTEX_UV
00 01 00 00 = FACE_NORMAL
00 10 00 00 = FACE_VERTEX_NORMAL
01 00 00 00 = FACE_COLOR
10 00 00 00 = FACE_VERTEX_COLOR

www.it-ebooks.info

http://www.it-ebooks.info/

Colors and Shading Languages

[60]

The first element can be one of the elements present in the following table:

Value Binary format Description
0 00000000 This face is a triangle, and the next three values will be

its vertices.
1 00000001 This is a quad. Hence, the next four elements will be

vertices of a quad.
2 00000010 As the last bit is 0, it is a triangle, and the second bit

is 1 which means it will face the material index. The
first three values will denote the vertex indices (of
the earlier vertex array), and the next value will give
the material index of the material array (v1, v2, v3,
materialIndex). Each element of the material array
has information (specular, diffuse, ambient, and so on)
of the material used on the object.

3 00000011 As the last bit is 1, it is a quad, and the second bit is
1 which means it will face the material index. Hence,
we will read the next five elements (v1, v2, v3, v4,
materialIndex).

4 00000100 As the last bit is 0, it is a triangle. The second bit is 0
(no material) and the third bit is 1, which means it has
a face UV. Hence, we will read the next four elements
(v1, v2, v3, faceUVIndex).

The following code snippet is taken from a .json file. It shows different data
elements and their corresponding meanings:

 "faces": [
 // triangle
 // 00 00 00 00 = 0
 // 0, [vertex_index, vertex_index, vertex_index]
 0, 0,1,2,
 // quad
 // 00 00 00 01 = 1
 // 1, [vertex_index, vertex_index, vertex_index, vertex_index]
 1, 0,1,2,3,
 // triangle with material
 // 00 00 00 10 = 2
 // 2, [vertex_index, vertex_index, vertex_index],
 // [material_index]
 2, 0,1,2, 0,
 // triangle with material, vertex uvs and face normal
 // 00 10 01 10 = 38
 // 38, [vertex_index, vertex_index, vertex_index],

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[61]

 // [material_index], [vertex_uv, vertex_uv, vertex_uv],
 // [face_normal]
 38, 0,1,2, 0, 0,1,2, 0,
 // triangle with material, vertex uvs and vertex normals
 // 00 10 10 10 = 42
 // 42, [vertex_index, vertex_index, vertex_index],
 // [material_index],[vertex_uv, vertex_uv, vertex_uv],
 // [vertex_normal, vertex_normal, vertex_normal]
 42, 0,1,2, 0, 0,1,2, 0,1,2,
 // quad with everything
 // 11 11 11 11 = 255
 // 255, [vertex_index, vertex_index, vertex_index,
 vertex_index],
 // [material_index],[face_uv],
 //[face_vertex_uv, face_vertex_uv, face_vertex_uv,
 face_vertex_uv],
 // [face_normal],[face_vertex_normal, face_vertex_normal,
 // face_vertex_normal, face_vertex_normal],[face_color]
 // [face_vertex_color, face_vertex_color,
 // face_vertex_color, face_vertex_color],
 255, 0,1,2,3, 0, 0, 0,1,2,3, 0, 0,1,2,3, 0, 0,1,2,3,
]

Parsing the JSON faces array
Open the parseJSON.js file from the primitive folder in your favorite editor. The
following function checks whether the bit position is set in an integer:

function isBitSet(value, position) {
 return value & (1 << position);
}

The following code reads the first element of the array, checks each bit, and stores the
Boolean value of the status in the corresponding variable:

function parseJSON(data){
 var faceArray=[];
 var i, j, fi,offset, zLength, nVertices,colorIndex, normalIndex,
 uvIndex, materialIndex,type,isQuad,hasMaterial,hasFaceUv,
 hasFaceVertexUv,hasFaceNormal, hasFaceVertexNormal,
 hasFaceColor, hasFaceVertexColor,vertex, face, color, normal,
 uvLayer, uvs, u, v,
 faces = data.faces,
 vertices = data.vertices,
 normals = data.normals,
 colors = data.colors,

www.it-ebooks.info

http://www.it-ebooks.info/

Colors and Shading Languages

[62]

 nUvLayers = 0;
 // Count the number of UV elements
 for (i = 0; i < data.uvs.length; i++) {
 if (data.uvs[i].length) nUvLayers ++;
 }
 offset = 0;
 zLength = faces.length;
 while (offset < zLength) {
 type = faces[offset ++];
 isQuad = isBitSet(type, 0);
 hasMaterial = isBitSet(type, 1);
 hasFaceUv = isBitSet(type, 2);
 hasFaceVertexUv = isBitSet(type, 3);
 hasFaceNormal = isBitSet(type, 4);
 hasFaceVertexNormal = isBitSet(type, 5);
 hasFaceColor = isBitSet(type, 6);
 hasFaceVertexColor = isBitSet(type, 7);

The following code checks whether the first bit is 0 and then reads the next four
values. If it is a triangle, it reads the next three values. For each face definition in the
faces array, we create a JavaScript object. The object's predefined properties such as
vertices, materialIndex, and normalIndex are then initialized with the data from
the array:

if (isQuad) {
 face = new Face();
 face.a = faces[offset++];
 face.b = faces[offset++];
 face.c = faces[offset++];
 face.d=faces[offset++];
 nVertices = 4;
} else {
 face = new Face();
 face.a = faces[offset++];
 face.b = faces[offset++];
 face.c = faces[offset++];
 nVertices = 3;
}

The following code checks for the material and increments the offset:

if (hasMaterial) {
 materialIndex = faces[offset++];
 face.materialIndex = materialIndex;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[63]

The following code checks whether it has face normals and then reads and stores the
index of the normal array. Every face will have a normal:

//Just iterating and moving offset index forward. UV not relevant to
this chapter.
if (hasFaceUv) {
 for (i = 0; i < nUvLayers; i++) {

 uvIndex = faces[offset++];
 }
}
//Just iterating and moving offset index forward. UV not relevant to
this chapter.
if (hasFaceVertexUv) {
 for (i = 0; i < nUvLayers; i++) {
 for (j = 0; j < nVertices; j++) {

 uvIndex = faces[offset++];
 }
 }

}
if (hasFaceNormal) {
 normalIndex = faces[offset++] * 3;
 normal = vec3.fromValues(normals[normalIndex++],normals[
 normalIndex++],normals[normalIndex]);
 face.normal = normal;

}

The following code checks whether it has vertex normals and then reads and stores
the normal array indices for each vertex of the face. Every vertex of a face will
have a normal:

if (hasFaceVertexNormal) {
 for (i = 0; i < nVertices; i++) {
 normalIndex = faces[offset++] * 3;
 normal = vec3.fromValues(normals[normalIndex++],normals[
 normalIndex++],normals[normalIndex]);
 face.vertexNormals.push(normal);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Colors and Shading Languages

[64]

The following code checks whether it has the face color and then reads and stores the
index of the color array. Each face will have a color:

if (hasFaceColor) {

 colorIndex = faces[offset++];

 face.colorIndex = colorIndex;

}

The following code checks whether it has vertex colors and then reads and stores
the color array's indices for each vertex of the face. Every vertex of the face will have
a color:

if (hasFaceVertexColor) {
 for (i = 0; i < nVertices; i++) {
 colorIndex = faces[offset++];
 face.vertexColors.push(colorIndex);
 }
}
faceArray.push(face);
}

The following function, getIndicesFromFaces(), iterates over the faces array and
populates the indices array:

return faceArray;
}
function getIndicesFromFaces(faces){
var indices=[];
for(var i=0;i<faces.length;++i){
indices.push(faces[i].a);
indices.push(faces[i].b);
indices.push(faces[i].c);

 }
return indices;
}

This JSON array format discussed here is not an industry
standard. This format was created by developers of three.js
(a WebGL library). This JSON format is capable of storing
objects as well as the complete scene.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[65]

Loading the JSON model
Open the 02-Loading-Model-JSON.html file in your favorite editor.

The vertex shader remains the same as in the example
02-SqaureDrawIndexArrayColor.html.

The following code defines a simple fragment shader. We have added a vec4
variable, materialDiffuseColor, and qualified it as uniform. We pass the value of
the variable from the control.

The changes in the fragment shader code to load the JSON model are as follows.

Note that in the previous example (02-SqaureDrawIndexArrayColor.html), we
passed the color as an attribute and then passed it as a varying qualifier to the
fragment shader. But in this example, we pass the color as a uniform qualifier, as
shown in the following code:

<script id="shader-fs" type="x-shader/x-fragment">
 precision mediump float;
 uniform vec4 materialDiffuseColor;
 void main(void) {
 gl_FragColor = materialDiffuseColor;
 }
</script>

We did so because the color of each vertex was different; we pass values as an
attribute when the property of each vertex is different for the same primitive. If the
value of any vertex property does not change for a primitive, then we pass that value
as uniform. In this particular example, the color of each vertex remains the same.
The object is shaded with the same diffuse color for all vertices.

The changes in the control code to load the JSON model are as follows:

function start() {
 var canvas = document.getElementById("squareWithDrawArrays");
 initGL(canvas)
 initShaders();
 loadModel();
 document.onkeydown = handleKeyDown;
}
function loadModel(){
 $.getJSON("model/Cube.json",function(data){

 vertices = data.vertices;
 var faces=parseJSON(data);

www.it-ebooks.info

http://www.it-ebooks.info/

Colors and Shading Languages

[66]

 indices = getIndicesFromFaces(faces);
 if(data.materials.length>0){
 diffuseColor=data.materials[0].colorDiffuse;
 diffuseColor.push(1.0);//Added alpha channel

 }

 initScene();
 });
}
function initScene(){
 initBuffers();
 gl.clearColor(0.6, 0.6, 0.6, 1.0);
 gl.enable(gl.DEPTH_TEST);
 drawScene();
}

The start() function invokes the loadModel() function. The loadModel() function
invokes the jQuery library's $.getJSON() function. The jQuery response handler
converts the response string to a JSON object. From the JSON object, we directly
assign vertices to the vertices array and faces to our indices array. Then, we
check the length of the materials array (as explained earlier, an object can have
multiple materials, but in our case, we have a single material) and then assign the
colorDiffuse variable from the first material object to the diffuseColor global
variable. Then, the start() function invokes the initScene() function that
initializes the vertex buffer and the index buffer.

function initShaders() {
...
 shaderProgram.materialDiffuseColor =
 gl.getUniformLocation(shaderProgram, "materialDiffuseColor");
...
}

In the preceding code, in the initShaders() function, we added a new variable,
shaderProgram.materialDiffuseColor, that holds the reference to the
materialDiffuseColor uniform in the fragment shader.

function setMatrixUniforms() {
...

 gl.uniform4f(shaderProgram.materialDiffuseColor,diffuseColor[0],
 diffuseColor[1],diffuseColor[2],diffuseColor[3]);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[67]

In the setMatrixUniforms() function, we associate the values of the diffuseColor
components to the reference of the materialDiffuseColor uniform using the
uniform4f() function.

function drawScene() {
...
...
 mat4.rotateY(mvMatrix,rotateY);
 mat4.rotateZ(mvMatrix,rotateZ);
...
}

The drawScene() function remains nearly the same, except we have added two
functions to add rotation transformation to the ModelView matrix by angles, rotateY
and rotateZ, along the y and z axes. The values of variables are controlled by the
handleKeys(e) function, which is invoked when any of the arrow keys are pressed.

Rendering without light
Open the 02-Loading-Model-JSON.html file in your browser and you will see an
outcome similar to the following screenshot. The render does not show distinct
object features. We exported a monkey model from Blender in an OBJ file and
converted it to JSON. Select Monkey from the Select Model option. The output of
the 02-Loading-Model-JSON.html file is shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Colors and Shading Languages

[68]

The preceding screenshot certainly does not look like a monkey. Why? Because we
did not add any light, illumination, or a shading model to our scene. If these effects
are not added, the effect of 3D realism on a 2D screen cannot be achieved.

Making a scene realistic depends on the use of light effects. Do not forget to note
that the number of lights and the choice of shading algorithms impact the game
performance. We will discuss a few illuminations and shading models, but we will
restrict ourselves from using the most used model for gaming. Also, in games, we add
textures baked in lighting so that the number of lights used is minimal (we mostly
avoid specular reflections). We will cover these textures in Chapter 4, Applying Textures.

Understanding the illumination/reflection
model
The appearance of an object depends on the direction in which the light is reflected.
This also depends on the changes in the color and intensity of light after reflection.
The algorithms used to calculate the direction, intensity, and color of reflected
light are called reflection models. Reflection models use the color components
(ambient, diffuse, and specular) of a light source as well as the object material to
calculate the color of a fragment. Although we will cover these components in
depth in subsequent chapters, let us quickly get a basic understanding of how each
component contributes to the final color calculation of a fragment.

The ambient component illuminates every object equally and is reflected in all
directions equally. It simply means that the direction and distance of the light are not
used to calculate the ambient color component.

The diffuse component is directional in nature. The final diffuse color calculation
involves the distance of the light source and the angle the light direction subtends
with the surface normal.

The specular component is used to highlight an area of the object (shininess caused
by reflection). It is also calculated using the direction and distance of the light source.

Rendering images with more realistic reflection models is called Bidirectional
Reflectance Distribution Functions (BRDFs). A BRDF model for computing the
reflection from a surface takes into account the input direction of the incoming light
and the outgoing direction of the reflected light. The elevation and azimuth angles of
these direction vectors are used to compute the relative amount of light reflected in the
outgoing direction. BRDF models are constantly evolving to give more realistic effects.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[69]

The following are some common BRDF models:

• The Lambertian model: This perfectly represents diffuse (matte) surfaces
with a constant BRDF.

• The Phong reflectance model: This is a phenomenological model akin to
plastic-like specularity.

• The Blinn-Phong model: This resembles Phong but allows certain quantities
to be interpolated and reduces computational overhead.

• The Torrance-Sparrow model: This is a general model that represents
surfaces as distributions of perfect specular microfacets.

• The Cook-Torrance model: This is a specular-microfacet model
(Torrance-Sparrow) that accounts for wavelength and thus color shifting.

• The Ward's anisotropic model: This is a specular-microfacet model with an
elliptical-Gaussian distribution function dependent on the surface tangent
orientation (in addition to the surface normal).

We will cover the Lambertian (for diffuse light/materials) and Blinn-Phong
models for specular effect. The reason they are most favored is because of lesser
computational overhead.

Lambertian reflectance/diffuse reflection
Lambertian reflectance is the property that defines an ideal diffusely reflecting
surface. The apparent brightness of such a surface to an observer is the same
regardless of the observer's angle of view. The luminous intensity obeys Lambert's
cosine law.

This technique causes all closed polygons (such as a triangle within a 3D mesh) to
reflect light equally in all directions when rendered. In effect, a point rotated around
its normal vector will not change the way it reflects light. However, the point will
change the way it reflects light if it is tilted away from its initial normal vector. The
reflection is calculated by taking the dot product of the surface's normal vector and a
normalized light-direction vector pointing from the surface to the light source. This
number is then multiplied by the color of the surface and the intensity of the light
hitting the surface, as shown in the following formula:

I =-L.NCI
D L

www.it-ebooks.info

http://www.it-ebooks.info/

Colors and Shading Languages

[70]

Here, ID is the intensity of the diffusely reflected light (surface brightness), C is the
color, and IL is the intensity of the incoming light. -L.N is calculated as follows:

-L.N=ǀ-Lǀ ǀNǀ cosα=cos α

Here, ǀ-Lǀ and ǀNǀ are equal to 1, which are unit vectors, and α is the angle between the
direction of the two vectors. The intensity will be highest if the normal vector points
in the same direction as the light vector cos(0)=1 (the surface will be perpendicular to
the direction of the light), and lowest if the normal vector is perpendicular to the light
vector cos(π/2)=1 (the surface runs parallel with the direction of the light). Also, N
can be the normal vector or the face vector depending on the shading model used.

The following is the formula to calculate C (color):

C=CLCM

Here, CL is the color of light and CM is the color of material.

The code for the Lambert reflectance model is as follows:

//Transform the Normal Vertex/Face Vector with normal
 matrix(transpose of inverse of mVMatrix
vec3 N = normalize(vec3(uNMatrix * vec4(aVertexNormal, 1.0)));
//Normalize light
vec3 L = normalize(uLightDirection);
//Lambert's cosine law
float lambertTerm = dot(N,-L);
//Final Color
vec4 colorDiffuse = uMaterialDiffuse * uLightDiffuse * lambertTerm;
vFinalColor = colorDiffuse;
vFinalColor.a = 1.0;

The Blinn-Phong model
In diffuse reflections, light is reflected in all directions. However, in specular
reflection/highlights, the angle of view is important. There are many models used
for specular reflection calculations, and amongst them, the most popular is the
Phong model. However, the Phong model has a shortcoming as it does not work
when the angle between V (eye vector) and R (light reflection vector) is greater than
90 degrees, as shown in the following diagram:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[71]

�N is the unit surface normal

� L is the unit vector in the
direction of the light source.
� V is the unit vector in the

direction of the viewer.
�R is the unit vector in the

direction of reflection from
the simulated light source.
�H is the unit angul r bisectora

of V and L (the halfway
vector).
� T is a unit vector in the plane

of the surface that is
perpendicular to N (the
tangent).
�B is unit vector in the plane

of the surface that is
perpendicular to both N and
T (the binormal).Angle between V and R greater than 90

V

P

R

Angle between R and V less than 90

L

N H

R

V

B
T

The Blinn-Phong shading model (also called the Blinn-Phong reflection model or the
modified Phong reflection model) is a modification to the Phong reflection model.
In the Blinn model, the model is required to compute the half vector. The half-angle
vector (H) is the direction halfway between the view direction and the light position.
The Blinn model compares the half-angle vector to the surface normal. It then raises
this value to a power representing the shininess of the surface:

H = (L + V)/ǀL + Vǀ

Blinn term= (H.N)s

Here, s is the shininess of the surface.

The code for the Blinn-Phong model is as follows:

vec3 halfDir = normalize(lightDir + viewDir);
float specAngle = max(dot(halfDir, normal), 0.0);
specular = pow(specAngle, 16.0);
vFinalColor = vec4(ambientColor + lambertian * diffuseColor +
 specular * specColor, 1.0);

The preceding code describes the way a surface reflects light as a combination of the
diffuse reflection of rough surfaces with the specular reflection of shiny surfaces.

www.it-ebooks.info

http://www.it-ebooks.info/

Colors and Shading Languages

[72]

Understanding shading/interpolation
models
We discussed earlier that information about the surface of a model, such as the
positions of points on the surface and the normal vectors at those points, are
stored only for each vertex of a triangle mesh. When a single triangle is rendered,
information known at each vertex is interpolated across the face of the triangle.
Sometimes we calculate the diffuse and specular illumination only at the vertices
of a mesh, and at other times we apply the entire illumination formula at every
individual pixel drawn in the display. A shading model defines whether we will
apply the illumination model only for the vertex or apply the illumination model for
every pixel of the face. If calculated at the vertex level, then the values of the pixels
between vertices are linearly interpolated. Remember that if we want to apply the
illumination model per vertex, then we will have to compute it in the vertex shader.
The vertex shader is executed for each vertex. Hence, it is computationally expensive.
Therefore, we would prefer to apply it per pixel in the fragment shader.

The three most common shading models are as follows:

• Flat shading
• Gouraud shading
• Phong shading

Flat shading
Flat shading shades each polygon of an object based on the angle between the face
surface normal and the direction of the light source, its respective colors, and the
intensity of the light source. It is usually used for high-speed rendering where more
advanced shading techniques are too computationally expensive.

Flat shading gives low-polygon models a faceted look. We do not use flat shading for
gaming applications.

Gouraud shading
In this shading algorithm, we calculate the surface normal of each vertex in a
polygonal 3D model or average the surface normals of the polygons that meet
at each vertex. We apply lighting computations based on a reflection model, for
example, the Blinn-Phong reflection model, and then they are performed to produce
color intensities at the vertices. For each screen pixel that is covered by the polygonal
mesh, color intensities can then be interpolated from the color values calculated at
the vertices.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[73]

Gouraud shading's strength and weakness lies in its interpolation. If a polygon
covers more pixels on the screen space than the number of vertices it has, the
interpolating color values from samples of expensive lighting calculations at vertices
is less processor-intensive than performing the lighting calculation for each pixel.
However, effects such as specular highlights might not be rendered correctly. The
following diagram explains Gouraud shading:

Gouraud Shading

Let's now summarize the steps:

1. Determine the normal at each polygon vertex
2. Apply an illumination model (Lambertian, Blinn-Phong) to each vertex to

calculate the vertex intensity
3. Linearly interpolate the vertex intensities over the surface polygon

Phong shading
Phong shading interpolates surface normals across rasterized polygons and
computes pixel colors based on the interpolated normals and a reflection model.

The Phong interpolation method works better than Gouraud shading when applied
to a reflection model that has small specular highlights such as the Phong reflection
model. The following diagram explains Phong shading:

Phong Shading

www.it-ebooks.info

http://www.it-ebooks.info/

Colors and Shading Languages

[74]

Let's now summarize the steps:

1. Compute a normal, N, for each vertex of the polygon.
2. From the bilinear interpolation, compute a normal, N, for each pixel.

(This must be renormalized each time.)
3. From N, compute an intensity, I, for each pixel of the polygon.

Differentiating the shading models
The difference in the output of the shading algorithms is shown in the following
diagram. The Gouraud Lambert shaders do not have any specular highlight but
Gouraud Blinn-Phong uses specular color. Also, note that the object features are
more distinct around the edges in Phong Blinn-Phong shaders:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[75]

Implementing Gouraud shading on a Lambertian
reflection model
Open the 02-Loading-Model-Gouraud-Lambert.html file in your favorite text
editor. We have covered only directional lights in our implementation for now and
will cover positional lights in Chapter 3, Loading the Game Scene.

The shader code for the Gouraud shading for the Lambertian reflection model is
as follows:

<script id="shader-fs" type="x-shader/x-fragment">
precision mediump float;
varying vec3 vColor;

void main(void) {
 gl_FragColor = vec4(vColor, 1.0);
}
</script>

<script id="shader-vs" type="x-shader/x-vertex">
attribute vec3 aVertexPosition;
attribute vec3 aVertexNormal;

uniform mat4 mVMatrix;
uniform mat4 pMatrix;
uniform mat4 nMatrix;

uniform vec3 uAmbientColor;
uniform vec3 uLightingDirection;
uniform vec3 uDirectionalColor;
uniform vec3 materialDiffuseColor;
uniform vec3 materialAmbientColor;
varying vec3 vColor;
void main(void) {
 gl_Position = pMatrix * mVMatrix * vec4(aVertexPosition, 1.0);

 vec3 transformedNormal = vec3(nMatrix *
 vec4(aVertexNormal,1.0));
 vec3 normal=normalize(transformedNormal);
 vec3 unitLightDirection = normalize(uLightingDirection);
 float lambertTerm = max(dot(normal, -unitLightDirection), 0.0);
 vColor = uAmbientColor*materialAmbientColor+
 materialDiffuseColor * uDirectionalColor * lambertTerm;

}
</script>

www.it-ebooks.info

http://www.it-ebooks.info/

Colors and Shading Languages

[76]

In the preceding code, in the vertex shader, we pass the material ambient
color, light ambient color, material diffuse color, and light diffuse color in
the materialAmbientColor, uAmbientColor, materialDiffuseColor, and
uDirectionalColor uniforms respectively. In the first line, we calculate the new
transformed vertices and store them in the gl_position variable. Then, we calculate
transformedNormal. The transformed normal is derived by multiplying the normal
matrix with the vertex normal. The normal matrix (nMatrix) is the transpose of
the inverse of the ModelView matrix. Then, we derive normal, the unit vector of
transformedNormal, using the normalize function. From the normal vector and
uniform light direction, we get the Lambert term. Then, the final vertex color is
calculated from the ambient and diffuse colors and is passed to the fragment shader.

In the preceding code, we first calculate the transformed normal, and from the
transformed normal and light direction, we get the Lambert term:

Lambert term = Vertex normal - Light direction

The control code for the Gouraud shading for the Lambertian reflection model
is as follows:

function loadModel(url){
 rotateZ=0.0;
 rotateY=0.0;
 $.getJSON(url,function(data){
 vertices = data.vertices;
 var faces=parseJSON(data);
 indices = getIndicesFromFaces(faces);
 if(data.materials.length>0){
 diffuseColor=data.materials[0].colorDiffuse;
 ambientColor=data.materials[0].colorAmbient;
 }
 normals=calculateVertexNormals(vertices,indices);
 initScene();
 });
}

The loadModel(url) function parses the JSON file, retrieves the vertices data, and
gets indices data using the parseJSON() function. We also retrieve the ambient and
diffuse colors of the model defined in the parse JSON file. We calculate the vertex
normals array using the calculateNormals(vertices,indices) function defined
in the utils.js library.

function initShaders() {
...
 shaderProgram.vertexNormalAttribute =
 gl.getAttribLocation(shaderProgram, "aVertexNormal");

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[77]

 gl.enableVertexAttribArray(shaderProgram.vertexNormalAttribute);
...

 shaderProgram.nMatrixUniform =
 gl.getUniformLocation(shaderProgram, "nMatrix");
 shaderProgram.ambientColorUniform =
 gl.getUniformLocation(shaderProgram, "uAmbientColor");
 shaderProgram.lightingDirectionUniform =
 gl.getUniformLocation(shaderProgram, "uLightingDirection");
 shaderProgram.directionalColorUniform =
 gl.getUniformLocation(shaderProgram, "uDirectionalColor");
 shaderProgram.materialDiffuseColor =
 gl.getUniformLocation(shaderProgram, "materialDiffuseColor");
 shaderProgram.materialAmbientColor =
 gl.getUniformLocation(shaderProgram, "materialAmbientColor");
...
}

In the preceding code, we activate another vertex buffer, aVertexNormal, to store the
normal of our vertices. We also get a reference to various uniforms, such as nMatrix,
to hold the normal matrix and other uniform variables of light direction, material
colors, and light colors.

function initBuffers() {
...
 vertexNormalBuffer = gl.createBuffer();
 gl.bindBuffer(gl.ARRAY_BUFFER, vertexNormalBuffer);
 gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(normals),
 gl.STATIC_DRAW);
 vertexNormalBuffer.itemSize = 3;
 vertexNormalBuffer.numItems = 24;
...
}

In the initBuffers() function, we add another buffer to hold the normal data.
We calculated this data using vertices and indices of the model.

function setMatrixUniforms() {
...
 var invertMatrix = mat4.create();
 mat4.invert(invertMatrix, mvMatrix);
 var normalMatrix = mat4.create();
 mat4.transpose(normalMatrix, invertMatrix)
 gl.uniformMatrix4fv(shaderProgram.nMatrixUniform, false,
 normalMatrix);

www.it-ebooks.info

http://www.it-ebooks.info/

Colors and Shading Languages

[78]

 gl.uniform3f(shaderProgram.materialDiffuseColor,diffuseColor[0],
 diffuseColor[1],diffuseColor[2]);
 gl.uniform3f(shaderProgram.materialAmbientColor,ambientColor[0],
 ambientColor[1],ambientColor[2]);
 gl.uniform3f(shaderProgram.ambientColorUniform,1.0,1.0,1.0);
 var lightingDirection = [-0.25,-0.25,-1.0];
 gl.uniform3fv(shaderProgram.lightingDirectionUniform,
 lightingDirection);
 gl.uniform3f(shaderProgram.directionalColorUniform,0.2,0.0,0.0);
...
}

In the preceding code, we first calculate the normal matrix from mvMatrix. A normal
matrix is the transpose of the inverse of a matrix. We pass the matrix as a uniform so
that we can calculate new transformed normal vectors for illumination calculations.
We then pass our different uniform values using the uniform3f or uniform3fv
function. In these functions, 3 stands for the number of elements we want to pass
and f stands for the data type. The uniform3f function is explained in the following
code line:

void uniform[1234][fi](uint location,x,[y],[z])

Here, [1234]denotes the number of elements and [fi]denotes that we are passing a
float or an integer.

Examples are given in the following code lines:

gl.uniform3f(shaderProgram.ambientColorUniform, 1.2,1.3,1.4)
gl.uniform4i(shaderProgram.ambientColorUniform, 1,1,1,7)

The uniform3fv function is explained in the following code line:

void uniform[1,234][fi]v(uint location, Array value)

Here, [1,234] denotes the number of elements in the value parameter and [fi]
denotes that we are passing a float or an integer.

Examples are given in the following code lines:

gl.uniform3fv(shaderProgram.lightingDirectionUniform,
 lightingDirection);

The uniformMatrix3fv function is explained in the following code line:

void uniformMatrix[234]fv(uint location, bool transpose, Array)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[79]

Here, [234] denotes 2 x 2 arrays, 3 x 3 arrays, and 4 x 4 arrays. The transpose
parameter will automatically transpose the matrix while passing its values to the
shader, and in the function names (uniformMatrix3fv, uniformMatrix3iv), the
f or i denotes that we are passing a float or an integer:

function drawScene() {
 gl.viewport(0, 0, gl.viewportWidth, gl.viewportHeight);
 gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);
 mat4.perspective(pMatrix,40, gl.viewportWidth /
 gl.viewportHeight, 0.1, 1000.0);
 mat4.identity(mvMatrix);
 mat4.translate(mvMatrix,mvMatrix, [0.0, 0.0,-3.0]);
 //mat4.scale(mvMatrix,mvMatrix,[10,10,10]);
 mat4.rotateY(mvMatrix,mvMatrix,rotateY);
 mat4.rotateX(mvMatrix,mvMatrix,rotateZ);
 gl.bindBuffer(gl.ARRAY_BUFFER, vertexPositionBuffer);
 gl.vertexAttribPointer(shaderProgram.vertexPositionAttribute,
 vertexPositionBuffer.itemSize, gl.FLOAT, false, 0, 0);
 gl.bindBuffer(gl.ARRAY_BUFFER, vertexNormalBuffer);
 gl.vertexAttribPointer(shaderProgram.vertexNormalAttribute,
 vertexNormalBuffer.itemSize, gl.FLOAT, false, 0, 0);
 setMatrixUniforms();
 gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, indexBuffer);
 gl.drawElements(gl.TRIANGLES, indices.length,
 gl.UNSIGNED_SHORT,0);

}

Let's go over the drawScene function once again. First, we create a perspective matrix
with 40 as the field of view (FOV), gl.viewportWidth or gl.viewportHeight
as the aspect ratio, 0.1 as the near plane, and 1000.0 as the far plane. We will
discuss these parameters in the Understanding perspective transformations section in
Chapter 5, Camera and User Interaction. We initialize the ModelView matrix as the
identity matrix. We translate and rotate mvMatrix with variable angles controlled
by key presses. We associate the shader variable vertexPositionAttribute with
vertexPositionBuffer and vertexNormalAttribute with vertexNormalBuffer,
and then invoke the drawElements functions after specifying the indexBuffer
variable as the active gl.ELEMENT_ARRAY_BUFFER constant. The OBJ file has 3n
indices, n being the number of triangles to be drawn; hence, we use gl.TRIANGLES
as the mode in the drawElements function call.

www.it-ebooks.info

http://www.it-ebooks.info/

Colors and Shading Languages

[80]

Implementing Gouraud shading – Blinn-Phong
reflection
Open the 02-Loading-Model-Gouraud-Blinn-Phong.html file in your favorite
text editor.

The shader code for the Gouraud shading for the Blinn-Phong reflection model
is as follows:

<script id="shader-vs" type="x-shader/x-vertex">
attribute vec3 aVertexPosition;
attribute vec3 aVertexNormal;
uniform mat4 mVMatrix;
uniform mat4 pMatrix;
uniform mat4 nMatrix;
uniform vec3 uAmbientColor;
uniform vec3 uLightingPosition;
uniform vec3 uDirectionalColor;
uniform vec3 uSpecularColor;
uniform vec3 materialDiffuseColor;
uniform vec3 materialAmbientColor;
uniform vec3 materialSpecularColor;
varying vec3 vColor;
void main(void) {
 vec4 vertexPos4 = mVMatrix * vec4(aVertexPosition, 1.0);
 vec3 vertexPos = vertexPos4.xyz;
 vec3 eyeVector=normalize(-vertexPos);
 vec3 transformedNormal = vec3(nMatrix *
 vec4(aVertexNormal,1.0));
 vec3 normal=normalize(transformedNormal);
 vec3 lightDirection = normalize(uLightingPosition);
 float specular = 0.0;
 float lambertTerm = max(dot(normal, -lightDirection), 0.0);
 if(lambertTerm>0.0)
 {
 vec3 halfDir = normalize(-lightDirection + eyeVector);
 float specAngle = max(dot(halfDir, normal), 0.0);
 specular = pow(specAngle, 16.0);
 }
 gl_Position= pMatrix *vertexPos4;
 vColor = uAmbientColor*materialAmbientColor+ uDirectionalColor
 *materialDiffuseColor * lambertTerm+uSpecularColor
 *materialSpecularColor*specular;

}
</script>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[81]

The preceding code is the implementation of the Blinn-Phong illumination applied
at each vertex normal (Gouraud shading). Hence, the complete calculation is
done in the vertex shader. In the control code, we associate aVertexPosition
and aVertexNormal with vertex buffers. In the Blinn-Phong model, we pass light
properties, such as ambient, diffuse, specular, and direction, as uniforms from
the control code. Material properties such as ambient, diffuse, and specular are
also passed as uniforms. The eyeVector is the negative of the transformed vertex
position. Hence, we first calculate the transformed vertex position and store it in the
vertexPos4 variable. The important thing to note is that the transformation matrix is
the 4 x 4 matrix as it stores the translation as well as the rotations. Hence, we convert
the vertex position to vector 4. We only need xyz and we ignore the w element to
get the new vertex position which is then held in vertexPos. The eyeVector is the
negative unit vector of the vertex position. The unit vector is calculated using the
normalize() function. Hence, the eyeVector is equal to normalize(-vertexPos).
Then, we calculate the transformed normal unit vector and store it in a variable
normal. Then, we calculate the Lambert term using the normal and light direction.
If the Lambert term is greater than 0, then we only calculate the Blinn term.

To calculate the Blinn term, we need to first calculate the unit half vector. The half
vector is the unit vector of the sum of the light vector and eye vector. The angle
between the half vector and the vertex normal is calculated by the dot product of the
two. Then, the Blinn term is calculated as specAngle to the power shininess. Finally,
the color is calculated using the following equation:

vColor = uAmbientColor * materialAmbientColor+ uDirectionalColor
 *materialDiffuseColor * lambertTerm+uSpecularColor *
 materialSpecularColor * specular;

Then, vColor is directly passed to the fragment shader.

The control code for the Gouraud shading for the Blinn-Phong reflection model is
as follows. In the following code snippet, we retrieve the ambient color from the
JSON file:

function loadModel(url){
...
 ambientColor=data.materials[0].colorAmbient;
...
}

www.it-ebooks.info

http://www.it-ebooks.info/

Colors and Shading Languages

[82]

In the following code snippet, we obtain the reference of the light and material
ambient colors from the shader code:

function initShaders() {
...
 shaderProgram.specularColorUniform =
 gl.getUniformLocation(shaderProgram, "uSpecularColor");
...
 shaderProgram.materialSpecularColor =
 gl.getUniformLocation(shaderProgram, "materialSpecularColor");
...
}

In the following code snippet, we set the value of the material and light specular colors:

function setMatrixUniforms() {
...
 gl.uniform3f(shaderProgram.materialSpecularColor,
 specularColor[0],specularColor[1],specularColor[2]);
 gl.uniform3f(shaderProgram.specularColorUniform,1.0,1.0,1.0);
...
}

Implementing Phong shading – Blinn-Phong
reflection
Open the 02-Loading-Model-Phong-Blinn-Phong.html file in your favorite text
editor. It contains the following code:

<script id="shader-fs" type="x-shader/x-fragment">
precision mediump float;
varying vec3 transformedNormal;
varying vec3 vertexPos;

uniform vec3 uAmbientColor;
uniform vec3 uLightingPosition;
uniform vec3 uDirectionalColor;
uniform vec3 uSpecularColor;

uniform vec3 materialDiffuseColor;
uniform vec3 materialAmbientColor;
uniform vec3 materialSpecularColor;

void main(void) {
 vec3 normal=normalize(transformedNormal);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[83]

 vec3 eyeVector=normalize(-vertexPos);
 vec3 lightDirection = normalize(uLightingPosition);
 float specular = 0.0;

 float directionalLightWeighting = max(dot(normal, -
 lightDirection), 0.0);
 if(directionalLightWeighting>0.0)
 {
 vec3 halfDir = normalize(-lightDirection + eyeVector);
 float specAngle = max(dot(halfDir, normal), 0.0);
 specular = pow(specAngle, 4.0);
 }

 vec3 iColor = uAmbientColor*materialAmbientColor+
 uDirectionalColor *materialDiffuseColor *
 directionalLightWeighting+uSpecularColor*
 materialSpecularColor*specular;

 gl_FragColor = vec4(iColor, 1.0);
}
</script>

<script id="shader-vs" type="x-shader/x-vertex">
attribute vec3 aVertexPosition;
attribute vec3 aVertexNormal;
uniform mat4 mVMatrix;
uniform mat4 pMatrix;
uniform mat4 nMatrix;
varying vec3 transformedNormal;
varying vec3 vertexPos;
void main(void) {
 vec4 vertexPos4 = mVMatrix * vec4(aVertexPosition, 1.0);
 vertexPos = vertexPos4.xyz;
 transformedNormal = vec3(nMatrix * vec4(aVertexNormal,1.0));
 gl_Position= pMatrix *vertexPos4;
}
</script>

As discussed earlier, in Phong shading, the normals are calculated after the object
is rasterized and calculations are performed for every pixel. Hence, we calculate
the vertex and the normal transformations in the vertex shader and then add
the transformed values to the fragment shader. Then, the color calculation of the
Lambert and Blinn terms are performed in the fragment shader.

www.it-ebooks.info

http://www.it-ebooks.info/

Colors and Shading Languages

[84]

Summary
In this chapter, we first discussed simple coloring of objects using vertex colors. In
our example, we passed vertex colors and vertex positions to the shader. The shader
then interpolated color values of vertices across primitives.

We learned how to export objects from Blender in the OBJ format and render the
objects by converting them to the JSON format. The JSON format we used stored
indices, colors, normals, and UV maps in the faces array.

We also learned that vertex normals are used for illumination models.

We learned about different illumination models such as Lambert and Blinn-Phong.
Lambert is used to render objects with diffuse materials and diffuse light. Blinn-
Phong is used to render objects with a specular material. These illumination models
are used in shading algorithms such as Gouraud and Phong.

In the next chapter, we will render a complete scene of 5000 AD.

www.it-ebooks.info

http://www.it-ebooks.info/

Loading the Game Scene
In the previous chapter, we learned how to load objects exported from Blender and
learned about directional lights. We learned many WebGL API calls and now in this
chapter, we will put our knowledge to good use. In this chapter, we will not discuss
any new WebGL call but we will use our knowledge to create a small game scene.
But, before we do that, we will need to perform some code updates.

The code we developed in Chapter 2, Colors and Shading Languages, is not capable of
handling multiple objects, and so, we will structure that code first.

The following are the topics that we will cover in this chapter:

• Code changes to support multiple objects
• WebGL, a state machine
• Request animation frames
• Load the scene
• Positional lights
• Multiple lights and shaders

Supporting multiple objects
Our starting point will be a new class Geometry. The objective of the class is to hold
the geometry of our 3D models. We will first understand what type of information
associated with each 3D model.

www.it-ebooks.info

http://www.it-ebooks.info/

Loading the Game Scene

[86]

Each 3D model is represented by its Geometry class. Each Geometry object has
information listed as follows:

• Vertices: Read from the JSON object.
• Normals: Read from the JSON object or calculated from the vertices and

indices arrays.
• UV map: Read from the JSON object.
• Per vertex colors: Read from the JSON object.
• Materials: Read from the JSON object.
• Indices: Generated from the faces array.
• Faces: The array of the Face objects. Each Face object represents polygon that

forms the geometry.

The classes Face and Geometry are taken from the three.
js library (https://github.com/mrdoob/three.js/
blob/master/src/core/), and we have modified them to
suit our architecture. We did this since the JSON format we
have used in our book is also taken from the three.js library.

Implementing Face.js
Open the Face.js file from the primitive folder in your editor. We have also added
a new function clone so that we can create a new Face object with its data elements.
The constructor defines variables to store information such as vertex index, normal
of a polygon, and so on. The Face.js file has the following code:

Face = function (a, b, c, normal, color, materialIndex) {
 this.a = a;// Index to the first vertex of the polygon
 this.b = b;// Index to the second vertex of the polygon
 this.c = c; //Index to the third vertex of the polygon
 this.normal = normal ;// The index to face normal
 this.vertexNormals = [];//Indexes to each vertex normal of the
 face
 this.vertexColors = color instanceof Array ?color : [];//Colors
 of each vertex
 this.colorIndex = color;
 this.vertexTangents = [];
 this.materialIndex = materialIndex !== undefined ?
 MaterialIndex : 0;
};
Face.prototype = {
 constructor: Face,

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[87]

 clone: function () {
 var face = new Face(this.a, this.b, this.c);
 if(!(this.normal===undefined))
 face.normal=vec3.clone(this.normal);
 face.colorIndex= this.colorIndex;
 face.materialIndex = this.materialIndex;
 var i;
 for (i = 0; i < this.vertexNormals.length; ++i){
 face.vertexNormals[i] = vec3.clone(this.vertexNormals
 [i]);
 }
 for (i = 0; i<this.vertexColors.length;++i){
 face.vertexColors[i] = this.vertexColors[i];
 }
 return face;
 }
};

The class variables a, b, and c hold indexes to the vertices array defined in the
Geometry class. The vertexNormals array holds indices to the normal array defined
in the Geometry class for each vertex of that face, as shown in the following code:

face.vertexNormals["a"]=3;//3 is the index to the normal array in
 the geometry class for the vertex "a" of the face.

Implementing Geometry.js
Open the Geomtery.js file from the primitive folder in your editor. The following
code is the constructor of the Geometry class. Note the faces array; it holds the
objects of the faces for that model:

Geometry = function () {
 this.vertices = [];
 this.colors = [];
 this.normals = [];
 this.indices=[];
 this.faces = [];
 this.materials=[];

};

www.it-ebooks.info

http://www.it-ebooks.info/

Loading the Game Scene

[88]

We have moved the function getIndicesFromFaces(faces) from the parseJSON.
js file to the Geometry.js file and renamed it to indicesFromFaces, since it
populates the class variable indices. It now processes the class variable faces of the
Geometry class to update its class variable indices as shown in the following code:

indicesFromFaces:function (){
 for(var i=0;i<this.faces.length;++i){
 this.indices.push(this.faces[i].a);
 this.indices.push(this.faces[i].b);
 this.indices.push(this.faces[i].c);
 }
},

We also moved the calculateVertexNormals function from the utils.js file to
the geometry.js file. This function is described in depth in the Understanding surface
normals for lighting calculations section of Chapter 2, Colors and Shading Languages. The
only difference in the following code is that it processes class variables vertices and
indices instead of the function parameters:

calculateVertexNormals:function(){
 var vertexVectors=[];
 var normalVectors=[];
 var j;
 for(var i=0;i<this.vertices.length;i=i+3){
 var vector=vec3.fromValues(this.vertices[i],
 this.vertices[i+1],this.vertices[i+2]);
 var normal=vec3.create();//Intialiazed normal array
 normalVectors.push(normal);
 vertexVectors.push(vector);
 }
 for(j=0;j<this.indices.length;j=j+3)//Since we are using triads
 of indices to represent one primitive
 {
 //v1-v0
 var vector1=vec3.create();
 vec3.subtract(vector1,vertexVectors[this.indices[j+1]],
 vertexVectors[this.indices[j]]);
 //v2-v1
 var vector2=vec3.create();
 vec3.subtract(vector2,vertexVectors[this.indices[j+2]],
 vertexVectors[this.indices[j+1]]);
 var normal=vec3.create();
 //cross product of two vector
 vec3.cross(normal, vector1, vector2);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[89]

 //Since the normal calculated from three vertices is same for
 all the three vertices(same face/surface), the contribution
 from each normal to the corresponding vertex is the same
 vec3.add(normalVectors[this.indices[j]],
 normalVectors[this.indices[j]],normal);
 vec3.add(normalVectors[this.indices[j+1]],
 normalVectors[this.indices[j+1]],normal);
 vec3.add(normalVectors[this.indices[j+2]],
 normalVectors[this.indices[j+2]],normal);

 }
 for(j=0;j<normalVectors.length;j=j+1){
 vec3.normalize(normalVectors[j],normalVectors[j]);
 this.normals.push(normalVectors[j][0]);
 this.normals.push(normalVectors[j][1]);
 this.normals.push(normalVectors[j][2]);
 }
},

We have added two new functions to the Geometry class: clone and
morphedVertexNormalsFromObj. The clone function simply copies variables of the
Geometry class to create a new geometry object.

The other function morphedVertexNormalsFromObj is important. The exported obj
file from Blender contains information on normals of every vertex of every face of the
model. In such cases, we do not need to calculate the normal. This information is also
encoded in our JSON file. While we parse our JSON file, we populate each face with
its vertex normals. The following code snippet is taken from the parseJSON.js file to
confirm the preceding statement:

if (hasFaceVertexNormal) {
 var aVertices=["a","b","c","d"]
 for (i = 0; i < nVertices; i++) {
 var aVertex=aVertices[i];
 normalIndex = faces[offset ++] * 3;
 normal = vec3.fromValues(normals[normalIndex ++],
 normals[normalIndex ++],normals[normalIndex]);
 face.vertexNormals[aVertex]= normal;
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Loading the Game Scene

[90]

The face contains normal data per vertex. The final normal of the shared vertex has
contribution from each face. Hence, the normal of the vertex a is the vector sum of
NA, NB, and NC, as shown in the following diagram:

A
B

C

NA
NB

NC

Vertex Normal
=NA+NB+NC

The function morphedVertexNormalsFromObj calculates the final normal of each
vertex, as shown in the following code:

morphedVertexNormalsFromObj:function(){
 var vertexVectors=[];
 var normalVectors=[];

 for(var i=0;i<this.faces.length;i=i+1){
 //This condition checks if face normal is defined. Then, we
 first clone the face normal for each vertex. The OBJ file
 gives vertex normals.
 if(!(this.faces[i].normal==undefined)&&this.faces[i].
 vertexNormals.length==0){
 this.faces[i].vertexNormals["a"]=vec3.clone
 (this.faces[i].normal);
 this.faces[i].vertexNormals["b"]=vec3.clone
 (this.faces[i].normal);
 this.faces[i].vertexNormals["c"]=vec3.clone
 (this.faces[i].normal);
 }
 if(normalVectors[this.faces[i].a]===undefined)
 {
 normalVectors[this.faces[i].a]=vec3.clone
 (this.faces[i].vertexNormals["a"]);
 }
 else{
 vec3.add(normalVectors[this.faces[i].a],normalVectors
 [this.faces[i].a],this.faces[i].vertexNormals["a"])
 }

 //Repeat the above code for b and c vertex as well.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[91]

 }
 this.normals=[];
 for(var j=0;j<normalVectors.length;j=j+1){
 vec3.normalize(normalVectors[j],normalVectors[j]);
 this.normals.push(normalVectors[j][0]);
 this.normals.push(normalVectors[j][1]);
 this.normals.push(normalVectors[j][2]);
 }
},

In the preceding code, we iterated over the faces array. If a face normal is defined
and vertex normals are not defined for that face, we copy the face normal on each
vertex normal (a, b, c). In the following diagram, the vertex normals will be the same
as the face normal:

C YA

FA

XA

ZA
FA=Face Normal A=XA=YA=ZA~ ~ ~

Elements of the normal array have one-to-one correspondence to the vertices array.
Hence, if a normal is already defined for the vertex index this.faces[i].a, then
add the new normal to the existing normal, or simply copy the normal at that vertex
index. This can be done using the following code:

if(normalVectors[this.faces[i].a]===undefined)
{
 normalVectors[this.faces[i].a]=vec3.clone(this.faces[i].
 vertexNormals["a"]);
}
else{
 vec3.add(normalVectors[this.faces[i].a],normalVectors
 [this.faces[i].a],this.faces[i].vertexNormals["a"])

}

In the last loop, we iterate over the newly created normalVectors array. First,
we normalize the vector and then copy each element to the normals array of the
Geometry class.

www.it-ebooks.info

http://www.it-ebooks.info/

Loading the Game Scene

[92]

Implementing parseJSON.js
We have only done a few changes in the parseJSON.js file present in the primitive
folder. Open it in your favorite editor. Earlier, this class returned the initialized
faces array from the parsed JSON, but now, it initializes the Geometry object that in
turn holds the faces array, as shown in the following code:

var geometry=new Geometry();

Now, instead of initializing individual data elements, we initialize variables of the
Geometry class. Also, before returning the Geometry object, we initialize its data
members by invoking the functions that we explained earlier. This is shown in the
following code:

geometry.vertices=vertices;
geometry.materials=data.materials;
geometry.indicesFromFaces();
//Normal information is present in JSON object then invoke
 morphedVertexNormalsFromObj else invoke calculateVertexNormals.
if(data.normals.length>0){
 geometry.morphedVertexNormalsFromObj();
}else{
 geometry.calculateVertexNormals();
}

Implementing StageObject.js
The new class StageObject that we have added basically holds information to
render geometry on the stage or on our scene. We have used the word "Stage" for our
game space. The purpose of this class is to initialize a Geometry object and initialize
buffer objects for that Geometry class. Also, this class contains the location and
rotation of the object with respect to our scene. The following code is the constructor
of the StageObject class:

StageObject=function(){
 this.name="";
 this.geometry=new Geometry();
 this.location=vec3.fromValues(0,0,0);
 this.rotationX=0.0;
 this.rotationY=0.0;
 this.rotationZ=0.0;
 this.ibo=null;//Index buffer object
 this.vbo=null;//Buffer object for vertices
 this.nbo=null;//Buffer Object for normals
 this.diffuseColor=[1.0,1.0,1.0,1.0];

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[93]

 this.ambientColor=[1.0, 1.0, 1.0];
 this.specularColor=[0.000000000000001, 0.0000000000000001,
 0.0000000000000001];
};

Notice the class variables ibo, nbo, and vbo. These variables will hold reference to
the index buffer object and vertex buffer objects for that geometry.

The loadObject function of the class invokes the parseJSON object and initializes
color values for the geometry. This function also initializes the name of the geometry
from the metadata information from the parsed JSON object. If you look into the
code from Chapter 2, Colors and Shading Languages, this code has been moved from the
HTML file to this class:

loadObject: function (data){
 this.geometry=parseJSON(data);
 this.name=data.metadata.sourceFile.split(".")[0];
 if(this.geometry.materials.length>0){
 if(!(this.geometry.materials[0].colorDiffuse===undefined))
 this.diffuseColor=this.geometry.materials[0].colorDiffuse;
 if(!(this.geometry.materials[0].colorAmbient===undefined))
 this.ambientColor=this.geometry.materials[0].colorAmbient;
 if(!(this.geometry.materials[0].colorSpecular===undefined))
 this.specularColor=this.geometry.materials[0].colorSpecular;

 }
},

The createBuffers function initializes buffer objects for this geometry. Earlier, we
had an initBuffers function that initialized buffer objects. But now, since we will
have to load multiple models from multiple JSON files, we have moved this code to
initialize buffers for each geometry:

createBuffers:function(gl){
 this.vbo = gl.createBuffer();
 this.ibo = gl.createBuffer();
 this.nbo = gl.createBuffer();
 gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, this.ibo);
 gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, new
 Uint16Array(this.geometry.indices), gl.STATIC_DRAW);
 gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, null);
 gl.bindBuffer(gl.ARRAY_BUFFER, this.vbo);
 gl.bufferData(gl.ARRAY_BUFFER, new
 Float32Array(this.geometry.vertices), gl.STATIC_DRAW);
 this.vbo.itemSize = 3;

www.it-ebooks.info

http://www.it-ebooks.info/

Loading the Game Scene

[94]

 this.vbo.numItems = this.geometry.vertices.length/3;
 gl.bindBuffer(gl.ARRAY_BUFFER, this.nbo);
 gl.bufferData(gl.ARRAY_BUFFER, new
 Float32Array(this.geometry.normals), gl.STATIC_DRAW);
 this.nbo.itemSize = 3;
 this.nbo.numItems = this.geometry.normals.length/3;
},

The last function of this class is clone. This function creates copy of its local variables
and returns a new StageObject. The clone function invokes the clone function
of the Geometry class and the later invokes the clone function of the Face class, as
shown in the following code:

clone:function(){
 var stageObject=new StageObject();
 stageObject.geometry=this.geometry.clone();

 var i;
 for(i=0;i<this.diffuseColor.length;++i){
 stageObject.diffuseColor[i]=this.diffuseColor[i];
 }
 for(i=0;i<this.ambientColor.length;++i){
 stageObject.ambientColor[i]=this.ambientColor[i];
 }
 for(i=0;i<this.specularColor.length;++i){
 stageObject.specularColor[i]=this.specularColor[i];
 }
 stageObject.rotationX=this.rotationX;
 stageObject.rotationY=this.rotationY;
 stageObject.rotationZ=this.rotationZ;
 stageObject.loaded=true;
 return stageObject;

}

Implementing Stage.js
The Stage class holds the array of stage objects as well as the initialized WebGL
context in the variable gl, as shown in the following code:

Stage = function (gl) {
 this.stageObjects=[];
 this.gl=gl;
};

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[95]

The addModel function does two things; it pushes the stageObject to the array
and also initializes the buffers by invoking the createBuffers function of the
stageObject:

addModel:function(stageObject){

 if(!(this.gl===undefined)) {
 stageObject.createBuffers(this.gl);

 }
 this.stageObjects.push(stageObject);
},

The following are a few changes that we performed in the preceding code:

• The parseJSON function now returns the Geometry object instead of the
faces array.

• The geometry object calculates normal data from the vertexNormals array
stored in the faces array. The StageObject class holds the reference of the
Geometry object and is responsible for creating buffers for the object.

• The Stage class holds references to all the stageObjects.

Using the architectural updates
Open the 03-Loading-Object-Architectural-Updates.html file in your favorite
editor. Let's now look at the changes in our main code to use the previous changes.
The end result is not any different than the output of Chapter 2, Colors and Shading
Languages. But, the code changes will now enable us to load multiple models that we
will see in the next section.

In this section, we have just reconstructed our code to handle multiple JSON objects.
Hence, there are no changes in the shader script.

Understanding the main code
The functions initGL, initShaders, and getShaders have no changes. The start
function initializes the Stage object and invokes the addStageObject function to
load our JSON model, as shown in the following code:

function start() {
 var canvas = document.getElementById("squareWithDrawArrays");
 initGL(canvas);
 initShaders();

www.it-ebooks.info

http://www.it-ebooks.info/

Loading the Game Scene

[96]

 stage=new Stage(gl);
 addStageObject("model/Monkey.json",[0.0,0.0,0.0],0.00,0.0,0.0);
 initScene();
}

The addStageObject function has three parameters: url, location, and the rotation
of the object. After the JSON file is loaded, we initialize the stageObject, add it
to the main stage object, and invoke the drawScene function, as shown in the
following code:

function addStageObject(url,location,rotationX,
 rotationY,rotationZ){
 $.getJSON(url,function(data){
 var stageObject=new StageObject();
 stageObject.loadObject(data);
 stageObject.location=location;
 stageObject.rotationX=rotationX;
 stageObject.rotationY=rotationY;
 stageObject.rotationZ=rotationZ;
 stage.addModel(stageObject);
 //Invoke drawScene once the object is loaded.
 drawScene();
 });
}

The following code is to initialize general scene uniforms that have been split in two
functions; one for light uniforms and the second for perspective, ModelView matrices:

function setMatrixUniforms() {
 gl.uniformMatrix4fv(shaderProgram.pMatrixUniform, false,
 pMatrix);
 gl.uniformMatrix4fv(shaderProgram.mvMatrixUniform, false,
 mvMatrix);
 var invertMatrix = mat4.create();
 mat4.invert(invertMatrix, mvMatrix);
 var normalMatrix=mat4.create();
 mat4.transpose(normalMatrix, invertMatrix)
 gl.uniformMatrix4fv(shaderProgram.nMatrixUniform, false,
 normalMatrix);
}
function setLightUniform(){
 gl.uniform3f(shaderProgram.ambientColorUniform,0.1,0.1,0.1);
 gl.uniform3f(shaderProgram.specularColorUniform,1.0,1.0,1.0);
 var lightingDirection = [0,-1.25,-1.25];
 gl.uniform3fv(shaderProgram.lightingDirectionUniform,
 lightingDirection);
 gl.uniform3f(shaderProgram.directionalColorUniform,0.5,0.5,0.5);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[97]

Finally, we are left with our drawScene function. Since we are rendering a single
object, we only referenced the first object of the stageObjects array. We activated
its buffers using the vertexAttribPointer API call for vertices and normals. Then,
we initialized the material's color (diffuse, specular, and ambient) uniforms. Now,
instead of using the global JavaScript variables vertexBuffer and indexBuffer, we
use the stageObject array's buffer objects such as stageObject.ibo, stageObject.
vbo, and stageObject.nbo. The following is the code for the drawScene function:

function drawScene() {
 gl.viewport(0, 0, gl.viewportWidth, gl.viewportHeight);
 gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);
 mat4.perspective(pMatrix,degToRadian(55), gl.viewportWidth /
 gl.viewportHeight, 0.1, 1000.0);
 setLightUniform();
 var i=0;
 mat4.translate(mvMatrix,mvMatrix,
 stage.stageObjects[i].location);
 mat4.rotateX(mvMatrix,mvMatrix,stage.stageObjects[i].rotationX);
 mat4.rotateY(mvMatrix,mvMatrix,stage.stageObjects[i].rotationY);
 mat4.rotateZ(mvMatrix,mvMatrix,stage.stageObjects[i].rotationZ);
 setMatrixUniforms();
 gl.bindBuffer(gl.ARRAY_BUFFER, stage.stageObjects[i].vbo);
 gl.vertexAttribPointer(shaderProgram.vertexPositionAttribute,
 stage.stageObjects[i].vbo.itemSize, gl.FLOAT, false, 0, 0);
 gl.bindBuffer(gl.ARRAY_BUFFER,stage.stageObjects[i].nbo);
 gl.vertexAttribPointer(shaderProgram.vertexNormalAttribute,
 stage.stageObjects[i].nbo.itemSize, gl.FLOAT, false, 0, 0);
 gl.uniform3f(shaderProgram.materialDiffuseColor,
 stage.stageObjects[i].diffuseColor[0],
 stage.stageObjects[i].diffuseColor[1],
 stage.stageObjects[i].diffuseColor[2]);
 gl.uniform3f(shaderProgram.materialAmbientColor,
 stage.stageObjects[i].ambientColor[0],
 stage.stageObjects[i].ambientColor[1],
 stage.stageObjects[i].ambientColor[2]);
 gl.uniform3f(shaderProgram.materialSpecularColor,
 stage.stageObjects[i].specularColor[0],
 stage.stageObjects[i].specularColor[1],
 stage.stageObjects[i].specularColor[2]);
 gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER,
 stage.stageObjects[i].ibo);
 gl.drawElements(gl.TRIANGLES,
 stage.stageObjects[i].geometry.indices.length,
 gl.UNSIGNED_SHORT,0);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Loading the Game Scene

[98]

Understanding WebGL – a state machine
WebGL does not render or work on multiple buffers at a single point in time. When
we load multiple objects, we will have multiple buffers. To render all those buffers,
we will have to activate each one of them one by one. WebGL is like a state machine;
you can always retrieve the active buffer information and the state of the rendering
pipeline using functions such as getParameter, getBufferParameter, and
isBuffer as shown in the following code:

gl.getParameter(gl.ARRAY_BUFFER_BINDING)// It retrieves a
 reference to the currently‐bound VBO
gl.getParameter(gl.ELEMENT_ARRAY_BUFFER_BINDING)// It retrieves a
 reference to the currently bound IBO
gl.getBufferParameter(gl.ARRAY_BUFFER,gl.BUFFER_SIZE);//Get is the
 size of the requested buffer
gl.getBufferParameter(gl.ARRAY_BUFFER,gl.BUFFER_STATUS);//Get is
 the status of the requested buffer

The functions can be used for vertex and index buffer objects. Hence, the preceding
functions can be used with gl.ELEMENT_ARRAY_BUFFER as a parameter.

Using mvMatrix states
Since we will have multiple objects in the scene, each object will have their own
local transformations. Hence, we will not like to lose our initial mvMatrix's state.
Our initial mvMatrix has our viewer's transformation, which will be applied to
each object and then each of their local transformation will be applied. We store our
object's local transformation in the StageObject class' variables' location with the
x, y, and z values as rotationX, rotationY, and rotationZ respectively. Before
applying these transformations, we push our matrix to a stack and pop it once the
rendering of the object has finished, as shown in the following diagram:

MV atrixm
New
ransformationt

(Rotation, Translation)

Pop from tacks

Push on tacks
Drawn lementse

Update
Uniforms

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[99]

In subsequent chapters, when we will be dealing with complex geometries with
multiple objects, we will use matrix stacks to store the parent object's transformations
before applying transformations to child objects. This way, the child objects will
be rendered with respect to their parent object. The following code implements the
matrix stack:

var matrixStack = [];
function pushMatrix() {
 var copy = mat4.create();
 mat4.copy(copy,mvMatrix);
 matrixStack.push(copy);
}
function popMatrix() {
 if (matrixStack.length == 0) {
 throw"Invalid popMatrix!";
 }
 mvMatrix = matrixStack.pop();
}

Also, let's look at how we use this stack in our drawScene function:

function drawScene() {
...........................
 for(var i=0;i<stage.stageObjects.length;++i){
..........................
 pushMatrix();
 mat4.translate(mvMatrix,mvMatrix,
 stage.stageObjects[i].location);
 mat4.rotateX(mvMatrix,mvMatrix,
 stage.stageObjects[i].rotationX);
 mat4.rotateY(mvMatrix,mvMatrix,
 stage.stageObjects[i].rotationY);
 mat4.rotateZ(mvMatrix,mvMatrix,
 stage.stageObjects[i].rotationZ);
....//Rendering code(Buffer Activation and drawElements
 call................
 popMatrix();
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Loading the Game Scene

[100]

Understanding request animation frames
Most HTML5-enabled browsers have implemented a new function window.
requestAnimationFrame(). This function is a better alternative to the setTimeout
and setInterval functions. The function is designed to invoke rendering functions
in your gaming application, such as the drawScene function in our case. It executes
in a safe way. It executes the target function only when the browser/tab has focus,
which saves precious GPU resources. Using this function, we can obtain a rendering
cycle that goes as fast as the browsers allow.

To use this function, we included a new file in our code, webgl-utils.js (https://
code.google.com/p/webglsamples/source/browse/book/extension/webgl-
utils.js). This small library has many useful functions but we will use only one
function from it. We like this library since it has implemented this function in a cross-
browser fashion. If a browser does not support it, then it invokes the setTimeout
function. The following is the code snippet from the webgl-utis.js library:

window.requestAnimFrame = (function() {
 return window.requestAnimationFrame ||
 window.webkitRequestAnimationFrame ||
 window.mozRequestAnimationFrame ||
 window.oRequestAnimationFrame ||
 window.msRequestAnimationFrame ||
 function(/* function FrameRequestCallback */ callback, /*
 DOMElement Element */ element) {
 window.setTimeout(callback, 1000/60);
 };
})();

The following code demonstrates its implementation in our application. The
initScene function invokes the tick function that later invokes itself by the
requestAnimFrame function at a fixed frame rate:

function initScene(){

 tick();
}
function tick(){
 requestAnimFrame(tick);
 drawScene();
}

The tick function will be extended in Chapter 5, Camera and
User Interaction, to calculate the elapsed time for animation
and timing strategies.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[101]

Loading the scene
Our objective is to create a scene of 5000 AD similar to the following screenshot:

We will use these objects to draw the scene. These objects were created using Blender
and exported as shown in Chapter 2, Colors and Shading Languages.

www.it-ebooks.info

http://www.it-ebooks.info/

Loading the Game Scene

[102]

Open the 03-Loading-Scene.html file in your favorite editor. If you observe the
scene, you will see that there are four buildings, six street lamps, and two railings.
Hence, we added the cloneObjects function that clones the objects and adds
them to the scene. The cloneObjects function invokes the function clone of the
SceneObject's class, which invokes the clone function of the Geometry class. The
following is the code snippet from the 03-Loading-Scene.html file:

function start() {
..
 addStageObject("model/obj/terrain.json",
 [0.0,0.0,0.0],0.00,0.0,0.0);
 addStageObject("model/obj/building.json",
 [55.0,0.0,170],0.0,0.0,0.0);
 addStageObject("model/obj/giantPillar.json",
 [-60.0,0.0,-200],0.0,0.0,0.0);
 addStageObject("model/obj/pillarBroken.json",
 [10.0,0.0,-200.00],0.0,0.0,0.0);
 addStageObject("model/obj/streetlamp.json",
 [20.0,0.0,200.00],0.0,0.0,0.0);
 addStageObject("model/obj/cityLine.json",
 [12.0,0.0,-335.0],0,3.14,0.0);
 addStageObject("model/obj/railing.json",
 [0.0,5.0,200.0],0.0,0.0,0.0);
 addStageObject("model/obj/dump.json",
 [-40.0,0.0,-30.0],0.0,0.0,0.0);
 initScene();
}
function addStageObject(url,location,rotationX,
 rotationY,rotationZ){
 $.getJSON(url,function(data){
 ...
 cloneObjects(stageObject)

 });
}
function cloneObjects(stageObject){){
 if(stageObject.name=="building"){
 var building1=stageObject.clone();

 building1.location=[-85.0,0.0,170.0];
..........
 stage.addModel(building1);

 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[103]

 if(stageObject.name=="streetlamp"){
..........
 var streetlamp1=stageObject.clone();

 streetlamp1.location=[20.0,0.0,70.0];
 streetlamp1.rotationX=degToRadian(-90);

 stage.addModel(streetlamp1);

 }
 if(stageObject.name=="railing"){

 var railing1=stageObject.clone();
 var railing2=stageObject.clone();
 railing1.location=[40.0,2.0,0.0];
 railing1.rotationY=degToRadian(-120);
 railing2.location=[-30.0,5.0,-100.0];
 railing2.rotationY=degToRadian(-65);
 stage.addModel(railing1);
 stage.addModel(railing2);
 }
 if(stageObject.name=="dump"){

 }
}

Also, we do not wait for all objects to load before invoking the drawScene function.
It is invoked at a regular frame rate from the tick function. The drawScene function
also stores the state of the mvMatrix variable on stack before applying transforms for
each object.

Understanding positional lights
In the scene that we developed in the preceding section, we would like two of the
lamps to light up. There is already one global light in the scene but we want two
positional lights now.

The directional lights are parallel since they are assumed to be at an infinite distance
and are generally the global light in a scene. The intensity of a directional light on a
vertex is not dependent on its distance but on its orientation. Hence, only the normal
direction is used to calculate its intensity. For positional lights, both the distance and
orientation are involved in the intensity calculations.

www.it-ebooks.info

http://www.it-ebooks.info/

Loading the Game Scene

[104]

The difference between directional and positional lights is that the directional lights
are defined by a direction vector, whereas positional lights are defined by their
locations in x, y, and z coordinates. The difference between directional and positional
lights is shown in the following diagram:

Va

Vd

Positional ightsl
distance of Va Vdand
does effect the intensity

Directional ightsl
distance of Va Vdand
does not effect the intensity

Vd

Va

For positional lights, we calculate the light direction for a particular vertex and the
result is stored in the varying, uLightRayLamp1. This variable is then used by the
fragment shader. The rest of the calculation remains the same as with the directional
light. Hence, for positional lights, we calculate the light direction for each vertex. We
call this a ray.

We pass the position of light as a uniform to the vertex shader. Then, the vector is
calculated per vertex and is passed to the fragment shader as a varying variable.

The following code explains the uLightPositionLamp1 uniform that is passed to the
vertex shader, and using the variable we calculate the uLightRayLamp1 varying for
use in the fragment shader:

vec4 newLightPosition1=mVMatrix * vec4(uLightPositionLamp1, 1.0);
uLightRayLamp1=vertexPos-newLightPosition1.xyz;

Lighting up the scene with lamps
Open the 03-Loading-Scene-With-Lamps.html file in your favorite editor. The
following sections in the chapter will explore the code changes to add positional
lights to our stage.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[105]

The vertex shader
The following code shows the steps to be performed to calculate the light ray on a
vertex for two positional lights (street lamps in our scene). We added two uniforms
for light positions (uLightPositionLamp1 and uLightPositionLamp2). First, the
position (uLightPositionLamp1) of the light is transformed by multiplying it by the
ModelView matrix (newLightPosition1). Then, the ray is calculated by subtracting
the transformed light position (newLightPosition1) from the transformed vertex
position (vertexPos). The light ray is stored in a varying variable (uLightRayLamp1)
to be passed to the fragment shader:

<script id="shader-vs" type="x-shader/x-vertex">
.................................
 varying vec3 vertexPos;
 uniform vec3 uLightPositionLamp1;
 uniform vec3 uLightPositionLamp2;
...........................
 varying vec3 uLightRayLamp1;
 varying vec3 uLightRayLamp2;
 void main(void) {
 vec4 vertexPos4 = mVMatrix * vec4(aVertexPosition, 1.0);
 vertexPos = vertexPos4.xyz;
 vec4 newLightPosition1=mVMatrix * vec4(uLightPositionLamp1,
 1.0);
 vec4 newLightPosition2=mVMatrix * vec4(uLightPositionLamp2,
 1.0);
 uLightRayLamp1=vertexPos-newLightPosition1.xyz;
 uLightRayLamp2=vertexPos-newLightPosition2.xyz;
 transformedNormal = vec3(nMatrix * vec4(aVertexNormal,1.0));
 gl_Position= pMatrix *vertexPos4;
 }
</script>

The rest of the calculation in the fragment shader is the same as that for directional
light, where the light ray represents the direction.

www.it-ebooks.info

http://www.it-ebooks.info/

Loading the Game Scene

[106]

The fragment shader
In the following code, the uPositionalColor1 and uPositionalColor2
uniforms are the diffuse colors of the positional light. The uLightRayLamp1 and
uLightRayLamp2 uniforms are the varying passed from the vertex shader. The
directionalLightWeighting1 float data type is a Lambert term calculated from the
normalized light ray vector. The final diffuse light intensity (iDiffuse) is calculated
after adding the diffuse intensity of the positional light to the diffuse intensity from
other lights. This is shown in the following code:

<script id="shader-fs" type="x-shader/x-fragment">
 precision mediump float;
 varying vec3 transformedNormal;
 varying vec3 vertexPos;
 uniform vec3 uAmbientColor;
 uniform vec3 uLightingDirection;
 uniform vec3 uDirectionalColor;
 uniform vec3 uSpecularColor;
 uniform vec3 uPositionalColor1;
 uniform vec3 uPositionalColor2;
 uniform vec3 materialDiffuseColor;
 uniform vec3 materialAmbientColor;
 uniform vec3 materialSpecularColor;
 varying vec3 uLightRayLamp1;
 varying vec3 uLightRayLamp2;
 void main(void) {
 vec3 normal=normalize(transformedNormal);
 vec3 eyeVector=normalize(-vertexPos);
 vec3 lightDirection = normalize(uLightingDirection);
 vec3 lightDirection1 = normalize(uLightRayLamp1);
 vec3 lightDirection2 = normalize(uLightRayLamp2);
 vec3 iAmbient=uAmbientColor*materialAmbientColor;
 vec3 iDiffuse=vec3(0.0,0.0,0.0);
 vec3 iSpecular=vec3(0.0,0.0,0.0);
 float specular = 0.0;
 float directionalLightWeighting = max(dot(normal, -
 lightDirection), 0.0);
 iDiffuse+=uDirectionalColor *materialDiffuseColor *
 directionalLightWeighting;
 float directionalLightWeighting1 = max(dot(normal, -
 lightDirection1), 0.0);
 iDiffuse+=uPositionalColor1 *materialDiffuseColor *
 directionalLightWeighting1;
 float directionalLightWeighting2 = max(dot(normal, -
 lightDirection2), 0.0);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[107]

 iDiffuse+=uPositionalColor2 *materialDiffuseColor *
 directionalLightWeighting2;
 if(directionalLightWeighting>0.0)
 {
 vec3 halfDir = normalize(-lightDirection + eyeVector);
 float specAngle = max(dot(halfDir, normal), 0.0);
 specular = pow(specAngle, 4.0);
 iSpecular+=uSpecularColor*materialSpecularColor*specular;
 }
 vec3 iColor =iAmbient+ iDiffuse+iSpecular;
 gl_FragColor = vec4(iColor, 1.0);
 }
</script>

Understanding the main code
We changed our initShaders function to get the reference of the new uniform
variables. We then added this function to our shaders (diffuseColor and
position of lights):

function initShaders() {
......................
 shaderProgram.uLightPositionLamp1 =
 gl.getUniformLocation(shaderProgram, "uLightPositionLamp1");
 shaderProgram.uPositionalColor1 =
 gl.getUniformLocation(shaderProgram, "uPositionalColor1");
 shaderProgram.uLightPositionLamp2 =
 gl.getUniformLocation(shaderProgram, "uLightPositionLamp2");
 shaderProgram.uPositionalColor2 =
 gl.getUniformLocation(shaderProgram, "uPositionalColor2");
................................
}
Function setLightUniform sets the values of position and diffuse color
of the lights that we have added to our shaders.
function setLightUniform(){
....................
 var lightingPosition = [20.00,5.00,200.00];
 gl.uniform3fv(shaderProgram.uLightPositionLamp1,
 lightingPosition);
 gl.uniform3f(shaderProgram.uPositionalColor1,
 lightColor[0],lightColor[1],lightColor[2]);
 var lightingPosition1 = [20.00,5.00,-100.0];
 gl.uniform3fv(shaderProgram.uLightPositionLamp2,
 lightingPosition1);
 gl.uniform3f(shaderProgram.uPositionalColor2,1.0,1.0,1.0);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Loading the Game Scene

[108]

To show the use of animation in our scene, we have added a little effect by blinking the
first light. This will also clearly show you which objects are affected by the positional
light. If you notice in the setLightUniform function, we did not give a constant
value to our uPositionalColor uniform but we added a variable lightColor. The
value of the color changes after every two seconds. The totalElapsedTime variable
is calculated in the animate function. The animate function is invoked from the tick
function, as shown in the following code:

var lastTime = 0;
var totalElapsedTime=0;
function animate() {
 var timeNow = new Date().getTime();
 if (lastTime != 0) {
 totalElapsedTime+= (timeNow – lastTime);
 if(totalElapsedTime>=2000){
 if(lightColor[0]==0.5){
 lightColor=[0.0,0.0,0.0];
 }
 else{
 lightColor=[0.5,0.5,0.5];
 }
 totalElapsedTime=0;
 }

 }
 lastTime = timeNow;
}
function tick(){
 requestAnimFrame(tick);
 drawScene();
 animate();
}

Multiple lights and shaders
The provided solution in the previous section to add lights to our scene is not a
scalable solution because if we wanted to add four or more lights, we would have
had to add more uniforms to our shader. WebGL limits the amount of storage for
uniforms. If we exceed the limit, we would get a compile-time or a runtime error.
You can query the number of allowed uniforms using the following functions:

gl.getParameter(gl.MAX_VERTEX_UNIFORM_VECTORS);
gl.getParameter(gl. MAX_FRAGMENT_UNIFORM_VECTORS);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[109]

Also, the ambient color from all lights need not be calculated in the shaders as the
ambient component is independent of distance and orientation of the object. We can
sum the ambient color from all lights and pass the sum to the shader. Even if we use
a single ambient color uniform in our shader for all lights, we would need two to
three uniforms (position/direction, diffuseColor, specularColor) per light.

Adding multiple lamps
Open the 03-Loading-Scene-With-Lamps-Arrays.html file in your favorite editor.
The solution to the problem is adding arrays to our shaders. There are two important
things to note about the use of arrays in the shading language. The first is that many
WebGL implementations will not allow an array to be indexed with a variable or
with an unknown value at compile time. That is, WebGL only mandates that array
indexing is to be supported by constant integral expressions.

The other note about arrays is that there is no syntax in the shading language to
initialize an array at the creation time. The elements of the array need to be initialized
one by one, and also, arrays cannot be qualified as const. So, even if you declare an
array as int a[];, you need to specify the size as int a[5]; before indexing it.

When we discuss arrays, loops automatically come into the picture. There are
a variety of restrictions placed on the types of loops supported in the shading
language. To boil it down to its simplest form, the for loops in WebGL must have an
iteration count that is known at the compile time.

You should generally be cautious when using loops in WebGL. The basic restrictions
are as follows:

• There must be only one loop iteration variable and it must be incremented
or decremented using a simple statement (i++, i--, i+=constant,
i-=constant)

• The stop condition must be a comparison between the loop index and the
constant expression

• We must not change the value of the iterator in the loop

So, let's take a look at our shaders now.

www.it-ebooks.info

http://www.it-ebooks.info/

Loading the Game Scene

[110]

The vertex shader
We declared a constant number of the positional light (NUM_POSITIONAL_LIGHTS).
We declared a uniform array (uLightPosition[NUM_POSITIONAL_LIGHTS]) to hold
the reference to positions of the lights. We declared a varying to hold a calculated
light ray (uLightRay[NUM_POSITIONAL_LIGHTS]) per vertex. Then, we iterated over
the array to calculate the light ray for each positional light. The code snippet for the
vertex shader is as follows:

<script id="shader-vs" type="x-shader/x-vertex">
 attribute vec3 aVertexPosition;
 attribute vec3 aVertexNormal;
 uniform mat4 mVMatrix;
 uniform mat4 pMatrix;
 uniform mat4 nMatrix;
 varying vec3 transformedNormal;
 varying vec3 vertexPos;
 const int NUM_POSITIONAL_LIGHTS = 2;
 uniform vec3 uLightPosition[NUM_POSITIONAL_LIGHTS];
 varying vec3 uLightRay[NUM_POSITIONAL_LIGHTS];
 void main(void) {
 vec4 vertexPos4 = mVMatrix * vec4(aVertexPosition, 1.0);
 vertexPos = vertexPos4.xyz;
 for(int i = 0; i < NUM_POSITIONAL_LIGHTS; i++){
 vec4 newLightPosition=mVMatrix * vec4(uLightPosition[i],
 1.0);
 uLightRay[i]=vertexPos-newLightPosition.xyz;
 }
 transformedNormal = vec3(nMatrix * vec4(aVertexNormal,1.0));
 gl_Position= pMatrix *vertexPos4;
 }
</script>

The fragment shader
The fragment shaders have two constants: one for the number of directional
lights (NUM_DIRECTIONAL_LIGHTS) and the other is the number of positional
lights (NUM_POSITIONAL_LIGHTS). Then, we declare three array uniforms
(uDirectionalDiffuseColor, uDirectionalSpecularColor, and uLightDirection)
for directional lights and two array uniforms (uPositionalDiffuseColor and
uPositionalSpecularColor) for positional lights. We also declare a varying
(uLightRay) whose values are passed from the vertex shader.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[111]

We start our calculation by initializing the iDiffuse and iSpecular components
to 0. Then, we iterate over the list of directional/positional lights to calculate
the diffuse/specular component. We then add their corresponding values to the
iDiffuse and iSpecular variables to get the sum total of all the lights in the scene.
The code snippet for the fragment shader is as follows:

<script id="shader-fs" type="x-shader/x-fragment">
 precision mediump float;
 varying vec3 transformedNormal;
 varying vec3 vertexPos;
 const int NUM_DIRECTIONAL_LIGHTS = 1;
 uniform vec3 uLightDirection[NUM_DIRECTIONAL_LIGHTS];
 const int NUM_POSITIONAL_LIGHTS = 2;
 varying vec3 uLightRay[NUM_POSITIONAL_LIGHTS];
 uniform vec3 uAmbientColor;
 uniform vec3 uDirectionalDiffuseColor[NUM_DIRECTIONAL_LIGHTS];
 uniform vec3 uDirectionalSpecularColor[NUM_DIRECTIONAL_LIGHTS];
 uniform vec3 uPositionalDiffuseColor[NUM_POSITIONAL_LIGHTS];
 uniform vec3 uPositionalSpecularColor[NUM_POSITIONAL_LIGHTS];
 uniform vec3 materialDiffuseColor;
 uniform vec3 materialAmbientColor;
 uniform vec3 materialSpecularColor;
 void main(void) {
 vec3 normal=normalize(transformedNormal);
 vec3 eyeVector=normalize(-vertexPos);
 vec3 iAmbient=uAmbientColor*materialAmbientColor;
 vec3 iDiffuse=vec3(0.0,0.0,0.0);
 vec3 iSpecular=vec3(0.0,0.0,0.0);
 float specular = 0.0;
 for(int i = 0; i < NUM_DIRECTIONAL_LIGHTS ; i++){
 vec3 lightDirection = normalize(uLightDirection[i]);
 float directionalLightWeighting = max(dot(normal, -
 lightDirection), 0.0);
 iDiffuse+=uDirectionalDiffuseColor[i] *materialDiffuseColor
 * directionalLightWeighting;
 if(directionalLightWeighting>0.0)
 {
 vec3 halfDir = normalize(-lightDirection + eyeVector);
 float specAngle = max(dot(halfDir, normal), 0.0);
 specular = pow(specAngle, 4.0);
 iSpecular+=uDirectionalSpecularColor[i]*
 materialSpecularColor*specular;
 }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Loading the Game Scene

[112]

 for(int i = 0;i < NUM_POSITIONAL_LIGHTS ; i++){
 vec3 lightDirection = normalize(uLightRay[i]);
 float directionalLightWeighting = max(dot(normal, -
 lightDirection), 0.0);
 iDiffuse+=uPositionalDiffuseColor[i] *materialDiffuseColor *
 directionalLightWeighting;

 if(directionalLightWeighting>0.0)
 {
 vec3 halfDir = normalize(-lightDirection + eyeVector);
 float specAngle = max(dot(halfDir, normal), 0.0);
 specular = pow(specAngle, 4.0);
 iSpecular+=uPositionalSpecularColor[i]*
 materialSpecularColor*specular;
 }
 }
 vec3 iColor =iAmbient+ iDiffuse+iSpecular;
 gl_FragColor = vec4(iColor, 1.0);
 }
</script>

Implementing Light.js
We have added a new class to hold the components of light. Although the Light
class has both direction and position variables defined, it is expected that we will
use either of them in an object, as shown in the following code:

Light = function () {
 this.specularColor=[0,0,0];
 this.diffuseColor=[0,0,0];
 this.ambientColor=[0,0,0];
 this.direction=[];
 this.position=[];
};
Light.prototype = {
 constructor: Light
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[113]

Applying Lights.js
This class holds the objects of all the lights added to our game scene. We have
defined a function getDataByType() to return the array of the component of the
light. For example, if we invoke lights.getDataByType("ambient"), it will sum
all the components (R, G, B) of the light ambient colors to return an array of three
values (r, g, b). If we invoke lights.getDataByType("position") and if we have
defined three positional lights, it will return an array with nine elements ([x0, y0, z0,
x1, y1, z1, x2, y2, z2], the positions of the three lights in a single array). Similarly for
the directional light, it will return a single array. If we invoke lights.getDataByT
ype("diffuse","position"), it will return a diffuse component (R, G, B) of each
positional light concatenated in a single array. The Light class is as follows:

Lights = function () {
 this.lights=[];
};
Lights.prototype = {
 constructor: Lights,
 addLight:function(light){
 this.lights.push(light);
 },
 getDataByType:function(type,lightType){
 var sum=[];
 if(type=="position"){
 for(var i=0;i<this.lights.length;++i){
 if(this.lights[i].position.length>0){
 sum=sum.concat(this.lights[i][type])
 }
 }
 } else if(type=="direction"){
 for(var i=0;i<this.lights.length;++i){
 if(this.lights[i].direction.length>0){
 sum= sum.concat(this.lights[i][type])
 }
 }
 }
 else if(type=="ambientColor"){
 sum=[0,0,0];
 for(var i=0;i<this.lights.length;++i){
 sum[0]=sum[0]+this.lights[i].ambientColor[0];
 sum[1]=sum[1]+this.lights[i].ambientColor[1];
 sum[2]=sum[2]+this.lights[i].ambientColor[2];
 }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Loading the Game Scene

[114]

 else{
 for(var i=0;i<this.lights.length;++i){
 if(this.lights[i][lightType].length>0){
 sum= sum.concat(this.lights[i][type])
 }
 }
 }
 return sum;
 }
}

Understanding the main code
We have added code in the initShaders function to get reference to the six uniform
arrays. We have used this function in our shaders as follows:

function initShaders(){

 shaderProgram.uAmbientColor = gl.getUniformLocation
 (shaderProgram, "uAmbientColor");
 shaderProgram.uLightDirection = gl.getUniformLocation
 (shaderProgram, "uLightDirection");
 shaderProgram.uPositionalDiffuseColor = gl.getUniformLocation
 (shaderProgram, "uPositionalDiffuseColor");
 shaderProgram.uPositionalSpecularColor = gl.getUniformLocation
 (shaderProgram, "uPositionalSpecularColor");
 shaderProgram.uDirectionalDiffuseColor = gl.getUniformLocation
 (shaderProgram, "uDirectionalDiffuseColor");
 shaderProgram.uDirectionalSpecularColor = gl.getUniformLocation
 (shaderProgram, "uDirectionalSpecularColor");

 shaderProgram.uLightPosition = gl.getUniformLocation
 (shaderProgram, "uLightPosition");
............
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[115]

We also have modified the setLightUniform() function to initialize our light
objects and added each light to our lights object. We then initialized our uniforms'
variable, which is returned from lights.getDataByType, with single dimensional
arrays. In the following code, the WebGL function we used to initialize the uniforms
is gl.uniform3fv. The following is the code for the setLightUniform() function:

function setLightUniform(){
 var light=new Light();
 light.ambientColor=[0.1,0.1,0.1];
 light.diffuseColor=[0.5,0.5,0.5];
 light.specularColor=[1.0,1.0,1.0];
 light.direction=[0,-1.25,-1.25];
 var light1=new Light();
 light1.diffuseColor=[lightColor[0],lightColor[1],
 lightColor[2]];
 light1.specularColor=[0.0,0.0,0.0];
 light1.position=[20.0,5.0,-100.0];
 var light2=new Light();
 light2.diffuseColor= [1.0,1.0,1.0];
 light2.specularColor=[0.0,0.0,0.0];
 light2.position=[20.0,5.0,200.0];
 var lights=new Lights();
 lights.addLight(light);
 lights.addLight(light1);
 lights.addLight(light2);
 gl.uniform3fv(shaderProgram.uAmbientColor,
 lights.getDataByType("ambientColor"));
 gl.uniform3fv(shaderProgram.uDirectionalDiffuseColor,
 lights.getDataByType("diffuseColor","direction"));
 gl.uniform3fv(shaderProgram.uDirectionalSpecularColor,
 lights.getDataByType("specularColor","direction"));
 gl.uniform3fv(shaderProgram.uPositionalDiffuseColor,
 lights.getDataByType("diffuseColor","position"));
 gl.uniform3fv(shaderProgram.uPositionalSpecularColor,
 lights.getDataByType("specularColor","position"));
 gl.uniform3fv(shaderProgram.uLightPosition,
 lights.getDataByType("position"));
 gl.uniform3fv(shaderProgram.uLightDirection,
 lights.getDataByType("direction"));
}

www.it-ebooks.info

http://www.it-ebooks.info/

Loading the Game Scene

[116]

Summary
This chapter focused on making our code capable to handle the loading and rendering
of multiple objects. The other important aspect we covered in this chapter was the
use of stacks to maintain the state of mvMatrix for object transformation operations
and rendering.

The other major code update was addition of the rendering of our scene at a
predefined frame rate. We also learned about positional lights and how to handle
multiple lights in any scene. Also keep in mind that using lights in a scene is a
GPU-intensive operation and if you have added a specular component to your light,
then the calculations become more intensive. The overall performance of your game
will depend on the intelligent use of lights in your scene.

We will play more with textures in our next chapter and will learn how to beautify
the scenes even more.

www.it-ebooks.info

http://www.it-ebooks.info/

Applying Textures
In Chapter 3, Loading the Game Scene, we saw that our scene did not look very realistic.
The reason was the use of one solid color on all the polygons of the object. Remember
that we apply textures to surfaces to achieve the desired look and feel. This chapter
covers the following topics on how to create, load, and apply textures to your scene:

• Texturing basics
• Loading textures and using them in fragment shaders
• Texture filtering and wrapping
• Loading objects exported from Blender
• Mipmapping
• Cubemap textures

Texturing basics
There are mainly three types of textures: 2D textures (most common), Cubemap
textures, and 3D textures. 3D textures are rarely used in gaming applications and
are mostly used in volumetric effects such as light rays and realistic fog. We will not
discuss 3D textures in this book as they are mostly procedural. To explain better, there
is some software that can help you create or modify textures. Some of this software,
such as PixPlant (http://www.pixplant.com/), is young and still evolving.

www.it-ebooks.info

http://www.it-ebooks.info/

Applying Textures

[118]

Understanding 2D textures and texture
mapping
A 2D texture is a two-dimensional array of image data, a regular JPG or PNG image.
The individual data elements of a texture are called texels. In 3D graphics, we use
the term texels instead of image pixels. Texels are represented in different formats
such as gl.RGB, gl.RGBA, gl.LUMINANCE, or gl.ALPHA along with their data types.
Rendering with 2D textures requires a texture coordinate, which is an index into the
image. Texture coordinates for 2D textures are given by a set of 2D coordinates,
(s, t). The values for s and t range from 0.0 to 1.0. We can define values for (s, t)
outside the range 0.0 to 1.0, but then the texture's behavior will be defined by the
wrapping mode. We will cover the wrapping mode later in the chapter. The 2D
coordinates, s and t, of a texture are shown in the following figure:

(0.0, 1.0)

(0.0, 0.0)

+t Texture

+s

(1.0, 1.0)

(1.0, 0.0)

So, in a nutshell, each texel is indexed using a 2D index, called a texture coordinate,
and each vertex of the mesh has a texture coordinate associated with it. The texture
coordinates for each vertex in a polygon define what part of the image appears on
that polygon.

So, let's keep to the philosophy of the book by learning the basics through code. The
following code focuses on our new initBuffers function from Chapter 1, Getting
Started with WebGL Game Development, in which we color our square with a texture.
We earlier learned that we define a Vertex Buffer Object to store the vertex data in
the GPU memory. The vertex data we used earlier consisted of vertex coordinates,
colors per vertex, and normals per vertex. Here, we will create a new buffer for
texture coordinates per vertex:

function initBuffers() {

 ...
 vertices = [
 1.0, 1.0, 0.0, //V0
 -1.0, 1.0, 0.0, //V1
 1.0, -1.0, 0.0, //V2

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[119]

 -1.0, -1.0, 0.0 //V3
];

 indices = [0,2,3,0,3,1];

 ...
 var textureCoordinates = [
 1.0, 1.0,
 0.0, 1.0,
 1.0, 0.0,
 0.0, 0.0
];
...

}

In the preceding code, we have four vertices V0 to V3, and we have the corresponding
texture coordinates array. For each vertex, we have defined a vertex coordinate. The
mapping is explained in the following figure:

(0.0, 1.0)

(0.0, 0.0)

Texture

(1.0, 1.0)

(1.0, 0.0)

Texture coordinates

Texture appingm

V0

V1

V2

V3

Vertex

(1.0, 1.0)

(0.0, 1.0)

(0.0, 0.0)

Texture coordinate

(1.0, 0.0)

V1 V0
(-1, 1.0, 0.0) (1.0, 1.0, 0.0)

V3 V2
(-1, -1, 0) (1.0, -1.0, 0.0)

www.it-ebooks.info

http://www.it-ebooks.info/

Applying Textures

[120]

We specify texture coordinates as fractions and not the exact image pixel size so that
we keep our code independent of the texture size. The preceding figure explains that
the vertex V0, the upper-right corner of the square, maps to (1.0, 1.0) of the texture
coordinate and other coordinates are similarly mapped. This concept of mapping a
vertex to texture coordinates is called texture mapping.

A mesh may be made up of many polygons, so a question may pop up in your mind:
do we have to map each vertex to texture by hand? Well, no, we do not map each
vertex by hand, as our 3D tools give us the texture to vertex mapping information
and we only have to parse it.

Comprehending texture filtering
In texture filtering, the rendering engine determines the texture color for a
texture-mapped pixel. The simplest algorithm selects the color from the nearby
texel. This algorithm produces aliasing effects when the text is applied on different
shapes, sizes, and angles. There are many algorithms evolved for anti-aliasing in
order to minimize blurriness, shimmering, and blocking. The question is why does
it even happen? Basically, during texture mapping, a texture lookup takes place to
determine where each pixel center falls on the texture (texel to pixel mapping).
As the object on which the texture is applied is at an arbitrary distance and
orientation from the camera/viewer, one pixel on the screen might not correspond
directly to a single texel. Some form of filtering has to be applied to determine the
best color for the pixel.

There can be different types of correspondences between a pixel on the screen and the
texel(s) it represents. Let's take an example of a 2D texture that is mapped on to a plane
surface. At some viewing distance, the size of one screen pixel is exactly the same as
one texel. If we move the plane closer to the camera/viewer, the texels appear larger
than screen pixels and need to be scaled up. The process of scaling up the texture is
known as texture magnification. If we move the plane away from the texture, each
texel appears smaller than a pixel and so one pixel covers multiple texels. In this
case, an appropriate color has to be picked up based on the covered texels via texture
minification. We will learn multiple filtering techniques as we move along.

However, for now, we need to understand one concept: that each texel of the texture
might not correspond to one pixel and that we apply filters to determine the best
color for that pixel.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[121]

Loading textures
Let's first understand a few important WebGL API functions before diving into
the code.

The gl.pixelStorei function sets pixel storage modes for readPixels and unpacks
textures with texImage2D and texSubImage2D. The gl.pixelStorei function is
declared as follows:

void gl.pixelStorei(GLenum pname, GLint param)

Let's see what each parameter of this function does:

• pname: This parameter specifies the pixel storage type; it must be either
gl.PACK_ALIGNMENT, gl.UNPACK_ALIGNMENT, or gl.UNPACK_FLIP_Y_WEBGL

• param: This parameter specifies the Boolean value for the pack or
unpack alignment

The gl.pixelStorei function is not used for a particular texture but is a global
setting for all textures used in our current graphics context. We will use this function
to flip the texture in our game, as shown in the following function call:

gl.pixelStorei(gl.UNPACK_FLIP_Y_WEBGL, true);

Normally, the texture coordinates in images start from the top-left corner. The y value
increases as we move downwards, but WebGL starts from the bottom-left corner and
the y value increases as we move upwards. The gl.pixelStorei function instructs
WebGL to store the image with the y coordinate flipped.

Our gaming application must bind the texture object to be able to operate on it. Once
the texture objects are bound, subsequent operations such as gl.texImage2D and
gl.texParameteri affect the bound texture object. The following function makes the
specified texture the current texture for further operations:

void gl.bindTexture(target, GLuint texture)

Let's see what each parameter of this function does:

• target: This parameter binds the texture object to the texture target,
gl.TEXTURE_2D or gl.TEXTURE_CUBE_MAP

• texture: This parameter is the handle to the texture object

The primary function that is used for loading textures is gl.texImage2D. This
function is very powerful for the purpose of gaming, and is declared as follows:

void gl.texImage2D(target, level, internalFormat, format, type,
 const void* pixels)

www.it-ebooks.info

http://www.it-ebooks.info/

Applying Textures

[122]

Let's see what each parameter of this function does:

• target: This parameter specifies the texture target, either gl.TEXTURE_2D
or one of the cubemap face targets (for example, gl.TEXTURE_CUBE_MAP_
POSITIVE_X, or gl.TEXTURE_CUBE_MAP_NEGATIVE_X, among others).

• level: This parameter specifies which mip level to load. The base level is
specified by 0 followed by an increasing level for each successive mipmap.

• internalFormat: This parameter specifies the internal format for the texture
storage; this can be gl.RGBA, gl.RGB, gl.LUMINANCE_ALPHA, gl.LUMINANCE,
or gl.ALPHA.

• format: This parameter specifies the format of the pixel data. The following
symbolic values are accepted: GL_RED, GL_RG, GL_RGB, GL_BGR, GL_RGBA, and
GL_BGRA.

• type: This parameter specifies the type of the incoming pixel data and can
be gl.UNSIGNED_BYTE, gl.UNSIGNED_SHORT_4_4_4_4, gl.UNSIGNED_
SHORT_5_5_5_1, or gl.UNSIGNED_SHORT_5_6_5.

• pixels: This parameter contains the actual pixel data for the image.
The data must contain (width multiplied by height) the number of pixels
with the appropriate number of bytes per pixel based on the format and
type specification.

We are only using the simplest overloaded function as it is also capable of loading
the texture data from the HTML video element. The second parameter, level,
is the parameter used for loading mipmap levels which we will use in the next
code packet.

To set texture parameters for the current texture unit, the gl.texParameteri
function is used, which is declared as follows:

Void gl.texParameteri(GLenum target, GLenum pname, GLint param)

Let's see what each parameter of this function does:

• target: This parameter specifies the target texture, which must be one
of the following: GL_TEXTURE_1D, GL_TEXTURE_2D, GL_TEXTURE_3D, GL_
TEXTURE_1D_ARRAY, GL_TEXTURE_2D_ARRAY, GL_TEXTURE_RECTANGLE, or
GL_TEXTURE_CUBE_MAP

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[123]

• pname: This parameter specifies the symbolic name of a single-valued
texture parameter and can be one of the following: GL_DEPTH_STENCIL_
TEXTURE_MODE, GL_TEXTURE_BASE_LEVEL, GL_TEXTURE_COMPARE_FUNC, GL_
TEXTURE_COMPARE_MODE, GL_TEXTURE_LOD_BIAS, GL_TEXTURE_MIN_FILTER,
GL_TEXTURE_MAG_FILTER, GL_TEXTURE_MIN_LOD, GL_TEXTURE_MAX_LOD,
GL_TEXTURE_MAX_LEVEL, GL_TEXTURE_SWIZZLE_R, GL_TEXTURE_SWIZZLE_G,
GL_TEXTURE_SWIZZLE_B, GL_TEXTURE_SWIZZLE_A, GL_TEXTURE_WRAP_S,
GL_TEXTURE_WRAP_T, or GL_TEXTURE_WRAP_R

• param: This parameter specifies the value of pname

The gl.texParameteri function sets the texture filtering mode for each texture
used in our application. It operates on the currently bound texture and sets the filter
mode for the texture. This also means that for every texture we load, we will have to
specify the filter mode for it.

We will learn all filter modes as we move but for now, we will be using the nearest-
neighbor interpolation method. Take a look at the following code:

gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER,
 gl.NEAREST);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER,
 gl.NEAREST);

Nearest-neighbor interpolation is the fastest and crudest filtering method. It simply
uses the color of the texel closest to the pixel center for the pixel color. However,
the rendering of textures is not as good as expected. It results in a large number
of artifacts such as blockiness in case of magnification and aliasing/shimmering
in minification.

The preceding two lines of code set the nearest-neighbor interpolation filter for both
magnification and minification.

We will introduce a new data type in the ESSL code, sampler2D, to reference the
texture data in the shader and texture lookup functions.

A new data type – sampler
A sampler data type can be sampler1D, sampler2D, and sampler3D. A variable of
the sampler can only be defined in one of two ways. It can be defined as a function
parameter or as a uniform variable, shown as follows:

uniform sampler2D texture1;
void Function(in sampler2D myTexture);

www.it-ebooks.info

http://www.it-ebooks.info/

Applying Textures

[124]

Samplers do not have a value. They cannot be set by expressions in a shader. They
can only be passed to a function as an in parameter. Putting it together, a sampler
value can be set in the shader code.

The sampler can only be used as a parameter in one of the GLSL standard library's
texture lookup functions. These functions access the texture referred to by the
sampler. They take a texture coordinate as parameters.

We will cover only two functions for now, texture and textureOffset. The texture
function is declared as follows:

vec texture(sampler sampler, vec texCoord);

The process of fetching data from a texture, at a particular location, is called
sampling. This function returns the samples of the texture associated with the
sampler, at the location texCoord. The size of the vec type of texCoord depends
on the dimensionality of the sampler. A 1D sampler takes a float size whereas
a 2D sampler takes a vec2 size.

vec textureOffset(sampler sampler, vec texCoord, vec offset);

We can add a texel offset to the texture coordinates, sampled with texture functions.
This is useful for sampling from a collection of images, all on a single texture.

Applying a texture to the square
In our code example, we will simply add a texture to the square we rendered in
Chapter 1, Getting Started with WebGL Game Development. We will now just summarize
the changed code snippets that we added to render the square with a texture instead
of a predefined color. Open the 04-SquareWithTexture.html file in your favorite
text editor and review the following changes:

1. We added the texture map array to the initBuffers function.
2. We created a buffer, made the buffer the active buffer using bindBuffer,

and allocated memory for the buffer. Note that the texture coordinates are
defined for each vertex, as shown in the following code snippet:

function initBuffers() {
 ...
 verticesTextureBuffer = gl.createBuffer();
 gl.bindBuffer(gl.ARRAY_BUFFER, verticesTextureBuffer);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[125]

 var textureCoordinates = [
 1.0, 1.0,
 0.0, 1.0,
 1.0, 0.0,
 0.0, 0.0
];
 gl.bufferData(gl.ARRAY_BUFFER,
 new Float32Array(textureCoordinates), gl.STATIC_DRAW);
}

The vertex shader
A new attribute, aTextureCoord, is defined to hold the texture coordinates assigned
from the flow code. A new varying, vTextureCoord, is defined to pass the texture
coordinate to the fragment shader. Remember, the only way to pass the bind data
from the flow code to the shader variable is by defining an attribute and to pass the
data from the vertex shader to the fragment shader is by defining a uniform. Then,
we assign the value of aTextureCoord to vTextureCoord so that this value can be
used by the fragment shader. All we are doing is accepting the texture coordinates
as a per-vertex attribute and passing it straight out in a varying variable, as shown in
the following code snippet:

<script id="shader-vs" type="x-shader/x-vertex">
 ...
 attribute vec2 aTextureCoord;
 varying highp vec2 vTextureCoord;
 void main(void) {
 ...
 vTextureCoord = aTextureCoord;
 }
</script>

The fragment shader
In the following code, we declare two variables; one is a sampler that holds the
reference to texture that we loaded in the main control flow. The second variable is
vec2varyingvTextureCoord, which is passed from the vertex shader. The important
function is texture2D, which accesses the sampler at the texel defined by the
vTextureCoord variable and gets the color value for that texel.

<script id="shader-fs" type="x-shader/x-fragment">
 uniform sampler2D uSampler;
 varying highp vec2 vTextureCoord;
 void main(void) {

www.it-ebooks.info

http://www.it-ebooks.info/

Applying Textures

[126]

 gl_FragColor = texture2D(uSampler, vec2(vTextureCoord.s,
 vTextureCoord.t));
 }
</script>

In the initShaders function, the new variable we have added is
textureCoordAttribute. It references the aTextureCoord attribute of the vertex
shader, as shown in the following code:

function initShaders() {
 ...
 shaderProgram.textureCoordAttribute =
 gl.getAttribLocation(shaderProgram, "aTextureCoord");

 gl.enableVertexAttribArray(shaderProgram.textureCoordAttribute);
 ...
}

The createTexture() function creates the texture reference. To actually create the
texture object itself, you must bind it to the current texture context. We do that after we
load the texture. We create the image object and once the image is loaded, the onload
event invokes handleTextureLoaded. We then bind the texture to actually create the
object using the bindTexture function. This function also makes the texture object
the current active texture buffer. The texImage2D function loads the texture in GPU
memory and associates it with the active texture object. The texImage2D function loads
the img object at level of detail 0 (mipmap level), and we specify the input texture
format, gl.RGBA, and the storage format. The next call, texParameteri, defines the
filter mode for our texture. We use the nearest-neighbor interpolation algorithm to
filter for magnification and minification. Then, we invoke the drawscenedrawScene
function, as shown in the following code:

function initTextures() {
 texture = gl.createTexture();
 image = new Image();
 // Assigning onLoad Event before setting the source, since the
 //onload will never be invoked if we assign the source earlier.
 image.onload = function() {
 handleTextureLoaded(image, texture);}
 image.src = "cubetexture.png";
}

function handleTextureLoaded(img, texture) {
 gl.bindTexture(gl.TEXTURE_2D, texture);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[127]

 gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA,
 gl.UNSIGNED_BYTE, img);
 gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER,
 gl.NEAREST);
 gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER,
 gl.NEAREST);
 gl.bindTexture(gl.TEXTURE_2D, null);
 gl.clearColor(0.0, 0.0, 0.0, 1.0);
 gl.enable(gl.DEPTH_TEST);
 drawScene();
}

In the handleTextureLoaded function, we invoke
drawScene after the texture is loaded. That is not what
we will do in our real game. We will invoke drawScene
at a particular frame rate which means it will be invoked
continually. Also, we will load multiple textures, and we can
wait for all textures to get loaded before we start rendering.

The drawScene function is modified to initialize the shader variables. In the
following code, we have added two new variables, one attribute, aTextureCoord,
in the vertex shader and the other uniform, uSampler, in the fragment shader. The
first line makes verticesTextureBuffer the current buffer by the bindBuffer call.
Then, the vertexAttribPointer function is invoked to map the buffer to the shader
variable, aTextureCoord, through its reference textureCoordAttribute. The next
lines are interesting. WebGL can deal with up to 32 textures during any given call to
functions such as gl.drawElements. These textures are numbered from TEXTURE0
to TEXTURE31. The first line tells WebGL that texture 0 is the one we loaded, and
the second line defines the current texture object. The third line passes the value 0
to a shader uniform. In other words, the uniform shader, uSampler, will hold the
reference to the first texture, as shown in the following code:

function drawScene() {
 ...
 gl.bindBuffer(gl.ARRAY_BUFFER, verticesTextureBuffer);
 gl.vertexAttribPointer(shaderProgram.textureCoordAttribute, 2,
 gl.FLOAT, false, 0, 0);

 gl.activeTexture(gl.TEXTURE0);
 gl.bindTexture(gl.TEXTURE_2D, texture);
 gl.uniform1i(gl.getUniformLocation(shaderProgram,
 "uSampler"), 0);
 ...
}

www.it-ebooks.info

http://www.it-ebooks.info/

Applying Textures

[128]

Texture wrapping
As seen in the previous example in the Applying a texture to the square section, let's
first take a quick look at the texture mapping coordinates.

var textureCoordinates = [
 1.0, 1.0,
 0.0, 1.0,
 1.0, 0.0,
 0.0, 0.0
];

The texture coordinates lie in the range 0.0 to 1.0. However, imagine if we use values
like -1 to 2.0 or 1.5 to 2.0. Now, these values lie outside the previous range. Which
texel from the texture should WebGL pick? Let's think for a second and evaluate
our options. If the s value goes outside the range, we could say that if s > 1.0, then
s = 1.0 and if s < 0.0, then s = 0. Here, we are clamping, which means that we are
always picking the border values if the value goes outside the range. Or, if we say
the texture is cylindrical and s = 1.2, then the integer value is dropped and we get the
value 0.2. So, texture wrapping describes which texel to pick if the values lie outside
the range [0.0, 1.0]. The wrapping mode is specified separately for both s and t values.

The following table lists the different wrapping modes that we can use in the
texParameteri API call:

Wrapping mode Description
CLAMP_TO_EDGE If the sorted values exceed the range 0 to 1, then the

border values will be taken.
REPEAT This is the default texture wrapping mode. It gives

a tiled look to the texture, just like a brick wall. The
integer of the s or t value is ignored, for example: (0.5,
1.6) becomes (0.5, 0.6).

MIRRORED_REPEAT In this mode, if the integer part of the real number
(s or t) is even, the integer part is ignored. If the integer
part is odd, then the integer part is ignored and the
fraction is subtracted from 1, for example: (2.4, 3.2)
becomes (0.4, 0.8) and (3.2, 2.4) becomes (0.8, 0.6).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[129]

The following figure shows the outputs of the different wrapping modes:

Testing the texture wrapping mode
The code in the 04-SquareWithTextureWrapping.html file gives us options to try
texture wrapping for both s and t values separately. Open the file in your favorite
text editor. We will see the various changes that we made in the code.

The HTML
We have added two select boxes to list different wrapping modes for s and t values,
with IDs sclamp and tclamp respectively, as shown in the following code snippet:

<div>
 <label for="sclamp">Clamping Mode S</label>
 <select id="sclamp" name="sclamp">
 <option value="REPEAT">REPEAT</option>
 <option value="CLAMP_TO_EDGE">CLAMP_TO_EGDE</option>
 <option value="MIRRORED_REPEAT">MIRRORED_REPEAT</option>
 </select>
 <label for="tclamp">Clamping Mode T</label>
 <select id="tclamp" name="tclamp">

www.it-ebooks.info

http://www.it-ebooks.info/

Applying Textures

[130]

 <option value="REPEAT">REPEAT</option>
 <option value="CLAMP_TO_EDGE">CLAMP_TO_EGDE</option>
 <option value="MIRRORED_REPEAT">MIRRORED_REPEAT</option>
 </select>
</div>

The event handlers
We use the jQuery library to help with programming the web page. Here are the on-
change event handlers for both select boxes:

<script type="text/javascript" src="js/jquery.js"></script>
function start() {
 ...
 $("#sclamp").change(redrawWithClampingMode);
 $("#tclamp").change(redrawWithClampingMode);
 ...
}

The redrawWithClampingMode function
We make the texture as the current/active texture by using the bindTexture
API call. We retrieve the selected value of the select boxes using jQuery API
selectors. Then, depending on the selected value, we set the value of the parameter
gl.TEXTURE_WRAP_S or gl.TEXTURE_WRAP_T using the texParameteri API call for
the different wrapping mode. Then, we invoke the drawScene function after clearing
the current texture buffer, as shown in the following code snippet:

function redrawWithClampingMode() {
 gl.bindTexture(gl.TEXTURE_2D, texture);
 var sValue=$("#sclamp option:selected").val();
 var tValue=$("#tclamp option:selected").val();
 switch(sValue) {
 case"REPEAT":
 gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S,
 gl.REPEAT);
 break;
 case"CLAMP_TO_EDGE":
 gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S,
 gl.CLAMP_TO_EDGE);
 break;
 case"MIRRORED_REPEAT":
 gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S,
 gl.MIRRORED_REPEAT);
 break;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[131]

 switch(tValue) {
 case"REPEAT":
 gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T,
 gl.REPEAT);
 break;
 case"CLAMP_TO_EDGE":
 gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T,
 gl.CLAMP_TO_EDGE);
 break;
 case"MIRRORED_REPEAT":
 gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T,
 gl.MIRRORED_REPEAT);
 break;
 }
 gl.bindTexture(gl.TEXTURE_2D, null);
 drawScene();
}

Exporting models from Blender
The most exciting part is here. In this section, we will export objects with textures
from Blender. However, first we need to understand the structure of the newly
exported object and the material file. Let's go through the exported cube with
textures. Open the Box.obj file present in the model directory in your favorite text
editor. The content of the file is as follows:

Blender v2.67 (sub 0) OBJ File: ''
www.blender.org
mtllib Box.mtl
o Box
v -0.738564 -0.738564 0.738564
v 0.738564 -0.738564 0.738564
v 0.738564 0.738564 0.738564
v -0.738564 0.738564 0.738564
v 0.738564 0.738564 -0.738564
v -0.738564 0.738564 -0.738564
v 0.738564 -0.738564 -0.738564
v -0.738564 -0.738564 -0.738564
vt 0.375000 0.000000
vt 0.625000 0.000000
vt 0.625000 0.250000
vt 0.375000 0.250000
vt 0.625000 0.500000
vt 0.375000 0.500000
vt 0.375000 0.750000
vt 0.625000 1.000000

www.it-ebooks.info

http://www.it-ebooks.info/

Applying Textures

[132]

vt 0.375000 1.000000
vt 0.625000 0.750000
vt 0.875000 0.000000
vt 0.875000 0.250000
vt 0.125000 0.000000
vt 0.125000 0.250000
vn 0.000000 -0.000000 1.000000
vn 0.000000 1.000000 0.000000
vn 0.000000 0.000000 -1.000000
vn 0.000000 -1.000000 -0.000000
vn 1.000000 0.000000 0.000000
vn -1.000000 -0.000000 -0.000000
g Box_Box_initialShadingGroup.004
usemtl initialShadingGroup.004
s off
f 1/1/1 2/2/1 3/3/1
f 4/4/2 3/3/2 5/5/2
f 6/6/3 5/5/3 8/7/3
f 2/8/4 1/9/4 7/10/4
f 2/2/5 7/11/5 5/12/5
f 8/13/6 1/1/6 6/14/6
f 4/4/1 1/1/1 3/3/1
f 6/6/2 4/4/2 5/5/2
f 5/5/3 7/10/3 8/7/3
f 1/9/4 8/7/4 7/10/4
f 3/3/5 2/2/5 5/12/5
f 1/1/6 4/4/6 6/14/6

Let's understand this file format. The Box.obj file has six types of elements defined,
which are as follows:

• mtllib: This element defines the name of the material file attached. We will
cover this in more detail shortly.

• o: This element defines the objects exported. Remember that we can have many
objects in a single OBJ file. In our case, we have a single object, that is, Box.

• v: This element defines the vertices in the object. This file shows eight vertices
for a cube. The exporter tries to reduce redundancy of vertices.

• vt: This element defines the vertex texture coordinates (x, y values) of the
texture listed in the Box.mtl file. The two values corresponding to vt are
called UV coordinates and are listed in each row. This is the reason that we
also refer to texture mapping as UV mapping. The Box.obj file defines 15
UV coordinates.

• vn: This element defines the normals of the cube. It defines eight normals.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[133]

• s: This element allows us to enable or disable smooth shading. The value,
off, denotes that smooth shading has been disabled.

• f: This element defines each vertex of a face/primitive in the v/n/t format
depicted as follows:
f v/n/t v/n/t v/n/t
f 1/1/1 2/2/1 3/3/1

These three values (v, n, and t) show that each face of the Box object is
defined by three vertices, or a triangle. The value 1/1/1 means that you pick
the first vertex from the vertices list, the first normal from the normal list, and
the first texture coordinate from the texture coordinates list. In short, we can
say, each vertex of a face is defined by the vertex index, normal index, and
texture coordinate index (v/n/t). The relation between the vertex and the
texture coordinate is thus defined in the face definition.

Now, open Box.mtl in your favorite text editor. The content of the file is as follows:

Blender MTL File: 'None'
Material Count: 1
newmtl initialShadingGroup.004
Ns 96.078431
Ka 0.000000 0.000000 0.000000
Kd 0.000000 0.000000 0.000000
Ks 0.500000 0.500000 0.500000
Ni 1.000000
d 0.000000
illum 2
map_Kd boxDiffuse.jpg

The Ka element defines the ambient color, Kd defines the diffuse color, and Ks defines
the specular color. The map_kd element defines the name of the file with the texture.
The texture mapping is defined in the Box.obj file. The following figure shows the
texture map to texture a cube:

www.it-ebooks.info

http://www.it-ebooks.info/

Applying Textures

[134]

Converting Box.obj to Box.json
To import the Box.obj file with JavaScript in our code, we need to convert it to the
JSON format as shown in the following command-line code:

python ./convert_obj_three.py -i ./Box.obj -o ./Box.json

Understanding the JSON file with UV
coordinates
Let's understand our JSON file format with texture coordinates. Open Box.json in
your favorite text editor. The content of the file is as follows:

{
 "metadata" :
 {
 "formatVersion" : 3.1,
 "sourceFile" : "Box_Blender.obj",
 "generatedBy" : "OBJConverter",
 "vertices" : 8,
 "faces" : 12,
 "normals" : 6,
 "colors" : 0,
 "uvs" : 14,
 "materials" : 1
 },
 "scale" : 1.000000,
 "materials": [{
 "DbgColor" : 15658734,
 "DbgIndex" : 0,
 "DbgName" :"initialShadingGroup.004",
 "colorAmbient" : [1.0, 1.0, 1.0],
 "colorDiffuse" : [1.0, 1.0, 1.0],
 "colorSpecular" : [0.5, 0.5, 0.5],
 "illumination" : 2,
 "mapDiffuse" : "boxDiffuse.jpg",
 "opticalDensity" : 1.0,
 "specularCoef" : 96.078431,
 "transparency" : 0.0
 }],
 "vertices": [...],
 "morphTargets": [],
 "morphColors": [],
 "normals": [0,-0,1,0,1,0,0,0,-1,0,-1,-0,1,0,0,-1,-0,-0],
 "colors": [],
 "uvs": [[0.375,0,0.625,0,0.625,0.25,0.375,0.25,0.625,0.5,0.375,0.5,
0.375,0.75,0.625,1,0.375,1,0.625,0.75,0.875,0,0.875,0.25,0.125,0,0.12
5,0.25]],

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[135]

"faces": [42,0,1,2,0,0,1,2,0,0,0,42,3,2,4,0,3,2,4,1,1,1,42,5,4,7,0,5,
4,6,2,2,2,42,1,0,6,0,7,8,9,3,3,3,42,1,6,4,0,1,10,11,4,4,4,42,7,0,5,0,
12,0,13,5,5,5,42,3,0,2,0,3,0,2,0,0,0,42,5,3,4,0,5,3,4,1,1,1,42,4,6,7,0
,4,9,6,2,2,2,42,0,7,6,0,8,6,9,3,3,3,42,2,1,4,0,2,1,11,4,4,4,42,0,3,5,0
,0,3,13,5,5,5]
}

We see three new entries in this JSON file. Apart from the regular vertices and
normals array, we notice a new uvs array. It is a simple one dimensional array with
each pair defining one texture or one UV coordinate. Also, notice the materials
array, which has one material defined, with a new entry of mapDiffuse that refers to
the diffuse map image, boxDiffuse.jpg.

The faces array looks a little different now from what we saw in Chapter 2, Colors
and Shading Languages. It starts with a value of 42. If we remember from Chapter 2,
Colors and Shading Languages, the first value of the array defines the structure of the
faces of each cube, so let's dive deep into it.

Let's first convert 42 into binary, which is 00101010. Starting from the last digit, we
have listed what each bit means:

Digit Denotes Meaning
0 isQuad The digit value 0 means it is not a quad, but a triangle.

Three elements will give vertex indices of the face.
1 hasMaterial The digit value 1 means we have a material associated

with the polygon. Hence, the fourth value would give
us the material index.

0 hasFaceUV The JSON format stores the UV coordinate per face or
per vertex. If it is per face, we call it a face UV. This
essentially conveys that all the vertices of the face map
to the same UV coordinate.

1 hasFaceVertexUV The digit value of 1 means that the next two values
will give the texture coordinates (UV).

0 hasFaceNormal The digit value of 0 means that there is no face normal.
1 hasFaceVertexNormal The digit value of 1 means that the next three values

will give normal values for the vertices.
0 hasFaceColor The digit value of 0 means that there is no face color.
0 hasFaceVertexColor The digit value of 0 means that there is no face

vertex color.

So let's sum it up; three values for the vertex index, one value for the material index,
two values for the texture index, and three values for the normal index. A total of one
(to define the structure) plus nine values will define a face for this particular JSON file.

www.it-ebooks.info

http://www.it-ebooks.info/

Applying Textures

[136]

Parsing UV coordinates from the
JSON file
Now, we will walk you through the code to show the changes that we need to
perform to load the JSON file with a texture. But, first let's understand the biggest
challenge we are going to face to load the JSON file in order to have the minimum
memory footprint.

The challenge and the algorithm
First, let's review the basic principles of WebGL texture mapping:

• Each texture coordinate is mapped to a vertex and vice versa. So, if we have
eight vertices defined in the vertex buffer, we need eight texture coordinates.
If we have 16 vertices defined in the vertex buffer, we need 16 texture
coordinates. Take a look at the previous code snippets of this chapter and
you will notice we had four UV values for four vertices of the square. This
applies to all vertex attributes, such as colors and normals, among others.

• We used the index buffer so that we do not have to repeat vertices in the
vertex buffer. We did this so that the memory we assign for the vertex buffer
in the GPU is of the smallest footprint. However, there is no rule that says
that the vertices cannot be redundant. We can repeat vertices, but then we
would have to change the indexing in the indices array.

• There is no relation of the texture coordinates with the indices defined.

Why are we discussing this? Notice in the Box.json file that you have eight vertices
but 15 texture coordinates. This will happen with any visual designing tool, be it
Blender, Maya, or 3ds Max, the number of vertices will never match the number
of texture coordinates. The export tools will always generate a minimum number
of vertices and texture coordinates and their relation will be expressed in the face
information such as the Box.obj file. We have more UV coordinates than vertex
coordinates because a vertex can be shared between many faces and we can have
different UV coordinates for each face. This is explained and implemented in depth
in the upcoming sections.

Again, texture coordinates are relative to the vertex data and not the index data.
The indexing is independent of texturing.

Suppose you have the following vertex array made of three vertices (three
components each):

var vertices = [x0, y0, z0, x1, y1, z1, x2, y2, z2];

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[137]

Also, there is a texture coordinate array made of three coordinates (two
components each):

var t-co-ordinates = [s0, t0, s1, t1, s2, t2];

We associate the vertex 0 (x0, y0, z0) with the texture coordinate 0 (s0, t0). The
index data is a way of specifying the vertices. In our previous example, if we would
like to render the triangle twice, we would specify an index array as follows:

var indices[] = {0, 1, 2, 0, 1, 2};

The index data is independent of texture coordinates or other vertex attributes such
as colors and normals, among others. Hence, we do not bind texture coordinates to
the index data.

So, if we have a situation like in our case, where the number of texture coordinates
does not match the number of vertices, then we have to create redundant vertex
information or texture information and re-arrange our indices.

Now, we need to prepare our vertex array, index array, normal array, and texture
coordinates array from the face information before making the drawElements call.

Revisiting vertices, normals, and the indices array
Let's summarize how we created our vertices, normals, and the indices arrays so far.
We were simply copying our vertices from the JSON object to the vertices array.

The parseJSON function in the parseJSON.js file, present in the primitive
directory, was reading the Box.json file and creating face objects, as shown in
the following code snippet:

Face = function (a, b, c, normal, color, materialIndex) {
 this.a = a;
 this.b = b;
 this.c = c;
 this.normal = normal ;
 this.vertexNormals = [];
 this.vertexColors = color instanceof Array ?color : [];
 this.colorIndex = color;
 this.vertexTangents = [];
 this.materialIndex = materialIndex !==
 undefined ? materialIndex : 0;
};

www.it-ebooks.info

http://www.it-ebooks.info/

Applying Textures

[138]

Each face object had the structure, shown in the preceding code snippet, with a, b,
and c as the indices to the vertices for that face. We simply iterated over the faces
array of the Geometry class and copied the a, b, and c values of each face object
into our indices array using the indicesFromFaces function of our Geometry class
(defined in primitive/Geometry.js), as shown in the following code snippet:

indicesFromFaces: function () {
 for(var i=0; i<this.faces.length; ++i) {
 this.indices.push(this.faces[i].a);
 this.indices.push(this.faces[i].b);
 this.indices.push(this.faces[i].c);
 }
}

For normals, we wrote a function, calculateVertexNormals, in the Geometry
class. We did not use the normal array from the Box.json file because normals are
associated with vertices and not indices or faces. The Box.json file gave a normal for
each vertex with respect to that face. Hence, if a vertex was being used in two faces,
then we had two normals for the same vertex and to get the final normal for that
vertex, we had to add them up. However, we decided not to use that information
and we calculated our normal array from indices and vertices.

Restructuring for texture coordinates
First, let's study the changes we need to perform to read the UV information of faces
in our parseJSON.js file:

fi = geometry.faces.length;
if (hasFaceUv) {
 for (i = 0; i < nUvLayers; i++) {
 uvLayer = data.uvs[i];
 uvIndex = faces[offset ++];
 geometry.faceUvs[i][fi] = uvIndex;
 }
}

if (hasFaceVertexUv) {
 for (i = 0; i < nUvLayers; i++) {
 uvLayer = data.uvs[i];
 uvs = [];
 var aVertexIndices=["a","b","c","d"];
 for (j = 0; j < nVertices; j ++) {
 uvIndex = faces[offset ++];
 uvs[aVertexIndices[j]] = uvIndex;
 }

 geometry.faceVertexUvs[i][fi] = uvs;
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[139]

The first if condition in the preceding code checks whether the JSON has the face's
UV coordinates, then stores the index to the uvs array in the corresponding face
index. Hence for each face, we will have a UV coordinate. This case will not prove
untrue for an OBJ file as the OBJ format stores UV coordinates per face vertex.
However, there are other formats where this case might be helpful.

The second if condition checks whether the JSON file has face UV coordinates
per vertex, then stores the index of the texture coordinate for each vertex in a uvs
array. Then, it stores the UV index array in the corresponding face index of the
faceVertexUvs array.

The outer i loop of the second if condition is for the material index. An object can
have multiple materials. In our case, we have a single material, but in most cases,
you might find multiple materials for a geometry. Hence, faceUvs[materialIndex]
[faceIndex] is a double dimensional array declared in the Geometry class
and faceVertexUvs[material index][faceIndex][vertexIndex] is a three
dimensional array.

Algorithm one to create new arrays
Let's take a look at the verticesFromFaceUvs function from Geometry.js, which is
present in the primitive directory. We have commented out the function since we
do not use it in our examples—it is just for our reference.

The verticesFromFaceUvs function takes vertices, uvs, and materialIndex as
parameters. The values of vertices and uvs are derived from the JSON object.
They are redundant data. The actual arrays from the JSON file are passed into the
function, as shown in the following code snippet:

/* verticesFromFaceUvs: function(vertices, uvs, materialIndex) {
 var vertexVectors = []; // will hold the redundant indexes to
 the vertex array
 var redundantVertexVectors = []; // Will hold the redundant
 indexes to the uv array
 var redundantUVs[]; // Create vector vertex from vertices for
 easy indexing
 for(var i=0; i<vertices.length; i=i+3) {
 var vector = vec3.fromValues(vertices[i], vertices[i+1],
 vertices[i+2]);
 vertexVectors.push(vector);
 }
 // One faceVertexUV corresponds to one face
 for(var i=0; i<this.faceVertexUvs[materialIndex].length; ++i) {
 var face=this.faces[i]; // Pick one face

www.it-ebooks.info

http://www.it-ebooks.info/

Applying Textures

[140]

 var textureIndices = this.faceVertexUvs[materialIndex][i]; //
 Pick the corresponding vertexUV map
 var aVertexIndices = ["a", "b", "c"];
 for(var i=0; i<aVertexIndices.length; ++i) {
 var aVertexIndex = aVertexIndices[i];
 // For each vertex in face, copy the vertex to the vertex
 redundant array.
 redundantVertexVectors.push(face[aVertexIndex]);
 // For each vertex in face, copy the vertexUV map to the uv
 redundant array.
 redundantUVs.push(textureIndices[aVertexIndex]);
 }
 }
 for(var i=0; i<redundantVertexVectors.length; ++i) {
 var vector=vertexVectors[redundantVertexVectors[i]];
 // Copy X value of the vertex to vertices

 this.vertices.push(vector[0]); // Copy Y value of the vertex
 to vertices

 this.vertices.push(vector[1]); // Copy Z value of the vertex
 to vertices

 this.vertices.push(vector[2]); // Copy s value from the UV
 array. Since uv=[s0, t0, s1, t1, s2, t2]
 this.uvs.push(uvs[redundantUVs[i]*2]);
 this.uvs.push(uvs[redundantUVs[i]*2+1]);
 this.indices.push(i+1); // indices=[1,2,3, 4,5,6, 7,8,9, ...]
 }
}, */

However, while it is the simplest approach you could take, it's been commented
out and is there simply for our reference. It is not really the best approach as it is
inefficient. The first for loop iterates over non-redundant vertices information and
clubs triplets to create a single vector and pushes the vector on the vertexVectors
array. We do this because indices point to a coordinate and not its individual x, y, or
z components. The first for loop is shown as follows:

for(var i=0; i<vertices.length; i=i+3) {
 var vector = vec3.fromValues(vertices[i], vertices[i+1],
 vertices[i+2]);
 vertexVectors.push(vector);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[141]

The second for loop iterates over the faceVertexUvs array. Remember that each
element of the faceVertexUvs array corresponds to a face element of the faces
array in the Geometry class. Hence, you could iterate over either of them, as shown
in the following code snippet:

var face=this.faces[i]; // Pick one face
var textureIndices = this.faceVertexUvs[materialIndex][i]; // Pick
 the corresponding vertexUV map

Retrieve one face element from the faces array and one element from the
faceVertexUv array. The face element would contain indices to the vertices array
that make up a polygon, in our case triangle. Each UV element (textureIndices)
would contain indices to the UV array for each vertex. Hence, we iterate over these
elements to retrieve the value for each vertex denoted by a, b, and c, and store the
value for each vertex in the redundantVertex and redundantUvs arrays. We copy
each vertex index and UV index into their corresponding redundant array as follows:

redundantVertexVectors.push(face[aVertexIndex]); // For each
 vertex in face, copy the vertex to the vertex redundant array.
redundantUVs.push(textureIndices[aVertexIndex]); // For each
 vertex in face, copy the vertexUV map to the uv redundant array.

So, basically we copied each vertex and UV coordinate in an order as specified in the
faces and faceVertexUv arrays. This means we would not even need the indices
array and can use the drawArrays call without any indices. On the other hand, we
can create the indices array by simply storing elements starting from zero to the
number of faces multiplied by 3. Here, we are repeating each possible vertex and UV
coordinate as per the faces. As mentioned earlier, this would be a pretty inefficient
approach, so this code is commented out. Thus, if an object had 1200 faces, then
our vertex array would be 1200*3 elements and the UV array would have 1200*2
elements. Take a look at the following figure:

www.it-ebooks.info

http://www.it-ebooks.info/

Applying Textures

[142]

Algorithm one is not the right way to proceed. It is good for
objects such as a plane where the vertex information might
not be redundant and indices might not be that valuable,
but for most objects in games, vertices are reused. Hence,
using this algorithm is not a very bright idea and so, we
have commented out the function.

Algorithm two to create new arrays
In this algorithm, let's first understand the problem again. We need the same number
of vertices as the UVs before we invoke the drawElements function call. So, we
know that each face has a vertex index and faceVertexUvs has a UV index from
that geometry. So, we have a relation between UV coordinates and vertices as each
faceVertexUv element corresponds to a face element.

Our new algorithm is pretty simple. If a vertex index is pointing to two different UV
coordinates, then clone that vertex. Each vertex clones at the same index as the UV
coordinates. If a UV coordinate is pointing to two different vertices, then clone the
UV coordinate. We will make some information redundant and it would be much
better than making complete copies for each face.

How do we achieve that? Let's look at the algorithm we designed:

verticesFromFaceUvs: function(vertices, uvs, materialIndex) {
 var vertexVectors = [];
 var redundantVertexVectors = [];

 var vertexCovered = [];
 //Copy vertices to a vec3 array
 for (var i = 0; i < vertices.length; i = i + 3) {
 var vector = vec3.fromValues(vertices[i], vertices[i + 1],
 vertices[i + 2]);
 vertexVectors.push(vector);
 }
 var count = 0;
 //Iterating over all uv indices for each vertex in a face.
 for (var i = 0; i < this.faceVertexUvs[materialIndex].length;
 ++i) {
 var face = this.faces[i];
 var textureIndices = this.faceVertexUvs[materialIndex][i];
 var aVertexIndices = ["a", "b", "c"];
 //Iterating over the each vertex of the face.
 for (var j = 0; j < aVertexIndices.length; ++j) {
 var aVertexIndex = aVertexIndices[j];

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[143]

 //If the new vertex corresponding to texture coordinate
 points to same vertex as in redundant array or the
 corresponding vertex is not defined in the redundant
 array.
 if (redundantVertexVectors[textureIndices[aVertexIndex]] ==
 face[aVertexIndex] || redundantVertexVectors[
 textureIndices[aVertexIndex]] === undefined) {
 redundantVertexVectors[textureIndices[aVertexIndex]] =
 face[aVertexIndex];
 face[aVertexIndex] = textureIndices[aVertexIndex];
 }
 else {
 // The texture coordinate holds the index of a
 different vertex duplicate the uv coordinate
 uvs[materialIndex].push(uvs[materialIndex][
 textureIndices[aVertexIndex] * 2]);
 uvs[materialIndex].push(uvs[materialIndex][
 textureIndices[aVertexIndex] * 2 + 1]);
 var newIndex = Math.floor(uvs[materialIndex].length / 2) -
 1;
 redundantVertexVectors[newIndex] = face[aVertexIndex];
 face[aVertexIndex] = newIndex;
 textureIndices[aVertexIndex] = newIndex;

 }
 }
 }
 for (var i = 0; i < redundantVertexVectors.length; ++i) {
 var vector = vertexVectors[redundantVertexVectors[i]];
 this.vertices.push(vector[0]);
 this.vertices.push(vector[1]);
 this.vertices.push(vector[2]);
 }
 this.uvs = uvs;
}

In the preceding code, we created a new vertex array (redundantVertexVectors) by
copying the index of the previous array at a new index location as per the UV index.

It is difficult to express the algorithm in words, so let's do a dry run for the custom
set of data.

www.it-ebooks.info

http://www.it-ebooks.info/

Applying Textures

[144]

Understanding the algorithm using a dry run
First, we will create a set of data for dry run as follows:

vertices = [x0, y0, z0, x1, y1, z1, x2, y2, z2, x3, y3, z3, x4,
 y4, z4]
uvs = [s0, t0, s1, t1, s2, t2, s3, t3, s4, t4, s5, t5, s6, t6]
faces = [[a=0, b=1, c=2], [a=1, b=2, c=3]........]
faceVertexUvs = [[[a=4, b=5, c=6], [a=4, b=6, c=4] …...]]
redundantVertexVectors = []

Initially, the redundantVertexVectors array is empty. Let's add a loop, For i=0,
aVertexIndex="a":

textureIndices = faceVertexUvs[i], face=faces[i].
textureIndices["a"]~4, face[aVertexIndex]~0.

Take a look at the following code lines:

redundantVertexVectors[textureIndices[aVertexIndex]] =
 face[aVertexIndex]
redundantVertexVectors[4] = 0
face[aVertexIndex] = textureIndices[aVertexIndex]
face["a"] = 4

Now, the new arrays will look like the following:

faces=[[a=4,b=1,c=2],[a=1,b=2,c=3]........]
faceVertexUvs=[[[a=4,b=5,c=6],[a=4,b=6,c=4] …...]]
redundantVertexVectors=[,,,,0]

Let's add another loop, For i=0, aVertexIndex="b" with the following if condition:

if(redundantVertexVectors[textureIndices[aVertexIndex]] ==
 face[aVertexIndex] ||
 redundantVertexVectors[textureIndices[aVertexIndex]] ===
 undefined)
 textureIndices["b"]~5 face[aVertexIndex]~1,
 redundantVertexVectors[5] === undefined

if(undefined == 4 || redundantVertexVectors[5] == -undefined)
 redundantVertexVectors[textureIndices[aVertexIndex]] =
 face[aVertexIndex]
 redundantVertexVectors[5] = 1
 face[aVertexIndex] = textureIndices[aVertexIndex]
 face["b"]=5
 faces=[[a=4,b=5,c=2],[a=1,b=2,c=3]........]
 faceVertexUvs=[[[a=4,b=5,c=6],[a=4,b=6,c=4]…...]]
 redundantVertexVectors=[,,,,0,1]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[145]

Let's add a loop, For i=0, aVertexIndex="c":

faces=[[a=4,b=5,c=6],[a=1,b=2,c=3]........]
faceVertexUvs=[[[a=4,b=5,c=6],[a=4,b=6,c=4]…...]]
redundantVertexVectors=[,,,,0,1,2]

Let's add a loop, For i=1, aVertexIndex="a" with the following if condition:

if(redundantVertexVectors[textureIndices[aVertexIndex]]==face[aVertex
Index]||redundantVertexVectors[textureIndices[aVertexIndex]]===undefi
ned)

Here, redundantVertexVectors[textureIndices[aVertexIndex]] ~
redundantVertexVectors[4] ~0 and it is defined. As this condition matches, the
if condition returns true. Hence, the redundant vertex array remains the same
but the new index of the new vertex is changed in the faces array, as shown in the
following code:

faces=[[a=4,b=5,c=6],[a=4,b=2,c=3]........]
faceVertexUvs=[[[a=4,b=5,c=6],[a=4,b=6,c=4]…...]]
redundantVertexVectors=[,,,,0,1,2]

You must have noticed that no vertex was repeated for this case but simply a new
index was assigned in accordance to an existing vertex.

Let's add another loop, For i=1, aVertexIndex="b" with the following if
condition:

if(redundantVertexVectors[textureIndices[aVertexIndex]]==face[aVertex
Index]||redundantVertexVectors[textureIndices[aVertexIndex]]===undefi
ned)

Here, redundantVertexVectors[textureIndices[aVertexIndex]] ~
redundantVertexVectors[6] ~ 2 and faces[1]["b"] is equal to 2, which again is
the same. Hence, the redundant array will not change, only face["b"] will point to
the new index, as shown in the following code:

faces=[[a=4,b=5,c=6],[a=4,b=6,c=3]........]
faceVertexUvs=[[[a=4,b=5,c=6],[a=4,b=6,c=4]…...]]
redundantVertexVectors=[,,,,0,1,2]

Let's add a loop, For i=1, aVertexIndex="c" with the following if condition:

if(redundantVertexVectors[textureIndices[aVertexIndex]]==face[aVertex
Index]||redundantVertexVectors[textureIndices[aVertexIndex]]===undefi
ned)

www.it-ebooks.info

http://www.it-ebooks.info/

Applying Textures

[146]

Here, redundantVertexVectors[textureIndices[aVertexIndex]] ~
redundantVertexVectors[4] ~ 0 and faces[1]["c"] is equal to 3 which makes the
if condition false. Hence, in the else condition, the following code will be added:

uvs[materialIndex].push(uvs[materialIndex]
 [textureIndices[aVertexIndex]*2]);
uvs[materialIndex].push(uvs[materialIndex]
 [textureIndices[aVertexIndex]*2+1]);
 var newIndex=Math.floor(uvs[materialIndex].length/2)-1;
 redundantVertexVectors[newIndex] = face[aVertexIndex];
 face[aVertexIndex] = newIndex;
 textureIndices[aVertexIndex] = newIndex;

Here, uvs[0].push(uvs[0][4*2~8]) ~ uvs[0].push(s4), uvs[0].push
(uvs[0][4*2+1~9]) ~ uvs[0].push(t4), and var newIndex = Math.floor
(uvs[materialIndex].length/2)-1 ~ 7. The new length of the UV array minus
one, redundantVertexVectors[7] = 4, face["c"] = 7, and textureIndices
["c"]=7. The resultant arrays are as follows:

uvs=[s0,t0, s1,t1, s2,t2, s3,t3, s4,t4, s5,t5, s6,t6, s4,t4]
faces=[[a=4,b=5,c=6],[a=4,b=6,c=7]........]
faceVertexUvs=[[[a=4,b=5,c=6],[a=4,b=6,c=7]…...]]
redundantVertexVectors=[,,,,0,1,2,4]

As you keep iterating through this function, you will realize which condition has the
minimum redundancy and you will have the following new arrays:

• A new redundantVertexVectors array with indices to the original vector
array. We will use this array to create our new vertices array as follows:
for(var i=0; i<redundantVertexVectors.length; ++i) {
 var vector=vertexVectors[redundantVertexVectors[i]];
 this.vertices.push(vector[0]);
 this.vertices.push(vector[1]);
 this.vertices.push(vector[2]);
}

• A new UV array with some redundant UV coordinates.
• A faces array where each face element has indices of the new array for

each vertex.

Now, we can create our indices array like we did before, by using the
indicesFromFaces function of the Geometry class with new vertices and face
indexes. We will also use the calculateVertexNormals function of our Geometry
class to calculate normals for the new vertices and indices.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[147]

The two algorithms that we just discussed to create new
vertices and indices arrays are not standard algorithms.
We can always write better algorithms to reduce the size
of the vertices array.

Rendering objects exported from Blender
If you have reached this far, you have learned the main recipe to fight mutated
Mr. Green. Understanding the JSON format and then recreating the vertices and
indices arrays is exciting and at the same time, is your biggest weapon to build the
most beautiful objects with textures. So let's quickly walk through the code to load
JSON objects.

Changes in our JSON parser
Open primitive/parseJSON.js in your editor. This file has two major changes. The
first change populates the faceUvs and faceVertexUVs arrays of the Geometry class
with the JSON data, as shown in the following code snippet:

fi = geometry.faces.length;
if (hasFaceUv) {
 for (i = 0; i < nUvLayers; i++) {
 uvLayer = data.uvs[i];
 uvIndex = faces[offset ++];
 geometry.faceUvs[i][fi] = uvIndex;
 }
}
if (hasFaceVertexUv) {
 for (i = 0; i < nUvLayers; i++) {
 uvLayer = data.uvs[i];
 uvs = [];
 var aVertexIndices=["a","b","c","d"];
 for (j = 0; j < nVertices; j ++) {
 uvIndex = faces[offset ++];
 //u = uvLayer[uvIndex * 2];
 //v = uvLayer[uvIndex * 2 + 1];
 uvs[aVertexIndices[j]] = uvIndex;
 }
 geometry.faceVertexUvs[i][fi] = uvs;
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Applying Textures

[148]

The second change invokes geometry call functions to create vertices, indices,
normals, and UV coordinate arrays, as shown in the following code snippet:

geometry.materials = data.materials;
geometry.verticesFromFaceUvs(data.vertices, data.uvs, 0);
geometry.indicesFromFaces();

Changes in our Geometry object
Open primitive/Geometry.js in your favorite editor. We added a new function,
verticesFromFaceUvs, to re-create vertices from the UV arrays as discussed
previously in the chapter.

Loading a textured object
Let's now load an object with texture mapping exported from Blender. Open
04-Loading-Model-Textures.html in your editor. The code of the shaders remains
the same as the previous code snippets (04-SquareWithTexture.html) of this chapter.
A new attribute, vec2 aTextureCoord, to hold texture coordinates and a new varying,
vTextureCoord, is added to the vertex shader to pass the coordinate to the fragment
shader. In the fragment shader, the code was changed to calculate the new fragment
color value. It is used in the texture access function, texture2D, to extract the color
value from the uniform, uSampler, as shown in the following code snippet:

gl_FragColor = vec4(iColor, 1.0)*texture2D(uSampler,
 vec2(vTextureCoord.s, vTextureCoord.t));

In the main control code for the textured object, the load model function takes the
URL of the JSON model. It first invokes the parseJSON function which returns the
geometry object pre-populated with the vertex data information. Then, it retrieves
the texture URL from the geometry object, geometry.materials[materialIndex].
mapDiffuse, and it invokes initTexture with the texture URL. The initTexture
function loads the texture and sets global parameters such as gl.UNPACK_FLIP_Y_
WEBGL to flip the texture to match the texture coordinates of WebGL in the
handleTextureLoaded function. Then, the code loads the texture into the GPU
memory and sets texture parameters, as shown in the following code snippet:

function initTextures(imageMap) {
 texture = gl.createTexture();
 image = new Image();
 image.onload = function() { handleTextureLoaded(image, texture);
 }
 image.src = path+imageMap;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[149]

function handleTextureLoaded(img, texture) {
 gl.bindTexture(gl.TEXTURE_2D, texture);
 gl.pixelStorei(gl.UNPACK_FLIP_Y_WEBGL, true);
 gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA,
 gl.UNSIGNED_BYTE, img);
 gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER,
 gl.NEAREST);
 gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER,
 gl.NEAREST);
 gl.bindTexture(gl.TEXTURE_2D, null);

 initScene();
}
function loadModel(url){
 rotateX=0.0;
 rotateY=0.0;
 $.getJSON(path+url, function(data) {
 geometry=parseJSON(data);
 if(geometry.materials.length>0) {
 if(!(geometry.materials[0].colorDiffuse===undefined))
 diffuseColor=geometry.materials[0].colorDiffuse;
 if(!(geometry.materials[0].colorAmbient===undefined))
 ambientColor=geometry.materials[0].colorAmbient;
 if(!(geometry.materials[0].colorSpecular===undefined))
 specularColor=geometry.materials[0].colorSpecular;
 }
 initTextures(geometry.materials[materialIndex].mapDiffuse);
 });
}

The initBuffers function creates vertex buffers (gl.ARRAY_BUFFER) for vertices,
normals, and texture coordinates. It initializes the buffers with geometry variables
(vertices, normals, and UVs). Then, it creates the index buffer (gl.ELEMENT_ARRAY_
BUFFER) and loads geometry.indices into it, as shown in the following code snippet:

function initBuffers() {
 vertexPositionBuffer = gl.createBuffer();
 indexBuffer = gl.createBuffer();
 gl.bindBuffer(gl.ARRAY_BUFFER, vertexPositionBuffer);
 gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, indexBuffer);
 gl.bufferData(gl.ARRAY_BUFFER,
 new Float32Array(geometry.vertices), gl.STATIC_DRAW);
 vertexPositionBuffer.itemSize = 3;
 vertexPositionBuffer.numItems = geometry.vertices.length/3;

www.it-ebooks.info

http://www.it-ebooks.info/

Applying Textures

[150]

 vertexNormalBuffer = gl.createBuffer();
 gl.bindBuffer(gl.ARRAY_BUFFER, vertexNormalBuffer);
 gl.bufferData(gl.ARRAY_BUFFER,
 new Float32Array(geometry.normals), gl.STATIC_DRAW);
 vertexNormalBuffer.itemSize = 3;
 vertexNormalBuffer.numItems = 24;
 gl.bufferData(gl.ELEMENT_ARRAY_BUFFER,
 new Uint16Array(geometry.indices), gl.STATIC_DRAW);
 gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, null);
 verticesTextureBuffer = gl.createBuffer();
 gl.bindBuffer(gl.ARRAY_BUFFER, verticesTextureBuffer);
 gl.bufferData(gl.ARRAY_BUFFER,
 new Float32Array(geometry.uvs[materialIndex]),
 gl.STATIC_DRAW);
}

The drawScene function remains the same, except in the drawElements call where
we pass geometry.indices which was initialized in the parseJSON function, as
shown in the following code snippet:

function drawScene() {
 ...
 gl.activeTexture(gl.TEXTURE0);
 gl.bindTexture(gl.TEXTURE_2D, texture);
 gl.uniform1i(gl.getUniformLocation(shaderProgram, "uSampler"),
 0);
 setMatrixUniforms();
 gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, indexBuffer);
 gl.drawElements(gl.TRIANGLES, geometry.indices.length,
 gl.UNSIGNED_SHORT, 0);
}

When we load the image in our browser, we see that the texture is pixelated. We had
briefly discussed filter modes earlier and in the next section, we will dive deep into
the different filter modes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[151]

Understanding mipmapping
First, let's understand what texture filtering and mipmapping are. Take a close look
at the following images. The image on the left shows the image of a monkey model
with aliasing effects (look at the eyes of the monkey). On the right, we have an image
of the same model with no such effects. When the object moves closer to the camera
or moves further away from it, the texture associated with that object appears blocky
or pixelated. Let's first understand why this happens. In our shader, we pass the
image coordinates of the image. Now the shader interpolates texel values (texture
pixels) and decides which pixel of the image to pick to be shaded on the screen.
When the object is close to the viewer, each texel might become larger than the screen
pixel. When the object is very far from the viewer, the screen pixel might become
larger than the texel. Now, when it comes to selecting the texel, the rendering engine
needs to decide which algorithm to follow to select the texel. The algorithms have
to be decided by us, the programmers. Each algorithm has its pros and cons. Some
are very accurate but processor-intensive, and some are inaccurate but fast. In this
section, we will learn about each of them, and then we can decide which one to use
for rendering a particular object, depending on their importance in the game. The
best part is you get to apply various filtering modes for different textures.

www.it-ebooks.info

http://www.it-ebooks.info/

Applying Textures

[152]

Implementing mipmapping
We provide optimized collections of images that accompany a main texture to
increase the rendering speed and reduce aliasing artifacts. These optimized images are
collectively called a mipmap set. If the texture has a basic size of 1024 × 1024 pixels,
then the associated mipmap set may contain a series of nine images, and each takes
up one-fourth of the total area of the previous image: 512 × 512 pixels, 128 × 128, 64 ×
64, 32 × 32, 16 × 16, 8 × 8, 4 × 4, 2 × 2, and 1 × 1. These images are generally computed
by the rendering engine. The renderer will switch to a suitable mipmap image when
the texture is viewed from a distance or is of a small size. Artifacts like blurring,
shimmering, and blocking are minimized considerably when images of different sizes
are used. Also the rendering speed is considerably enhanced as the engine uses smaller
texture sizes for objects at far-off distances.

The function used to automatically generate a mipmap set in the WebGL API is
gl.generateMipmap(gl.TEXTURE_2D).

It will generate mipmap for the current texture buffer object. WebGL can generate
the mipmap images automatically, but in this case, we manually upload a series of
images in order to have more control. In the function, gl.texImage2D, the second
parameter is level. This level parameter refers to the level of detail. So, we can
upload multiple images for multiple mipmap levels and assign them to the same
texture buffer object, as shown in the following code snippet:

gl.bindTexture(gl.TEXTURE_2D, texture);
gl.pixelStorei(gl.UNPACK_FLIP_Y_WEBGL, true);
gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA,
 gl.UNSIGNED_BYTE, img);
gl.texImage2D(gl.TEXTURE_2D, 1, gl.RGBA, gl.RGBA,
 gl.UNSIGNED_BYTE, img256);
gl.texImage2D(gl.TEXTURE_2D, 2, gl.RGBA, gl.RGBA,
 gl.UNSIGNED_BYTE, img128);
gl.texImage2D(gl.TEXTURE_2D, 3, gl.RGBA, gl.RGBA,
 gl.UNSIGNED_BYTE, img64);
gl.texImage2D(gl.TEXTURE_2D, 4, gl.RGBA, gl.RGBA,
 gl.UNSIGNED_BYTE, img32);

In the preceding code, the current buffer object is texture. We upload multiple
mipmap images (img, ..., img32) for the same buffer object with different level of
detail (LOD) values.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[153]

Understanding the filtering methods
Now let's understand how mipmap sets are used in filtering methods available in the
WebGL API.

Nearest-neighbor interpolation
Nearest-neighbor interpolation is the fastest and simplest filtering method. It simply
uses the color of the texel closest to the pixel center for the pixel color. While being
fast, it results in a large number of artifacts. Its usage is shown as follows:

gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER,
 gl.NEAREST);

Linear interpolation
In the linear interpolation method, the four nearest texels to the pixel center are
sampled and their colors are combined by the weighted average of their distance.
This removes the blockiness seen during magnification. There is a smooth gradient of
color change from one texel to the next. It is also called bilinear filtering. Its usage is
shown as follows:

gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.LINEAR);

Nearest-neighbor with mipmapping
In the nearest-neighbor with mipmapping algorithm, the nearest mipmap level is
first chosen, then the nearest texel center is used to get the pixel color. This reduces
the aliasing and shimmering significantly but does not help with blockiness. Its
usage is shown as follows:

gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER,
 gl.NEAREST_MIPMAP_NEAREST);

Bilinear filtering with mipmapping
In bilinear filtering, the four nearest texels to the pixel center are sampled at the
closest mipmap level. The colors of the texels are combined by weighted average of
their distance. This removes the blockiness seen during magnification. So, instead
of an abrupt color change, there is now a smooth gradient of color change from one
texel to the next. Its usage is shown as follows:

gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER,
 gl.LINEAR_MIPMAP_NEAREST);

www.it-ebooks.info

http://www.it-ebooks.info/

Applying Textures

[154]

Trilinear filtering
Trilinear filtering is a solution to a common problem seen in bilinearly filtered
mipmapped images. A very noticeable change is observed in quality when the
WebGL renderer switches from one mipmap level to the next. Trilinear filtering
first does a texture lookup and then applies either bilinear or nearest filtering on the
two closest mipmap levels. It then linearly interpolates the resulting values. This
results in a smooth degradation of the texture quality as the distance from the viewer
increases rather than a series of sudden drops.

When two mipmaps are selected and we want to apply the nearest-neighbor
algorithm, we use the following code snippet:

gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER,
 gl.NEAREST_MIPMAP_LINEAR);

When two mipmaps are selected and we want to apply the bilinear algorithm, we
use the following code:

gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER,
 gl.LINEAR_MIPMAP_LINEAR);

Mipmapping and its corresponding filtering modes can only be
applied to POT (power of two) images, that is, images that have
a height and width in the power of two (64 × 64, 256 × 128, and
so on). We can apply only the nearest and linear filtering modes
to non-POT images.

Applying filtering modes
To apply filtering modes to our texture, we will add three dropdowns:

• Distance: This drop-down will help us move the object closer or farther from
the viewer

• Magnification Filtering: This drop-down holds the magnification
filtering modes

• Minification Filtering: This drop-down holds the minification filtering modes

Open the 04-ApplyingFilteringModes.html file in your editor. We have changed
the code to add the drop-downs, as shown in the following code snippet:

<div>
 <label>Minification Filter</label>
 <select id = "minificationFilter">
 <option value = "NEAREST">NEAREST</option>
 <option value = "LINEAR">LINEAR</option>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[155]

 <option value =
 "NEAREST_MIPMAP_NEAREST">NEAREST_MIPMAP_NEAREST</option>
 <option value =
 "LINEAR_MIPMAP_NEAREST">LINEAR_MIPMAP_NEAREST</option>
 <option value =
 "NEAREST_MIPMAP_LINEAR">NEAREST_MIPMAP_LINEAR</option>
 <option value =
 "LINEAR_MIPMAP_LINEAR">LINEAR_MIPMAP_LINEAR</option>
 </select>
 <label>Maginification Filter</label>
 <select id="magnificationFilter">
 <option value="NEAREST">NEAREST</option>
 <option value="LINEAR">LINEAR</option>
 </select>
</div>
<div>
 <label>Select Distance</label>
 <select id="distanceList">
 <option value="-1">1</option>
 ...
 <option value="-12">12</option>
 </select>
</div>

We have added the change function to handle change events in the start function
using jQuery selectors, as shown in the following code snippets:

function start() {
 ...
 $("#minificationFilter").change(changeValues);
 $("#magnificationFilter").change(changeValues);
 $("#distanceList").change(changeValues);
 ...
}

We have added a function, changeValues, to set the texture parameters' filtering
modes and to set the value of the global variable, distance. We retrieve the values
of the drop-down using jQuery selectors. The texture buffer is made the current
buffer using the API call, bindTexture, for subsequent gl.texParameteri calls.
The switch case statement sets the gl.TEXTURE_MIN_FILTER and gl.TEXTURE_MAG_
FILTER parameters for the current texture. Then, we invoke the drawScene function
to see the effect of these parameters, as shown in the following code snippet:

function changeValues() {
 gl.bindTexture(gl.TEXTURE_2D, texture);
 var minification=$("#minificationFilter option:selected").val();

www.it-ebooks.info

http://www.it-ebooks.info/

Applying Textures

[156]

 var magnification=$("#magnificationFilter
 option:selected").val();
 distance=parseInt($("#distanceList option:selected").val());
 switch(minification) {
 case "NEAREST":
 gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER,
 gl.NEAREST);
 break;
 case "LINEAR":
 gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER,
 gl.LINEAR);
 break;
 case "NEAREST_MIPMAP_NEAREST":
 gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER,
 gl.NEAREST_MIPMAP_NEAREST);
 break;
 case "LINEAR_MIPMAP_NEAREST":
 gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER,
 gl.LINEAR_MIPMAP_NEAREST);
 break;
 case "NEAREST_MIPMAP_LINEAR":
 gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER,
 gl.NEAREST_MIPMAP_LINEAR);
 break;
 case "LINEAR_MIPMAP_LINEAR":
 gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER,
 gl.LINEAR_MIPMAP_LINEAR);
 break;
 }
 switch(magnification) {
 case "NEAREST":
 gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER,
 gl.NEAREST);
 break;
 case "LINEAR":
 gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER,
 gl.LINEAR);
 break;
 }
 gl.bindTexture(gl.TEXTURE_2D, null);
 drawScene();
}

Change the drawScene function to translate mvMatrix by the distance variable set
in the changeValues function. This translation is like moving the camera closer or
farther from the model. The required change is shown as follows:

mat4.translate(mvMatrix, mvMatrix, [0.0, 0.0, distance]);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[157]

Understanding cubemaps and
multi-texturing
So far, we have used only 2D textures in our model. However, at the beginning of
the chapter, we also mentioned another kind of texture called cubemaps. Cubemaps
are often used in games to approximate an environmental reflection on the surface
of a model. Let's say you have a shiny mirror in your game and you want to show
the reflection of the left wall, or when the mirror rotates, you want to show the
reflection of the right wall. The biggest application of cubemaps in gaming is skylight
illumination and skyboxes.

A cube texture map consists of six two-dimensional images that correspond to the
faces of a cube. The s, t, and p coordinates represent a direction vector emanating
from the center of the cube that points toward the texel to be sampled, as shown in
the following figure:

< >s, t, p

For cubemap sampling, first we need to select a face, and then use 2D coordinates to
sample a color value from the selected image. Which face to sample is determined by
the sign of the coordinate with the largest absolute value. The other two coordinates
are divided by the largest coordinate and remapped to the range 0 to 1 using
formulas. Well, we do not need to do any of the calculations or even need to know
the formulas. The GPU does all that for us. We only need to specify the 2D textures
of the six sides of the cubemap. We specify each face of the cubemap with positive-Z,
positve-Y, positive-X, negative-X, negative-Y, and negative-Z directions. The
texImage2D function is called as follows:

gl.texImage2D(gl.TEXTURE_CUBE_MAP_NEGATIVE_X, 0, gl.RGBA, gl.RGBA,
 gl.UNSIGNED_BYTE, image);

www.it-ebooks.info

http://www.it-ebooks.info/

Applying Textures

[158]

Cubemap coordinates
We do not provide the cubemap coordinates to the shader. In fact, the cubemap
colors are sampled using the vertex normals using the following function:

textureCube(uCubeSampler, transformedNormal);

The textureCube function samples the color from the location where the normal
from the object surface intersects the cubemap. The uCubeSampler uniform
references the cubemap texture.

Multi-texturing
So far, we have been rendering using a single texture. However, there are times
where we may want to have multiple textures that contribute to a fragment to create
more complex effects. For such cases, we use WebGL's ability to access multiple
textures in a single draw call. This is known as multi-texturing. In this chapter, we
earlier read that WebGL can refer 32 active textures and each texture is represented
by TEXTURE0 through TEXTURE32. We can assign these textures to sampler uniforms
in our fragment shader and use them simultaneously to color a fragment.

Loading cubemaps
In our code, we will show how to use cubemaps and discuss multi-texturing.
So far, we have used a single texture in our code examples. However, in this code,
we will load two textures. The first will be our 2D texture and the second will be
our cubemap applied to the same object.

The following figure shows the different images used for the cubemaps and the
corresponding object on which they are applied:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[159]

Understanding the shader code
Open 04-ApplyingCubeMaps.html in your favorite editor. The vertex shader
remains the same as in our previous examples of this chapter. The changes in the
fragment shader are as follows:

uniform samplerCube uCubeSampler;

A new uniform variable of the samplerCube type is defined in the code. The value of
gl_FragColor is deduced as follows:

gl_FragColor = vec4(iColor, 1.0) * texture2D(uSampler,
 vec2(vTextureCoord.s, vTextureCoord.t)) *
 textureCube(uCubeSampler, transformedNormal);

Now, gl_fragColor has a new component, textureCube(uCubeSampler,
transformedNormal). The texture calls the textureCube function, which samples
the color values from the uniform, uCubeSampler. The transformedNormal
parameter is passed as a varying from the vertex shader. We were already using this
for lighting calculations.

We have also added two functions: loadCubeMap and loadFace. These functions
initialize our cubemap texture. We first create a memory reference in GPU for the
cubemap texture using the bindTexture call. We now pass gl.TEXTURE_CUBE_MAP
as the first parameter instead of gl.TEXTURE_2D. We use the nearest-neighbor
interpolation filtering mode for minification and the bilinear interpolation for
magnification. Then, we load 2D textures for each face of the cubemap. Each face
is loaded in the GPU and is associated with the faces of the cubemap by specifying
the target as gl.TEXTURE_CUBE_MAP_POSITIVE_X or gl.TEXTURE_CUBE_MAP_
POSITIVE_Y in the gl.texImage2D API call. After each texture is loaded, we invoke
the drawScene function to see the effect, as shown in the following code snippet:

function loadFace(target, url) {
 var image = new Image();
 image.onload = function() {
 gl.bindTexture(gl.TEXTURE_CUBE_MAP, cubeTex);
 gl.texImage2D(target, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED_BYTE,
 image);
 gl.bindTexture(gl.TEXTURE_CUBE_MAP, null);
 drawScene();
 }
 image.src = url;
};
function loadCubeMap() {
 cubeTex = gl.createTexture();

www.it-ebooks.info

http://www.it-ebooks.info/

Applying Textures

[160]

 gl.bindTexture(gl.TEXTURE_CUBE_MAP, cubeTex);
 gl.texParameteri(gl.TEXTURE_CUBE_MAP, gl.TEXTURE_MAG_FILTER,
 gl.NEAREST);
 gl.texParameteri(gl.TEXTURE_CUBE_MAP, gl.TEXTURE_MIN_FILTER,
 gl.LINEAR);
 loadFace(gl.TEXTURE_CUBE_MAP_POSITIVE_X,
 'cubemap/positive_x.jpg');
 loadFace(gl.TEXTURE_CUBE_MAP_NEGATIVE_X,
 'cubemap/negative_x.jpg');
 loadFace(gl.TEXTURE_CUBE_MAP_POSITIVE_Y,
 'cubemap/positive_y.jpg');
 loadFace(gl.TEXTURE_CUBE_MAP_NEGATIVE_Y,
 'cubemap/negative_y.jpg');
 loadFace(gl.TEXTURE_CUBE_MAP_POSITIVE_Z,
 'cubemap/positive_z.jpg');
 loadFace(gl.TEXTURE_CUBE_MAP_NEGATIVE_Z,
 'cubemap/negative_z.jpg');
}

In the drawScene function, we initialize our two textures as follows:

function drawScene() {
 ...
 gl.activeTexture(gl.TEXTURE0);
 gl.bindTexture(gl.TEXTURE_2D, texture);
 gl.uniform1i(gl.getUniformLocation(shaderProgram, "uSampler"),
 0);
 gl.activeTexture(gl.TEXTURE1);
 gl.bindTexture(gl.TEXTURE_CUBE_MAP, cubeTex);
 gl.uniform1i(gl.getUniformLocation(shaderProgram,
 "uCubeSampler"), 1);
 ...
}

In the preceding code, we activate our first texture, and then we associate our current
2D texture by using the parameter 0 in the gl.uniform1i(..., 0) call. Similarly,
we activate our second texture gl.activeTexture(gl.TEXTURE1) and then
associate our cubemap texture as 1 in the gl.uniform1i(..., 1) call.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[161]

Notice the effect of the following cubemap texture (hall in Rome) and 2D texture
applied on the cube model as shown in the following figure:

Summary
In gaming applications, textures are the key factors that affect the performance as
well as the look of the game. The size of the texture and intelligent use of concepts,
such as mipmapping, will decide how your game would perform. Also, we learned
how to map texture coordinates to vertex coordinates, which is a very important
concept to control the overall memory footprint of your objects in the GPU. If you
plan to use open source WebGL libraries to create your games, these concepts will
come in handy as you might have to tweak them to get the last bit of performance
from your game.

In the next chapter, we will learn about the different types of camera used in 3D
games. We will also write a new Camera class to view our world in 5000 AD with
different perspectives.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Camera and User Interaction
It is impossible to imagine a 3D game without a camera. WebGL does not provide
a camera class. We have learned that WebGL is a low-level API, but it gives us
a rendering API to help us write one of our own implementations. This chapter
is focused on evolving our own camera class for our game scene. We will also
empower our users to view the game scene from different angles and positions by
adding mouse and keyboard interactivity. We will also implement different types of
cameras used in gaming. The topics we will cover are as follows:

• ModelView transformations
• Perspective transformations
• The basic camera
• The free camera
• Controlling the camera with the keyboard and mouse
• The orbit camera

Understanding ModelView
transformations
In all our previous chapters, we used model transformations. We used glMatrix
(http://glmatrix.net/) functions to calculate translation and rotation. Let's look at
what we are talking about here:

// Create an identity matrix
var mvMatrix=mat4.create();

// Translate the matrix by objects location and replace the matrix
 with the result(mat4.translate(out,in,vec3))
 mat4.translate(mvMatrix, mvMatrix,
 stage.stageObjects[i].location);

www.it-ebooks.info

http://www.it-ebooks.info/

Camera and User Interaction

[164]

// Rotate the matrix by objects rotation X and replace the matrix
 with the result(mat4.rotateX(out,in,vec3))
 mat4.rotateX(mvMatrix, mvMatrix,
 stage.stageObjects[i].rotationX);
 mat4.rotateY(mvMatrix, mvMatrix,
 stage.stageObjects[i].rotationY);
 mat4.rotateZ(mvMatrix, mvMatrix,
 stage.stageObjects[i].rotationZ);

In the preceding code, we created a ModelView matrix, mvMatrix, which stores the
translation and rotation of the object. We passed this matrix to our fragment shader
using our own function, setMatrixUniforms. When we invoked drawElements, each
vertex of the object was transformed in the vertex shader because of the multiplication
of each vertex location with the mvMatrix, as shown in the following code:

vec4 vertexPos4 = mvMatrix * vec4(aVertexPosition, 1.0);

So why is this matrix called a ModelView matrix when it stores only the model
transformations? Well, this is because until now, we have not considered the view
matrix. We have only been viewing our objects from one angle and location. The
view matrix and object matrix are combined to render our scene (v'=Mv). Let's define
these two transformations.

Applying the model transformation
We use the modeling transformation to position and orient the model. For example,
we can translate, rotate, or scale the model or perform a combination of these
operations. These three operations are depicted in the following figure:

y

x

z

Translate Rotate Scale

y y

y

x x

z z

Model transformations

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[165]

Understanding the view transformation
The viewing transformation is analogous to the positioning and aiming of a
camera. In our code examples, the current matrix is set to the identity matrix using
mat4.identity(mvMatrix). This step is necessary as most of the transformation
commands multiply the current matrix by the specified matrix and then set the result
to be the current matrix. So essentially, we can say that until now we were setting
our view matrix to the identity matrix. So, let's dive deep into the view matrix and
its calculations.

The view matrix is the most misunderstood concept in 3D game programming. The
camera transformation matrix defines the position and orientation of the camera in
the world space. However, we use the view matrix to transform the model's vertices
from world space to view space. The camera matrix and view matrix are not the same.

To understand it, let's define the two terms separately:

• Camera transformation matrix: This is exactly like the model matrix. We
treat our camera like an object. It has a location and can be rotated in a scene.
The final transformation matrix is our camera matrix.

• View matrix: This matrix is used to transform the vertices of a model
from world space to view space. This matrix is the inverse of the camera
transformation matrix. In the real world, you move the camera but in 3D
rendering, we say that the camera does not move but the world moves in the
opposite direction and orientation. Hence, to transform the model to view
space, we use the inverse of the camera matrix.

Understanding the camera matrix
The camera transformation matrix is exactly the same as the model transformation
matrix, except that we do not use the scale component to calculate it. Let's reiterate
the components used to calculate a model transformation matrix. A model matrix is
calculated using the translation, rotation, and scale functions. In the camera matrix,
we generally do not have a scale functions.

Hence, if R represents the rotation matrix of the camera and T represents the
translation matrix in world space, then the final transformation matrix M can be
computed by multiplying the two matrices, M = T*R. To get the position of the
camera in world-space (also called the eye position), from the matrix M, you simply
take the fourth row of the resulting 4 × 4 matrix, M = (M41, M42, M43, M44).

www.it-ebooks.info

http://www.it-ebooks.info/

Camera and User Interaction

[166]

Comprehending the components of a camera matrix
A camera matrix is represented by four orthogonal unit vectors. These vectors define
the orientation and position of the camera in the scene. The look vector represents
the direction the camera is pointing to. The up vector denotes the upward direction.
The right vector points to the right of the camera, and finally the position element
says where the camera is positioned in the world. The breakdown of the final view
matrix is as follows:

Up.x
Up.y
Up.z
Positon.y

Right.x
Right.y
Right.z
Positon.x

Look.x
Look.y
Look.z
Positon.z

0.0f
0.0f
0.0f
1.0f

The following figure shows the three orthogonal vectors (Up, Look, and Right). The
vectors are orthogonal if their dot product is 0 (perpendicular to each other).

Orientation and Position

UP

LOOK

RIGHT

+Y

+Z

+X

Camera

Once we set our four orthogonal vectors, we can calculate our camera matrix,
as follows:

var cameraMatrix= -mat4.create();
 mat4.multiplyVec4(cameraMatrix, [1, 0, 0, 0], this.right);
 mat4.multiplyVec4(cameraMatrix, [0, 1, 0, 0], this.up);
 mat4.multiplyVec4(cameraMatrix, [0, 0, 1, 0], this.normal);
 mat4.multiplyVec4(cameraMatrix, [0, 0, 0, 1], this.position);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[167]

Converting between the camera matrix and
view matrix
We calculate the view matrix by computing the inverse of the camera transformation
matrix, V=M-1, as shown in the following code snippet:

var viewMatrix=mat4.create();
mat4.invert(viewMatrix, cameraMatrix);

If we have the view matrix, we can calculate the camera transformation matrix by
computing the inverse view matrix. Using the camera matrix, we can derive the
position and orientation of the camera, M=V-1, as shown in the following code snippet:

mat4.invert(cameraMatrix, viewMatrix);

Now let's look at a simple function that we evolved to compute the view matrix:

var m = mat4.create();
mat4.inverse(m, cameraMatrix);
return m;

We do not recommend that you use the preceding code to
create the view matrix. However, the code is important as
we will use the explanation to calculate the model matrix
of stage objects. We have used a handy function in the
glMatrix library, the lookAt function to calculate the
view matrix. We will use this function in our game.

Using the lookAt function
In this section, we will understand how glMatrix calculates the view matrix from
the orthogonal vectors. Take a look at the following code:

var matView=mat4.create();
var lookAtPosition=vec3.create();
vec3.add(lookAtPosition, this.pos, this.dir);
mat4.lookAt(matView, this.pos, lookAtPosition, this.up);

The lookAt function takes three parameters and then computes our matView matrix
(view matrix). The first parameter is position that represents the position of the
camera, the second parameter is lookAtPosition that denotes the point in the world
scene that our camera is looking at, and the third parameter is the up vector. For a
generic camera, lookAtPosition is calculated by adding the position, this.pos,
and the look vector of the camera, this.dir in our case.

www.it-ebooks.info

http://www.it-ebooks.info/

Camera and User Interaction

[168]

The following algorithm explains how the lookAt function computes the view matrix:

Vector3 zaxis = normal(lookAtPosition – this.pos); // The
 "look-at" vector.
Vector3 xaxis = normal(cross(this.up, zaxis)); // The
 "right" vector.
Vector3 yaxis = cross(zaxis, xaxis); // The "up" vector.

// Create a 4 x 4 orientation matrix from the right, up, and at
 vectors
 Matrix4 orientation = {
 xaxis.x, yaxis.x, zaxis.x, 0,
 xaxis.y, yaxis.y, zaxis.y, 0,
 xaxis.z, yaxis.z, zaxis.z, 0,
 0, 0, 0, 1
 };
 // Create a 4 x 4 translation matrix by negating the eye
 position.
 Matrix4 translation = {
 1, 0, 0, 0,
 0, 1, 0, 0,
 0, 0, 1, 0,
 -pos.x, -pos.y, -pos.z, 1
 };
 // Combine the orientation and translation to compute the view
 matrix
 return (translation * orientation);

The function first calculates our three vectors (look, up, and right). If you look at
the figure above the direction, the look vector represents the z axis of the camera
and the up vector represents the y axis. First, we calculate the z axis (the look or
direction vector) by subtracting the position of the camera from lookAtPosition.
As we mentioned earlier, each vector is orthogonal, so if we have two vectors, we can
calculate the third. In order to calculate the x axis, we find the cross product of the
look and the up vectors (yaxis = cross(zaxis, xaxis)). Now we readjust our y
axis with respect to our computed z and x axes.

The function then creates the orientation matrix and translation matrix using the
position and orthogonal vectors. Then, we calculate the view matrix by multiplying
the translation with the orientation matrix.

The preceding algorithm is already implemented in the
lookAt function in glMatrix. We have presented this
algorithm to explain the logic to calculate the vectors
(direction, up, and right) from lookAtPosition, the camera
position, and the up vector. This logic will be instrumental in
understanding the implementation of orbit cameras.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[169]

Understanding the camera rotation
To rotate the camera, we need to rotate the up, look, or the right vector. To do this, we
create a matrix describing our rotation and transform the relevant vectors using it.

We will call the rotation around the look vector (or z axis) Roll. The rotation around
the up vector (or y axis) is called Yaw. The rotation around the right vector (x axis) is
called Pitch. The following is a picture of an aircraft showing Roll, Pitch, and Yaw in
terms of the aircraft's local axes:

Pitch

Yaw

Roll

Most developers use the airplane figure to represent pitch, yaw, and roll, as the terms
are mostly used in flight dynamics.

Using quaternions
We represent our rotations in an orthogonal matrix, whose rows or columns are
orthogonal vectors. We can also represent our 3D rotations using Euler angles.
Euler angles help us define the rotation in the three-dimensional world space using
only three numbers (yaw, roll, and pitch). However, doing the mathematics using
Euler angles results in a problem called gimbal lock when animating objects. So, we
generally use other formats to store object rotations. To understand gimbal lock, let's
look at the preceding image. If the aircraft pitches up 90 degrees, the aircraft and
platform's Yaw axis becomes parallel to the Roll axis, and changes about the yaw can
no longer be compensated for. Well, it is difficult to explain gimbal lock. We would
surely observe one in our game development career if we stick to the matrices to
represent rotations. For instance, when you try to animate the rotation of a player's
arm, you will observe that while incrementing angles along one single plane, the
rotation would stop or start at a different angle at a particular instance. However
for now, we assume that there are gimbal locks. If you want to know more, refer to
http://en.wikipedia.org/wiki/Gimbal_lock.

www.it-ebooks.info

http://www.it-ebooks.info/

Camera and User Interaction

[170]

When using matrices for rotations, we need some other formats to represent
rotations in our game. We prefer to use a quaternion to avoid a gimbal lock.

A quaternion represents two things. It has the x, y, and z components, which
represents the axis about which a rotation will occur. It also has a w component,
which represents the amount of rotation that will occur about its axis. In short, a
quaternion is a vector and a float.

A quaternion is technically four numbers, three of which have an imaginary
component (i is defined as sqrt (-1)). Well, with quaternions, i equals j equals k equals
sqrt (-1). The quaternion itself is defined as q = w + xi + yj + zk where w, x, y, and z are
all real numbers. We will store a quaternion in a class with four member variables:
float w, x, y, and z.

Well, we are saved from all the math involved as our glMatrix library gives us all
the functions required for our computations. Let's look at a few functions:

quat.rotateX(out, a, rad) // Rotates a quaternion by the given
 angle about the X axis
quat.rotateY(out, a, rad) // Rotates a quaternion by the given
 angle about the Y axis
quat.rotateZ(out, a, rad) // Rotates a quaternion by the given
 angle about the Z axis
quat.setAxisAngle(out, axis, rad) // Sets a quat from the given
 angle and rotation axis, then returns it.
quat.setAxisAngle(out, [1,0,0], rad) // Sets a quat from the given
 angle and X axis, then returns it.
vec3.transformQuat(out, a, q) // Transforms the vec3 with a quat
mat3.fromQuat(out, q) // Calculates a 3 x 3 matrix from the given
 quaternion
quat.fromMat3(out, m) // Creates a quaternion from the given 3 x 3
 rotation matrix.

So basically, if you look at the preceding functions, we can get a matrix from a
quaternion and create a quaternion from a rotation matrix. We can rotate our vector
using a quaternion. We can create a quaternion for rotation around an axis using the
setAxisAngle function of our quat class. We will soon be putting these functions
to action.

Understanding perspective
transformations
Although we touched upon perspective transformations in Chapter 1, Getting
Started with WebGL Game Development, and have been using our perspective matrix
throughout our code, we would like to discuss it in depth here.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[171]

Nearly all 3D games use a perspective projection to render their scene. Like the real
world, this simulates the application of a perspective to objects rendered within the
game so that objects that are further away appear smaller than objects that are nearer.

In addition to this obvious size effect, more subtle effects of perspective are picked
up intuitively by us, and we will add a substantial feeling of depth to the rendered
scene. The sides of a cube would seem to narrow slightly as the distance from the
viewer increases, thereby allowing us to automatically determine the exact position
in which the cube is situated.

Understanding the viewing frustum
The viewing volume of a camera takes the shape of a frustum which is a rectangular
cone with its tip cut off, as shown in the following figure:

Near clip plane

Camera

Far clip plane

Objects that fall inside the volume of the frustum are visible through the camera.
Objects that fall outside the view volume are hidden.

The near and far clip planes decide the visibility of the object. Objects nearer to the
camera than the near clip plane and the objects further than the far clip plane are
excluded from rendering. In addition to the clip planes, the frustum is defined by the
viewing angle and the aspect ratio. The viewing angle defines the angle, in degrees,
between the camera and the y axis.

Changing the angle will cause the overall shape of the frustum to expand or compress,
thereby causing apparent changes in the size of objects.

www.it-ebooks.info

http://www.it-ebooks.info/

Camera and User Interaction

[172]

The following figure shows two viewing frustums from the side view. The first has a
viewing angle of 40 degrees and the other has an angle of 18.5 degrees. The distance
of the near and far clip planes is the same in both cases.

18.5
40

A distant object will appear larger but will disappear if moved away from the x axis
in the smaller field of view (FOV). The objects will disappear quickly if moved away
from the camera but will be visible when moved farther away from the x axis in the
larger field of view.

The value we would specify for the viewing angle will vary from one game to the
next. An angle within the range of 45 and 60 degrees are usually safe to use.

The aspect ratio is calculated by dividing the frustum's width by its height. The
aspect ratio is used to calculate the viewing angle on the x axis. The aspect ratio, the
viewing angle, and the distances of the near and far planes are used to calculate the
projection matrix. The projection matrix is used to depict 3D objects on a 2D screen.

Defining the view frustum
Now, let's again look at the glMatrix function we have used throughout our code:

mat4.perspective(this.projMatrix, degToRadian(this.fieldOfView),
 aspectRatio, this.nearClippingPlane, this.farClippingPlane)

The four parameters that we discussed are passed to the preceding function. The field
of view, the aspect ratio (width/height of our canvas), and the distances of the near
and far clipping planes are passed to create our perspective transformation matrix.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[173]

Using the basic camera
Let's now write our class for the basic camera. What have we learned so far? There
are two transformation matrices: the view matrix and the projection matrix. To
calculate the view matrix, we need four parameters: up, direction, left, and position.
These parameters define the camera's orientation and position in space.

To compute the projection matrix, we need four parameters as well: field of view
(radians), aspect ratio of the 2D screen, and the near and far clip planes.

Hence, in our basic camera class, we will need getters/setters for our four parameters
and a function to calculate the view and projection matrices. Although the camera
class in games would need more functions such as pitch and yaw, we will first create
a base class.

Implementing the basic camera
Our base camera class has variables and basic functionality defined, which will be
used in all our different camera implementations. In different types of 3D games, we
generally require three types of cameras: free, target, and orbit.

• A free camera can rotate and move freely in any direction. This camera type
is used in games where you want to look at the whole scene without any
particular context or target. It is mostly used as a first-person camera where
you want to use the camera to view the scene as if the player was viewing it.

• A target camera, though, can move freely in any direction but it will always
face a target. The target is generally defined by a vector. This camera is
generally used as a third-person camera. We want to see the player moving
in the scene; hence, the camera follows the person.

• An orbit camera is a specific type of target camera that can rotate in any
direction around the target and allows for limited rolling.

We have implemented our base class in camera.js present in the primitive
directory. Open the file in your favorite text editor and let's walk through the
code to understand it:

Camera =function ()
{
 // Raw Position Values
 this.left = vec3.fromValues(1.0, 0.0, 0.0); // Camera Left
 vector
 this.up = vec3.fromValues(0.0, 1.0, 0.0); // Camera Up vector
 this.dir = vec3.fromValues(0.0, 0.0, 1.0); // The direction its
 looking at

www.it-ebooks.info

http://www.it-ebooks.info/

Camera and User Interaction

[174]

 this.pos = vec3.fromValues(0.0, 0.0, 0.0); // Camera eye
 position
 this.projectionTransform = null;
 this.projMatrix;
 this.viewMatrix;
 this.fieldOfView = 55;
 this.nearClippingPlane =0.1;
 this.farClippingPlane = 1000.0;
};

In the preceding constructor, we have declared and initialized all the properties that
we need to create the view and projection matrices.

The following code lists all the getters for the up, left, and position vectors. Also, we
have created getters to access the computed projection and view matrix.

Camera.prototype.getLeft =function ()
{
 return vec3.clone(this.left);
}
Camera.prototype.getPosition =function ()
{
 return vec3.clone(this.pos);
}
Camera.prototype.getProjectionMatrix =function ()
{
 return mat4.clone(this.projMatrix);
}
 Camera.prototype.getViewMatrix =function ()
{
 return mat4.clone(this.viewMatrix);
}
Camera.prototype.getUp =function ()
{
 return vec3.clone(this.up);
}

The following code lists the getters for field of view and clipping planes. The field of
view getter returns the value in degrees.

Camera.prototype.getNearClippingPlane =function ()
{
 return this.nearClippingPlane;
}
Camera.prototype.getFieldOfView =function ()
{
 return this.fieldOfView;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[175]

The next set of functions are setters for the clipping planes and field of view. The
near clip plane has to be a positive value. The field of view value has to be between
0 and 180 degrees. The far clipping plane should not be set to an extremely large
value. This can create depth buffer precision problems such as z-fighting. For more
information about the depth buffer, refer to http://www.opengl.org/resources/
faq/technical/depthbuffer.htm.

Camera.prototype.setFarClippingPlane =function (fcp)
{
 if (fcp > 0)
 {
 this.farClippingPlane = fcp;
 }
}
Camera.prototype.setFieldOfView =function (fov)
{
 if (fov > 0 && fov < 180)
 {
 this.fieldOfView = fov;
 }
}

Camera.prototype.setNearClippingPlane =function (ncp)
{
 if (ncp > 0)
 {
 this.nearClippingPlane = ncp;
 }
}

The apply function takes the aspect ratio as a parameter and computes the matrices,
as shown in the following code:

Camera.prototype.apply =function (aspectRatio)
{
 var matView=mat4.create();
 var lookAtPosition=vec3.create();
 vec3.add(lookAtPosition,this.pos, this.dir);
 mat4.lookAt(matView, this.pos, lookAtPosition, this.up);
 mat4.translate(matView,matView,vec3.fromValues(-this.pos[0], -this.
pos[1], -this.pos[2]));
 this.viewMatrix = matView;
 // Create a projection matrix and store it inside a globally
accessible place.
 this.projMatrix=mat4.create();
 mat4.perspective(this.projMatrix, degToRadian(this.fieldOfView),
aspectRatio, this.nearClippingPlane, this.farClippingPlane)));
}

www.it-ebooks.info

http://www.it-ebooks.info/

Camera and User Interaction

[176]

Our basic camera does not take the lookAtPosition (target object's position) value
but the lookAt function of glMatrix requires one. Hence, we first calculate the
lookAtPosition value from the position and the direction vectors by adding them
up. Then, we invoke the lookAt function to calculate our view matrix. The projection
matrix is calculated using the perspective function of glMatrix.

Understanding the free camera
The FreeCamera class that we are going to write will be controlled by the keyboard.
We would like to move forward, backward, left, right, and rotate on its axes.
Let's first define the actions that we want our free camera to perform with the
corresponding key combinations. The key combinations and the respective actions
to be performed are shown in the following table:

Key combination Action to be performed
Left arrow Move to the left along the x axis
Right arrow Move to the right along the x axis
S Move to the left along the y axis
W Move to the right along the y axis
Up arrow Move to the left along the z axis
Down arrow Move to the right along the z axis
Shift + A Tilt to the left
Shift + left arrow Rotate counter clockwise
Shift + D Tilt to the right
Shift + right arrow Rotate clockwise
Shift + up arrow Look down
Shift + down arrow Look up

We don't want the users of the FreeCamera class to set the up, left, and direction
vectors either. It would be very confusing for the user to provide the value for
these vectors. Hence, we decided that the user would provide two settings to our
camera class:

• Position: This setting will define the position of the camera.
• "look at" position: This setting will define the point on the scene that the

camera looks at. If we set the "look at" point, then the behavior becomes more
like a target camera. We have explained how other vectors are adjusted when
we set the "look at" position.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[177]

We will calculate the up, left, and direction vectors using the preceding setting values.

Also, we have added two more properties to the FreeCamera class: the angular
and linear velocities. Although we will not use these parameters in our present
implementation of the camera class, they will be very useful when we discuss
animations in Chapter 6, Applying Textures and Simple Animations to Our Scene.

Implementing the free camera
Open freecamera.js in your favorite text editor. The first step is to inherit the
Camera class in FreeCamera so that it gets access to basic functions, such as apply,
and all the properties such as up, left, direction, position, and FOV that are important
for any type of camera.

FreeCamera = inherit(Camera, function ()
{
 superc(this);
 // Delta Values for Animations
 this.linVel = vec3.fromValues(0.0, 0.0, 0.0); // Animation of
positions
 this.angVel = vec3.fromValues(0.0, 0.0, 0.0); // Animations of
rotation around (side Vector, up Vector, dir Vector)
});

The preceding code uses the inherit function defined in the utils.js file present
in the primitive directory. The inherit function uses JavaScript prototyping for
inheritance. Let's touch upon the inheritance of the Camera class quickly. Open
utils.js in your favorite text editor. In the file, you will find two functions:
inherit and superc. The inherit function takes the name of the parent class and
the constructor of the child class as parameters and uses prototyping for inheritance.

JavaScript is a prototype-based language, which means that every object can be
a prototype of another object. The process forms a prototype chain, which is a
linked list of objects, from which an object inherits the properties and methods
of its parent object.

A nonstandard magical property, __proto__, is a mimic of the internal Prototype
property. We can modify __proto__ to dynamically change the prototype chain of
an existing object. See the following figure to understand the hierarchy:

Object.PrototypeCamera

Prototype

Null

Prototype Prototype

FreeCamera

www.it-ebooks.info

http://www.it-ebooks.info/

Camera and User Interaction

[178]

The following code shows how we break the chain by setting the __proto__ property:

function inherit(parentObject, child)
 {
 child.prototype.__proto__ = parentObject.prototype;
 child.prototype.__parent = parentObject;
 return child;
 }

Then, the superc function invokes the apply prototype function. It is invoked by the
constructor of the child class. Using the apply function, we can write a method once,
and then inherit it in another object, without having to rewrite the method for the
new object. The superc function is defined as follows:

function superc(obj)
 {
 var tmpparent = obj.__parent;
 // Temporarily change our parent to be our parent's parent to
 // avoid infinite recursion.
 if (!(obj.__parent===undefined) &&
 o.__parent.prototype.__parent) {
 obj.__parent = obj.__parent.prototype.__parent;
 }
 tmpparent.prototype.constructor.apply(obj);
 delete obj.__parent;
 }

We won't discuss more JavaScript inheritance here, but you can read about it
at https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/
Inheritance_and_the_prototype_chain.

We initialize two properties: lineVel (linear velocity) and angVel (angular velocity)
in the constructor. Now, let's discuss the implementation of our two most important
initialization functions: setLookAtPoint and setPosition. The setPosition
function is straightforward. It takes an array of the [x, y, z] location coordinates of
the camera, creates a new vector, and initializes our pos variable inherited from the
parent Camera class.

By adjusting the position of the free camera, the camera's rotational angles are not
affected. Hence, we can simply copy the values of the newVec variable to its position
(pos) class variable, as shown in the following code snippet:

/**
 Set the new location of the camera.
 @param {Array} newVec An absolute value of where to

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[179]

 place the camera.
 */
 FreeCamera.prototype.setPosition =function (newVec)
{
 this.pos=vec3.fromValues(newVec[0],newVec[1],newVec[2])
}

The setLookAtPoint function uses the position vector and uses point (newVec)
values to calculate the up, left, and direction vectors. The code starts with a check
to see whether the position or lookAtPoint is at the world origin. If it is, it should
not do anything, but simply use the values for up [0, 1, 0], left [1, 0, 0], and dir [0, 0,
1] from the parent constructor. If any of the values are different, then calculate the
direction vector by subtracting the value of the position from the look at point vector
(vec3.subtract(this.dir, newVec, this.pos)) and normalizing the direction
vector (vec3.normalize(this.dir, this.dir)) to a unit vector.

Then, we adjust our left and up vectors. We calculate the left vector assuming that
the up vector is [0,1,0] and compute the cross product between the direction and
up vectors (vec3.cross(this.left, vec3.fromValues(0, 1, 0), this.dir
)). Then, we calculate the up vector by computing the cross product of the left and
direction vectors (vec3.cross(this.up, this.dir, this.left)).

All the mathematics involved is based on the fact that all the three vectors are
perpendicular to each other, that is, they are orthogonal. If we have two vectors,
we can calculate the third by calculating the cross product of the two vectors. The
cross product yields a vector that is perpendicular to the original two vectors. The
setLookAtPoint function is defined as follows:

FreeCamera.prototype.setLookAtPoint =function (newVec)
{
 // if the position hasn't yet been changed and they want the
 // camera to look at [0,0,0], that will create a problem.
 if (isVectorEqual(this.pos, [0, 0, 0]) && isVectorEqual(newVec, [0,
0, 0]))
 {
 }
 else
 {
 // Figure out the direction of the point we are looking at.
 vec3.subtract(this.dir, newVec, this.pos);
 vec3.normalize(this.dir, this.dir);
 // Adjust the Up and Left vectors accordingly
 vec3.cross(this.left, vec3.fromValues(0, 1, 0), this.dir);
 vec3.normalize(this.left, this.left);
 vec3.cross(this.up, this.dir, this.left);
 vec3.normalize(this.up, this.up);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Camera and User Interaction

[180]

The next very important function is rotateOnAxis; this function is the base
function for pitch, yaw, and roll functionalities. It takes two parameters: the axis
vector (axisVec) and an angle in radians. The axis vector holds the axis (up, left,
and direction) on which we want the rotation. In this function, we will not use the
rotation matrix but use quaternions described earlier. We will use the setAxisAngle
function of our quat class to compute the rotation along an axis and store it in
our quate variable: quat.setAxisAngle(quate, axisVec, angle). Then, we
transform our three vectors with the rotation quaternion. Rotation using quaternions
is much faster than using the rotation matrix, as the rotation matrix would use 9/16
elements but quaternions use four elements (i, j, k, and w). The rotateOnAxis
function is defined as follows:

FreeCamera.prototype.rotateOnAxis =function (axisVec, angle)
{
 // Create a proper Quaternion based on location and angle
 var quate=quat.create();
 quat.setAxisAngle(quate, axisVec, angle)
 // Create a rotation Matrix out of this quaternion
 vec3.transformQuat(this.dir, this.dir, quate)
 vec3.transformQuat(this.left, this.left, quate)
 vec3.transformQuat(this.up, this.up, quate)
 vec3.normalize(this.up, this.up);
 vec3.normalize(this.left, this.left);
 vec3.normalize(this.dir, this.dir);
}

For functionalities such as pitch, yaw, and roll, we will invoke the rotateOnAxis
function to calculate our new vectors. For pitch, we will pass the left vector as a
parameter (axisVec) to rotateOnAxis, as pitch is rotation around the x axis. For
yaw, we will pass the up vector, as yaw is rotation around the y axis, and for roll,
we will pass the direction vector for roll. These three functions are defined in the
following code snippet:

FreeCamera.prototype.yaw =function (angle) {
 this.rotateOnAxis(this.up, angle);
}
FreeCamera.prototype.pitch =function (angle) {
 this.rotateOnAxis(this.left, angle);
}
FreeCamera.prototype.roll =function (angle) {
 this.rotateOnAxis(this.dir, angle);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[181]

We also added a moveForward function. It moves the camera forward in the direction
it is pointing. We pass the distance as the parameter(s) and then multiply our
direction vector with this scalar and add or subtract the result from the position.
The moveForward function is defined as follows:

FreeCamera.prototype.moveForward = function(s) {
 var newPosition = [this.pos[0] - s*this.dir[0], this.pos[1] -
 s*this.dir[1], this.pos[2] - s*this.dir[2]];
 this.setPosition(newPosition);
}

The next set of functions will be used in animation in Chapter 6, Applying Textures
and Simple Animations to Our Scene. The objective of these functions is to move our
camera at a constant rate with the scene or use it as a first-person camera to move the
camera along with the model. These functions either move or rotate the camera at a
fixed or angular velocity, as shown in the following code:

FreeCamera.prototype.setAngularVel =function (newVec){
 this.angVel[0] = newVec[0];
 this.angVel[1] = newVec[1];
 this.angVel[2] = newVec[2];
}

FreeCamera.prototype.getAngularVel =function (){
 return vec3.clone(this.angVel);
}

FreeCamera.prototype.getLinearVel =function (){
 return vec3.clone(this.linVel);
}

FreeCamera.prototype.setLinearVel =function (newVec){
 this.linVel[0] = newVec[0];
 this.linVel[1] = newVec[1];
 this.linVel[2] = newVec[2];
}

FreeCamera.prototype.update =function (timeStep)
{
 if (vec3.squaredLength(this.linVel) == 0 &&
 vec3.squaredLength(this.angularVel) == 0)
 return false;
 if (vec3.squaredLength(this.linVel) > 0.0)
 {

www.it-ebooks.info

http://www.it-ebooks.info/

Camera and User Interaction

[182]

 // Add a velocity to the position
 vec3.scale(this.velVec, this.velVec, timeStep);
 vec3.add(this.pos, this.velVec, this.pos);
 }
 if (vec3.squaredLength(this.angVel) > 0.0)
 {
 // Apply some rotations to the orientation from the angular
 velocity
 this.pitch(this.angVel[0] * timeStep);
 this.yaw(this.angVel[1] * timeStep);
 this.roll(this.angVel[2] * timeStep);
 }
 return true;
}

The preceding free camera code does not calculate the view
matrix. Each functionality just updates our vectors. We calculate
our view matrix in the apply function defined in the parent class.

Now, let's use our free camera in the scene that we created in Chapter 3, Loading the
Game Scene.

Using our free camera
We want to view the scene from Chapter 3, Loading the Game Scene, from different
angles and positions as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[183]

Here, on the left-hand side, is the view from the city line, parallel to the road, and to
the right-hand side is the top view.

Now, let's add a camera to our scene. Open 05-Loading-Scene-With-Camera.html
in your favorite text editor. There is no change in our shader code.

Implementing the control code
The first change is in our start function. We have initialized our camera object in the
function before adding objects to the scene. We set the position and the "look at point"
position of the camera. You will have to change the values in accordance to the scene
you plan to develop for your game, as shown in the following code snippet:

cam=new FreeCamera();
cam.setPosition(new Array(0.0, 25.0, 150.0));
cam.setLookAtPoint(vec3.fromValues(0.0, 0.0, 1.0));

Before we understand the other changes, let's first understand the order of
multiplication of the perspective, model, and view transformations. First the
view matrix is multiplied with the model transformation matrix, Mv = V*M.

Then, the projection matrix is multiplied with the Mv matrix, MvP = P*V*M.

The vertices are transformed in the vertex shader:

vec4 vertexPos4 = mVMatrix * vec4(aVertexPosition, 1.0);
gl_Position= pMatrix *vertexPos4;

Hence, the complete transformation of vertices happens in the order MVP*
vertex = P*V*M*Vertex.

We initialize our mvMatrix as an identity matrix in the initScene function, as follows:

mat4.identity(mvMatrix);

In the calculateMvMatrix function that we added, we invoke the camera's apply
function to calculate and set our view and projection matrices. We pass the aspect
ratio of our scene (gl.width/gl.height) to the apply function. Then, we multiply
our cam.viewMatrix with our mvMatrix (identity matrix). As multiplying by an
identity matrix has no effect, our mvMatrix now holds the view matrix:

 function calculateMvMatrix(){
 cam.apply(gl.viewportWidth / gl.viewportHeight);
 mat4.multiply(mvMatrix, mvMatrix, cam.viewMatrix);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Camera and User Interaction

[184]

We invoke the calculateMvMatrix function after saving our mvMatrix on the stack.
Although our mvMatrix only holds the identity matrix for now, it is always a good
practice to store the mvMatrix on the stack before any operation to save its state.

function drawScene() {
...
 setLightUniform();
 pushMatrix();
 calculateMvMatrix();
 for(var i=0; i<stage.stageObjects.length; ++i){
...
 pushMatrix();
 mat4.translate(mvMatrix, mvMatrix,
 stage.stageObjects[i].location);

 mat4.rotateX(mvMatrix, mvMatrix,
 stage.stageObjects[i].rotationX);
 mat4.rotateY(mvMatrix, mvMatrix,
 stage.stageObjects[i].rotationY);
 mat4.rotateZ(mvMatrix, mvMatrix,
 stage.stageObjects[i].rotationZ);

 setMatrixUniforms();
...
 gl.drawElements(gl.TRIANGLES,
 stage.stageObjects[i].geometry.indices.length,
 gl.UNSIGNED_SHORT, 0);
 popMatrix();
 }
 popMatrix();
}

In the preceding drawScene function, we have only shown the lines from code that
are of relevance here. To start with, we push the mvMatrix on the stack, then compute
the mvMatrix to hold the view matrix. Before transforming each scene object, we store
the mvMatrix on the stack, then apply our model transformation on the view matrix.
Keep in mind that we maintain the order by first multiplying the model matrix with
the view matrix. Then, we invoke the drawElements call to transform the vertices
with the new mvMatrix in the shader code. Then, pop the view matrix from the stack.
When all objects are rendered, we pop our identity matrix from the matrixStack array
to reinitialize our view matrix.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[185]

Hence, when we compute the view matrix, each time we invoke drawScene, the
computed view matrix is stored on the stack and is used for each model transformation
in the loop.

The last change is in setMatrixUniforms, where we use our projection matrix from
the camera object.

function setMatrixUniforms() {
 gl.uniformMatrix4fv(shaderProgram.pMatrixUniform, false,
 cam.projMatrix);
...
}

Adding keyboard and mouse interactions
Generally we move our characters using the mouse and keyboard, but in our case,
we will rotate or move the camera instead. Keyboard interactions are easier to build
compared to mouse interactions. In mouse interactions, we have to calculate the
angle of rotation based on the mouse movement on the 2D screen, while in the case
of the keyboard, we have to directly modify our camera position with each key press.
When a key is pressed, we move the camera by multiplying pi with a constant factor
(this.cam.roll(-Math.PI * 0.025)) for each step.

So, let's quickly look at the KeyBoardInteractor.js file present in the
primitive directory:

function KeyBoardInteractor(camera, canvas){
 this.cam = camera;
 this.canvas = canvas;
 this.setUp();
}
KeyBoardInteractor.prototype.setUp=function(){
 var self=this;
 this.canvas.onkeydown = function(event) {
 self.handleKeys(event);
 }
}

The constructor of the KeyBoardInteractor class takes the canvas and camera
objects as parameters. It invokes the setup function, which attaches a key handler
to our canvas object, in our case handleKeys.

www.it-ebooks.info

http://www.it-ebooks.info/

Camera and User Interaction

[186]

The handleKeys handler is pretty simple. If the keyboard keys are pressed along
with the Shift key, then the handler invokes the yaw, pitch, or roll function of
our camera object, rotating the corresponding vectors with a constant value (this.
cam.roll(-Math.PI * 0.025)). If the Shift key is not pressed, then the handler
gets the current position of the camera (var pos = this.cam.getPosition())
and then changes it by adding or subtracting the respective constant value of
the x, y, and z axes of the position property of the camera object (this.cam.
setPosition([pos[0]+10, pos[1], pos[2]]); here, 10 indicates the changed x
value of the camera so as to move along positive x axis).

KeyBoardInteractor.prototype.handleKeys=function (event) {
 if(event.shiftKey) {
 switch(event.keyCode) {//determine the key pressed
 case 65://a key
 this.cam.roll(-Math.PI * 0.025);//tilt to the left
 break;
 case 37://left arrow
 this.cam.yaw(Math.PI * 0.025);//rotate to the left
 break;
 case 68://d key
 this.cam.roll(Math.PI * 0.025);//tilt to the right
 break;
 case 39://right arrow
 this.cam.yaw(-Math.PI * 0.025);//rotate to the right
 break;
 case 83://s key
 case 40://down arrow
 this.cam.pitch(Math.PI * 0.025);//look down
 break;
 case 87://w key
 case 38://up arrow
 this.cam.pitch(-Math.PI * 0.025);//look up
 break;
 }
 }
 else {
 var pos = this.cam.getPosition();
 switch(event.keyCode) {//determine the key pressed
 case 65://a key
 case 37://left arrow
 this.cam.setPosition([pos[0]-10, pos[1],
 pos[2]]);//move - along the X axis
 break;
 case 68://d key
 case 39://right arrow

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[187]

 this.cam.setPosition([pos[0]+10, pos[1],
 pos[2]]);//more + along the X axis
 break;
 case 83://s key
 this.cam.setPosition([pos[0],pos[1]-10,
 pos[2]]);//move - along the Y axis (down)
 break;
 case 40://down arrow
 this.cam.setPosition([pos[0], pos[1],
 pos[2]+10]);//move + on the Z axis
 break;
 case 87://w key
 this.cam.setPosition([pos[0], pos[1]+10,
 pos[2]]);//move + on the Y axis (up)
 break;
 case 38://up arrow
 this.cam.setPosition([pos[0], pos[1],
 pos[2]-10]);//move - on the Z axis
 break;
 }
 }
}

Handling mouse events
The mouse interaction is a little tricky as we have to derive a formula to calculate
the angle rotation from the distance covered by the mouse when it is dragged. Open
primitive/MouseInteractor.js in your favorite text editor and take a look at the
following code:

MouseInteractor.prototype.mousePosX=function(x){
 return 2 * (x / this.canvas.width) - 1;
}
MouseInteractor.prototype.mousePosY=function(y){
 return 2 * (y / this.canvas.height) - 1;
}

Our formula is simple. Our current camera angle is a function of the mouse position
and the canvas size, as shown in the following code snippet:

MouseInteractor.prototype.setUp=function(){
 var self=this;
 this.canvas.onmousedown = function(ev) {
 self.onMouseDown(ev);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Camera and User Interaction

[188]

 this.canvas.onmouseup = function(ev) {
 self.onMouseUp(ev);
 }
 this.canvas.onmousemove = function(ev) {
 self.onMouseMove(ev);
 }
}
MouseInteractor.prototype.onMouseUp = function(evnt){
 this.dragging = false;
}
MouseInteractor.prototype.onMouseDown = function(evnt){
 this.dragging = true;
 this.x = evnt.clientX;
 this.y = evnt.clientY;
 this.button = evnt.button;
}

The setup function initializes event handlers for the onMouseUp, onMouseDown,
and onMouseMove events. The onMouseDown event enables the dragging flag and
onMouseUp disables it. The onMouseDown event also stores the x and y coordinates
in the x and y class variables. These variables are used to calculate the delta, the
difference in the current, and previous mouse positions in the onMouseMove event.

MouseInteractor.prototype.onMouseMove = function(event){
 this.lastX = this.x;
 this.lastY = this.y;
 this.x = event.clientX;
 this.y = event.clientY;
 if (!this.dragging) return;
 this.shift = event.shiftKey;
 if (this.button == 0) {
 if(this.shift){
 var dx=this.mousePosX(this.x) -this.mousePosX(this.lastX)
 var dy=this.mousePosY(this.y) -this.mousePosY(this.lastY)
 this.rotate(dx,dy);
 }
 else{
 var dy = this.y - this.lastY;
 this.translate(dy);
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[189]

The mouse move action is defined in the onMouseMove event. It stores the class
variables' this.x and this.y values in this.lastX and this.lastY and then
retrieves the current x and y coordinates. The code then checks whether dragging
is enabled. If enabled, it checks to see if the Shift key is pressed. If Shift is pressed, it
invokes the rotate function, otherwise it invokes the translate function.

The delta rotation angle along the x and y axes is the difference of the angle
calculated at the two mouse locations (last and current).

In our code, translation is the function of difference of the mouse movement along
the y axis of the canvas; we can always improve the function to involve movement
along the x axis. The translate function is defined as follows:

MouseInteractor.prototype.translate = function(value) {
 var translateSensitivity=30 * this.SENSITIVITY;
 var c = this.camera;
 var dv = translateSensitivity * value / this.canvas.height;
 c.moveForward(dv);
}

The translate function multiplies the delta value by a translate sensitivity factor
and then calculates the final dv value by dividing it with the canvas height. We
used a generic function to calculate the camera translation from the mouse delta
movement. You can use any sensitivity values and evolve any function that suits
your game. The rotate function is defined as follows:

MouseInteractor.prototype.rotate = function(dx, dy) {
 var camera = this.camera;
 camera.yaw(this.SENSITIVITY*dx);
 camera.pitch(this.SENSITIVITY*dy);
}

The rotate function simply invokes the Camera class's yaw and pitch functions to
rotate the camera along the x and y axes.

www.it-ebooks.info

http://www.it-ebooks.info/

Camera and User Interaction

[190]

Comprehending the orbit camera
A camera that rotates around the target and looks at it at all times is called an orbit
camera. An orbit camera can also be understood as a camera that moves along the
surface of a sphere. Hence, the location of a camera is defined by three parameters:
Azimuth, Elevation, and Radius, as shown in the following figure:

Azimuth

Target Elevation

Viewpoint

z

y

x

-y

However, in our code, we will not use the terms Azimuth and Elevation, but will
stick to using yaw and pitch. We do so as Azimuth and Elevation are absolute angles
but yaw and pitch use incremental angles.

The third parameter is the radius. We use the term "distance" instead. In orbit
cameras, we generally define boundaries by using the minimum and maximum
distances from the target.

Let's understand the orbit camera better through code in the following sections.

Implementing the orbit camera
For the calculations of the orbit camera, remember the rule that the left vector of
the orbit camera will always be perpendicular to the global y axis (that is, the global
up vector).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[191]

Open primitive/orbitcamera.js in your favorite text editor. In the
implementation of the orbit camera, we have added three new parameters:

• closestDistance: This parameter defines the closest the camera can go to
the orbit point.

• FarthestDistance: This parameter defines the farthest distance the camera
can go away from the orbit point.

• orbitPoint: If you remember, in our free camera, we only used lookAtPoint
to calculate the initial vector (up, dir, and left). In the case of the orbit camera,
we will need to store the orbit point and use it throughout to calculate all
the vectors.
OrbitCamera = inherit(Camera, function ()
{
 superc(this);
 // this value cannot be set to less than 0.
 this.closestDistance = 0;
 // typically larger than the closest distance, but set to
 // 0 here since the user will likely overwrite it anyway.
 // this value will always be greater or equal to the closest
 // distance.
 this.farthestDistance = 0;
 // the point in space the camera will 'orbit'.
 this.orbitPoint = vec3.fromValues(0, 0, 0);
});

The next function is getDistance; it returns the distance between the orbit point and
position, as shown in the following code snippet:

OrbitCamera.prototype.getDistance = function (){
 return vec3.distance(this.pos, this.orbitPoint);
}

The goCloser function takes the distance parameter and moves the camera closer
to the orbit point. We move the camera towards the orbit point relative to the
position of the camera. The value of vec3.scale(shiftAmt,this.dir, distance)
is basically the value we get by multiplying the direction vector with the distance.
The camera will not move if we attempt to move it closer than the closest allowed
distance. A negative value for goCloser could be allowed and would mean moving
farther using a positive value, but this could create some confusion and is therefore
not permitted. The goCloser function is defined as follows:

OrbitCamera.prototype.goCloser = function (distance)
{
 if (distance > 0)
 {

www.it-ebooks.info

http://www.it-ebooks.info/

Camera and User Interaction

[192]

 // scale it
 var shiftAmt =vec3.create();
 vec3.scale(shiftAmt,this.dir, distance);
 var renameMe =vec3.create();
 vec3.subtract(renameMe,this.pos, this.orbitPoint);
 var maxMoveCloser = vec3.length(renameMe) - this.
getClosestDistance();

 if (vec3.length(shiftAmt) <= maxMoveCloser)
 {
 vec3.add(this.pos,this.pos, shiftAmt);
 return true;
 }
 }
 return false;
}

Similar to goCloser, the goFarther function sets the camera at a new radius
(distance) and position. What is different from goCloser is that in goFarther we first
multiply the direction vector with a negative scalar (vec3.scale(negativeDist,
this.dir, -1)), and then we multiply the new direction vector with the distance
scalar (vec3.scale(shiftAmt, negativeDist, distance)). Then, we calculate
the new position by adding the calculated vector (shiftAmt) to the position, after
checking whether the new position (newpos) exceeds the maximum distance. The
goFarther function is defined as follows:

OrbitCamera.prototype.goFarther = function (distance)
{
 if (distance > 0)
 {
 //
 var shiftAmt = vec3.create();
 var negativeDist=vec3.create();
 vec3.scale(negativeDist,this.dir, -1);
 vec3.scale(shiftAmt,negativeDist, distance);
 var newpos =vec3.create();
 vec3.add(newpos,this.pos, shiftAmt);
 var distanceBetweenCamAndOP = vec3.distance(newpos, this.
orbitPoint);
 if (distanceBetweenCamAndOP <= this.getFarthestDistance())
 {
 this.pos = newpos;
 return true;
 }
 }
 return false;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[193]

The setPosition function is important to set the initial position of the camera. It first
calculates the distance of the new position from the orbit point. The distance should
be between the maximum and minimum distance. After we set the new position, we
will need to update our vectors. We first calculate the direction vector by subtracting
the orbit point from the position vector (vec3.subtract(camPosToOrbitPoint,
this.orbitPoint, this.pos)).

There can be a case where the direction vector is parallel to the global y axis. In that
case, we do not need to calculate the left vector. It will remain the same (as it will
lead to a zero vector). Hence, we first find the cross product of our direction vector
stored in camPosToOrbitPoint with the global up vector [0,1,0] (vec3.cross(tempV
ec,camPosToOrbitPoint, vec3.fromValues(0, 1, 0)). If the result is zero, we just
normalize the direction vector and calculate the up vector from the left and direction
vectors (vec3.cross(this.up ,this.dir, this.left)). However, if they are not
parallel, we first calculate our left vector by multiplying the direction vector with
the global up vector [0,1,0] (vec3.cross(this.left,vec3.fromValues(0, 1, 0),
this.dir)), and then from the left and direction vector, we calculate the up vector.

OrbitCamera.prototype.setPosition = function (position) {
 var distFromNewPosToOP = vec3.distance(this.orbitPoint,
 position);

 if (distFromNewPosToOP >= this.getClosestDistance() &&
 distFromNewPosToOP <= this.getFarthestDistance()) {
 this.pos[0] = position[0];
 this.pos[1] = position[1];
 this.pos[2] = position[2];
 var camPosToOrbitPoint =vec3.create();
 vec3.subtract(camPosToOrbitPoint,this.orbitPoint, this.pos);

 var tempVec=vec3.create();
 vec3.cross(tempVec, camPosToOrbitPoint,
 vec3.fromValues(0, 1, 0));
 if (isVectorEqual([0, 0, 0],tempVec)) {
 vec3.normalize(this.dir ,camPosToOrbitPoint);
 vec3.cross(this.up ,this.dir, this.left);
 }
 else {
 vec3.subtract(this.dir,this.orbitPoint, this.pos);
 vec3.normalize(this.dir,this.dir);
 vec3.cross(this.left,vec3.fromValues(0, 1, 0), this.dir);
 vec3.cross(this.up,this.dir, this.left);
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Camera and User Interaction

[194]

In the preceding code, our complete calculation relied on the rule that the left vector
is perpendicular to the global up vector. Hence, we did not calculate the left vector
when the direction vector became parallel to the global up vector [0,1,0]. However,
in this case, the cross product of the global up and direction vectors would become
zero. So, remember that the left vector for the orbit camera is a cross product
between the global up vector and direction vector (vec3.fromValues(0, 1, 0)).

It is time to discuss our yaw and pitch implementations in the orbit camera. Let's
talk of pitch first. The first use case is when the orbit point and camera position is the
same. Then pitch will not change the left vector; it will only change the direction and
up vectors. But, if the orbit points and position vectors are different, then we have
to calculate all three vectors. Let's quickly look at the algorithm for the calculation of
the new position and our vectors.

Understanding the pitch function for the orbit
camera
We'll now see the pitch function for the orbit camera. If the orbit point and position
are the same, perform the following steps:

1. Create a rotation quaternion around the left axis as follows:
quat.setAxisAngle(quate, this.left, angle);

2. The position of the camera will not change because the rotation is occurring
in the same place. (the orbit point and position are the same), only the
direction will change with the rotation. The transform direction with the new
rotation quaternion is defined as follows:
vec3.transformQuat(this.dir, this.dir, quate);

3. Calculate the unit direction vector as follows:
vec3.normalize(this.dir, this.dir);

4. Calculate the up vector from the left and new direction vectors as follows:
vec3.cross(this.up, this.dir, this.left);

5. Normalize the up vector as follows:
vec3.normalize(this.up, this.up);

If the orbit point and camera position are different, then perform the following steps:

1. Create a rotation quaternion around the left axis as follows:
quat.setAxisAngle(quate, this.left, angle);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[195]

2. Calculate the new position after transforming the old position with the
quaternion. This calculates the new position relative to the origin.
vec3.transformQuat(newpos,this.pos,quate);

3. Transform the position relative to the origin to relative to the orbit point
as follows:
vec3.add(this.pos,newpos, this.orbitPoint);

4. Calculate the direction vector from the orbit point and new position and also
calculate the unit direction as follows:
vector.(vec3.subtract(this.dir,this.orbitPoint, this.pos);
vec3.normalize(this.dir, this.dir));

5. Calculate the up vector using the cross product of the direction and left
vectors. Compute the unit up vector and normalize it as shown in the
following code:
vec3.cross(this.up,this.dir, this.left);
vec3.normalize(this.up,this.up));

6. Calculate the left vector using the cross product of the up and direction
vectors. Compute the unit left vector and normalize it as shown in the
following code:
vec3.cross(this.left ,this.up, this.dir);
vec3.normalize(this.left ,this.left))

The complete pitch function is defined as follows:

OrbitCamera.prototype.pitch = function (angle) {
 if (isVectorEqual(this.pos, this.orbitPoint)) {
 var quate=quat.create();
 quat.setAxisAngle(quate, this.left, angle);
 vec3.transformQuat(this.dir, this.dir, quate);
 vec3.normalize(this.dir,this.dir);
 vec3.cross(this.up,this.dir, this.left);
 vec3.normalize(this.up, this.up);
 }
 else {
 vec3.subtract(this.pos,this.pos, this.orbitPoint);
 var quate =quat.create();
 quat.setAxisAngle(quate,this.left, angle);
 var newpos = vec3.create();
 vec3.transformQuat(newpos, this.pos,quate);
 vec3.add(this.pos, newpos, this.orbitPoint);
 vec3.subtract(this.dir, this.orbitPoint, this.pos);
 vec3.normalize(this.dir, this.dir);

www.it-ebooks.info

http://www.it-ebooks.info/

Camera and User Interaction

[196]

 vec3.cross(this.up, this.dir, this.left);
 vec3.normalize(this.up, this.up);
 vec3.cross(this.left , this.up, this.dir);
 vec3.normalize(this.left , this.left);
 }
}

Understanding the yaw function for the orbit camera
The orbit camera's yaw function algorithm is as follows:

If the orbit point and position are the same, perform the following steps:

1. We calculate the rotation quaternion from the global up vector [0,1,0] and not
from the camera up vector as follows:
quat.setAxisAngle(quate,[0, 1, 0], angle);

2. The camera position does not change. We transform each vector with the
quaternion like we do in the free camera as follows:
vec3.transformQuat(this.dir, this.dir, quate);
vec3.transformQuat(this.left, this.left, quate);
vec3.transformQuat(this.up, this.up, quate);

3. Compute unit vectors for all three vectors.

If the orbit point and camera position are different, perform the following steps:

1. Create a rotation quaternion around the global up vector as follows:
quat.setAxisAngle(quate, [0,1,0], angle);

2. Calculate the new position after transforming the old position with a
quaternion. This calculates a new position relative to the origin.
vec3.transformQuat(newpos,this.pos,quate);

3. Transform the position from relative to origin to relative to orbit point
as follows:
vec3.add(this.pos,newpos, this.orbitPoint);

4. Calculate the direction vector from the orbit point and new position, and
calculate the unit direction vector as follows:
vec3.subtract(this.dir,this.orbitPoint, this.pos);
vec3.normalize(this.dir,this.dir);

5. Calculate the up vector after transforming it with the quaternion as follows:
vec3.transformQuat(this.up, this.up, quate);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[197]

6. Calculate the left vector using the cross product of up and direction vectors.
Compute the unit left vector (vec3.cross(this.left, this.up, this.
dir); vec3.normalize(this.left, this.left)):
OrbitCamera.prototype.yaw = function (angle) {
 if (isVectorEqual(this.pos, this.orbitPoint)) {
 var quate=quat.create();
 quat.setAxisAngle(quate,[0, 1, 0], angle);
 vec3.transformQuat(this.dir, this.dir, quate)
 vec3.transformQuat(this.left, this.left, quate)
 vec3.transformQuat(this.up, this.up, quate)
 vec3.normalize(this.up,this.up);
 vec3.normalize(this.left,this.left);
 vec3.normalize(this.dir,this.dir);
 }
 else {
 var camPosOrbit =vec3.create();
 vec3.subtract(camPosOrbit,this.pos, this.orbitPoint);
 var quate=quat.create();
 quat.setAxisAngle(quate,[0, 1, 0], angle);
 var newpos = vec3.create();
 vec3.transformQuat(newpos, camPosOrbit, quate);
 vec3.add(this.pos,newpos, this.orbitPoint);
 vec3.subtract(this.dir,this.orbitPoint, this.pos);
 vec3.normalize(this.dir,this.dir);
 vec3.transformQuat(this.up, this.up, quate)
 vec3.normalize(this.up,this.up);
 vec3.cross(this.left,this.up, this.dir);
 vec3.normalize(this.left,this.left);
 }
}

The next function is setDistance where we set the initial camera location. It simply
copies the orbitpoint to position and then invokes goFarther.

OrbitCamera.prototype.setDistance = function (distance)
{
 if (distance >= this.getClosestDistance() && distance <= this.
getFarthestDistance())
 {
 // place the camera at the orbit point, then goFarther
 vec3.copy(this.pos,this.orbitPoint);
 this.goFarther(distance);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Camera and User Interaction

[198]

Using an orbit camera
Open 05-Loading-Scene-OrbitCamera.html in your favorite text editor. The only
change we have in this file is to replace the free camera object with the orbit camera
object. Also, set the basic properties for the orbit camera.

cam=new OrbitCamera();
cam.setFarthestDistance(300);
cam.setClosestDistance(60);
cam.setOrbitPoint([0.0, 20.0, 0.0]);
cam.setDistance(100);

We added some changes to primitive/KeyboardInteractor.js to handle the
orbit camera.

If the camera object is of the OrbitCamera type, then only two keys are functional,
the up and down arrow keys. We invoke the goCloser and goFarther functions of
the camera object.

if(this.cam instanceof OrbitCamera) {
 switch(event.keyCode) {//determine the key pressed
 case 65://a key
 case 37://left arrow
 break;
 case 68://d key
 case 39://right arrow
 break;
 case 83://s key
 break;
 case 40://down arrow
 this.cam.goFarther(10);//move + on the Z axis
 break;
 case 38://up arrow
 this.cam.goCloser(10);//move - along the Y axis (down)
 break;
 }
}

The changes in primitive/MouseInteractor.js are listed as follows:

MouseInteractor.prototype.translate = function(value) {
...
 if(c instanceof OrbitCamera) {
 if(dv>0) {
 c.goFarther(dv);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[199]

 else{
 c.goCloser(-dv);
 }
 }
 else{
 c.moveForward(dv);
 }
}

If the camera object is of the OrbitCamera type, then invoke goCloser or goFarther,
otherwise invoke the moveForward function of FreeCamera.

Summary
In this chapter, we discussed the most important aspects of 3D rendering: the view
and projection matrices. We created our own camera class to compute the view
matrix from the up, left, direction, and position vectors. We demonstrated that
in a simple concept, that for each camera operation, such as moveForward, yaw,
pitch, and roll, the orthogonal vectors are affected and the logic to adjust these
vectors depends on the type of camera we implement. We demonstrated this fact by
implementing the free and orbit cameras.

We also discussed the projection matrix and implemented a perspective camera.

In the next chapter, we will discuss animations. We will apply animations on our
objects and also discuss the different algorithms to generate the movement trajectory
of the objects. We will use our camera class as a first person camera to follow moving
objects in our game scene.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Applying Textures and Simple
Animations to Our Scene

Until now, we have only added static objects to our scene, but in this chapter, we
will animate our objects. We need simple animations in all our games. We will start
by simulating a first-person camera and take it forward by giving weapons to our
character in 5000 AD. We will introduce you to different animation techniques used
in game engines. Then we will apply the most common animation techniques used in
HTML based games. The topics we will cover are as follows:

• Architectural update: add textures to our scene
• Animation types in 3D games
• First-person camera
• Simple bullet action: linear animation
• Multiple bullets: how to reuse objects
• Grenade action: B-spline interpolation
• Explosion effect: texture animation

www.it-ebooks.info

http://www.it-ebooks.info/

Applying Textures and Simple Animations to Our Scene

[202]

Applying textures to our scene
We covered how to apply textures in Chapter 4, Applying Textures, but we need not
apply any textures to our scene. We used diffuse colors to render objects in our
scene. Our scene looked similar to the following screenshot:

We will now update our code to add textures to our scene objects so that it looks
similar to the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[203]

Before we start making changes to the code, let's first revise a few concepts from
Chapter 4, Applying Textures:

• To apply textures, we need another Vertex Buffer Object that holds the
texture coordinates.

• Each texture coordinate for a 2D texture is represented by an (s, t) or (u, v)
pair and is called a texel.

• We pass our texture to GPU memory, and then activate it using the
following code:
 gl.activeTexture(gl.TEXTURE0);
 gl.bindTexture(gl.TEXTURE_2D,
stage.textures[stage.stageObjects[i].textureIndex].texture);
 gl.uniform1i(gl.getUniformLocation(shaderProgram, "uSampler"),
0);

WebGL can handle up to 32 textures in a single drawElements call. In the
previous code, we activate the first object and assign our texture data to that
object. Then, we assign the bound texture to the uSampler uniform of our
shader by referencing its index (TEXTURE0 → 0).

• We read our texture data in our fragment shader using the shader function
texture2D(uSampler, vec2(vTextureCoord.s, vTextureCoord.t)).
vTextureCoord is a varying vector passed from the vertex shader to the
fragment shader. The following line of code is taken from the vertex shader:
vTextureCoord = aTextureCoord;

We simply assign the texture coordinate from the vertex shader to the
fragment shader. Okay, why don't we pass the value directly to the fragment
shader if we are not manipulating its value in the vertex shader? Well, we
pass them to the vertex shader since the texture coordinates are defined per
vertex. We only pass data to fragment shader that are defined per primitive.

• The number of texture coordinates must be equal to the number of vertices of
an object as each texture coordinate is mapped to a vertex and vice versa.

• The converted JSON file from an OBJ file has a uv array and a vertices
array. The relation between them is encoded in the faces array. We used an
algorithm (geometry.verticesFromFaceUvs) to create redundant vertices
and texture coordinates so that the number of vertices is equal to the number
of uv coordinates.

www.it-ebooks.info

http://www.it-ebooks.info/

Applying Textures and Simple Animations to Our Scene

[204]

Applying a texture to the scene
Open the parseJSON.js file from the primitive folder of the code bundle in your
favorite editor.

In this file, we add the following line of code to recreate the vertices and
texture coordinates:

geometry.verticesFromFaceUvs(data.vertices,data.uvs,0);

We invoke this function just before creating the indices array from the faces array,
because the previous function also reindexes the indices of vertices array.

The explanation to the previous function/code is
in Chapter 4, Applying Textures, in the Parsing UV
coordinates from the JSON file section.

Let's first understand the basic strategy that we will follow. Most designers would
prefer to create a single texture that will contain the textures of multiple objects. In
our case, we have the terrain_1024.jpg file from the model\obj folder of the code
bundle, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[205]

The preceding screenshot has a diffuse map of four objects: terrain, railing, lamp, and
dump. Why do we do this? Basically, we know that the texture file has to be in a size
of power of 2, for example, 128 x 128, 128 x 64, 256 x 256, 256 x 128, and 512 x 512.
If we create all files in the mentioned sizes, then we might waste precious memory
space because you might have to keep empty areas in the files. Hence, in order to
reduce the memory footprint of textures, we generally use this technique. Also, we
can have only 32 active texture objects. For this reason as well, if we have many
objects in our game, we generally create packed texture files.

We know one thing that multiple objects can have a single texture file, and we do not
want to allocate space for the same texture for each object. Hence, we hold references
to these textures in our Stage object and not the individual StageObject. Open
the Stage.js file from the primitive folder of the code bundle in your favorite
text editor.

We have added a simple array that holds references to the texture objects using the
following code:

this.textures=new Object();

We also added a new function to add the loaded texture to the stage object, as shown
in the following code:

addTexture:function(index,name,img){
var texture=new Object();
texture.fileName=name;
texture.img=img;
texture.index=index;
texture.texture=this.gl.createTexture();
this.gl.bindTexture(this.gl.TEXTURE_2D, texture.texture);
this.gl.texImage2D(this.gl.TEXTURE_2D, 0, this.gl.RGBA, this.gl.RGBA,
this.gl.UNSIGNED_BYTE, img);
this.gl.texParameteri(this.gl.TEXTURE_2D, this.gl.TEXTURE_MAG_FILTER,
this.gl.NEAREST);
this.gl.texParameteri(this.gl.TEXTURE_2D, this.gl.TEXTURE_MIN_FILTER,
this.gl.NEAREST);
this.gl.bindTexture(this.gl.TEXTURE_2D, null);
this.textures[index]=texture;
 }

The preceding function takes three parameters which are as follows:

• index: This is a key to index the texture
• fileName: This is the name of the file from which the texture was loaded
• img: This is the pixel data of the loaded texture

www.it-ebooks.info

http://www.it-ebooks.info/

Applying Textures and Simple Animations to Our Scene

[206]

In this function, we initialize our texture object and set the texture parameters.
We make a new texture object as the active texture by using the bindTexture
API call, and then load the pixel data in the img variable to that texture object by
using the texImage2D function. Then, we set our filter mode to Nearest-neighbor
interpolation using the texParameteri function. Refer to Chapter 4, Applying
Textures, for an in-depth understanding of the functions that have just been
mentioned. Lastly, we add our new texture object at the provided key (index)
to the textures array.

• Open the StageObject.js file from the primitive folder of the code
bundle. The individual stage object will hold the index (key) to the textures
array defined in the StageObject class, as shown in the following code:
this.textureIndex=0;

We also added two new class variables to the StageObject class. The materialFile
class variable holds the name of the texture file and verticesTextureBuffer holds
the reference to the vertex buffer which holds the texture coordinates. The following
code defines the variables explained previously:

StageObject=function(){
...
this.verticesTextureBuffer=null;
this.materialFile=null;
...
};

After we parse our JSON data, we check whether the texture name is present in
our JSON data. If present, we assign the filename to the materialFile property
as shown in the following code:

StageObject.prototype.loadObject= function (data){
this.geometry=parseJSON(data);
 this.name=data.metadata.sourceFile.split(".")[0];
if(this.geometry.materials.length>0){
...
if(!(this.geometry.materials[0].mapDiffuse===undefined)){
this.materialFile=this.geometry.materials[0].mapDiffuse;
 }
...
 }
 }

There may be cases when no texture file is present for an object. In such cases, we use
a diffuse color to render objects.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[207]

In the StageObject class, earlier we created two Vertex Buffer Objects (vertices
and normals) and one Index Buffer Object (indices). Now, we will create another
Vertex Buffer Object for UV coordinates (this.verticesTextureBuffer) as shown
in the following code:

StageObject.prototype.createBuffers=function(gl){
...
if(this.materialFile!=null){
this.verticesTextureBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, this.verticesTextureBuffer);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(this.geometry.
uvs[0]),gl.STATIC_DRAW);
 }
...
 }

Open 06-Loading-Scene-With-Textures.html in your favorite text editor. First,
we will understand the changes that we need to perform in shaders in order to
support both diffuse color and textures for different types of objects.

Implementing the vertex shader code
We have added three variables to our vertex shader: attribute (aTextureCoord)
that references the texture coordinate array, varying (vTextureCoord) that passes
these coordinates to fragment shader, and uniform (hasTexture) that sets the
varying only if its value is true. Basically, the same vertex shader will be used for
objects that use a texture as well as for objects that use only a diffuse color. We set
the value of this uniform based on the value of the materialFile property of each
StageObject as shown in the following code:

<script id="shader-vs" type="x-shader/x-vertex">
...
attribute vec2 aTextureCoord;
varying highp vec2 vTextureCoord;
uniform bool hasTexture;
void main(void) {
...
if(hasTexture){
vTextureCoord = aTextureCoord;
 }
 }
</script>

www.it-ebooks.info

http://www.it-ebooks.info/

Applying Textures and Simple Animations to Our Scene

[208]

Implementing the fragment shader code
In the fragment shader, we add three variables: varying (vTextureCoord) to receive
the texture coordinates from the vertex shader, uniform (hasTexture) to see whether
the texture was associated with a primitive, and sampler (uSampler) which holds the
reference to the then active texture. The important thing to note is that we perform
our complete computation of ambient, diffuse, and specular color, but when we
decide to have a texture, we do not use the material diffuse color in our computation
of the iColor object (+uDirectionalColor* directionalLightWeighting+). If
we do not have a texture, we use the material diffuse color (+uDirectionalColor
*materialDiffuseColor * directionalLightWeighting+). We do not use the
diffuse color of the object if the object has a texture associated with it.

Lastly, we calculate the color of the fragment (gl_FragColor) by multiplying iColor
with the texture color obtained from the sampler object at the vTextureCoord
coordinate using the texture2DESSL function, as shown in the following code:

<script id="shader-fs" type="x-shader/x-fragment">
...
uniform sampler2D uSampler;
varying highp vec2 vTextureCoord;
uniform bool hasTexture;
void main(void) {
...
if(hasTexture){
vec3iColor = (uAmbientColor*materialAmbientColor)+ (uDirectionalColor*
directionalLightWeighting)+(uSpecularColor*materialSpecularColor*spec
ular);
gl_FragColor = vec4(iColor, 1.0)*texture2D(uSampler,
vec2(vTextureCoord.s, vTextureCoord.t));
 }
else{
vec3iColor = (uAmbientColor*materialAmbientColor)+(uDirectionalColor
*materialDiffuseColor * directionalLightWeighting)+(uSpecularColor*mat
erialSpecularColor*specular);
gl_FragColor = vec4(iColor, 1.0);
 }
 }
</script>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[209]

Working with the control code
In our main control code, the first change we did was to rename addStageObject
to loadStageObject and add a new addStageObject function. This was done to
improve the readability of the code, and we also moved the adding of StageObject
to the addStageObject function.

Let's refer to our basic strategy once again. When we load our JSON model and if
the model has an associated texture file, then we first check to see whether that file
has already been loaded. If it has, then we simply get its key and assign it to the
textureIndex property of StageObject and if not, then we load it, assign a unique
key to it, and then associate it with the StageObject.

To implement this strategy, we have created a vartextureList=[]; array. The key
of the element in the array will be the name of the texture file, and the value would
be the unique key to the texture object in the array (textures) of the Stage class. The
following code loads the model and then its corresponding texture and assigns
a texture index for the texture:

function loadStageObject (url,location,rotationX,rotationY,rotationZ){
 $.getJSON(url,function(data){
Var stageObject=new StageObject();
stageObject.loadObject(data);
if(stageObject.materialFile!=null){
if((textureList[stageObject.materialFile.trim()]===undefined)){
var currentDate=new Date();
var textureIndex=currentDate.getMilliseconds();
stageObject.textureIndex=textureIndex;
textureList[stageObject.materialFile.trim()]=textureIndex;
initTextures(stageObject.materialFile.trim(),textureIndex);
 }
else{
 stageObject.textureIndex=textureList[stageObject.
materialFile.trim()];
 }
 }
addStageObject(stageObject,location,rotationX,rotationY,rotationZ);
 });
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Applying Textures and Simple Animations to Our Scene

[210]

The preceding function, loadObject, loads the JSON object, and then parses it
in loadObject of the StageObject class (stageObject.loadObject(data);).
If the materialFile variable is not null (stageObject.materialFile!=null),
denoting that the object has an associated texture, we generate a simple, unique
index using the currentDate.getMilliseconds(); function of the JavaScript
Date object, store it in the textureList object (textureList [stageObject.
materialFile.trim()] =textureIndex;), and invoke initTextures. The key
in the textureList object that references the texture object is the name of the file
loaded. However, before doing this, we make sure that the key is not already defined
(textureList [stageObject.materialFile.trim()]===undefined), denoting
that the file is not already loaded. If it is, then we simply assign the key (index)
to the StageObject(stageObject.textureIndex=textureList[stageObject.
materialFile.trim()]) object.

function initTextures(fileName,textureCount){
var image = new Image();
image.onload = function() { stage.addTexture(textureCount,fileName,im
age); }
image.src = "model/obj/"+fileName;
 }

The initTextures function in the preceding code loads the image and passes the
data to the stage.addTexture function that initializes the texture data and sets the
filter mode.

function addStageObject (stageObject,location,rotationX,rotationY,rot
ationZ){
cloneObjects(stageObject);
stageObject.location=location;
stageObject.rotationX=rotationX;
stageObject.rotationY=rotationY;
stageObject.rotationZ=rotationZ;
stage.addModel(stageObject);
 }

The addStageObject function in the preceding code simply sets the transformation
information of the model and initializes the buffers for the object in its
addModel function.

Next, we obtain a reference of our variables (aTextureCoord and hasTexture) defined
in the shaders in the initShaders() function as shown in the following code:

function initShaders() {
...
shaderProgram.textureCoordAttribute = gl.getAttribLocation(shaderProgr
am, "aTextureCoord");

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[211]

gl.enableVertexAttribArray(shaderProgram.textureCoordAttribute);
shaderProgram.hasTexture = gl.getUniformLocation(shaderProgram,
"hasTexture");
...
 }

Finally, we modified our drawScene function to initialize the variables (hasTexture,
uSampler and textureCoordAttribute) to be passed to the shaders, as shown in
the following code:

function drawScene() {
...
for(var i=0;i<stage.stageObjects.length;++i){
...
if(stage.stageObjects[i].materialFile!=null){
gl.uniform1i(shaderProgram.hasTexture,1);
try{
gl.activeTexture(gl.TEXTURE0);
gl.bindTexture(gl.TEXTURE_2D, stage.textures[stage.stageObjects[i].
textureIndex].texture);
gl.uniform1i(gl.getUniformLocation(shaderProgram, "uSampler"), 0);
gl.bindBuffer(gl.ARRAY_BUFFER, stage.stageObjects[i].
verticesTextureBuffer);
gl.vertexAttribPointer(shaderProgram.textureCoordAttribute, 2,
gl.FLOAT, false, 0, 0);
 }
catch(e){
console.log("Could not initialize texture buffer.");
 }
 }
else{
gl.uniform1i(shaderProgram.hasTexture,0);

 }
...
 }
...
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Applying Textures and Simple Animations to Our Scene

[212]

The preceding code iterates over all the objects, and if the materialFile class
variable is defined from an object, then it sets the value of hasTexture to 1 (true).
For active textures, we use a very simple strategy. As an object uses a single texture,
we activate only one texture in the GPU (gl.activeTexture(gl.TEXTURE0);).
Then we assign the texture from the textures array of the Stage class to the active
texture buffer. The texture object is retrieved from the stage textures array using the
textureIndex variable . The class variable textureIndex is initialized for each
StageObject that is to be drawn (stage.textures [stage.stageObjects[i].
textureIndex].texture);). This texture object is bound to the active texture 0 using
the gl.bindTexture API call. Then, we finally assign the active texture indexed at 0 to
the uniform (uSampler).

Well, this is all the update we need to add textures to our scene. Now let's move on
to animations.

Understanding the animation types in
3D games
Animation is about adding something dynamic to our game scene, like moving
objects. Until now, in all our examples, the objects were static. We simply moved
our camera to have a different perspective of the scene, but the objects' location
did not change over time with respect to each other. In this chapter, we will now
move objects at different timings or user-generated events. We will also learn about
chained animations. But before we go ahead, let's learn some basics.

In game development, the most common animation techniques are time-based
animation, tweens (interpolation), and skinned animation using rigged models.

Understanding time-based animation
We will demonstrate a way of running animation and game logic at a constant speed
independent of the effective frame rate. But first, let's understand what frame rate or
frame-based animation is.

Understanding frame-based animation
Frame-based animation is a system in which the game world is updated, one
iteration each frame. This is the easiest system to implement and we used
it in our previous chapters, but it has several drawbacks. The speed of your
game is effectively tied to the frame rate, which means it will run more slowly
(chronologically) on older computers and faster on newer ones. This is not what is
expected. So, let's go over what we did earlier.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[213]

Open the webgl-utils.js file from the js folder in your editor. The function that
we have used the most in our code is listed in the following code:

window.requestAnimFrame = (function() {
returnwindow.requestAnimationFrame ||
window.webkitRequestAnimationFrame ||
window.mozRequestAnimationFrame ||
window.oRequestAnimationFrame ||
window.msRequestAnimationFrame ||
function(/* function FrameRequestCallback */ callback, /* DOMElement
Element */ element) {
window.setTimeout(callback, 1000/300);
 };
})();

The preceding code heavily relies on the requestAnimationFrame function. Let's read
the definition of the function from the following link: http://msdn.microsoft.com/
en-us/library/windows/apps/hh453391.aspx. It states the following:

The RequestAnimationFrame method registers a function to call when the
system is ready to update (repaint) the display. This provides smoother animations
and optimal power efficiency by allowing the system to determine when the
animation occurs. The visibility of the web application and the display refresh rate
are used to determine the appropriate speed of the animations for example, the
number of frames per second supported by the system.

In a nutshell, the speed at which it will fire will vary from system to system. Now,
let's look at how we implemented it:

function initScene(){
...
tick();
}
function tick(){
requestAnimFrame(tick);
drawScene();
 }

We invoke tick when the page loads, and tick invokes drawScene and invokes itself
when the system is ready to update. Now, let's understand from the viewpoint of a
multiplayer game where two users are in the same scene. You fire a bullet and you
expect to hit because your system is fast but the other guy has not even reached the
hit point (visually) as his system is slow; the scene is being drawn at a constant frame
rate which varies from system to system. Even in a single user game, the timing of two
events is very important. We want more of a time-based animation not frame-based,
which means that if your system is slow, you should reach the hit point by
dropping frames.

www.it-ebooks.info

http://www.it-ebooks.info/

Applying Textures and Simple Animations to Our Scene

[214]

To put it another way, in our code, if we are updating/moving an object along the
perimeter of a circle, then on all systems, the time it takes to complete the defined
path should be the same. This is what we mean when we say time-based animations.

Implementing time-based animation
Open 06-Bullet-Action.html in your text editor. In the following code, we first
invoke tick, which in turn invokes animate, and animate invokes drawScene.
Basically, animate covers for the lost time in slow systems (dropping frames/
rendering them quickly). A faster frame rate does not invoke drawScene.

var rate=300;
var MINIMUM_FRAME_RATE=30;
var lastFrameTime = (new Date).getTime();
var cyclesLeftOver;
var currentTime;
var elapsedTime;
 function tick(){
requestAnimFrame(tick);
animate();
 }
function animate(){
currentTime = (new Date).getTime();
elapsedTime = currentTime - lastFrameTime;
if (elapsedTime< rate) return;
var updateIterations = Math.floor(elapsedTime / MINIMUM_FRAME_RATE);
while(updateIterations> 0){
drawScene();
updateIterations -= 1;
 }
lastFrameTime = (new Date).getTime();
 }

The animate function is fairly straightforward. We first define rate and
MINIMUM_FRAME_RATE and capture the time the page was loaded in lastFrameTime.
We then calculate the difference since the last time animate was invoked and capture
the result in elapsedTime. If elapsedTime is less than rate, we do not render the
scene to accommodate for very fast systems. If the time is more, we calculate how
many times the drawScene function was expected to be invoked during that time
period by calculating updateIterations (elapsedTime / MINIMUM_FRAME_RATE).
Now, we invoke drawScene as many times as it was supposed to be invoked during
that time period.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[215]

The preceding approach is not perfect as it invokes
drawScene multiple times in a single frame, which is not
ideal. We should just update our position (state) variables
and invoke drawScene once. We will follow the updated
approach in the subsequent chapters.

Comprehending interpolation
We have discussed when to update our scene, but not what to update it to, or how
to update it. In most basic animations, we generally move a complete object and in
this chapter, we will stick to that. So, our objective would be to move objects along
a defined path, on user-generated events.

The path is defined by an equation such as y=f(x) and some discrete points, for
example, if the path is along a line, then we have the equation of the line and two
points: start(x,y) and end(x1,y1). Now, we need to calculate all the points along the
path, which is called interpolation. So, interpolation is a method of constructing new
data points within the range of a discrete set of known data points. Hence, if we have
three data points such as (0,1),(1,2),(2,3), calculating the value of x which is equal to
2.5 from the mentioned set of values is called interpolation.

Linear interpolation
Linear interpolation (sometimes known as lerp) is a method of curve fitting using
linear polynomials. If the two known points are given by the coordinates, then
the linear interpolant is the straight line between these points. For a value x in
the interval, the value y along the straight line is given from the equation (y-y1)/
(x-x1)=(y-y2)/(x-x2). However, this is not precise.

We will use linear interpolation in our code to define the path of a fired bullet in
our example.

Polynomial interpolation
Polynomial interpolation is a generalization of linear interpolation. Note that
the linear interpolant is a linear function. We now replace this interpolant by a
polynomial of a higher degree. The following equation is an example of a polynomial
of degree 5:

f(x)=ax5+bx4+cx3+dx2+ex+f

www.it-ebooks.info

http://www.it-ebooks.info/

Applying Textures and Simple Animations to Our Scene

[216]

Spline interpolation
Spline interpolation is a form of interpolation where the interpolant is a special
type of piecewise polynomial called a spline. Spline interpolation is preferred over
polynomial interpolation because the interpolation error can be minimized. Also,
spline interpolation is better for a higher degree of polynomials because it avoids
Runge's phenomenon (http://en.wikipedia.org/wiki/Runge's_phenomenon)
found in polynomial interpolation. It is used when the function changes over the
value of x. For example, if x>0, then f(x)=x2, and if x<0, then f(x)=1/x2. Piecewise
polynomial refers to a different function for ranges of x.

Spline interpolation and linear algebra are complex topics. Refer to the link
http://www.vis.uni-stuttgart.de/~kraus/LiveGraphics3D/cagd/. This web
page contains good Java applets (Chapter 8, B-spline Curves on the web page) to
understand spline interpolation.

We are not very interested in spline interpolation but very interested in its specific
type called B-spline interpolation. This is the most used form of interpolation in
tweening. Basically, when we want to generate a curved path, we can use this kind
of interpolation.

B-spline or Basis spline is defined by its order, a set of weighted control points and
a knot vector. The control points determine the shape of the curve. Typically, each
point of the curve is computed by taking a weighted sum of a number of control
points. However, the curve usually does not go through the control point.

Q3

Q7Q6

Q4

Q5

P0

P1

P2

P3

P4

P5

P6

P7

t
3

t
4

t
5

t
6

t
7

t
8

control point

knot

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[217]

In our example, we will use B-spline to generate the path of a grenade (06-Grenade-
Action.html). We have added an implementation of B-spline interpolation in the
BSplineIterpolation.js file from the primitive folder of the code bundle. We will
not cover the code of its implementation, but we will discuss how to use the class.

var grenadeControlPoints=[[-1.5,-2,-10],[-1.5,10,-30],[-1.5,15,-40],
[-1.5,10,-60],[-1.5,0,-80]];
var splineInterpolation=new BSplineInterpolation(grenadeControlPoin
ts);
var grenadePositions=splineInterpolation.position;

In the first line of the preceding code, we defined a set of control points
(grenadeControlPoints). Notice that for the control points, x (-1.5) remains
constant and z (-10,-30,-40,-60,-80) decreases, while y first increases (-2,10,15)
and then decreases (10,0). So, we are simulating a throwing action. With the grenade
being thrown in the z direction, it first goes up and then comes down. The constructor
of the class takes control points, interpolates all the positions between the control
points, and stores the interpolated path in the position array of the class. We take all
those positions and store them in our variable grenadePositions for future use.

In a nutshell, we interpolate positions between the given
points, and then change our object's location as per
these points over a period of time. This creates an effect
of animation. To calculate these points, we can use any
interpolation technique (linear, polynomial, and B-spline).

A briefing on skinned animation
Skeletal animation is a technique in games in which a model is represented in two
parts: mesh (vertices) and a hierarchical set of interconnected bones (called the
skeleton or rig) that is used to animate (pose and keyframe) the mesh. Although
this technique is often used for organic modeling, it only serves to make the
animation process more intuitive, and the same technique can be used to control the
deformation of any object—a door, a spoon, a building, or a galaxy. When we say
hierarchical set, we mean that we move one parent bone, and then the subsequent
child bones will also move.

We will also discuss inverse kinematics where we use the kinematics equations of a
rigged model to determine the joint parameters that provide a desired position of the
child bone. For example, if we have a rigged model of a human being and we move the
backbone, kinematics will help us calculate the effect on each bone up to the fingers.
We will discuss these animations in depth in Chapter 8, Skinning and Animations.

www.it-ebooks.info

http://www.it-ebooks.info/

Applying Textures and Simple Animations to Our Scene

[218]

Using first-person camera
Now is the time for action! Our core objective is to create two weapons in our game:
bullets and a grenade. Although we are in 5000 AD, we are still medieval and
simulate the same weapons we use today. However, first we need to move around in
the scene, so we need to simulate the first-person camera. This is a simple simulation
of how we see a scene if we were physically present there. For example, you are
sitting in a room and have a camera on a remote-controlled vehicle on the moon, and
you see the surface of the moon from that camera.

We start our animation implementation with the explanation of the first-person
camera as we want our bullet and grenade animations to start from the player's
position. Now, to simulate this in our game, we move the camera with us in the
game. The camera would simulate your eyes, it should only see what your eyes
see. So, if you look straight ahead, you would not see yourself. But we needed
something to show that you are moving; so, we decided to keep our model in a
weaver position with a hand gun. Hence, your right arm is at your shoulder height
at all times (as in the following screenshot) and our eyes can only see our own hand
(a very tiring posture but we think we can live with that in our game).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[219]

Now, we need to move the camera with our arm or move the arm with our camera.
We will do the latter, which means that our arm should move as the camera moves.
We took this approach as we have already implemented a free camera class in
Chapter 5, Camera and User Interaction, and we already control it with our keys.

As discussed in Chapter 5, Camera and User Interaction, the camera transformation
matrix is the same as any model matrix; so, if the camera was a model, then it would
have the same transformation as the camera. We compute the view matrix using the
mat4.lookat function. We also discussed in Chapter 5, Camera and User Interaction, in
the Converting between the camera matrix and view matrix section, that the model matrix
(camera matrix) is the inverse of the view matrix, M=V-1.

Hence, to get the position of our arm, all we need to do is compute the camera matrix
and apply the transformation to the right-hand arm object, and that is it.

var mMatrix=mat4.clone(cam.viewMatrix);
mat4.invert(mMatrix,mMatrix);

Adding the first-person camera
Open 06-Bullet-Action.html in your text editor.

The first change we do is load our right hand model as shown in the following code:

function start() {
...
loadStageObject("model/weapons/rightHand.json",[0.0,0.0,0.0],0.0,degTo
Radian(2),0.0);
...
}

We changed our drawScene function to apply different transformations for
this model. For all other models, we will apply simple translation and rotation
transformations to our ModelView matrix. But in this case, we will simply multiply
the camera matrix to the ModelView matrix to position the arm exactly at the
camera's location and orientation.

function drawScene() {
...
for(var i=0;i<stage.stageObjects.length;++i){
...
if(stage.stageObjects[i].name=="rightHand"){
var mMatrix=mat4.clone(cam.viewMatrix);
mat4.invert(mMatrix,mMatrix);

www.it-ebooks.info

http://www.it-ebooks.info/

Applying Textures and Simple Animations to Our Scene

[220]

mat4.multiply(mvMatrix,mvMatrix,mMatrix);
 }
else{
mat4.translate(mvMatrix,mvMatrix, stage.stageObjects[i].location);
mat4.rotateX(mvMatrix,mvMatrix,stage.stageObjects[i].rotationX);
mat4.rotateY(mvMatrix,mvMatrix,stage.stageObjects[i].rotationY);
mat4.rotateZ(mvMatrix,mvMatrix,stage.stageObjects[i].rotationZ);
 }
...
 }
...
 }

We first compare if the object is rightHand, and then we clone the camera view matrix
(var mMatrix=mat4.clone(cam.viewMatrix)). Then, we calculate the model matrix
by calculating the inverse of the camera matrix (mat4.invert(mMatrix,mMatrix);).
Then, we calculate our final ModelView matrix by multiplying it with the current
mvMatrix.(mat4.multiply(mvMatrix,mvMatrix,mMatrix);). Now our arm is exactly
placed at our camera's position and it should look similar to the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[221]

However, this is not what we want. We placed our right hand right in front of our
eyes/camera. Actually, our right hand is placed to the right (x=1), below (y=-3), and
behind(z=-8) the camera/screen. Therefore, we need to apply a translation as shown
in the following code:

var mMatrix=mat4.clone(cam.viewMatrix);
mat4.invert(mMatrix,mMatrix);
mat4.translate(mMatrix,mMatrix,vec3.fromValues(1,-3,-8));
mat4.multiply(mvMatrix,mvMatrix,mMatrix);

Hence, we moved our hand to the right (x = 1 unit), below (y = -3 units), and behind
(z = -8 units) with respect to our camera.

Let's reiterate the steps that we need to perform to position any object with respect to
our camera:

1. Get the camera view matrix.
2. Calculate the camera matrix by getting the inverse of the view matrix.
3. Apply transformations to the camera matrix to place the object with respect

to the camera.
4. Multiply the transformed camera matrix to the ModelView matrix.

Improving the first-person camera code
The preceding code is in the drawScene function. If we have to apply different types
of transformations to every object in our scene, then our drawScene function would
become very big, and this is not what we want. Hence, we decided to create another
code update. We added two new functions to our StageObject class.

Open the StageObject.js file from the primitive folder of the code bundle in your
text editor.

We defined a new variable modelMatrix to hold the object's model matrix, as shown
in the following code:

this.modelMatrix=mat4.create();

Then, we added a new function StageObject.prototype.update. This function is
invoked by drawScene to calculate the model matrix, as shown in the following code:

StageObject.prototype.update=function(steps){
mat4.identity(this.modelMatrix);
mat4.translate(this.modelMatrix,this.modelMatrix, this.location);
mat4.rotateX(this.modelMatrix,this.modelMatrix,this.rotationX);
mat4.rotateY(this.modelMatrix,this.modelMatrix,this.rotationY);
mat4.rotateZ(this.modelMatrix,this.modelMatrix,this.rotationZ);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Applying Textures and Simple Animations to Our Scene

[222]

We also added a new function initialize to the StageObject class. In this
particular class, it does nothing but will be overridden in the child classes.

StageObject.prototype.initialize=function(){
 //For implementation in child class
 }

We also added two new variables, this.visible and this.camera, to the class.

Now let's look at our new drawScene functions. Open 06-Bullet-Action-
Complete.html in your editor.

function drawScene() {
...
for(var i=0;i<stage.stageObjects.length;++i){
if(stage.stageObjects[i].visible==true){
...
stage.stageObjects[i].update();
mat4.multiply(mvMatrix,mvMatrix,stage.stageObjects[i].modelMatrix);

...
 }
 }
...
 }

We iterate over our list of stageObjects and render only those whose visible
property is set to true. We invoke the update function of each object to calculate
the model matrix, and then multiply the model matrix with the view matrix.

We will now inherit our new stageObject class for every new dynamic object that
we want to add to our scene. Each type of object can have different animations, and
we will simply write different update functions for them.

Open the RightHand.js file from the primitive/game folder of the code bundle,
in your editor. Our RightHand class inherits our StageObject class. We have
overridden the update function of the StageObject class. In this function, we use
the viewmatrix camera to calculate the model matrix. The camera object is inherited
from the parent class. The following code shows our RightHand class derived from
the StageObject class:

RightHand= inherit(StageObject, function (){
superc(this);
});
RightHand.prototype.update=function() {
var mMatrix=mat4.clone(this.camera.viewMatrix);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[223]

mat4.invert(mMatrix,mMatrix);
mat4.translate(this.modelMatrix,mMatrix,vec3.fromValues(1,-3,-8));
}

Open 06-Bullet-Action-Complete.html in your editor again to accommodate
our new RightHand class. We updated our loadStageObject function. Now in the
function, we check the object name and create the corresponding object, like in our
case, we wanted a child object for RightHand. We then assign a camera object to each
stage object and then add an object to the Stage class.

function loadStageObject(url,location,rotationX,rotationY,rotationZ){
 $.getJSON(url,function(data){
Var nameOfObject=data.metadata.sourceFile.split(".")[0];
var stageObject=null;
if(nameOfObject=="rightHand"){
stageObject=new RightHand();
 }
else{
stageObject=new StageObject();
 }
stageObject.camera=cam;

stageObject.loadObject(data);
...
}
}

Simple bullet action – linear animation
In this section, we will add another object to our scene, the bullet (Bullet.json),
and we will move our bullet in a straight line, unlike Angelina Jolie's movie Wanted,
where the guys curve bullets. We can do that by applying B-spline interpolation but
we are still medieval and we will save it for our grenade.

The equation to move the bullet is simple: f(x)=z. We will simply change the z value
to move the bullet. However, this is awful because if we rotate ourselves (the camera
and subsequently, our arm), the bullet should go in the arm's direction. To achieve
this, we need to apply the camera transformation to the bullet. Each bullet will have
the same defined set of points, let's say (0,0,1),(0,0,2)...(0,0,200), but when we apply
these translations to the clone of the camera matrix, then each time we fire the bullet
from a different angle or position, we will get different trajectories. Actually, these
defined positions are with respect to the camera and not the scene. If we apply
camera transformations to the bullet, then we will get different trajectories with
respect to the scene.

Scene Co-ordinates=Camera Matrix*Translation(Position)

www.it-ebooks.info

http://www.it-ebooks.info/

Applying Textures and Simple Animations to Our Scene

[224]

We define positions (interpolated points) with respect to the camera, not the scene.

However, if we move our arm after firing the bullet, then the bullet should not
change its initial trajectory, which means the bullet should use the initial camera
matrix to calculate its transformation.

Open the Bullet.js file from the primitive/game folder in your editor.

We first inherit our StageObject to create the Bullet class. We have added three
new variables in the class: positions to hold the calculated set of interpolated
points for the animation trajectory, initialModelMatrix to hold the initial camera
matrix so that the bullet does not change the trajectory after firing, even if the camera
changes its location/orientation, and lastly, counter to maintain the index of the
current position once the bullet is fired. Also note that we have set the visible
property of the bullet to false so that the bullet is initially not visible, as shown in
the following code:

Bullet= inherit(StageObject, function (){
superc(this);
this.visible=false;
this.positions=[];
this.initialModelMatrix=mat4.create();
this.counter=0;
});

We have implemented the initialize function of the StageObject class in the
Bullet class. This function first clones the camera view matrix, and then stores the
camera matrix in initialModelMatrix. It initializes the position array by invoking
calculatePositions for a set of 200 points, and sets counter to 0 and visible to
true, as shown in the following code:

Bullet.prototype.initialize=function() {
var mMatrix=mat4.clone(this.camera.viewMatrix);

mat4.invert(this.initialModelMatrix,mMatrix);
var count=200;
this.positions=[];
for(var i=0;i<count;++i){
this.positions.push(this.calculatePosition(i*this.steps));
 }
this.counter=0;
this.visible=true;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[225]

The calculatePosition function calculates the position by varying the z
component. In the following code, our f(z) is equal to -16-z. We added the constant
to accommodate the length of the hand with respect to the camera. Also notice the
negative sign. We want the bullets to go in the negative z direction of the hand. If we
rotate our hand in the world space by 180 degrees, then this value will automatically
be positive with respect to the world space. The x and y remain constant with respect
to the object space (in our case, the right hand).

Bullet.prototype.calculatePosition=function(z){
Var newPosition = [0,-2,-16-z];
return vec3.fromValues(newPosition[0],newPosition[1],newPosition[2]);
}

Now, time for our update function of our bullet class. The update function is
invoked from the drawScene function at a fixed time rate. Each time it is invoked,
the bullet is rendered at a new position. We initialized our counter earlier. Hence, we
run our bullet animation 200 for frames. The counter is checked against the length
of the positions array. If the counter has exceeded the length, then we alter the
visibility of our object to false and the drawScene function would stop rendering
it. The integer counter also works as an index to the positions array. We retrieve
a position and apply the translation to the initial model matrix to calculate our
model matrix (mat4.translate (this.modelMatrix, this.initialModelMatrix
,this.positions[this.counter]);). We then update our counter.

Bullet.prototype.update=function() {

if(this.counter<this.positions.length){
mat4.translate(this.modelMatrix,this.initialModelMatrix,this.
positions[this.counter]);
this.counter=this.counter+1;
 }
else{
this.visible=false;
 }
mat4.scale(this.modelMatrix,this.modelMatrix,vec3.fromValues(5,5,5));
}

In the preceding code samples, we have used a constant scaling factor 5 and we have
used similar constants throughout. These constant values are provided by the scene
designer and we have implemented them as is in the scene.

Open 06-Bullet-Action-Complete.html in your editor.

www.it-ebooks.info

http://www.it-ebooks.info/

Applying Textures and Simple Animations to Our Scene

[226]

We first load our bullet object (bullet.json) in our start function as shown in the
following code:

loadStageObject("model/weapons/bullet.json",[0.0,0.0,0.0],0.0,0.0,0.0
);

We also modified our loadStageObject function to create the object of our Bullet
class. Remember that all the objects are added to the stageObjects array of the
Stage class. As each object inherits StageObject, the drawScene function invokes
the update function of each object independent of its implementation.

function loadStageObject(url,location,rotationX,rotationY,rotationZ){
 $.getJSON(url,function(data){
...
 else if(nameOfObject==="bullet"){
stageObject=new Bullet();
bullet=stageObject;
 }
...
 }
}

We have also added a handleKeys function to initialize the bullet each time the
Space bar is hit. The initialize function toggles the visibility of the bullet, and then
the drawScene function starts processing it.

function handleKeys(event) {
switch(event.keyCode) {//determine the key pressed
case 32:// Space Bar
bullet.initialize();
break;
 }
 }

Reusing objects in multiple bullets
In this section, we would like to cover a very basic concept of reusing objects. In the
preceding code, each time we hit the Space bar, the same bullet changes its location.
What we would actually like is that we generate a new bullet each time the Space bar
is hit. The scene should have multiple bullets. A simple strategy would have been to
clone the bullet each time we hit the Space bar. However, using this way, we would
have multiple objects initialized in the scene and we would have no way to track
them. Hence, we initialize a pool of bullets, and then whenever we hit the Space bar,
we pick a bullet from the pool based on its visibility. If the bullet is not visible, this
means it is not in action and is not being rendered by the drawScene function. We
can safely initialize an invisible bullet completely transparent to the end user.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[227]

Concepts like these actually make your game successful. This way, even if the game
is being rendered for a long period of time without a pause, the game performance
will not deteriorate.

Let's look at the implementation of the concept closely. Open 06-Multiple-Bullets-
Action.html in your editor.

We start with the definition of our variables, a bullets[]array that will hold the pool
of bullets, and nextBulletIndex that will hold the index of the next bullet to be used.

var bullets=[];
var nextBulletIndex=0;

We just added the loadStageObjects and addStageObjects functions here.
We discussed them earlier; we added them to make the flow more intuitive.

After each object is loaded in loadStageObject, it invokes addStageObject which
in turn invokes cloneObjects. The cloneObjects function checks for the object
type and then creates its corresponding clones by invoking the clone function of the
object. For the bullet, it creates 24 clones (one was already loaded, in total 25) and
then adds them to the bullets array. Each bullet also holds the reference to the cam
object in its camera property.

function loadStageObject(url,location,rotationX,rotationY,rotationZ){
...
addStageObject(stageObject,location,rotationX,rotationY,rotationZ);
...
}
function addStageObject(stageObject,location,rotationX,rotationY,rota
tionZ){
cloneObjects(stageObject);
stageObject.location=location;
stageObject.rotationX=rotationX;
stageObject.rotationY=rotationY;
stageObject.rotationZ=rotationZ;
stage.addModel(stageObject);
 }

function cloneObjects(stageObject){
...
if(stageObject.name=="bullet"){
bullets.push(stageObject);
for(var j=0;j<24;++j){
var bullet=stageObject.clone();
bullet.camera=cam;

www.it-ebooks.info

http://www.it-ebooks.info/

Applying Textures and Simple Animations to Our Scene

[228]

bullets.push(bullet);
stage.addModel(bullet);
 }
 }
}

In the handleKeys function, we simply pick a bullet from the array referenced by
the nextBulletIndex variable. The value of the variable is 0 initially. After that, we
increment the next bullet index, and if the counter has exceeded the length of the
bullets array, then we initialize it back to 0.

function handleKeys(event) {
switch(event.keyCode) {//determine the key pressed
case 32://space key
bullets[nextBulletIndex].initialize();
nextBulletIndex++;
if(nextBulletIndex>=bullets.length){
nextBulletIndex=0;
 }
break;
 }
 }

In the preceding code, we used a very simple algorithm to pick bullets from the
pool. We only used the next index of the last active bullet. We could use simple logic
currently because we know that by using the next index, we are actually using the
bullet that was either never used or was the oldest one to be used (circular) as the life
of each object is the same. In other games, we might have to use more complicated
logic to re-use objects because the life of each object may vary.

Using B-spline interpolation for grenade
action
In this section, we will introduce the left hand. The left hand will be used to throw
the grenade. So, first we will need to create a linear animation of the left hand.
However, this time, we will not interpolate over position but over rotation. Then, we
will chain animations. When the animation of the left hand ends, we will start the
animation of the grenade.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[229]

Using linear interpolation for left-hand rotation
We want to throw the grenade when the Enter key is pressed. Let's first go over the
class to handle the animation of the left hand.

Open the LeftHand.js file from the primitive/game folder of the code bundle in
your text editor.

The LeftHand class also inherits StageObject. We have defined some new properties
(rotations, counter, and grenadeCallBack). The rotations array holds the angles
that we need to interpolate on. The integer counter maintains number of times the
update function has been invoked. The variable grenadeCallback, holds the reference
to the function that has to be invoked once the animation has finished. The constructor
initializes the rotations array with values from 90 to 75 degrees. The visible
property has been initialized to false to avoid rendering of the left arm initially:

LeftHand= inherit(StageObject, function (){
superc(this);
this.rotations=[];
for(var j=90.0;j>=75.0;--j){

www.it-ebooks.info

http://www.it-ebooks.info/

Applying Textures and Simple Animations to Our Scene

[230]

this.rotations.push((j*22/7)/180);
 }
this.visible=false;
this.counter=0;
this.grenadeCallback=null;
});

In the update function, we obtain the camera view matrix. Calculate the camera
matrix, then translate the arm with respect to the camera using the matrix. Then,
apply a rotation transformation along the x axis with an angle from the rotations
array. Note that in the case of the left arm, we use the latest value of the camera view
matrix throughout the animation. This is done so that during the animation if you
rotate or translate your camera, the arm moves with it. Also, when we have iterated
over the complete set of rotations, it resets the counter, toggles visibility, and invokes
the callback function.

LeftHand.prototype.update=function() {
if(this.counter<this.rotations.length) {
var mMatrix=mat4.clone(this.camera.viewMatrix);
mat4.invert(mMatrix,mMatrix);
mat4.translate(this.modelMatrix,mMatrix,vec3.fromValues(-1.5,-3,-6));
mat4.rotateX(this.modelMatrix,this.modelMatrix,this.rotations[this.
counter]);
this.counter=this.counter+1;

}else{
this.counter=0;
this.visible=false;
this.grenadeCallback();
 }
}

Open the grenade.js file from the primitive/game folder in your editor.

The Grenade class is very similar to the Bullet class except for one difference: we
do not calculate the interpolates in the initialize function. We calculate it over the
control points once the application is loaded in the main control code. Each time the
animation is required to run, we pass the positions array from the main code as a
parameter to the initialize function.

Grenade= inherit(StageObject, function (){
superc(this);
this.positions=[];
this.counter=0;
this.visible=false;
this.initialModelMatrix=mat4.create();
});

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[231]

The initialize function of the class calculates the initialModelMatrix from the
camera matrix, resets the counter and visibility, and initializes the positions array
as shown in the following code:

Grenade.prototype.initialize=function(positions) {
var mMatrix=mat4.clone(this.camera.viewMatrix);
mat4.invert(this.initialModelMatrix,mMatrix);
this.counter=0;
this.visible=true;
this.positions=positions;
 //mat4.translate(this.modelMatrix,mMatrix,vec3.
fromValues(0,-3,-8));
}

The update function is exactly the same as the one in the Bullet class. It simply
calculates the model matrix from intialModelMatrix and the current active
position from the positions array on each update call from drawScene.

Grenade.prototype.update=function() {
if(this.counter<this.positions.length-1){
mat4.translate(this.modelMatrix,this.initialModelMatrix,this.
positions[this.counter]);
this.counter=this.counter+1;
 }
else{
this.visible=false;
 }
}

Open 06-Grenade-Action.html in your editor to understand the implementation
of the preceding classes.

We start with the declaration of variables to hold the objects of the grenade and our
left hand.

var leftHand=null;
var grenade=null;

Then, we define the control points to calculate interpolated values for the grenade
animation and also define the grenadePositions array to store the interpolates.
Note that these control points are in respect to the camera position.

var grenadeControlPoints=[[-1.5,-2,-10],[-1.5,10,-30],[-1.5,15,-40],
[-1.5,10,-60],[-1.5,0,-80]];
var grenadePositions=[];

www.it-ebooks.info

http://www.it-ebooks.info/

Applying Textures and Simple Animations to Our Scene

[232]

The start function initializes the BsplineInterpolation object, and it calculates
the interpolates and stores them in its position array. In the next line, we simply
copy its value to the grenadePositions array. Then, the start function loads the
left hand and grenade JSON models.

function start() {
...
var splineInterpolation=new BSplineInterpolation(grenadeControlPoin
ts);
grenadePositions=splineInterpolation.position;
...
loadStageObject("model/weapons/leftHand.json",[0.0,20.0,-
150.0],0.0,0.0,0.0);
loadStageObject("model/weapons/grenade.json",[0.0,20.0,-
150.0],0.0,0.0,0.0);
...
}

The loadStageObject function checks the loaded object type, and then
creates the objects for LeftHand and Grenade. The leftHand object's property
grenadeCallback is initialized with a reference of the initializeGrenade function
of our main code. It is invoked once the hand animations have been executed.

function
loadStageObject(url,location,rotationX,rotationY,rotationZ){
...
else if(nameOfObject=="leftHand"){
stageObject=new LeftHand();
leftHand=stageObject;
leftHand.grenadeCallback=initializeGrenade;
 }
...
else if(nameOfObject=="grenade"){
stageObject=new Grenade();
grenade=stageObject;

 }
...
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[233]

The initializeGrenade function is invoked from the update function of the
LeftHand class once the animation has been executed. It invokes the initialize
function of the Grenade class and passes the grenadePositions array calculated
in the start function. Note that these interpolates are calculated in reference to
the camera and not the world space. We calculate each position in world space by
translating them with the camera matrix in the update function of the Grenade class.

function initializeGrenade(){
grenade.initialize(grenadePositions);
 }

Our handleKeys function simply toggles the visibility of the left hand when the
Enter key is pressed. Once the object is marked visible, the drawScene function starts
invoking its update function and subsequently leads to its rendering. Once the hand
animation ends, it invokes the grenade animation from the callback function.

function handleKeys(event) {
...
switch(event.keyCode) {//determine the key pressed
case 13://Press Enter for grenade action
leftHand.visible=true;

break;
...
 }
 }

Using texture animation for an explosion
effect
In the last section of this chapter, we will create an animation effect with textures. We
want the grenade to explode once its animation ends. Although explosions in games
are created using particle physics, for simple explosions, we chose to confine ourselves
to texture animation. So let's first understand what we mean by texture animation.

Until now, we were updating an object's location or rotation in our update function.
In short, we were manipulating the ModelView matrix. Now, we will change the
texture in our update function.

www.it-ebooks.info

http://www.it-ebooks.info/

Applying Textures and Simple Animations to Our Scene

[234]

Let's slide back to the start of the chapter where we said that the Stage class
holds the reference to all initialized textures and each StageObject holds the
textureIndex, the index to the initialized texture. Now, if we change the value
of the textureIndex property in the update call, it will render each time with a
different texture, giving an illusion of the animation.

Let's look at textures, shown in the following screenshot, which we have created to
simulate an explosion:

We will apply these textures to an explosion object (explosion.json from the
model\weapons folder of the code bundle).

So, first let's understand our explosion.js file from the primitive/game folder of
the code bundle.

The Explosion class has a new textureIndices[]variable in the place of the
positions array. This array holds the indices of textures defined in the primary
Stage class.

Explosion= inherit(StageObject, function (){
superc(this);
this.textureIndices=[];
this.counter=0;
this.visible=false;
});

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[235]

The initialize function takes the modelMatrix of the grenade as a parameter. The
objective is simple: the explosion has to occur at the same location and orientation
of the grenade in its last frame. Hence, we clone the received model matrix and
simply assign it to the model matrix of the Explosion object. We also initialize the
textureIndex class variable to the first element of the texture array.

Explosion.prototype.initialize=function(modelMatrix) {
this.modelMatrix=mat4.clone(modelMatrix);
this.counter=0;
this.textureIndex=this.textureIndices[0];
this.visible=true;
this.frames=0;
}

The update function increments the counter and assigns the index of the next
texture in the textureIndices array. Once the animation has finished, we toggle
the visibility of the texture.

Explosion.prototype.update=function() {
if(this.counter<this.textureIndices.length){
this.textureIndex=this.textureIndices[this.counter];
this.counter-++;
 }
else{
this.visible=false;
this.counter=0;
 }
}

We also need to do a small change in the Grenade.js file from the primitive/game
folder of the code bundle.

We need to add a callback function (explosionCallBack) to the Grenade class so
that we can pass the model matrix of the grenade in the last frame and initialize
our explosion.

Grenade= inherit(StageObject, function (){
...
this.explosionCallBack=null;
});

www.it-ebooks.info

http://www.it-ebooks.info/

Applying Textures and Simple Animations to Our Scene

[236]

When the Grenade animation finishes, it invokes the explosionCallBack function
and passes its modelMatrix as shown in the following code:

Grenade.prototype.update=function() {
if(this.counter<this.positions.length-1){
...
 }
else{
...
if(this.explosionCallBack!=null){
this.explosionCallBack(this.modelMatrix);
 }
 }
}

Let's walk through the implementation of the preceding classes in 06-Grenade-
Action-Blast.html.

We have added a new variable to hold the explosion object, as shown in the
following code:

var explosion=null;

In the loadStageObject function, after the grenade object is created, we assign the
name of the callback function (initializeExplosion) to the explosionCallBack
property of the grenade object. It is invoked once its animation has finished. After
the explosion object is created, we invoke initExplosionTextures to load all the
textures shown previously.

function
loadStageObject(url,location,rotationX,rotationY,rotationZ){
...
else if(nameOfObject=="grenade"){
stageObject=new Grenade();
grenade=stageObject;
grenade.explosionCallBack=initializeExplosion;
}else if(nameOfObject=="explosion"){
stageObject=new Explosion();
explosion=stageObject;
initExplosionTextures();
 }
...
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[237]

The textures are named blast_1.png, blast_2.png, blast_3.png, all the way to
blast_15.png. We iterate over the names and load the textures. We create a unique
key (vartextureIndex=currentDate.getMilliseconds()+j-;) to create
a reference to the texture object in the Stageclass'textures object. Each unique
key of the texture is pushed to the explosion.textureIndices array and the
texture object is initialized and stored via the stage.addtexture function.

function initExplosionTextures(){
for(var j=1;j<=15;++j){
var fileName="blast_"+j+".png";
var currentDate=new Date();
var textureIndex=currentDate.getMilliseconds()+j*2000;
explosion.textureIndices.push(textureIndex);
textureList[fileName]=textureIndex;
var image = new Image();
image.onload = function() { stage.addTexture(textureIndex,fileName,
image); }
image.src = "model/textures/"+fileName;
 }
 }

In our last change in code, the initializeExplosion function is assigned to the
grenade object. When the grenade animation finishes, it invokes this function
to create a chained animation of the explosion. It also takes the modelMatrix of
the grenade object as a parameter. This function in turn invokes the initialize
function of the explosion object.

function initializeExplosion(matrix){
explosion.initialize(matrix);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Applying Textures and Simple Animations to Our Scene

[238]

Summary
This chapter was most likely our entry point to creating games using WebGL. It
covered very basic but important concepts of game development. We started this
chapter with architectural updates to apply textures in our objects in the scene. We
then covered the primary concept of timing of animations in game development. The
basic techniques of creating animations using interpolates will be useful in creating
many complex animations. Although we implemented only linear and B-spline
interpolations, the core concept of using interpolation techniques was covered.

The key concept we touched upon was how simple animations have become. We
plan them in reference to one object and then apply a transformation with respect
to the scene. In our examples, our reference object was the first-person camera. The
interpolation points that we used were constant, but when we applied the camera
matrix, we produced different trajectories for the same points. This is the most
important concept that we need to understand when creating animations. We
finished our chapter with texture animation.

In the next chapter, we will use concepts such as collision detection to intercept the
path of these animations.

www.it-ebooks.info

http://www.it-ebooks.info/

Physics and Terrains
In a game, we generally do not like to control our animations, typically in a case
where a bullet or a grenade is involved. We want force, impulse, and gravity to
control the motion in a game. This is what this chapter is about—physics simulation.
We will discuss how physics engines control component trajectories as well as work
with collision detection in a game. However, before we dive deep into physics, we
want to extend the terrain (ground) of our game scene. We will cover the following
topics in this chapter:

• A simple terrain: plane geometry
• JavaScript 3D physics engines: JigLibJS
• Adding gravity and a rigid body to the game scene
• Forces, impulse, and collision detection: grenade and bullet

animation revisited
• Extending our terrain with physics

Understanding a simple terrain – plane
geometry
In all our previous examples, we have used a JSON file (model/obj/terrain.json)
as our terrain or ground base, where we have added all our objects. This approach is
generally not used in games where the scene is a complete city or world. In a game,
terrains are endless. The terrain should appear to meet the sky. If we clone the OBJ
file multiple times to achieve the effect, then we might make the rendering slower; the
same effect can be achieved with fewer polygons rendered. This is why most graphic
libraries come with functionalities to create basic geometries such as a plane, sphere,
octahedron, and others. In this chapter, we will focus on a plane geometry.

www.it-ebooks.info

http://www.it-ebooks.info/

Physics and Terrains

[240]

A plane geometry is mostly used to create terrains. However, we will first discuss
the structure of a plane geometry. A plane geometry is made of vertices where the
normal of each vertex is parallel to each other. The equation for a plane is commonly
written as follows:

Ax + By + Cz + D = 0

In the following diagram, you will see that the plane geometry is made of segments.
You should always have a higher number of segments. When the geometry is
viewed from different camera angles, more segments lead to better resolution and
minimum culling artifacts. We discussed earlier in Chapter 1, Getting Started with
WebGL Game Development, primitive culling in the assembly/rasterization phase
in the The fragment shader section. The primitives that fall partly outside the view
frustum are culled or not passed to the fragment shader for processing. If you have
a bigger segment size, then you might notice missing triangles around the corners of
the terrain because the centroid of the triangle might fall outside the view area.

The preceding diagram of the plane geometry has three width segments and three
height segments. To render the preceding geometry, we need to generate the
following set of information:

• Vertices
• Vertex normals
• Indices to reduce vertex redundancy

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[241]

• For the UV map, if we apply a texture to this geometry, we should have a
texture coordinate per vertex.

• To generate vertices, we also need the width and height of the plane. Hence,
to generate the information to render the geometry shown in the preceding
diagram, we need the following:

 ° Plane width
 ° Plane height
 ° Width segments
 ° Height segments

Terrain is one of the most important components for most
games. The plane geometry computation logic is a very
standard algorithm that is implemented in most WebGL
libraries, and we have covered its implementation to
understand the topic height maps better.

• Also, for our formulas to generate the vertex information from the preceding
data, we assume that the plane is placed at the world center and lies in the
XY plane (z = 0). The preceding diagram also shows that for n segments, we
have n + 1 vertices on each side and we certainly want our number of vertices
to be even and in the power of 2.

• Let's start with our first formula to generate vertices. Let's say that if the
plane is a grid of 4 x 4 vertices and each side's width and height is 16 units
and the image center is (0, 0), then the coordinates for vertices are shown in
the following table:

Vertices Coordinates
(0, 0) (-32, 32, 0)

These coordinates are calculated as (-32 + 64 * 0/3,
32 - 64 * 0/3, 0)

(1,0) (-32 + 64/3, 32, 0)
(2, 0) (-32 + 64 * 2/3, 32, 0)
(3, 0) (-32 + 64 * 3/3, 32, 0)
(0, 1) (-32 + 64 * 0/3, 32 - 64/3, 0)
(1, 1) (-32 + 64 * 1/3, 32 - 64/3, 0)
(2, 1) (-32 + 64 * 2/3, 32 - 64/3, 0)
(3, 1) (-32 + 64 * 3/3, 32 - 64/3, 0)
(0, 2) (-32 + 64 * 0/3, 32 - 64 * 2/3, 0)

www.it-ebooks.info

http://www.it-ebooks.info/

Physics and Terrains

[242]

The rest of the vertices, (1, 2), (2, 2), (3, 2), (0, 3), (1, 3), (2, 3), and (3, 3), are calculated
in a similar manner.

Let's look at our code to generate vertices. Open the PlaneGeometry.js file from
the primitive folder of the code files of this chapter in your favorite editor. The
following code snippet is present in this file:

PlaneGeometry = inherit(Geometry, function (width, height,
 widthOfSegments, heightOfSegments)
{
 superc(this);
 this.width = width;
 this.height = height;
 this.widthOfSegments = widthOfSegments || 1;
 this.heightOfSegments = heightOfSegments || 1;
 var i, j;
 var widthHalf = width / 2;
 var heightHalf = height / 2;
 var gridX = this.widthOfSegments;
 var gridZ = this.heightOfSegments;
 var gridXN = gridX + 1;
 var gridZN = gridZ + 1;
 var segmentWidth = this.width / gridX;
 var segmentHeight = this.height / gridZ;
 var normal = vec3.fromValues(0, 0, 1);

 for (i = 0; i<gridZN; i ++) {
 for (j = 0; j <gridXN; j ++) {

 var x = j * segmentWidth - widthHalf;
 var y = i * segmentHeight - heightHalf;
 this.vertices.push(x);
 this.vertices.push(- y);
 this.vertices.push(0);

 }
 }

In the preceding code, first we calculate the number of vertices on each side (gridXN
= gridX + 1; and gridZN = gridZ + 1;). The segmentWidth = this.width /
gridX statement calculates the length of each segment, which in our case is 64/3.
Hence, if we look at the formula in the preceding code, var x = j * segmentWidth
– widthHalf, we get the following values:

Values of i and j x coordinate y coordinate
For i = 0 and j = 0 x = 0 * 64/3 - 32 y = 0 * 64/3 - 32
For i = 0 and j = 1 x = 1 * 64/3 - 32 y = 0 * 64/3 - 32

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[243]

Values of i and j x coordinate y coordinate
For i = 0 and j = 2 x = 2 * 64/3 - 32 y = 0 * 64/3 - 32
For i = 0 and j = 3 x = 3 * 64/3 - 32 y = 0 * 64/3 - 32
For i = 1 and j = 0 x = 0 * 64/3 - 32 y = 1 * 64/3 - 32
For i = 1 and j = 1 x = 1 * 64/3 - 32 y = 1 * 64/3 - 32
For i = 1 and j = 2 x = 2 * 64/3 - 32 y = 1 * 64/3 - 32
For i = 1 and j = 3 x = 3 * 64/3 - 32 y = 1 * 64/3 - 32

If you look at the preceding list, the value of y is 1 * 64/3 - 32, which is negative of
the derived value that we got. Hence, we push this negative value in the code using
the this.vertices.push(- y) statement.

Notice that we have inherited our Geometry class, which means we have all the
variables (this.vertices, this.faces) already defined. So, we simply push the
calculated vertices on our vertices array.

Also, as our plane lies in the XY plane, the z axis is our normal for each vertex. Hence,
we have also defined our normal (var normal = vec3.fromValues(0, 0, 1);).

Let's now calculate the indices that make our triangles.

If you see the order in which we push the vertices on our array, you will realize that
we do it in the row-major order. Hence, (0, 0), (0, 1), (0, 2), (0, 3),..........., (0, n) are
indexed as (0, 1, 2, 3,.....n). The following diagram shows the vertex to index mapping
of the plane segments:

(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

0 1 2 3

4 5 6 7

8 9 10 11

www.it-ebooks.info

http://www.it-ebooks.info/

Physics and Terrains

[244]

Hence, the indices for the square are:

• (0, 0) is (0, 4, 5, 1), the two triangles are (0, 4, 1) and (4, 5, 1)
• (0, 1) is (1, 5, 6, 2), the two triangles are (1, 5, 2) and (5, 6, 2)
• (0, 2) is (2, 6, 7, 3), the two triangles are (2, 6, 3) and (6, 7, 3)
• (1, 0) is (4, 8, 9, 5), the two triangles are (4, 8, 5) and (8, 9, 5)
• (1, 1) is (5, 9, 10, 6), the two triangles are (5, 9, 6) and (9, 10, 6)
• (1, 2) is (6, 10, 11, 7), the two triangles are (6, 10, 7) and (10, 11, 7)

For each square, the four vertices are denoted as (a, b, c, d) and their values are
calculated using the segment height index, segment width index, and number of
vertices, then our formula for each vertex is as follows:

• For vertex a, the formula is j + gridXN * i
• For vertex b, the formula is j + gridXN * (i + 1)
• For vertex c, the formula is (j + 1) + gridXN * (i + 1)
• For vertex d, the formula is (j + 1) + gridXN * I

Hence, the values for each vertex are shown in the following table:

Coordinates Vertices
(0,0) a = 0 + 4 * 0 = 0

b = 0 + 4 * (0 + 1) = 4
c = (0 + 1) + 4 * (0 + 1) = 5
d = (0 + 1) + 4 * 0 = 1
Hence, the values for the vertices are (0, 4, 5, 1)

(0,1) a = 1 + 4 * 0 = 1
b = 1 + 4 * (0 + 1) = 5
c = (1 + 1) + 4 * (0 + 1) = 6
d = (1 + 1) + 4 * 0 = 2
Hence, the values for the vertices are (1, 5, 6, 2)

(0,2) a = 2 + 4 * 0 = 2
b = 2 + 4 * (0 + 1) = 6
c= (2 + 1) + 4 * (0 + 1) = 7
d = (2 + 1) + 4 * 0 = 3
Hence, the values for the vertices are (2, 6, 7, 3)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[245]

Coordinates Vertices
(1,0) a = 3 + 4 * 0 = 3

b = 3 + 4 * (0 + 1) = 7
c= (3 + 1) + 4 * (0 + 1) = 8
d = (3 + 1) + 4 * 0 = 4
Hence, the values for the vertices are (3, 7, 8, 4)

The formula to calculate UV maps for the corresponding vertices is as follows:

var uva = vec2.fromValues(j / gridX, 1 - i / gridZ);
var uvb = vec2.fromValues(j / gridX, 1 - (i + 1) / gridZ);
var uvc = vec2.fromValues((j + 1) / gridX, 1 - (i + 1) /
 gridZ);
var uvd = vec2.fromValues((j + 1) / gridX, 1 - i / gridZ);

Let's now look at the complete code to generate the faces array, UV maps, and
normal array.

We first iterate over all segments of our plane. For each segment, we have two faces
and add them to our faces array. The following code calculates the indices and UV
coordinates for the four vertices of the polygon using the formula derived earlier:

var faceUVIndex=0;
var faceIndex=0;
this.faceVertexUvs[0]=[];
var uvs=[[]];
uvs[0]=[];
for (i = 0; i<gridZ; i ++) {
for (j = 0; j <gridX; j ++) {

var a = j + gridXN * i;
var b = j + gridXN * (i + 1);
var c = (j + 1) + gridXN * (i + 1);
var d = (j + 1) + gridXN * i;
var uva = vec2.fromValues(j / gridX, 1 - i / gridZ);
var uvb = vec2.fromValues(j / gridX, 1 - (i + 1) / gridZ);
var uvc = vec2.fromValues((j + 1) / gridX, 1 - (i + 1) / gridZ);
var uvd = vec2.fromValues((j + 1) / gridX, 1 - i / gridZ);

www.it-ebooks.info

http://www.it-ebooks.info/

Physics and Terrains

[246]

The following code copies the generated UV coordinates to the uvs array of the
Geometry class at the index 0. It is the index of the first material. Also our geometry
will use only one material:

uvs[0].push(uva[0]);
uvs[0].push(uva[1]);
uvs[0].push(uvb[0]);
uvs[0].push(uvb[1]);
uvs[0].push(uvc[0]);
uvs[0].push(uvc[1]);
uvs[0].push(uvd[0]);
uvs[0].push(uvd[1]);

In the following code, we create a face object and store the calculated indices in the
corresponding face properties (a, b, d). The normals of all vertices lie on the same
plane. Hence, the normals are cloned from the normal object (0, 0, 1) and copied to
the vertexNormals array of the face object:

var face = new Face();
face.a=a;
face.b=b;
face.c=d;
face.vertexNormals=[];
face.vertexNormals["a"]=vec3.clone(normal);
face.vertexNormals["b"]=vec3.clone(normal);
face.vertexNormals["c"]=vec3.clone(normal);
this.faces.push(face);

In the following code, faceIndex maintains the count of the number of face
objects stored in the faces array, and we store the UV indices at the corresponding
faceIndex element in the faceVertexUvs array:

this.faceVertexUvs[0][faceIndex]=[];
this.faceVertexUvs[0][faceIndex]["a"]= faceUVIndex;
this.faceVertexUvs[0][faceIndex]["b"]= faceUVIndex+1;
this.faceVertexUvs[0][faceIndex]["c"]= faceUVIndex+3;
faceIndex=faceIndex+1;

In the following code, as there are two faces per segment, we repeat the process of
creating and adding the second face to the faces array and store their corresponding
UV indices in the faceVertexUvs array of the geometry:

face = new Face();
face.a=b;
face.b=c;
face.c=d;
face.vertexNormals=[];
face.vertexNormals["a"]=vec3.clone(normal);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[247]

face.vertexNormals["b"]=vec3.clone(normal);
face.vertexNormals["c"]=vec3.clone(normal);
this.faces.push(face);
this.faceVertexUvs[0][faceIndex]=[];
this.faceVertexUvs[0][faceIndex]["a"]= faceUVIndex+1;
this.faceVertexUvs[0][faceIndex]["b"]= faceUVIndex+2;
this.faceVertexUvs[0][faceIndex]["c"]= faceUVIndex+3;
faceIndex=faceIndex+1;
faceUVIndex=faceUVIndex+4;

In the following code, once our vertices and faces (a, b, c, vertexNormals),
uvs, and faceVertexUvs arrays of our Geometry class are computed, we invoke
the verticesFromFaceUvs() function to make the number of vertices equal to the
number of uvs (for vertex shaders). We also invoked the indicesFromFaces()
function to copy the face attributes, a, b, and c, to the indices array of the Geometry
class and invoke the morphedVertexNormalsFromObj() function to prepare our
normals array of the Geometry class:

this.verticesFromFaceUvs(this.vertices,uvs,0);
this.indicesFromFaces();
this.morphedVertexNormalsFromObj();

Rendering our plane geometry
The preceding code computes our vertices, indices, normals, and uvs arrays. We
generally read these values from the JSON file and store them in their corresponding
arrays. So, the rendering code of the geometry is similar to any other geometry.

Open the Plane.js file from primitive/game in your favorite text editor. The
objective of the code is to initialize the PlaneGeometry object with the required
parameters (width, height, widthOfSegments, heightOfSegments). The following
is the code snippet from the Plane.js file:

Plane= inherit(StageObject, function (width, height,
 widthOfSegments, heightOfSegments,textureName){
 superc(this);
 this.geometry=null;
 this.width=width;
 this.height=height;
 this.ws=widthOfSegments;
 this.wh=heightOfSegments;
 this.geometry=new PlaneGeometry(width, height, widthOfSegments,
 heightOfSegments;
 this.materialFile=textureName;//"terrain_1024.jpg";
});

www.it-ebooks.info

http://www.it-ebooks.info/

Physics and Terrains

[248]

We also pass the name of the texture to be associated with the UV map of
the geometry.

Open the 07-New-Terrain.html file in your favorite editor. In this code, we simply
initialize our PlaneGeometry object and set the corresponding material file name:

function start() {
...
 var plane=new StageObject();
 plane.geometry=new PlaneGeometry(7500,7500,63,63,null);

 plane.materialFile="terrain_1024.jpg";
 loadTexture(plane,clampToEdge);
...
}

The function, loadTexture(), is another refactoring attempt. We have moved the
code to load textures from the loadStageObject function. This function is now
invoked from the start() function as you saw in the preceding code and also from
the loadStageObject() function:

function loadTexture(stageObject,clampToEdge){
 if(stageObject.materialFile!=null){
 if((textureList[stageObject.materialFile.trim()]===undefined))
 {
 var currentDate=new Date();
 var textureIndex=currentDate.getMilliseconds();
 stageObject.textureIndex=textureIndex;
 textureList[stageObject.materialFile.trim()]=textureIndex;
 initTextures(stageObject.materialFile.trim(),
 textureIndex,bool);
 }
 else{
 stageObject.textureIndex=textureList[stageObject.
 materialFile.trim()]
 }
 }
}

We have also modified our Stage.js file's code located in the primitive folder
to accommodate a new parameter, clampToEdge. It is a Boolean value to decide
whether the wrapping mode (this.gl.CLAMP_TO_EDGE) has to be set for this texture
if the UV coordinates fall outside the range of 0 to 1. For terrains, we want to make
sure that if the UV map exceeds the range, then the texture is not repeated and
it covers the geometry. The texture parameters have been explained in Chapter 4,
Applying Textures.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[249]

Open the Stage.js file from the primitive folder in your favorite editor. The
following code is present in this file:

addTexture:function(index,name,img,clampToEdge){
...
 if(clampToEdge){
 this.gl.texParameteri(this.gl.TEXTURE_2D,
 this.gl.TEXTURE_WRAP_S, this.gl.CLAMP_TO_EDGE);
 this.gl.texParameteri(this.gl.TEXTURE_2D,
 this.gl.TEXTURE_WRAP_T, this.gl.CLAMP_TO_EDGE);

 }
...
}

We will now understand JavaScript physics engines and cover terrain physics in the
last section of the chapter.

Comparing JavaScript 3D physics
engines
Let's start by looking at the most popular JavaScript physics engines. Most of them
are still under development. The three most popular JavaScript physics libraries are
Box2dweb, Ammo.js, and JigLibJS. We will give you a quick introduction to each one
and then use JigLibJS in our code.

Ammo.js
Ammo.js is directly ported from the Bullet physics engine (a C++ physics library)
using Emscripten (https://github.com/kripken/emscripten). There is no human
rewriting involved in the translation of the source code. The full form of Ammo is
Avoided making my own. Ammo.js is a fully featured, rich physics library with a
wide range of options for physics shapes. It supports all features such as collision
detection, constraints, and vehicle systems.

The overview of Ammo.js is as follows:

• Performance: As Ammo.js is a direct port, the JavaScript code has not
been optimized to run in the browser. It is powerful but performance can
be an issue.

• Features: It is one of the most complete physics libraries available in any
programming language. The Bullet physics engine has been used in many
games such as Grand Theft Auto IV and Red Dead Redemption, and movies such
as 2012 and Sherlock Holmes.

www.it-ebooks.info

http://www.it-ebooks.info/

Physics and Terrains

[250]

• Usability: The API can be confusing at times and the autogenerated
documentation isn't of much help.

• Overall: If you are looking for a fully featured physics library, then
Ammo.js will get the job done. It takes some time to become familiar with
the parts of the library, but you can quickly develop complex scenes with
rich interactions.

Box2dweb
Box2dweb is a port of the famous 2D physics engine Box2D. Box2D is originally
written in C++. As the name suggests, you can only play with it in two dimensions.
It has the most powerful constraint system and exists as joints classes. It has
easy-to-configure options for complete scenes and individual objects.

The overview of Box2dweb is as follows:

• Performance: Box2dweb is very fast unless it is configured incorrectly or
the graphics is heavy. The computations involved in a 2D engine are less
compared to a 3D engine.

• Features: Box2D was not meant to do 3D. If you only need two dimensions,
this library should have everything you need.

• Browser support: Chrome, FireFox, IE9, Safari, and Opera.

JigLibJS
JigLibJS is a port of the powerful physics library, JigLib (https://github.com/
supereggbert/JigLibJS), and it was written originally in C++. The port is
completely handwritten in JavaScript and is very well optimized to run in a browser.
However, JigLibJS is not as feature-rich as Ammo.js or Box2Dweb. It offers three
types of basic constraints:

• Point: This constraint helps in joining two objects.
• WordPoint: This constraint explains that an object is fixed to a position in

the world.
• MaxDistance: This constraint limits the distance between two rigid bodies.

The other libraries offer very powerful constraint systems.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[251]

The overview of JigLibJS is as follows:

• Performance: It is customized and tuned for JavaScript. Hence, this gives
high performance.

• Features: Although JigLibJS lacks some of the less common features that
Ammo.js has, it still has enough to cover almost everything.

• Overall: We believe JigLibJS is able to fit most developer's needs without
requiring users to have more powerful computers.

• Browser support: Chrome, Firefox, IE9, Safari, and Opera.

We chose JigLibJS for this book as it is a handwritten port.
We can read the code to understand and implement most
concepts and even extend its functionalities as the library
is well-structured.

Comprehending the physics engine concepts
Broadly speaking, a physics engine provides three aspects of functionality:

• Moving items around according to a set of physical rules
• Checking for collisions between items
• Reacting to collisions between items

Physics can be applied to any element of a game scene such as characters, terrains,
and particles. A physics engine for games is based around Newtonian mechanics,
that is, the three simple rules of motion that we learned at school. These rules
are used to construct differential equations, thereby describing the movement of
our simulated items. The differential equations are then solved iteratively by the
algorithms that are used in the libraries. This results in believable movements and
interaction of the scene elements. Within the context of a game, the physics engine
provides the motion of all of the elements of the game world; therefore, it needs to be
able to move any item in the world.

The physics engine for a game tends to be a separate entity which links to the rest of
the code through an interface. It does not care about the entities it is moving, it just
cares about their physical size, weight, velocity, and other such properties. It is a
module that is distinct to the game code, renderer code, audio code, and so on.

www.it-ebooks.info

http://www.it-ebooks.info/

Physics and Terrains

[252]

Updating the simulation loop
A physics system typically operates by looping through every object in the game,
updating the physical properties of each object (position, velocity, and so on),
checking for collisions, and reacting to any collisions that are detected.

The simulation loop, which calls the physics engine for each object of interest, is
kept as separate as possible from the rendering loop, which draws the graphical
representation of the objects. Indeed the main loop of our game consists of just two
lines of code: one calls the render update and the other line calls the simulation
update. The simulation should be able to run without rendering anything to screen if
the rendering and simulation aspects of the code are correctly decoupled. The part of
the code which accesses the physics engine will typically run at a higher frame rate
than the rest of the game, especially the renderer.

Let's now first use our JigLibJS to initialize our physics system and also plan when
we want to update our physics objects. The following code snippet contains the
jigLib.PhysicsSystem.getInstance() method:

var system = jigLib.PhysicsSystem.getInstance();
system.setCollisionSystem(); // CollisionSystemBrute
// system.setCollisionSystem(true); // CollisionSystemGrid
system.setSolverType("FAST");
// system.setSolverType("NORMAL");
//system.setSolverType("ACCUMULATED");

We first initialize our physics system (jigLib.PhysicsSystem.getInstance()).
Then, we set the type of collision system (brute/grid).

Brute force would store two lists of collision objects in a collision system. One list
would be for dynamic objects and the other would include both dynamic and static
objects (each dynamic object would be in both lists). For each frame, it would loop
through the dynamic list and pass each object to the larger list and check for collisions.

Grid collision is a system that uses spatial hashing, in which we basically establish
a grid. In a grid, we mark down what is in touch with each grid. Then, we later go
through the relevant cells of the grid and check whether everything in each relevant
cell is actually intersecting with anything else in the cell. The grid collision is related
to the concept of space partition.

Physics engines are split into two major parts: collision detection and collision
resolution. The solver is just responsible for the latter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[253]

After your collision detection part determines which pairs of objects collide and
where they collide, the solver is responsible for creating the correct physical
response. Basically, the solver type defines the differential equations to be used.
ACCUMULATED is the most accurate and slowest differential equation.

Once we have initialized our engine, we invoke it at every render. The following
function checks and updates the object's properties:

system.integrate(elapsedTime / 1000);

Clearly, if there are large numbers of game entities that require physical simulation,
this can become computationally expensive. We try to reduce the number of objects
simulated by the physics engine at any time. We can use techniques similar to
the ones used in the graphics code to limit the number of objects submitted to the
renderer. However, culling objects based on the viewing frustum is not a good way of
deciding which objects receive a physics update. If objects' physical properties cease
to be updated as soon as they are off camera, then no moving objects would enter
the scene. Any objects leaving the scene would just pile up immediately outside the
viewing frustum, which would look terribly messy when the camera pans around.

A more satisfactory approach is to update any object that may have an interaction
with the player or which the player is likely to see on the screen, either now or in the
near future.

Hence, we add and remove objects from the graphics system on different events in
order to improve the speed of our game. We can add and remove objects with the
following lines of code:

system.addBody(plane.rigidBody); //To add an object
system.removeBody(plane.rigidBody);//To remove an object

Learning about objects in the physics system
Each item simulated by the physics engine requires some data representing the
physical state of the item. This data consists of parameters that describe the item's
position, orientation, and movement. Depending on the complexity and accuracy
of the physical simulation required, the data and the way in which it is used
becomes more detailed. The simpler the physical representation is, the cheaper the
computational cost is, and therefore, the greater the number of items that can
be simulated. The three main types of simulation are particles, rigid bodies, and
soft bodies.

www.it-ebooks.info

http://www.it-ebooks.info/

Physics and Terrains

[254]

Particles
The simplest representation of physical properties is achieved through the particles
method. In this case, it is assumed by the physics engine that items consist of a
single point in space (that is, a particle). The particle can move in space (that is, it
has velocity), but it neither rotates nor does it have any volume. We use particles in
games for effects such as explosions and smoke.

Rigid bodies
The most common physical representation system is that of rigid bodies. In this case,
items are defined by the physics engine as consisting of a shape in space (for example,
a cube or a collection of spheres). The rigid body can move in space and can rotate in
space, so it has both linear and angular velocity. It also has volume. This volume is
represented by a fixed shape which does not change over time, hence the term rigid
body. This approach is taken for practically everything in games where reasonable
accuracy is required.

The rigid bodies that do not move are static bodies and the other are dynamic bodies.
To define a rigid body as static, we use the set_movable(false) function. Terrains
are the best examples of static rigid bodies.

JigLib, like other physics systems, has the RigidBody class. We are listing the most
common properties of the class:

RigidBody.prototype._id=null;
RigidBody.prototype._skin=null;
RigidBody.prototype._type=null;
RigidBody.prototype._boundingSphere=null;
RigidBody.prototype._boundingBox=null;
RigidBody.prototype._currState=null;
RigidBody.prototype._oldState=null;
RigidBody.prototype._mass=null;
RigidBody.prototype._bodyInertia=null;
RigidBody.prototype._force=null;
RigidBody.prototype._torque=null;
RigidBody.prototype._activity=null;
RigidBody.prototype._movable=null;
RigidBody.prototype._doShockProcessing=null;
RigidBody.prototype._material=null;
RigidBody.prototype._nonCollidables=null;
RigidBody.prototype._constraints=null;
RigidBody.prototype.collisions=null;
RigidBody.prototype.isActive=null;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[255]

The _skin property is used to hold the transformations of the graphic element
to which we want to attach the rigid body. The _currState property has two
components: _currState.position and _currState.get_orientation. The
position vector in JigLib is defined by an array of the three elements. JigLib has its own
JVector3DUtil to manipulate the 3D vectors. The _currState.get_orientation().
glmatrix statement returns an object of type mat3 (an older version of glMatrix). The
collisions objects hold the collisions data.

The RigidBody class does not define the shape of the object in itself. The properties
that hold the shape of the object are _boundingBox and _boundingSphere. The
_boundingBox property is of the type JAABox. The JAABox class has functionalities
to handle collision points defined by shapes such as box, sphere, and capsule.

Soft bodies
Items that need to change shapes are often represented in the physics engine as soft
bodies. A soft body simulates all the aspects of a rigid body (linear and angular
velocity as well as volume) but with the additional feature of a changeable shape,
that is, deformation. This approach is used for items such as clothing, hair, and
wobbly alien jellyfish. It is considerably more expensive, both computationally and
memory-wise, than the rigid body representation.

Understanding the physics shapes
We have already discussed how the physics simulation should be decoupled as much
as possible from the rendering loop. This also applies to the data structures and to
the shapes and meshes of the game objects. The object which is rendered onto the
screen can be of any shape and can be made up of many polygons. However, it is not
practical to simulate large numbers of complexly shaped objects in the physics engine.

Almost every object that is simulated by the physics engine will be represented as a
simple convex shape, such as a sphere or cuboid, or as a collection of such shapes.
Calculating collisions and penetrations between objects can be a very expensive
process. So simplifying the shapes that represent the simulated objects greatly
improves the required computation. Hence, you will see that we use very simple
objects and shapes to represent our 3D models in physics simulations.

JigLib has defined some useful physics shapes which we generally attach to our
graphic geometries. JBox, JSphere, JCapsule, JPlain, JTerrain, and JTriangleMesh
are the most commonly used objects that inherit the RigidBody class. They have some
extra properties that define the shape, for example, JBox has width, height, depth, and
JSphere has radius.

www.it-ebooks.info

http://www.it-ebooks.info/

Physics and Terrains

[256]

The JTerrain object takes the ITerrain interface's object as a parameter. The
ITerrain interface's object holds data such as height, width, width segments, and
height segments. We will discuss this object in detail in the section Extending our
terrain with physics.

The JTriangleMesh object is another exciting object of the rigid body. It has the
createMesh(this.vertices, this.indices) function that creates any geometry
in the physics system. The vertices and indices define the shape of the 3D geometry.
They are absolutely similar to our vertices and indices data. Each element of the
vertices array represents the vertex (x, y, z). Each triangle [a, b, c] of the mesh is
stored as an element of the indices array. This object is computationally expensive
to use as we have to check each polygon of the mesh for collisions while in other
cases, we use a bounding box. We generally avoid using it.

Adding gravity and a rigid body to the
game scene
Well, it is time to add some physics to our game scene. In the example, we will
simply load a JSON sphere and add it to the scene. The 3D object's motion will be
controlled by the physics engine and gravity.

Open the Sphere.js file from primitive/game in your favorite editor. The sphere
object inherits the StageObject class and has a new function, initializePhysics;
we have also overridden the update function. The initializePhysics function is
given in the following code snippet:

Sphere= inherit(StageObject, function (){
 superc(this);
 this.visible=false;
});
Sphere.prototype.initializePhysics=function(){
 var sphere = new jigLib.JSphere(null, 20);
 sphere.set_mass(50);
 this.rigidBody=sphere;
 this.rigidBody.moveTo(jigLib.Vector3DUtil.create(0,100,120));
 this.system.addBody(this.rigidBody);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[257]

The initializePhysics function initializes a physics shape, a sphere, by creating
a jigLib.JSphere object. The object takes two parameters: the skin object and
the radius of the sphere. The skin object is a reference to the object that holds the
orientation of the geometric shape, which in our case is a sphere. We are not using
a skin parameter in our code. We just pass the radius (20) to set up collision points.
Then, we set the mass of our object so that gravity can accelerate the falling mass.
Then, we set the location of the object in reference to the world space using the
rigidBody.moveTo function. The location of the object in the physics world in
JigLib is defined by an array of [x, y, z] values, and the jigLib.Vector3DUtil.
create(0,100,120) function returns an array [0,100,120]. We then add the object to
the physics system (this.system.addBody(this.rigidBody);). Note that unless
the object is added to the physics system, the objects properties will not change. The
class variables, rigidBody and system, are inherited from the StageObject class. The
system variable holds the reference to jigLib.PhysicsSystem initialized in the main
control code.

The following code connects to the physics system with the geometry—the last
missing piece:

Sphere.prototype.update=function() {
 if(this.rigidBody){
 var pos = this.rigidBody.get_currentState().position;
 this.location=vec3.fromValues(pos[0], pos[1], pos[2]);
 mat4.identity(this.modelMatrix);
 mat4.translate(this.modelMatrix,this.modelMatrix,
 this.location);
 mat4.scale(this.modelMatrix,this.modelMatrix,vec3.
 fromValues(10,10,10));
 } else{
 mat4.identity(this.modelMatrix);
 mat4.translate(this.modelMatrix,this.modelMatrix,
 this.location);
 mat4.rotateX(this.modelMatrix,this.modelMatrix,
 this.rotationX);
 mat4.rotateY(this.modelMatrix,this.modelMatrix,
 this.rotationY);
 mat4.rotateZ(this.modelMatrix,this.modelMatrix,
 this.rotationZ);
 mat4.scale(this.modelMatrix,this.modelMatrix,
 vec3.fromValues(10,10,10));
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Physics and Terrains

[258]

We first check whether an active rigidBody variable is assigned to the geometry. If it
is assigned, then we retrieve the position of the rigidBody variable using the this.
rigidBody.get_currentState().position function. We convert the position
of rigidBody to the vec3 object and set the location property of the sphere. The
modelMatrix parameter of the sphere is initialized to the identity matrix and then
the sphere's modelMatrix is translated by the rigidBody variable's position.

So basically, we change the location of the sphere to the rigidBody variable's
location, and if rigidBody for that object does not exist, then we use the object's
location and rotational values.

Open the 07-Simple-Physics-Sphere-Falling.html file in your editor.

We initialize our physics engine in the init_jiglib() function. This function is
invoked when the graphics library is initialized in the start() function:

function start() {
...
 init_jiglib();
...
}
function init_jiglib() {
 system = jigLib.PhysicsSystem.getInstance();
 system.setCollisionSystem(); // CollisionSystemBrute
 system.setSolverType("FAST");
 system.setGravity(jigLib.Vector3DUtil.create(0, -9.8, 0, 0)
);
 var ground = new jigLib.JPlane();
 ground.set_y(0);
 ground.set_rotationX(90);
 ground.set_movable(false);
 system.addBody(ground);
}

In the init_jiglib() function, we first initialize our physics engine and then
initialize our collision system using the brute force algorithm (each object is checked
for collision) and set the solver type to FAST. Then, we initialize gravity in our system
(system.setGravity(jigLib.Vector3DUtil.create(0, -9.8, 0, 0));). As
the physics system follows the upward direction along the y axis, we set our gravity
to a negative value.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[259]

Then, we initialize our first physics rigid body. We add a plane to our physics system.
We instantiate the jigLib.Plane object, and set its location of y to 0. The important
thing to understand is that the jigLib.Plane object by default is aligned to the XY
plane. However, we want to align it to the XZ plane. Hence, we rotate our plane by 90
degrees around the x axis. The jigLib.Plane rigid body has many applications but
we want to use it as a terrain. Hence, we set it as a static body using the RigidBody
class's function, set_movable(false), and then we add it to our physics system.

The animate() function is explained in the following code:

function animate(){
...
 var updateIterations = Math.floor(elapsedTime /
 MINIMUM_FRAME_RATE);
 system.integrate(elapsedTime / 1000);
 while(updateIterations> 0){
 drawScene();
 updateIterations -= 1;
 }
...
}

We invoke the system.integrate() function from our animate() function along
with the drawScene() function call. Basically, the system.integrate() function is
our simulation update. It updates our physics system variables with the elapsed time
(time-based update). The loadStageObject function is as follows:

function
 loadStageObject(url,location,rotationX,rotationY,rotationZ){
...
 else if(nameOfObject=="Sphere"){
 stageObject=new Sphere();
 stageObject.system=system;
 stageObject.initializePhysics();
 stageObject.visible=true;
 sphere=stageObject;
 }
...
}

Finally, we load our sphere's JSON object and instantiate our Sphere class. We assign
the physics system variable to the sphere's class variable before initializing the rigid
body in the initializePhysics call.

When we view the result in the browser, the sphere will fall on the terrain and
bounce on it. The bounce can be controlled by the restitution factor (cor) which is a
property defined in the RigidBody class. The complete visual effect is because we
update the position of our sphere geometry along the position of the rigid body.

www.it-ebooks.info

http://www.it-ebooks.info/

Physics and Terrains

[260]

If you notice, the physics update loop is completely decoupled from the render
update. The physics simulation update method modifies all rigid body properties.
It detects and responds to collision, like the sphere's properties in our case, such as
position, orientation, and velocity, are updated after every system.integrate()
function call. In our render call, we update our geometries' location and orientation
using the rigid bodies' properties.

Implementing forces, impulse, and
collision detection
JigLibJS offers functions to add force and apply impulse to a rigid body. Let's walk
through the list of available functions and how they work:

addBodyForce=function(f, p)
f: [x,y,z] magnitude of force along three axes.
p:[x,y,z] position of force
addWorldForce=function(f, p)
f: [x,y,z] magnitude of force along three axes.
p:[x,y,z] position of force
addWorldTorque=function(t)
t: [x,y,z] magnitude of torque along three axes.
addBodyTorque=function(t)
t: [x,y,z] magnitude of torque along three axes.
applyWorldImpulse=function(impulse, pos)
impulse: [x,y,z] magnitude of impulse(mass*velocity) along three
 axes.
pos:[x,y,z] position of force
applyBodyWorldImpulse=function(impulse, delta)
impulse: [x,y,z] magnitude of impulse(mass*velocity) along three
 axes.
pos:[x,y,z] position of force

We can apply "body force", "world force", "body torque", and "world torque" in
JigLibJS. The only difference between applying the addBodyForce and addWorldForce
functions is the coordinate system used for the force direction. The addBodyForce
function applies the force based on the body's coordinates. So, if we apply a force in
the forward direction, the force is directly forward from the orientation that the body
is currently facing. If you want absolute coordinates, you should apply the force using
the addWorldForce function. The force only affects the body that you apply it to but
the coordinate system is that of the world. The direction of the force is independent of
the direction in which the body is facing. The same is true for torques.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[261]

When applying forces, we also have the option to apply the force on any point on the
object other than the center of mass. This is simply given as a position vector of the
location, where the force is being applied from its center of mass. Torques, however,
are always applied around the center of mass. To create a more complex torque,
such as a wrench (force at one end and a connection at the other), you would need to
apply a body force to a position on the end of the wrench with the other end attached
to a constrained joint.

Impulses are instant changes in the velocity (or angular velocity) of the body. Rather
than applying a force that accelerates a body from its initial velocity, applying an
impulse immediately increases to the new velocity. This would be same as adding
impulse/mass to the velocity of the body. Applying a "negative impulse" would be
subtracting impulse/mass from the current velocity.

Diving deep into collision detection
The RigidBody class has a collisions array. On every rigid body collision, a
CollisionInfo object is added to the array. The CollisionInfo object has the
following properties:

CollisionInfo.prototype.objInfo=null;
CollisionInfo.prototype.dirToBody=null;
CollisionInfo.prototype.pointInfo=null;
CollisionInfo.prototype.satisfied=null;

We would like to limit our discussion to the objInfo property. The objInfo
property is of the CollDetectInfo type. The CollDetectInfo object has the
following properties:

CollDetectInfo.prototype.body0=null;
CollDetectInfo.prototype.body1=null;

The variables, body0 and body1, are of the RigidBody type. Hence, we can access
information about both objects from the objInfo object. The sample code to access
the collision information is as follows:

var collidingBody=this.rigidBody.collisions[0].objInfo.body1;

JigLib also offers events to detect collisions. The JCollisionEvent=function(body,
impulse) is raised when a collision occurs.

www.it-ebooks.info

http://www.it-ebooks.info/

Physics and Terrains

[262]

The following code attaches an event handler to a rigid body and simply logs the event
info. The body object holds the information of the other rigid body it collided with:

this.rigidBody.addEventListener(jigLib.JCollisionEvent.COLLISION,
 function(event){
 console.log(event);
 //event.collisionBody
 //event.collisionInfo
});

Revisiting the grenade and bullet actions
In this code packet, we will demonstrate how the grenade action should actually be
implemented. In the earlier code packet, the grenade motion was controlled by a set
of defined points transformed with the camera matrix. The solution is not perfect
because the length of the animation is limited and does not simulate the real-world
effect in instances such as when the object path was disrupted by another object.

So, let's first revisit our grenade code. Open the Grenade.js file from primitive/
game in your favorite editor. We will start with the initialization of the rigid body
(sphere) in the Grenade class and then apply an impulse in a specific direction, as
expressed in the following diagram:

F

The preceding diagram shows an impulse/force applied on the y axis and in the -Z
direction at the centroid of the cube's rigid body.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[263]

In our grenade initialize function, we initialize our rigid body physics. We invoke
the this.initializePhysics() function after we calculate our camera matrix. We
still need our camera matrix for two things: the initial location of the grenade and
the final orientation of the force/impulse applied on the grenade. Remember, we
are using the first-person camera, and all initial values (location, force) will be with
respect to our model (camera) space. Then, we will transform it to world space using
the model matrix. Our grenade initialize function is defined as follows:

Grenade.prototype.initialize=function(positions) {
 var mMatrix=mat4.clone(this.camera.viewMatrix);
 mat4.invert(this.initialModelMatrix,mMatrix);
 this.initializePhysics();
 this.counter=0;
 this.visible=true;
}

In the upcoming initializePhysics function's code, we first use a simple
geometry, jigLib.JSphere(null, 10), to present our grenade in the physics
world with a radius of 10. Then, we set its mass to 10. The important thing is that
the moment we add the sphere to the physics world, a force of 98 will be applied
on it from the -Y direction, because of gravity (9.8), with instantaneous velocity
of 0. We position our rigidBody variable in the world using the coordinate,
[-1.5,-2,-10], with respect to the camera and convert it to world coordinates
by multiplying it by the initialModelMatrix (jigLib.GLMatrix.multiplyVec3
(this.initialModelMatrix,[-1.5,-2,-10]);). We then move our rigid body
to the calculated location (this.rigidBody.moveTo(newPos[0], newPos[1],
newPos[2]);).

Now, we want to apply a force or impulse. Before we do that, let's evaluate
our situation:

• We want the grenade to move along the +Y and -Z directions, so the force
has to be greater than the -Y force of gravity.

• We want the grenade to move in the direction of the camera. The
initialModelMatrix has two components: orientation and position. We
want the magnitude and direction of the force to be affected only by the
orientation and not the position of the camera.

• We want to apply the force on the center of the rigid body.

www.it-ebooks.info

http://www.it-ebooks.info/

Physics and Terrains

[264]

To tackle the first point, we defined the force by the vector [0, 300, -1200]; 300 will
counter -98 of gravity, and -1200 will move the grenade in the -Z direction with
respect to the camera space.

The second point requires some understanding of the camera matrix. In Chapter 5,
Camera and User Interaction, we described the structure of a camera matrix:

Hence, if we want to remove the position element from the camera matrix, we can set
m30(12), m31(13), and m32(14) to 0. This is what the extractOrientation function
does. It removes the position component from the camera matrix.

Now to get the final force applied with the correct direction, we transform the
force vector with the orientation matrix (initialModelMatrix with the 0 position,
this.extractOrientation(this.initialModelMatrix); var force= jigLib.
GLMatrix.multiplyVec3(this.initialModelMatrix,[0,300,-1200]);).

The position of the force is the location of the rigid body in the world space (pos),
and the function addWordlForce of the rigidBody class is used to apply force
(this.rigidBody.addWorldForce (force,jigLib.Vector3DUtil.create
(pos.x,pos.y,pos.z));). The initializePhysics function is shown in the
following code:

Grenade.prototype.initializePhysics=function(){
 var sphere = new jigLib.JSphere(null, 10);
 sphere.set_mass(10);
 this.rigidBody=sphere;
 var newPos=jigLib.GLMatrix.multiplyVec3(this.initialModelMatrix,
 [-1.5,-2,-10]);
 this.rigidBody.moveTo(jigLib.Vector3DUtil.create(newPos[0],
 newPos[1],newPos[2]));
 var pos = this.rigidBody.get_currentState().position;
 this.extractOrientation(this.initialModelMatrix);
 // var force=jigLib.GLMatrix.multiplyVec3
 (this.initialModelMatrix,[0,300,-1200]);
 var impulse=jigLib.GLMatrix.multiplyVec3
 (this.initialModelMatrix,[0,180,-800]);
 //this.rigidBody.addWorldForce(jigLib.Vector3DUtil.
 create(force[0],force[1],force[2]),jigLib.Vector3DUtil.
 create(pos.x,pos.y,pos.z));

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[265]

 this.rigidBody.applyWorldImpulse(jigLib.Vector3DUtil.
 create(impulse[0],impulse[1],impulse[2]),jigLib.Vector3DUtil.
 create(pos.x,pos.y,pos.z));
 this.system.addBody(this.rigidBody);
 this.rigidBody.addEventListener(jigLib.JCollisionEvent.COLLISION,
 function(event){
 console.log(event);
 //event.collisionBody
 //event.collisionInfo
 });
}

In the preceding code, we showed both the impulse and the force application code
examples. However, we have commented out the force code because for the grenade,
we can use either force or impulse, but actually we need to give it just some initial
velocity in the desired direction. Also, if you notice, we have added code to handle
the collision event but just logged the event (this.rigidBody.addEventListener
(jigLib.JCollisionEvent.COLLISION,function(event)). For this code, we chose
to use the collisions array, which is explained later. The extractOrientation
function is shown in the following code:

Grenade.prototype.extractOrientation=function(matrix){
 matrix[12]=0;
 matrix[13]=0;
 matrix[14]=0;
}

Our update function invoked from the drawScene function is straightforward. It
simply reads the position of the rigid body and translates the geometric shape of the
grenade's modelMatrix with it.

We also check for the collisions array in our update function. If the length of the
collisions array is greater than 0, this denotes that a collision has occurred. We
toggle the visibility of the grenade and remove it from the physics world (this.
system.removeBody(this.rigidBody);). Remember, we need to remove objects
that are not visible to the user from the physics world; otherwise, you will slow
down the system. We then invoke the event handler (this.callBack (this.
rigidBody, this.rigidBody.collisions);). The variable, this.callback,
is declared in the parent class StageObject. We also clear our collisions array
(this.rigidBody.collisions=[];). Our update function is as follows:

Grenade.prototype.update=function() {
 if(this.rigidBody){
 var pos = this.rigidBody.get_currentState().position;
 mat4.identity(this.modelMatrix);
 this.location=vec3.fromValues(pos[0], pos[1], pos[2]);

www.it-ebooks.info

http://www.it-ebooks.info/

Physics and Terrains

[266]

 mat4.translate(this.modelMatrix,this.modelMatrix,
 this.location);
 mat4.scale(this.modelMatrix,this.modelMatrix,
 vec3.fromValues(5,5,5));
 if(this.rigidBody.collisions.length>0){
 this.system.removeBody(this.rigidBody);
 console.log(this.rigidBody.collisions);
 if(this.callBack){
 this.callBack(this.rigidBody,this.rigidBody.collisions);
 }
 this.visible=false;
 this.rigidBody.collisions=[];
 }
}

Now, let's quickly look at the implementation of the preceding code. Open the
07-Grenade-Action-Blast-Physics.html file in your editor. The following code
snippet is present in this file:

function loadStageObject(url,location,rotationX,rotationY,
 rotationZ){
...
 else if(nameOfObject=="grenade"){
 stageObject=new Grenade();
 grenade=stageObject;
 grenade.system=system;
 grenade.callBack=initializeExplosion;

 }
...
}

In our preceding code, we initialize our grenade object and assign the physics object
and the collision callback function. The collision callBack function takes rigidBody
as a parameter. We retrieve the position of rigidBody, create a modelMatrix
parameter, and translate the model matrix to the rigidBody parameter's position. We
then initialize our explosion with modelMatrix. The initializeExplosion function
is given in the following code:

function initializeExplosion(rigidBody,collisions){
 var pos = rigidBody.get_currentState().position;
 var modelMatrix=mat4.create();
 mat4.identity(modelMatrix);
 var location=vec3.fromValues(pos[0], pos[1], pos[2]);
 mat4.translate(modelMatrix,modelMatrix,location);
 explosion.initialize(modelMatrix);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[267]

Cheating in the bullet action
In this section, we will talk about cheating in the physics world. For simplicity, the
code of the bullet should be similar to the grenade because all we need to do is to
change the direction vector of the impulse/force. The following code demonstrates
the application of impulse on our bullet object:

var impulse=jigLib.GLMatrix.multiplyVec3(this.initialModelMatrix,
 [0,0,-2000]);
this.rigidBody.applyWorldImpulse(jigLib.Vector3DUtil.create
 (impulse[0],impulse[1],impulse[2]),jigLib.Vector3DUtil.
 create(pos.x,pos.y,pos.z));

We needed a strong impulse in the -Z direction, and that is it. However, most of the
time in games, we do want physics collisions detection but do not want the physics
engine to control the trajectory. So, let's visit a similar case. Open the Bullet.js file
from primitive/game in your text editor.

The initialize function of the Bullet class is absolutely the same, except we check
if the rigid body is initialized. We initialize its position and add the body to the
physics system as follows:

Bullet.prototype.initialize=function() {
...
 this.positions=[];
 for(vari=0;i<count;++i){
 this.positions.push(this.calculatePosition(i*this.steps));
 }
 if(this.rigidBody){
 this.initializePosition();
 this.system.addBody(this.rigidBody);
 }
}

The initializePosition function takes an element from the positions array at
the this.counter value, transforms that value using initialModelMatrix from
the camera, and moves rigidBody to the new calculated position. This is where the
cheating happened. This function is also invoked from the update function. It simply
moves the rigidBody parameter to a predefined value; we did not let physics control
its motion/trajectory. Initially the counter is 0 to set the initial bullet location.

Bullet.prototype.initializePosition=function(){
 var mat=mat4.create();
 mat4.translate(mat,this.initialModelMatrix,this.
 positions[this.counter]);
 var newPos=jigLib.GLMatrix.multiplyVec3(mat,[0,0,-1]);
 this.rigidBody.moveTo(jigLib.Vector3DUtil.create(newPos[0],
 newPos[1],newPos[2]));
}

www.it-ebooks.info

http://www.it-ebooks.info/

Physics and Terrains

[268]

The update function increments the counter value. The rigidBody parameter
updates its position by invoking the initializePosition function using the
incremented counter value. After we are through with iterating over the positions
array, we do not set the position of rigidBody and let the physics engine take over.

We translate modelMatrix by the new position of rigidBody. Note that for all cases,
we read the rigidBody coordinate so that when the physics engine takes over, we
move the geometry with rigidBody.

Earlier, we were toggling the visibility of the bullet when we had iterated over all
values of the positions. However, in this case, we wait for the collision to occur, for
example, when the bullet hits the ground.

We check the length of the collisions array to test the collision. Then, we remove
the rigid body from the physics system and also toggle its visibility. The update
function of the Bullet class is as follows:

Bullet.prototype.update=function() {
 if(this.rigidBody){
 if(this.counter<this.positions.length-1){
 this.counter=this.counter+1;
 this.initializePosition();

 }
 var pos=this.rigidBody.get_currentState().position;
 mat4.identity(this.modelMatrix);
 mat4.translate(this.modelMatrix,this.modelMatrix,vec3.
 fromValues(pos[0],pos[1],pos[2]));
 if(this.rigidBody.collisions.length>0){
 this.visible=false;
 this.system.removeBody(this.rigidBody);
 this.rigidBody.collisions=[];
 }
 mat4.scale(this.modelMatrix,this.modelMatrix,vec3.
 fromValues(5,5,5));
 }else{
...
 }
}

Let's also walk through the bullet's implementation in the main code. Open the
07-Grenade-Action-Blast-Physics.html file in your editor.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[269]

For the bullet, we initialize a jigLib.JBox(null, 3, 3, 3); object. We set its
length, width, and height to 3 and then set its mass to 10. We do that for all other
bullets we initialized. This is done with the help of the following code snippet:

function addStageObject(stageObject,location,rotationX,rotationY,
 rotationZ){
...
 if(stageObject.name=="bullet"){
 var cube = new jigLib.JBox(null, 3, 3, 3);
 cube.set_mass(10);
 stageObject.rigidBody = cube;
 stageObject.system=system;
 bullets.push(stageObject);
 for(var j=0;j<24;++j){
 var bullet=stageObject.clone();
 bullet.camera=cam;
 bullets.push(bullet);
 var cube = new jigLib.JBox(null, 3, 3, 3);
 bullet.rigidBody = cube;
 cube.set_mass(10);
 cube.set_movable(true);
 bullet.system=system;
 stage.addModel(bullet);
 }
 }
...
}

Extending our terrain with physics
In our existing code packets, we have a terrain which is a simple plain, with no bumps
or plateaus or dips. Hence, we use an object of the jigLib.Plain class to represent it
in our physics world. This section intends to end what we started with a true physics
terrain. The following screenshot shows you the terrain that we will be targeting to
initialize in the physics world. It has a bump that starts from the center of the terrain:

www.it-ebooks.info

http://www.it-ebooks.info/

Physics and Terrains

[270]

We can easily add this bump to the geometry, but it will take some effort to
simulate it in our physics world. So, first we add this bump to our geometry. Open
PlaneGeometry.js from the primitive folder in your text editor. In our previous
code, we set the z axis value to 0 as shown in the following code:

this.vertices.push(x);
this.vertices.push(- y);
this.vertices.push(0);

The preceding code simply denoted that the geometry had no bumps, and all
segments had a height of 0. However, now we simply add some logic to calculate the
height for a particular segment. The following constructor takes a function name as
a parameter; the function takes the (x, y) coordinates as parameters and calculates
the height for a particular segment. If the function name is not set (that is, it is null or
undefined), then the z value is set to 0 for all segments:

PlaneGeometry = inherit(Geometry, function (width, height,
 widthOfSegments, heightOfSegments,calculateHeight)
{
...
 if(this.calculateHeight){

 this.vertices.push(this.calculateHeight(x,-y));
 }else{

 this.vertices.push(0);
 }
...
}

Open Plane.js from primitive/game in your text editor to see the sample
implementation of calculateHeight. In the constructor of PlaneGeometry, we
pass the modifyGeometry function of the Plane class as shown in the following
code snippet:

Plane= inherit(StageObject, function (width, height,
 widthOfSegments, heightOfSegments,textureName,modifyHeight){
...
 if(modifyHeight)
 this.geometry=new PlaneGeometry(width, height,
 widthOfSegments, heightOfSegments,this.modifyGeometry);
 else
 this.geometry=new PlaneGeometry(width, height,
 widthOfSegments, heightOfSegments,null);
...
});

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[271]

The modifyGeometry function is a straightforward function. It takes the x and y
values based on the range of the x and y values and returns the z value from
25 to 0. Hence, the PlaneGeometry class uses this function to calculate the z value
of the vertices:

Plane.prototype.modifyGeometry=function(x,y){
 if((x>=0&&x<100)&&(y>=0&&y<100)){
 return 25;
 }
 else if((x>=100&&x<150)&&(y>=100&&y<150)){
 return 20;
 }
 else if((x>=150&&x<200)&&(y>=150&&y<200)){
 return 15;
 }
 else if((x>=200&&x<250)&&(y>=200&&y<250)){
 return 10;
 }
 else if((x>=250&&x<300)&&(y>=250&&y<300)){
 return 5;
 }
 else{
 return 0;
 }
}

Modifying a geometry is pretty straightforward, but informing the physics engine
of it is a bit of challenge. There is an existing class, jigLib.JTerrain; its constructor
takes a parameter of the type ITerrain.

var Jterrain=function(tr)

The ITerrain interface is not implemented in JigLibJS; we will have to implement it.
Basically, the implementation of ITerrain informs the JigLib collision detection code
of the structure of the terrain. Let's first understand the ITerrain interface:

public interface ITerrain
 {
 //Min of coordinate horizontally;
 function get_minW():Number;
//Min of coordinate vertically;
 function get_minH():Number;
 //Max of coordinate horizontally;
 function get_maxW():Number;
 //Max of coordinate vertically;
 function get_maxH():Number;

www.it-ebooks.info

http://www.it-ebooks.info/

Physics and Terrains

[272]

 //The horizontal length of each segment;
 function get_dw():Number;
 //The vertical length of each segment;
 function get_dh():Number;
 //Number of segments horizontally.
 function get_sw():int;
 //Number of segments vertically
 function get_sh():int;
 //the heights of all vertices
 function get_heights(i,j):Array;
 function get_maxHeight():Number;
}

If you study the properties, the implementation returns the terrain properties such
as minimum height, minimum width, number of segments, and length of segments.
Our terrain already has these parameters defined. The most interesting function is
get_heights(i,j), which takes the vertical and horizontal index of the segment
and returns its height. However, we do not have this parameter defined in our
geometry. So, let's define it first. Open PlaneGeometry.js from the primitive folder
in your text editor. In our constructor, we define a this.heights=[[]]; variable:

PlaneGeometry = inherit(Geometry, function (width, height,
 widthOfSegments, heightOfSegments,calculateHeight)
{
...
 this.heights=[[]];
...
 if(this.calculateHeight){
 this.heights[i][j]=this.calculateHeight(x,-y);
 this.vertices.push(this.heights[i][j]);
 }else{
 this.heights[i][j]=0;
 this.vertices.push(0);
 }
...
}

After we calculate the height for a vertex and a particular segment, we store its values
in the heights array (this.heights[i][j]=this.calculateHeight(x,-y);).

We also added a property to return the height of a particular segment
(getHeights(i,j)):

PlaneGeometry.prototype.getHeights=function(i,j){
 returnthis.heights[i][j];
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[273]

Now, time to see the implementation of the ITerrain interface. Open TerrainData.
js from primitive/game in your editor. It takes nearly the same parameters as our
PlaneGeometry object took (width, height, segmentsW, segmentsH, geometry),
with one extra parameter: the object of the terrain, geometry. The constructor first
calculates minW, minH, maxW, and maxH. They are the starting and ending coordinates
of the terrain and are half the width and height in each direction. The this._dh and
this._dw parameters return the length of each segment. The get_heights(i,j)
function reads the height for a segment from the getHeight(i,j) geometry and
returns its height. The following is the code snippet from the TerrainData.js file:

TerrainData = function (width,height,segmentsW,segmentsH,geometry) {
 var textureX= width / 2;
 var textureY = height / 2;
 //Min of coordinate horizontally;
 this._minW=-textureX;
 //Min of coordinate vertically;
 this._minH= -textureY;
 //Max of coordinate horizontally;
 this._maxW=textureX;
 //Max of coordinate vertically;
 this._maxH=textureY;
 //The horizontal length of each segment;
 this._dw=width / segmentsW;
 //The vertical length of each segment;
 this._dh=height / segmentsH;;
 //the heights of all vertices
 this._heights=[[]];
 this._segmentsW=segmentsW;
 this._segmentsH=segmentsH;
 this.geomtery=geometry;
 this._maxHeight=10;
}
TerrainData.prototype.get_minW=function() {
 return this._minW;
}
TerrainData.prototype.get_minH=function() {
 return this._minH;
}
TerrainData.prototype.get_maxW=function() {
 return this._maxW;
}
TerrainData.prototype.get_maxH=function() {
 return this._maxH;
}
TerrainData.prototype.get_dw=function() {

www.it-ebooks.info

http://www.it-ebooks.info/

Physics and Terrains

[274]

 return this._dw;
}
TerrainData.prototype.get_dh=function() {
 return this._dh;
}
TerrainData.prototype.get_sw=function() {
 return this._segmentsW;
}
TerrainData.prototype.get_sh=function() {
 return this._segmentsH;
}
TerrainData.prototype.get_heights=function(i1,j1) {
 return this.geomtery.getHeights(i1,j1);
}
TerrainData.prototype.get_maxHeight=function(){
 return this._maxHeight;
}

The preceding class holds the complete information of the terrain, height,
width, segment information, and also the depth of each segment. We pass the
TerrainData object to the physics engine and the engine checks for collisions
with the provided information.

Open Plane.js from primitive/game to see the use of the TerrainData object. We
have added a new function, initializeRigidBody. The following is a code snippet
from the Plane.js file:

Plane= inherit(StageObject, function (width, height,
 widthOfSegments, heightOfSegments,textureName,modifyHeight){
...
 this.geometry=new PlaneGeometry(width, height, widthOfSegments,
 heightOfSegments,this.modifyGeometry);
...
});
The preceding code initializes the geometry, and it PlaneGeometry
constructor initializes the heights[[]] array.
Plane.prototype.initializeRigidBody=function(){
 var pos=jigLib.Vector3DUtil.create(0, 0,0,0);
 var matrix3D = new jigLib.Matrix3D();
 matrix3D.appendRotation(0, jigLib.Vector3DUtil.X_AXIS);
 var terrain=new TerrainData(this.width,
 this.height,this.ws,this.wh,this.geometry);
 this.rigidBody=new jigLib.JTerrain(terrain);
 this.rigidBody.moveTo(pos);
 this.rigidBody.setOrientation(matrix3D);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[275]

The preceding code initializes the TerrainData object with the same properties
that we initialized the geometry with (new TerrainData(this.width, this.
height,this.ws,this.wh, this.geometry);). Then, we create a new jigLib.
JTerrain(terrain); object and assign it to the rigidBody object.

Now, when you run 07-Terrain-Physics-Modified.html in your browser and
you fire bullets or drop grenades on the bump, you will find that it is an active
physics static object.

Implementing height maps
Our implementation to modify geometry is very simple (Plane.prototype.
modifyGeometry), we just check the value of x and y and return a hard coded value
of z, but this not how most implementations work. Our geometry can be modified
using the following code snippet:

Plane.prototype.modifyGeometry=function(x,y){
...
 else if((x>=100&&x<150)&&(y>=100&&y<150)){
 return 20;
 }
...
}

The correct implementation is using height maps. A height map is a simple 2D grayscale
image as shown in the following image. The image has shades of gray, one base color
with light and dark areas. The dark areas denote heights and lighter areas denote dips:

www.it-ebooks.info

http://www.it-ebooks.info/

Physics and Terrains

[276]

The height map is not the same size as the terrain; however, we can always map
a coordinate of the terrain to the height map:

x coordinate on the height map = width HM/width Terrain * x value terrain

y coordinate on the height map = height HM/height Terrain * y value terrain

After we get the corresponding coordinate on the height map, we can calculate the
height at a location by retrieving the color value on the coordinate and multiplying it
with the maximum height difference of the terrain:

Height at a coordinate = min_height + (color value / (max_color - min_color)) *
(max_height-min_height)

So, you can modify the modifyGeometry code to read the height map and return the
z value for a particular segment.

Summary
Realistic games are impossible to create without physics engines. This chapter
introduced you to the most exciting areas in game development using WebGL and
physics. We started our journey by creating terrain geometry and finished it by
making the geometry an active physics static rigid body. We also covered how a
physics engine is decoupled from the rendering code and demonstrated how 3D
graphics objects are linked to the physics object. The concepts such as collisions,
forces, and impulse are in the core of each game.

We used JigLib as a reference library to implement physics in our game.

In the next chapter, we will introduce you to your enemy Mr. Green and animate his
body using bones and joints.

www.it-ebooks.info

http://www.it-ebooks.info/

Skinning and Animations
Our world in 5000 AD is incomplete without our mutated human being Mr. Green.
Our Mr. Green is a rigged model, exported from Blender. All famous 3D games from
Counter Strike to World of Warcraft use skinned models to give the most impressive
real world model animations and kinematics. Hence, our learning has to now evolve
to load Mr. Green and add the same quality of animation in our game.

We will start our study of character animation by discussing the skeleton, which
is the base of the character animation, upon which a body and its motion is built.
Then, we will learn about skinning, how the bones of the skeleton are attached to
the vertices, and then understand its animations. In this chapter, we will cover:

• Basics of a character's skeleton
• Basics of skinning
• Loading a rigged JSON model
• Animating a rigged JSON model
• Exporting models from 3D software in JSON

Understanding the basics of a
character's skeleton
A character's skeleton is a posable framework of bones. These bones are connected
by articulated joints, arranged in a hierarchical data structure. The skeleton is
generally rendered and is used as an invisible armature to position and orient a
character's skin.

www.it-ebooks.info

http://www.it-ebooks.info/

Skinning and Animations

[278]

The joints are used for relative movement within the skeleton. They are represented
by a 4 x 4 linear transformation matrices (combination of rotation, translation, and
scale). The character skeleton is set up using only simple rotational joints as they are
sufficient to model the joints of real animals.

Every joint has limited degrees of freedom (DOFs). DOFs are the possible ranges
of motion of an object. For instance, an elbow joint has one rotational DOF and a
shoulder joint has three DOFs, as the shoulder can rotate along three perpendicular
axes. Individual joints usually have one to six DOFs. Refer to the link http://
en.wikipedia.org/wiki/Six_degrees_of_freedom to understand different
degrees of freedom.

A joint local matrix is constructed for each joint. This matrix defines the position
and orientation of each joint and is relative to the joint above it in the hierarchy. The
local matrices are used to compute the world space matrices of the joint, using the
process of forward kinematics. The world space matrix is used to render the attached
geometry and is also used for collision detection.

The digital character skeleton is analogous to the real-world skeleton of vertebrates.
However, the bones of our digital human character do have to correspond to the
actual bones. It will depend on the level of detail of the character you require. For
example, you may or may not require cheek bones to animate facial expressions.

Skeletons are not just used to animate vertebrates but also mechanical parts such as
doors or wheels.

Comprehending the joint hierarchy
The topology of a skeleton is a tree or an open-directed graph. The joints are
connected up in a hierarchical fashion to the selected root joint. The root joint has no
parent of itself and is presented in the model JSON file with the parent value of -1.
All skeletons are kept as open trees without any closed loops. This restriction though
does not prevent kinematic loops.

Each node of the tree represents a joint, also called bones. We use both terms
interchangeably. For example, the shoulder is a joint, and the upper arm is a bone,
but the transformation matrix of both objects is same. So mathematically, we would
represent it as a single component with three DOFs. The amount of rotation of the
shoulder joint will be reflected by the upper arm's bone.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[279]

The following figure shows simple robotic bone hierarchy:

Root

Neck

Head

ShoulderL

ElbowL

WristL

ShoulderR

ElbowR

WristR

HipL

KneeL

AnkleL

HipR

KneeR

AnkleR

Torso Pelvis

Understanding forward kinematics
Kinematics is a mathematical description of a motion without the underlying physical
forces. Kinematics describes the position, velocity, and acceleration of an object. We
use kinematics to calculate the position of an individual bone of the skeleton structure
(skeleton pose). Hence, we will limit our study to position and orientation. The
skeleton is purely a kinematic structure. Forward kinematics is used to compute the
world space matrix of each bone from its DOF value. Inverse kinematics is used to
calculate the DOF values from the position of the bone in the world.

Let's dive a little deeper into forward kinematics and study a simple case of bone
hierarchy that starts from the shoulder, moves to the elbow, finally to the wrist. Each
bone/joint has a local transformation matrix, this.modelMatrix. This local matrix
is calculated from the bone's position and rotation. Let's say the model matrices of
the wrist, elbow, and shoulder are this.modelMatrixwrist, this.modelMatrixelbow,
and this.modelMatrixshoulder respectively. The world matrix is the transformation
matrix that will be used by shaders as the model matrix, as it denotes the position
and rotation in world space.

The world matrix for a wrist will be:

this.worldMatrixwrist = this.worldMatrixelbow * this.modelMatrixwrist

The world matrix for an elbow will be:

this.worldMatrixelbow = this.worldMatrixshoulder * this.modelMatrixelbow

www.it-ebooks.info

http://www.it-ebooks.info/

Skinning and Animations

[280]

If you look at the preceding equations, you will realize that to calculate the exact
location of a wrist in the world space, we need to calculate the position of the elbow
in the world space first. To calculate the position of the elbow, we first need to
calculate the position of shoulder. We need to calculate the world space coordinate of
the parent first in order to calculate that of its children. Hence, we use depth-first tree
traversal to traverse the complete skeleton tree starting from its root node.

Depth-first tree traversal order

1

7 92

5 6

83 4

A depth-first traversal begins by calculating modelMatrix of the root node and
traverses down through each of its children. A child node is visited and subsequently
all of its children are traversed. After all the children are visited, the control is
transferred to the parent of modelMatrix. We calculate the world matrix by
concatenating the joint parent's world matrix and its local matrix. The computation
of calculating a local matrix from DOF and then its world matrix from the parent's
world matrix is defined as forward kinematics.

Let's now define some important terms that we will often use:

• Joint DOFs: A movable joint movement can generally be described by six
DOFs (three for position and rotation each). DOF is a general term:
this.position = vec3.fromValues(x, y, z);
this.quaternion = quat.fromValues(x, y, z, w);
this.scale = vec3.fromValues(1, 1, 1);

We use quaternion rotations to store rotational transformations to avoid issues
such as gimbal lock, as explained in Chapter 5, Camera and User Interaction. The
quaternion holds the DOF values for rotation around the x, y, and z values.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[281]

• Joint offset: Joints have a fixed offset position in the parent node's space.
When we skin a joint, we change the position of each joint to match the mesh.
This new fixed position acts as a pivot point for the joint movement. The
pivot point of an elbow is at a fixed location relative to the shoulder joint.
This position is denoted by a vector position in the joint local matrix and
is stored in m31, m32, and m33 indices of the matrix. The offset matrix also
holds initial rotational values.

Understanding the basics of skinning
The process of attaching a renderable skin to its articulated skeleton is called
skinning. There are many skinning algorithms depending on the complexity of
the task. However, for gaming, the most common algorithm is smooth skinning.
Smooth skinning is also known as multi-matrix skinning, blended skinning, or
linear blend skinning.

Simple skinning
Binding is a term common in skinning. It refers to the initial assignment of vertices
of a mesh to underlying joints and then assigning the relevant information to the
vertices. By using simple skinning, we attach every vertex in our mesh to exactly one
joint. When we change the orientation of any joint in the skeleton, or in other words,
when the skeleton is posed, the vertices are transformed using the joint's world
matrix. Hence, if the vertex is attached to a single joint, then it is transformed using
the equation v'=v.mjoint of the world space matrix.

Simple skinning is not adequate for complex models. It defines that a vertex is
attached to exactly one joint. For example, a vertex at the elbow of your articulated
arm is affected by two bones, the lower arm and the upper arm. The transformation
of that vertex should be affected by the joint matrices of both bones.

Smooth skinning
Smooth skinning is an extension of simple skinning. We can attach a vertex with
more than one joint. Each attachment with a joint will be provided by a weight value.
The key point is that the sum total of all weights affecting a vertex is 1 as shown in
the following formula:

∑wi=1, w1+w2+w3+w4......wn=1

www.it-ebooks.info

http://www.it-ebooks.info/

Skinning and Animations

[282]

The final vertex's transformed position is the weighted average of the initial vertex
position transformed by each of the attached joints. However, before deriving the
formula for the vertex position, let's first understand the concept of the binding
matrix. The Bi matrix for the i joint is a matrix of the transformation of the coordinate
joint local space to skin local space. To transform a point from skin local space to
joint local space, we use B-1

i, the inverse of the binding matrix.

The binding matrix
Although, the binding matrix is a simple concept, sometimes it baffles the most
intelligent of the minds. When we draw a mesh, each vertex is provided with a
position relative to the model's center. It is like the model is centered at the origin
of our world. During modeling, we create the skeleton along with the skin, each
bone/joint at this point has a zero DOF value, we call this pose a zero pose. However,
during the skinning process, we change the position of each joint to match the mesh.
This pose is called the binding pose. Note that we change the DOF (position and
angles) of each joint to match the vertices. The initial DOF values of the binding pose
for each joint form the binding matrix or we can say, the initial joint matrix. This
matrix is used to transform any position from joint local space to skin local space.
Remember that each vertex is defined in skin local space. Hence, to transform a
coordinate from skin local space to joint local space, we use inverse joint matrix B-1

i.

During animation, we change DOF values (position and rotations) of a joint, but
these values are in joint local space. Hence, the final vertex is transformed using
Mi=B-1

iWi where Wi is the joint matrix in the world space. Hence first, we transform
a vertex from skin local space to joint local space and then, we transform it using the
joint's world space matrix. For a pose or animation frame, we calculate the Mi for all
joints and then pass this final transformation matrix as a uniform to the shader so
that we do not have to recalculate it for other vertices in the same joint, as shown in
the following code snippet:

// compute the offset between the current and the original transform.
mat4.mul(offsetMatrix,this.bones[b].skinMatrix,
this.boneInverses[b]);

The final vertex transformation
The final vertex transformation is the weighted average of the initial vertex position
transformed by each of the attached joints, v'=∑wi*v*Mi, where Mi=B-1

iWi and wi are
the weight value of a joint for vertex.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[283]

In most cases, a vertex is shared between two bones and maximum of four bones.
Hence for simplicity, our code only handles skinned models whose vertices are
shared with a maximum of two joints.

vec4 skinVertex = vec4(aVertexPosition, 1.0);
vec4 skinned = boneMatX * skinVertex * skinWeight.x;
 skinned += boneMatY * skinVertex * skinWeight.y;

In the preceding code, boneMatX is the offset matrix for bone X with its contributing
weight in skinWeight.x, and boneMatY is an offset matrix of the second bone with
its contributing weight in skinWeight.y.

The transformation computation is performed in the vertex shader.

The final normal transformation
We would also need to transform our vertex normals as lighting calculation uses
vertex normals. The normals are treated in a similar fashion to vertices, but as
normals only specify direction and not position and are of unit length, we first
calculate the weighted average and then multiply the normal with skinMatrix to
avoid one extra multiplication step, as shown in the following code snippet:

mat4 skinMatrix = skinWeight.x * boneMatX;
skinMatrix += skinWeight.y * boneMatY;
vec4 skinnedNormal = skinMatrix * vec4(aVertexNormal, 0.0);
transformedNormal = vec3(nMatrix * skinnedNormal);

Loading a rigged JSON model
We will first understand how the bone DOFs and skinning information is encoded in
the three.js JSON file format (Version 3.1). Then we will modify our code to load the
data. The JSON file is exported from Blender. We will learn how to export the JSON
file in the Exporting models from 3D software in JSON section.

Understanding JSON file encoding
The JSON file contains bone DOF values and their corresponding skinning
information. Open model/obj/mrgreen.json in your favorite text editor. The file
has now four new arrays: bones, skinIndices, skinWeights, and animation. We
will discuss the animation array in the Animating a rigged JSON model section.

www.it-ebooks.info

http://www.it-ebooks.info/

Skinning and Animations

[284]

The bones array contains the DOF information. It holds the binding matrix and its
parent's information, as shown in the following code:

"bones" : [{"parent":-1, "name":"Back", "pos":[0.000000, -0.123622,
-0.149781], "rotq":[0,0,0,1]}, {}, {}.......];

Each element of the bones array holds the following four elements:

• parent: This element holds the hierarchical information of the skeleton.
Each bone holds its parent's index. The root bone has a parent index of -1,
denoting it does not have any parent.

• name: This element holds the name of the bone.
• pos: This element is a vector and holds the position of each bone with respect

to its parent.
• rotq: Each bone's rotation is expressed as a quaternion rotation (x, y, z, and

w) with respect to its parent. Chapter 5, Camera and User Interaction, has a
description of quaternion rotations.

For each vertex(x, y, z, x1, y1, and z1) in the vertices array, there are two values
defined in the skinIndices (a, b, a1, and b1) and skinWeights (a, b, a1, and b1)
arrays. We had discussed earlier in the Understanding the basics of skinning section that
we will use a smooth skinning algorithm to store weights and skinning information.
The three.js JSON model (https://github.com/mrdoob/three.js/wiki/JSON-
Model-format-3.1) allows only two attached bones per vertex. Hence for each
vertex, we will have two corresponding skinIndices and skinWeights defined.
Although a vertex may be associated with more than two bones, it is not advisable
or even not required in gaming. It would rarely happen that a vertex is affected by
three bones simultaneously. The skinIndices array holds the index of the bone in
the bones array.

vertices:[x,y,z,x1,y1,z1,x2,y2,z2.............xn,yn,zn];
skinIndices:[a,b,a1,b1,a2,b2..........an,bn];
skinWeights:[z,w,z1,w1,z2,w2........zn,wn];
bones:[]

The preceding arrays denote the following:

• The vertices x, y, and z are attached to the bones[a] and bones[b] with
weights z and w.

• The vertices x1, y1, and z1 are attached to the bones[a1] and bones[b1] with
weights z1 and w1.

• The vertices x2, y2, and z2 are attached to the bones[a2] and bones[b2] with
weights z2 and w2.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[285]

A vertex might be associated with a single bone, but we will still have two skin
indices (a and b) and two skin weights (z and w) associated with it. In this case, one
of the skin weights (z and w) will be 1 and the other would be 0, denoting that only
one of the bones will affect the vertex.

Loading the rigged model
We will first modify our parsing algorithm to accommodate our newly
discovered arrays.

Open primitive/parseJSON.js in your favorite text editor. We have added a new
parseSkin function as follows:

function parseSkin(data, geometry) {
 var i, l, x, y, z, w, a, b, c, d;
 if (data.skinWeights) {
 for (i = 0, l = data.skinWeights.length; i < l; i += 2) {
 x = data.skinWeights[i];
 y = data.skinWeights[i + 1];
 z = 0;
 w = 0;
 geometry.skinWeights.push(x);
 geometry.skinWeights.push(y);
 geometry.skinWeights.push(z);
 geometry.skinWeights.push(w);
 }
 }
 if (data.skinIndices) {
 for (i = 0, l = data.skinIndices.length; i < l; i += 2) {
 a = data.skinIndices[i];
 b = data.skinIndices[i + 1];
 c = 0;
 d = 0;
 geometry.skinIndices.push(a);
 geometry.skinIndices.push(b);
 geometry.skinIndices.push(c);
 geometry.skinIndices.push(d);
 }
 }

 geometry.bones = data.bones;
 geometry.animation = data.animation;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Skinning and Animations

[286]

The function simply iterates over the skinIndices and skinWeights arrays in our
data object and stores the four values for each vertex in the corresponding geometry
arrays. Note that although our JSON array has two bones per vertex, we still store
four values (the last two values as zero, {c = 0; d = 0;}), so that our geometry
class can handle data with two to four bones per vertex.

We also save the data for bones and animation information in the geometry object.

Enhancing the StageObject class
Our StageObject class had two shortcomings:

• It did not have any provision to handle child objects or tree hierarchy.

• We used the rotation matrix but we know that our bone object in the bones
array uses quaternion rotations.

The following code shows the earlier use of modelMatrix to store rotations in
the x, y, and z axes:

StageObject.prototype.update=function(steps) {
 mat4.identity(this.modelMatrix);

 mat4.translate(this.modelMatrix, this.modelMatrix,
 this.location);

 mat4.rotateX(this.modelMatrix, this.modelMatrix,
 this.rotationX);
 mat4.rotateY(this.modelMatrix, this.modelMatrix,
 this.rotationY);
 mat4.rotateZ(this.modelMatrix, this.modelMatrix,
 this.rotationZ);
}

Let's walk through the changes we have made to overcome the shortcomings. Open
primitive/StageObject.js in your editor, and take a look at the following code:

StageObject=function() {
...
 this.parent = undefined;
 this.children = [];
 this.up = vec3.fromValues(0, 1, 0);
 this.position = vec3.create();
 this.quaternion = quat.create();
 this.scale = vec3.fromValues(1,1,1);
 this.matrixWorld = mat4.create();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[287]

 this.matrixAutoUpdate = true;
 this.matrixWorldNeedsUpdate = true;
 this.visible = true;
};

First, we added a few variables such as quaternion to hold the rotation DOF,
location has been renamed to position, and new variables, scale and matrixWorld,
have been added. If stageObject is the child object, then the final matrix,
worldMatrix, is the concatenation of its parent, matrixWorld, and modelMatrix.

The parent object and the children array have been added to hold the parent and
children information.

Two new variables, matrixAutoUpdate and matrixWorldNeedsUpdate, have
been added to reduce the possible computation time. Basically in our previous
code packets, we were calculating modelMatrix of each StageObject on every
animation frame. However, now, we will only calculate the matrices if any of the
DOFs (scale, quaternion, and position) change. On any DOF update, we will set
the matrixAutoUpdate and matrixWorldNeedsUpdate values to false, then only
modelMatrix and matrixWorld will be recalculated.

StageObject.prototype.rotate=function(radianX,radianY,radianZ) {
 quat.rotateX(this.quaternion,this.quaternion,radianX);
 quat.rotateY(this.quaternion,this.quaternion,radianY);
 quat.rotateZ(this.quaternion,this.quaternion,radianZ);
 }
 StageObject.prototype.setRotationFromAxisAngle=function (axis,
angle) {
 // assumes axis is normalized
 quat.setAxisAngle(this.quaternion, axis, angle);
 }
 StageObject.prototype.setRotationFromMatrix= function (m) {
 // assumes the upper 3 x 3 of m is a pure rotation matrix
 (that is, unscaled)
 quat.fromMat3(this.quaternion, m);
 }
 StageObject.prototype.setRotationFromQuaternion=function (q) {
 // assumes q is normalized
 this.quaternion=quat.clone(q);
 }
 StageObject.prototype.rotateOnAxis= function(axis, angle) {
 // rotate object on axis in object space
 // axis is assumed to be normalized
 quat.setAxisAngle(this.quaternion, axis, angle);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Skinning and Animations

[288]

 StageObject.prototype.rotateX= function (angle) {
 var v1 = vec3.fromValues(1, 0, 0);
 return this.rotateOnAxis(v1, angle);
 }
 StageObject.prototype.rotateY= function (angle) {
 var v1 = vec3.fromValues(0, 1, 0);
 return this.rotateOnAxis(v1, angle);
 }
 StageObject.prototype.rotateZ=function (angle) {
 var v1 = vec3.fromValues(0, 0, 1);
 return this.rotateOnAxis(v1, angle);
 }

The preceding set of functions either initializes the quaternion or simply updates it
with new values. The implementation of the preceding functions uses the quat class
of the glMatrix library.

StageObject.prototype.translateOnAxis= function (axis, distance) {
 // translate object by distance along axis in object space
 // axis is assumed to be normalized
 var v1 = vec3.create();
 vec3.copy(v1, axis);
 vec3.transformQuat(v1, v1, this.quaternion);
 vec3.scale(v1, v1, distance);
 vec3.add(this.position, this.position, v1);
 return this;
}
StageObject.prototype.translateX= function () {
 var v1 = vec3.fromValues(1, 0, 0);
 return function (distance) {
 return this.translateOnAxis(v1, distance);
 };
}();
StageObject.prototype.translateY= function () {
 var v1 = vec3.fromValues(0, 1, 0);
 return function (distance) {
 return this.translateOnAxis(v1, distance);
 };
}();
StageObject.prototype.translateZ= function () {
 var v1 = vec3.fromValues(0, 0, 1);
 return function (distance) {
 return this.translateOnAxis(v1, distance);
 };
}();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[289]

The preceding set of functions translates StageObject along the given axis. The key
function is translateOnAxis, and all other functions are dependent on it.

StageObject.prototype.localToWorld= function (vector) {
 var v1=vec3.create();
 vec3.transformQuat(v1,vector,this.matrixWorld);
 return v1;
};
StageObject.prototype.worldToLocal= function () {
 var m1 = mat4.create();
 return function (vector) {
 mat4.invert(m1,this.matrixWorld);
 var v1=vec3.create();
 vec3.transformQuat(v1,vector,m1);
 return v1;
 };
}();

The preceding functions transform any vector from the world space to the object's
local space and vice versa.

StageObject.prototype.add=function (object) {
 if (object === this) {
 return;
 }

 if (object.parent !== undefined) {
 object.parent.remove(object);
 }
 object.parent = this;
 //object.dispatchEvent({ type: 'added' });
 this.children.push(object);
 // add to scene
};
StageObject.prototype.remove= function (object) {
 var index = this.children.indexOf(object);
 if (index !== - 1) {
 object.parent = undefined;
 //object.dispatchEvent({ type: 'removed' });
 this.children.splice(index, 1);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Skinning and Animations

[290]

The add function pushes the object on its children array and sets its parent value
to itself after verifying that the child object maintains an open-graph structure. It first
checks if the object has a parent and then it removes the object from its parent's list
by invoking the remove function of its parent.

The remove function unsets the parent of the object and deletes it from its
children array.

StageObject.prototype.traverse= function (callback) {
 callback(this);
 for (var i = 0, l = this.children.length; i < l; i ++) {
 this.children[i].traverse(callback);
 }
}
StageObject.prototype.getObjectById=function (id, recursive) {
 for (var i = 0, l = this.children.length; i < l; i ++) {
 var child = this.children[i];
 if (child.id === id) {
 return child;
 }
 if (recursive === true) {
 child = child.getObjectById(id, recursive);
 if (child !== undefined) {
 return child;
 }
 }
 }
 return undefined;
}
StageObject.prototype.getObjectByName=
 function (name, recursive) {
 for (var i = 0, l = this.children.length; i < l; i ++) {
 var child = this.children[i];
 if (child.name === name) {
 return child;
 }
 if (recursive === true) {
 child = child.getObjectByName(name, recursive);
 if (child !== undefined) {
 return child;
 }
 }
 }
 return undefined;
}
StageObject.prototype.getChildByName=
 function (name, recursive) {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[291]

 return this.getObjectByName(name, recursive);
}
StageObject.prototype.getDescendants=function (array) {
 if (array === undefined) array = [];
 Array.prototype.push.apply(array, this.children);
 for (var i = 0, l = this.children.length; i < l; i ++) {
 this.children[i].getDescendants(array);
 }
 return array;
}

We have also added traversal functions to locate the child objects either by ID or
by name. The key function is traverse; it calls itself recursively followed by the
depth-first search algorithm.

StageObject.prototype.updateMatrix=function () {
 mat4.identity(this.modelMatrix);
 mat4.fromQuat(this.modelMatrix,this.quaternion);
 mat4.scale(this.modelMatrix,this.modelMatrix,this.scale);
 this.modelMatrix[12]=this.position[0];
 this.modelMatrix[13]=this.position[1];
 this.modelMatrix[14]=this.position[2];
 this.matrixWorldNeedsUpdate = true;
}

The preceding function is the most significant change we have done from the
previous code. Earlier, we were using rotational matrices to compute the object's
transformation matrix, but now we are using the quaternion to calculate the model
matrix (mat4.fromQuat(this.modelMatrix, this.quaternion)). Then, we apply
shear transformation and scale our object with the provided scale vector. Then we
simply place the position vector in m31, m32, and m33 of our transformation matrix.

StageObject.prototype.updateMatrixWorld=function (force) {
 if (this.matrixAutoUpdate === true) this.updateMatrix();
 if (this.matrixWorldNeedsUpdate === true || force === true) {
 if (this.parent === undefined) {
 this.matrixWorld.copy(this.modelMatrix);
 } else {
 mat4.mul(this.matrixWorld, this.parent.matrixWorld,
 this.modelMatrix);
 }
 this.matrixWorldNeedsUpdate = false;
 force = true;
 }
 // update children
 for (var i = 0, l = this.children.length; i < l; i++) {
 this.children[i].updateMatrixWorld(force);

www.it-ebooks.info

http://www.it-ebooks.info/

Skinning and Animations

[292]

 }
}
StageObject.prototype.update=function(steps) {
 this.updateMatrixWorld();
}

Another interesting function is the updateMatrixWorld function. It first invokes
updateMatrix; if matrixAutoUpdate is true, the function then checks for
the value of parent. If parent is not defined, then modelMatrix is copied to
matrixWorld; otherwise, matrixWorld for that object is computed by concatenating
the parent's matrixWorld matrix and the object's modelMatrix (mat4.mul(this.
matrixWorld,this.parent.matrixWorld,this.modelMatrix)). Then, we iterate
over all the children of the object to compute their new world matrix. We have also
updated our update function. It invokes updateMatrixWorld when it is invoked
from our main control code.

Implementing the bone class
Though the bones are never rendered, we will treat them as stage objects, as all the
transformations applied to stage objects are applied to the bones too. We do not add
them to our stage but we surely inherit the StageObject class to achieve the desired
functionality. Open primitive/Bone.js in your editor and examine the following
code snippet:

Bone= inherit(StageObject, function (belongsToSkin) {
 superc(this);
 var d = new Date();
 this.id ="id-"+d.getTime();
 this.skin = belongsToSkin;
 this.skinMatrix = mat4.create();
});

The Bone class inherits StageObject and has all its properties. We have added
two more variables to the class, skin and skinMatrix. The skin variable holds the
reference to the Geometry class, where the bone belongs to. The skinMatrix variable
is very similar to matrixWorld, but it holds the world space transformation of the
bone. These variables are updated using the following function:

Bone.prototype.update=function (parentSkinMatrix, forceUpdate) {
 // update local
 if (this.matrixAutoUpdate) {
 forceUpdate |= this.updateMatrix();
 }
 // update skin matrix
 if (forceUpdate || this.matrixWorldNeedsUpdate) {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[293]

 if(parentSkinMatrix) {
 mat4.mul(this.skinMatrix,parentSkinMatrix,
 this.modelMatrix);
 //console.log(parentSkinMatrix);
 } else {
 mat4.copy(this.skinMatrix,this.modelMatrix);
 }
 this.matrixWorldNeedsUpdate = false;
 forceUpdate = true;
 }
 // update children
 var child, i, l = this.children.length;
 for (i = 0; i < l; i ++) {
 this.children[i].update(this.skinMatrix, forceUpdate);
 }
}

We have added a new update function to the Bone class. It takes the parent object's
skin matrix and concatenates it to modelMatrix to compute a bone's skinMatrix (
mat4.mul(this.skinMatrix,parentSkinMatrix, this.modelMatrix)). Then, it
invokes the update functions of all its child bones with its skinMatrix as a parameter.

The update function is very similar to the
updateMatrixWorld function of the StageObject
class, except that it uses a different variable,
skinMatrix, and not matrixWorld. We did
this to differentiate a bone from other renderable
objects(StageObject) and their properties.

Implementing the RiggedMesh class
The RiggedMesh class is where the complete magic happens. It is a renderable
object that inherits StageObject but has its children array populated with bones
initialized from the JSON file.

Open primitive/RiggedMesh.js in your favorite editor.

RiggedMesh= inherit(StageObject, function (geometry) {
 superc(this);
 this.identityMatrix = mat4.create();
 this.bones = [];
 this.boneMatrices = [];
 this.skinIndexBuffer=null;
 this.skinWeightBuffer=null;
});

www.it-ebooks.info

http://www.it-ebooks.info/

Skinning and Animations

[294]

The RiggedMesh class has four new variables defined as follows:

• this.bones[]: This array holds all the bone objects for that mesh.
• this.boneMatrices[]: This array holds the transformation matrix of all

bones flattened into a common array. For example, elements 0 to 15 will
hold the transformation matrix of bone 0, elements 16 to 31 will hold the
transformation matrix of bone 1, and so on.

• this.skinIndexBuffer: This variable holds the reference to the Vertex
Buffer Object, which stores the skinIndices data.

• this.skinWeightBuffer: This variable holds the reference to the vertex
buffer object, which stores the skinWeights data.

The loadObject function of the RiggedMesh class is defined as follows:

RiggedMesh.prototype.loadObject= function (data) {
...
 this.geometry=parseJSON(data);
 parseSkin(data,this.geometry);
...
...
 var b, bone, gbone, p, q, s;
 if (this.geometry && this.geometry.bones !== undefined) {
 for (b = 0; b < this.geometry.bones.length; b ++) {
 gbone = this.geometry.bones[b];
 p = gbone.pos;
 q = gbone.rotq;
 s = gbone.scl;
 bone = this.addBone();
 bone.name = gbone.name;
 bone.position=vec3.fromValues(p[0], p[1], p[2]);
 bone.quaternion=quat.fromValues(q[0], q[1], q[2], q[3]);
 if (s !== undefined) {
 bone.scale=vec3.fromValues(s[0], s[1], s[2]);
 } else {
 bone.scale=vec3.fromValues(1, 1, 1);
 }
 }
 for (b = 0; b < this.bones.length; b ++) {
 gbone = this.geometry.bones[b];
 bone = this.bones[b];
 if (gbone.parent === -1) {
 this.add(bone);
 } else {
 this.bones[gbone.parent].add(bone);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[295]

 }
 }
 //
 var nBones = this.bones.length;
 this.boneMatrices = new Float32Array(16 * nBones);
 this.pose();
 }
}

The loadObject function overrides the StageObject class' loadObject function.
It does everything that StageObject does, such as it invokes parseJSON and it
initializes materials. It also parses the skin and populates the geometry with the
skinIndices and skinWeights data.

Then, it iterates over the bones array and initializes a bone object for each element of
the array. It reads the position, quaternion and scale values from the bones array
element and adds the newly created bone object to the bones array.

Then, it creates the tree hierarchy. It iterates over all bone elements and if the value
of parent of the bone is -1, it adds the bone as its child element; otherwise, it adds
the bone to the corresponding bone's parent, (this.bones[gbone.parent].add(
bone);). The parent attribute of the bone element holds the indices of the bone.
Hence, we first retrieve the parent bone object by using the this.bones[gbone.
parent] code and then add the bone to its parent.

It invokes the this.pose() function after initializing the bone objects, which in turn
invokes updateMatrixWorld, which creates the initial world space matrix for each
bone. The createBuffers function is defined as follows:

RiggedMesh.prototype.createBuffers=function(gl) {
...
 this.skinIndexBuffer = gl.createBuffer();
 gl.bindBuffer(gl.ARRAY_BUFFER, this.skinIndexBuffer);
 gl.bufferData(gl.ARRAY_BUFFER,
 new Float32Array(this.geometry.skinIndices), gl.STATIC_DRAW);
 this.skinIndexBuffer.itemSize = 4;
 this.skinIndexBuffer.numItems =
 this.geometry.skinIndices.length/4;
 this.skinWeightBuffer = gl.createBuffer();
 gl.bindBuffer(gl.ARRAY_BUFFER, this.skinWeightBuffer);
 gl.bufferData(gl.ARRAY_BUFFER, new
 Float32Array(this.geometry.skinWeights), gl.STATIC_DRAW);
 this.skinWeightBuffer.itemSize = 4;
 this.skinWeightBuffer.numItems =
 this.geometry.skinWeights.length/4;
...
}

www.it-ebooks.info

http://www.it-ebooks.info/

Skinning and Animations

[296]

The preceding function initializes the vertex buffer objects for skinIndices and
skinWeights. It then loads the data in the GPU memory using the ESSL function,
gl.bufferData. The addBone function is defined as follows:

RiggedMesh.prototype.addBone = function(bone) {
 if (bone === undefined) {
 bone = new Bone(this);
 }
 this.bones.push(bone);
 return bone;
};
RiggedMesh.prototype.updateMatrixWorld = function () {
 var offsetMatrix = mat4.create();
 return function (force) {
 this.matrixAutoUpdate && this.updateMatrix();
 // update matrixWorld
 if (this.matrixWorldNeedsUpdate || force) {
 if (this.parent) {
 mat4.mul(this.matrixWorld,this.parent.matrixWorld,
 this.modelMatrix);
 } else {
 mat4.copy(this.matrixWorld,this.modelMatrix);
 }
 this.matrixWorldNeedsUpdate = false;
 force = true;
 }
 // update children
 for (var i = 0, len = this.children.length; i < len; i ++) {
 var child = this.children[i];
 if (child instanceof Bone) {
 child.update(this.identityMatrix, false);
 } else {
 child.updateMatrixWorld(true);
 }
 }
 // make a snapshot of the bones' rest position
 if (this.boneInverses == undefined) {
 this.boneInverses = [];
 for (var b = 0, bl = this.bones.length; b < bl; b ++) {
 var inverse = mat4.create();
 mat4.invert(inverse, this.bones[b].skinMatrix);
 this.boneInverses.push(inverse);
 }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[297]

 // flatten bone matrices to array
 for (var b = 0, bl = this.bones.length; b < bl; b ++) {
 // compute the offset between the current and the original
 transform
 // was already representing the offset; however, this
 requires some
 // major changes to the animation system
 mat4.mul(offsetMatrix, this.bones[b].skinMatrix,
 this.boneInverses[b]);
 this.flattenToArrayOffset(offsetMatrix, this.boneMatrices,
 b * 16);
 }
 };
}();

In the preceding code, UpdateWorldMatrix is the key function where all the
computations happen. It performs the following steps:

1. It first computes its own modelMatrix and then updates its matrixWorld
matrix (concatenates parentMatrix).

2. It iterates over the children array. If the child object is an instance of bone,
then it invokes the update function to compute its skinMatrix. If the child
object is an instance of StageObject, it invokes updateWorldMatrix of the
child object to compute its matrixWorld matrix.

It then computes the offset matrix for each bone in the array. When the object of
RiggedMesh is first initialized and updateWorldMatrix is invoked, it checks whether
the boneInverses array is created. If they don't exist, it computes the inverse of
each bone's skinMatrix and stores it in the boneInverses array. The bone's initial
matrix is the binding matrix. This initial call stores the inverse binding matrix. Then in
subsequent calls of updateWorldMatrix, it does not calculate the boneInverses array
(discussed in the The binding matrix section of this chapter). The inverse binding matrix
is only calculated once. It then computes offsetMatrix

i
=B-1

i
*skinMatrix. While

animating bones, skinMatrix will change each time, but the initial inverse binding
matrix is calculated only once and stored in the boneInverse variable. When we
load the 08-Loading-Skinned-Models.html page in a browser, the character model
maintains its starting pose. This happens because the initial skin matrix is multiplied
by its own inverse. Hence the offset matrix for each bone becomes an identity matrix,
so no vertex is transformed. During animation, a vertex is transformed from the skin
local space to joint local space, and then we transform it using the
joint's skinMatrix.

www.it-ebooks.info

http://www.it-ebooks.info/

Skinning and Animations

[298]

We iterate over the bones array and store the offsetMatrices values of each bone
in a single flat array, boneMatrices(this.flattenToArrayOffset(offsetMatrix,
this.boneMatrices, b * 16)). The flat array would look like:

boneMatrices[]=[bone11, bone12, bone13, bone14, bone21, bone22,
bone23,
 bone24, bone31, bone32, bon33, bone34, bone41, bone42, bone43,
bone44,
 bone111, bone112, bone113, bone114, bone121, bone122, bone123,
 bone124, bone131, bone132, bone133, bone134, bone141, bone142,
 bone143, bone144, bone211, bone212, bone213, bone214, bone221,
 bone222, bone223, bone224, bone331, bone332, bone333, bone334,
 bone341, bone342, bone343, bone344,
...
boneN11, boneN12, boneN13, boneN14, boneN21, boneN22, boneN23,
boneN24,
 boneN31, boneN32, boneN33, boneN34, boneN41, boneN42, boneN43,
 boneN44,]

The flattenToArrayOffset function takes offsetMatrix of each bone and
the boneMatrices array and copies offsetMatrix at the location b*16. The
flattenToArrayOffset function is defined as follows:

RiggedMesh.prototype.flattenToArrayOffset=function(mat, flat, offset)
{
 var te = mat;
 flat[offset] = te[0];
 flat[offset + 1] = te[1];
 flat[offset + 2] = te[2];
 flat[offset + 3] = te[3];
 flat[offset + 4] = te[4];
 flat[offset + 5] = te[5];
 flat[offset + 6] = te[6];
 flat[offset + 7] = te[7];
 flat[offset + 8] = te[8];
 flat[offset + 9] = te[9];
 flat[offset + 10] = te[10];
 flat[offset + 11] = te[11];
 flat[offset + 12] = te[12];
 flat[offset + 13] = te[13];
 flat[offset + 14] = te[14];
 flat[offset + 15] = te[15];
 return flat;
}
RiggedMesh.prototype.pose = function () {
 this.updateMatrixWorld(true);
 this.normalizeSkinWeights();
};

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[299]

This pose function is invoked whenever the DOF value of any bone is modified.
It is invoked from animation handlers and initially invoked from the RiggedMesh
constructor. The normalizeSkinWeights function is defined as follows:

RiggedMesh.prototype.normalizeSkinWeights = function () {
 for (var i = 0; i < this.geometry.skinIndices.length; i ++) {
 var sw = this.geometry.skinWeights[i];
 vec4.normalize(sw,sw);
 }
};

This another very important function makes sure that the sum of all weights for
a vertex is equal to 1. If you open model/obj/mrgreen.json, you will notice
skinWeights=[1,1 …..]. This simply means that vertex one in the vertices array
is equally affected by both the bones in the skinIndices array. However, we need
to normalize it before we pass them to the vertex shader. The matrixWorld matrix is
updated as follows:

RiggedMesh.prototype.update=function(steps){
 this.updateMatrixWorld(true);
 this.updateMatrix();
}

The preceding update function simply updates the matrixWorld. The final step of
cloning is done as follows:

RiggedMesh.prototype.clone = function (object) {
 if (object === undefined) {
 object = new RiggedMesh(this.geometry);
 }
 return object;
};

Loading the skinned model
Our base classes are ready. Now, let's move on to see them in action. We will need
to modify our shaders to compute the vertex transformations. Open 08-Loading-
Skinned-Models.html in your favorite editor.

This vertex shader will now take four extra parameters, which are as follows:

• useSkinning: This is a booluniform value that determines whether the
passed vertex uses skinning or not.

• boneGlobalMatrices: This is a mat4 uniform value that holds all the offset
matrices, passed as a flattened array from the main control code.

www.it-ebooks.info

http://www.it-ebooks.info/

Skinning and Animations

[300]

• SkinIndex: This is a vec4attribute value that holds the indices of the offset
matrices (boneGlobalMatrices) affecting the vertex in question.

• skinWeight: This is a vec4attribute value that holds the weights of the
corresponding bones in the skinIndices array affecting the vertex.

The vertex shader code for loading the skinned model is as follows:

<script id="shader-vs" type="x-shader/x-vertex">
 const int MAX_BONES = 100;
 attribute vec3 aVertexPosition;
 attribute vec3 aVertexNormal;
 uniform mat4 mVMatrix;
 uniform mat4 pMatrix;
 uniform mat4 nMatrix;
...
 uniform bool useSkinning;
 uniform mat4 boneGlobalMatrices[MAX_BONES];
 attribute vec4 skinIndex;
 attribute vec4 skinWeight;
 mat4 getBoneMatrix(const in float i) {
 mat4 bone = boneGlobalMatrices[int(i)];
 return bone;
}
void main(void) {
...
 if(useSkinning) {
 mat4 boneMatX = getBoneMatrix(skinIndex.x);
 mat4 boneMatY = getBoneMatrix(skinIndex.y);
 vec4 skinVertex = vec4(aVertexPosition, 1.0);
 vec4 skinned = boneMatX * skinVertex * skinWeight.x;
 skinned += boneMatY * skinVertex * skinWeight.y;
 skinned=mVMatrix *skinned;
 vertexPos = skinned.xyz;
 gl_Position= pMatrix*skinned;
 mat4 skinMatrix = skinWeight.x * boneMatX;
 skinMatrix += skinWeight.y * boneMatY;
 vec4 skinnedNormal = skinMatrix * vec4(aVertexNormal, 0.0);
 transformedNormal = vec3(nMatrix * skinnedNormal);
 }else{
 gl_Position= pMatrix *vertexPos4;
 }
...
}
</script>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[301]

The getBoneMatrix function takes the bone index as a parameter and returns the
corresponding matrix, (mat4 bone = boneGlobalMatrices[int(i)];).

In the code, we first check whether the vertex of a geometry uses skinning and
get the X and Y bone matrices corresponding to the skinIndex variables, x and y
(mat4 boneMatX = getBoneMatrix(skinIndex.x)). It then converts the vertex
from vec3 to vec4 object and stores it in the skinIndex object (vec4 skinVertex
= vec4(aVertexPosition, 1.0)). Then, it transforms the vertex with the
corresponding matrices along with the weight (calculates the weighted average)
and transforms the skinned vertex with mvMatrix.

vec4 skinned = boneMatX * skinVertex * skinWeight.x;
skinned += boneMatY * skinVertex * skinWeight.y;
skinned = mVMatrix * skinned;
gl_Position = pMatrix * skinned;

We then transform the normal using the same algorithm and multiply it with the
normal vertex.

mat4 skinMatrix = skinWeight.x * boneMatX;
skinMatrix += skinWeight.y * boneMatY;
vec4 skinnedNormal = skinMatrix * vec4(aVertexNormal, 0.0);
transformedNormal = vec3(nMatrix * skinnedNormal);

In a nutshell, we first transform the vertex and the normal with the bone offset
matrix and follow our normal course of transforming them to the ModelView matrix
(mvMatrix) and projection matrix (pMatrix).

The main control code for loading the skinned model has some functions explained
as follows:

• The start function loads the JSON model with skinning and creates a
RiggedMesh object instead of StageObject if the JSON object has the
bones array defined in it.
function start() {
...
 loadStageObject("model/obj/mrgreen.json",[600.0, 40.0,
 0.0], 0.0, 0.0, 0.0);
...
}
function loadStageObject(url, location, rotationX,
 rotationY, rotationZ) {
...
 else {

www.it-ebooks.info

http://www.it-ebooks.info/

Skinning and Animations

[302]

 if(data.bones) {
 stageObject=new RiggedMesh();
 }
 else{
 stageObject=new StageObject();
 }
 }
...
}

• The initShaders function accesses the attributes (skinIndex and
skinWeight) and stores their references in the shaderProgram object.
function initShaders() {
...
 shaderProgram.skinIndex =
 gl.getAttribLocation(shaderProgram, "skinIndex");
 shaderProgram.skinWeight =
 gl.getAttribLocation(shaderProgram, "skinWeight");
 shaderProgram.useSkinning =
 gl.getUniformLocation(shaderProgram, "useSkinning");
 shaderProgram.boneGlobalMatrices =
 gl.getUniformLocation(shaderProgram,
 "boneGlobalMatrices");
...
}

• The drawScene function iterates over visible stage objects and checks
whether the instance is of the RiggedMesh type. If it is valid, it enables the
skinIndex and skinWeight attributes (gl.enableVertexAttribArray(sha
derProgram.skinIndex)), activates the buffer objects (gl.bindBuffer(gl.
ARRAY_BUFFER, stage.stageObjects[i].skinIndexBuffer)), and assigns
their memory buffers to their corresponding attributes (gl.vertexAttribPo
inter(shaderProgram.skinIndex, 4, gl.FLOAT, false, 0, 0)). Then,
it also assigns the offset bone matrices to the uniform boneGlobalMatrices
(gl.uniformMatrix4fv(shaderProgram.boneGlobalMatrices,
false, stage.stageObjects[i].boneMatrices)). Note that we assign
boneMatrices as matrices of floats.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[303]

If the object is not of the RiggedMesh type, we disable the attributes
(gl.disableVertexAttribArray(shaderProgram.skinIndex)).
function drawScene() {
...
 if(stage.stageObjects[i] instanceof RiggedMesh) {
 gl.uniform1i(shaderProgram.useSkinning,1);
 gl.enableVertexAttribArray(shaderProgram.skinIndex);
 gl.enableVertexAttribArray(shaderProgram.skinWeight);

 gl.uniformMatrix4fv(shaderProgram.boneGlobalMatrices,
 false, stage.stageObjects[i].boneMatrices);
 gl.bindBuffer(gl.ARRAY_BUFFER,
 stage.stageObjects[i].skinIndexBuffer);
 gl.vertexAttribPointer(shaderProgram.skinIndex, 4,
 gl.FLOAT, false, 0, 0);
 gl.bindBuffer(gl.ARRAY_BUFFER,
 stage.stageObjects[i].skinWeightBuffer);
 gl.vertexAttribPointer(shaderProgram.skinWeight, 4,
 gl.FLOAT, false, 0, 0);
 } else {
 gl.disableVertexAttribArray(shaderProgram.skinIndex);
 gl.disableVertexAttribArray(shaderProgram.skinWeight);

 gl.uniform1i(shaderProgram.useSkinning,0);
 }
...
}

Animating a rigged JSON model
Well, we did not take much effort to load a static model, rather we took more effort
to animate the model. Hence, let's first understand how animation data is encoded
in a JSON file.

www.it-ebooks.info

http://www.it-ebooks.info/

Skinning and Animations

[304]

JSON model – animation data
Open model/obj/mrgreen.json in your text editor. In the file, you will find an
element animation. When the file is viewed in any JSON viewer, you will see name,
fps, length, and hierarchy as the animation object's child elements. To understand
our JSON file, we used an online viewer (http://jsonviewer.stack.hu/). We
loaded our JSON file in the viewer as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[305]

The other child elements are obvious but the most interesting element is hierarchy.
The hierarchy element is an array; the length of this array is equal to the length of
bones. Each array element has animation data for the corresponding bone index.
The hierarchy array element holds the keyframes (keys) element, which holds
DOF (position, rotation, and scale) values for that frame, as shown in the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Skinning and Animations

[306]

In the preceding screenshot, you will notice that the hierarchy element's first child (0)
has a parent element (-1) and a keys array. The keys array has five elements and each
element has the time, pos, rot, and scl values. This shows that the animation has five
frames. Similarly for all other bone elements, we will have the keys array with five
elements. The time element defines the time at which the pose will be activated.

Loading the animation data
We took the basic strategy to load the animation data from three.js (Animation and
AnimationHandler). We modified its code to handle our objects. So, let's understand
the basic strategy. AnimationHandler is a static class and does three functions:

• Maintain the list of active objects of Animation to play.
• Parse the animation data and store it in an array. The index of the array is the

name of animation.
• Invoke the update function of active objects of Animation when invoked

with elapse time.

Open primitive/AnimationHandler.js in your editor. The AnimationHandler
class maintains three arrays:

• playing: This array contains the list of animation objects
• library: This array maintains the animation data
• that: This array is the static object with functions.

The update function iterates over the list of Animation objects and invokes their
update function with deltaTimeMS, the time since the last update call as shown in
the following code snippet:

AnimationHandler = (function() {
 var playing = [];
 var library = {};
 var that = {};
 //--- update ---
 that.update = function(deltaTimeMS) {
 for(var i = 0; i < playing.length; i ++)
 playing[i].update(deltaTimeMS);
 };

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[307]

The addToUpdate and removeFromUpdate functions add and delete animation objects
to and the from playing list, respectively, as shown in the following code snippet:

 that.addToUpdate = function(animation) {
 if (playing.indexOf(animation) === -1)
 playing.push(animation);
 };
 that.removeFromUpdate = function(animation) {
 var index = playing.indexOf(animation);

 if(index !== -1)
 playing.splice(index, 1);
 };

The add function pushes the animation data on to the library array, with the key as
the name of the animation data. It then invokes initData. The get function returns
the animation data from the array. The add function is defined as follows:

 that.add = function(data) {
 library[data.name] = data;
 initData(data);

 };
 that.get = function(name) {
 if (typeof name === "string") {
 if (library[name]) {
 return library[name];
 } else {
 return null;
 }
 }
 };

The parse function pushes all the bones of the RiggedMesh class to the hierarchy
array. This function is invoked from the Animation class. The Animation class
maintains the list of bones of the object. It updates the bones' properties (position,
rotation, and scale) in its update function. The parse function is defined as follows:

 that.parse = function(root) {
 // setup hierarchy
 var hierarchy = [];
 if (root instanceof RiggedMesh) {
 for(var b = 0; b < root.bones.length; b++) {
 hierarchy.push(root.bones[b]);
 }
 }
 return hierarchy;
 };

www.it-ebooks.info

http://www.it-ebooks.info/

Skinning and Animations

[308]

The initData function parses the animation object from the JSON file. The
hierarchy object simply maintains the key frames (time, position, scale, and
rotation) for each bone, eliminates any repeated animation data (key frames at the
same time), and also updates the time to 0 if the time of the key frame is negative.
Basically, it sanitizes the data and sees that it is not processed again using the
initialized property.

 var initData = function(data) {

 if(data.initialized === true)
 return;
 for(var h = 0; h < data.hierarchy.length; h ++) {
 for(var k = 0; k < data.hierarchy[h].keys.length;
 k ++) {
 // remove minus times
 if(data.hierarchy[h].keys[k].time < 0)
 data.hierarchy[h].keys[k].time = 0;
 // create quaternions
 var quater = data.hierarchy[h].keys[k].rot;
 data.hierarchy[h].keys[k].rot = quat.fromValues(
 quater[0], quater[1], quater[2], quater[3]);
 }
 for (var k = 1; k < data.hierarchy[h].keys.length;
 k ++) {
 if (data.hierarchy[h].keys[k].time ===
 data.hierarchy[h].keys[k - 1].time) {
 data.hierarchy[h].keys.splice(k, 1);
 k --;
 }
 }
 for (var k = 0; k < data.hierarchy[h].keys.length;
 k ++) {
 data.hierarchy[h].keys[k].index = k;
 }
 }
 data.initialized = true;
 };
 return that;
}());

Open primitive/Animation.js in your text editor.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[309]

The Animation class follows a very basic strategy. It maintains the previous and next
key frame objects, takes the elapsed time, gets the frame in which the elapsed time
falls, and then interpolates between the values of the frame using the elapsed time.
For example, if the elapsed time is 0.5, frame two has time stamp 0.4, frame three has
time stamp 0.6, the value of pos.x equals 10 in frame two and value of pos.x equals
20 in frame three; then, it sets the bone's position using the formula:

scale=(currentTime-prevKeyTime)/(nextKeytime-prevKeyTime)

pos.x=prevKey.x+(nextKey.x-prevKey.x)*scale

=~10+(20-10)*(0.5-.4)/(0.6-0.4)

The preceding code is an example of linear interpolation as the value of x is a direct
function of time (scale).

The constructor of Animation takes two parameters, the name of the RiggedMesh
object and the name of the animation data to play. It then retrieves the bone
hierarchy using the parse function of AnimationHandler as well as the animation
data using its get function.

Animation = function (root, name) {
 this.root = root;
 this.data = AnimationHandler.get(name);
 this.hierarchy = AnimationHandler.parse(root);
 this.currentTime = 0;
 this.timeScale = 1;
 this.isPlaying = false;
 this.isPaused = true;
 this.loop = true;
};

The play function initializes parameters such as isPlaying to true and isPaused to
false. It creates the animation cache that basically holds the nextKey and preyKey
values for all bones in the mesh. It iterates over all bones and if the animation cache
is not defined for the bone, it gets the data (pos, rot, and scale) from the first key
(prevKey.pos = this.data.hierarchy[h].keys[0];) and the second key
(nextKey.pos = this.getNextKeyWith("pos", h, 1);) from the animation
data and stores its prevKey and nextKey variables. It then adds the Animation
object itself to the playing list of the animation handler (AnimationHandler.
addToUpdate(this);) as shown in the following code snippet:

Animation.prototype.play = function (loop, startTimeMS) {
 if (this.isPlaying === false) {

 this.isPlaying = true;
 this.loop = loop !== undefined ? loop : true;

www.it-ebooks.info

http://www.it-ebooks.info/

Skinning and Animations

[310]

 this.currentTime = startTimeMS !==
 undefined ? startTimeMS : 0;
 // reset key cache
 var h, hl = this.hierarchy.length,object;
 for (h = 0; h < hl; h ++) {
 object = this.hierarchy[h];
 object.matrixAutoUpdate = true;
 if (object.animationCache === undefined) {
 object.animationCache = {};
 object.animationCache.prevKey = { pos: 0, rot: 0,
 scl: 0 };
 object.animationCache.nextKey = { pos: 0, rot: 0,
 scl: 0 };
 object.animationCache.originalMatrix = object instanceof
 Bone ? object.skinMatrix : object.matrix;
 }
 var prevKey = object.animationCache.prevKey;
 var nextKey = object.animationCache.nextKey;
 prevKey.pos = this.data.hierarchy[h].keys[0];
 prevKey.rot = this.data.hierarchy[h].keys[0];
 prevKey.scl = this.data.hierarchy[h].keys[0];
 nextKey.pos = this.getNextKeyWith("pos", h, 1);
 nextKey.rot = this.getNextKeyWith("rot", h, 1);
 nextKey.scl = this.getNextKeyWith("scl", h, 1);
 }
 this.update(0);
 }
 this.isPaused = false;
 AnimationHandler.addToUpdate(this);
};

The update function is the heart of the animation system. The types array holds
DOF names (pos, rot, and scl), which are indexed to get the key data. The update
function takes the elapse time (deltaTimeMS) as a parameter. It is invoked from the
AnimationHandler class's update function.

Animation.prototype.update = function (deltaTimeMS) {
 if (this.isPlaying === false) return;
 var types = ["pos", "rot", "scl"];
 var type;
 var scale;
 var vector;
 var prevXYZ, nextXYZ;
 var prevKey, nextKey;
 var object;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[311]

 var animationCache;
 var frame;
 var currentTime, unloopedCurrentTime;
 var currentPoint, forwardPoint, angle;

We first calculate the current time by adding the elapsed time to it as shown in the
following code snippet:

 this.currentTime += deltaTimeMS;
 unloopedCurrentTime = this.currentTime;

The unloopedCurrentTime value is maintained to see if the current time does not
exceed the total animation time. If it is not a looping animation, then this variable
is checked to stop the animation. Then, we find the moduli of the current time to
eliminate the natural number from the current time.

currentTime=0.9;

currentTime(0.9) + elapsedTime(0.2) = unloopedCurrentTime(1.1);

currentTime(1.1)%1 = currentTime(0.1).

The unloopedCurrentTime value becomes greater than 1. We remove the natural
number from the currentTime. At that time, the unloopedCurrentTime is not equal
to currentTime.

 currentTime = this.currentTime =
 this.currentTime % this.data.length;

We then iterate over all bones as follows:

 for (var h = 0, hl = this.hierarchy.length; h < hl; h ++) {
 object = this.hierarchy[h];
 animationCache = object.animationCache;

Iterate over types to get the key information for types (pos, rot, and scl) shown
as follows:

 for (var t = 0; t < 3; t ++) {

Get the current, previous, and next key frames for the bone and type from the
animation cache.

 type = types[t];
 prevKey = animationCache.prevKey[type];
 nextKey = animationCache.nextKey[type];

www.it-ebooks.info

http://www.it-ebooks.info/

Skinning and Animations

[312]

Check if the next frame's time is less than unloopedCurrentTime. This means it has
to pick the next frame, otherwise use the same frame to set the DOF of the bone.

 if (nextKey.time <= unloopedCurrentTime) {

The currentTime value will always be equal to unloopedCurrentTime, but when
the animation has run its complete cycle once, then the unloopedCurrentTime
value will be greater than one and currentTime will be less than it. This means the
animation was run once. So, we have to pick the next frame only when this.loop is
valid, otherwise we have to stop the animation.

 if (currentTime < unloopedCurrentTime) {

If the loop is valid, then pick the first frame and second frame to set the prevKey and
nextKey variables and loop until we do not find the correct nextKey, whose time is
less than the current time. Stop the animation if looping is not enabled.

 if (this.loop) {
 prevKey = this.data.hierarchy[h].keys[0];
 nextKey = this.getNextKeyWith(type, h, 1);
 while(nextKey.time < currentTime) {
 prevKey = nextKey;
 nextKey = this.getNextKeyWith(type, h,
 nextKey.index + 1);
 }
 } else {
 this.stop();
 return;
 }
 } else {

If currentTime equals unloopedCurrentTime, then the animation has not
completed once. Simply iterate over all keys until the value of currentTime is less
than that of nextKey. This will give us our new next and previous keys as shown in
the following code snippet:

 do {
 prevKey = nextKey;
 nextKey = this.getNextKeyWith(type, h,
 nextKey.index + 1);
 } while(nextKey.time < currentTime)
 }

Set the new prevKey and nextKey values to the animation cache.

 animationCache.prevKey[type] = prevKey;
 animationCache.nextKey[type] = nextKey;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[313]

Set the object's matrixWorldNeedsUpdate value to true so that updateWorldMatrix
of the bone calculates our new skinMatrix.

 object.matrixAutoUpdate = true;
 object.matrixWorldNeedsUpdate = true;

Calculate scale to interpolate between the prevKey and nextKey values.

 scale = (currentTime - prevKey.time) /
 (nextKey.time - prevKey.time);
 prevXYZ = prevKey[type];
 nextXYZ = nextKey[type];
 if (scale < 0 || scale > 1) {
 scale = scale < 0 ? 0 : 1;
 }

If the type value equals position, calculate the new position between the preyKey
and nextKey values and update the bones' position vector with the new interpolated
value. Thus, we interpolate based on the value of scale. We use spherical linear
interpolation to calculate the new quaternion between prevKey and nextKey.

 if (type === "pos") {
 vector = object.position;
 vector.x = prevXYZ[0] +
 (nextXYZ[0] - prevXYZ[0]) * scale;
 vector.y = prevXYZ[1] +
 (nextXYZ[1] - prevXYZ[1]) * scale;
 vector.z = prevXYZ[2] +
 (nextXYZ[2] - prevXYZ[2]) * scale;

 } else if (type === "rot") {
 quat.slerp(object.quaternion, prevXYZ, nextXYZ, scale);
 } else if (type === "scl") {
 vector = object.scale;
 vector.x = prevXYZ[0] +
 (nextXYZ[0] - prevXYZ[0]) * scale;
 vector.y = prevXYZ[1] +
 (nextXYZ[1] - prevXYZ[1]) * scale;
 vector.z = prevXYZ[2] +
 (nextXYZ[2] - prevXYZ[2]) * scale;
 }
 }
 }
};

www.it-ebooks.info

http://www.it-ebooks.info/

Skinning and Animations

[314]

The getNextKeyWith function is used extensively by the update function. It
basically takes the bone index, type (pos, rot, and scl), and the keys array's
index to get the next frame.

Animation.prototype.getNextKeyWith = function (type, h, key) {
 var keys = this.data.hierarchy[h].keys;
 key = key % keys.length;
 for (; key < keys.length; key++) {
 if (keys[key][type] !== undefined) {
 return keys[key];
 }
 }
 return this.data.hierarchy[h].keys[0];
};

Open 08-Loading-Skinned-Animatons.html to learn how to use the
preceding classes.

After we initialize our RiggedMesh object, we check whether the name of the
RiggedMesh object is mrgreen. We initialize our Animation object with the stage
object and the name of animation to play. We also add the animation data from the
geometry to the AnimationHandler.

function loadStageObject(url, location, rotationX, rotationY,
 rotationZ) {
...
 if(stageObject.name=="mrgreen") {
 AnimationHandler.add(stageObject.geometry.animation);
 animation = new Animation(stageObject, "ActionMrGreen");
 animation.play(true);
 animation.update(0);
 }
...
}

The animate function on main code invokes the AnimationHandler class'
update function. It passes the elapsed time as a parameter to the function.
AnimationHandler class's update function in turn invokes the update function
of RiggedMesh.

Hence, now our animate function does three things: updates the physical world,
updates AnimationHandler, and then redraws the scene.

function animate() {
 currentTime = (new Date).getTime();
 elapsedTime = currentTime - lastFrameTime;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[315]

 if (elapsedTime < rate) return;
 AnimationHandler.update(elapsedTime/1000);
...
}

If you have your RiggedMesh class in place, animation data is simple to understand
and work with.

Exporting models from 3D software
in JSON
In our code, we strictly follow the three.js JSON 3.1 format (https://github.com/
mrdoob/three.js/wiki/JSON-Model-format-3.1). Hence, we can directly use
three.js exporters to load 3D objects in our code.

Our code only handles models with a single material/texture
file. Hence, if you use the code directly, make sure that you
create models with a single texture.

Exporting from Blender
We can download the Blender add-on from here https://github.com/mrdoob/
three.js/tree/master/utils/exporters/blender/2.65. We can install it in
Blender using following simple steps:

1. Copy the add-on to the following path:
 ° Windows: C:\Users\USERNAME\AppData\Roaming\Blender

Foundation\Blender\2.6X\scripts\addons

 ° Mac: /Applications/Blender/blender.app/Contents/
MacOS/2.6X/scripts/addons

 ° Linux: /home/USERNAME/.config/blender/2.6X/scripts/addons

2. In Blender preferences, in add-ons, look for option three.
3. Enable the checkbox next to Import-Export: three.js format.

Now, you can use the Export menu to export the JSON file.

www.it-ebooks.info

http://www.it-ebooks.info/

Skinning and Animations

[316]

Converting FBX/Collada/3DS files to JSON
The conversion utility is placed in the code/model/convert_obj_three.py folder.
You can simply fire the following command at the terminal or the DOS window:

python convert_obj_three.py sample.fbx sample.js -t

To use this utility, you must have Python installed on your system along with FBX
Python bindings (http://usa.autodesk.com/fbx/).

Also, note that the utility does not export animation data.

Loading MD5Mesh and MD5Anim files
MD5Mesh and MD5Anim are very popular 3D formats. They are lightweight and
exporters are available for all major software like Blender, Maya, and 3ds Max.

We download a utility to convert MD5 files to the JSON format using JavaScript from
http://oos.moxiecode.com/js_webgl/md5_converter/. We also modified its
code and have added it to our code/js folder (code/js/MD5_converter.js). You
may simply include this file in your code and use the following sample code to load
the MD5 files:

function loadMD5() {
 var meshLoaded=false;
 var animLoaded=false;
 var mesh="";
 var anim="";
 $.get("model/md5/boblampclean.md5mesh",function(data) {
 meshLoaded=true;
 mesh=data;
 if(meshLoaded&&animLoaded) {
 processMD5(mesh,anim);
 }
 });
 $.get("model/md5/boblampclean.md5anim",function(data) {
 animLoaded=true;
 anim=data;
 if(meshLoaded&&animLoaded) {
 processMD5(mesh,anim);
 }
 });
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[317]

Once both the mesh and animation files are loaded, we invoke processMD5. The
function basically invokes MD5_converter.process_md5anim and MD5_converter.
process_md5mesh and stores the JSON string in meshData.string and the
animation string in meshData.stringAnimationOnly. Then, we parse the string to
convert it to a JSON object using the jQuery function, JSON.parse. Then, we create a
RiggedMesh object and invoke its loadObject function to load the JSON model.

function processMD5(mesh,animation) {
 var animData = MD5_converter.process_md5anim(animation,
 "boblampclean.md5anim");
 var meshData = MD5_converter.process_md5mesh(mesh,
 "boblampclean.md5mesh");
 var model=JSON.parse(meshData.string);
 var animationData=JSON.parse(meshData.stringAnimationOnly);
 model.animation=animationData.animation;
 model.metadata.sourceFile="boblampclean.md5mesh";
 var stageObject=new RiggedMesh();
 stageObject.loadObject(model);
 loadTexture(stageObject,false);
 addStageObject(stageObject,[0.0,40.0,-50.0],0.0,0.0,0.0);
}

Summary
This chapter was dedicated to loading and using skinned models. We covered the
basics to help us understand how skinning data is stored in a JSON model file.
We also explained the relation between the bones and the vertex transformations
and used this knowledge to write our vertex shader. We implemented the smooth
skinning algorithm to store our joint and skin data.

We then learned how animation data is encrypted in a JSON file. We evolved our
classes to load the animation data and learned how to animate a model on frame-
based animation principles.

This chapter used matrix transformations, quaternion mathematics and linear
interpolation to handle difficult concepts such as animating skinned models.

In the next chapter, we will cover concepts such as picking and post-processing
effects. Picking is the core concept used in all 3D editing software. Through picking,
we can select 3D objects on a 2D screen.

Post-processing helps us add effects to a scene. For example, we may want our game
user to feel as if he is viewing our game scene through night vision goggles.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Ray Casting and Filters
Collision detection is a powerful tool to calculate hits and the intersection of two
or more objects in a game scene but not sufficient for most cases where we need to
predict collision before it actually happens. This chapter will unveil a very powerful
concept in game development called ray casting, to cover cases that cannot be
handled by collision detection. We will use ray casting to implement another very
interesting technique called picking, which is used by CAD software. Picking is
useful for many interactive use cases, where we need to map a mouse click by the
user (2D screen coordinates) to the local/world space of the objects in the scene.

Framebuffers is another very powerful concept used in game development. It has
many useful use cases from the implementation of view caching to implementations
of filters. We will cover the following topics in this chapter:

• Basic concepts of ray casting
• The basics of picking
• Implementing picking using ray casting
• Framebuffers
• Implementing filters using framebuffers

www.it-ebooks.info

http://www.it-ebooks.info/

Ray Casting and Filters

[320]

Understanding the basic ray casting
concepts
There are many use cases where collision detection is detected too late in a game.
Let's consider a case, in a game, where we have a door and if the player approaches
it, you want the door to open automatically. If we use collision detection for this case,
then the player has to first collide with the door, in order to open it; or alternatively,
you can create a bigger bounding box (a rigid body with more depth) so that when
the user approaches the door a collision is detected earlier. However, this approach
does not cover the use case of the player not facing the door. For instance, if the player
has its back towards the door, then a collision would be detected and the door would
open. Collision detection does not consider directions.

Ray casting is also used to build the basic AI of a non-playing character. A moving
player might need to alter its direction or speed automatically when there is another
existing object moving in the same direction. Collision is detected only after two
objects have intersected, and often, we need to predict it. In such cases, ray casting is
an effective concept to predict a collision.

Ray casting is used in many cases like:

• Determining the first object intersection by a ray
• Volume ray casting in a direct volume rendering method
• For hidden surface removal in finding the first intersection of a ray cast from

the camera through each pixel of the image

In ray casting, geometric rays are traced from the position of the player to sample a light
ray traveling in the direction of the player. If the traveling ray intersects any colliders
(rigid bodies in our case), a hit is observed, and then we can take the desired action.
The following diagram shows a simple ray casted from a player's position and its
intersection with objects:

PL
AY

ER

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[321]

We will use the JigLib library to understand the implementation of a ray cast. JigLib
provides us with two classes to implement ray casting: JRay and JSegment. The
constructor of the JRay class is defined as follows:

JRay=function(_origin, _dir)

The constructor of this class takes two parameters, _origin and _dir. We will set
the _origin parameter to the position of the character and the _dir parameter to
the direction of the character. The position and direction can be easily derived from
our matrixWorld matrix. The position will be derived from the m30, m31, and m32
components of our matrix and the direction vector can be calculated by multiplying
the forward vector with the rotation matrix (derived from this.quaternion of
our StageObject class) or retrieving the m03, m13, and m23 components of our
matrixWorld matrix. The JRay class is used internally by the JSegment class. We
will only interact with the JSegment class. The constructor of the JSegment class
is defined as follows:

JSegment=function(_origin, _delta)

The JSegment class is similar to the JRay class except that it takes the _delta
parameter instead of the _dir parameter. The _delta parameter is the length of the
ray multiplied by the direction of the player. The JSegment class does not cast an
infinite ray, and the intersecting objects in the vicinity of the ray are returned. Let's
quickly take a peep into the implementation:

vec3.scale(directionVector,ray.directionVector,100)
var segment=new jigLib.JSegment(origin,directionVector);
var out={};
var cs=system.getCollisionSystem();
if(cs.segmentIntersect(out, segment, null)){
 returnout.rigidBody;
}

First, we scale our direction vector by 100, which is the length of our ray in the
example. Then, we create an object of the segment. We retrieve the object of our
collision system from the physics system object. We then check for an intersecting
object using the cs.segmentIntersect(out, segment, null) function. The last
parameter (null) is for the outer body, the enclosing body, not necessarily the parent
of the object. It can be a skybox or any similar object, which we will ignore for our
calculations. In our case, we do not pass the enclosing body; hence, we pass null.
If the function returns true, then the intersecting object is retrieved from the out
variable, which we passed as the first parameter in the function call.

www.it-ebooks.info

http://www.it-ebooks.info/

Ray Casting and Filters

[322]

The returned out parameter holds information such as out.position, out.
rigidbody, and out.frac:

• out.position: This variable holds the position of the collider at the time of
intersection with the ray, in case the collider is moving.

• out.rigidBody: This variable holds the collider the ray intersected with.
• out.frac: This variable holds the probability of intersection of the object

with the ray. This is used internally by the function to check the most
probable object intersecting with the ray.

Learning the basics of picking
All 3D platforms have a very basic problem to solve: what is under the mouse?
This problem in the 3D world is referred to as picking. It is not simple and
straightforward and involves nontrivial mathematics and some complex algorithms,
but it is solvable once you understand the core concept. To solve the problem, there
are two approaches in picking, based on an object color and ray casting.

Picking based on an object's color
Each object in the scene is assigned a unique diffuse color, and then the complete
scene is rendered in an offscreen framebuffer. When the user clicks on the scene, we
get the color from the texture in a framebuffer of the corresponding click coordinate.
Then, we iterate through the list of objects and match the retrieved color with the
object diffuse color. Let's look at the pseudo code:

createFrameBuffer(framebuffer);
//Function invoked at each tick;
function render(){
 assignDiffuseColorToEachObject();
 gl.bindFramebuffer(gl.FRAMEBUFFER, framebuffer);
 drawScene();
 assignActualTextureOrColorToEachObect();
 gl.bindFramebuffer(gl.FRAMEBUFFER, null);
 drawScene();
}

If you observe the preceding pseudo code, you will realize that we render the scene
twice; once in the offscreen framebuffer with the assigned color code for each object
and then on the onscreen buffer with the actual texture and the color data. The
following two screenshots explain the concept; the first screenshot shows how the
scene is rendered in the framebuffer and the second screenshot shows how the scene
appears on the actual screen. When the user clicks on the scene, click coordinates are
mapped to the offscreen buffer texture.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[323]

The disadvantage is that although the implementation is straightforward, it requires
double rendering of the same scene, which makes the overall rendering process slow.
Also, you cannot select a single triangle from a mesh. We can only select complete
objects. The following screenshot is rendered in the framebuffer, each object with
a unique color:

The following screenshot is rendered on the screen, each object with its actual texture:

www.it-ebooks.info

http://www.it-ebooks.info/

Ray Casting and Filters

[324]

Although we will discuss framebuffers in the Rendering offscreen using framebuffers
section, we will not implement picking using the preceding technique in this book.

Picking using ray casting
We have discussed ray casting in the previous section, Understanding the basic ray
casting concepts. In that section, we discussed that a ray was generated from a player's
position and direction to detect any object's intersection. Now, let's replace the
player position with screen coordinates where the mouse was clicked and derive the
direction from the camera direction (also called the eye vector). Hence, picking using
ray casting is implemented by casting a ray from the camera's position and direction
into the scene—the objects intersected by the ray are the user selected objects. This is
shown in the following diagram:

Screen

Eye

Object

Ray

Let's understand the power of this technique. Using this technique, we can select
objects up to any level of detail, but there is always a tradeoff in precision versus
performance. So, let's understand the possibilities:

• For jigLib.JBox colliders, if a scene object is associated with the JBox or
JSphere collider, then you will only be able to select a complete object. The
Jbox, JSphere, and JCapsule colliders are also known as bounding box
colliders. They are the fastest colliders. They have minimum computation
load as the exact shape of the 3D object is not considered but a simple
geometry is checked against the intersection. We have already associated
these colliders with our scene objects in Chapter 7, Physics and Terrains.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[325]

• For jigLib.JTriangleMesh colliders, if a scene object is associated with a
JTriangleMesh collider, then you can select a triangle/polygon in a scene
object. Let's look at the constructor of JTriangleMesh:
JTriangleMesh=function(skin, maxTrianglesPerCell,
 minCellSize)
this.jigLibObj=new jigLib.JTriangleMesh(null, 100, 0.1);
this.jigLibObj.createMesh(triangles.verts,
 triangles.faces);

The constructor of the JTriangleMesh collider takes a hint of the size of an object
by taking maxTrianglesPerCell and mincellSize parameters. This class has a
function called createMesh which takes triangles.verts and triangles.faces
as parameters. These parameters refer to the vertices and indices in the mesh. So
basically, a JTriangleMesh collider knows the exact shape and size of the scene
object, but it is very slow. It basically checks each triangle in the mesh for collision.
Even though it is precise, it certainly is computationally expensive. However, we
can use the JTriangleMesh.prototype.segmentIntersect=function(out,
seg, state) function of the class to get the exact triangle that our ray/segment
intersected. This method of finding an intersection is precise but slow.

We can use any type of collider in our scene for picking, but remember that we have
to choose between precision and performance.

Implementing picking using ray casting
Let's now start implementing what we have discussed. The algorithm we will apply
is as follows:

1. Create a rigid body for each scene object.
2. Calculate the click coordinates of the canvas, convert these coordinates to

normalized device coordinates, and create a vector.
3. "Unproject" the vector using the camera projection matrix.
4. Create a ray segment using the vector.
5. Check for an intersection.
6. If an intersection is found, then change the color of the selected object.

www.it-ebooks.info

http://www.it-ebooks.info/

Ray Casting and Filters

[326]

Using a rigid body (collider) for each
scene object
Now, we will modify our StageObject class again to create a bounding box. If we
revisit the constructor of our jigLib.JBox class, then its constructor takes the width,
depth, and height of the corresponding 3D model as follows:

var JBox=function(skin, width, depth, height)

When we add our 3D model to the stage, we do not know its height, width, and
depth. Hence, we first need to create its bounding box in order to compute the
preceding values.

A bounding box consists of the minimum and maximum values of the components
(x, y, z) of the vertices of a mesh. Note that it is not the minimum and maximum
vertices but the minimum/maximum values of the components of a vertex. Open the
StageObject.js file from the primitive folder in your editor. The following code
snippet is present in this file:

StageObject.prototype.calculateBoundingBox=function (){
 if(this.geometry.vertices.length>0){
 var point=vec3.fromValues(this.geometry.vertices[0],
 this.geometry.vertices[1],this.geometry.vertices[2]);
 vec3.copy(this.min, point);
 vec3.copy(this.max, point);
 for (var i = 3; i<this.geometry.vertices.length; i=i+3) {
 point=vec3.fromValues(this.geometry.vertices[i],
 this.geometry.vertices[i+1],this.geometry.vertices[i+2])
 if (point[0] <this.min[0]) {
 this.min[0] = point[0];
 } else if (point[0] >this.max[0]) {
 this.max[0] = point[0];
 }
 if (point[1] <this.min[1]) {
 this.min[1] = point[1];
 } else if (point[1] >this.max[1]) {
 this.max[1] = point[1];
 }

 if (point[2] <this.min[2]) {
 this.min[2] = point[2];
 } else if (point[2] >this.max[2]) {
 this.max[2] = point[2];
 }
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[327]

In the preceding code, we first store the first vertex in the min and max class variables
of the StageObject class. We then iterate over the list of vertices of our geometry,
compare each component (x, y, z) of a vertex with the min and max components, and
store the minimum and maximum values in the corresponding components. You
must have noticed that the min and max vectors are not actual vertices in the mesh,
but they just hold the minimum and maximum values of x, y, and z.

The width of the 3D model is calculated using the following formula. Here, max[0] is
the maximum value of x and min[0] is the minimum value of x:

Width = max[0] - min[0]

The height of the 3D model is calculated using the following formula. Here, max[1] is
the maximum value of y and min[1] is the minimum value of y:

Height = max[1] - min[1]

The depth of the 3D model is calculated using the following formula. Here, max[2] is
the maximum value of z and min[2] is the minimum value of z:

Depth = max[2] - min[2]

We create a collider which closely resembles the shape and real world physics of the
3D model. For example, JCapsule colliders are used for cylindrical objects which roll
in a direction. For example, we have a ball, so we would not want its collider to be a
box because a box collider would not roll. Hence, we also create a bounding sphere if
the object resembles a sphere. The constructor of jigLib.JSphere=function(skin,
r) takes the radius as an argument. Hence, we first need to compute its center to
compute its radius. In the following code, we first compute the bounding box to
calculate the center:

StageObject.prototype.calculateBoundingSphere=function (){
 this.calculateBoundingBox();
 this.center=this.calculateCenter();
 var squaredRadius=this.radius*this.radius;
 for (var i = 0; i<this.geometry.vertices.length; i=i+3) {
 var point=vec3.fromValues(this.geometry.vertices[i],
 this.geometry.vertices[i+1],this.geometry.vertices[i+2]);
 squaredRadius=Math.max(squaredRadius,vec3.squaredDistance
 (this.center,point));
 }
 this.radius=Math.sqrt(squaredRadius);
}
StageObject.prototype.calculateCenter=function (){
 var center=vec3.create();

www.it-ebooks.info

http://www.it-ebooks.info/

Ray Casting and Filters

[328]

 vec3.add(center,this.min,this.max);
 vec3.scale(center,center,0.5);
 return center;
}

Then, we compute the center of the sphere. The computation of the center is simple:

center = (min + max)/2

The bounding box gives us the min and max values, and we calculate the sphere's
center from it. Then, we iterate over the list of vertices to find the distance of each
vertex from the center and store the maximum radius using the squaredRadius=Math.
max(squaredRadius, vec3.squaredDistance(this.center, point)); statement.

Now, as our code to compute our bounding box is complete, we now need to
initialize our rigid body using the initializePhysics function as follows:

StageObject.prototype.initializePhysics=function(sphere){
 if(sphere){
 this.calculateBoundingSphere();
 this.rigidBody= new jigLib.JSphere(null,this.radius);
 this.rigidBody.set_mass(this.radius*this.radius*this.radius);
 }else{
 this.calculateBoundingBox();
 var subVector=vec3.create();
 vec3.sub(subVector,this.max,this.min);
 this.rigidBody=new jigLib.JBox(null,Math.abs(subVector[0]),
 Math.abs(subVector[2]),Math.abs(subVector[1]));
 this.rigidBody.set_mass(Math.abs(subVector[0])
 *Math.abs(subVector[2])*Math.abs(subVector[1]));
 }
 this.rigidBody.moveTo(jigLib.Vector3DUtil.
 create(this.position[0],this.position[1],this.position[2]));//
 Move the object to the location of the object.
 var matrix=mat4.create();
 mat4.fromQuat(matrix,this.quaternion);
 var orient=new jigLib.Matrix3D(matrix);
 this.rigidBody.setOrientation(orient);
 //Change orientation of the rigid body
 this.rigidBody.set_movable(false);
 this.system.addBody(this.rigidBody);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[329]

The preceding function, initializePhysics, takes a Boolean parameter sphere.
If we pass sphere as true, then a JSphere collider is initialized; otherwise, a JBox
collider is initialized. We set the mass of the object equivalent to its volume (radius
for JSphere and width * depth * height for JBox). We then move the rigid body to
the location of the StageObject class and also orient it in the StageObject class's
direction. Note that we have declared all objects as static bodies (this.rigidBody.
set_movable(false);).

The last change is added to our updateMatrix function. The updateMatrix function
now needs to set the orientation and position of the StageObject class to the
position and orientation of the rigidBody object. The following code only considers
the position and orientation values of the rigidBody object when the rigid
body is dynamic; otherwise, it sets the values from the position and quaternion
parameters of the class. Our updateMatrix function is as follows:

StageObject.prototype.updateMatrix=function () {
 if(this.rigidBody&&this.rigidBody.get_movable()){
 var pos=this.rigidBody.get_currentState().position;
 this.position=vec3.fromValues(pos[0],pos[1],pos[2]);
 mat4.copy(this.modelMatrix,this.rigidBody.
 get_currentState()._orientation.glmatrix);
 }else{
 mat4.identity(this.modelMatrix);
 mat4.fromQuat(this.modelMatrix,this.quaternion);
 }
 mat4.scale(this.modelMatrix,this.modelMatrix,this.scale);
 this.modelMatrix[12]=this.position[0];
 this.modelMatrix[13]=this.position[1];
 this.modelMatrix[14]=this.position[2];
 this.matrixWorldNeedsUpdate = true;
}

Now, we need to initialize our rigidBody object. We initialize it when the object is
added to the Stage class. Open the Stage.js file from the primitive folder and go
to the addModel function:

addModel:function(stageObject){
 if(!(this.gl===undefined)) {
 stageObject.createBuffers(this.gl);
 }
 var len= this.stageObjects.length;
 this.stageObjects.push(stageObject);
 if(stageObject.rigidBody){
 stageObject.rigidBody._id=len;
 }else{

www.it-ebooks.info

http://www.it-ebooks.info/

Ray Casting and Filters

[330]

 stageObject.system=this.system;
 stageObject.initializePhysics(false);
 stageObject.rigidBody._id=len;
 this.system.addBody(stageObject.rigidBody);
 }
},

The addModel function first checks whether rigidBody is already created. If it is
already created, then we simply assign it an _id parameter. The _id parameter is the
index of the stageObject in the stageObjects array. If rigidBody is not already
created, it invokes the initializePhysics function of the StageObject class and
then assigns it an ID. It then adds the object to the physics system.

Calculating the screen coordinates of a click
Getting the click coordinates on the canvas requires a little work. The property of the
mouse click events, offsetX and offsetY, gives us the coordinates relative to the
parent container. However, they are not very useful as they are not available in some
browsers such as Firefox.

We will use e.clientX/e.clientY. They are event attributes that give us the
horizontal and vertical coordinates (according to the current window) of the mouse
pointer. Hence, we need to first calculate the position of our canvas with respect to
the document, add the page scroll, and then subtract that value from the e.clientX
attribute. Open the 09-Picking-Using-Ray-Casting.html file in your editor. The
following code snippet is present in this file:

var parent=document.getElementById('canvas');
parent.onmousedown=function(e) {
 var x, y, top = 0, left = 0;
 while (parent && parent.tagName !== 'BODY')
 {
 top =top+ parent.offsetTop;
 left =left+ parent.offsetLeft;
 parent= parent.offsetParent;
 }
 left += window.pageXOffset;
 top -= window.pageYOffset;
 x = e.clientX – left;
 y=(e.clientY – top);
 y = gl.viewportHeight - y;
 var rigidBody=rayCaster.pickObject(x,y,system);
...
};

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[331]

In the preceding code, first we get the object of the canvas element and store it in
the parent variable. The offsetTop and offsetLeft variables return the top and
left values with respect to their parent. We then add the values to the top and left
variables, and then we retrieve their parent using the offsetParent variable. We
perform the preceding process until the parent variable becomes null or the parent
variable is not the BODY tag. Hence, the top and left variables contain the sum of
the offsetTop and offsetLeft variables of the canvas' parents. Then, we counter
for the page scroll height (left += window.pageXOffset and top -= window.
pageYOffset).

We subtract the canvas' location (x = e.clientX – left;) with respect to the
client's view from the mouse click coordinate.

We calculate the y value after subtracting it from the height
of the canvas (gl.viewportHeight). We do so because
the WebGL coordinate system originates in the bottom left,
while the coordinate we calculated previously was taken
from the top right of the screen.

We then pass the computed click coordinates to our rayCaster.pickedObject
function, where we convert these values to Normalized Device Coordinates (NDC).
We calculate the click coordinates as follows:

var x1 = (x / this.screen_width)*2 - 1;
var y1 = (y / this.screen_height)*2 - 1;

The following diagram shows how we represent our 3D scene on a 2D canvas. It
shows that the origin of the world (0,0,0) is marked as the center (0,0) of the screen:

(-1, 1)

(-1, -1)

(1, 1)

(1, -1)

(0, 0)
.

www.it-ebooks.info

http://www.it-ebooks.info/

Ray Casting and Filters

[332]

The NDC is a value that remains the same and is independent of the view size. It ranges
from -1 to 1. Basically, the objective is that the coordinate that we want to convert to the
world coordinate has to first be independent of the canvas size. Hence, we divide it by
the height and width of the canvas. The conversion is shown in the following diagram:

Device Coordinate Normalized Device Coordinate World Coordinate

Unproject the vector
Our NDC vector's coordinates look something like this (x1, y1, 1). This means that it
is one unit ahead of the eye vector (x1, y1, 0). Basically in this case, the eye vector is
the click coordinate. Now, this NDC has to be converted to world coordinates.

Throughout the book, we have discussed this formula:

v' = P * M * v

Each vertex is rendered after multiplying it with the ModelView matrix and then
with the projection matrix of the camera. The final values vector (v') has three
components (x, y, z), where x and y denote the location on the screen and z is for
depth test. Now, we have a device coordinate, v', and we want to convert it to the
world coordinate. So our formula should be as follows:

v = M-1 * P-1 * v'

This means that if we multiply the NDC with the inverse projection matrix, then
with the inverse ModelView matrix of the camera, we convert the NDC to the
world coordinate.

Our projection matrix and ModelView matrix are 4 x 4 matrices and our vector is a
1 x 3 vector. To multiply these matrices with our vector, we have to convert it to a
1 x 4 vector. Hence, we add a w component, 1. Now, our vec3 vector becomes vec4
(x1, y1, 1, 1). After multiplication with the matrices, we get the w component which
might not be equal to 1. We need to perform a perspective divide to normalize our
coordinates. Hence, perspective divide is division of all four coordinates (x, y, z, w)
by w in order to normalize the w value to 1.

So to unproject the vector and convert it from screen coordinates to world
coordinates, we need to perform the following steps:

1. Multiply the vector by the inverse camera projection matrix.
2. Multiply the vector by the inverse camera ModelView matrix.
3. Perform perspective divide to normalize the w component.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[333]

To perform the preceding operations, we have added a function, unProjectVector,
to our camera class and a general purpose applyProjection function in utils.js.
Open the utils.js file in your favorite editor. The following code snippet is present
in this file:

function applyProjection(vector,m){

 var x = vector[0], y = vector[1], z = vector[2];
 var e = m;
 var d = 1 / (e[3] * x + e[7] * y + e[11] * z + e[15]);
 // perspective divide
 var x1 = (e[0] * x + e[4] * y + e[8] * z + e[12]) * d;
 var y1 = (e[1] * x + e[5] * y + e[9] * z + e[13]) * d;
 var z1 = (e[2] * x + e[6] * y + e[10] * z + e[14]) * d;
 return vec3.fromValues(x1,y1,z1);
}

The preceding function, applyProjection, takes a vector (vec3) and matrix as
parameters. It first calculates the w component (var d = 1 / (e[3] * x + e[7]
* y + e[11] * z + e[15]);), then multiplies each component, x1, y1, and z1,
with it to get the normalized vector.

Open the camera.js file from the primitive folder in your editor to understand our
new function, unProjectVector:

Camera.prototype.unProjectVector=function(vector){
 var inverseProjection=mat4.create();
 mat4.invert(inverseProjection,this.projMatrix);
 var viewProjection=mat4.create();
 mat4.invert(viewProjection,this.viewMatrix);
 mat4.mul(viewProjection,viewProjection,inverseProjection)
 var vec=applyProjection(vector,viewProjection);
 return vec;
}

In the preceding code, we first calculate our inverse projection matrix
inverseProjection. We then calculate our inverse ModelView matrix and multiply
them to get our viewProjection matrix.

viewProjection = M-1 * P-1

Now we multiply our viewProjection matrix with the vector using our function
applyProjection, which also performs the perspective divide.

www.it-ebooks.info

http://www.it-ebooks.info/

Ray Casting and Filters

[334]

Creating a ray segment
To create a ray segment, we need two components, origin and direction. The origin
is straightforward. The NDC (x1, y1, 1) converted world coordinate will become
our origin, but the direction is tricky. We either use the direction of the camera or
alternatively, we can create two vectors with a varying z to calculate the direction.

In the following diagram, we have depicted two NDCs, originVector (x1, y1, -1) and
startVector (x1, y1, 1), lying on the light ray; one lying behind and the other ahead of
the camera (eye vector). We subtract one vertex from another to get the direction:

Screen

Eye

Object

Ray

Origin (x1,y1,-1)

Origin (x1,y1,1)

Open the RayCaster.js file from primitive/game in your favorite editor. The
following code snippet is present in this file:

RayCaster.prototype.makeRay=function(x,y){
 var x1 = (x / this.screen_width)*2 - 1;
 var y1 = (y / this.screen_height)*2 - 1;
 var startVector=vec3.fromValues(x1,y1,1);
 var originVector=vec3.fromValues(x1,y1,-1);
 var directionVector=this.camera.unProjectVector(startVector);
 var origin=this.camera.unProjectVector(originVector);
 vec3.sub(directionVector,directionVector,origin);
 vec3.normalize(directionVector,directionVector);
 //vec3.scale(directionVector,directionVector,-1);
 return {origin: origin, directionVector: directionVector};;

}

The function takes the canvas click coordinates (x, y) as parameters. It converts them
to NDC (x1, y1) after dividing them with the height and width of the canvas. We
create our two vectors: startVector (x1, y1, 1) and originVector (x1, y1,-1). Then,
we unproject both the vectors to convert them from NDC to world coordinates and
store them in the origin and directionVector variables.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[335]

We calculate the direction vector after subtracting the origin from directionVector
and storing the result in the direction vector (vec3.sub (directionVector,
directionVector, origin);). As the direction vector is a unit vector, we
normalize it (vec3.normalize (directionVector, directionVector);). We then
return the origin and directionvector variables (return {origin: origin,
directionVector: directionVector};) to the calling function.

Checking for an intersection
Once we have created our ray, all we have to do is invoke the segmentIntersect
function of our collision system to get the intersecting object.

Open the RayCaster.js file from primitive/game in your favorite editor. The
following code snippet is present in this file:

RayCaster=function(SCREEN_WIDTH,SCREEN_HEIGHT,camera){
 this.camera=camera;
 this.screen_height=SCREEN_HEIGHT;
 this.screen_width=SCREEN_WIDTH;
 this.pickedObject=null;
};
RayCaster.prototype.pickObject=function(x,y,system){
 var ray=this.makeRay(x,y);
 var directionVector=vec3.create();
 //The constant 100 is added to define the range of the ray. In
 our implementation, the ray is not infinite.
 vec3.scale(directionVector,ray.directionVector,100)
 var segment=new jigLib.JSegment(ray.origin,directionVector);
 var out={};
 var cs=system.getCollisionSystem();
 if(cs.segmentIntersectGame(out, segment, null)){
 if(this.pickedObject){
 this.pickedObject.isPicked=false;
 }
 returnout.rigidBody;
 }
}

The constructor of the RayCaster class takes the width and height of the canvas and
the camera object as parameters and stores them in the class variables.

www.it-ebooks.info

http://www.it-ebooks.info/

Ray Casting and Filters

[336]

The function, pickObject, takes the x and y canvas click coordinates and the physics
system object (system). It first invokes the makeray function of its class to get the
computed origin and directionVector variables and stores them in the ray
object (ray.origin, ray.directionVector). Then, it scales directionVector by
100 as the JSegment class takes the _origin and _delta (length and direction of
the vector) parameters.

Then, we create a segment object and invoke cs.segmentIntersectGame(out,
segment, null). If the function returns true, we unselect the active picked object
by setting its isPicked attribute to false and return the selected rigidBody
object to the calling function. We have added another attribute, isPicked, to our
StageObject class, so when a new object is picked, we can unselect the old one.

Changing the color of the selected object
Now we are at the climax of the story. We will now walk through the complete
implementation to understand the changes in our main code to change the color
of our selected/picked object.

Open 09-Picking-Using-Ray-Casting.html in your editor.

We first create the object of our RayCaster class with the height and width of the
canvas and the camera object as the attributes. The start() function is as follows:

function start() {
...
 rayCaster=new RayCaster(gl.viewportWidth,gl.viewportHeight,cam);
...
 var parent=document.getElementById('canvas');
 parent.onmousedown=function(e) {
 var x, y, top = 0, left = 0;
 while (parent&&parent.tagName !== 'BODY')
 {
 top += parent.offsetTop;
 left += parent.offsetLeft;
 parent = parent.offsetParent;
 }
 left += window.pageXOffset;
 top -= window.pageYOffset;
 x = e.clientX - left;
 y = gl.viewportHeight - (e.clientY - top);

 var rigidBody=rayCaster.pickObject(x,y,system);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[337]

 stage.stageObjects[rigidBody._id].isPicked=true;
 rayCaster.pickedObject=stage.stageObjects[rigidBody._id];
 };.............
}

We attach an onmousedown event to our canvas object. When the mouse is clicked,
we calculate the mouse click's x and y coordinates using the sum of offsetLeft/
offsetTop of the canvas's parent objects. Then, we invoke the pickObject function
of our rayCaster object and the pickObject function returns the object of the
selected rigidBody object. The _id parameter of the rigidBody object is retrieved.
This _id parameter is the index of the stageObject in the stageObjects array.
We retrieve the selected stageObject and set its isPicked property to true
(stage.stageObjects[rigidBody._id].isPicked=true;) and store the selected
stageObject in the pickedObject attribute of the RayCaster class (rayCaster.
pickedObject=stage.stageObjects[rigidBody._id];). The pickedObject
attribute of the RayCaster class is used to unset the isPicked property of the object
when a new object is selected.

Remember all stage objects have an associated rigidBody object, which is initialized
when the addModel function of the Stage class is invoked with the stageObject as
the parameter.

Our drawScene function is as follows:

function drawScene() {
...
 for(var i=0;i<stage.stageObjects.length;++i){
...
 if(stage.stageObjects[i].isPicked)
 {
 gl.uniform3f(shaderProgram.materialDiffuseColor,0,255,0);

 }
 else
 {
 gl.uniform3f(shaderProgram.materialDiffuseColor,
 stage.stageObjects[i].diffuseColor[0],
 stage.stageObjects[i].diffuseColor[1],
 stage.stageObjects[i].diffuseColor[2]);
 }
 if(stage.stageObjects[i].materialFile!=
 null&&!stage.stageObjects[i].isPicked){
 gl.uniform1i(shaderProgram.hasTexture,1);
....
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Ray Casting and Filters

[338]

 else{
 gl.uniform1i(shaderProgram.hasTexture,0);
 gl.disableVertexAttribArray(shaderProgram.
 textureCoordAttribute);
 }
...
 }
}

We have also modified our drawScene function to change the color of our picked
object. While iterating over our array of stageObjects, if any object's isPicked
attribute is true, we set our own diffuse color (gl.uniform3f(shaderProgram.
materialDiffuseColor, 0, 255, 0);). We do not use the diffuse color loaded
from the JSON file. We apply a texture only if the isPicked property is false.
Earlier, we only checked if the materialFile variable was associated with it, but
now we also check for the isPicked property.

The jigLib.JSegment class was created only for ray
casting and not picking. In many physics engines, you will
see that in the picking code, the ray takes only the direction
and not the length of the ray (infinite ray). Hence, when you
test the picking, you will have to steer the camera close to the
object using arrow keys to pick it.

Offscreen rendering using framebuffers
WebGL games sometimes require the rendering of images without displaying them
to the user or screen. For example, a game may want to draw the offline image
and then cache it to save the reprocessing time. Offscreen rendering is also used
to generate shadows of objects. Another example; our game might want to render
an image and use it as a texture in a filter pass. For best performance, offscreen
memories are managed by WebGL. When WebGL manages offscreen buffers, it
allows us to avoid copying the pixel data back to our application.

WebGL has framebuffer objects. The framebuffers allow our game to capture a game
scene in the GPU memory for further processing.

A framebuffer object (FBO) is a drawable object. It is a window-agnostic object that
is defined in the WebGL standard. After we draw to a framebuffer object, we can
read the pixel data to our game or use it as source data for other WebGL commands.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[339]

Framebuffer objects have a number of benefits. They are easy to set up, save
memory, and are associated with a single WebGL context. We can use them for 2D
pixel images and textures. The functions used to set up textures and images are
different. The WebGL API for images uses renderbuffer objects. A renderbuffer
image is simply a 2D pixel image. To explain this better, a texture has only the
associated color value but a 2D pixel image has a color value and depth information.

We store the color data in a WebGL texture object but store the depth value in a
renderbuffer object.

Creating a texture object to store color
information
In the following code, first we create a texture object. The texture object is bound to
context for further processing. See Chapter 4, Applying Textures, to understand the
parameters. Also, notice that the last parameter, null, is an API call gl.texImage2D.
In this parameter, we generally pass the image data, but as we are creating the
texture buffer for storing data, we pass null to just create memory. Also, the width
and height are that of the canvas:

frametexture = gl.createTexture();
gl.bindTexture(gl.TEXTURE_2D, frametexture);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER,
 gl.NEAREST);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER,
 gl.NEAREST);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S,
 gl.CLAMP_TO_EDGE);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T,
 gl.CLAMP_TO_EDGE);
gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, width, height, 0,
 gl.RGBA, gl.UNSIGNED_BYTE, null);

Creating a renderbuffer for depth information
We create a renderbuffer and bind it to apply further functions on it. Then, we
allocate the storage for the renderbuffer. It is of the same size as the texture, with
16-bit storage for the depth component. Other options are gl.DEPTH_COMPONENT8
and gl.DEPTH_COMPONENT24. The createRenderbuffer() function is as follows:

renderbuffer = gl.createRenderbuffer();
gl.bindRenderbuffer(gl.RENDERBUFFER,renderbuffer);
gl.renderbufferStorage(gl.RENDERBUFFER, gl.DEPTH_COMPONENT16,
 width, height);

www.it-ebooks.info

http://www.it-ebooks.info/

Ray Casting and Filters

[340]

Associating a texture and a renderbuffer
to framebuffers
We first create our framebuffer. We associate our texture using the
framebufferTexture2D API call and then associate our renderbuffer with the
framebufferRenderbuffer API call:

framebuffer = gl.createFramebuffer();
gl.bindFramebuffer(gl.FRAMEBUFFER, framebuffer);
gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0,
 gl.TEXTURE_2D, frametexture, 0);
gl.framebufferRenderbuffer(gl.FRAMEBUFFER, gl.DEPTH_ATTACHMENT,
 gl.RENDERBUFFER, renderbuffer);

Then, we unbound the framebuffer and the renderbuffer as follows:

gl.bindTexture(gl.TEXTURE_2D, null);
gl.bindRenderbuffer(gl.RENDERBUFFER, null);
gl.bindFramebuffer(gl.FRAMEBUFFER, null);

Rendering to framebuffers
If we want to render to the framebuffer, we simply make it the bound buffer object.
Remember the user display also happens in the display framebuffer, which is the
active bound buffer or default buffer. If we make any other buffer the active bound
buffer, it becomes the rendering target and when we want to render to the screen,
we simply unbind it and the default buffer becomes the active bound buffer. The
bindFramebuffer function is as follows:

gl.bindFramebuffer(gl.FRAMEBUFFER, framebuffer);
drawScene();
gl.bindFramebuffer(gl.FRAMEBUFFER, null);

Applying filters using framebuffers
Framebuffers are a very powerful extension to the WebGL API. A whole separate
book can be written to explore its power, but we would like to confine ourselves to
exploring it in a use case that is mostly used in game engines: post processing filters.
So, let's understand what they are. Let's say that you want to render your game scene
and give a user the perception that your game is being viewed using night vision
goggles. Now, the night vision goggles give a perception of the green color all over
the rendered scene. Let's say you want to give the perception of day and night in
your game without creating static texture assets. There are many filter effects such as
blur, glow, snow, and edge detection that we can apply.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[341]

In our example, to keep things simple, we add scan lines to our scene. We would like
our scene to appear similar to the following screenshot:

If you notice in the preceding screenshot, we have rendered the scene without
applying filters and another one with filters. The scene in the lower section of the
preceding screenshot has a shade of green with alternate scan lines with dark and
light green colors. We used a very simple algorithm to produce this effect so that our
focus is on how we do it in WebGL and not in the shader algorithm. You can use
many complex algorithms in shaders to produce this effect such as edge detection
using the Sobel operator (http://en.wikipedia.org/wiki/Sobel_operator).

www.it-ebooks.info

http://www.it-ebooks.info/

Ray Casting and Filters

[342]

So, let's understand the algorithm of filters:

1. Create a vertex and fragment shader to process the image.
2. Create a framebuffer.
3. Render the scene in the framebuffer with the associated texture

and renderbuffer.
4. Use the new shaders to render the image.
5. Render the processed image.

In the preceding steps, we never render the scene. In fact, we render only the
processed image. Some might think that our click events and other things would not
work because we are rendering the image, which is not true. Basically, we process or
create the framebuffer on every frame and then display the processed texture.

Also note that the first step tells you to create new shaders. The new shaders
are used only to render the image in a square primitive. Now, we will have two
different shaders, one set of fragment and vertex shaders to render the scene in the
framebuffer and a new shader to render the image.

We will add two very simple shaders in our code and also change our main control
code to load and link these shaders.

The vertex shader
The following vertex shader is pretty straightforward. It takes texture coordinates
and the model vertices as attributes. We store the texture coordinate in a varying,
vTextureCoord, to be processed by the fragment shader:

<script id="scanlines-vertex-shader" type="x-shader/x-vertex">
attribute vec3 aVertexPosition;
attribute vec2 aTextureCoord;
varying vec2 vTextureCoord;
void main(void) {
 vTextureCoord = aTextureCoord;
 gl_Position = vec4(aVertexPosition,1.0);
}
</script>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[343]

The fragment shader
The fragment shader uses a simple algorithm to add scan lines. First, we read the
color of the texture at the vTextureCoord location. Then, based on the y value of the
texture coordinate, we decide if we want to multiply our color value with a factor
(0.80) or not. We play with the y coordinate as we want horizontal scan lines. If we
wanted vertical scan lines, we would have manipulated the color based on the x
coordinate. The following code is for the fragment shader:

<script id="scanlines-fragment-shader" type="x-shader/x-fragment">
precisionhighp float;
uniform sampler2D uSampler;
const float canvasHeight=650.0;
varying vec2 vTextureCoord;
void main(void)
{
 vec4 color = texture2D(uSampler, vTextureCoord);
 if(mod(vTextureCoord.y,(4.0/canvasHeight))>(1.0/canvasHeight))
 color.rgb*=0.80;
 color.rgb*=pow(1.0-length(vTextureCoord.xy-0.5),1.3);
 color.rgb*=vec3(0.93,1.0,0.93);
 gl_FragColor = vec4(color.rgb,1.0);
}
</script>

The fragment shader is where the post-processing happens. Let's understand how
it works. In the following fragment shader, we are not manipulating the texture
color. This would render the scene exactly the same. So basically, we pass the texture
from the framebuffer as a uniform to the shader and the shader simply displays the
texture as shown in the following code:

<script id="scanlines-fragment-shader" type="x-shader/x-fragment">
precisionhighp float;
uniform sampler2D uSampler;
varying vec2 vTextureCoord;
void main(void)
{
 vec4 color = texture2D(uSampler, vTextureCoord);
 gl_FragColor = vec4(color.rgb,1.0);
}
</script>

www.it-ebooks.info

http://www.it-ebooks.info/

Ray Casting and Filters

[344]

Now, in the following fragment shader, we simply reverse the color of the textures.
We subtract each texture color component from 1 as shown in the following code:

<script id="scanlines-fragment-shader" type="x-shader/x-fragment">
precisionhighp float;
uniform sampler2D uSampler;
varying vec2 vTextureCoord;
void main(void)
{
 vec4 color = texture2D(uSampler, vTextureCoord);
 gl_FragColor = vec4(1-color.r,1-color.g,1-color.b,1.0);
}
</script>

So basically, the complete post-processing of the image happens in the fragment
shader, although we can also preprocess an image in the main code by using the
readPixels function of the WebGL API. However, this would add to the processing
time as we would be iterating over the pixels of the image twice: once in the control
code and the second time in the fragment shader. However, in some cases, it might
be unavoidable.

Loading and linking shaders
We have modified our code to load and link two shaders. We added a generic
function which loads common attributes and uniforms, required for both
shaders. The common attributes are aVertexPosition for vertex positions and
aTextureCoord for texture coordinates. The common uniform is uSampler for the
texture. The initShaderCommon function is as follows:

function initShaderCommon(vertexShaderID,fragmentShaderID,prg){
 var fragmentShader = getShader(gl,vertexShaderID);//"shader-fs"
 var vertexShader = getShader(gl, fragmentShaderID);//"shader-vs"
 gl.attachShader(prg, vertexShader);
 gl.attachShader(prg, fragmentShader);
 gl.linkProgram(prg);
 if (!gl.getProgramParameter(prg, gl.LINK_STATUS)) {
 alert("Could not initialiseshaders");
 }
 prg.vertexPositionAttribute = gl.getAttribLocation(prg,
 "aVertexPosition");
 prg.textureCoordAttribute = gl.getAttribLocation(prg, "aTex
 tureCoord");
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[345]

The preceding function, initShaderCommon, takes three parameters:
vertexShaderID, fragmentShaderID, and prg. The vertexShaderID and
fragmentShaderID parameters are element IDs of the script tag, which are
described in the following code:

<script id="scanlines-vertex-shader" type="x-shader/x-vertex">
...
</script>
<script id="scanlines-fragment-shader" type="x-shader/x-fragment">
...
</script>

Our two new shader programs are defined by IDs, "scanlines-fragment-shader"
and "scanlines-vertex-shader". The prg object is the shader program object
to hold the compiled program:

var shaderProgram;
var postProcessShaderProgram;

Hence, we have created two shader program objects for two different
shader programs:

postProcessShaderProgram = gl.createProgram();
initShaderCommon("scanlines-vertex-shader","scanlines-fragment-
 shader",postProcessShaderProgram);
...
shaderProgram = gl.createProgram();
initShaderCommon("shader-vs","shader-vs",shaderProgram)
...
}

We have two shader programs. We initialize them, link them, and attach attributes
to them. Note that we do not use either of them for rendering. We only use them for
rendering when we say gl.useProgram(postProcessShaderProgram). What we
are trying to emphasize is a very useful concept in powerful game engines. A good
game engine has many shaders. They compile some shaders and link them, but use
those shaders as and when required.

In our case, we are using one shader to render the complete scene to the
framebuffer (shaderProgram) and the other shader to render the texture
(postProcessShaderProgram). Big games use different shaders to render different
objects in the scene. In our render loop, when we iterate over the list of stageObjects,
we can use different shaders for each object by invoking the gl.useProgram function.

www.it-ebooks.info

http://www.it-ebooks.info/

Ray Casting and Filters

[346]

Understanding the square geometry code
We have added a new geometry, a square. This geometry will be used to render our
texture. Open SquareGeometry.js from the primitive folder in your editor.

The SquareGeometry class defines four corner vertices and four UV coordinates.
Then we declare our two faces of two triangles. The indices of the two triangles for
each face are [0,1,2] and [2,1,3]:

SquareGeometry = inherit(Geometry, function ()
{
 superc(this);
 this.vertices=[
 -1.0,-1.0,0.0,//0
 1.0,-1.0,0.0,//1
 -1.0, 1.0,0.0,//2
 1.0, 1.0,0.0//3
];
 var uvs=[0.0, 0.0,
 1.0, 0.0,
 0.0, 1.0,1.0,1.0];
 var face = new Face();
 face.a=0;
 face.b=1;
 face.c=2;
 this.faces.push(face);
 var face = new Face();
 face.a=2;
 face.b=1;
 face.c=3;
 this.uvs[0]=uvs;
 this.indicesFromFaces();
});

The other class we have added is Square which inherits the StageObject class.
Open Square.js from the primitive folder in your editor. We just added this class
to keep the architecture intact and also to reuse the buffer creation code:

Square= inherit(StageObject, function (){
 superc(this);
 this.geometry=new SquareGeometry();
 this.materialFile="framebuffer";
});

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[347]

Implementing the filter
Let's put all the pieces together. Open 09-Filters-FrameBuffer-Scan-Lines.html
in your editor.

We first declare all our variables as follows:

var shaderProgram;
var postProcessShaderProgram;
...
var frametexture = null;
var framebuffer = null;
var renderbuffer = null;
var square=null;

The first two variables are used to hold shader program objects while the next three
variables are used to hold the texture, framebuffer, and renderbuffer objects.

The bindPostProcessShaderAttributes() function is as follows:

function bindPostProcessShaderAttributes(){
 postProcessShaderProgram = gl.createProgram();
 initShaderCommon("scanlines-vertex-shader","scanlines-fragment-
 shader",postProcessShaderProgram);
 square=new Square();
 square.createBuffers(gl);
 createFrameBuffer();
}

The preceding function initializes the shader program and initializes the
SquareGeometry class. We also invoke our createFrameBuffer() function. The
createFrameBuffer() function does exactly as expressed in section Offscreen
rendering using framebuffers. The only important section of the code has been listed
here. The gl.texImage2D function is invoked with the null parameter because
memory is being allocated. We create a renderbuffer and also create memory to
hold texture depth using the API call renderbufferStorage. We then associate
the renderbuffer and texture to our framebuffer object.

The important thing to note is that the frametexture and renderbuffer variables
take the size (height, width) of the viewport:

functioncreateFrameBuffer(){
 var width=gl.viewportWidth;
 var height=gl.viewportHeight;
 frametexture = gl.createTexture();
//...

www.it-ebooks.info

http://www.it-ebooks.info/

Ray Casting and Filters

[348]

 gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, width, height, 0,
 gl.RGBA, gl.UNSIGNED_BYTE, null);
 renderbuffer = gl.createRenderbuffer();
//...
 gl.renderbufferStorage(gl.RENDERBUFFER, gl.DEPTH_COMPONENT16,
 width, height);
 framebuffer = gl.createFramebuffer();
 gl.bindFramebuffer(gl.FRAMEBUFFER, framebuffer);
 gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0,
 gl.TEXTURE_2D, frametexture, 0);
 gl.framebufferRenderbuffer(gl.FRAMEBUFFER, gl.DEPTH_ATTACHMENT,
 gl.RENDERBUFFER, renderbuffer);
...
}

The start() function initializes the shaders and invokes the
bindPostProcessShaderAttributes() function:

function start() {
...
 initShaders("shader-vs","shader-fs");
 bindPostProcessShaderAttributes();
...
}

The last part is the rendering logic. We changed our animate function to invoke the
draw() function instead of the drawScene() function:

function animate(){
...
 draw();
...
}

The draw() function now does two things:

• Makes our framebuffer the active bound buffer so that the scene can render
offscreen and then invokes drawScene() to render the scene.

• Unbinds the framebuffer to use the default display framebuffer and then
invokes drawScenePostProcess(). Now the texture is drawn on the screen.

The draw() function is defined as follows:

function draw(){
 // resizeSize();
 gl.bindFramebuffer(gl.FRAMEBUFFER, framebuffer);
 drawScene();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[349]

 gl.bindFramebuffer(gl.FRAMEBUFFER, null);
 //Postprocessing
 drawScenePostProcess();
}

The drawScene() function is modified to use the shaderProgram parameter to
render the scene:

functiondrawScene() {
 gl.useProgram(shaderProgram);
...
}

The drawScenePostProcess() function scene basically prepares attributes and
uniforms to render the texture on the square. It also switches to the new shader using
gl.useProgram:

function drawScenePostProcess() {
 gl.useProgram(postProcessShaderProgram);
 gl.enableVertexAttribArray(postProcessShaderProgram.
 vertexPositionAttribute);
 gl.bindBuffer(gl.ARRAY_BUFFER, square.vbo);
 gl.vertexAttribPointer(postProcessShaderProgram.
 vertexPositionAttribute, square.vbo.itemSize, gl.FLOAT, false,
 0, 0);
 gl.enableVertexAttribArray(postProcessShaderProgram.
 textureCoordAttribute);
 gl.activeTexture(gl.TEXTURE0);
 gl.bindTexture(gl.TEXTURE_2D, frametexture);
 gl.uniform1i(gl.getUniformLocation(postProcessShaderProgram,
 "uSampler"), 0);
 gl.bindBuffer(gl.ARRAY_BUFFER, square.verticesTextureBuffer);
 gl.vertexAttribPointer(postProcessShaderProgram.
 textureCoordAttribute, 2, gl.FLOAT, false, 0, 0);
 gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, square.ibo);
 gl.drawElements(gl.TRIANGLES, square.geometry.indices.length,
 gl.UNSIGNED_SHORT,0);
}

The preceding function informs WebGL to use the new shader program. It then
activates the vertex buffer object and index buffer object of the square object and
associates the indices and vertices to the buffers to be processed by the shader. It also
uploads the frameTexture object to the zeroth texture location. The zeroth location
is associated with the uSampler uniform to be processed in the shader. Note that
the frameTexture object is associated with the framebuffer object which in turn is
populated in the drawScene() call.

www.it-ebooks.info

http://www.it-ebooks.info/

Ray Casting and Filters

[350]

Summary
In this chapter, we covered four very frequently used concepts in game development.
The first part of the chapter covered two concepts, picking and ray casting. Ray
casting is the most widely used concept for game AI and collision detection. Picking
is mostly used by CAD software but is a very powerful tool to build user preference
screens in games. For instance, you use picking to let users pick car parts in a car
racing game where you can actually display parts in 3D.

The next two concepts we covered were the use of framebuffers to apply filters in
games and the use of multiple shaders in a game. Both concepts are very powerful
to help you build high performance games. In games, we generally have a generic
shader to render objects. In some cases, we might need specific shaders to render an
object such as a shader to render the main character or add particle effects in a game.
Like in our case, we have added one more shader for filters/post processing.

In the next chapter, we will discuss the 2D canvas and how it is helpful to create
sprite labels in a game. We will also touch upon multiplayer games.

www.it-ebooks.info

http://www.it-ebooks.info/

2D Canvas and
Multiplayer Games

In all our previous chapters, we have discussed 3D rendering in-depth but have not
discussed 2D rendering. In this chapter, we will discuss the canvas 2D context, which
is a very important aspect of game development. The canvas 2D context offers a very
powerful drawing API.

We will also discuss the concepts of HTML-based multiplayer games. We will then
discuss Node.js and the Socket.IO API to implement a spectator player who can see
what is happening in the game. In this chapter, we will cover:

• Canvas 2D basics and the drawing API
• 2D sprites for model labels and game scores
• Real-time communication: HTTP long polling and WebSockets
• Node.js: Socket.IO
• Sample implementation of the multiplayer game: a spectator player

Understanding canvas 2D basics and the
drawing API
The 2D context provides objects, methods, and properties to draw and manipulate
graphics on the drawing surface of a canvas. Refer to the link http://www.
w3schools.com/html/html5_canvas.asp to learn more about canvas 2D. The
following is some example code for the canvas element:

<html>
<canvas id="canvasElement"></canvas>
</html>

www.it-ebooks.info

http://www.it-ebooks.info/

2D Canvas and Multiplayer Games

[352]

<script>
this.canvas = document.getElementById("canvasElement");
this.ctx = this.canvas.getContext('2d');
</script>

The canvas element has no drawing properties in itself and we use a script to draw
graphics. The getContext method returns the object, which provides methods to
draw text, lines, shapes, and graphics on the canvas.

The following code walks you through the methods of the 2D context object returned
from the getContext method:

var c=document.getElementById("myCanvas");
var ctx=c.getContext("2d");
ctx.fillStyle="#FF0000";
ctx.fillRect(0,0,10,10);

The fillstyle property will fill the rectangle with the red color. The following code
gets an image object and fills rect (0,0,100,100) with the image:

var img=document.getElementById("ball");
var patttern=ctx.createPattern(img,"repeat");
ctx.rect(0,0,100,100);
ctx.fillStyle=patttern;//fill pattern image
ctx.fill();

The following code sets fill color and text alignment and then draws the text at the
given coordinates, textX and textY. The ctx.measureText(txt).width function is
a text metrics function. It will give you the width of the text at the specified font style
and font size:

ctx.fillStyle = #FF0000; // This determines the text color, it can
 take a hex value or rgba value (e.g. rgba(255,0,0,0.5))
ctx.textAlign = "center"; // This determines the alignment of
 text, e.g. left, center, right
ctx.textBaseline = "middle";
ctx.font="14px Georgia";
var txt="My width";
ctx.fillText(txt+ctx.measureText(txt).width, textX, textY);

The following code introduces another powerful concept of transforms in the
drawing API. The ctx.transform()function sets the transformation matrix before
the next drawing API call:

var c=document.getElementById("myCanvas");
var ctx=c.getContext("2d");
ctx.fillStyle="green";

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[353]

ctx.fillRect(0,0,250,100)
ctx.save();//Saves the state
ctx.transform(1,0.5,-0.5,1,30,10);
ctx.fillStyle="black";
ctx.fillRect(0,0,250,100);
ctx.restore();// restores the state

The transformation matrix of a 2D object is denoted by a 3 x 3 matrix, which is
shown as follows:

Scale Horizontally (a)

Skew Horizontally (b)

0

Skew Vertically (c)

Scale Vertically (d)

0

Moves Horizontally (e)

Moves Vertically (f)

1

The preceding matrix describes the parameters of the transform() function call.
Also, the canvas 2D object is a state machine. The next transform() function call
will act upon the previous transformation. Hence, we use the ctx.save() function
to store the current state and make our transform call and then invoke the ctx.
restore() function to revert to the previous state. The store function call does not
just store the transformations but also other state values such as the fill color.

For further understanding of the 2D context, refer to http://www.whatwg.org/specs/
web-apps/current-work/multipage/the-canvas-element.html#2dcontext.

Using canvas 2D for textures
Canvas 2D can be used for many 2D HTML games. If a canvas 2D object is not a part
of the WebGL specification, then why are we discussing it?

This is because a canvas 2D object can be directly passed as a texture to the WebGL
texture API call. In the following code, if you notice in the gl.texImage2D WebGL
API call, we pass the canvas object as the image data parameter (document.getElem
entById("canvasElement")):

<html>
<canvas id="canvasElement"></canvas>
</html>
var texture=this.gl.createTexture();
this.gl.bindTexture(this.gl.TEXTURE_2D, texture);
this.gl.texImage2D(this.gl.TEXTURE_2D, 0, this.gl.RGBA,
 this.gl.RGBA, this.gl.UNSIGNED_BYTE,document.getElementById("canvas
Element"));
this.gl.generateMipmap(this.gl.TEXTURE_2D);
this.gl.texParameteri(this.gl.TEXTURE_2D,
 this.gl.TEXTURE_MAG_FILTER, this.gl.LINEAR);

www.it-ebooks.info

http://www.it-ebooks.info/

2D Canvas and Multiplayer Games

[354]

this.gl.texParameteri(this.gl.TEXTURE_2D,
 this.gl.TEXTURE_MIN_FILTER, this.gl.LINEAR_MIPMAP_NEAREST);
this.gl.bindTexture(this.gl.TEXTURE_2D, null);

Canvas 2D offers a very powerful drawing API, which can be used to generate
dynamic textures in our game. It has numerous utilities such as manipulating images
to drawing 2D text in our 3D game. WebGL does not directly offer us functions to draw
text or manipulate pixel data in an image, hence the canvas 2D API comes in handy.

We will use the canvas 2D API to draw game stats and model labels in our code.

Adding 2D textures as model labels
In this section, we will discuss how we use dynamic textures to add labels to players
in a game. In a multiplayer game environment, you may need to label your players
with their usernames. Also, if you want to add stats overlay to your game, you can
do it using two methods; either we use CSS overlays over our game canvas or use
texture sprites and render it inside the canvas. If we plan to use the second method,
we need a texture with text. Let's take a look at the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[355]

In the preceding screenshot, we have a label Mr. Red placed on top of our model and
a red bar denoting the remaining power in the model (game stats). Now, the sprite
that displays this information is a quad/square geometry with a dynamic texture.
Also, the sprite faces the camera after it has been rotated. Hence, the sprite class
should have the following features:

• It should be placed at a defined delta distance from the model and should
move with the model.

• It should rotate when the camera rotates.

So to achieve the preceding features, we need three things: a quad geometry, a
dynamic texture (canvas object), and a sprite class that inherits the StageObject
class and binds the geometry to the texture.

Using the sprite texture
We will start our learning with evolving the sprite texture, which writes the text
(model name) and generates the power bar.

We will try to build a generic class that can handle the following:

• The multiline text, if the text exceeds the maximum width
• Calculates the dynamic height and width of the sprite (canvas), based on font

style, font size, and length of the text

Open the SpriteTexture.js file from client/primitive in the code files of this
chapter in your text editor. The constructor takes the canvas element, elemId, as the
parameter to render the text in:

SpriteTexture = function (elemId) {
 this.canvas = document.getElementById(elemId);
 this.ctx = this.canvas.getContext('2d');
 this.textSize=56;
 this.maxWidth=256;
 this.backgroundColor="#ffffff";
 this.color="#333333";
 this.powerColor="#FF0000";
 this.power=7;
 this.fullPower=10;
 this.squareTexture=false;
}

www.it-ebooks.info

http://www.it-ebooks.info/

2D Canvas and Multiplayer Games

[356]

It first gets the object of the canvas element and then gets the reference to its context
object. The default values of backgroundColor, color (text color), and powerColor
are defined in the constructor. Also, the maxWidth value of the sprite is defined, in
case the text is very long. The this.power variable holds the relative strength value
with maximum being 10 (this.fullPower).

Then, we define two functions, SpriteTexture.prototype.createMultilineText
and SpriteTexture.prototype.measureText. The measureText function is shown
in the following code snippet:

SpriteTexture.prototype.measureText=function(textToMeasure) {
 return this.ctx.measureText(textToMeasure).width;

}

The measureText function is straightforward. It uses the ctx.measureText function
of the canvas 2D API to get the width of the text.

The createMultilineText function is shown in the following code snippet:

/*
text is an array that holds the split multiline text.
TextData holds the text data to be split.
*/
SpriteTexture.prototype.createMultilineText=function(textData,text
) {
 textData = textData.replace("\n"," ");
 var currentText = textData;
 var newText;
 var subWidth = 0;
 var maxLineWidth = 0;
 var wordArray = textData.split(" ");
 var wordsInCurrent, wordArrayLength;
 wordsInCurrent = wordArrayLength = wordArray.length;
 while(this.measureText(currentText)
 >this.maxWidth&&wordsInCurrent> 1) {
 wordsInCurrent--;
 var linebreak = false;
 currentText = newText = "";
 //currentText holds the string that fits in max width
 //newText holds the string left.
 // The loop iterates over the words to copy the words to
 current text or new text
 for(var i = 0; i<wordArrayLength; i++) {
 if (i<wordsInCurrent) {
 currentText += wordArray[i];

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[357]

 if (i+1 <wordsInCurrent) { currentText += " "; }
 }
 else {
 newText += wordArray[i];
 if(i+1 <wordArrayLength) { newText += " "; }
 }
 }
 }
 text.push(currentText);
 maxLineWidth = this.measureText(currentText);
 if(newText) {
 subWidth = this.createMultilineText(newText,text);
 if (subWidth>maxLineWidth) {
 maxLineWidth = subWidth;
 }
 }
 return maxLineWidth;
}

The preceding function, createMultilineText, performs two tasks:

• Stores split lines of text in the text array
• Returns the maximum width of the string with the text array

The function first replaces the newline (\n) characters with spaces and then splits the
text into words and stores them in the wordArray array.

The while loop iterates until the length of the currentText variable is not less
than the maxWidth variable. Basically, the code in the loop first concatenates the
wordsInCurrent (which is 1 subtracted from the value of wordArrayLength) words
in the currentText variable and concatenates the rest of the words in the newText
variable. It then checks the length of currentText, if it is still greater than the value
of maxWidth. Then, it copies wordsInCurrent (which is 2 subtracted from the value of
wordArrayLength) to see if it fits. It continues to copy one word less to currentText
until the width of the text is less than the value of maxWidth. Then, it invokes itself
recursively with the newText variable (concatenated words greater than the value of
maxWidth), which holds the rest of the words after storing the currentText variable
in the text array. It also compares the length of the returned subWidth variable with
maxLineWidth, to get the width of the longest string in the text array.

www.it-ebooks.info

http://www.it-ebooks.info/

2D Canvas and Multiplayer Games

[358]

We also added a powerOfTwo function to calculate the width of canvas:

SpriteTexture.prototype.powerOfTwo=function(textWidth, width) {
 var width = width || 1;
 while(width<textWidth) {
 width *= 2;
 }
 return width;
}

This function is important as most WebGL implementations require that the texture
dimensions must be in the power of two. Now if the width of our text becomes 150,
then our canvas size has to be 256. If the width is 100, then the width of the canvas
has to be 128. The width of the canvas is equal to the size of texture. This function
sets the width to 1 and multiplies it by 2 until the width is greater than the passed
textWidth variable.

The complete drawing happens in the createTexture function, which is defined
as follows:

SpriteTexture.prototype.createTexture=function(textData){
 var text=[];
 var width=0;
 var canvasX=0;
 var canvasY=0;
 //Sets the font size
 this.ctx.font=this.textSize +"px Georgia";

If the text width is greater than the value of maxWidth, then we invoke the
createMultilineText function to store the split text in the text array; otherwise,
we store the string in the text array. Basically, the text array stores the string
lines to be rendered. For the multiline text, we use the width returned by the
createMultilineText function, otherwise we use the width of the passed string
using the canvas API's measureText function. We pass the calculated width to the
powerOfTwo function to calculate the appropriate width. The following code snippet
explains the working of the the createTexture function:

// If the text width is greater than maxWidth, then call
 multiline, else, store the string in text array.
if (this.maxWidth&this.measureText(textData) >this.maxWidth) {
 width = this.createMultilineText(textData,text);
 canvasX = this.powerOfTwo(width);
} else {
 text.push(textData);
 canvasX = this.powerOfTwo(this.ctx.measureText(textData).width);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[359]

We calculate canvasY with the font size (this.textSize), multiplied by the length
of the text array plus one. We also add another 30 units, to add more length of the
power bar:

canvasY = this.powerOfTwo(this.textSize*(text.length+1)+30);
 //+30 for power stats

Sometimes, we may require a square texture. In that case, we set the height or width
to the greater of the two:

if(this.sqaureTexture){
 (canvasX>canvasY) ? canvasY = canvasX : canvasX = canvasY;
 //For squaring the texture
}
this.canvas.width = canvasX;
this.canvas.height = canvasY;

We calculate the location of the text. Note that we set the x location of the text to the
half of the width of the canvas. This is because we set the text alignment to center
using the following code:

var textX = canvasX/2;
var textY = canvasY/2;
this.ctx.textAlign = "center";
 // Sets the alignment of text, e.g. left, center, right
this.ctx.textBaseline = "middle";

We paint the background of the canvas using the ctx.fillRect API call:

this.ctx.fillStyle = this.backgroundColor;
this.ctx.fillRect(0, 0, this.ctx.canvas.width,
 this.ctx.canvas.height);

We set the font color using the following code:

this.ctx.fillStyle = this.color; // Sets the text color, it can
 take a hex value or rgba value (e.g. rgba(255,0,0,0.5))

We draw each line of the text by iterating over the text array and we calculate textY
for each string line using the following code:

this.ctx.font=this.textSize +"px Georgia";
var offset = (canvasY - this.textSize*(text.length+1)) * 0.5;
for(var i = 0; i<text.length; i++) {
 if(text.length> 1) {
 textY = (i+1)*this.textSize + offset;
 }
 this.ctx.fillText(text[i], textX, textY);
}

www.it-ebooks.info

http://www.it-ebooks.info/

2D Canvas and Multiplayer Games

[360]

Then, we draw our power bar based on the value of power using the following code:

this.ctx.fillStyle = this.powerColor;
this.ctx.fillRect(0, this.canvas.height-60,
 this.power*this.ctx.canvas.width/this.fullPower, 30);

Using a square geometry
We will use the same class, SquareGeometry, that we created in Chapter 9, Ray
Casting and Filters. Let's quickly refresh our memory. Open the SquareGeomtery.js
file from client/primitive. The following code snippet is present in this file:

SquareGeometry = inherit(Geometry, function ()
{
 superc(this);
 this.vertices=[
 -1.0,-1.0,0.0,//0
 1.0,-1.0,0.0,//1
 -1.0, 1.0,0.0,//2
 1.0, 1.0,0.0//3
];
 var uvs=[0.0, 0.0,
 1.0, 0.0,
 0.0, 1.0,1.0,1.0];
 var normal = vec3.fromValues(0, 0, 1);
 var face = new Face();
 face.a=0;
 face.b=1;
 face.c=2;
 //...
 var face = new Face();
 face.a=2;
 face.b=1;
 face.c=3;
 //...
});

The class first defines four vertices and four texture coordinates. Then, it creates two
faces (triangles) using vertex indices (0, 1, 2) for the first triangle and indices (2, 1, 3)
for the second triangle.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[361]

Implementing the Sprite class
In the Sprite class, we initialize our SquareGeometry and SpriteTexture classes.
Open the Sprite.js file from client/primitive/game in your editor.

The Sprite class is a general class and inherits the StageObject class:

Sprite= inherit(StageObject, function (){
 superc(this);
 this.geometry=new SquareGeometry();

It uses the date function to create the unique textureIndex and canvasId variables:

 var currentDate=new Date();
 this.textureIndex=currentDate.getMilliseconds();
 this.materialFile=this.textureIndex;
 this.canvasId="c_"+this.textureIndex;

For each sprite object, we create a new canvas element and add it to our HTML
body. Then, we initialize our SpriteTexture class by passing the ID for our
newly created canvas element. Also, note that we have set the style attribute of
the canvas element to display:none so that it is not visible to the user, using the
following code:

 jQuery("body").append("<canvas id='"+this.canvasId+"'
 style='display:none'></canvas>");
 this.spriteTexture=new SpriteTexture(this.canvasId);
 this.backgroundColor="#ffffff";
 this.color="#333333";

Also, as the default scale is (1, 1, 1), we increased the size for our sprite by scaling it
using the following line of code:

 this.scale=vec3.fromValues(10,10,10);
});

The following function, drawText, in turn invokes the createTexture function of
the SpriteTexture class:

Sprite.prototype.drawText=function(text){
 this.spriteTexture.backgroundColor=this.backgroundColor;
 this.spriteTexture.color=this.color;
 this.spriteTexture.createTexture(text);
}

www.it-ebooks.info

http://www.it-ebooks.info/

2D Canvas and Multiplayer Games

[362]

Implementing the ModelSprite class
This class inherits the Sprite class. The objective of the class is twofold:

• Set the position of the sprite at a delta distance from the model so that it
moves with the model

• Set the orientation of the sprite to face the camera

Open the ModelSprite.js file from client/primitive/game in your editor. The
constructor takes two parameters: the model object (the sprite has to be associated
with) and the camera object:

ModelSprite= inherit(Sprite, function (model,cam){
 superc(this);
 this.model=model;
 this.camera=cam;
 this.scale=vec3.fromValues(8,8,8);
 //The relative values to the model position

The delta distance from the model is initialized to zero as shown in the following
code snippet:

 this.deltaX=0;
 this.deltaY=0;
 this.deltaZ=0;
});

We have overridden the update function of the StageObject class:
ModelSprite.prototype.update=function(){

We have discussed on numerous occasions that the model matrix is the inverse of
the camera matrix. Hence, we set this.matrixWorld to the inverse of the camera
matrix, as shown in the following line of code:

mat4.invert(this.matrixWorld,this.camera.viewMatrix);

Then, we scale our transformation matrix, this.matrixWorld, as shown in the
following line of code:

mat4.scale(this.matrixWorld,this.matrixWorld,this.scale);

We then set the position of the sprite by setting the values of m30, m31, and m32
indices of the this.matrixWorld array to the values got from adding the model
positions and the delta values on the three axes, as shown in the following code:

this.matrixWorld[12]=this.model.position[0]+this.deltaX;
this.matrixWorld[13]=this.model.position[1]+this.deltaY;
this.matrixWorld[14]=this.model.position[2]+this.deltaZ;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[363]

Understanding the main flow code
Open the 10-2D-Sprites-And-Text.html file from the client folder in your
favorite editor.

We have only changed our loadStageObject function to add our ModelSprite
class. Once our RiggedMesh class is loaded, we initialize our ModelSprite class with
our RiggedMesh class' object and the camera class' object. We set deltaY to render
the sprite of 16 units above the model. We then add the texture to the texture array in
the stage object.

Remember that we store textures and stageObject in the main stage object. The
textures are mapped to stageObject with textureIndex. We did this so that if
multiple objects use the same texture, then we do not load them multiple times, as
explained in Chapter 6, Applying Textures and Simple Animations to Our Scene. The
following code explains the loadStageObject function:

function loadStageObject(url,location,rotationX,rotationY,
 rotationZ){
 //The relevant code changes …......................
 if(data.bones){
 stageObject=new RiggedMesh();
 var sprite=new ModelSprite(stageObject,cam);
 sprite.deltaY=16;
 sprite.drawText("Mr. Red");
 stage.addTexture(sprite.textureIndex,sprite.canvasId,
 document.getElementById(sprite.canvasId),true,true);
 stage.addModel(sprite);

 }
 //The relevant code changes...
}

Communicating in real time
Real-time communication is a problem that web developers have been trying to solve
for a very long time. The problem is that the client can ping the web server, but the
server cannot contact the client. The reason is that the client requests a web page,
the server sends the response and the socket is closed. Although the HTTP 1.1 uses
persistent connections for multiple requests response, it times out after a specified
time. The directive behind a persistent connection is HTTP keep-alive.

www.it-ebooks.info

http://www.it-ebooks.info/

2D Canvas and Multiplayer Games

[364]

This posed a problem in solving real-time communication issues using web servers
and HTTP protocols. For example, in a multiplayer game, the information related
to the user moving its character needs to be broadcast to all users playing the game.
Earlier when we posted the game state to our web server, there was no robust and
scalable solution to communicate this information to the other clients in the game
room. Numerous techniques evolved to solve this problem. The most obvious
solution was that we can write a JavaScript code to request the latest information from
the server, using Ajax each second or once in two seconds, which is called polling.
However, polling is not a scalable solution as it can swamp the web server with an
unlimited number of requests. Even if the server did not have any information to
offer, the server was pinged continuously by browsers. The only scalable solution was
a server push. In this book, we will briefly discuss the two most widely used solutions
that can be implemented with most web servers, and they are as follows:

• Long polling
• A new W3C standard—WebSockets

Understanding Ajax long polling
Ajax long polling is the most prominent solution for real-time communication.
Let's understand how long polling works:

• After a browser opens a web page, it has a JavaScript code that sends
a request to the server.

• The server does not respond immediately and waits until it has some new
information to give.

• When the new information is available, the server sends it over a
keep-alive session.

• The moment the client receives the information, it sends another request.
• The important point to note is that in HTTP long polling, if the web page

wants to request other information, then it opens another connection and
does not use the same persistent connection. So, at any time, a maximum of
two connections are opened.

The most prominent implementation is in the XMPP protocol in Bidirectional-streams
Over Synchronous HTTP (BOSH), used for chatting over HTTP. The following
screenshot demonstrates long polling in a chat system.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[365]

The following screenshot shows two HTTP requests. One lasted for 38.08 seconds.
Don't worry, the server is not slow but whenever the server had new information,
the request was completed. If the server did not have new information, the second
request was in the pending state.

Understanding WebSockets
WebSocket is a new HTML5 feature for clients to communicate without the overhead
of the HTTP protocol. The latest version is RFC 6455 (http://tools.ietf.org/
html/rfc6455). It provides us with full duplex bidirectional communication
between the server and the client, without using any HTTP methods. It has its own
protocol specification and has its own API. It offers the most reliable, robust, scalable,
high-performance solution. The beauty is that the communication can happen over
the same port as HTTP. A WebSocket server can coexist with an HTTP server on the
same port.

Before the communication starts, the client needs to perform a handshake with the
server. The client sends a handshake request. The following sample request is an
HTTP handshake request for an upgrade to the WebSocket protocol. Remember
that the WebSocket server is set up on the same port as the HTTP server; hence, an
upgrade request is important. The following is the sample request:

GET /chat HTTP/1.1
Host: server.multiplayergame.com
Upgrade: WebSocket
Connection: Upgrade
Sec-WebSocket-Key: lIHhbXBsZSBub25jZQ==
Origin: http://multiplayergame.com
Sec-WebSocket-Protocol: game
Sec-WebSocket-Version: 13

www.it-ebooks.info

http://www.it-ebooks.info/

2D Canvas and Multiplayer Games

[366]

The following is the response from the server:
HTTP/1.1 101 Switching Protocols
Upgrade: WebSocket
Connection: Upgrade
Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=
Sec-WebSocket-Protocol: game

If you have noticed, the server switched protocols from HTTP to WebSocket.

Understanding the WebSocket API
We want to introduce some WebSocket API functions implemented by most
browsers. The following code opens a connection over a nonsecure port:

var connection = new WebSocket('ws://mygame.org:4000/game')

The wss protocol is for secure communication:

var connection = new WebSocket('wss://mygame.org:4000/game');

The second parameter, ['game'], is a subprotocol to inform the server about the use
of the connection:

var connection = new
 WebSocket('wss://mygame.org:4000/game',['game']);

The response handler when the connection is opened is shown in the following
code snippet:

connection.onopen = function(){
 console.log('Congrats Connection opened!!!');
}

The response handler when the connection is closed is shown in the following
code snippet:

connection.onclose = function(){
 console.log('Sorry Connection closed!!!');
}

To explicitly close the connection, use the following line of code:

connection.close();

The handler to handle any errors in connection is shown in the following code snippet:

connection.onerror = function(error){
 console.log('Shit something went bad: ' + error);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[367]

API calls to send and receive messages are shown in the following code snippet:

connection.send('Hey?');
connection.onmessage = function(e){
 var data = e.data;
 console.log(data);
}

Sending JSON messages are shown in the following code snippet:

var message = {
 'username': 'sumeet2k06',
 'comment': 'Trying to tell something about WebSockets'
};
connection.send(JSON.stringify(message));

Understanding the WebSockets server
A regular HTTP server cannot handle WebSockets requests. We need to install
libraries or some external servers to handle requests. There are many WebSocket
servers. Two of them are listed as follows:

• phpwebsocket (https://code.google.com/p/phpwebsocket/) for PHP
• Socket.IO (http://socket.io/) for Node.js

As our book uses JavaScript throughout, we would like to work with Node.js and
Socket.IO. Also, Socket.IO offers a very powerful client-side JavaScript library, which
works even if the browser does not support WebSockets.

Using Node.js and Socket.IO for
multiplayer games
Node.js is based on the event-based programming style, where the flow of the
application is determined by the events. It is a new generation style of writing a
scalable server-side code. Unfortunately, this book is not on Node.js; hence, we
would like to completely keep our focus on Node.js-based HTTP servers and Socket.
IO. For further reading, you can refer to the following links:

• Installing Node.js (http://howtonode.org/how-to-install-nodejs)
• Loading node modules (http://nodejs.org/api/modules.html)
• Emitter pattern (http://nodejs.org/api/all.html#all_events)
• Stream (http://nodejs.org/api/all.html#all_stream)

Our focus in this book is to discuss two modules of Node.js: HTTP and Socket.IO.

www.it-ebooks.info

http://www.it-ebooks.info/

2D Canvas and Multiplayer Games

[368]

Implementing the HTTP server using Node.js
Node.js comes with a built-in HTTP module. The following sample code listing
explains how to work with a node HTTP server.

We are discussing the node HTTP server because once your
game page uses WebSockets, we cannot simply click on the
HTML page to run a WebSocket client. The WebSocket client
page should come from the same domain as the WebSocket
server, otherwise it may give security issues. Hence, we
need to request the HTML page from a web server running
WebSocket of the same port.

The first line will import an http module and can also be used to load the module
installed by NPM.

Open the server.js file in your editor. It contains the following line of code:

var http = require('http');

The http module with the createServer function creates a server object:

var httpserver = http.createServer();

Node.js is completely event-based and an event defines the flow of code. It is basically
asynchronous by design. When we start the server, it first creates the HTTP server
object and waits for incoming HTTP requests. When it receives a request, the on event
handler is invoked with the request (req) and response(res) as the parameters:

httpserver.on('request', function(req, res) {

After receiving the request, the server sets the HTTP header status code to 200 and
sets the content type to plain text:

res.writeHead(200, {'Content-Type': 'text/plain'});

Then, it writes a string to the response objects:

res.write('Hello Game World!');

It then flushes the response buffer by invoking the end method:

res.end(); });

The server is set to start at port 4000 by the following line of code:

server.listen(4000);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[369]

Execute the following command to start the server:

node server.js

Let's walk through another sample code, which reads a file and sends its contents
as a response:

var fs = require('fs');
var http=require('http')
var server=http.createServer(handler);
server.listen(4000);
function handler(req, res) {
 res.writeHead(200, {'Content-Type': 'video/mp4'});
 var rs = fs.createReadStream('test.mp4');
 rs.pipe(res);
}

The preceding code uses another powerful node module, fs, which stands for
filesystem. The fs module offers a wide variety of functions to read and write to
file using streams.

The preceding code requests the fs module object. It helps us create the file read
stream. Then, when the server receives a request, it sets a response header content
type to 'video/mp4'. Node.js offers a very powerful function, pipe. This function
avoids the slow client problem. If the client is slow, we do not want to fill up our
memory with unflushed buffers. So, we pause the read stream and when the
consumer has finished reading the data, we resume. We do not want to manage the
resuming and pausing of the buffers/streams. Hence, the pipe function manages it
for you. It is a function of readable stream interface and takes the destination writable
stream interfaces as an argument and manages the complete read/write cycle. In our
case, the read stream (rs) is our file and the write stream is our response (res) object
(rs.pipe(res);).

Understanding Socket.IO
Socket.IO is available as a separate NPM module. It can be installed using the
following command:

npm install socket.io

Socket.IO implements a socket server and also provides a unified client library
that does not distinguish between clients, using WebSockets or any other type of
mechanism such as flash sockets. It provides a unified API that abstracts away the
implementation details of WebSockets.

www.it-ebooks.info

http://www.it-ebooks.info/

2D Canvas and Multiplayer Games

[370]

Let's look at the basic socket server implementation:

var io = require('socket.io').listen(400);
io.sockets.on('connection', function (socket) {
 socket.on('any event', function(data) {
 console.log(data);
 });
});

The preceding code initializes a basic socket server and waits for requests at port
number 4000. The primary event handler is attached to the connection event. Once
the server receives a connection request, it creates a socket object. The socket defines
an event on the arbitrary label, any event. When the client emits an event with the
any event label, this handler (function (socket)) is invoked. The label is just
created to differentiate different kinds of messages that a client sends.

Let's look at a basic Socket.IO client's code:

<html>
<head>
<title>Socket.IO example application</title>
<scriptsrc="http://localhost:400/js/socket.io.js"></script>
<script>
 var socket = io.connect('http://localhost:4000');
 socket.emit('any event', 'Hello Game world.');
</script>
</head>
<body></body>
</html>

In the preceding code, we have included js/socket.io.js. In the code, we first
open a connection by invoking the io.connect function and then invoke the
socket.emit function with the any event label. Note that we have not used any
WebSocket API calls in the client code as the Socket.IO client library abstracts the
complete implementation.

Let's say that the preceding code was saved in index.html, but when we simply
double-click on the file, our code might not run as the WebSocket API can generate
security issues with local files. Hence, we would want this file to be rendered by our
web server. So, let's combine our WebServer and socket server to handle both types
of requests with the help of the following code:

var httpd = require('http').createServer(httphandler);
var io = require('socket.io').listen(httpd);
var fs = require('fs');
httpd.listen(400);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[371]

function httphandler(req, res) {
 fs.readFile(__dirname + '/index.html', function(err, data) {
 if (err) {
 res.writeHead(500);
 return res.end('Error loading File');
 }
 res.writeHead(200);
 res.end(data);
 }
);
}
io.sockets.on('connection', function (socket) {
 socket.on('clientData', function(data) {
 socket.emit('serverData', data);
 socket.broadcast.emit('serverData', socket.id +content);
 });
});

The preceding code first creates an HTTP server object. It then creates a socket
server object and binds itself to the HTTP server port (require('socket.io').
listen(httpd);). Now, the socket and web servers are listening at the same
port number.

The HTTP server defines a request handler, httphandler, and reads the file
index.html. If an error occurs while reading, then it sets the HTTP response status
header to 500 and sets response content to an error message. If no error occurs, it
writes the file content to the response.

The socket server implementation introduces us to a new server-side function,
socket.broadcast.emit('serverData', socket.id +content). This
server-side function sends the data to all the clients connected to the socket server
(except the socket it is fired on) with the client event, serverData. Let's just
understand the sequence of events.

The following client code defines the client handler function for the server event,
serverData. It simply logs the received data. When the Enter key is pressed, it sends
the data to the socket with the clientData event:

var socket = io.connect('http://localhost:400');
 socket.on('serverData', function(content) {
 console.log(content);
}
var inputElement = document.getElementById('input');
inputElement.onkeydown = function(keyboardEvent) {
 if (keyboardEvent.keyCode === 13) {

www.it-ebooks.info

http://www.it-ebooks.info/

2D Canvas and Multiplayer Games

[372]

 socket.emit('clientData, inputElement.value);
 inputElement.value = '';
 return false;
 } else {
 return true;
 }
};

The corresponding server handler function for the client event, clientData, on
invocation, sends the data back to the client and broadcasts the message. Then, the
code line sends the data back to the client and invokes its serverData event. This
code broadcasts the message to all the clients connected to the socket server except
the socket it is fired on. As we can see in the following code listing, we first emit
the serverData event on the calling socket and then broadcast serverMessage to
all sockets:

io.sockets.on('connection', function (socket) {

 socket.on('clientData', function(data) {

 socket.emit('serverData', data);
 socket.broadcast.emit('serverMessage', socket.id +content);
 });
});

As you can see in the preceding code, the client and server both use the emit
function to invoke each other's events. The other important aspect is socket.id,
which is a unique key that identifies each client. The complete implementation of
socket.id is managed by the Socket.IO library.

Learning the Socket.IO API
The Socket.IO API consists of server-side functions and client-side functions. The
API has a list of reserved events. The API defines two objects on the server side:
io.sockets and socket. They are explained as follows:

• io.sockets: This has only one reserved event connection.
io.sockets.on('connection', function(socket) {})

The preceding event is generated when a new connection is requested from
the client side.

• socket: This offers two reserved events, message and disconnect.
The message event is fired when the send function of the socket object is
used to emit events.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[373]

The client code is as follows:
<script>
var socket = io.connect('http://localhost/');
socket.on('connect', function () {
 socket.send('hi');
 socket.on('message', function (msg) {
 });
 });
</script>

The server code is as follows:
var io = require('socket.io').listen(80);
io.sockets.on('connection', function (socket) {
 socket.on('message', function () { });
 socket.on('disconnect', function () { });
});

In the preceding server code, we handle two events, message and
disconnect. The disconnect event is fired when the client-server
connection is closed.

The client socket's reserved events
The client socket has many reserved events defined. Refer to the following list:

• connect: This is emitted when the socket connection is successful.
• connecting: This is emitted when the socket is attempting to connect

with the server.
• disconnect: This is emitted when the socket is disconnected.
• connect_failed: This is emitted when Socket.IO fails to establish a

connection to the server and has no other transport to fallback on.
• error: This is emitted when an error occurs and it cannot be handled by the

other event types.
• message: This is emitted when a message sent with the socket.send

function is received.
• reconnect_failed: This is emitted when Socket.IO fails to reestablish a

working connection after the connection was dropped.
• reconnect: This is emitted when Socket.IO has successfully reconnected to

the server.
• reconnecting: This is emitted when the socket is attempting to reconnect

with the server.

www.it-ebooks.info

http://www.it-ebooks.info/

2D Canvas and Multiplayer Games

[374]

Understanding Socket.IO rooms
Rooms allow us to partition the connected clients. Rooms allow events to be emitted
to subsets of the connected client list.

Leaving and joining
A user can simply leave or join the room by invoking the following socket functions:

socket.join('room')
socket.leave('room')

If the room does not exist, a new user joins the room, and the room is created. When
the last user leaves the room, then the room is automatically pruned. You do not
need to leave the room at a disconnected event.

Broadcasting an event in the room
The following are the two ways to broadcast a message to all room participants:

• We have a socket object of one of the clients in the room:
socket.broadcast.to('room').emit('event_name', data)

This function will not send the data back to the emitting client/socket.

• We can also use the io.sockets object directly:
io.sockets.in('room').emit('event_name', data)

This will emit an event, event_name, to all participants in the room.

Getting the room's information
Socket.IO provides us with a powerful set of functions to get the room's information.
They are as follows:

• io.sockets.manager.rooms: This is used to get the list of rooms and socket
IDs. It returns a hash with the name of the room as the key and the list of
socket IDs as value.

• io.sockets.clients('room'): This will return the array of sockets of the
connected client.

• io.sockets.manager.roomClients[socket.id]: This returns the
dictionary of rooms that a particular client socket has joined.

The name of the room that is returned from all the preceding API calls has
a leading / appended to it. It is used by Socket.IO internally, which we
should eliminate.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[375]

Storing user data on the server side
There are many cases where we need to store the user data for a session. We will lose
the data once the user disconnects. The following code uses Socket.IO API's get and
set functions of the server socket class to store and retrieve the user data:

var io = require('socket.io').listen(80);

io.sockets.on('connection', function (socket) {
 socket.on('set nickname', function (name) {
 socket.set('username', name, function () {
 socket.emit('ready');
 });
 });

 socket.on('msg', function () {
 socket.get('username', function (err, name) {
 console.log('Chat message by ', name);
 });
 });
});

The following code sets the username variable:

// Sets the username variable.
socket.set('username', name);

The following code retrieves the stored username variable:

socket.get('username', function (err, name) {
 console.log('Chat message by ', name);
 });

Implementing a multiplayer game
The objective of this section is to implement what we have learned in the previous
sections. We simply want to implement a spectator player, a player who simply
launches our game can only view it. This simple implementation is a good start for
the complete multiplayer game implementation.

Let's first understand the data that we need to communicate to our spectator client.
In our game, currently we have nearly all static assets, except camera, bullets, and
grenade. Also, the location/direction of bullet and grenade are derived from the
camera location. So, all we need to communicate to the other client is:

• Camera position, direction, left and up vectors
• The bullet fire event and the bullet index that was fired
• The grenade fire event

www.it-ebooks.info

http://www.it-ebooks.info/

2D Canvas and Multiplayer Games

[376]

As we develop the complete game, we will need to communicate more information
such as dynamic model locations and scores. However, for the purpose of learning,
we will stick to the preceding information.

Also in Socket.IO, we only transfer the string data from the client to the server.
Hence, we will use JSON strings for communication. Let's take a look at the structure
of JSON objects we will use to communicate between clients.

In the following screenshot, we have described the information we need to transfer
in the form of a JSON object:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[377]

Understanding events and the code flow
In the preceding section, we have described the data that we need to transfer and
in this section, we will list the custom events that we will emit for the preceding
communication and also list the reserved events. We describe in the form of an
algorithm for both the client and server sides. The sequence defines the event
flow from the server to the client and vice versa. The following steps are basic
initialization steps. They describe the sequence from the user connect request until
the user room join event:

• The server creates a client socket and emits a login event using the following
line of code:
socket.emit('login');

• The client handles .on('login',handler) and emits the server login
custom event and sends its username using the following line of code:
socket.emit('login', "player");

• The server handles .on('login',handler), saves the username in private
user data and sends the client the confirmation that the user has logged
in by emitting the loggedIn event. It broadcasts the event with the actual
username to all clients and emits with the username you to the emitting
client, using the following lines of code:
socket.broadcast.emit('loggedIn', JSON.stringify(message));
message.username="you";
socket.emit('loggedIn', JSON.stringify(message));

• The client handles the loggedIn custom event. In our code, we are not listing
all users but we can use it to create a list of connected users. In our case, if
the emitted username is you, then the socket emits the join event to join the
ourgame room, using the following line of code:
socket.emit('join', "ourgame");

• The server handles the join event by adding the emitting socket to the room
using the following line of code:
socket.join(room);

Then, it emits the emitting socket and the roomJoined event to all users in
the room by using the following line of code:
socket.emit('roomJoined', JSON.stringify(message));
socket.broadcast.to(room).emit('roomJoined',
 JSON.stringify(message));

www.it-ebooks.info

http://www.it-ebooks.info/

2D Canvas and Multiplayer Games

[378]

• The client handles the roomJoined event. We can use it to update the user in
the room list.
Once the user has joined the room, the next steps are iterative. This means
that both the server and client wait until a player performs an action such as
move or fire a grenade. The following steps explain the event flow post the
user performs any key or mouse event.

• The client user moves the camera or fires a bullet or grenade. The code
generates the respective JSON object and emits a clientMessage event.

• The server handles the clientMessage event, creates a new JSON object with
username, room name, and populates the message with the received JSON
object and emits the serverMessage event with the data back to all users in
the room and emitting client with the username you.

• The client handles the serverMessage event, updates the camera location, or
fires the bullet/grenade only if the username is not you. We send the message
back to the emitting client with the username you, even though no action has
to be taken as an acknowledgment of the emitted clientMessage event.

The code walkthrough
Now let's dive deep into the code and understand the complete client-server
communication.

We have moved our complete JavaScript, HTML, and CSS in the
client folder inside the code files of this chapter to be rendered
using the web server.

The server code
Open the serverhttp.js file in your editor. The server code starts with initialization
of the web server to render the client code, and we also attach our socket server to
the HTTP server, as follows:

var http = require('http').createServer(handler),
url = require('url'),
path = require('path'),
fs = require('fs');
var io = require('socket.io').listen(http);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[379]

We list the mime types as follows:

var mimeTypes = {
 "html": "text/html",
 "jpeg": "image/jpeg",
 "jpg": "image/jpeg",
 "png": "image/png",
 "js": "text/javascript",
 "json": "text/javascript",
 "css": "text/css"};

The HTTP request handler reads the request URL (for example,
http://127.0.0.1/10-Multiple-Player-Programming-Spectator.html)
and retrieves the path name (for example, 10-Multiple-Player-Programming-
Spectator.html). To retrieve the physical path, it appends the path to the physical
path (process.cwd()) concatenated with the /client folder. We concatenate the
/client folder name as we want to render only files of that folder. We use path
modules function, join, to generate the physical path and use the reader stream
pipe function to render the file. We also set the content type based on the file
extension and retrieve the corresponding mime type from the mimeTypes array.
The following code is of the handler function:

function handler(req, res) {
 var uri = url.parse(req.url).pathname;
 var filename = path.join(process.cwd(),'/client', uri);
 path.exists(filename, function(exists) {
 if(!exists) {
 console.log("not exists: " + filename);
 res.writeHead(200, {'Content-Type': 'text/plain'});
 res.write('404 Not Found\n');
 res.end();
 return;
 }
 var mimeType = mimeTypes
 [path.extname(filename).split(".")[1]];
 res.writeHead(200, {'Content-Type':mimeType});
 var fileStream = fs.createReadStream(filename);
 fileStream.pipe(res);

 }); //end path.exists
}
http.listen(80);

The socket server waits for the client request:

io.sockets.on('connection', function (socket) {

www.it-ebooks.info

http://www.it-ebooks.info/

2D Canvas and Multiplayer Games

[380]

On a completed client request, it emits a login event to emit the client:

socket.emit('login');

On a login request from the client, it stores the username in the username session
variable using the socket API function set and emits the loggedIn event to all users
and the emitting client with the username you, as shown in the following code:

socket.on('login', function(username) { socket.set('username',
 username, function(err) {
 if (err) { throw err; }
 var message={};
 //message.key="logged";
 message.username=username;
 socket.broadcast.emit('loggedIn', JSON.stringify(message));
 message.username="you";
 socket.emit('loggedIn', JSON.stringify(message));
});
});

On the join request, it sets the user session variable, room, with a room name so
that it can be used later. In case the user wants to join another room, we save the
room name to remove the user from the existing room. Hence, we first remove the
user from the existing room and add it to the new room. Then, the code emits the
roomJoined event to all users of the room and the emitting client, as shown in the
following code:

socket.on('join', function(room) { socket.get('room',
 function(err, oldRoom) {
 if (err) { throw err; }
 socket.set('room', room, function(err) {
 if (err) { throw err; }
 socket.join(room); if (oldRoom) {
 socket.leave(oldRoom);
 }
 socket.get('username', function(err, username) {
 if (! username) {
 username = socket.id;
 }
 var message={};
 //message.key="join";
 message.username=username;
 socket.emit('roomJoined', JSON.stringify(message));
 socket.broadcast.to(room).emit('roomJoined',
 JSON.stringify(message));
 });

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[381]

 });
});
});

On the clientMessage event, the handler first retrieves the username variable.
In case username cannot be retrieved, it sets socket.id as the username variable.
Then, it creates a new JSON object message and assigns username, room name,
and received JSON object to the message property. It emits serverMessage to the
emitting client as well as all users in the room, as shown in the following code:

socket.on('clientMessage', function(content) {

 socket.get('username', function(err, username) { if (! username)
 {
 username = socket.id;
 }
 socket.get('room', function(err, room) {
 if (err) {
 throw err;
 }
 var broadcast = socket.broadcast;

 if (room) {
 broadcast.to(room);
 }
 var message={};
 message.username=username;
 message.roomname=room;
 message.message=JSON.parse(content);
 broadcast.emit('serverMessage', JSON.stringify(message));
 message.username="you";
 socket.emit('serverMessage', JSON.stringify(message)); });

});
});

});

The client code
Now, we will walk through the client code. Open 10-Multiple-Player-
Programming.html from the client folder in your editor. The client code connects
to the server on the page load. This following code is present in this file:

<script type="text/javascript">
var socket = io.connect('http://127.0.0.1');

www.it-ebooks.info

http://www.it-ebooks.info/

2D Canvas and Multiplayer Games

[382]

When the connection is created, the server emits a login event. The client responds
to the server with the username player for the playing user, and the username
spectator for the other user, as shown in the following code:

socket.on('login', function() {
 socket.emit('login', "player");
});

The client responds to the logged-in server event and emits the join event with the
room name ourgame as a parameter, as shown in the following code:

socket.on('loggedIn', function(content) {
 console.log(content);
 var messageObj=JSON.parse(content);
 if(messageObj.username=="you")
 socket.emit('join', "ourgame");
});
socket.on('roomJoined', function(content) {
 console.log(content);
});

On serverMessage, the client invokes the applyData function. The applyData
function parses the response and checks the messageObj.username parameter. If the
value is not you, it updates the game state. Depending on the messageObj.message.
type value, it performs the desired action. If the value is camera, then it updates
the cam object with received values. The applyData function is explained in the
following code:

socket.on('serverMessage', function(content) {
 applyData(content);
});

function applyData(message) {
 try{
 console.log(message);
 var messageObj=JSON.parse(message);
 if(messageObj.username!="you"){
 switch(messageObj.message.type)
 {
 case "camera": cam.left=vec3.fromValues
 (parseInt(messageObj.message.left[0]),
 parseInt(messageObj.message.left[1]),
 parseInt(messageObj.message.left[2]));
 cam.up=vec3.fromValues(parseInt(messageObj.message.up[0]),
 parseInt(messageObj.message.up[1]),
 parseInt(messageObj.message.up[2]));

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[383]

 cam.dir=vec3.fromValues(parseInt(messageObj.message.
 dir[0]),parseInt(messageObj.message.dir[1]),
 parseInt(messageObj.message.dir[2]));
 cam.pos=vec3.fromValues(
 parseInt(messageObj.message.position[0]),
 parseInt(messageObj.message.position[1]),
 parseInt(messageObj.message.position[2]));
 break;
 case "grenade":
 leftHand.visible=true;

 break;
 case "bullet":
 bullets[parseInt(messageObj.message.bulletIndex)].
 initialize();
 break;
 }
 }else{
 console.log(messageObj.message.type);
 }catch(e){
 console.log(e);
 }
 console.log(message);
}

The following sendRoomMessage function is invoked from different sections of our
application, whenever we want to update the game state:

function sendRoomMessage(message){
 socket.emit('clientMessage', message);
}
</script>

Now, let's look at other modifications in the code to update the game state.
The first modification is in the start function. The start function assigns a
cameraChangedCallBack handler function in keyboardInteractor. The following
callback function is invoked when the camera location is changed:

function start() {
...
 keyboardInteractor.cameraChangedCallBack=cameraLocationChanged;
...
}

www.it-ebooks.info

http://www.it-ebooks.info/

2D Canvas and Multiplayer Games

[384]

The following callback function, cameraLocationChanged, receives the
camera location and sets the message type to "camera". It then invokes the
sendRoomMessage function:

function cameraLocationChanged(cameraLocationStatus){
 cameraLocationStatus.type="camera";
 sendRoomMessage(JSON.stringify(cameraLocationStatus));
}

The following handleKeys function invokes the sendRoomMessage function on both
events of throwing the grenade and firing a bullet with the corresponding message.
type value:

function handleKeys(event) {
 switch(event.keyCode) {//determine the key pressed
 case 13:
 leftHand.visible=true;
 var message={};
 message.type="grenade";
 sendRoomMessage(JSON.stringify(message));
 break;
 case 32://s key
 bullets[nextBulletIndex].initialize();
 var message={};
 message.type="bullet";
 message.bulletIndex=nextBulletIndex;
 sendRoomMessage(JSON.stringify(message));
...
 }
 break;
 }
}

Open KeyBoardInteractor.js from client/primitive in your editor. In this class,
we have added a cameraChangedCallBack delegate to handle the call back when the
location/direction of camera changes The KeyBoardInteractor function is as follows:

function KeyBoardInteractor(camera,canvas){
...
 this.cameraChanged=false;
 this.cameraChangedCallBack=null;
...
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[385]

If the location of the camera changes, the handleKeys function updates the
status variable cameraChanged to true, on each key event. We check whether
the cameraChanged variable is true and whether the handler function has been
assigned, then we create a camera status object with the up, left, position, and
direction vectors. We then invoke the handler function and pass cameraStatus as a
parameter. We also update the cameraChanged variable to false. The handleKeys
function is as follows:

KeyBoardInteractor.prototype.handleKeys=function (event) {
 if(event.shiftKey) {
 switch(event.keyCode) {//determine the key pressed
 case 65://a key
 this.cam.roll(-Math.PI * 0.025);//tilt to the left
 this.cameraChanged=true;
 break;
...
 }
...
 if(this.cameraChanged==true&&this.cameraChangedCallBack!=null){
 var cameraStatus={};
 cameraStatus.left=this.cam.left;
 cameraStatus.up=this.cam.up;
 cameraStatus.dir=this.cam.dir;
 cameraStatus.position=this.cam.pos;
 this.cameraChangedCallBack(cameraStatus);
 this.cameraChanged=false;
 }

}

Summary
In this chapter, we first covered the implementation of the canvas 2D context
as texture in our game scene. This is a very powerful tool, not just limited to
game development, but is also used in many 3D applications such as product
customization tools. The canvas 2D API offers a very powerful list of functions to
manipulate images using its pixel data. This gives us the ability to add dynamic
textures to our game scene.

www.it-ebooks.info

http://www.it-ebooks.info/

2D Canvas and Multiplayer Games

[386]

In the second section of the chapter, we introduced you to multiplayer games and
used WebSockets to create a sample spectator client. We used the module Sockets.IO
of Node.js, to implement our multiplayer game.

In this book, we have trained ourselves in topics such as rendering, animation,
physics engines, collision detection, bone animations, and multiplayer games to
evolve our world in 5000 A.D. Now, we leave it up to you to complete your world
and add components that excite the users of your game.

www.it-ebooks.info

http://www.it-ebooks.info/

Index
Symbols
2D context

URL 353
2D textures

about 117-119
adding, as model labels 354, 355
and texture mapping 118, 120
sprite texture, using 355-360
square geometry, using 360

3D graphics
indices, using to save memory 17, 18

3D mathematics
about 8
matrices 10
transformations 10
vectors 9

3D objects
exporting, from Blender 52-54
rendering 52
rendering, transformations for 12

3D software
models, exporting from 315

3D textures 117
_delta parameter 321
_dir parameter 321
_origin parameter 321

A
addBone function 296
add function 307
addModel function 95, 330, 337
addStageObject function 96
addToUpdate function 307
affine transformations 10, 11, 12

Ajax long polling 364
ambient component 68
ambient lighting 50
Ammo 249
Ammo.js 249
angVel (angular velocity) 178
animate function 108
animate() function 259
Animation class 307
animation data

about 304-306
loading 306-314

AnimationHandler class 306, 314
animation, types

frame-based animation 212, 213
time-based animation 212, 214

applyData function 382
apply function 175
aTextureCoord 125
attribute-qualified variables 26
aVertexColor attribute 43
aVertexPosition attribute 24
Avoided making my own. See Ammo
Azimuth parameter 190

B
basic camera

about 173
implementing 173-176

Bidirectional Reflectance Distribution
Functions (BRDFs) 68

Bidirectional-streams Over Synchronous
HTTP (BOSH) 364

bilinear filtering 153
bindBuffer() function 22, 23

www.it-ebooks.info

http://www.it-ebooks.info/

[388]

bindFramebuffer function 340
binding matrix 281, 282
bindPostProcessShaderAttributes()

function 347, 348
Blender

models, exporting from 131-133
Blender add-on

URL, for downloading 315
Blinn-Phong model 69-71
Blinn Phong reflection 80-83
bone class

implementing 292, 293
boneGlobalMatrices parameter 299
bones 278
Box2dweb 250
Box.json

Box.obj, converting to 134
Box.obj

converting, to Box.json 134
Box.obj file, elements

f 133
mtllib 132
o 132
s 133
v 132
vn 132
vt 132

bufferData() function 35
buffer objects

associating, with shader attributes 29, 30
bullet

about 223-225
objects, reusing in multiple bullets 226, 228

bullet action 267, 268

C
calculateMvMatrix function 183, 184
calculateNormals(vertices,indices)

function 76
calculateVertexNormals function 47, 88
cameraChangedCallBack handler

function 383
camera matrix. See camera transformation

matrix
camera rotation 169

camera transformation matrix
about 165
and view matrix, conversions 167
components 166

canvas 2D
about 351-353
URL 351
using, for textures 353, 354

canvas element 352
changes

summarizing 95
characters skeleton

about 277, 278
joint hierarchy 278
kinematics 279-281

CLAMP_TO_EDGE, wrapping mode 128
clientMessage event 378, 381
client socket, reserved events

about 373
connect 373
connect_failed 373
connecting 373
disconnect 373
error 373
message 373
reconnect 373
reconnect_failed 373
reconnecting 373

clone class 94
clone function 89, 94
cloneObjects function 102
closestDistance parameter 191
collision detection 261
CollisionInfo object 261
color information

storing, texture object created 339
colors

about 40, 44
square, coloring 40
vertex color, used for coloring 41-43

connect 373
connect_failed 373
connecting 373
console.log() 36
control code

about 209-212
implementing 183

www.it-ebooks.info

http://www.it-ebooks.info/

[389]

Cook-Torrance model 69
createBuffer() function 21
createBuffers function 93, 95
createFrameBuffer() function 347
createMultilineText function 356, 358
createServer function 368
createShader() function 29
createTexture function 358, 361
createTexture() function 126
ctx.measureText(txt).width function 352
ctx.restore() function 353
ctx.save() function 353
ctx.transform()function 352
cubemaps

about 157
coordinates 158
loading 158
shader code 159-161

currentText variable 357

D
degrees of freedom. See DOFs
diffuse component 68
Diffuse reflection 50
directional light 49
directionalLightWeighting1 float

data type 106
disconnect 373
display memory 20
distance dropdown 154
DOFs

about 278
URL 278

Down arrow 176
drawArrays function 32
drawArrays() function 30, 31, 34
drawElements function 32
draw() function 348
drawScene function 96, 97, 99, 100, 103, 127,

156, 184, 233, 265, 302, 338
drawScene() function 34, 43, 348, 349
drawScenePostProcess() function 349
DYNAMIC_DRAW 22

E
e.clientX attribute 330
Elevation parameter 190
emitter pattern

URL 367
error 373
explosionCallBack function 236
explosion effect

texture animation, using for 233-237

F
Face class 94
Face.js

implementing 86, 87
face object 246
faces 86
faceVertexUvs array 246
FarthestDistance parameter 191
f, Box.obj file element 133
field of view (FOV) 79, 172
fillstyle property 352
filter

applying, framebuffers used 340-342
fragment shader 343, 344
implementing 347, 349
shaders, linking 344, 345
shaders, loading 344, 345
vertex shader 342

filtering modes
applying 154

final normal transformation 283
final vertex transformation 283
first-person camera

about 218, 219
adding 219, 221
code, improving 221, 222

flat shading 72
format parameter 122
forward kinematics 279, 280
fragment shader 25, 106, 110, 125, 343, 344
fragment shader code

implementing 208
frame-based animation 212, 213
framebuffer object (FBO) 338, 349

www.it-ebooks.info

http://www.it-ebooks.info/

[390]

framebuffers
about 20, 319
offscreen rendering 338, 339
rendering to 340
used, for applying filters 340-342

frameTexture object 349
free camera

about 176, 177
control code, implementing 183, 184
implementing 177-182
using 182, 183

FreeCamera class 176

G
game engine

WebGL, differentiating from 8
game scene

gravity, adding 256-259
rigid body, adding 256-260

Geometry.js
implementing 87-91

Geometry object
about 86, 92
changes 148
faces 86
indices 86
materials 86
normals 86
per vertex colors 86
UV map 86
vertices 86

getAttribLocation function 26
getBoneMatrix function 301
getContext method 352
getDistance function 191
get function 307
Gimbal lock 169
gl.bufferData() API call 22
gl_FragColor variable 25, 42
glMatrix

URL 8, 163
gl.pixelStorei function 121
gl_Position variable 24
gl.texImage2D function 347
gl.texParameteri function 123
gl.uniformMatrix4fv() function 34

gl.vertexAttribPointer() function 34
glVertexAttribPointer() function,

parameters
index 30
norm 30
offset 30
size 30
stride 30
type 30

goCloser function 191
goFarther function 192
Gouraud shading

about 72, 73
implementing 80, 81
implementing, on Lambertion reflection

model 75-79
grenade 262
Grenade class 230

H
handleKeys function 384, 385
height maps

implementing 275, 276
http module 368
HTTP server

implementing, Node.js used 368, 369

I
index buffer objects

about 23
used, for drawing 35

index parameter 30
indices 86
inherit function 177
initBuffer() function 34, 35, 42, 77
initBuffers function 93, 118, 124
initData function 308
initialize function 231
initializePhysics function 256
initializePosition function 267
init_jiglib() function 258
initScene() function 66
initShaders function 107, 114, 115, 302
initShaders() function 29, 66, 210
internalFormat parameter 122

www.it-ebooks.info

http://www.it-ebooks.info/

[391]

interpolation
linear interpolation 215
polynomial interpolation 215
spline interpolation 216, 217

intersection
checking for 335, 336

io.sockets 372
io.sockets.clients('room') 374
io.sockets.manager.roomClients[socket.id]

374
io.sockets.manager.rooms 374
iSpecular variable 111
isPicked property 338
ITerrain interface 256, 271

J
JavaScript 3D physics engines

comparing 249
concepts 251

jigLib.JBox class 326
jigLib.JBox colliders 324, 325
JigLibJS

about 250
constraints 250

jigLib.JSegment class 338
jigLib.JSphere object 257
jigLib.Plane rigid body 259
join event 377
Joint DOFs 280
Joint offset 281
JRay class 321
JSegment class 321
JSON

3DS files, converting to 316
Collada, converting to 316
FBX, converting to 316

JSON faces array
parsing 61-64

JSON file
about 58-60
encoding 283, 284
with UV coordinates 134, 135

JSON model
loading 65, 66

JSON parser
changes 147, 148

JTerrain object 256

K
keyboard interaction

adding 185, 186
key combinations

Down arrow 176
Left arrow 176
Right arrow 176
S 176
Shift + A 176
Shift + D 176
Shift + down arrow 176
Shift + left arrow 176
Shift + right arrow 176
Shift + up arrow 176
Up arrow 176
W 176

kinematics 279

L
Lambertian model 69
Lambertian reflectance 69, 70
Lambertion reflection model

Gouraud shading on 75-79
lamps

adding 109
fragment shader 106, 110
main code 114, 115
used, for lighting up scenes 104
vertex shader 105, 110

Left arrow 176
left-hand rotation

linear interpolation, using for 229-233
level parameter 122
Light.js

applying 113
implementing 112

lights
Ambient lighting 50
Diffuse reflection 50
directional light 49
multiple lights 108
point light 49
rendering without 67, 68
Specular reflection 51

www.it-ebooks.info

http://www.it-ebooks.info/

[392]

spotlight 49
lights object 115
linear animation 223, 224
linear interpolation

about 153, 215
using, for grenade action 228
using, for left-hand rotation 229-233

linear transformations 10, 11, 12
lineVel (linear velocity) 178
loadObject function 93, 294, 295
loadStageObject function 232, 248
loadStageObject() function 248
loadTexture() function 248
loggedIn event 380
lookAt function

about 176
using 167, 168

look at position setting 176

M
magnification filtering 154
material file format (MTL) 56, 57
materials 86
matrices 10
matrixAutoUpdate 287
matrixWorld 287
matrixWorldNeedsUpdate 287
MD5Anim 316, 317
MD5Mesh 316, 317
measureText function 356
mesh 15
message 373
messageObj.username parameter 382
message property 381
mimeTypes array 379
minification filtering 154
mipmapping

about 151
bilinear filtering 153
implementing 152
linear interpolation 153
nearest-neighbor interpolation 153
nearest-neighbor with mipmapping 153
Trilinear filtering 154

MIRRORED_REPEAT, wrapping mode 128

model labels
2D textures, adding as 354, 355

modelMatrix 287
models

exporting, from 3D software in JSON 315
exporting, from Blender 131-133

ModelSprite class
about 362
main flow code 363

model transformation
applying 164

ModelView transformation 13
ModelView transformations

about 163, 164
camera rotation 169
lookAt function, using 167, 168
model transformation, applying 164
quaternions, using 169, 170
view transformation 165

modifyGeometry function 270
morphedVertexNormalsFromObj

function 89, 90
morphedVertexNormalsFromObj()

function 247
mouse events

handling 187-189
mouse interaction

adding 185, 186
moveForward function 181
mtllib, Box.obj file element 132
multiplayer game

client code 381-385
events 377
implementing 375
server code 378-381

multiple objects
changes, summarizing 95

multi-texturing 158
mvMatrix 164
mvMatrix states

using 98, 99

N
nearest-neighbor interpolation 153
nearest-neighbor with mipmapping 153

www.it-ebooks.info

http://www.it-ebooks.info/

[393]

Node.js
URL, for installing 367
used, for implementing HTTP

server 368, 369
using, for multiplayer games 367

node modules
URL 367

normal 45
Normalized Device Coordinates (NDC) 331
normalize() function 81
normals 86
normal transformation 48
norm parameter 30

O
object materials 52
objects

exported from Blender, rendering 147
object space 13
OBJ file

converting, to JSON file format 57
o, Box.obj file element 132
offscreen rendering

framebuffers used 338
renderbuffer, associating to

framebuffers 340
renderbuffer, creating 339
texture, associating to framebuffers 340
texture object, creating 339

offsetLeft variable 331
offset parameter 30
offsetTop variable 331
onmousedown event 337
onMouseDown event 188
onMouseMove event 188, 189
orbit camera

about 190
closestDistance parameter 191
FarthestDistance parameter 191
implementing 190-194
orbitPoint parameter 191
parameters 190
pitch function 194, 195
using 198, 199
yaw function 196, 197

orbitPoint parameter 191

out.frac variable 322
out parameter 322
out.position variable 322
out.rigidBody variable 322

P
param parameter 121, 123
parent object 287
parse function 307
parseJSON function 95
parseJSON.js

implementing 92
parseJSON object 93
perspective divide 332
perspective transformations

about 170
viewing frustum 171, 172

per vertex colors 86
per-vertex operation 24
Phong reflectance model 69
Phong shading

about 73, 74
implementing 82, 83

phpwebsocket 367
physics

objects 253
terrain, extending with 269-274

physics, objects
particles 254
rigid body 254, 255
soft body 255

physics shapes 255, 256
picking

about 319, 322
implementing, ray casting used 325
objects color based 322-324
ray casting used 324, 325

picking, ray casting used
click, screen coordinates 330, 331
intersection, checking 335, 336
ray segment, creating 334
rigid body (collider), using for

scene object 326-329
selected object, color changing 336-338
vector, unprojecting 332, 333

pitch function, orbit camera 194, 195

www.it-ebooks.info

http://www.it-ebooks.info/

[394]

pixels 25
pixels parameter 122
PixPlant 117
plane geometry

about 240
diagram 240
equation 240
rendering 247, 248

pname parameter 121, 123
point light 49
polling 364
polygon 15
polynomial interpolation 215
positional lights 103, 104
position setting 176
powerOfTwo function 358
primitive

drawing 30-32
primitive assembly stage 25
projection transformation 14

Q
quaternions

using 169, 170

R
Radius parameter 190
rasterization 25
RayCaster class 335, 336
ray casting 319

about 320, 321
used, for picking 324

ray segment
creating 334, 335

reconnect 373
reconnect_failed 373
reconnecting 373
redrawWithClampingMode function 130
removeFromUpdate function 307
renderbuffer

associating, to framebuffers 340
creating, to depth information 339

rendering pipeline, WebGL
about 18, 19
Framebuffers 20

REPEAT, wrapping mode 128

request animation frames 100
requestAnimFrame function 100
RGB (Red, Green, and Blue) space 44
rigged JSON model

animating 303
animation data 304-306
animation data, loading 306-314
JSON file encoding 283, 284
loading 283, 285

RiggedMesh class
implementing 293-299
this.boneMatrices[] array 294
this.bones[] array 294
this.skinIndexBuffer variable 294
this.skinWeightBuffer variable 294

RiggedMesh object 314
rigged model

bone class, implementing 292, 293
loading 301, 302
RiggedMesh class, implementing 293-299
skinned model, loading 299
StageObject class, enhancing 286-292

Right arrow 176
rigid body 254, 255
RigidBody class 261
robotic bone hierarchy 279
roomJoined event 378
rotateOnAxis function 180

S
S 176
s, Box.obj file element 133
scene

lighting up, with lamps 104
loading 101-103
textures, applying 202-207

sendRoomMessage function 383, 384
serverData 371
serverMessage event 378
setDistance function 197
setInterval function 100
setLightUniform function 108
setLightUniform() function 115
setLookAtPoint function 179
setMatrixUniforms 164
setMatrixUniforms() function 34

www.it-ebooks.info

http://www.it-ebooks.info/

[395]

setPosition function 193
setTimeout function 100
shader attributes

buffer objects, associating with 29
shader code, cubemaps 159-161
shaders

about 23
fragment shader 25
linking 344, 345
loading 344, 345
multiple shaders 108
vertex shader 24

shader variables
about 25
attributes qualifier 26
compiling 28, 29
linking 28
uniforms 27
uniforms qualifier 26
varying qualifier 27

shading models
flat shading 72
Gouraud shading 72, 73
Phong shading 73, 74

Shift + A 176
Shift + D 176
Shift + down arrow 176
Shift + left arrow 176
Shift + right arrow 176
Shift + up arrow 176
simple skinning 281
simulation loop

updating 252, 253
size parameter 30
skeletons 278
SkinIndex parameter 300
skinMatrix variable 292
skinned animation 217
skinned model

loading 299-302
skinning

simple skinning 281
smooth skinning 281, 282

skinWeight parameter 300
smooth skinning

about 281, 282
binding matrix 282

final normal transformation 283
final vertex transformation 282, 283

Sobel operator
URL 341

socket 372
Socket.IO

about 367-372
client socket, reserved events 373
io.sockets 372
socket 372, 373
user data, storing on server side 375
using, for multiplayer games 367

Socket.IO, rooms
event, broadcasting 374
information, getting 374
joining 374
leaving 374

socket object 374
soft body 255
specular component 68
Specular reflection 51
spline interpolation 216, 217
spotlight 49
Sprite class

about 361
implementing 361

sprite texture
using 355-360

SpriteTexture class 361
square

coloring 40
square geometry

using 360
SquareGeometry class 346
square geometry code 346
stage class 95
Stage.js

implementing 94
stageObject 287
StageObject class

about 92, 95, 256, 327, 330, 361
enhancing 286-292

StageObject.js
implementing 92, 93

start function 95
start() function 33, 258, 336
state machine 98

www.it-ebooks.info

http://www.it-ebooks.info/

[396]

STATIC_DRAW 22
stream

URL 367
STREAM_DRAW 22
stride parameter 30
superc function 178
surface normal

about 45, 46
calculating, from indices 46, 47
calculating, from vertices 46, 47

system.integrate() function 259, 260

T
target parameter 121, 122
terrain

about 241
extending, with physics 269-274

TerrainData object 274
texImage2D function 126
texture animation

using, for explosion effect 233-237
texture buffer 155
textured object

loading 148-150
texture filtering 120
textureIndex property 209
texture magnification 120
texture minification 120
texture parameter 121
textures

2D textures 117
3D textures 117
applying, to scene 202-206
applying, to square 124
associating, to framebuffers 340
canvas 2D, using 353, 354
loading 121, 126, 127
lookup functions 124
sampler data type 123

texture wrapping
about 128, 129
event handlers 130
HTML 129
redrawWithClampingMode function 130

this.boneMatrices[] array 294
this.bones[] array 294

this.initializePhysics() function 263
this.pose() function 295
this.power variable 356
this.skinIndexBuffer variable 294
this.skinWeightBuffer variable 294
tick function 100, 108
time-based animation 212, 214
Torrance-Sparrow model 69
totalElapsedTime variable 108
transformations

about 10
affine transformations 10-12
linear transformations 10, 11
ModelView transformation 13
projection transformation 14
to render 3D objects 12

transform() function 353
translate function 189
translateOnAxis function 289
traverse function 291
TRIANGLE_XXX option 32
Trilinear filtering 154
type parameter 30, 122

U
uniformMatrix3fv function 78
uniform qualifier 26
unloopedCurrentTime value 311
Up arrow 176
update function 293
updateMatrix function 329
updateMatrixWorld function 292
useSkinning parameter 299
UV coordinates

algorithm, dry run used 144-146
algorithms, to create new arrays 139-143
indices array 137
normals 137
parsing, from JSON file 136
texture coordinates, restructuring

for 138, 139
vertices 137

UV map 86

V
varyings qualifier 27

www.it-ebooks.info

http://www.it-ebooks.info/

[397]

VBO. See vertex buffer objects
v, Box.obj file element 132
vector

about 9
unprojecting 332

vertex 15
vertex buffer objects

about 21, 22
used, for drawing 33, 34

vertex color
used, for coloring 41-43

vertexNormals array 87
vertex shader

about 24, 105, 110, 125, 342
used, for vertex transformation 24

vertex shader code
implementing 207

vertices 15, 16, 86
verticesFromFaceUvs function 139
verticesFromFaceUvs() function 247
viewing frustum 171, 172
view matrix

about 165
and camera transformation matrix,

conversions 167
breakdown 166

view transformation 165
vn, Box.obj file element 132
vt, Box.obj file element 132
vTextureCoord variable 125

W
W 176
Ward's anisotropic model 69
Wavefront object file 52

Wavefront (OBJ) format 55, 56
WebGL

about 7, 8
application, debugging 36, 37
differentiating, from game engine 8
rendering pipeline 18, 19

WebGL API 20
WebGL context

initializing 20
WebGL texture mapping

principles 136, 137
WebSocket API 366, 367
WebSockets

about 365
server 367
WebSocket API 366, 367

WebSockets server
about 367
phpwebsocket 367
Socket.IO 367

window.requestAnimationFrame()
function 100

worldMatrix 287
wss protocol 366

Y
yaw function, orbit camera 196, 197

Z
z-fighting 175

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
WebGL Game Development

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

Direct3D Rendering Cookbook
ISBN: 978-1-84969-710-1 Paperback: 430 pages

50 practical recipes to guide you through the
advanced rendering techniques in Direct3D to help
bring your 3D graphics project to life

1. Learn and implement the advanced rendering
techniques in Direct3D 11.2 and bring your 3D
graphics project to life.

2. Study the source code and digital assets with
a small rendering framework and explore the
features of Direct3D 11.2.

3. A practical, example-driven, technical cookbook
with numerous illustrations and example images
to help demonstrate the techniques described.

Learning Three.js: The JavaScript
3D Library for WebGL
ISBN: 978-1-78216-628-3 Paperback: 402 pages

Create and animate stunning 3D graphics using the
open source Three.js JavaScript library

1. Create and animate beautiful 3D graphics
directly in the browser using JavaScript without
the need to learn WebGL.

2. Learn how to enhance your 3D graphics with
light sources, shadows, and advanced materials
and textures.

3. Each subject is explained using extensive
examples that you can directly use and adapt for
your own purposes.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

Game Development with Three.js
ISBN: 978-1-78216-853-9 Paperback: 118 pages

Embrace the next generation of game development
and reach millions of gamers online with the Three.js
3D graphics library

1. Develop immersive 3D games that anyone can
play on the Internet.

2. Learn Three.js from a gaming perspective,
including everything you need to build
beautiful and high-performance worlds.

3. A step-by-step guide filled with game-focused
examples and tips.

Learning Windows 8 Game
Development
ISBN: 978-1-84969-744-6 Paperback: 244 pages

Learn how to develop exciting tablet and PC games
for Windows 8 using practical, hands-on examples

1. Use cutting-edge technologies like DirectX to
make awesome games.

2. Discover tools that will make game
development easier.

3. Bring your game to the latest touch-enabled PCs
and tablets.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with
WebGL Game Development
	Understanding WebGL
	Differentiating WebGL from the
game engine
	Understanding basic 3D mathematics
	Vectors
	Matrices
	Understanding transformations
	Classifying into linear and affine transformations
	Understanding transformations required to render 3D objects

	Learning the basics of 3D graphics
	Understanding mesh, polygon, and vertices
	Using indices to save memory

	Understanding WebGL's rendering pipeline
	Framebuffers

	A walkthrough of the WebGL API
	Initializing the WebGL context
	Vertex buffer objects – uploading data to GPU
	Index buffer objects

	Shaders
	The vertex shader
	The fragment shader

	Shader variable qualifiers
	Attributes
	Uniforms
	The Varying qualifier
	Compiling and linking shaders

	Associating buffer objects with shader attributes
	Drawing our primitive

	Drawing using vertex buffer objects
	Drawing using index buffer objects
	Debugging a WebGL application
	Summary

	Chapter 2: Colors and
Shading Languages
	Understanding colors
	Coloring our square
	Coloring using the vertex color

	Learning more about colors
	Understanding surface normals for lighting calculations
	Different types of lights used in games
	Understanding object materials

	Rendering 3D objects
	Exporting a 3D object from Blender
	Understanding and loading the Wavefront (OBJ) format
	Understanding the material file format (MTL)
	Converting the OBJ file to the JSON file format
	Loading the JSON model
	Rendering without light

	Understanding the illumination/reflection model
	Lambertian reflectance/diffuse reflection
	The Blinn-Phong model

	Understanding shading/interpolation models
	Flat shading
	Gouraud shading
	Phong shading
	Differentiating the shading models
	Implementing Gouraud shading on a Lambertian reflection model
	Implementing Gouraud shading – Blinn-Phong reflection
	Implementing Phong shading – Blinn-Phong reflection

	Summary

	Chapter 3: Loading the Game Scene
	Supporting multiple objects
	Implementing Face.js
	Implementing Geometry.js
	Implementing parseJSON.js
	Implementing StageObject.js
	Implementing Stage.js
	Using the architectural updates
	Understanding the main code

	Understanding WebGL – a state machine
	Using mvMatrix states

	Understanding request animation frames
	Loading the scene
	Understanding positional lights
	Lighting up the scene with lamps
	The vertex shader
	The fragment shader
	Understanding the main code

	Multiple lights and shaders
	Adding multiple lamps
	The vertex shader
	The fragment shader
	Implementing Light.js
	Applying Lights.js
	Understanding the main code

	Summary

	Chapter 4: Applying Textures
	Texturing basics
	Understanding 2D textures and texture mapping
	Comprehending texture filtering

	Loading textures
	New data type – sampler
	Applying a texture to the square
	The vertex shader
	The fragment shader

	Texture wrapping
	Testing the texture wrapping mode
	The HTML
	The event handlers
	The redrawWithClampingMode function

	Exporting models from Blender
	Converting Box.obj to Box.json
	Understanding the JSON file with UV coordinates

	Parsing UV coordinates from the
JSON file
	The challenge and the algorithm
	Revisiting vertices, normals, and the indices array

	Rendering objects exported from Blender
	Changes in our JSON parser
	Changes in our Geometry object
	Loading a textured object

	Understanding mipmapping
	Implementing mipmapping
	Understanding the filtering methods
	Nearest-neighbor interpolation
	Linear interpolation
	Nearest-neighbor with mipmapping
	Bilinear filtering with mipmapping
	Trilinear filtering

	Applying filtering modes
	Understanding cubemaps and
multi-texturing
	Cubemap coordinates
	Multi-texturing
	Loading Cube Maps
	Understanding the shader code

	Summary

	Chapter 5: Camera and User Interaction
	Understanding ModelView transformations
	Applying the model transformation
	Understanding the view transformation
	Understanding the camera matrix
	Comprehending the components of a camera matrix

	Converting between camera matrix and
view matrix
	Using the lookAt function
	Understanding the camera rotation
	Using quaternions

	Understanding perspective transformations
	Understanding the viewing frustum
	Defining the view frustum

	Using the basic camera
	Implementing the basic camera

	Understanding the free camera
	Implementing the free camera
	Using our free camera

	Adding keyboard and mouse interaction
	Handling mouse events

	Comprehending the orbit camera
	Implementing the orbit camera
	Understanding the pitch function for the orbit camera
	Understanding the yaw function for the orbit camera

	Using an orbit camera

	Summary

	Chapter 6: Applying Textures and Simple Animations to Our Scene
	Applying textures to our scene
	Applying texture to the scene
	Implementing the vertex shader code
	Implementing the fragment shader code
	Working with the control code

	Understanding the animation types in
3D games
	Understanding time-based animation
	Understanding frame-based animation
	Implementing time-based animation

	Comprehending interpolation
	Linear interpolation
	Polynomial interpolation
	Spline interpolation

	A briefing on skinned animation

	Using first-person camera
	Adding the first-person camera
	Improving the first-person camera code

	Simple bullet action – linear animation
	Reusing objects in multiple bullets

	Using B-spline interpolation for grenade action
	Using linear interpolation for left-hand rotation

	Using texture animation for an explosion effect
	Summary

	Chapter 7: Physics and Terrains
	Understanding a simple terrain – plane geometry
	Rendering our plane geometry

	Comparing JavaScript 3D physics engines
	Ammo.js
	Box2dweb
	JigLibJS
	Comprehending the physics engine concepts
	Updating the simulation loop
	Learning about objects in the physics system
	Particles
	Rigid bodies
	Soft bodies

	Understanding the physics shapes

	Adding gravity and a rigid body to the game scene
	Implementing forces, impulse, and collision detection
	Diving deep into collision detection
	Revisiting the grenade and bullet actions
	Cheating in the bullet action

	Extending our terrain with physics
	Implementing height maps

	Summary

	Chapter 8: Skinning and Animations
	Understanding the basics of a character's skeleton
	Comprehending the joint hierarchy
	Understanding forward kinematics

	Understanding the basics of skinning
	Simple skinning
	Smooth skinning
	The binding matrix
	The final vertex transformation
	The final normal transformation

	Loading a rigged JSON model
	Understanding JSON file encoding
	Loading the rigged model
	Enhancing the StageObject class
	Implementing the bone class
	Implementing the RiggedMesh class
	Loading the skinned model

	Animating a rigged JSON model
	JSON model – animation data
	Loading the animation data

	Exporting models from 3D software
in JSON
	Exporting from Blender
	Converting FBX/Collada/3DS files to JSON
	Loading MD5Mesh and MD5Anim files

	Summary

	Chapter 9: Ray Casting and Filters
	Understanding the basic ray casting concepts
	Learning the basics of picking
	Picking based on an object's color
	Picking using ray casting

	Implementing picking using ray casting
	Using a rigid body (collider) for each
scene object
	Calculating the screen coordinates of a click
	Unproject the vector
	Creating a ray segment
	Checking for an intersection
	Changing the color of the selected object

	Offscreen rendering using framebuffers
	Creating a texture object to store color information
	Creating a renderbuffer to depth information
	Associating a texture and a renderbuffer
to framebuffers
	Rendering to framebuffers

	Applying filters using framebuffers
	The vertex shader
	The fragment shader
	Loading and linking shaders

	Understanding the square geometry code
	Implementing the filter

	Summary

	Chapter 10: 2D Canvas and
Multiplayer Games
	Understanding canvas 2D basics and the drawing API
	Using canvas 2D for textures

	Adding 2D textures as model labels
	Using the sprite texture
	Using a square geometry

	Implementing the Sprite class
	Implementing the ModelSprite class
	Understanding the main flow code

	Communicating in real time
	Understanding Ajax long polling
	Understanding WebSockets
	Understanding the WebSocket API
	Understanding the WebSockets server

	Using Node.js and Socket.IO for multiplayer games
	Implementing the HTTP server using Node.js
	Understanding Socket.IO
	Learning the Socket.IO API
	Understanding Socket.IO rooms
	Storing user data on the server side

	Implementing a multiplayer game
	Understanding events and the code flow
	The code walkthrough
	The server code
	The client code

	Summary

	Index

