
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

MongoDB: The Definitive Guide

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

MongoDB: The Definitive Guide

Kristina Chodorow and Michael Dirolf

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

www.it-ebooks.info

http://www.it-ebooks.info/

MongoDB: The Definitive Guide
by Kristina Chodorow and Michael Dirolf

Copyright © 2010 Kristina Chodorow and Michael Dirolf. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Julie Steele
Production Editor: Teresa Elsey
Copyeditor: Kim Wimpsett
Proofreader: Apostrophe Editing Services
Production Services: Molly Sharp

Indexer: Ellen Troutman Zaig
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
September 2010: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. MongoDB: The Definitive Guide, the image of a mongoose lemur, and related trade
dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-38156-1

[M]

1283534198

www.it-ebooks.info

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://www.it-ebooks.info/

Table of Contents

Foreword . xi

Preface . xiii

1. Introduction . 1
A Rich Data Model 1
Easy Scaling 2
Tons of Features… 2
…Without Sacrificing Speed 3
Simple Administration 3
But Wait, That’s Not All… 4

2. Getting Started . 5
Documents 5
Collections 7

Schema-Free 7
Naming 8

Databases 8
Getting and Starting MongoDB 10
MongoDB Shell 11

Running the Shell 11
A MongoDB Client 12
Basic Operations with the Shell 12
Tips for Using the Shell 14

Data Types 15
Basic Data Types 16
Numbers 18
Dates 19
Arrays 19
Embedded Documents 20
_id and ObjectIds 20

v

www.it-ebooks.info

http://www.it-ebooks.info/

3. Creating, Updating, and Deleting Documents . 23
Inserting and Saving Documents 23

Batch Insert 23
Inserts: Internals and Implications 24

Removing Documents 25
Remove Speed 25

Updating Documents 26
Document Replacement 26
Using Modifiers 27
Upserts 36
Updating Multiple Documents 38
Returning Updated Documents 39

The Fastest Write This Side of Mississippi 41
Safe Operations 42
Catching “Normal” Errors 43

Requests and Connections 43

4. Querying . 45
Introduction to find 45

Specifying Which Keys to Return 46
Limitations 47

Query Criteria 47
Query Conditionals 47
OR Queries 48
$not 49
Rules for Conditionals 49

Type-Specific Queries 49
null 49
Regular Expressions 50
Querying Arrays 51
Querying on Embedded Documents 53

$where Queries 55
Cursors 56

Limits, Skips, and Sorts 57
Avoiding Large Skips 58
Advanced Query Options 60
Getting Consistent Results 61

Cursor Internals 63

5. Indexing . 65
Introduction to Indexing 65

Scaling Indexes 68
Indexing Keys in Embedded Documents 68

vi | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing for Sorts 69
Uniquely Identifying Indexes 69

Unique Indexes 69
Dropping Duplicates 70
Compound Unique Indexes 70

Using explain and hint 70
Index Administration 75

Changing Indexes 76
Geospatial Indexing 77

Compound Geospatial Indexes 78
The Earth Is Not a 2D Plane 79

6. Aggregation . 81
count 81
distinct 81
group 82

Using a Finalizer 84
Using a Function as a Key 86

MapReduce 86
Example 1: Finding All Keys in a Collection 87
Example 2: Categorizing Web Pages 89
MongoDB and MapReduce 90

7. Advanced Topics . 93
Database Commands 93

How Commands Work 94
Command Reference 95

Capped Collections 97
Properties and Use Cases 98
Creating Capped Collections 99
Sorting Au Naturel 99
Tailable Cursors 101

GridFS: Storing Files 101
Getting Started with GridFS: mongofiles 102
Working with GridFS from the MongoDB Drivers 102
Under the Hood 103

Server-Side Scripting 104
db.eval 104
Stored JavaScript 105
Security 106

Database References 107
What Is a DBRef? 107
Example Schema 107

Table of Contents | vii

www.it-ebooks.info

http://www.it-ebooks.info/

Driver Support for DBRefs 108
When Should DBRefs Be Used? 108

8. Administration . 111
Starting and Stopping MongoDB 111

Starting from the Command Line 112
File-Based Configuration 113
Stopping MongoDB 114

Monitoring 114
Using the Admin Interface 115
serverStatus 116
mongostat 118
Third-Party Plug-Ins 118

Security and Authentication 118
Authentication Basics 118
How Authentication Works 120
Other Security Considerations 121

Backup and Repair 121
Data File Backup 121
mongodump and mongorestore 122
fsync and Lock 123
Slave Backups 124
Repair 124

9. Replication . 127
Master-Slave Replication 127

Options 128
Adding and Removing Sources 129

Replica Sets 130
Initializing a Set 132
Nodes in a Replica Set 133
Failover and Primary Election 135

Performing Operations on a Slave 136
Read Scaling 137
Using Slaves for Data Processing 137

How It Works 138
The Oplog 138
Syncing 139
Replication State and the Local Database 139
Blocking for Replication 140

Administration 141
Diagnostics 141
Changing the Oplog Size 141

viii | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Replication with Authentication 142

10. Sharding . 143
Introduction to Sharding 143
Autosharding in MongoDB 143

When to Shard 145
The Key to Sharding: Shard Keys 145

Sharding an Existing Collection 145
Incrementing Shard Keys Versus Random Shard Keys 146
How Shard Keys Affect Operations 146

Setting Up Sharding 147
Starting the Servers 147
Sharding Data 148

Production Configuration 149
A Robust Config 149
Many mongos 149
A Sturdy Shard 150
Physical Servers 150

Sharding Administration 150
config Collections 150
Sharding Commands 152

11. Example Applications . 155
Chemical Search Engine: Java 155

Installing the Java Driver 155
Using the Java Driver 155
Schema Design 156
Writing This in Java 158
Issues 159

News Aggregator: PHP 159
Installing the PHP Driver 160
Using the PHP Driver 161
Designing the News Aggregator 162
Trees of Comments 162
Voting 164

Custom Submission Forms: Ruby 164
Installing the Ruby Driver 164
Using the Ruby Driver 165
Custom Form Submission 166
Ruby Object Mappers and Using MongoDB with Rails 167

Real-Time Analytics: Python 168
Installing PyMongo 168
Using PyMongo 168

Table of Contents | ix

www.it-ebooks.info

http://www.it-ebooks.info/

MongoDB for Real-Time Analytics 169
Schema 169
Handling a Request 170
Using Analytics Data 170
Other Considerations 171

A. Installing MongoDB . 173

B. mongo: The Shell . 177

C. MongoDB Internals . 179

Index . 183

x | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Foreword

In the last 10 years, the Internet has challenged relational databases in ways nobody
could have foreseen. Having used MySQL at large and growing Internet companies
during this time, I’ve seen this happen firsthand. First you have a single server with a
small data set. Then you find yourself setting up replication so you can scale out reads
and deal with potential failures. And, before too long, you’ve added a caching layer,
tuned all the queries, and thrown even more hardware at the problem.

Eventually you arrive at the point when you need to shard the data across multiple
clusters and rebuild a ton of application logic to deal with it. And soon after that you
realize that you’re locked into the schema you modeled so many months before.

Why? Because there’s so much data in your clusters now that altering the schema will
take a long time and involve a lot of precious DBA time. It’s easier just to work around
it in code. This can keep a small team of developers busy for many months. In the end,
you’ll always find yourself wondering if there’s a better way—or why more of these
features are not built into the core database server.

Keeping with tradition, the Open Source community has created a plethora of “better
ways” in response to the ballooning data needs of modern web applications. They span
the spectrum from simple in-memory key/value stores to complicated SQL-speaking
MySQL/InnoDB derivatives. But the sheer number of choices has made finding the
right solution more difficult. I’ve looked at many of them.

I was drawn to MongoDB by its pragmatic approach. MongoDB doesn’t try to be ev-
erything to everyone. Instead it strikes the right balance between features and com-
plexity, with a clear bias toward making previously difficult tasks far easier. In other
words, it has the features that really matter to the vast majority of today’s web appli-
cations: indexes, replication, sharding, a rich query syntax, and a very flexible data
model. All of this comes without sacrificing speed.

Like MongoDB itself, this book is very straightforward and approachable. New
MongoDB users can start with Chapter 1 and be up and running in no time. Experi-
enced users will appreciate this book’s breadth and authority. It’s a solid reference for
advanced administrative topics such as replication, backups, and sharding, as well as
popular client APIs.

xi

www.it-ebooks.info

http://www.it-ebooks.info/

Having recently started to use MongoDB in my day job, I have no doubt that this book
will be at my side for the entire journey—from the first install to production deployment
of a sharded and replicated cluster. It’s an essential reference to anyone seriously look-
ing at using MongoDB.

—Jeremy Zawodny
Craigslist Software Engineer

August 2010

xii | Foreword

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

How This Book Is Organized

Getting Up to Speed with MongoDB
In Chapter 1, Introduction, we provide some background about MongoDB: why it was
created, the goals it is trying to accomplish, and why you might choose to use it for a
project. We go into more detail in Chapter 2, Getting Started, which provides an in-
troduction to the core concepts and vocabulary of MongoDB. Chapter 2 also provides
a first look at working with MongoDB, getting you started with the database and
the shell.

Developing with MongoDB
The next two chapters cover the basic material that developers need to know to work
with MongoDB. In Chapter 3, Creating, Updating, and Deleting Documents, we describe
how to perform those basic write operations, including how to do them with different
levels of safety and speed. Chapter 4, Querying, explains how to find documents and
create complex queries. This chapter also covers how to iterate through results and
options for limiting, skipping, and sorting results.

Advanced Usage
The next three chapters go into more complex usage than simply storing and retrieving
data. Chapter 5, Indexing, explains what indexes are and how to use them with
MongoDB. It also covers tools you can use to examine or modify the indexes used to
perform a query, and it covers index administration. Chapter 6, Aggregation, covers a
number of techniques for aggregating data with MongoDB, including counting, finding
distinct values, grouping documents, and using MapReduce. Chapter 7, Advanced
Topics, is a mishmash of important tidbits that didn’t fit into any of the previous cat-
egories: file storage, server-side JavaScript, database commands, and database
references.

xiii

www.it-ebooks.info

http://www.it-ebooks.info/

Administration
The next three chapters are less about programming and more about the operational
aspects of MongoDB. Chapter 8, Administration, discusses options for starting the da-
tabase in different ways, monitoring a MongoDB server, and keeping deployments se-
cure. Chapter 8 also covers how to keep proper backups of the data you’ve stored in
MongoDB. In Chapter 9, Replication, we explain how to set up replication with
MongoDB, including standard master-slave configuration and setups with automatic
failover. This chapter also covers how MongoDB replication works and options for
tweaking it. Chapter 10, Sharding, describes how to scale MongoDB horizontally: it
covers what autosharding is, how to set it up, and the ways in which it impacts
applications.

Developing Applications with MongoDB
In Chapter 11, Example Applications, we provide example applications using
MongoDB, written in Java, PHP, Python, and Ruby. These examples illustrate how to
map the concepts described earlier in the book to specific languages and problem
domains.

Appendixes
Appendix A, Installing MongoDB, explains MongoDB’s versioning scheme and how to
install it on Windows, OS X, and Linux. Appendix B, mongo: The Shell, includes some
useful shell tips and tools. Finally, Appendix C, MongoDB Internals, details a little
about how MongoDB works internally: its storage engine, data format, and wire
protocol.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, collection names, database names,
filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, command-line utilities, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

xiv | Preface

www.it-ebooks.info

http://www.it-ebooks.info/

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book can help you get your job done. In general, you may use the code in this
book in your programs and documentation. You do not need to contact us for permis-
sion unless you’re reproducing a significant portion of the code. For example, writing
a program that uses several chunks of code from this book does not require permission.
Selling or distributing a CD-ROM of examples from O’Reilly books does require per-
mission. Answering a question by citing this book and quoting example code does not
require permission. Incorporating a significant amount of example code from this book
into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “MongoDB: The Definitive Guide by
Kristina Chodorow and Michael Dirolf (O’Reilly). Copyright 2010 Kristina Chodorow
and Michael Dirolf, 978-1-449-38156-1.”

If you feel your use of code examples falls outside fair use or the permission given here,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search more than 7,500 technology and creative reference books and vid-
eos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

Preface | xv

www.it-ebooks.info

mailto:permissions@oreilly.com
http://www.it-ebooks.info/

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9781449381561

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

http://www.oreilly.com

Acknowledgments
We would like to thank Eliot Horowitz and Dwight Merriman, who made all of this
possible by starting the MongoDB project. We’d also like to thank our tech reviewers:
Alberto Lerner, Mathias Stearn, Aaron Staple, James Avery, and John Hornbeck. You
guys made this book immeasurably better (and more correct). Thank you, Julie Steele,
for being such a terrific editor and for helping us every step of the way. Thanks to
everybody else at O’Reilly who helped get this book into production. Finally, a big
thanks is owed to the entire MongoDB community, which has supported the project
(and this book) from the very beginning.

Acknowledgments from Kristina
Thanks to all of my co-workers at 10gen for sharing your knowledge and advice on
MongoDB (as well as your advice on ops, beer, and plane crashes). Also, thank you,
Mike, for magically making half of this book appear and correcting some of my more
embarrassing errors before Julie saw them. Finally, I would like to thank Andrew,

xvi | Preface

www.it-ebooks.info

http://my.safaribooksonline.com/?portal=oreilly
http://www.oreilly.com/catalog/9781449381561
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://www.it-ebooks.info/

Susan, and Andy for all of their support, patience, and suggestions. I couldn’t have
done it without you guys.

Acknowledgments from Michael
Thanks to all of my friends, who have put up with me during this process (and in
general). Thanks to everyone I’ve worked with at 10gen for making working on
MongoDB a blast. Thank you, Kristina, for being such a great coauthor. Most impor-
tantly, I would like to thank my entire family for all of their support with this and
everything I undertake.

Preface | xvii

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

Introduction

MongoDB is a powerful, flexible, and scalable data store. It combines the ability to
scale out with many of the most useful features of relational databases, such as secon-
dary indexes, range queries, and sorting. MongoDB is also incredibly featureful: it has
tons of useful features such as built-in support for MapReduce-style aggregation and
geospatial indexes.

There is no point in creating a great technology if it’s impossible to work with, so a lot
of effort has been put into making MongoDB easy to get started with and a pleasure to
use. MongoDB has a developer-friendly data model, administrator-friendly configura-
tion options, and natural-feeling language APIs presented by drivers and the database
shell. MongoDB tries to get out of your way, letting you program instead of worrying
about storing data.

A Rich Data Model
MongoDB is a document-oriented database, not a relational one. The primary reason
for moving away from the relational model is to make scaling out easier, but there are
some other advantages as well.

The basic idea is to replace the concept of a “row” with a more flexible model, the
“document.” By allowing embedded documents and arrays, the document-oriented
approach makes it possible to represent complex hierarchical relationships with a single
record. This fits very naturally into the way developers in modern object-oriented lan-
guages think about their data.

1

www.it-ebooks.info

http://www.it-ebooks.info/

MongoDB is also schema-free: a document’s keys are not predefined or fixed in any
way. Without a schema to change, massive data migrations are usually unnecessary.
New or missing keys can be dealt with at the application level, instead of forcing all
data to have the same shape. This gives developers a lot of flexibility in how they work
with evolving data models.

Easy Scaling
Data set sizes for applications are growing at an incredible pace. Advances in sensor
technology, increases in available bandwidth, and the popularity of handheld devices
that can be connected to the Internet have created an environment where even small-
scale applications need to store more data than many databases were meant to handle.
A terabyte of data, once an unheard-of amount of information, is now commonplace.

As the amount of data that developers need to store grows, developers face a difficult
decision: how should they scale their databases? Scaling a database comes down to the
choice between scaling up (getting a bigger machine) or scaling out (partitioning data
across more machines). Scaling up is often the path of least resistance, but it has draw-
backs: large machines are often very expensive, and eventually a physical limit is
reached where a more powerful machine cannot be purchased at any cost. For the type
of large web application that most people aspire to build, it is either impossible or not
cost-effective to run off of one machine. Alternatively, it is both extensible and eco-
nomical to scale out: to add storage space or increase performance, you can buy another
commodity server and add it to your cluster.

MongoDB was designed from the beginning to scale out. Its document-oriented data
model allows it to automatically split up data across multiple servers. It can balance
data and load across a cluster, redistributing documents automatically. This allows
developers to focus on programming the application, not scaling it. When they need
more capacity, they can just add new machines to the cluster and let the database figure
out how to organize everything.

Tons of Features…
It’s difficult to quantify what a feature is: anything above and beyond what a relational
database provides? Memcached? Other document-oriented databases? However, no
matter what the baseline is, MongoDB has some really nice, unique tools that are not
(all) present in any other solution.

Indexing
MongoDB supports generic secondary indexes, allowing a variety of fast queries,
and provides unique, compound, and geospatial indexing capabilities as well.

2 | Chapter 1: Introduction

www.it-ebooks.info

http://www.it-ebooks.info/

Stored JavaScript
Instead of stored procedures, developers can store and use JavaScript functions
and values on the server side.

Aggregation
MongoDB supports MapReduce and other aggregation tools.

Fixed-size collections
Capped collections are fixed in size and are useful for certain types of data, such
as logs.

File storage
MongoDB supports an easy-to-use protocol for storing large files and file metadata.

Some features common to relational databases are not present in MongoDB, notably
joins and complex multirow transactions. These are architectural decisions to allow
for scalability, because both of those features are difficult to provide efficiently in a
distributed system.

…Without Sacrificing Speed
Incredible performance is a major goal for MongoDB and has shaped many design
decisions. MongoDB uses a binary wire protocol as the primary mode of interaction
with the server (as opposed to a protocol with more overhead, like HTTP/REST). It
adds dynamic padding to documents and preallocates data files to trade extra space
usage for consistent performance. It uses memory-mapped files in the default storage
engine, which pushes the responsibility for memory management to the operating sys-
tem. It also features a dynamic query optimizer that “remembers” the fastest way to
perform a query. In short, almost every aspect of MongoDB was designed to maintain
high performance.

Although MongoDB is powerful and attempts to keep many features from relational
systems, it is not intended to do everything that a relational database does. Whenever
possible, the database server offloads processing and logic to the client side (handled
either by the drivers or by a user’s application code). Maintaining this streamlined
design is one of the reasons MongoDB can achieve such high performance.

Simple Administration
MongoDB tries to simplify database administration by making servers administrate
themselves as much as possible. Aside from starting the database server, very little
administration is necessary. If a master server goes down, MongoDB can automatically
failover to a backup slave and promote the slave to a master. In a distributed environ-
ment, the cluster needs to be told only that a new node exists to automatically integrate
and configure it.

Simple Administration | 3

www.it-ebooks.info

http://www.it-ebooks.info/

MongoDB’s administration philosophy is that the server should handle as much of the
configuration as possible automatically, allowing (but not requiring) users to tweak
their setups if needed.

But Wait, That’s Not All…
Throughout the course of the book, we will take the time to note the reasoning or
motivation behind particular decisions made in the development of MongoDB.
Through those notes we hope to share the philosophy behind MongoDB. The best way
to summarize the MongoDB project, however, is through its main focus—to create a
full-featured data store that is scalable, flexible, and fast.

4 | Chapter 1: Introduction

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

Getting Started

MongoDB is very powerful, but it is still easy to get started with. In this chapter we’ll
introduce some of the basic concepts of MongoDB:

• A document is the basic unit of data for MongoDB, roughly equivalent to a row in
a relational database management system (but much more expressive).

• Similarly, a collection can be thought of as the schema-free equivalent of a table.

• A single instance of MongoDB can host multiple independent databases, each of
which can have its own collections and permissions.

• MongoDB comes with a simple but powerful JavaScript shell, which is useful for
the administration of MongoDB instances and data manipulation.

• Every document has a special key, "_id", that is unique across the document’s
collection.

Documents
At the heart of MongoDB is the concept of a document: an ordered set of keys with
associated values. The representation of a document differs by programming language,
but most languages have a data structure that is a natural fit, such as a map, hash, or
dictionary. In JavaScript, for example, documents are represented as objects:

{"greeting" : "Hello, world!"}

This simple document contains a single key, "greeting", with a value of "Hello,
world!". Most documents will be more complex than this simple one and often will
contain multiple key/value pairs:

{"greeting" : "Hello, world!", "foo" : 3}

5

www.it-ebooks.info

http://www.it-ebooks.info/

This example is a good illustration of several important concepts:

• Key/value pairs in documents are ordered—the earlier document is distinct from
the following document:

{"foo" : 3, "greeting" : "Hello, world!"}

In most cases the ordering of keys in documents is not important.
In fact, in some programming languages the default representation
of a document does not even maintain ordering (e.g., dictionaries
in Python and hashes in Perl or Ruby 1.8). Drivers for those lan-
guages usually have some mechanism for specifying documents
with ordering for the rare cases when it is necessary. (Those cases
will be noted throughout the text.)

• Values in documents are not just “blobs.” They can be one of several different data
types (or even an entire embedded document—see “Embedded Docu-
ments” on page 20). In this example the value for "greeting" is a string, whereas
the value for "foo" is an integer.

The keys in a document are strings. Any UTF-8 character is allowed in a key, with a
few notable exceptions:

• Keys must not contain the character \0 (the null character). This character is used
to signify the end of a key.

• The . and $ characters have some special properties and should be used only in
certain circumstances, as described in later chapters. In general, they should be
considered reserved, and drivers will complain if they are used inappropriately.

• Keys starting with _ should be considered reserved; although this is not strictly
enforced.

MongoDB is type-sensitive and case-sensitive. For example, these documents are
distinct:

{"foo" : 3}
{"foo" : "3"}

As are as these:

{"foo" : 3}
{"Foo" : 3}

A final important thing to note is that documents in MongoDB cannot contain duplicate
keys. For example, the following is not a legal document:

{"greeting" : "Hello, world!", "greeting" : "Hello, MongoDB!"}

6 | Chapter 2: Getting Started

www.it-ebooks.info

http://www.it-ebooks.info/

Collections
A collection is a group of documents. If a document is the MongoDB analog of a row
in a relational database, then a collection can be thought of as the analog to a table.

Schema-Free
Collections are schema-free. This means that the documents within a single collection
can have any number of different “shapes.” For example, both of the following docu-
ments could be stored in a single collection:

{"greeting" : "Hello, world!"}
{"foo" : 5}

Note that the previous documents not only have different types for their values (string
versus integer) but also have entirely different keys. Because any document can be put
into any collection, the question often arises: “Why do we need separate collections at
all?” It’s a good question—with no need for separate schemas for different kinds of
documents, why should we use more than one collection? There are several good
reasons:

• Keeping different kinds of documents in the same collection can be a nightmare
for developers and admins. Developers need to make sure that each query is only
returning documents of a certain kind or that the application code performing a
query can handle documents of different shapes. If we’re querying for blog posts,
it’s a hassle to weed out documents containing author data.

• It is much faster to get a list of collections than to extract a list of the types in a
collection. For example, if we had a type key in the collection that said whether
each document was a “skim,” “whole,” or “chunky monkey” document, it would
be much slower to find those three values in a single collection than to have three
separate collections and query for their names (see “Subcollections”
on page 8).

• Grouping documents of the same kind together in the same collection allows for
data locality. Getting several blog posts from a collection containing only posts will
likely require fewer disk seeks than getting the same posts from a collection con-
taining posts and author data.

• We begin to impose some structure on our documents when we create indexes.
(This is especially true in the case of unique indexes.) These indexes are defined
per collection. By putting only documents of a single type into the same collection,
we can index our collections more efficiently.

As you can see, there are sound reasons for creating a schema and for grouping related
types of documents together. MongoDB just relaxes this requirement and allows de-
velopers more flexibility.

Collections | 7

www.it-ebooks.info

http://www.it-ebooks.info/

Naming
A collection is identified by its name. Collection names can be any UTF-8 string, with
a few restrictions:

• The empty string ("") is not a valid collection name.

• Collection names may not contain the character \0 (the null character) because
this delineates the end of a collection name.

• You should not create any collections that start with system., a prefix reserved for
system collections. For example, the system.users collection contains the database’s
users, and the system.namespaces collection contains information about all of the
database’s collections.

• User-created collections should not contain the reserved character $ in the name.
The various drivers available for the database do support using $ in collection
names because some system-generated collections contain it. You should not use
$ in a name unless you are accessing one of these collections.

Subcollections

One convention for organizing collections is to use namespaced subcollections sepa-
rated by the . character. For example, an application containing a blog might have a
collection named blog.posts and a separate collection named blog.authors. This is for
organizational purposes only—there is no relationship between the blog collection (it
doesn’t even have to exist) and its “children.”

Although subcollections do not have any special properties, they are useful and incor-
porated into many MongoDB tools:

• GridFS, a protocol for storing large files, uses subcollections to store file metadata
separately from content chunks (see Chapter 7 for more information about
GridFS).

• The MongoDB web console organizes the data in its DBTOP section by
subcollection (see Chapter 8 for more information on administration).

• Most drivers provide some syntactic sugar for accessing a subcollection of a given
collection. For example, in the database shell, db.blog will give you the blog col-
lection, and db.blog.posts will give you the blog.posts collection.

Subcollections are a great way to organize data in MongoDB, and their use is highly
recommended.

Databases
In addition to grouping documents by collection, MongoDB groups collections into
databases. A single instance of MongoDB can host several databases, each of which can
be thought of as completely independent. A database has its own permissions, and each

8 | Chapter 2: Getting Started

www.it-ebooks.info

http://www.it-ebooks.info/

database is stored in separate files on disk. A good rule of thumb is to store all data for
a single application in the same database. Separate databases are useful when storing
data for several application or users on the same MongoDB server.

Like collections, databases are identified by name. Database names can be any UTF-8
string, with the following restrictions:

• The empty string ("") is not a valid database name.

• A database name cannot contain any of these characters: ' ' (a single space), ., $, /,
\, or \0 (the null character).

• Database names should be all lowercase.

• Database names are limited to a maximum of 64 bytes.

One thing to remember about database names is that they will actually end up as files
on your filesystem. This explains why many of the previous restrictions exist in the first
place.

There are also several reserved database names, which you can access directly but have
special semantics. These are as follows:

admin
This is the “root” database, in terms of authentication. If a user is added to the
admin database, the user automatically inherits permissions for all databases.
There are also certain server-wide commands that can be run only from the ad-
min database, such as listing all of the databases or shutting down the server.

local
This database will never be replicated and can be used to store any collections that
should be local to a single server (see Chapter 9 for more information about rep-
lication and the local database).

config
When Mongo is being used in a sharded setup (see Chapter 10), the config database
is used internally to store information about the shards.

By prepending a collection’s name with its containing database, you can get a fully
qualified collection name called a namespace. For instance, if you are using the
blog.posts collection in the cms database, the namespace of that collection would be
cms.blog.posts. Namespaces are limited to 121 bytes in length and, in practice, should
be less than 100 bytes long. For more on namespaces and the internal representation
of collections in MongoDB, see Appendix C.

Databases | 9

www.it-ebooks.info

http://www.it-ebooks.info/

Getting and Starting MongoDB
MongoDB is almost always run as a network server that clients can connect to and
perform operations on. To start the server, run the mongod executable:

$./mongod
./mongod --help for help and startup options
Sun Mar 28 12:31:20 Mongo DB : starting : pid = 44978 port = 27017
dbpath = /data/db/ master = 0 slave = 0 64-bit
Sun Mar 28 12:31:20 db version v1.5.0-pre-, pdfile version 4.5
Sun Mar 28 12:31:20 git version: ...
Sun Mar 28 12:31:20 sys info: ...
Sun Mar 28 12:31:20 waiting for connections on port 27017
Sun Mar 28 12:31:20 web admin interface listening on port 28017

Or if you’re on Windows, run this:

$ mongod.exe

For detailed information on installing MongoDB on your system, see
Appendix A.

When run with no arguments, mongod will use the default data directory, /data/db/ (or
C:\data\db\ on Windows), and port 27017. If the data directory does not already exist
or is not writable, the server will fail to start. It is important to create the data directory
(e.g., mkdir -p /data/db/), and to make sure your user has permission to write to the
directory, before starting MongoDB. The server will also fail to start if the port is not
available—this is often caused by another instance of MongoDB that is already running.

The server will print some version and system information and then begin waiting for
connections. By default, MongoDB listens for socket connections on port 27017.

mongod also sets up a very basic HTTP server that listens on a port 1,000 higher than
the main port, in this case 28017. This means that you can get some administrative
information about your database by opening a web browser and going to http://local
host:28017.

You can safely stop mongod by typing Ctrl-c in the shell that is running the server.

For more information on starting or stopping MongoDB, see “Starting
and Stopping MongoDB” on page 111, and for more on the adminis-
trative interface, see “Using the Admin Interface” on page 115.

10 | Chapter 2: Getting Started

www.it-ebooks.info

http://localhost:28017
http://localhost:28017
http://www.it-ebooks.info/

MongoDB Shell
MongoDB comes with a JavaScript shell that allows interaction with a MongoDB in-
stance from the command line. The shell is very useful for performing administrative
functions, inspecting a running instance, or just playing around. The mongo shell is a
crucial tool for using MongoDB and is used extensively throughout the rest of the text.

Running the Shell
To start the shell, run the mongo executable:

$./mongo
MongoDB shell version: 1.6.0
url: test
connecting to: test
type "help" for help
>

The shell automatically attempts to connect to a MongoDB server on startup, so make
sure you start mongod before starting the shell.

The shell is a full-featured JavaScript interpreter, capable of running arbitrary JavaScript
programs. To illustrate this, let’s perform some basic math:

> x = 200
200
> x / 5;
40

We can also leverage all of the standard JavaScript libraries:

> Math.sin(Math.PI / 2);
1
> new Date("2010/1/1");
"Fri Jan 01 2010 00:00:00 GMT-0500 (EST)"
> "Hello, World!".replace("World", "MongoDB");
Hello, MongoDB!

We can even define and call JavaScript functions:

> function factorial (n) {
... if (n <= 1) return 1;
... return n * factorial(n - 1);
... }
> factorial(5);
120

Note that you can create multiline commands. The shell will detect whether the Java-
Script statement is complete when you press Enter and, if it is not, will allow you to
continue writing it on the next line.

MongoDB Shell | 11

www.it-ebooks.info

http://www.it-ebooks.info/

A MongoDB Client
Although the ability to execute arbitrary JavaScript is cool, the real power of the shell
lies in the fact that it is also a stand-alone MongoDB client. On startup, the shell con-
nects to the test database on a MongoDB server and assigns this database connection
to the global variable db. This variable is the primary access point to MongoDB through
the shell.

The shell contains some add-ons that are not valid JavaScript syntax but were imple-
mented because of their familiarity to users of SQL shells. The add-ons do not provide
any extra functionality, but they are nice syntactic sugar. For instance, one of the most
important operations is selecting which database to use:

> use foobar
switched to db foobar

Now if you look at the db variable, you can see that it refers to the foobar database:

> db
foobar

Because this is a JavaScript shell, typing a variable will convert the variable to a string
(in this case, the database name) and print it.

Collections can be accessed from the db variable. For example, db.baz returns the baz
collection in the current database. Now that we can access a collection in the shell, we
can perform almost any database operation.

Basic Operations with the Shell
We can use the four basic operations, create, read, update, and delete (CRUD), to
manipulate and view data in the shell.

Create

The insert function adds a document to a collection. For example, suppose we want
to store a blog post. First, we’ll create a local variable called post that is a JavaScript
object representing our document. It will have the keys "title", "content", and
"date" (the date that it was published):

> post = {"title" : "My Blog Post",
... "content" : "Here's my blog post.",
... "date" : new Date()}
{
 "title" : "My Blog Post",
 "content" : "Here's my blog post.",
 "date" : "Sat Dec 12 2009 11:23:21 GMT-0500 (EST)"
}

This object is a valid MongoDB document, so we can save it to the blog collection using
the insert method:

12 | Chapter 2: Getting Started

www.it-ebooks.info

http://www.it-ebooks.info/

> db.blog.insert(post)

The blog post has been saved to the database. We can see it by calling find on the
collection:

> db.blog.find()
{
 "_id" : ObjectId("4b23c3ca7525f35f94b60a2d"),
 "title" : "My Blog Post",
 "content" : "Here's my blog post.",
 "date" : "Sat Dec 12 2009 11:23:21 GMT-0500 (EST)"
}

You can see that an "_id" key was added and that the other key/value pairs were saved
as we entered them. The reason for "_id"’s sudden appearance is explained at the end
of this chapter.

Read

find returns all of the documents in a collection. If we just want to see one document
from a collection, we can use findOne:

> db.blog.findOne()
{
 "_id" : ObjectId("4b23c3ca7525f35f94b60a2d"),
 "title" : "My Blog Post",
 "content" : "Here's my blog post.",
 "date" : "Sat Dec 12 2009 11:23:21 GMT-0500 (EST)"
}

find and findOne can also be passed criteria in the form of a query document. This will
restrict the documents matched by the query. The shell will automatically display up
to 20 documents matching a find, but more can be fetched. See Chapter 4 for more
information on querying.

Update

If we would like to modify our post, we can use update. update takes (at least) two
parameters: the first is the criteria to find which document to update, and the second
is the new document. Suppose we decide to enable comments on the blog post we
created earlier. We’ll need to add an array of comments as the value for a new key in
our document.

The first step is to modify the variable post and add a "comments" key:

> post.comments = []
[]

Then we perform the update, replacing the post titled “My Blog Post” with our new
version of the document:

> db.blog.update({title : "My Blog Post"}, post)

MongoDB Shell | 13

www.it-ebooks.info

http://www.it-ebooks.info/

Now the document has a "comments" key. If we call find again, we can see the new key:

> db.blog.find()
{
 "_id" : ObjectId("4b23c3ca7525f35f94b60a2d"),
 "title" : "My Blog Post",
 "content" : "Here's my blog post.",
 "date" : "Sat Dec 12 2009 11:23:21 GMT-0500 (EST)"
 "comments" : []
}

Delete

remove deletes documents permanently from the database. Called with no parameters,
it removes all documents from a collection. It can also take a document specifying
criteria for removal. For example, this would remove the post we just created:

> db.blog.remove({title : "My Blog Post"})

Now the collection will be empty again.

Tips for Using the Shell
Because mongo is simply a JavaScript shell, you can get a great deal of help for it by
simply looking up JavaScript documentation online. The shell also includes built-in
help that can be accessed by typing help:

> help
HELP
 show dbs show database names
 show collections show collections in current database
 show users show users in current database
 show profile show recent system.profile entries w. time >= 1ms
 use <db name> set current database to <db name>
 db.help() help on DB methods
 db.foo.help() help on collection methods
 db.foo.find() list objects in collection foo
 db.foo.find({ a : 1 }) list objects in foo where a == 1
 it result of the last line evaluated

Help for database-level commands is provided by db.help();, and help at the collec-
tions can be accessed with db.foo.help();.

A good way of figuring out what a function is doing is to type it without the parentheses.
This will print the JavaScript source code for the function. For example, if we are curious
about how the update function works or cannot remember the order of parameters, we
can do the following:

> db.foo.update
function (query, obj, upsert, multi) {
 assert(query, "need a query");
 assert(obj, "need an object");
 this._validateObject(obj);
 this._mongo.update(this._fullName, query, obj,

14 | Chapter 2: Getting Started

www.it-ebooks.info

http://www.it-ebooks.info/

 upsert ? true : false, multi ? true : false);
}

There is also an autogenerated API of all the JavaScript functions provided by the shell
at http://api.mongodb.org/js.

Inconvenient collection names

Fetching a collection with db.collectionName almost always works, unless the collec-
tion name actually is a property of the database class. For instance, if we are trying to
access the version collection, we cannot say db.version because db.version is a database
function. (It returns the version of the running MongoDB server.)

> db.version
function () {
 return this.serverBuildInfo().version;
}

db’s collection-returning behavior is only a fallback for when JavaScript cannot find a
matching property. When there is a property with the same name as the desired col-
lection, we can use the getCollection function:

> db.getCollection("version");
test.version

This can also be handy for collections with invalid JavaScript in their names. For ex-
ample, foo-bar is a valid collection name, but it’s variable subtraction in JavaScript.
You can get the foo-bar collection with db.getCollection("foo-bar").

In JavaScript, x.y is identical to x['y']. This means that subcollections can be accessed
using variables, not just literal names. That is, if you needed to perform some operation
on every blog subcollection, you could iterate through them with something like this:

var collections = ["posts", "comments", "authors"];

for (i in collections) {
 doStuff(db.blog[collections[i]]);
}

Instead of this:

doStuff(db.blog.posts);
doStuff(db.blog.comments);
doStuff(db.blog.authors);

Data Types
The beginning of this chapter covered the basics of what a document is. Now that you
are up and running with MongoDB and can try things on the shell, this section will
dive a little deeper. MongoDB supports a wide range of data types as values in docu-
ments. In this section, we’ll outline all of the supported types.

Data Types | 15

www.it-ebooks.info

http://api.mongodb.org/js
http://www.it-ebooks.info/

Basic Data Types
Documents in MongoDB can be thought of as “JSON-like” in that they are conceptually
similar to objects in JavaScript. JSON is a simple representation of data: the specifica-
tion can be described in about one paragraph (http://www.json.org proves it) and lists
only six data types. This is a good thing in many ways: it’s easy to understand, parse,
and remember. On the other hand, JSON’s expressive capabilities are limited, because
the only types are null, boolean, numeric, string, array, and object.

Although these types allow for an impressive amount of expressivity, there are a couple
of additional types that are crucial for most applications, especially when working with
a database. For example, JSON has no date type, which makes working with dates even
more annoying than it usually is. There is a number type, but only one—there is no
way to differentiate floats and integers, never mind any distinction between 32-bit and
64-bit numbers. There is no way to represent other commonly used types, either, such
as regular expressions or functions.

MongoDB adds support for a number of additional data types while keeping JSON’s
essential key/value pair nature. Exactly how values of each type are represented varies
by language, but this is a list of the commonly supported types and how they are rep-
resented as part of a document in the shell:

null
Null can be used to represent both a null value and a nonexistent field:

{"x" : null}

boolean
There is a boolean type, which will be used for the values 'true' and 'false':

{"x" : true}

32-bit integer
This cannot be represented on the shell. As mentioned earlier, JavaScript supports
only 64-bit floating point numbers, so 32-bit integers will be converted into those.

64-bit integer
Again, the shell cannot represent these. The shell will display them using a special
embedded document; see the section “Numbers” on page 18 for details.

64-bit floating point number
All numbers in the shell will be of this type. Thus, this will be a floating-point
number:

{"x" : 3.14}

As will this:

{"x" : 3}

string
Any string of UTF-8 characters can be represented using the string type:

16 | Chapter 2: Getting Started

www.it-ebooks.info

http://www.json.org
http://www.it-ebooks.info/

{"x" : "foobar"}

symbol
This type is not supported by the shell. If the shell gets a symbol from the database,
it will convert it into a string.

object id
An object id is a unique 12-byte ID for documents. See the section “_id and Ob-
jectIds” on page 20 for details:

{"x" : ObjectId()}

date
Dates are stored as milliseconds since the epoch. The time zone is not stored:

{"x" : new Date()}

regular expression
Documents can contain regular expressions, using JavaScript’s regular expression
syntax:

{"x" : /foobar/i}

code
Documents can also contain JavaScript code:

{"x" : function() { /* ... */ }}

binary data
Binary data is a string of arbitrary bytes. It cannot be manipulated from the shell.

maximum value
BSON contains a special type representing the largest possible value. The shell does
not have a type for this.

minimum value
BSON contains a special type representing the smallest possible value. The shell
does not have a type for this.

undefined
Undefined can be used in documents as well (JavaScript has distinct types for null
and undefined):

{"x" : undefined}

array
Sets or lists of values can be represented as arrays:

{"x" : ["a", "b", "c"]}

embedded document
Documents can contain entire documents, embedded as values in a parent
document:

{"x" : {"foo" : "bar"}}

Data Types | 17

www.it-ebooks.info

http://www.it-ebooks.info/

Numbers
JavaScript has one “number” type. Because MongoDB has three number types (4-byte
integer, 8-byte integer, and 8-byte float), the shell has to hack around JavaScript’s lim-
itations a bit. By default, any number in the shell is treated as a double by MongoDB.
This means that if you retrieve a 4-byte integer from the database, manipulate its docu-
ment, and save it back to the database even without changing the integer, the integer
will be resaved as a floating-point number. Thus, it is generally a good idea not to
overwrite entire documents from the shell (see Chapter 3 for information on making
changes to the values of individual keys).

Another problem with every number being represented by a double is that there are
some 8-byte integers that cannot be accurately represented by 8-byte floats. Therefore,
if you save an 8-byte integer and look at it in the shell, the shell will display it as an
embedded document indicating that it might not be exact. For example, if we save a
document with a "myInteger" key whose value is the 64-bit integer, 3, and then look at
it in the shell, it will look like this:

> doc = db.nums.findOne()
{
 "_id" : ObjectId("4c0beecfd096a2580fe6fa08"),
 "myInteger" : {
 "floatApprox" : 3
 }
}

The number is not changed in the database (unless you modify and resave the object
from the shell, in which case it will turn into a float); the embedded document just
indicates that the shell is displaying a floating-point approximation of an 8-byte integer.
If this embedded document has only one key, it is, in fact, exact.

If you insert an 8-byte integer that cannot be accurately displayed as a double, the shell
will add two keys, "top" and "bottom", containing the 32-bit integers representing the
4 high-order bytes and 4 low-order bytes of the integer, respectively. For instance, if
we insert 9223372036854775807, the shell will show us the following:

> db.nums.findOne()
{
 "_id" : ObjectId("4c0beecfd096a2580fe6fa09"),
 "myInteger" : {
 "floatApprox" : 9223372036854776000,
 "top" : 2147483647,
 "bottom" : 4294967295
 }
}

The "floatApprox" embedded documents are special and can be manipulated as num-
bers as well as documents:

> doc.myInteger + 1
4

18 | Chapter 2: Getting Started

www.it-ebooks.info

http://www.it-ebooks.info/

> doc.myInteger.floatApprox
3

All 4-byte integers can be represented exactly by an 8-byte floating-point number, so
they are displayed normally.

Dates
In JavaScript, the Date object is used for MongoDB’s date type. When creating a new
Date object, always call new Date(...), not just Date(...). Calling the constructor as a
function (that is, not including new) returns a string representation of the date, not an
actual Date object. This is not MongoDB’s choice; it is how JavaScript works. If you
are not careful to always use the Date constructor, you can end up with a mishmash of
strings and dates. Strings do not match dates, and vice versa, so this can cause problems
with removing, updating, querying…pretty much everything.

For a full explanation of JavaScript’s Date class and acceptable formats for the con-
structor, see ECMAScript specification section 15.9 (available for download at http://
www.ecmascript.org).

Dates in the shell are displayed using local time zone settings. However, dates in the
database are just stored as milliseconds since the epoch, so they have no time zone
information associated with them. (Time zone information could, of course, be stored
as the value for another key.)

Arrays
Arrays are values that can be interchangeably used for both ordered operations (as
though they were lists, stacks, or queues) and unordered operations (as though they
were sets).

In the following document, the key "things" has an array value:

{"things" : ["pie", 3.14]}

As we can see from the example, arrays can contain different data types as values (in
this case, a string and a floating-point number). In fact, array values can be any of the
supported values for normal key/value pairs, even nested arrays.

One of the great things about arrays in documents is that MongoDB “understands”
their structure and knows how to “reach inside” of arrays to perform operations on
their contents. This allows us to query on arrays and build indexes using their contents.
For instance, in the previous example, MongoDB can query for all documents where
3.14 is an element of the "things" array. If this is a common query, you can even create
an index on the "things" key to improve the query’s speed.

MongoDB also allows atomic updates that modify the contents of arrays, such as
reaching into the array and changing the value pie to pi. We’ll see more examples of
these types of operations throughout the text.

Data Types | 19

www.it-ebooks.info

http://www.ecmascript.org
http://www.ecmascript.org
http://www.it-ebooks.info/

Embedded Documents
Embedded documents are entire MongoDB documents that are used as the value for a
key in another document. They can be used to organize data in a more natural way
than just a flat structure.

For example, if we have a document representing a person and want to store his address,
we can nest this information in an embedded "address" document:

{
 "name" : "John Doe",
 "address" : {
 "street" : "123 Park Street",
 "city" : "Anytown",
 "state" : "NY"
 }
}

The value for the "address" key in the previous example is another document with its
own values for "street", "city", and "state".

As with arrays, MongoDB “understands” the structure of embedded documents and is
able to “reach inside” of them to build indexes, perform queries, or make updates.

We’ll discuss schema design in depth later, but even from this basic example, we can
begin to see how embedded documents can change the way we work with data. In a
relational database, the previous document would probably be modeled as two separate
rows in two different tables (one for “people” and one for “addresses”). With MongoDB
we can embed the address document directly within the person document. When used
properly, embedded documents can provide a more natural (and often more efficient)
representation of information.

The flip side of this is that we are basically denormalizing, so there can be more data
repetition with MongoDB. Suppose “addresses” were a separate table in a relational
database and we needed to fix a typo in an address. When we did a join with “people”
and “addresses,” we’d get the updated address for everyone who shares it. With
MongoDB, we’d need to fix the typo in each person’s document.

_id and ObjectIds
Every document stored in MongoDB must have an "_id" key. The "_id" key’s value
can be any type, but it defaults to an ObjectId. In a single collection, every document
must have a unique value for "_id", which ensures that every document in a collection
can be uniquely identified. That is, if you had two collections, each one could have a
document where the value for "_id" was 123. However, neither collection could contain
more than one document where "_id" was 123.

20 | Chapter 2: Getting Started

www.it-ebooks.info

http://www.it-ebooks.info/

ObjectIds

ObjectId is the default type for "_id". It is designed to be lightweight, while still being
easy to generate in a globally unique way across disparate machines. This is the main
reason why MongoDB uses ObjectIds as opposed to something more traditional, like
an autoincrementing primary key: it is difficult and time-consuming to synchronize
autoincrementing primary keys across multiple servers. Because MongoDB was de-
signed from the beginning to be a distributed database, dealing with many nodes is an
important consideration. The ObjectId type, as we’ll see, is easy to generate in a sharded
environment.

ObjectIds use 12 bytes of storage, which gives them a string representation that is 24
hexadecimal digits: 2 digits for each byte. This causes them to appear larger than they
are, which makes some people nervous. It’s important to note that even though an
ObjectId is often represented as a giant hexadecimal string, the string is actually twice
as long as the data being stored.

If you create multiple new ObjectIds in rapid succession, you can see that only the last
few digits change each time. In addition, a couple of digits in the middle of the
ObjectId will change (if you space the creations out by a couple of seconds). This is
because of the manner in which ObjectIds are created. The 12 bytes of an ObjectId are
generated as follows:

0 1 2 3 4 5 6 7 8 9 10 11

Timestamp Machine PID Increment

The first four bytes of an ObjectId are a timestamp in seconds since the epoch. This
provides a couple of useful properties:

• The timestamp, when combined with the next five bytes (which will be described
in a moment), provides uniqueness at the granularity of a second.

• Because the timestamp comes first, it means that ObjectIds will sort in roughly
insertion order. This is not a strong guarantee but does have some nice properties,
such as making ObjectIds efficient to index.

• In these four bytes exists an implicit timestamp of when each document was cre-
ated. Most drivers expose a method for extracting this information from an
ObjectId.

Because the current time is used in ObjectIds, some users worry that their servers will
need to have synchronized clocks. This is not necessary because the actual value of the
timestamp doesn’t matter, only that it is often new (once per second) and increasing.

The next three bytes of an ObjectId are a unique identifier of the machine on which it
was generated. This is usually a hash of the machine’s hostname. By including these
bytes, we guarantee that different machines will not generate colliding ObjectIds.

Data Types | 21

www.it-ebooks.info

http://www.it-ebooks.info/

To provide uniqueness among different processes generating ObjectIds concurrently
on a single machine, the next two bytes are taken from the process identifier (PID) of
the ObjectId-generating process.

These first nine bytes of an ObjectId guarantee its uniqueness across machines and
processes for a single second. The last three bytes are simply an incrementing counter
that is responsible for uniqueness within a second in a single process. This allows for
up to 2563 (16,777,216) unique ObjectIds to be generated per process in a single second.

Autogeneration of _id

As stated previously, if there is no "_id" key present when a document is inserted, one
will be automatically added to the inserted document. This can be handled by the
MongoDB server but will generally be done by the driver on the client side. There are
a couple of reasons for that:

• Although ObjectIds are designed to be lightweight and easy to generate, there is
still some overhead involved in their generation. The decision to generate them on
the client side reflects an overall philosophy of MongoDB: work should be pushed
out of the server and to the drivers whenever possible. This philosophy reflects the
fact that, even with scalable databases like MongoDB, it is easier to scale out at the
application layer than at the database layer. Moving work to the client side reduces
the burden requiring the database to scale.

• By generating ObjectIds on the client side, drivers are capable of providing richer
APIs than would be otherwise possible. For example, a driver might have its
insert method either return the generated ObjectId or inject it directly into the
document that was inserted. If the driver allowed the server to generate
ObjectIds, then a separate query would be required to determine the value of
"_id" for an inserted document.

22 | Chapter 2: Getting Started

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3

Creating, Updating, and
Deleting Documents

This chapter covers the basics of moving data into and out of the database, including
the following:

• Adding new documents to a collection

• Removing documents from a collection

• Updating existing documents

• Choosing the correct level of safety versus speed for all of these operations

Inserting and Saving Documents
Inserts are the basic method for adding data to MongoDB. To insert a document into
a collection, use the collection’s insert method:

> db.foo.insert({"bar" : "baz"})

This will add an "_id" key to the document (if one does not already exist) and save it
to MongoDB.

Batch Insert
If you have a situation where you are inserting multiple documents into a collection,
you can make the insert faster by using batch inserts. Batch inserts allow you to pass
an array of documents to the database.

Sending dozens, hundreds, or even thousands of documents at a time can make inserts
significantly faster. A batch insert is a single TCP request, meaning that you do not
incur the overhead of doing hundreds of individual requests. It can also cut insert time
by eliminating a lot of the header processing that gets done for each message. When
an individual document is sent to the database, it is prefixed by a header that tells the

23

www.it-ebooks.info

http://www.it-ebooks.info/

database to do an insert operation on a certain collection. By using batch insert, the
database doesn’t need to reprocess this information for each document.

Batch inserts are intended to be used in applications, such as for inserting a couple
hundred sensor data points into an analytics collection at once. They are useful only if
you are inserting multiple documents into a single collection: you cannot use batch
inserts to insert into multiple collections with a single request. If you are just importing
raw data (for example, from a data feed or MySQL), there are command-line tools like
mongoimport that can be used instead of batch insert. On the other hand, it is often
handy to munge data before saving it to MongoDB (converting dates to the date type
or adding a custom "_id") so batch inserts can be used for importing data, as well.

Current versions of MongoDB do not accept messages longer than 16MB, so there is a
limit to how much can be inserted in a single batch insert.

Inserts: Internals and Implications
When you perform an insert, the driver you are using converts the data structure into
BSON, which it then sends to the database (see Appendix C for more on BSON). The
database understands BSON and checks for an "_id" key and that the document’s size
does not exceed 4MB, but other than that, it doesn’t do data validation; it just saves
the document to the database as is. This has a couple of side effects, most notably that
you can insert invalid data and that your database is fairly secure from injection attacks.

All of the drivers for major languages (and most of the minor ones, too) check for a
variety of invalid data (documents that are too large, contain non-UTF-8 strings, or use
unrecognized types) before sending anything to the database. If you are running a driver
that you are not sure about, you can start the database server with the --objcheck
option, and it will examine each document’s structural validity before inserting it (at
the cost of slower performance).

Documents larger than 4MB (when converted to BSON) cannot be
saved to the database. This is a somewhat arbitrary limit (and may be
raised in the future); it is mostly to prevent bad schema design and en-
sure consistent performance. To see the BSON size (in bytes) of the
document doc, run Object.bsonsize(doc) from the shell.

To give you an idea of how much 4MB is, the entire text of War and
Peace is just 3.14MB.

MongoDB does not do any sort of code execution on inserts, so they are not vulnerable
to injection attacks. Traditional injection attacks are impossible with MongoDB, and
alternative injection-type attacks are easy to guard against in general, but inserts are
particularly invulnerable.

24 | Chapter 3: Creating, Updating, and Deleting Documents

www.it-ebooks.info

http://www.it-ebooks.info/

Removing Documents
Now that there’s data in our database, let’s delete it.

> db.users.remove()

This will remove all of the documents in the users collection. This doesn’t actually
remove the collection, and any indexes created on it will still exist.

The remove function optionally takes a query document as a parameter. When it’s given,
only documents that match the criteria will be removed. Suppose, for instance, that we
want to remove everyone from the mailing.list collection where the value for "opt-
out" is true:

> db.mailing.list.remove({"opt-out" : true})

Once data has been removed, it is gone forever. There is no way to undo the remove
or recover deleted documents.

Remove Speed
Removing documents is usually a fairly quick operation, but if you want to clear an
entire collection, it is faster to drop it (and then re-create any indexes).

For example, in Python, suppose we insert a million dummy elements with the
following:

for i in range(1000000):
 collection.insert({"foo": "bar", "baz": i, "z": 10 - i})

Now we’ll try to remove all of the documents we just inserted, measuring the time it
takes. First, here’s a simple remove:

import time

from pymongo import Connection

db = Connection().foo
collection = db.bar

start = time.time()

collection.remove()
collection.find_one()

total = time.time() - start
print "%d seconds" % total

On a MacBook Air, this script prints “46.08 seconds.”

If the remove and find_one are replaced by db.drop_collection("bar"), the time drops
to .01 seconds! This is obviously a vast improvement, but it comes at the expense of

Removing Documents | 25

www.it-ebooks.info

http://www.it-ebooks.info/

granularity: we cannot specify any criteria. The whole collection is dropped, and all of
its indexes are deleted.

Updating Documents
Once a document is stored in the database, it can be changed using the update method.
update takes two parameters: a query document, which locates documents to update,
and a modifier document, which describes the changes to make to the documents
found.

Updates are atomic: if two updates happen at the same time, whichever one reaches
the server first will be applied, and then the next one will be applied. Thus, conflicting
updates can safely be sent in rapid-fire succession without any documents being cor-
rupted: the last update will “win.”

Document Replacement
The simplest type of update fully replaces a matching document with a new one. This
can be useful to do a dramatic schema migration. For example, suppose we are making
major changes to a user document, which looks like the following:

{
 "_id" : ObjectId("4b2b9f67a1f631733d917a7a"),
 "name" : "joe",
 "friends" : 32,
 "enemies" : 2
}

We want to change that document into the following:

{
 "_id" : ObjectId("4b2b9f67a1f631733d917a7a"),
 "username" : "joe",
 "relationships" :
 {
 "friends" : 32,
 "enemies" : 2
 }
}

We can make this change by replacing the document using an update:

> var joe = db.users.findOne({"name" : "joe"});
> joe.relationships = {"friends" : joe.friends, "enemies" : joe.enemies};
{
 "friends" : 32,
 "enemies" : 2
}

26 | Chapter 3: Creating, Updating, and Deleting Documents

www.it-ebooks.info

http://www.it-ebooks.info/

> joe.username = joe.name;
"joe"
> delete joe.friends;
true
> delete joe.enemies;
true
> delete joe.name;
true
> db.users.update({"name" : "joe"}, joe);

Now, doing a findOne shows that the structure of the document has been updated.

A common mistake is matching more than one document with the criteria and then
create a duplicate "_id" value with the second parameter. The database will throw an
error for this, and nothing will be changed.

For example, suppose we create several documents with the same "name", but we don’t
realize it:

> db.people.find()
{"_id" : ObjectId("4b2b9f67a1f631733d917a7b"), "name" : "joe", "age" : 65},
{"_id" : ObjectId("4b2b9f67a1f631733d917a7c"), "name" : "joe", "age" : 20},
{"_id" : ObjectId("4b2b9f67a1f631733d917a7d"), "name" : "joe", "age" : 49},

Now, if it’s Joe #2’s birthday, we want to increment the value of his "age" key, so we
might say this:

> joe = db.people.findOne({"name" : "joe", "age" : 20});
{
 "_id" : ObjectId("4b2b9f67a1f631733d917a7c"),
 "name" : "joe",
 "age" : 20
}
> joe.age++;
> db.people.update({"name" : "joe"}, joe);
E11001 duplicate key on update

What happened? When you call update, the database will look for a document match-
ing {"name" : "joe"}. The first one it finds will be the 65-year-old Joe. It will attempt
to replace that document with the one in the joe variable, but there’s already a docu-
ment in this collection with the same "_id". Thus, the update will fail, because "_id"
values must be unique. The best way to avoid this situation is to make sure that your
update always specifies a unique document, perhaps by matching on a key like "_id".

Using Modifiers
Usually only certain portions of a document need to be updated. Partial updates can
be done extremely efficiently by using atomic update modifiers. Update modifiers are
special keys that can be used to specify complex update operations, such as altering,
adding, or removing keys, and even manipulating arrays and embedded documents.

Suppose we were keeping website analytics in a collection and wanted to increment a
counter each time someone visited a page. We can use update modifiers to do this

Updating Documents | 27

www.it-ebooks.info

http://www.it-ebooks.info/

increment atomically. Each URL and its number of page views is stored in a document
that looks like this:

{
 "_id" : ObjectId("4b253b067525f35f94b60a31"),
 "url" : "www.example.com",
 "pageviews" : 52
}

Every time someone visits a page, we can find the page by its URL and use the "$inc"
modifier to increment the value of the "pageviews" key.

> db.analytics.update({"url" : "www.example.com"},
... {"$inc" : {"pageviews" : 1}})

Now, if we do a find, we see that "pageviews" has increased by one.

> db.analytics.find()
{
 "_id" : ObjectId("4b253b067525f35f94b60a31"),
 "url" : "www.example.com",
 "pageviews" : 53
}

Perl and PHP programmers are probably thinking that any character
would have been a better choice than $. Both of these languages use $
as a variable prefix and will replace $-prefixed strings with their variable
value in double-quoted strings. However, MongoDB started out as a
JavaScript database, and $ is a special character that isn’t interpreted
differently in JavaScript, so it was used. It is an annoying historical relic
from MongoDB’s primordial soup.

There are several options for Perl and PHP programmers. First, you
could just escape the $: "\$foo". You can use single quotes, which don’t
do variable interpolation: '$foo'. Finally, both drivers allow you to de-
fine your own character that will be used instead of $. In Perl, set
$MongoDB::BSON::char, and in PHP set mongo.cmd_char in php.ini to =, :, ?,
or any other character that you would like to use instead of $. Then, if
you choose, say, ~, you would use ~inc instead of \$inc and ~gt instead
of \$gt.

Good choices for the special character are characters that will not nat-
urally appear in key names (don’t use _ or x) and are not characters that
have to be escaped themselves, which will gain you nothing and be con-
fusing (such as \ or, in Perl, @).

When using modifiers, the value of "_id" cannot be changed. (Note that "_id" can be
changed by using whole-document replacement.) Values for any other key, including
other uniquely indexed keys, can be modified.

28 | Chapter 3: Creating, Updating, and Deleting Documents

www.it-ebooks.info

http://www.it-ebooks.info/

Getting started with the "$set" modifier

"$set" sets the value of a key. If the key does not yet exist, it will be created. This can
be handy for updating schema or adding user-defined keys. For example, suppose you
have a simple user profile stored as a document that looks something like the following:

> db.users.findOne()
{
 "_id" : ObjectId("4b253b067525f35f94b60a31"),
 "name" : "joe",
 "age" : 30,
 "sex" : "male",
 "location" : "Wisconsin"
}

This is a pretty bare-bones user profile. If the user wanted to store his favorite book in
his profile, he could add it using "$set":

> db.users.update({"_id" : ObjectId("4b253b067525f35f94b60a31")},
... {"$set" : {"favorite book" : "war and peace"}})

Now the document will have a “favorite book” key:

> db.users.findOne()
{
 "_id" : ObjectId("4b253b067525f35f94b60a31"),
 "name" : "joe",
 "age" : 30,
 "sex" : "male",
 "location" : "Wisconsin",
 "favorite book" : "war and peace"
}

If the user decides that he actually enjoys a different book, "$set" can be used again to
change the value:

> db.users.update({"name" : "joe"},
... {"$set" : {"favorite book" : "green eggs and ham"}})

"$set" can even change the type of the key it modifies. For instance, if our fickle user
decides that he actually likes quite a few books, he can change the value of the “favorite
book” key into an array:

> db.users.update({"name" : "joe"},
... {"$set" : {"favorite book" :
... ["cat's cradle", "foundation trilogy", "ender's game"]}})

If the user realizes that he actually doesn’t like reading, he can remove the key altogether
with "$unset":

> db.users.update({"name" : "joe"},
... {"$unset" : {"favorite book" : 1}})

Now the document will be the same as it was at the beginning of this example.

Updating Documents | 29

www.it-ebooks.info

http://www.it-ebooks.info/

You can also use "$set" to reach in and change embedded documents:

> db.blog.posts.findOne()
{
 "_id" : ObjectId("4b253b067525f35f94b60a31"),
 "title" : "A Blog Post",
 "content" : "...",
 "author" : {
 "name" : "joe",
 "email" : "joe@example.com"
 }
}
> db.blog.posts.update({"author.name" : "joe"}, {"$set" : {"author.name" : "joe schmoe"}})
> db.blog.posts.findOne()
{
 "_id" : ObjectId("4b253b067525f35f94b60a31"),
 "title" : "A Blog Post",
 "content" : "...",
 "author" : {
 "name" : "joe schmoe",
 "email" : "joe@example.com"
 }
}

You must always use a $ modifier for adding, changing, or removing keys. A common
error people often make when starting out is to try to set the value of "foo" to "bar" by
doing an update that looks like this:

> db.coll.update(criteria, {"foo" : "bar"})

This will not function as intended. It actually does a full-document replacement, re-
placing the matched document with {"foo" : "bar"}. Always use $ operators for mod-
ifying individual key/value pairs.

Incrementing and decrementing

The "$inc" modifier can be used to change the value for an existing key or to create a
new key if it does not already exist. It is very useful for updating analytics, karma, votes,
or anything else that has a changeable, numeric value.

Suppose we are creating a game collection where we want to save games and update
scores as they change. When a user starts playing, say, a game of pinball, we can insert
a document that identifies the game by name and user playing it:

> db.games.insert({"game" : "pinball", "user" : "joe"})

When the ball hits a bumper, the game should increment the player’s score. As points
in pinball are given out pretty freely, let’s say that the base unit of points a player can
earn is 50. We can use the "$inc" modifier to add 50 to the player’s score:

> db.games.update({"game" : "pinball", "user" : "joe"},
... {"$inc" : {"score" : 50}})

30 | Chapter 3: Creating, Updating, and Deleting Documents

www.it-ebooks.info

http://www.it-ebooks.info/

If we look at the document after this update, we’ll see the following:

> db.games.findOne()
{
 "_id" : ObjectId("4b2d75476cc613d5ee930164"),
 "game" : "pinball",
 "name" : "joe",
 "score" : 50
}

The score key did not already exist, so it was created by "$inc" and set to the increment
amount: 50.

If the ball lands in a “bonus” slot, we want to add 10,000 to the score. This can be
accomplished by passing a different value to "$inc":

> db.games.update({"game" : "pinball", "user" : "joe"},
... {"$inc" : {"score" : 10000}})

Now if we look at the game, we’ll see the following:

> db.games.find()
{
 "_id" : ObjectId("4b2d75476cc613d5ee930164"),
 "game" : "pinball",
 "name" : "joe",
 "score" : 10050
}

The "score" key existed and had a numeric value, so the server added 10,000 to it.

"$inc" is similar to "$set", but it is designed for incrementing (and decrementing)
numbers. "$inc" can be used only on values of type integer, long, or double. If it is used
on any other type of value, it will fail. This includes types that many languages will
automatically cast into numbers, like nulls, booleans, or strings of numeric characters:

> db.foo.insert({"count" : "1"})
> db.foo.update({}, {$inc : {count : 1}})
Cannot apply $inc modifier to non-number

Also, the value of the "$inc" key must be a number. You cannot increment by a string,
array, or other non-numeric value. Doing so will give a “Modifier "$inc" allowed for
numbers only” error message. To modify other types, use "$set" or one of the array
operations described in a moment.

Array modifiers

An extensive class of modifiers exists for manipulating arrays. Arrays are common and
powerful data structures: not only are they lists that can be referenced by index, but
they can also double as sets.

Array operators can be used only on keys with array values. For example, you cannot
push on to an integer or pop off of a string, for example. Use "$set" or "$inc" to modify
scalar values.

Updating Documents | 31

www.it-ebooks.info

http://www.it-ebooks.info/

"$push" adds an element to the end of an array if the specified key already exists and
creates a new array if it does not. For example, suppose that we are storing blog posts
and want to add a "comments" key containing an array. We can push a comment onto
the nonexistent "comments" array, which will create the array and add the comment:

> db.blog.posts.findOne()
{
 "_id" : ObjectId("4b2d75476cc613d5ee930164"),
 "title" : "A blog post",
 "content" : "..."
}
> db.blog.posts.update({"title" : "A blog post"}, {$push : {"comments" :
... {"name" : "joe", "email" : "joe@example.com", "content" : "nice post."}}})
> db.blog.posts.findOne()
{
 "_id" : ObjectId("4b2d75476cc613d5ee930164"),
 "title" : "A blog post",
 "content" : "...",
 "comments" : [
 {
 "name" : "joe",
 "email" : "joe@example.com",
 "content" : "nice post."
 }
]
}

Now, if we want to add another comment, we can simple use "$push" again:

> db.blog.posts.update({"title" : "A blog post"}, {$push : {"comments" :
... {"name" : "bob", "email" : "bob@example.com", "content" : "good post."}}})
> db.blog.posts.findOne()
{
 "_id" : ObjectId("4b2d75476cc613d5ee930164"),
 "title" : "A blog post",
 "content" : "...",
 "comments" : [
 {
 "name" : "joe",
 "email" : "joe@example.com",
 "content" : "nice post."
 },
 {
 "name" : "bob",
 "email" : "bob@example.com",
 "content" : "good post."
 }
]
}

A common use is wanting to add a value to an array only if the value is not already
present. This can be done using a "$ne" in the query document. For example, to push
an author onto a list of citations, but only if he isn’t already there, use the following:

32 | Chapter 3: Creating, Updating, and Deleting Documents

www.it-ebooks.info

http://www.it-ebooks.info/

> db.papers.update({"authors cited" : {"$ne" : "Richie"}},
... {$push : {"authors cited" : "Richie"}})

This can also be done with "$addToSet", which is useful for cases where "$ne" won’t
work or where "$addToSet" describes what is happening better.

For instance, suppose you have a document that represents a user. You might have a
set of email addresses that they have added:

> db.users.findOne({"_id" : ObjectId("4b2d75476cc613d5ee930164")})
{
 "_id" : ObjectId("4b2d75476cc613d5ee930164"),
 "username" : "joe",
 "emails" : [
 "joe@example.com",
 "joe@gmail.com",
 "joe@yahoo.com"
]
}

When adding another address, you can use "$addToSet" to prevent duplicates:

> db.users.update({"_id" : ObjectId("4b2d75476cc613d5ee930164")},
... {"$addToSet" : {"emails" : "joe@gmail.com"}})
> db.users.findOne({"_id" : ObjectId("4b2d75476cc613d5ee930164")})
{
 "_id" : ObjectId("4b2d75476cc613d5ee930164"),
 "username" : "joe",
 "emails" : [
 "joe@example.com",
 "joe@gmail.com",
 "joe@yahoo.com",
]
}
> db.users.update({"_id" : ObjectId("4b2d75476cc613d5ee930164")},
... {"$addToSet" : {"emails" : "joe@hotmail.com"}})
> db.users.findOne({"_id" : ObjectId("4b2d75476cc613d5ee930164")})
{
 "_id" : ObjectId("4b2d75476cc613d5ee930164"),
 "username" : "joe",
 "emails" : [
 "joe@example.com",
 "joe@gmail.com",
 "joe@yahoo.com",
 "joe@hotmail.com"
]
}

You can also use "$addToSet" in conjunction with "$each" to add multiple unique val-
ues, which cannot be done with the "$ne"/"$push" combination. For instance, we could
use these modifiers if the user wanted to add more than one email address:

> db.users.update({"_id" : ObjectId("4b2d75476cc613d5ee930164")}, {"$addToSet" :
... {"emails" : {"$each" : ["joe@php.net", "joe@example.com", "joe@python.org"]}}})
> db.users.findOne({"_id" : ObjectId("4b2d75476cc613d5ee930164")})
{

Updating Documents | 33

www.it-ebooks.info

http://www.it-ebooks.info/

 "_id" : ObjectId("4b2d75476cc613d5ee930164"),
 "username" : "joe",
 "emails" : [
 "joe@example.com",
 "joe@gmail.com",
 "joe@yahoo.com",
 "joe@hotmail.com"
 "joe@php.net"
 "joe@python.org"
]
}

There are a few ways to remove elements from an array. If you want to treat the array
like a queue or a stack, you can use "$pop", which can remove elements from either
end. {$pop : {key : 1}} removes an element from the end of the array. {$pop :
{key : -1}} removes it from the beginning.

Sometimes an element should be removed based on specific criteria, rather than its
position in the array. "$pull" is used to remove elements of an array that match the
given criteria. For example, suppose we have a list of things that need to be done but
not in any specific order:

> db.lists.insert({"todo" : ["dishes", "laundry", "dry cleaning"]})

If we do the laundry first, we can remove it from the list with the following:

> db.lists.update({}, {"$pull" : {"todo" : "laundry"}})

Now if we do a find, we’ll see that there are only two elements remaining in the array:

> db.lists.find()
{
 "_id" : ObjectId("4b2d75476cc613d5ee930164"),
 "todo" : [
 "dishes",
 "dry cleaning"
]
}

Pulling removes all matching documents, not just a single match. If you have an array
that looks like [1, 1, 2, 1] and pull 1, you’ll end up with a single-element array, [2].

Positional array modifications

Array manipulation becomes a little trickier when we have multiple values in an array
and want to modify some of them. There are two ways to manipulate values in arrays:
by position or by using the position operator (the "$" character).

Arrays use 0-based indexing, and elements can be selected as though their index were
a document key. For example, suppose we have a document containing an array with
a few embedded documents, such as a blog post with comments:

> db.blog.posts.findOne()
{
 "_id" : ObjectId("4b329a216cc613d5ee930192"),

34 | Chapter 3: Creating, Updating, and Deleting Documents

www.it-ebooks.info

http://www.it-ebooks.info/

 "content" : "...",
 "comments" : [
 {
 "comment" : "good post",
 "author" : "John",
 "votes" : 0
 },
 {
 "comment" : "i thought it was too short",
 "author" : "Claire",
 "votes" : 3
 },
 {
 "comment" : "free watches",
 "author" : "Alice",
 "votes" : -1
 }
]
}

If we want to increment the number of votes for the first comment, we can say the
following:

> db.blog.update({"post" : post_id},
... {"$inc" : {"comments.0.votes" : 1}})

In many cases, though, we don’t know what index of the array to modify without
querying for the document first and examining it. To get around this, MongoDB has a
positional operator, "$", that figures out which element of the array the query document
matched and updates that element. For example, if we have a user named John who
updates his name to Jim, we can replace it in the comments by using the positional
operator:

db.blog.update({"comments.author" : "John"},
... {"$set" : {"comments.$.author" : "Jim"}})

The positional operator updates only the first match. Thus, if John had left more than
one comment, his name would be changed only for the first comment he left.

Modifier speed

Some modifiers are faster than others. $inc modifies a document in place: it does not
have to change the size of a document, only the value of a key, so it is very efficient. On
the other hand, array modifiers might change the size of a document and can be slow.
("$set" can modify documents in place if the size isn’t changing but otherwise is subject
to the same performance limitations as array operators.)

MongoDB leaves some padding around a document to allow for changes in size (and,
in fact, figures out how much documents usually change in size and adjusts the amount
of padding it leaves accordingly), but it will eventually have to allocate new space for
a document if you make it much larger than it was originally. Compounding this

Updating Documents | 35

www.it-ebooks.info

http://www.it-ebooks.info/

slowdown, as arrays get longer, it takes MongoDB a longer amount of time to traverse
the whole array, slowing down each array modification.

A simple program in Python can demonstrate the speed difference. This program inserts
a single key and increments its value 100,000 times.

from pymongo import Connection

import time

db = Connection().performance_test
db.drop_collection("updates")
collection = db.updates

collection.insert({"x": 1})

make sure the insert is complete before we start timing
collection.find_one()

start = time.time()

for i in range(100000):
 collection.update({}, {"$inc" : {"x" : 1}})

make sure the updates are complete before we stop timing
collection.find_one()

print time.time() - start

On a MacBook Air this took 7.33 seconds. That’s more than 13,000 updates per second
(which is pretty good for a fairly anemic machine). Now, let’s try it with a document
with a single array key, pushing new values onto that array 100,000 times:

for i in range(100000):
 collection.update({}, {'$push' : {'x' : 1}})

This program took 67.58 seconds to run, which is less than 1,500 updates per second.

Using "$push" and other array modifiers is encouraged and often necessary, but it is
good to keep in mind the trade-offs of such updates. If "$push" becomes a bottleneck,
it may be worth pulling an embedded array out into a separate collection.

Upserts
An upsert is a special type of update. If no document is found that matches the update
criteria, a new document will be created by combining the criteria and update docu-
ments. If a matching document is found, it will be updated normally. Upserts can be
very handy because they eliminate the need to “seed” your collection: you can have the
same code create and update documents.

Let’s go back to our example recording the number of views for each page of a website.
Without an upsert, we might try to find the URL and increment the number of views
or create a new document if the URL doesn’t exist. If we were to write this out as a

36 | Chapter 3: Creating, Updating, and Deleting Documents

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript program (instead of a series of shell commands—scripts can be run with
mongo scriptname.js), it might look something like the following:

// check if we have an entry for this page
blog = db.analytics.findOne({url : "/blog"})

// if we do, add one to the number of views and save
if (blog) {
 blog.pageviews++;
 db.analytics.save(blog);
}
// otherwise, create a new document for this page
else {
 db.analytics.save({url : "/blog", pageviews : 1})
}

This means we are making a round-trip to the database, plus sending an update or
insert, every time someone visits a page. If we are running this code in multiple pro-
cesses, we are also subject to a race condition where more than one document can be
inserted for a given URL.

We can eliminate the race condition and cut down on the amount of code by just
sending an upsert (the third parameter to update specifies that this should be an upsert):

db.analytics.update({"url" : "/blog"}, {"$inc" : {"visits" : 1}}, true)

This line does exactly what the previous code block does, except it’s faster and atomic!
The new document is created using the criteria document as a base and applying any
modifier documents to it. For example, if you do an upsert that matches a key and has
an increment to the value of that key, the increment will be applied to the match:

> db.math.remove()
> db.math.update({"count" : 25}, {"$inc" : {"count" : 3}}, true)
> db.math.findOne()
{
 "_id" : ObjectId("4b3295f26cc613d5ee93018f"),
 "count" : 28
}

The remove empties the collection, so there are no documents. The upsert creates a new
document with a "count" of 25 and then increments that by 3, giving us a document
where "count" is 28. If the upsert option were not specified, {"count" : 25} would not
match any documents, so nothing would happen.

If we run the upsert again (with the criteria {count : 25}), it will create another new
document. This is because the criteria does not match the only document in the col-
lection. (Its "count" is 28.)

The save Shell Helper

save is a shell function that lets you insert a document if it doesn’t exist and update it
if it does. It takes one argument: a document. If the document contains an "_id" key,

Updating Documents | 37

www.it-ebooks.info

http://www.it-ebooks.info/

save will do an upsert. Otherwise, it will do an insert. This is just a convenience function
so that programmers can quickly modify documents in the shell:

> var x = db.foo.findOne()
> x.num = 42
42
> db.foo.save(x)

Without save, the last line would have been a more cumbersome
db.foo.update({"_id" : x._id}, x).

Updating Multiple Documents
Updates, by default, update only the first document found that matches the criteria. If
there are more matching documents, they will remain unchanged. To modify all of the
documents matching the criteria, you can pass true as the fourth parameter to update.

update’s behavior may be changed in the future (the server may update
all matching documents by default and update one only if false is passed
as the fourth parameter), so it is recommended that you always specify
whether you want a multiple update.

Not only is it more obvious what the update should be doing, but your
program won’t break if the default is ever changed.

Multiupdates are a great way of performing schema migrations or rolling out new fea-
tures to certain users. Suppose, for example, we want to give a gift to every user who
has a birthday on a certain day. We can use multiupdate to add a "gift" to their account:

> db.users.update({birthday : "10/13/1978"},
... {$set : {gift : "Happy Birthday!"}}, false, true)

This would add the "gift" key to all user documents with birthdays on October 13,
1978.

To see the number of documents updated by a multiple update, you can run the
getLastError database command (which might be better named "getLastOpStatus").
The "n" key will contain the number of documents affected by the update:

> db.count.update({x : 1}, {$inc : {x : 1}}, false, true)
> db.runCommand({getLastError : 1})
{
 "err" : null,
 "updatedExisting" : true,
 "n" : 5,
 "ok" : true
}

"n" is 5, meaning that five documents were affected by the update. "updatedExisting"
is true, meaning that the update modified existing document(s). For more on database
commands and their responses, see Chapter 7.

38 | Chapter 3: Creating, Updating, and Deleting Documents

www.it-ebooks.info

http://www.it-ebooks.info/

Returning Updated Documents
You can get some limited information about what was updated by calling
getLastError, but it does not actually return the updated document. For that, you’ll
need the findAndModify command.

findAndModify is called differently than a normal update and is a bit slower, because it
must wait for a database response. It is handy for manipulating queues and performing
other operations that need get-and-set style atomicity.

Suppose we have a collection of processes run in a certain order. Each is represented
with a document that has the following form:

{
 "_id" : ObjectId(),
 "status" : state,
 "priority" : N
}

"status" is a string that can be “READY,” “RUNNING,” or “DONE.” We need to find
the job with the highest priority in the “READY” state, run the process function, and
then update the status to “DONE.” We might try querying for the ready processes,
sorting by priority, and updating the status of the highest-priority process to mark it is
“RUNNING.” Once we have processed it, we update the status to “DONE.” This looks
something like the following:

ps = db.processes.find({"status" : "READY").sort({"priority" : -1}).limit(1).next()
db.processes.update({"_id" : ps._id}, {"$set" : {"status" : "RUNNING"}})
do_something(ps);
db.processes.update({"_id" : ps._id}, {"$set" : {"status" : "DONE"}})

This algorithm isn’t great, because it is subject to a race condition. Suppose we have
two threads running. If one thread (call it A) retrieved the document and another thread
(call it B) retrieved the same document before A had updated its status to “RUNNING,”
then both threads would be running the same process. We can avoid this by checking
the status as part of the update query, but this becomes complex:

var cursor = db.processes.find({"status" : "READY"}).sort({"priority" : -1}).limit(1);
while ((ps = cursor.next()) != null) {
 ps.update({"_id" : ps._id, "status" : "READY"},
 {"$set" : {"status" : "RUNNING"}});

 var lastOp = db.runCommand({getlasterror : 1});
 if (lastOp.n == 1) {
 do_something(ps);
 db.processes.update({"_id" : ps._id}, {"$set" : {"status" : "DONE"}})
 break;
 }
 cursor = db.processes.find({"status" : "READY"}).sort({"priority" : -1}).limit(1);
}

Also, depending on timing, one thread may end up doing all the work while another
thread is uselessly trailing it. Thread A could always grab the process, and then B would

Updating Documents | 39

www.it-ebooks.info

http://www.it-ebooks.info/

try to get the same process, fail, and leave A to do all the work. Situations like this are
perfect for findAndModify. findAndModify can return the item and update it in a single
operation. In this case, it looks like the following:

> ps = db.runCommand({"findAndModify" : "processes",
... "query" : {"status" : "READY"},
... "sort" : {"priority" : -1},
... "update" : {"$set" : {"status" : "RUNNING"}})
{
 "ok" : 1,
 "value" : {
 "_id" : ObjectId("4b3e7a18005cab32be6291f7"),
 "priority" : 1,
 "status" : "READY"
 }
}

Notice that the status is still “READY” in the returned document. The document is
returned before the modifier document is applied. If you do a find on the collection,
though, you will see that the document’s "status" has been updated to “RUNNING”:

> db.processes.findOne({"_id" : ps.value._id})
{
 "_id" : ObjectId("4b3e7a18005cab32be6291f7"),
 "priority" : 1,
 "status" : "RUNNING"
}

Thus, the program becomes the following:

> ps = db.runCommand({"findAndModify" : "processes",
... "query" : {"status" : "READY"},
... "sort" : {"priority" : -1},
... "update" : {"$set" : {"status" : "RUNNING"}}).value
> do_something(ps)
> db.process.update({"_id" : ps._id}, {"$set" : {"status" : "DONE"}})

findAndModify can have either an "update" key or a "remove" key. A "remove" key indi-
cates that the matching document should be removed from the collection. For instance,
if we wanted to simply remove the job instead of updating its status, we could run the
following:

> ps = db.runCommand({"findAndModify" : "processes",
... "query" : {"status" : "READY"},
... "sort" : {"priority" : -1},
... "remove" : true).value
> do_something(ps)

The values for each key in the findAndModify command are as follows:

findAndModify
A string, the collection name.

query
A query document, the criteria with which to search for documents.

40 | Chapter 3: Creating, Updating, and Deleting Documents

www.it-ebooks.info

http://www.it-ebooks.info/

sort
Criteria by which to sort results.

update
A modifier document, the update to perform on the document found.

remove
Boolean specifying whether the document should be removed.

new
Boolean specifying whether the document returned should be the updated docu-
ment or the preupdate document. Defaults to the preupdate document.

Either "update" or "remove" must be included, but not both. If no matching document
is found, the command will return an error.

findAndModify has a few limitations. First, it can update or remove only one document
at a time. There is also no way to use it for an upsert; it can update only existing
documents.

The price of using findAndModify over a traditional update is speed: it is a bit slower.
That said, it is no slower than one might expect: it takes roughly the same amount of
time as a find, update, and getLastError command performed in serial.

The Fastest Write This Side of Mississippi
The three operations that this chapter focused on (inserts, removes, and updates) seem
instantaneous because none of them waits for a database response. They are not asyn-
chronous; they can be thought of as “fire-and-forget” functions: the client sends the
documents to the server and immediately continues. The client never receives an “OK,
got that” or a “not OK, could you send that again?” response.

The benefit to this is that the speed at which you can perform these operations is terrific.
You are often only limited by the speed at which your client can send them and the
speed of your network. This works well most of the time; however, sometimes some-
thing goes wrong: a server crashes, a rat chews through a network cable, or a data center
is in a flood zone. If the server disappears, the client will happily send some writes to
a server that isn’t there, entirely unaware of its absence. For some applications, this is
acceptable. Losing a couple of seconds of log messages, user clicks, or analytics in a
hardware failure is not the end of the world. For others, this is not the behavior the
programmer wants (payment-processing systems spring to mind).

The Fastest Write This Side of Mississippi | 41

www.it-ebooks.info

http://www.it-ebooks.info/

Safe Operations
Suppose you are writing an ecommerce application. If someone orders something, the
application should probably take a little extra time to make sure the order goes through.
That is why you can do a “safe” version of these operations, where you check whether
there was an error in execution and attempt to redo them.

MongoDB developers made unchecked operations the default because
of their experience with relational databases. Many applications written
on top of relational databases do not care about or check the return
codes, yet they incur the performance penalty of their application wait-
ing for them to arrive. MongoDB pushes this option to the user. This
way, programs that collect log messages or real-time analytics don’t have
to wait for return codes that they don’t care about.

The safe version of these operations runs a getLastError command immediately fol-
lowing the operation to check whether it succeeded (see “Database Com-
mands” on page 93 for more on commands). The driver waits for the database re-
sponse and then handles errors appropriately, throwing a catchable exception in most
cases. This way, developers can catch and handle database errors in whatever way feels
“natural” for their language. When an operation is successful, the getLastError re-
sponse also contains some additional information (e.g., for an update or remove, it
includes the number of documents affected).

The same getLastError command that powers safe mode also contains
functionality for checking that operations have been successfully repli-
cated. For more on this feature, see “Blocking for Replica-
tion” on page 140.

The price of performing “safe” operations is performance: waiting for a database re-
sponse takes an order of magnitude longer than sending the message, ignoring the
client-side cost of handling exceptions. (This cost varies by language but is usually fairly
heavyweight.) Thus, applications should weigh the importance of their data (and the
consequences if some of it is lost) versus the speed needed.

When in doubt, use safe operations. If they aren’t fast enough, start
making less important operations fire-and-forget.

More specifically:

• If you live dangerously, use fire-and-forget operations exclusively.

42 | Chapter 3: Creating, Updating, and Deleting Documents

www.it-ebooks.info

http://www.it-ebooks.info/

• If you want to live longer, save valuable user input (account sign-ups, credit card
numbers, emails) with safe operations and do everything else with fire-and-forget
operations.

• If you are cautious, use safe operations exclusively. If your application is automat-
ically generating hundreds of little pieces of information to save (e.g., page, user,
or advertising statistics), these can still use the fire-and-forget operation.

Catching “Normal” Errors
Safe operations are also a good way to debug “strange” database behavior, not just for
preventing the apocalyptic scenarios described earlier. Safe operations should be used
extensively while developing, even if they are later removed before going into produc-
tion. They can protect against many common database usage errors, most commonly
duplicate key errors.

Duplicate key errors often occur when users try to insert a document with a duplicate
value for the "_id" key. MongoDB does not allow multiple documents with the same
"_id" in the same collection. If you do a safe insert and a duplicate key error occurs,
the server error will be picked up by the safety check, and an exception will be thrown.
In unsafe mode, there is no database response, and you might not be aware that the
insert failed.

For example, using the shell, you can see that inserting two documents with the same
"_id" will not work:

> db.foo.insert({"_id" : 123, "x" : 1})
> db.foo.insert({"_id" : 123, "x" : 2})
E11000 duplicate key error index: test.foo.$_id_ dup key: { : 123.0 }

If we examine the collection, we can see that only the first document was successfully
inserted. Note that this error can occur with any unique index, not just the one on
"_id". The shell always checks for errors; in the drivers it is optional.

Requests and Connections
For each connection to a MongoDB server, the database creates a queue for that con-
nection’s requests. When the client sends a request, it will be placed at the end of its
connection’s queue. Any subsequent requests on the connection will occur after the
enqueued operation is processed. Thus, a single connection has a consistent view of
the database and can always read its own writes.

Note that this is a per-connection queue: if we open two shells, we will have two con-
nections to the database. If we perform an insert in one shell, a subsequent query in
the other shell might not return the inserted document. However, within a single shell,
if we query for the document after inserting, the document will be returned. This be-
havior can be difficult to duplicate by hand, but on a busy server, interleaved inserts/

Requests and Connections | 43

www.it-ebooks.info

http://www.it-ebooks.info/

queries are very likely to occur. Often developers run into this when they insert data in
one thread and then check that it was successfully inserted in another. For a second or
two, it looks like the data was not inserted, and then it suddenly appears.

This behavior is especially worth keeping in mind when using the Ruby, Python, and
Java drivers, because all three drivers use connection pooling. For efficiency, these
drivers open multiple connections (a pool) to the server and distribute requests across
them. They all, however, have mechanisms to guarantee that a series of requests is
processed by a single connection. There is detailed documentation on connection
pooling in various languages on the MongoDB wiki.

44 | Chapter 3: Creating, Updating, and Deleting Documents

www.it-ebooks.info

http://dochub.mongodb.org/drivers/connections
http://www.it-ebooks.info/

CHAPTER 4

Querying

This chapter looks at querying in detail. The main areas covered are as follows:

• You can perform ad hoc queries on the database using the find or findOne functions
and a query document.

• You can query for ranges, set inclusion, inequalities, and more by using
$ conditionals.

• Some queries cannot be expressed as query documents, even using $ conditionals.
For these types of complex queries, you can use a $where clause to harness the full
expressive power of JavaScript.

• Queries return a database cursor, which lazily returns batches of documents as you
need them.

• There are a lot of metaoperations you can perform on a cursor, including skipping
a certain number of results, limiting the number of results returned, and sorting
results.

Introduction to find
The find method is used to perform queries in MongoDB. Querying returns a subset
of documents in a collection, from no documents at all to the entire collection. Which
documents get returned is determined by the first argument to find, which is a docu-
ment specifying the query to be performed.

An empty query document (i.e., {}) matches everything in the collection. If find isn’t
given a query document, it defaults to {}. For example, the following:

> db.c.find()

returns everything in the collection c.

When we start adding key/value pairs to the query document, we begin restricting our
search. This works in a straightforward way for most types. Integers match integers,
booleans match booleans, and strings match strings. Querying for a simple type is as

45

www.it-ebooks.info

http://www.it-ebooks.info/

easy as specifying the value that you are looking for. For example, to find all documents
where the value for "age" is 27, we can add that key/value pair to the query document:

> db.users.find({"age" : 27})

If we have a string we want to match, such as a "username" key with the value "joe",
we use that key/value pair instead:

> db.users.find({"username" : "joe"})

Multiple conditions can be strung together by adding more key/value pairs to the query
document, which gets interpreted as “condition1 AND condition2 AND … AND
conditionN.” For instance, to get all users who are 27-year-olds with the username
“joe,” we can query for the following:

> db.users.find({"username" : "joe", "age" : 27})

Specifying Which Keys to Return
Sometimes, you do not need all of the key/value pairs in a document returned. If this
is the case, you can pass a second argument to find (or findOne) specifying the keys you
want. This reduces both the amount of data sent over the wire and the time and memory
used to decode documents on the client side.

For example, if you have a user collection and you are interested only in the "user
name" and "email" keys, you could return just those keys with the following query:

> db.users.find({}, {"username" : 1, "email" : 1})
{
 "_id" : ObjectId("4ba0f0dfd22aa494fd523620"),
 "username" : "joe",
 "email" : "joe@example.com"
}

As you can see from the previous output, the "_id" key is always returned, even if it
isn’t specifically listed.

You can also use this second parameter to exclude specific key/value pairs from the
results of a query. For instance, you may have documents with a variety of keys, and
the only thing you know is that you never want to return the "fatal_weakness" key:

> db.users.find({}, {"fatal_weakness" : 0})

This can even prevent "_id" from being returned:

> db.users.find({}, {"username" : 1, "_id" : 0})
{
 "username" : "joe",
}

46 | Chapter 4: Querying

www.it-ebooks.info

http://www.it-ebooks.info/

Limitations
There are some restrictions on queries. The value of a query document must be a con-
stant as far as the database is concerned. (It can be a normal variable in your own code.)
That is, it cannot refer to the value of another key in the document. For example, if we
were keeping inventory and we had both "in_stock" and "num_sold" keys, we could
compare their values by querying the following:

> db.stock.find({"in_stock" : "this.num_sold"}) // doesn't work

There are ways to do this (see “$where Queries” on page 55), but you will usually get
better performance by restructuring your document slightly, such that a normal query
will suffice. In this example, we could instead use the keys "initial_stock" and
"in_stock". Then, every time someone buys an item, we decrement the value of the
"in_stock" key by one. Finally, we can do a simple query to check which items are out
of stock:

> db.stock.find({"in_stock" : 0})

Query Criteria
Queries can go beyond the exact matching described in the previous section; they can
match more complex criteria, such as ranges, OR-clauses, and negation.

Query Conditionals
"$lt", "$lte", "$gt", and "$gte" are all comparison operators, corresponding to <, <=,
>, and >=, respectively. They can be combined to look for a range of values. For ex-
ample, to look for users who are between the ages of 18 and 30 inclusive, we can do this:

> db.users.find({"age" : {"$gte" : 18, "$lte" : 30}})

These types of range queries are often useful for dates. For example, to find people who
registered before January 1, 2007, we can do this:

> start = new Date("01/01/2007")
> db.users.find({"registered" : {"$lt" : start}})

An exact match on a date is less useful, because dates are only stored with millisecond
precision. Often you want a whole day, week, or month, making a range query
necessary.

To query for documents where a key’s value is not equal to a certain value, you must
use another conditional operator, "$ne", which stands for “not equal.” If you want to
find all users who do not have the username “joe,” you can query for them using this:

> db.users.find({"username" : {"$ne" : "joe"}})

"$ne" can be used with any type.

Query Criteria | 47

www.it-ebooks.info

http://www.it-ebooks.info/

OR Queries
There are two ways to do an OR query in MongoDB. "$in" can be used to query for a
variety of values for a single key. "$or" is more general; it can be used to query for any
of the given values across multiple keys.

If you have more than one possible value to match for a single key, use an array of
criteria with "$in". For instance, suppose we were running a raffle and the winning
ticket numbers were 725, 542, and 390. To find all three of these documents, we can
construct the following query:

> db.raffle.find({"ticket_no" : {"$in" : [725, 542, 390]}})

"$in" is very flexible and allows you to specify criteria of different types as well as values.
For example, if we are gradually migrating our schema to use usernames instead of user
ID numbers, we can query for either by using this:

> db.users.find({"user_id" : {"$in" : [12345, "joe"]})

This matches documents with a "user_id" equal to 12345, and documents with a
"user_id" equal to "joe".

If "$in" is given an array with a single value, it behaves the same as directly matching
the value. For instance, {ticket_no : {$in : [725]}} matches the same documents as
{ticket_no : 725}.

The opposite of "$in" is "$nin", which returns documents that don’t match any of the
criteria in the array. If we want to return all of the people who didn’t win anything in
the raffle, we can query for them with this:

> db.raffle.find({"ticket_no" : {"$nin" : [725, 542, 390]}})

This query returns everyone who did not have tickets with those numbers.

"$in" gives you an OR query for a single key, but what if we need to find documents
where "ticket_no" is 725 or "winner" is true? For this type of query, we’ll need to use
the "$or" conditional. "$or" takes an array of possible criteria. In the raffle case, using
"$or" would look like this:

> db.raffle.find({"$or" : [{"ticket_no" : 725}, {"winner" : true}]})

"$or" can contain other conditionals. If, for example, we want to match any of the three
"ticket_no" values or the "winner" key, we can use this:

> db.raffle.find({"$or" : [{"ticket_no" : {"$in" : [725, 542, 390]}},
 {"winner" : true}]})

With a normal AND-type query, you want to narrow your results down as far as pos-
sible in as few arguments as possible. OR-type queries are the opposite: they are most
efficient if the first arguments match as many documents as possible.

48 | Chapter 4: Querying

www.it-ebooks.info

http://www.it-ebooks.info/

$not
"$not" is a metaconditional: it can be applied on top of any other criteria. As an example,
let’s consider the modulus operator, "$mod". "$mod" queries for keys whose values, when
divided by the first value given, have a remainder of the second value:

> db.users.find({"id_num" : {"$mod" : [5, 1]}})

The previous query returns users with "id_num"s of 1, 6, 11, 16, and so on. If we want,
instead, to return users with "id_num"s of 2, 3, 4, 5, 7, 8, 9, 10, 12, and so on, we can
use "$not":

> db.users.find({"id_num" : {"$not" : {"$mod" : [5, 1]}}})

"$not" can be particularly useful in conjunction with regular expressions to find all
documents that don’t match a given pattern (regular expression usage is described in
the section “Regular Expressions” on page 50).

Rules for Conditionals
If you look at the update modifiers in the previous chapter and previous query docu-
ments, you’ll notice that the $-prefixed keys are in different positions. In the query,
"$lt" is in the inner document; in the update, "$inc" is the key for the outer document.
This generally holds true: conditionals are an inner document key, and modifiers are
always a key in the outer document.

Multiple conditions can be put on a single key. For example, to find all users between
the ages of 20 and 30, we can query for both "$gt" and "$lt" on the "age" key:

> db.users.find({"age" : {"$lt" : 30, "$gt" : 20}})

Any number of conditionals can be used with a single key. Multiple update modifiers
cannot be used on a single key, however. For example, you cannot have a modifier
document such as {"$inc" : {"age" : 1}, "$set" : {age : 40}} because it
modifies "age" twice. With query conditionals, no such rule applies.

Type-Specific Queries
As covered in Chapter 2, MongoDB has a wide variety of types that can be used in a
document. Some of these behave specially in queries.

null
null behaves a bit strangely. It does match itself, so if we have a collection with the
following documents:

> db.c.find()
{ "_id" : ObjectId("4ba0f0dfd22aa494fd523621"), "y" : null }

Type-Specific Queries | 49

www.it-ebooks.info

http://www.it-ebooks.info/

{ "_id" : ObjectId("4ba0f0dfd22aa494fd523622"), "y" : 1 }
{ "_id" : ObjectId("4ba0f148d22aa494fd523623"), "y" : 2 }

we can query for documents whose "y" key is null in the expected way:

> db.c.find({"y" : null})
{ "_id" : ObjectId("4ba0f0dfd22aa494fd523621"), "y" : null }

However, null not only matches itself but also matches “does not exist.” Thus, querying
for a key with the value null will return all documents lacking that key:

> db.c.find({"z" : null})
{ "_id" : ObjectId("4ba0f0dfd22aa494fd523621"), "y" : null }
{ "_id" : ObjectId("4ba0f0dfd22aa494fd523622"), "y" : 1 }
{ "_id" : ObjectId("4ba0f148d22aa494fd523623"), "y" : 2 }

If we only want to find keys whose value is null, we can check that the key is null and
exists using the "$exists" conditional:

> db.c.find({"z" : {"$in" : [null], "$exists" : true}})

Unfortunately, there is no "$eq" operator, which makes this a little awkward, but
"$in" with one element is equivalent.

Regular Expressions
Regular expressions are useful for flexible string matching. For example, if we want to
find all users with the name Joe or joe, we can use a regular expression to do case-
insensitive matching:

> db.users.find({"name" : /joe/i})

Regular expression flags (i) are allowed but not required. If we want to match not only
various capitalizations of joe, but also joey, we can continue to improve our regular
expression:

> db.users.find({"name" : /joey?/i})

MongoDB uses the Perl Compatible Regular Expression (PCRE) library to match reg-
ular expressions; any regular expression syntax allowed by PCRE is allowed in
MongoDB. It is a good idea to check your syntax with the JavaScript shell before using
it in a query to make sure it matches what you think it matches.

MongoDB can leverage an index for queries on prefix regular expres-
sions (e.g., /^joey/), so queries of that kind can be fast.

Regular expressions can also match themselves. Very few people insert regular expres-
sions into the database, but if you insert one, you can match it with itself:

> db.foo.insert({"bar" : /baz/})
> db.foo.find({"bar" : /baz/})

50 | Chapter 4: Querying

www.it-ebooks.info

http://www.it-ebooks.info/

{
 "_id" : ObjectId("4b23c3ca7525f35f94b60a2d"),
 "bar" : /baz/
}

Querying Arrays
Querying for elements of an array is simple. An array can mostly be treated as though
each element is the value of the overall key. For example, if the array is a list of fruits,
like this:

> db.food.insert({"fruit" : ["apple", "banana", "peach"]})

the following query:

> db.food.find({"fruit" : "banana"})

will successfully match the document. We can query for it in much the same way as
though we had a document that looked like the (illegal) document: {"fruit" : "apple",
"fruit" : "banana", "fruit" : "peach"}.

$all

If you need to match arrays by more than one element, you can use "$all". This allows
you to match a list of elements. For example, suppose we created a collection with three
elements:

> db.food.insert({"_id" : 1, "fruit" : ["apple", "banana", "peach"]})
> db.food.insert({"_id" : 2, "fruit" : ["apple", "kumquat", "orange"]})
> db.food.insert({"_id" : 3, "fruit" : ["cherry", "banana", "apple"]})

Then we can find all documents with both "apple" and "banana" elements by querying
with "$all":

> db.food.find({fruit : {$all : ["apple", "banana"]}})
 {"_id" : 1, "fruit" : ["apple", "banana", "peach"]}
 {"_id" : 3, "fruit" : ["cherry", "banana", "apple"]}

Order does not matter. Notice "banana" comes before "apple" in the second result.
Using a one-element array with "$all" is equivalent to not using "$all". For instance,
{fruit : {$all : ['apple']} will match the same documents as {fruit : 'apple'}.

You can also query by exact match using the entire array. However, exact match will
not match a document if any elements are missing or superfluous. For example, this
will match the first document shown previously:

> db.food.find({"fruit" : ["apple", "banana", "peach"]})

But this will not:

> db.food.find({"fruit" : ["apple", "banana"]})

and neither will this:

> db.food.find({"fruit" : ["banana", "apple", "peach"]})

Type-Specific Queries | 51

www.it-ebooks.info

http://www.it-ebooks.info/

If you want to query for a specific element of an array, you can specify an index using
the syntax key.index:

> db.food.find({"fruit.2" : "peach"})

Arrays are always 0-indexed, so this would match the third array element against the
string "peach".

$size

A useful conditional for querying arrays is "$size", which allows you to query for arrays
of a given size. Here’s an example:

> db.food.find({"fruit" : {"$size" : 3}})

One common query is to get a range of sizes. "$size" cannot be combined with another
$ conditional (in this example, "$gt"), but this query can be accomplished by adding
a "size" key to the document. Then, every time you add an element to the array, in-
crement the value of "size". If the original update looked like this:

> db.food.update({"$push" : {"fruit" : "strawberry"}})

it can simply be changed to this:

> db.food.update({"$push" : {"fruit" : "strawberry"}, "$inc" : {"size" : 1}})

Incrementing is extremely fast, so any performance penalty is negligible. Storing docu-
ments like this allows you to do queries such as this:

> db.food.find({"size" : {"$gt" : 3}})

Unfortunately, this technique doesn’t work as well with the "$addToSet" operator.

The $slice operator

As mentioned earlier in this chapter, the optional second argument to find specifies
the keys to be returned. The special "$slice" operator can be used to return a subset
of elements for an array key.

For example, suppose we had a blog post document and we wanted to return the first
10 comments:

> db.blog.posts.findOne(criteria, {"comments" : {"$slice" : 10}})

Alternatively, if we wanted the last 10 comments, we could use -10:

> db.blog.posts.findOne(criteria, {"comments" : {"$slice" : -10}})

"$slice" can also return pages in the middle of the results by taking an offset and the
number of elements to return:

> db.blog.posts.findOne(criteria, {"comments" : {"$slice" : [23, 10]}})

This would skip the first 23 elements and return the 24th through 34th. If there are
fewer than 34 elements in the array, it will return as many as possible.

52 | Chapter 4: Querying

www.it-ebooks.info

http://www.it-ebooks.info/

Unless otherwise specified, all keys in a document are returned when "$slice" is used.
This is unlike the other key specifiers, which suppress unmentioned keys from being
returned. For instance, if we had a blog post document that looked like this:

{
 "_id" : ObjectId("4b2d75476cc613d5ee930164"),
 "title" : "A blog post",
 "content" : "...",
 "comments" : [
 {
 "name" : "joe",
 "email" : "joe@example.com",
 "content" : "nice post."
 },
 {
 "name" : "bob",
 "email" : "bob@example.com",
 "content" : "good post."
 }
]
}

and we did a "$slice" to get the last comment, we’d get this:

> db.blog.posts.findOne(criteria, {"comments" : {"$slice" : -1}})
{
 "_id" : ObjectId("4b2d75476cc613d5ee930164"),
 "title" : "A blog post",
 "content" : "...",
 "comments" : [
 {
 "name" : "bob",
 "email" : "bob@example.com",
 "content" : "good post."
 }
]
}

Both "title" and "content" are still returned, even though they weren’t explicitly in-
cluded in the key specifier.

Querying on Embedded Documents
There are two ways of querying for an embedded document: querying for the whole
document or querying for its individual key/value pairs.

Querying for an entire embedded document works identically to a normal query. For
example, if we have a document that looks like this:

{
 "name" : {
 "first" : "Joe",
 "last" : "Schmoe"
 },

Type-Specific Queries | 53

www.it-ebooks.info

http://www.it-ebooks.info/

 "age" : 45
}

we can query for someone named Joe Schmoe with the following:

> db.people.find({"name" : {"first" : "Joe", "last" : "Schmoe"}})

However, if Joe decides to add a middle name key, suddenly this query won’t work
anymore; it doesn’t match the entire embedded document! This type of query is also
order-sensitive; {"last" : "Schmoe", "first" : "Joe"} would not be a match.

If possible, it’s usually a good idea to query for just a specific key or keys of an embedded
document. Then, if your schema changes, all of your queries won’t suddenly break
because they’re no longer exact matches. You can query for embedded keys using dot-
notation:

> db.people.find({"name.first" : "Joe", "name.last" : "Schmoe"})

Now, if Joe adds more keys, this query will still match his first and last names.

This dot-notation is the main difference between query documents and other document
types. Query documents can contain dots, which mean “reach into an embedded
document.” Dot-notation is also the reason that documents to be inserted cannot con-
tain the . character. Oftentimes people run into this limitation when trying to save URLs
as keys. One way to get around it is to always perform a global replace before inserting
or after retrieving, substituting a character that isn’t legal in URLs for the dot (.)
character.

Embedded document matches can get a little tricky as the document structure gets
more complicated. For example, suppose we are storing blog posts and we want to find
comments by Joe that were scored at least a five. We could model the post as follows:

> db.blog.find()
{
 "content" : "...",
 "comments" : [
 {
 "author" : "joe",
 "score" : 3,
 "comment" : "nice post"
 },
 {
 "author" : "mary",
 "score" : 6,
 "comment" : "terrible post"
 }
]
}

Now, we can’t query using db.blog.find({"comments" : {"author" : "joe", "score" :
{"$gte" : 5}}}). Embedded document matches have to match the whole document,
and this doesn’t match the "comment" key. It also wouldn’t work to do
db.blog.find({"comments.author" : "joe", "comments.score" : {"$gte" : 5}}),

54 | Chapter 4: Querying

www.it-ebooks.info

http://www.it-ebooks.info/

because the author criteria could match a different comment than the score criteria.
That is, it would return the document shown earlier; it would match "author" :
"joe" in the first comment and "score" : 6 in the second comment.

To correctly group criteria without needing to specify every key, use "$elemMatch". This
vaguely named conditional allows you to partially specify criteria to match a single
embedded document in an array. The correct query looks like this:

> db.blog.find({"comments" : {"$elemMatch" : {"author" : "joe",
 "score" : {"$gte" : 5}}}})

"$elemMatch" allows us to “group” our criteria. As such, it’s only needed when you have
more than one key you want to match on in an embedded document.

$where Queries
Key/value pairs are a fairly expressive way to query, but there are some queries that
they cannot represent. For queries that cannot be done any other way, there are
"$where" clauses, which allow you to execute arbitrary JavaScript as part of your query.
This allows you to do (almost) anything within a query.

The most common case for this is wanting to compare the values for two keys in a
document, for instance, if we had a list of items and wanted to return documents where
any two of the values are equal. Here’s an example:

> db.foo.insert({"apple" : 1, "banana" : 6, "peach" : 3})
> db.foo.insert({"apple" : 8, "spinach" : 4, "watermelon" : 4})

In the second document, "spinach" and "watermelon" have the same value, so we’d like
that document returned. It’s unlikely MongoDB will ever have a $ conditional for this,
so we can use a "$where" clause to do it with JavaScript:

> db.foo.find({"$where" : function () {
... for (var current in this) {
... for (var other in this) {
... if (current != other && this[current] == this[other]) {
... return true;
... }
... }
... }
... return false;
... }});

If the function returns true, the document will be part of the result set; if it returns
false, it won’t be.

We used a function earlier, but you can also use strings to specify a "$where" query; the
following two "$where" queries are equivalent:

> db.foo.find({"$where" : "this.x + this.y == 10"})
> db.foo.find({"$where" : "function() { return this.x + this.y == 10; }"})

$where Queries | 55

www.it-ebooks.info

http://www.it-ebooks.info/

"$where" queries should not be used unless strictly necessary: they are much slower
than regular queries. Each document has to be converted from BSON to a JavaScript
object and then run through the "$where" expression. Indexes cannot be used to satisfy
a "$where", either. Hence, you should use "$where" only when there is no other way of
doing the query. You can cut down on the penalty by using other query filters in com-
bination with "$where". If possible, an index will be used to filter based on the non-
$where clauses; the "$where" expression will be used only to fine-tune the results.

Another way of doing complex queries is to use MapReduce, which is covered in the
next chapter.

Cursors
The database returns results from find using a cursor. The client-side implementations
of cursors generally allow you to control a great deal about the eventual output of a
query. You can limit the number of results, skip over some number of results, sort
results by any combination of keys in any direction, and perform a number of other
powerful operations.

To create a cursor with the shell, put some documents into a collection, do a query on
them, and assign the results to a local variable (variables defined with "var" are local).
Here, we create a very simple collection and query it, storing the results in the cursor
variable:

> for(i=0; i<100; i++) {
... db.c.insert({x : i});
... }
> var cursor = db.collection.find();

The advantage of doing this is that you can look at one result at a time. If you store the
results in a global variable or no variable at all, the MongoDB shell will automatically
iterate through and display the first couple of documents. This is what we’ve been
seeing up until this point, and it is often the behavior you want for seeing what’s in a
collection but not for doing actual programming with the shell.

To iterate through the results, you can use the next method on the cursor. You can use
hasNext to check whether there is another result. A typical loop through results looks
like the following:

> while (cursor.hasNext()) {
... obj = cursor.next();
... // do stuff
... }

cursor.hasNext() checks that the next result exists, and cursor.next() fetches it.

The cursor class also implements the iterator interface, so you can use it in a forEach
loop:

56 | Chapter 4: Querying

www.it-ebooks.info

http://www.it-ebooks.info/

> var cursor = db.people.find();
> cursor.forEach(function(x) {
... print(x.name);
... });
adam
matt
zak

When you call find, the shell does not query the database immediately. It waits until
you actually start requesting results to send the query, which allows you to chain ad-
ditional options onto a query before it is performed. Almost every method on a cursor
object returns the cursor itself so that you can chain them in any order. For instance,
all of the following are equivalent:

> var cursor = db.foo.find().sort({"x" : 1}).limit(1).skip(10);
> var cursor = db.foo.find().limit(1).sort({"x" : 1}).skip(10);
> var cursor = db.foo.find().skip(10).limit(1).sort({"x" : 1});

At this point, the query has not been executed yet. All of these functions merely build
the query. Now, suppose we call the following:

> cursor.hasNext()

At this point, the query will be sent to the server. The shell fetches the first 100 results
or first 4MB of results (whichever is smaller) at once so that the next calls to next or
hasNext will not have to make trips to the server. After the client has run through the
first set of results, the shell will again contact the database and ask for more results.
This process continues until the cursor is exhausted and all results have been returned.

Limits, Skips, and Sorts
The most common query options are limiting the number of results returned, skipping
a number of results, and sorting. All of these options must be added before a query is
sent to the database.

To set a limit, chain the limit function onto your call to find. For example, to only
return three results, use this:

> db.c.find().limit(3)

If there are fewer than three documents matching your query in the collection, only the
number of matching documents will be returned; limit sets an upper limit, not a lower
limit.

skip works similarly to limit:

> db.c.find().skip(3)

This will skip the first three matching documents and return the rest of the matches. If
there are less than three documents in your collection, it will not return any documents.

sort takes an object: a set of key/value pairs where the keys are key names and the
values are the sort directions. Sort direction can be 1 (ascending) or -1 (descending). If

Cursors | 57

www.it-ebooks.info

http://www.it-ebooks.info/

multiple keys are given, the results will be sorted in that order. For instance, to sort the
results by "username" ascending and "age" descending, we do the following:

> db.c.find().sort({username : 1, age : -1})

These three methods can be combined. This is often handy for pagination. For example,
suppose that you are running an online store and someone searches for mp3. If you
want 50 results per page sorted by price from high to low, you can do the following:

> db.stock.find({"desc" : "mp3"}).limit(50).sort({"price" : -1})

If they click Next Page to see more results, you can simply add a skip to the query,
which will skip over the first 50 matches (which the user already saw on page 1):

> db.stock.find({"desc" : "mp3"}).limit(50).skip(50).sort({"price" : -1})

However, large skips are not very performant, so there are suggestions on avoiding
them in a moment.

Comparison order

MongoDB has a hierarchy as to how types compare. Sometimes you will have a single
key with multiple types, for instance, integers and booleans, or strings and nulls. If you
do a sort on a key with a mix of types, there is a predefined order that they will be sorted
in. From least to greatest value, this ordering is as follows:

1. Minimum value

2. null

3. Numbers (integers, longs, doubles)

4. Strings

5. Object/document

6. Array

7. Binary data

8. Object ID

9. Boolean

10. Date

11. Timestamp

12. Regular expression

13. Maximum value

Avoiding Large Skips
Using skip for a small number of documents is fine. For a large number of results,
skip can be slow (this is true in nearly every database, not just MongoDB) and should
be avoided. Usually you can build criteria into the documents themselves to avoid

58 | Chapter 4: Querying

www.it-ebooks.info

http://www.it-ebooks.info/

having to do large skips, or you can calculate the next query based on the result from
the previous one.

Paginating results without skip

The easiest way to do pagination is to return the first page of results using limit and
then return each subsequent page as an offset from the beginning.

> // do not use: slow for large skips
> var page1 = db.foo.find(criteria).limit(100)
> var page2 = db.foo.find(criteria).skip(100).limit(100)
> var page3 = db.foo.find(criteria).skip(200).limit(100)
...

However, depending on your query, you can usually find a way to paginate without
skips. For example, suppose we want to display documents in descending order based
on "date". We can get the first page of results with the following:

> var page1 = db.foo.find().sort({"date" : -1}).limit(100)

Then, we can use the "date" value of the last document as the criteria for fetching the
next page:

var latest = null;

// display first page
while (page1.hasNext()) {
 latest = page1.next();
 display(latest);
}

// get next page
var page2 = db.foo.find({"date" : {"$gt" : latest.date}});
page2.sort({"date" : -1}).limit(100);

Now the query does not need to include a skip.

Finding a random document

One fairly common problem is how to get a random document from a collection. The
naive (and slow) solution is to count the number of documents and then do a find,
skipping a random number of documents between 0 and the size of the collection.

> // do not use
> var total = db.foo.count()
> var random = Math.floor(Math.random()*total)
> db.foo.find().skip(random).limit(1)

It is actually highly inefficient to get a random element this way: you have to do a count
(which can be expensive if you are using criteria), and skipping large numbers of ele-
ments can be time-consuming.

It takes a little forethought, but if you know you’ll be looking up a random element on
a collection, there’s a much more efficient way to do so. The trick is to add an extra

Cursors | 59

www.it-ebooks.info

http://www.it-ebooks.info/

random key to each document when it is inserted. For instance, if we’re using the shell,
we could use the Math.random() function (which creates a random number between 0
and 1):

> db.people.insert({"name" : "joe", "random" : Math.random()})
> db.people.insert({"name" : "john", "random" : Math.random()})
> db.people.insert({"name" : "jim", "random" : Math.random()})

Now, when we want to find a random document from the collection, we can calculate
a random number and use that as query criteria, instead of doing a skip:

> var random = Math.random()
> result = db.foo.findOne({"random" : {"$gt" : random}})

There is a slight chance that random will be greater than any of the "random" values in
the collection, and no results will be returned. We can guard against this by simply
returning a document in the other direction:

> if (result == null) {
... result = db.foo.findOne({"random" : {"$lt" : random}})
... }

If there aren’t any documents in the collection, this technique will end up returning
null, which makes sense.

This technique can be used with arbitrarily complex queries; just make sure to have an
index that includes the random key. For example, if we want to find a random plumber
in California, we can create an index on "profession", "state", and "random":

> db.people.ensureIndex({"profession" : 1, "state" : 1, "random" : 1})

This allows us to quickly find a random result (see Chapter 5 for more information on
indexing).

Advanced Query Options
There are two types of queries: wrapped and plain. A plain query is something like this:

> var cursor = db.foo.find({"foo" : "bar"})

There are a couple options that “wrap” the query. For example, suppose we perform
a sort:

> var cursor = db.foo.find({"foo" : "bar"}).sort({"x" : 1})

Instead of sending {"foo" : "bar"} to the database as the query, the query gets wrapped
in a larger document. The shell converts the query from {"foo" : "bar"} to {"$query" :
{"foo" : "bar"}, "$orderby" : {"x" : 1}}.

Most drivers provide helpers for adding arbitrary options to queries. Other helpful
options include the following:

$maxscan : integer
Specify the maximum number of documents that should be scanned for the query.

60 | Chapter 4: Querying

www.it-ebooks.info

http://www.it-ebooks.info/

$min : document
Start criteria for querying.

$max : document
End criteria for querying.

$hint : document
Tell the server which index to use for the query.

$explain : boolean
Get an explanation of how the query will be executed (indexes used, number of
results, how long it takes, etc.), instead of actually doing the query.

$snapshot : boolean
Ensure that the query’s results will be a consistent snapshot from the point in time
when the query was executed. See the next section for details.

Getting Consistent Results
A fairly common way of processing data is to pull it out of MongoDB, change it in some
way, and then save it again:

cursor = db.foo.find();

while (cursor.hasNext()) {
 var doc = cursor.next();
 doc = process(doc);
 db.foo.save(doc);
}

This is fine for a small number of results, but it breaks down for large numbers of
documents. To see why, imagine how the documents are actually being stored. You
can picture a collection as a list of documents that looks something like Figure 4-1.
Snowflakes represent documents, because every document is beautiful and unique.

Figure 4-1. A collection being queried

Now, when we do a find, it starts returning results from the beginning of the collection
and moves right. Your program grabs the first 100 documents and processes them.
When you save them back to the database, if a document does not have the padding
available to grow to its new size, like in Figure 4-2, it needs to be relocated. Usually, a
document will be relocated to the end of a collection (Figure 4-3).

Cursors | 61

www.it-ebooks.info

http://www.it-ebooks.info/

Now our program continues to fetch batches of documents. When it gets toward the
end, it will return the relocated documents again (Figure 4-4)!

Figure 4-4. A cursor may return these relocated documents again in a later batch

The solution to this problem is to snapshot your query. If you add the "$snapshot"
option, the query will be run against an unchanging view of the collection. All queries
that return a single batch of results are effectively snapshotted. Inconsistencies arise

Figure 4-2. An enlarged document may not fit where it did before

Figure 4-3. MongoDB relocates updated documents that don’t fit in their original position

62 | Chapter 4: Querying

www.it-ebooks.info

http://www.it-ebooks.info/

only when the collection changes under a cursor while it is waiting to get another batch
of results.

Cursor Internals
There are two sides to a cursor: the client-facing cursor and the database cursor that
the client-side one represents. We have been talking about the client-side one up until
now, but we are going to take a brief look at what’s happening on the server side.

On the server side, a cursor takes up memory and resources. Once a cursor runs out of
results or the client sends a message telling it to die, the database can free the resources
it was using. Freeing these resources lets the database use them for other things, which
is good, so we want to make sure that cursors can be freed quickly (within reason).

There are a couple of conditions that can cause the death (and subsequent cleanup) of
a cursor. First, when a cursor finishes iterating through the matching results, it will
clean itself up. Another way is that, when a cursor goes out of scope on the client side,
the drivers send the database a special message to let it know that it can kill that cursor.
Finally, even if the user hasn’t iterated through all the results and the cursor is still in
scope, after 10 minutes of inactivity, a database cursor will automatically “die.”

This “death by timeout” is usually the desired behavior: very few applications expect
their users to sit around for minutes at a time waiting for results. However, sometimes
you might know that you need a cursor to last for a long time. In that case, many drivers
have implemented a function called immortal, or a similar mechanism, which tells the
database not to time out the cursor. If you turn off a cursor’s timeout, you must iterate
through all of its results or make sure it gets closed. Otherwise, it will sit around in the
database hogging resources forever.

Cursor Internals | 63

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5

Indexing

Indexes are the way to make queries go vroom. Database indexes are similar to a book’s
index: instead of looking through the whole book, the database takes a shortcut and
just looks in the index, allowing it to do queries orders of magnitude faster. Once it
finds the entry in the index, it can jump right to the location of the desired document.

Extending this metaphor to the breaking point, creating database indexes is like de-
ciding how a book’s index will be organized. You have the advantage of knowing what
kinds of queries you’ll be doing and thus what types of information the database will
need to find quickly. If all of your queries involve the "date" key, for example, you
probably need an index on "date" (at least). If you will be querying for usernames, you
don’t need to index the "user_num" key, because you aren’t querying on it.

Introduction to Indexing
It can be tricky to figure out what the optimal index for your queries is, but it is well
worth the effort. Queries that otherwise take minutes can be instantaneous with the
proper indexes.

MongoDB’s indexes work almost identically to typical relational data-
base indexes, so if you are familiar with those, you can skim this section
for syntax specifics. We’ll go over some indexing basics, but keep in
mind that it’s an extensive topic and most of the material out there on
index optimization for MySQL/Oracle/SQLite will apply equally well
to MongoDB.

Suppose that you are querying for a single key, such as the following:

> db.people.find({"username" : "mark"})

65

www.it-ebooks.info

http://www.it-ebooks.info/

When only a single key is used in the query, that key can be indexed to improve the
query’s speed. In this case, you would create an index on "username". To create the
index, use the ensureIndex method:

> db.people.ensureIndex({"username" : 1})

An index needs to be created only once for a collection. If you try to create the same
index again, nothing will happen.

An index on a key will make queries on that key fast. However, it may not make other
queries fast, even if they contain the indexed key. For example, this wouldn’t be very
performant with the previous index:

> db.people.find({"date" : date1}).sort({"date" : 1, "username" : 1})

The server has to “look through the whole book” to find the desired dates. This process
is called a table scan, which is basically what you’d do if you were looking for infor-
mation in a book without an index: you start at page 1 and read through the whole
thing. In general, you want to avoid making the server do table scans, because it is very
slow for large collections.

As a rule of thumb, you should create an index that contains all of the keys in your
query. For instance, to optimize the previous query, you should have an index on
date and username:

> db.ensureIndex({"date" : 1, "username" : 1})

The document you pass to ensureIndex is of the same form as the document passed to
the sort function: a set of keys with value 1 or -1, depending on the direction you want
the index to go. If you have only a single key in the index, direction is irrelevant. A
single key index is analogous to a book’s index that is organized in alphabetical order:
whether it goes from A–Z or Z–A, it’s going to be fairly obvious where to find entries
starting with M.

If you have more than one key, you need to start thinking about index direction. For
example, suppose we have a collection of users:

{ "_id" : ..., "username" : "smith", "age" : 48, "user_id" : 0 }
{ "_id" : ..., "username" : "smith", "age" : 30, "user_id" : 1 }
{ "_id" : ..., "username" : "john", "age" : 36, "user_id" : 2 }
{ "_id" : ..., "username" : "john", "age" : 18, "user_id" : 3 }
{ "_id" : ..., "username" : "joe", "age" : 36, "user_id" : 4 }
{ "_id" : ..., "username" : "john", "age" : 7, "user_id" : 5 }
{ "_id" : ..., "username" : "simon", "age" : 3, "user_id" : 6 }
{ "_id" : ..., "username" : "joe", "age" : 27, "user_id" : 7 }
{ "_id" : ..., "username" : "jacob", "age" : 17, "user_id" : 8 }
{ "_id" : ..., "username" : "sally", "age" : 52, "user_id" : 9 }
{ "_id" : ..., "username" : "simon", "age" : 59, "user_id" : 10 }

Let’s say we index them with {"username" : 1, "age" : -1}. MongoDB will organize
the users as follows:

{ "_id" : ..., "username" : "jacob", "age" : 17, "user_id" : 8 }
{ "_id" : ..., "username" : "joe", "age" : 36, "user_id" : 4 }

66 | Chapter 5: Indexing

www.it-ebooks.info

http://www.it-ebooks.info/

{ "_id" : ..., "username" : "joe", "age" : 27, "user_id" : 7 }
{ "_id" : ..., "username" : "john", "age" : 36, "user_id" : 2 }
{ "_id" : ..., "username" : "john", "age" : 18, "user_id" : 3 }
{ "_id" : ..., "username" : "john", "age" : 7, "user_id" : 5 }
{ "_id" : ..., "username" : "sally", "age" : 52, "user_id" : 9 }
{ "_id" : ..., "username" : "simon", "age" : 59, "user_id" : 10 }
{ "_id" : ..., "username" : "simon", "age" : 3, "user_id" : 6 }
{ "_id" : ..., "username" : "smith", "age" : 48, "user_id" : 0 }
{ "_id" : ..., "username" : "smith", "age" : 30, "user_id" : 1 }

The usernames are in strictly increasing alphabetical order, and within each name group
the ages are in decreasing order. This optimizes sorting by {"username" : 1, "age" :
-1} but is less efficient at sorting by {"username" : 1, "age" : 1}. If we wanted to
optimize {"username" : 1, "age" : 1}, we would create an index on {"username" : 1,
"age" : 1} to organize ages in ascending order.

The index on username and age also makes queries on username fast. In general, if an
index has N keys, it will make queries on any prefix of those keys fast. For instance, if
we have an index that looks like {"a" : 1, "b" : 1, "c" : 1, ..., "z" : 1}, we
effectively have an index on {"a" : 1}, {"a" : 1, "b" : 1}, {"a" : 1, "b" : 1, "c" :
1}, and so on. Queries that would use the index {"b" : 1}, {"a" : 1, "c" :1}, and so
on will not be optimized: only queries that can use a prefix of the index can take ad-
vantage of it.

The MongoDB query optimizer will reorder query terms to take advantage of indexes:
if you query for {"x" : "foo", "y" : "bar"} and you have an index on {"y" : 1, "x" :
1}, MongoDB will figure it out.

The disadvantage to creating an index is that it puts a little bit of overhead on every
insert, update, and remove. This is because the database not only needs to do the
operation but also needs to make a note of it in any indexes on the collection. Thus,
the absolute minimum number of indexes should be created. There is a built-in max-
imum of 64 indexes per collection, which is more than almost any application should
need.

Do not index every key. This will make inserts slow, take up lots of
space, and probably not speed up your queries very much. Figure out
what queries you are running, what the best indexes are for these quer-
ies, and make sure that the server is using the indexes you’ve created
using the explain and hint tools described in the next section.

Sometimes the most efficient solution is actually not to use an index. In general, if a
query is returning a half or more of the collection, it will be more efficient for the
database to just do a table scan instead of having to look up the index and then the
value for almost every single document. Thus, for queries such as checking whether a
key exists or determining whether a boolean value is true or false, it may actually be
better to not use an index at all.

Introduction to Indexing | 67

www.it-ebooks.info

http://www.it-ebooks.info/

Scaling Indexes
Suppose we have a collection of status messages from users. We want to query by user
and date to pull up all of a user’s recent statuses. Using what we’ve learned so far, we
might create an index that looks like the following:

> db.status.ensureIndex({user : 1, date : -1})

This will make the query for user and date efficient, but it is not actually the best index
choice.

Imagine this as a book index again. We would have a list of documents sorted by user
and then subsorted by date, so it would look something like the following:

User 123 on March 13, 2010
User 123 on March 12, 2010
User 123 on March 11, 2010
User 123 on March 5, 2010
User 123 on March 4, 2010
User 124 on March 12, 2010
User 124 on March 11, 2010
...

This looks fine at this scale, but imagine if the application has millions of users who
have dozens of status updates per day. If the index entries for each user’s status messages
take up a page’s worth of space on disk, then for every “latest statuses” query, the
database will have to load a different page into memory. This will be very slow if the
site becomes popular enough that not all of the index fits into memory.

If we flip the index order to {date : -1, user : 1}, the database can keep the last
couple days of the index in memory, swap less, and thus query for the latest statuses
for any user much more quickly.

Thus, there are several questions to keep in mind when deciding what indexes to create:

1. What are the queries you are doing? Some of these keys will need to be indexed.

2. What is the correct direction for each key?

3. How is this going to scale? Is there a different ordering of keys that would keep
more of the frequently used portions of the index in memory?

If you can answer these questions, you are ready to index your data.

Indexing Keys in Embedded Documents
Indexes can be created on keys in embedded documents in the same way that they are
created on normal keys. For example, if we want to be able to search blog post com-
ments by date, we can create an index on the "date" key in the array of embedded
"comments" documents:

> db.blog.ensureIndex({"comments.date" : 1})

68 | Chapter 5: Indexing

www.it-ebooks.info

http://www.it-ebooks.info/

Indexes on keys in embedded documents are identical to those on top-level keys, and
the two can be combined in compound indexes.

Indexing for Sorts
As your collection grows, you’ll need to create indexes for any large sorts your queries
are doing. If you call sort on a key that is not indexed, MongoDB needs to pull all of
that data into memory to sort it. Thus, there’s a limit on the amount you can sort
without an index: you can’t sort a terabyte of data in memory. Once your collection is
too big to sort in memory, MongoDB will just return an error for queries that try.

Indexing the sort allows MongoDB to pull the sorted data in order, allowing you to
sort any amount of data without running out of memory.

Uniquely Identifying Indexes
Each index in a collection has a string name that uniquely identifies the index and is
used by the server to delete or manipulate it. Index names are, by default,
keyname1_dir1_keyname2_dir2_..._keynameN_dirN, where keynameX is the index’s key
and dirX is the index’s direction (1 or -1). This can get unwieldy if indexes contain more
than a couple keys, so you can specify your own name as one of the options to
ensureIndex:

> db.foo.ensureIndex({"a" : 1, "b" : 1, "c" : 1, ..., "z" : 1}, {"name" : "alphabet"})

There is a limit to the number of characters in an index name, so complex indexes may
need custom names to be created. A call to getLastError will show whether the index
creation succeeded or why it didn’t.

Unique Indexes
Unique indexes guarantee that, for a given key, every document in the collection will
have a unique value. For example, if you want to make sure no two documents can
have the same value in the "username" key, you can create a unique index:

> db.people.ensureIndex({"username" : 1}, {"unique" : true})

Keep in mind that insert, by default, does not check whether the document was ac-
tually inserted. Therefore, you may want to use safe inserts if you are inserting docu-
ments that might have a duplicate value for a unique key. This way, you will get a
duplicate key error when you attempt to insert such a document.

A unique index that you are probably already familiar with is the index on "_id", which
is created whenever you create a normal collection. This is a normal unique index, aside
from the fact that it cannot be deleted.

Unique Indexes | 69

www.it-ebooks.info

http://www.it-ebooks.info/

If a key does not exist, the index stores its value as null. Therefore, if
you create a unique index on a key and try to insert more than one
document that is missing the indexed key, the inserts will fail because
you already have a document with a value of null.

Dropping Duplicates
When building unique indexes for an existing collection, some values may be dupli-
cates. If there are any duplicates, this will cause the index building to fail. In some cases,
you may just want to drop all of the documents with duplicate values. The dropDups
option will save the first document found and remove any subsequent documents with
duplicate values:

> db.people.ensureIndex({"username" : 1}, {"unique" : true, "dropDups" : true})

This is a bit of a drastic option; it might be better to create a script to preprocess the
data if it is important.

Compound Unique Indexes
You can also create a compound unique index. If you do this, individual keys can have
the same values, but the combination of values for all keys must be unique.

GridFS, the standard method for storing large files in MongoDB (see Chapter 7), uses
a compound unique index. The collection that holds the file content has a unique index
on {files_id : 1, n : 1}, which allows documents that look like (in part) the
following:

{files_id : ObjectId("4b23c3ca7525f35f94b60a2d"), n : 1}
{files_id : ObjectId("4b23c3ca7525f35f94b60a2d"), n : 2}
{files_id : ObjectId("4b23c3ca7525f35f94b60a2d"), n : 3}
{files_id : ObjectId("4b23c3ca7525f35f94b60a2d"), n : 4}

Note that all of the values for "files_id" are the same, but "n" is different. If you
attempted to insert {files_id : ObjectId("4b23c3ca7525f35f94b60a2d"), n : 1} again,
the database would complain about the duplicate key.

Using explain and hint
explain is an incredibly handy tool that will give you lots of information about your
queries. You can run it on any query by tacking it on to a cursor. explain returns a
document, not the cursor itself, unlike most cursor methods:

> db.foo.find().explain()

explain will return information about the indexes used for the query (if any) and stats
about timing and the number of documents scanned.

70 | Chapter 5: Indexing

www.it-ebooks.info

http://www.it-ebooks.info/

Let’s take an example. The index {"username" : 1} works well to speed up a simple
key/value pair lookup, but many queries are more complicated. For example, suppose
you are querying and sorting the following:

> db.people.find({"age" : 18}).sort({"username" : 1})

You may be unsure if the database is using the index you created or how effective it is.
If you run explain on the query, it will return the index currently being used for the
query, how long it took, and how many documents the database needed to scan to find
the results.

For a very simple query ({}) on a database with no indexes (other than the index on
"_id") and 64 documents, the output for explain looks like this:

> db.people.find().explain()
{
 "cursor" : "BasicCursor",
 "indexBounds" : [],
 "nscanned" : 64,
 "nscannedObjects" : 64,
 "n" : 64,
 "millis" : 0,
 "allPlans" : [
 {
 "cursor" : "BasicCursor",
 "indexBounds" : []
 }
]
}

The important parts of this result are as follows:

"cursor" : "BasicCursor"
This means that the query did not use an index (unsurprisingly, because there was
no query criteria). We’ll see what this value looks like for an indexed query in a
moment.

"nscanned" : 64
This is the number of documents that the database looked through. You want to
make sure this is as close to the number returned as possible.

"n" : 64
This is the number of documents returned. We’re doing pretty well here, because
the number of documents scanned exactly matches the number returned. Of
course, given that we’re returning the entire collection, it would be difficult to do
otherwise.

"millis" : 0
The number of milliseconds it took the database to execute the query. 0 is a good
time to shoot for.

Using explain and hint | 71

www.it-ebooks.info

http://www.it-ebooks.info/

Now, let’s suppose we have an index on the "age" key and we’re querying for users in
their 20s. If we run explain on this query, we’ll see the following:

> db.c.find({age : {$gt : 20, $lt : 30}}).explain()
{
 "cursor" : "BtreeCursor age_1",
 "indexBounds" : [
 [
 {
 "age" : 20
 },
 {
 "age" : 30
 }
]
],
 "nscanned" : 14,
 "nscannedObjects" : 12,
 "n" : 12,
 "millis" : 1,
 "allPlans" : [
 {
 "cursor" : "BtreeCursor age_1",
 "indexBounds" : [
 [
 {
 "age" : 20
 },
 {
 "age" : 30
 }
]
]
 }
]
}

There are some differences here, because this query uses an index. Thus, some of
explain’s outputted keys have changed:

"cursor" : "BtreeCursor age_1"
This query is not using a BasicCursor, like the first query was. Indexes are stored
in data structures called B-trees, so, when a query uses an index, it uses a special
type of cursor called a BtreeCursor.

This value also identifies the name of the index being used: age_1. Using this name,
we could query the system.indexes collection to find out more about this index
(e.g., whether it is unique or what keys it includes):

> db.system.indexes.find({"ns" : "test.c", "name" : "age_1"})
{
 "_id" : ObjectId("4c0d211478b4eaaf7fb28565"),
 "ns" : "test.c",
 "key" : {
 "age" : 1

72 | Chapter 5: Indexing

www.it-ebooks.info

http://www.it-ebooks.info/

 },
 "name" : "age_1"
}

"allPlans" : [...]
This key lists all of the plans MongoDB considered for the query. The choice here
was fairly obvious, because we had an index on "age" and we were querying for
"age". If we had multiple overlapping indexes and a more complex query, "all
Plans" would contain information about all of the possible plans that could have
been used.

Let’s take a slightly more complicated example: suppose you have an index on {"user
name" : 1, "age" : 1} and an index on {"age" : 1, "username" : 1}. What happens
if you query for username and age? Well, it depends on the query:

> db.c.find({age : {$gt : 10}, username : "sally"}).explain()
{
 "cursor" : "BtreeCursor username_1_age_1",
 "indexBounds" : [
 [
 {
 "username" : "sally",
 "age" : 10
 },
 {
 "username" : "sally",
 "age" : 1.7976931348623157e+308
 }
]
],
 "nscanned" : 13,
 "nscannedObjects" : 13,
 "n" : 13,
 "millis" : 5,
 "allPlans" : [
 {
 "cursor" : "BtreeCursor username_1_age_1",
 "indexBounds" : [
 [
 {
 "username" : "sally",
 "age" : 10
 },
 {
 "username" : "sally",
 "age" : 1.7976931348623157e+308
 }
]
]
 }
],
 "oldPlan" : {
 "cursor" : "BtreeCursor username_1_age_1",
 "indexBounds" : [

Using explain and hint | 73

www.it-ebooks.info

http://www.it-ebooks.info/

 [
 {
 "username" : "sally",
 "age" : 10
 },
 {
 "username" : "sally",
 "age" : 1.7976931348623157e+308
 }
]
]
 }
}

We are querying for an exact match on "username" and a range of values for "age", so
the database chooses to use the {"username" : 1, "age" : 1} index, reversing the terms
of the query. If, on the other hand, we query for an exact age and a range of names,
MongoDB will use the other index:

> db.c.find({"age" : 14, "username" : /.*/}).explain()
{
 "cursor" : "BtreeCursor age_1_username_1 multi",
 "indexBounds" : [
 [
 {
 "age" : 14,
 "username" : ""
 },
 {
 "age" : 14,
 "username" : {

 }
 }
],
 [
 {
 "age" : 14,
 "username" : /.*/
 },
 {
 "age" : 14,
 "username" : /.*/
 }
]
],
 "nscanned" : 2,
 "nscannedObjects" : 2,
 "n" : 2,
 "millis" : 2,
 "allPlans" : [
 {
 "cursor" : "BtreeCursor age_1_username_1 multi",
 "indexBounds" : [
 [

74 | Chapter 5: Indexing

www.it-ebooks.info

http://www.it-ebooks.info/

 {
 "age" : 14,
 "username" : ""
 },
 {
 "age" : 14,
 "username" : {

 }
 }
],
 [
 {
 "age" : 14,
 "username" : /.*/
 },
 {
 "age" : 14,
 "username" : /.*/
 }
]
]
 }
]
}

If you find that Mongo is using different indexes than you want it to for a query, you
can force it to use a certain index by using hint. For instance, if you want to make sure
MongoDB uses the {"username" : 1, "age" : 1} index on the previous query, you
could say the following:

> db.c.find({"age" : 14, "username" : /.*/}).hint({"username" : 1, "age" : 1})

Hinting is usually unnecessary. MongoDB has a query optimizer and is very clever about
choosing which index to use. When you first do a query, the query optimizer tries out
a number of query plans concurrently. The first one to finish will be used, and the rest
of the query executions are terminated. That query plan will be remembered for future
queries on the same keys. The query optimizer periodically retries other plans, in case
you’ve added new data and the previously chosen plan is no longer best. The only part
you should need to worry about is giving the query optimizer useful indexes to choose
from.

Index Administration
Metainformation about indexes is stored in the system.indexes collection of each
database. This is a reserved collection, so you cannot insert documents into it or remove
documents from it. You can manipulate its documents only through ensureIndex and
the dropIndexes database command.

The system.indexes collection has detailed information about each index, but the
system.namespaces collection also lists their names. If you look at this collection, you

Index Administration | 75

www.it-ebooks.info

http://www.it-ebooks.info/

can see that there are at least two documents for each collection: one for the collection
itself and one for each index it contains. For a collection with just the standard "_id"
index, its system.namespaces entries would look like this:

{ "name" : "test.foo" }
{ "name" : "test.foo.$_id_"}

If we add a compound index on the name and age keys, a new document is added to
system.namespaces with the following form:

{ "name" : "test.foo.$name_1_age_1" }

In Chapter 2, we mentioned that collection names are limited to 121 bytes in length.
This somewhat strange limit is because the "_id" index’s namespace needs 6 extra bytes
(".$_id_"), bringing the namespace length for that index up to a more sensical 127
bytes.

It is important to remember that the size of the collection name plus the index name
cannot exceed 127 bytes. If you approach the maximum namespace size or have large
index names, you may have to use custom index names to avoid creating namespaces
that are too long. It’s generally easier just to keep database, collection, and key names
to reasonable lengths.

Changing Indexes
As you and your application grow old together, you may find that your data or queries
have changed and that the indexes that used to work well no longer do. You can add
new indexes to existing collections at any time with ensureIndex:

> db.people.ensureIndex({"username" : 1}, {"background" : true})

Building indexes is time-consuming and resource-intensive. Using the {"background" :
true} option builds the index in the background, while handling incoming requests. If
you do not include the background option, the database will block all other requests
while the index is being built.

Blocking lets index creation go faster but means your application will be unresponsive
during the build. Even building an index in the background can take a toll on normal
operations, so it is best to do it during an “off” time; building indexes in the background
will still add extra load to your database, but it will not bring it grinding to a halt.

Creating indexes on existing documents is slightly faster than creating the index first
and then inserting all of the documents. Of course, creating an index beforehand is an
option only if you’re populating a new collection from scratch.

If an index is no longer necessary, you can remove it with the dropIndexes command
and the index name. Often, you may have to look at the system.indexes collection to
figure out what the index name is, because even the autogenerated names vary some-
what from driver to driver:

> db.runCommand({"dropIndexes" : "foo", "index" : "alphabet"})

76 | Chapter 5: Indexing

www.it-ebooks.info

http://www.it-ebooks.info/

You can drop all indexes on a collection by passing in * as the value for the index key:

> db.runCommand({"dropIndexes" : "foo", "index" : "*"})

Another way to delete all indexes is to drop the collection. This will also delete the
index on _id (and all of the documents in the collection). Removing all of the documents
in a collection (with remove) does not affect the indexes; they will be repopulated when
new documents are inserted.

Geospatial Indexing
There is another type of query that is becoming increasingly common (especially with
the emergence of mobile devices): finding the nearest N things to a current location.
MongoDB provides a special type of index for coordinate plane queries, called a
geospatial index.

Suppose we wanted to find the nearest coffee shop to where we are now, given a latitude
and longitude. We need to create a special index to do this type of query efficiently,
because it needs to search in two dimensions. A geospatial index can be created using
the ensureIndex function, but by passing "2d" as a value instead of 1 or -1:

> db.map.ensureIndex({"gps" : "2d"})

The "gps" key must be some type of pair value, that is, a two-element array or embedded
document with two keys. These would all be valid:

{ "gps" : [0, 100] }
{ "gps" : { "x" : -30, "y" : 30 } }
{ "gps" : { "latitude" : -180, "longitude" : 180 } }

The keys can be anything; for example, {"gps" : {"foo" : 0, "bar" : 1}} is valid.

By default, geospatial indexing assumes that your values are going to range from -180
to 180 (which is convenient for latitude and longitude). If you are using it for other
values, you can specify what the minimum and maximum values will be as options to
ensureIndex:

> db.star.trek.ensureIndex({"light-years" : "2d"}, {"min" : -1000, "max" : 1000})

This will create a spatial index calibrated for a 2,000 × 2,000 light-year square.

Geospatial queries can be performed in two ways: as a normal query (using find) or as
a database command. The find approach is similar to performing a nongeospatial
query, except the conditional "$near" is used. It takes an array of the two target values:

> db.map.find({"gps" : {"$near" : [40, -73]}})

This finds all of the documents in the map collection, in order by distance from the
point (40, -73). A default limit of 100 documents is applied if no limit is specified. If
you don’t need that many results, you should set a limit to conserve server resources.
For example, the following code returns the 10 nearest documents to (40, -73):

> db.map.find({"gps" : {"$near" : [40, -73]}}).limit(10)

Geospatial Indexing | 77

www.it-ebooks.info

http://www.it-ebooks.info/

This same type of query can be performed using the geoNear command:

> db.runCommand({geoNear : "map", near : [40, -73], num : 10});

geoNear also returns the distance of each result document from the query point. The
distance is in whatever units you inserted the data in; if you inserted degrees of longitude
and latitude, the distance is in degrees. find with "$near" doesn’t give you the distance
for each point but must be used if you have more than 4MB of results.

MongoDB also allows you to find all of the documents within a shape, as well as near
a point. To find points in a shape, we use the "$within" conditional instead of the
"$near" conditional. "$within" can take an increasing number of shapes; check the
online documentation for geospatial indexing to see the most up-to-date list of what’s
supported (http://www.mongodb.org/display/DOCS/Geospatial+Indexing). As of this
writing, there are two options: you can query for all points within a rectangle or a circle.
To use a rectangle, use the "$box" option:

> db.map.find({"gps" : {"$within" : {"$box" : [[10, 20], [15, 30]]}}})

"$box" takes a two-element array: the first element specifies the coordinates of the
lower-left corner, the second element the upper right.

Also, you can find all points within a circle with "$center", which takes an array with
the center point and then a radius:

> db.map.find({"gps" : {"$within" : {"$center" : [[12, 25], 5]}}})

Compound Geospatial Indexes
Applications often need to search for more complex criteria than just a location. For
example, a user might want to find all coffee shops or pizza parlors near where they
are. To facilitate this type of query, you can combine geospatial indexes with normal
indexes. In this situation, for instance, we might want to query on both the
"location" key and a "desc" key, so we’d create a compound index:

> db.ensureIndex({"location" : "2d", "desc" : 1})

Then we can quickly find the nearest coffee shop:

> db.map.find({"location" : {"$near" : [-70, 30]}, "desc" : "coffeeshop"}).limit(1)
{
 "_id" : ObjectId("4c0d1348928a815a720a0000"),
 "name" : "Mud",
 "location" : [x, y],
 "desc" : ["coffee", "coffeeshop", "muffins", "espresso"]
}

Note that creating an array of keywords is a good way to perform user-defined searches.

78 | Chapter 5: Indexing

www.it-ebooks.info

http://www.mongodb.org/display/DOCS/Geospatial+Indexing
http://www.it-ebooks.info/

The Earth Is Not a 2D Plane
MongoDB’s geospatial indexes assumes that whatever you’re indexing is a flat plane.
This means that results aren’t perfect for spherical shapes, like the earth, especially near
the poles. The problem is that the distance between lines of longitude in the Yukon is
much shorter than the distance between them at the equator. There are various
projections that can be used to convert the earth to a 2D plane with varying levels of
accuracy and corresponding levels of complexity.

Geospatial Indexing | 79

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6

Aggregation

MongoDB provides a number of aggregation tools that go beyond basic query func-
tionality. These range from simply counting the number of documents in a collection
to using MapReduce to do complex data analysis.

count
The simplest aggregation tool is count, which returns the number of documents in the
collection:

> db.foo.count()
0
> db.foo.insert({"x" : 1})
> db.foo.count()
1

Counting the total number of documents in a collection is fast regardless of collection
size.

You can also pass in a query, and Mongo will count the number of results for that query:

> db.foo.insert({"x" : 2})
> db.foo.count()
2
> db.foo.count({"x" : 1})
1

This can be useful for getting a total for pagination: “displaying results 0–10 of 439.”
Adding criteria does make the count slower, however.

distinct
The distinct command finds all of the distinct values for a given key. You must specify
a collection and key:

> db.runCommand({"distinct" : "people", "key" : "age"})

81

www.it-ebooks.info

http://www.it-ebooks.info/

For example, suppose we had the following documents in our collection:

{"name" : "Ada", "age" : 20}
{"name" : "Fred", "age" : 35}
{"name" : "Susan", "age" : 60}
{"name" : "Andy", "age" : 35}

If you call distinct on the "age" key, you will get back all of the distinct ages:

> db.runCommand({"distinct" : "people", "key" : "age"})
{"values" : [20, 35, 60], "ok" : 1}

A common question at this point is if there’s a way to get all of the distinct keys in a
collection. There is no built-in way of doing this, although you can write something to
do it yourself using MapReduce (described in a moment).

group
group allows you to perform more complex aggregation. You choose a key to group by,
and MongoDB divides the collection into separate groups for each value of the chosen
key. For each group, you can create a result document by aggregating the documents
that are members of that group.

If you are familiar with SQL, group is similar to SQL’s GROUP BY.

Suppose we have a site that keeps track of stock prices. Every few minutes from 10 a.m.
to 4 p.m., it gets the latest price for a stock, which it stores in MongoDB. Now, as part
of a reporting application, we want to find the closing price for the past 30 days. This
can be easily accomplished using group.

The collection of stock prices contains thousands of documents with the following
form:

{"day" : "2010/10/03", "time" : "10/3/2010 03:57:01 GMT-400", "price" : 4.23}
{"day" : "2010/10/04", "time" : "10/4/2010 11:28:39 GMT-400", "price" : 4.27}
{"day" : "2010/10/03", "time" : "10/3/2010 05:00:23 GMT-400", "price" : 4.10}
{"day" : "2010/10/06", "time" : "10/6/2010 05:27:58 GMT-400", "price" : 4.30}
{"day" : "2010/10/04", "time" : "10/4/2010 08:34:50 GMT-400", "price" : 4.01}

You should never store money amounts as floating-point numbers be-
cause of inexactness concerns, but we’ll do it anyway in this example
for simplicity.

We want our results to be a list of the latest time and price for each day, something
like this:

82 | Chapter 6: Aggregation

www.it-ebooks.info

http://www.it-ebooks.info/

[
 {"time" : "10/3/2010 05:00:23 GMT-400", "price" : 4.10},
 {"time" : "10/4/2010 11:28:39 GMT-400", "price" : 4.27},
 {"time" : "10/6/2010 05:27:58 GMT-400", "price" : 4.30}
]

We can accomplish this by splitting the collection into sets of documents grouped by
day then finding the document with the latest timestamp for each day and adding it to
the result set. The whole function might look something like this:

> db.runCommand({"group" : {
... "ns" : "stocks",
... "key" : "day",
... "initial" : {"time" : 0},
... "$reduce" : function(doc, prev) {
... if (doc.time > prev.time) {
... prev.price = doc.price;
... prev.time = doc.time;
... }
... }}})

Let’s break this command down into its component keys:

"ns" : "stocks"
This determines which collection we’ll be running the group on.

"key" : "day"
This specifies the key on which to group the documents in the collection. In this
case, that would be the "day" key. All of the documents with a "day" key of a given
value will be grouped together.

"initial" : {"time" : 0}
The first time the reduce function is called for a given group, it will be passed the
initialization document. This same accumulator will be used for each member of
a given group, so any changes made to it can be persisted.

"$reduce" : function(doc, prev) { ... }
This will be called once for each document in the collection. It is passed the current
document and an accumulator document: the result so far for that group. In this
example, we want the reduce function to compare the current document’s time
with the accumulator’s time. If the current document has a later time, we’ll set the
accumulator’s day and price to be the current document’s values. Remember that
there is a separate accumulator for each group, so there is no need to worry about
different days using the same accumulator.

In the initial statement of the problem, we said that we wanted only the last 30 days
worth of prices. Our current solution is iterating over the entire collection, however.
This is why you can include a "condition" that documents must satisfy in order to be
processed by the group command at all:

> db.runCommand({"group" : {
... "ns" : "stocks",
... "key" : "day",

group | 83

www.it-ebooks.info

http://www.it-ebooks.info/

... "initial" : {"time" : 0},

... "$reduce" : function(doc, prev) {

... if (doc.time > prev.time) {

... prev.price = doc.price;

... prev.time = doc.time;

... }},

... "condition" : {"day" : {"$gt" : "2010/09/30"}}

... }})

Some documentation refers to a "cond" or "q" key, both of which are
identical to the "condition" key (just less descriptive).

Now the command will return an array of 30 documents, each of which is a group.
Each group has the key on which the group was based (in this case, "day" : string)
and the final value of prev for that group. If some of the documents do not contain the
key, these will be grouped into a single group with a day : null element. You can
eliminate this group by adding "day" : {"$exists" : true} to the "condition". The
group command also returns the total number of documents used and the number of
distinct values for "key":

> db.runCommand({"group" : {...}})
{
 "retval" :
 [
 {
 "day" : "2010/10/04",
 "time" : "Mon Oct 04 2010 11:28:39 GMT-0400 (EST)"
 "price" : 4.27
 },
 ...
],
 "count" : 734,
 "keys" : 30,
 "ok" : 1
}

We explicitly set the "price" for each group, and the "time" was set by the initializer
and then updated. The "day" is included because the key being grouped by is included
by default in each "retval" embedded document. If you don’t want to return this key,
you can use a finalizer to change the final accumulator document into anything, even
a nondocument (e.g., a number or string).

Using a Finalizer
Finalizers can be used to minimize the amount of data that needs to be transferred from
the database to the user, which is important, because the group command’s output
needs to fit in a single database response. To demonstrate this, we’ll take the example

84 | Chapter 6: Aggregation

www.it-ebooks.info

http://www.it-ebooks.info/

of a blog where each post has tags. We want to find the most popular tag for each day.
We can group by day (again) and keep a count for each tag. This might look something
like this:

> db.posts.group({
... "key" : {"tags" : true},
... "initial" : {"tags" : {}},
... "$reduce" : function(doc, prev) {
... for (i in doc.tags) {
... if (doc.tags[i] in prev.tags) {
... prev.tags[doc.tags[i]]++;
... } else {
... prev.tags[doc.tags[i]] = 1;
... }
... }
... }})

This will return something like this:

[
 {"day" : "2010/01/12", "tags" : {"nosql" : 4, "winter" : 10, "sledding" : 2}},
 {"day" : "2010/01/13", "tags" : {"soda" : 5, "php" : 2}},
 {"day" : "2010/01/14", "tags" : {"python" : 6, "winter" : 4, "nosql": 15}}
]

Then we could find the largest value in the "tags" document on the client side. How-
ever, sending the entire tags document for every day is a lot of extra overhead to send
to the client: an entire set of key/value pairs for each day, when all we want is a single
string. This is why group takes an optional "finalize" key. "finalize" can contain a
function that is run on each group once, right before the result is sent back to the client.
We can use a "finalize" function to trim out all of the cruft from our results:

> db.runCommand({"group" : {
... "ns" : "posts",
... "key" : {"tags" : true},
... "initial" : {"tags" : {}},
... "$reduce" : function(doc, prev) {
... for (i in doc.tags) {
... if (doc.tags[i] in prev.tags) {
... prev.tags[doc.tags[i]]++;
... } else {
... prev.tags[doc.tags[i]] = 1;
... }
... },
... "finalize" : function(prev) {
... var mostPopular = 0;
... for (i in prev.tags) {
... if (prev.tags[i] > mostPopular) {
... prev.tag = i;
... mostPopular = prev.tags[i];
... }
... }
... delete prev.tags
... }}})

group | 85

www.it-ebooks.info

http://www.it-ebooks.info/

Now, we’re only getting the information we want; the server will send back something
like this:

[
 {"day" : "2010/01/12", "tag" : "winter"},
 {"day" : "2010/01/13", "tag" : "soda"},
 {"day" : "2010/01/14", "tag" : "nosql"}
]

finalize can either modify the argument passed in or return a new value.

Using a Function as a Key
Sometimes you may have more complicated criteria that you want to group by, not just
a single key. Suppose you are using group to count how many blog posts are in each
category. (Each blog post is in a single category.) Post authors were inconsistent,
though, and categorized posts with haphazard capitalization. So, if you group by cat-
egory name, you’ll end up with separate groups for “MongoDB” and “mongodb.” To
make sure any variation of capitalization is treated as the same key, you can define a
function to determine documents’ grouping key.

To define a grouping function, you must use a $keyf key (instead of "key"). Using
"$keyf" makes the group command look something like this:

> db.posts.group({"ns" : "posts",
... "$keyf" : function(x) { return x.category.toLowerCase(); },
... "initializer" : ... })

"$keyf" allows you can group by arbitrarily complex criteria.

MapReduce
MapReduce is the Uzi of aggregation tools. Everything described with count,
distinct, and group can be done with MapReduce, and more. It is a method of aggre-
gation that can be easily parallelized across multiple servers. It splits up a problem,
sends chunks of it to different machines, and lets each machine solve its part of the
problem. When all of the machines are finished, they merge all of the pieces of the
solution back into a full solution.

MapReduce has a couple of steps. It starts with the map step, which maps an operation
onto every document in a collection. That operation could be either “do nothing” or
“emit these keys with X values.” There is then an intermediary stage called the shuffle
step: keys are grouped and lists of emitted values are created for each key. The reduce
takes this list of values and reduces it to a single element. This element is returned to
the shuffle step until each key has a list containing a single value: the result.

The price of using MapReduce is speed: group is not particularly speedy, but
MapReduce is slower and is not supposed to be used in “real time.” You run

86 | Chapter 6: Aggregation

www.it-ebooks.info

http://www.it-ebooks.info/

MapReduce as a background job, it creates a collection of results, and then you can
query that collection in real time.

We’ll go through a couple of MapReduce examples because it is incredibly useful and
powerful but also a somewhat complex tool.

Example 1: Finding All Keys in a Collection
Using MapReduce for this problem might be overkill, but it is a good way to get familiar
with how MapReduce works. If you already understand MapReduce, feel free to skip
ahead to the last part of this section, where we cover MongoDB-specific MapReduce
considerations.

MongoDB is schemaless, so it does not keep track of the keys in each document. The
best way, in general, to find all the keys across all the documents in a collection is to
use MapReduce. In this example, we’ll also get a count of how many times each key
appears in the collection. This example doesn’t include keys for embedded documents,
but it would be a simple addition to the map function to do so.

For the mapping step, we want to get every key of every document in the collection.
The map function uses a special function to “return” values that we want to process
later: emit. emit gives MapReduce a key (like the one used by group earlier) and a value.
In this case, we emit a count of how many times a given key appeared in the document
(once: {count : 1}). We want a separate count for each key, so we’ll call emit for every
key in the document. this is a reference to the current document we are mapping:

> map = function() {
... for (var key in this) {
... emit(key, {count : 1});
... }};

Now we have a ton of little {count : 1} documents floating around, each associated
with a key from the collection. An array of one or more of these {count : 1} documents
will be passed to the reduce function. The reduce function is passed two arguments:
key, which is the first argument from emit, and an array of one or more {count : 1}
documents that were emitted for that key:

> reduce = function(key, emits) {
... total = 0;
... for (var i in emits) {
... total += emits[i].count;
... }
... return {"count" : total};
... }

reduce must be able to be called repeatedly on results from either the map phase or
previous reduce phases. Therefore, reduce must return a document that can be re-sent
to reduce as an element of its second argument. For example, say we have the key x
mapped to three documents: {count : 1, id : 1}, {count : 1, id : 2}, and {count :

MapReduce | 87

www.it-ebooks.info

http://www.it-ebooks.info/

1, id : 3}. (The ID keys are just for identification purposes.) MongoDB might call
reduce in the following pattern:

> r1 = reduce("x", [{count : 1, id : 1}, {count : 1, id : 2}])
{count : 2}
> r2 = reduce("x", [{count : 1, id : 3}])
{count : 1}
> reduce("x", [r1, r2])
{count : 3}

You cannot depend on the second argument always holding one of the initial docu-
ments ({count : 1} in this case) or being a certain length. reduce should be able to be
run on any combination of emit documents and reduce return values.

Altogether, this MapReduce function would look like this:

> mr = db.runCommand({"mapreduce" : "foo", "map" : map, "reduce" : reduce})
{
 "result" : "tmp.mr.mapreduce_1266787811_1",
 "timeMillis" : 12,
 "counts" : {
 "input" : 6
 "emit" : 14
 "output" : 5
 },
 "ok" : true
}

The document MapReduce returns gives you a bunch of metainformation about the
operation:

"result" : "tmp.mr.mapreduce_1266787811_1"
This is the name of the collection the MapReduce results were stored in. This is a
temporary collection that will be deleted when the connection that did the Map-
Reduce is closed. We will go over how to specify a nicer name and make the col-
lection permanent in a later part of this chapter.

"timeMillis" : 12
How long the operation took, in milliseconds.

"counts" : { ... }
This embedded document contains three keys:

"input" : 6
The number of documents sent to the map function.

"emit" : 14
The number of times emit was called in the map function.

"output" : 5
The number of documents created in the result collection.

"counts" is mostly useful for debugging.

88 | Chapter 6: Aggregation

www.it-ebooks.info

http://www.it-ebooks.info/

If we do a find on the resulting collection, we can see all of the keys and their counts
from our original collection:

> db[mr.result].find()
{ "_id" : "_id", "value" : { "count" : 6 } }
{ "_id" : "a", "value" : { "count" : 4 } }
{ "_id" : "b", "value" : { "count" : 2 } }
{ "_id" : "x", "value" : { "count" : 1 } }
{ "_id" : "y", "value" : { "count" : 1 } }

Each of the key values becomes an "_id", and the final result of the reduce step(s)
becomes the "value".

Example 2: Categorizing Web Pages
Suppose we have a site where people can submit links to other pages, such as
reddit.com. Submitters can tag a link as related to certain popular topics, e.g., “poli-
tics,” “geek,” or “icanhascheezburger.” We can use MapReduce to figure out which
topics are the most popular, as a combination of recent and most-voted-for.

First, we need a map function that emits tags with a value based on the popularity and
recency of a document:

map = function() {
 for (var i in this.tags) {
 var recency = 1/(new Date() - this.date);
 var score = recency * this.score;

 emit(this.tags[i], {"urls" : [this.url], "score" : score});
 }
};

Now we need to reduce all of the emitted values for a tag into a single score for that tag:

reduce = function(key, emits) {
 var total = {urls : [], score : 0}
 for (var i in emits) {
 emits[i].urls.forEach(function(url) {
 total.urls.push(url);
 }
 total.score += emits[i].score;
 }
 return total;
};

The final collection will end up with a full list of URLs for each tag and a score showing
how popular that particular tag is.

MapReduce | 89

www.it-ebooks.info

http://www.it-ebooks.info/

MongoDB and MapReduce
Both of the previous examples used only the mapreduce, map, and reduce keys. These
three keys are required, but there are many optional keys that can be passed to the
MapReduce command.

"finalize" : function
A final step to send reduce’s output to.

"keeptemp" : boolean
If the temporary result collection should be saved when the connection is closed.

"output" : string
Name for the output collection. Setting this option implies keeptemp : true.

"query" : document
Query to filter documents by before sending to the map function.

"sort" : document
Sort to use on documents before sending to the map (useful in conjunction with
the limit option).

"limit" : integer
Maximum number of documents to send to the map function.

"scope" : document
Variables that can be used in any of the JavaScript code.

"verbose" : boolean
Whether to use more verbose output in the server logs.

The finalize function

As with the previous group command, MapReduce can be passed a finalize function
that will be run on the last reduce’s output before it is saved to a temporary collection.

Returning large result sets is less critical with MapReduce than group, because the whole
result doesn’t have to fit in 4MB. However, the information will be passed over the wire
eventually, so finalize is a good chance to take averages, chomp arrays, and remove
extra information in general.

Keeping output collections

By default, Mongo creates a temporary collection while it is processing the MapReduce
with a name that you are unlikely to choose for a collection: a dot-separated string
containing mr, the name of the collection you’re MapReducing, a timestamp, and the
job’s ID with the database. It ends up looking something like mr.stuff.
18234210220.2. MongoDB will automatically destroy this collection when the con-
nection that did the MapReduce is closed. (You can also drop it manually when you’re
done with it.) If you want to persist this collection even after disconnecting, you can
specify keeptemp : true as an option.

90 | Chapter 6: Aggregation

www.it-ebooks.info

http://www.it-ebooks.info/

If you’ll be using the temporary collection regularly, you may want to give it a better
name. You can specify a more human-readable name with the out option, which takes
a string. If you specify out, you need not specify keeptemp : true, because it is implied.
Even if you specify a “pretty” name for the collection, MongoDB will use the autogen-
erated collection name for intermediate steps of the MapReduce. When it has finished,
it will automatically and atomically rename the collection from the autogenerated name
to your chosen name. This means that if you run MapReduce multiple times with the
same target collection, you will never be using an incomplete collection for operations.

The output collection created by MapReduce is a normal collection, which means that
there is no problem with doing a MapReduce on it, or a MapReduce on the results from
that MapReduce, ad infinitum!

MapReduce on a subset of documents

Sometimes you need to run MapReduce on only part of a collection. You can add a
query to filter the documents before they are passed to the map function.

Every document passed to the map function needs to be deserialized from BSON into a
JavaScript object, which is a fairly expensive operation. If you know that you will need
to run MapReduce only on a subset of the documents in the collection, adding a filter
can greatly speed up the command. The filter is specified by the "query", "limit", and
"sort" keys.

The "query" key takes a query document as a value. Any documents that would ordi-
narily be returned by that query will be passed to the map function. For example, if we
have an application tracking analytics and want a summary for the last week, we can
use MapReduce on only the most recent week’s documents with the following
command:

> db.runCommand({"mapreduce" : "analytics", "map" : map, "reduce" : reduce,
 "query" : {"date" : {"$gt" : week_ago}}})

The sort option is mostly useful in conjunction with limit. limit can be used on its
own, as well, to simply provide a cutoff on the number of documents sent to the map
function.

If, in the previous example, we wanted an analysis of the last 10,000 page views (instead
of the last week), we could use limit and sort:

> db.runCommand({"mapreduce" : "analytics", "map" : map, "reduce" : reduce,
 "limit" : 10000, "sort" : {"date" : -1}})

query, limit, and sort can be used in any combination, but sort isn’t useful if limit
isn’t present.

Using a scope

MapReduce can take a code type for the map, reduce, and finalize functions, and, in
most languages, you can specify a scope to be passed with code. However, MapReduce

MapReduce | 91

www.it-ebooks.info

http://www.it-ebooks.info/

ignores this scope. It has its own scope key, "scope", and you must use that if there are
client-side values you want to use in your MapReduce. You can set them using a plain
document of the form variable_name : value, and they will be available in your map,
reduce, and finalize functions. The scope is immutable from within these functions.

For instance, in the example in the previous section, we calculated the recency of a page
using 1/(new Date() - this.date). We could, instead, pass in the current date as part
of the scope with the following code:

> db.runCommand({"mapreduce" : "webpages", "map" : map, "reduce" : reduce,
 "scope" : {now : new Date()}})

Then, in the map function, we could say 1/(now - this.date).

Getting more output

There is also a verbose option for debugging. If you would like to see the progress of
your MapReduce as it runs, you can specify "verbose" : true.

You can also use print to see what’s happening in the map, reduce, and finalize func-
tions. print will print to the server log.

92 | Chapter 6: Aggregation

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7

Advanced Topics

MongoDB supports some advanced functionality that goes well beyond the capabilities
discussed so far. When you want to become a power user, this chapter has you covered;
in it we’ll discuss the following:

• Using database commands to take advantage of advanced features

• Working with capped collections, a special type of collection

• Leveraging GridFS for storing large files

• Taking advantage of MongoDB’s support for server-side JavaScript

• Understanding what database references are and when you should consider using
them

Database Commands
In the previous chapters we’ve seen how to create, read, update, and delete documents
in MongoDB. In addition to these basic operations, MongoDB supports a wide range
of advanced operations that are implemented as commands. Commands implement all
of the functionality that doesn’t fit neatly into “create, read, update, delete.”

We’ve already seen a couple of commands in the previous chapters; for instance, we
used the getLastError command in Chapter 3 to check the number of documents af-
fected by an update:

> db.count.update({x : 1}, {$inc : {x : 1}}, false, true)
> db.runCommand({getLastError : 1})
{
 "err" : null,
 "updatedExisting" : true,
 "n" : 5,
 "ok" : true
}

93

www.it-ebooks.info

http://www.it-ebooks.info/

In this section, we’ll take a closer look at commands to see exactly what they are and
how they’re implemented. We’ll also describe some of the most useful commands that
are supported by MongoDB.

How Commands Work
One example of a database command that you are probably familiar with is drop: to
drop a collection from the shell, we run db.test.drop(). Under the hood, this function
is actually running the drop command—we can perform the exact same operation using
runCommand:

> db.runCommand({"drop" : "test"});
{
 "nIndexesWas" : 1,
 "msg" : "indexes dropped for collection",
 "ns" : "test.test",
 "ok" : true
}

The document we get as a result is the command response, which contains information
about whether the command was successful, as well as any other information that the
command might provide. The command response will always contain the key "ok". If
"ok" is true, the command was successful, and if it is false, the command failed for
some reason.

In version 1.5 and earlier, the value of "ok" was 1.0 or 0.0 instead of
true or false, respectively.

If "ok" is false, then an additional key will be present, "errmsg". The value of
"errmsg" is a string explaining why the command failed. As an example, let’s try running
the drop command again, on the collection that we just dropped:

> db.runCommand({"drop" : "test"});
{ "errmsg" : "ns not found", "ok" : false }

Commands in MongoDB are actually implemented as a special type of query that gets
performed on the $cmd collection. runCommand just takes a command document and
performs the equivalent query, so our drop call becomes the following:

db.$cmd.findOne({"drop" : "test"});

When the MongoDB server gets a query on the $cmd collection, it handles it using
special logic, rather than the normal code for handling queries. Almost all MongoDB
drivers provide a helper method like runCommand for running commands, but commands
can always be run using a simple query if necessary.

94 | Chapter 7: Advanced Topics

www.it-ebooks.info

http://www.it-ebooks.info/

Some commands require administrator access and must be run on the admin database.
If such a command is run on any other database, it will return an “access denied” error.

Command Reference
At the time of this writing, MongoDB supports more than 75 different commands, and
more commands are being added all the time. There are two ways to get an up-to-date
list of all of the commands supported by a MongoDB server:

• Run db.listCommands() from the shell, or run the equivalent listCommands com-
mand from any other driver.

• Browse to the http://localhost:28017/_commands URL on the MongoDB admin
interface (for more on the admin interface see Chapter 8).

The following list contains some of the most frequently used MongoDB commands
along with example documents showing how each command should be represented:

buildInfo

{"buildInfo" : 1}

Admin-only command that returns information about the MongoDB server’s ver-
sion number and host operating system.

collStats

{"collStats" : collection}

Gives some stats about a given collection, including its data size, the amount of
storage space allocated for it, and the size of its indexes.

distinct

{"distinct" : collection, "key": key, "query": query}

Gets a list of distinct values for key in documents matching query, across a given
collection.

drop

{"drop" : collection}

Removes all data for collection.

dropDatabase

{"dropDatabase" : 1}

Removes all data for the current database.

dropIndexes

{"dropIndexes" : collection, "index" : name}

Deletes the index named name from collection, or all indexes if name is "*".

Database Commands | 95

www.it-ebooks.info

http://localhost:28017/_commands
http://www.it-ebooks.info/

findAndModify
See Chapter 3 for a full reference on using the findAndModify command.

getLastError

{"getLastError" : 1[, "w" : w[, "wtimeout" : timeout]]}

Checks for errors or other status information about the last operation performed
on this connection. The command will optionally block until w slaves have repli-
cated the last operation on this connection (or until timeout milliseconds have gone
by).

isMaster

{"isMaster" : 1}

Checks if this server is a master or slave.

listCommands

{"listCommands" : 1}

Returns a list of all database commands available on this server, as well as some
information about each command.

listDatabases

{"listDatabases" : 1}

Admin-only command listing all databases on this server.

ping

{"ping" : 1}

Checks if a server is alive. This command will return immediately even if the server
is in a lock.

renameCollection

{"renameCollection" : a, "to" : b}

Renames collection a to b, where both a and b are full collection namespaces (e.g.,
"foo.bar" for the collection bar in the foo database).

repairDatabase

{"repairDatabase" : 1}

Repairs and compacts the current database, which can be a long-running opera-
tion. See “Repair” on page 124 for more information.

serverStatus

{"serverStatus" : 1}

Gets administrative statistics for this server. See “Monitoring” on page 114 for
more information.

96 | Chapter 7: Advanced Topics

www.it-ebooks.info

http://www.it-ebooks.info/

Remember, there are far more supported commands than just those listed earlier. Oth-
ers are documented as appropriate throughout the rest of the book, and for the full list,
just run listCommands.

Capped Collections
We’ve already seen how normal collections in MongoDB are created dynamically and
automatically grow in size to fit additional data. MongoDB also supports a different
type of collection, called a capped collection, which is created in advance and is fixed
in size (see Figure 7-1). Having fixed-size collections brings up an interesting question:
what happens when we try to insert into a capped collection that is already full? The
answer is that capped collections behave like circular queues: if we’re out of space, the
oldest document(s) will be deleted, and the new one will take its place (see Fig-
ure 7-2). This means that capped collections automatically age-out the oldest docu-
ments as new documents are inserted.

Certain operations are not allowed on capped collections. Documents cannot be re-
moved or deleted (aside from the automatic age-out described earlier), and updates
that would cause documents to move (in general updates that cause documents to grow
in size) are disallowed. By preventing these two operations, we guarantee that docu-
ments in a capped collection are stored in insertion order and that there is no need to
maintain a free list for space from removed documents.

Figure 7-1. New documents are inserted at the end of the queue

Capped Collections | 97

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 7-2. When the queue is full, the oldest element will be replaced by the newest

A final difference between capped and normal collections is that in a capped collection,
there are no indexes by default, not even an index on "_id".

Properties and Use Cases
The set of features and limitations possessed by capped collections combine to give
them some interesting properties. First, inserts into a capped collection are extremely
fast. When doing an insert, there is never a need to allocate additional space, and the
server never needs to search through a free list to find the right place to put a document.
The inserted document can always be placed directly at the “tail” of the collection,
overwriting old documents if needed. By default, there are also no indexes to update
on an insert, so an insert is essentially a single memcpy.

Another interesting property of capped collections is that queries retrieving documents
in insertion order are very fast. Because documents are always stored in insertion order,
queries for documents in that order just walk over the collection, returning documents
in the exact order that they appear on disk. By default, any find performed on a capped
collection will always return results in insertion order.

Finally, capped collections have the useful property of automatically aging-out old data
as new data is inserted. The combination of fast inserts, fast queries for documents
sorted by insertion order, and automatic age-out makes capped collections ideal for
use cases like logging. In fact, the primary motivation for including capped collections
in MongoDB is so that they can be used to store an internal replication log, the oplog
(for more on replication and the oplog, see Chapter 9). Another good use case to

98 | Chapter 7: Advanced Topics

www.it-ebooks.info

http://www.it-ebooks.info/

consider for capped collections is caching of small numbers of documents. In general,
capped collections are good for any case where the auto age-out property is helpful as
opposed to undesirable and the limitations on available operations are not prohibitive.

Creating Capped Collections
Unlike normal collections, capped collections must be explicitly created before they
are used. To create a capped collection, use the create command. From the shell, this
can be done using createCollection:

> db.createCollection("my_collection", {capped: true, size: 100000});
{ "ok" : true }

The previous command creates a capped collection, my_collection, that is a fixed size
of 100,000 bytes. createCollection has a couple of other options as well. We can specify
a limit on the number of documents in a capped collection in addition to the limit on
total collection size:

> db.createCollection("my_collection", {capped: true, size: 100000, max: 100});
{ "ok" : true }

When limiting the number of documents in a capped collection, you
must specify a size limit as well. Age-out will be based on the number
of documents in the collection, unless the collection runs out of space
before the limit is reached. In that case, age-out will be based on col-
lection size, as in any other capped collection.

Another option for creating a capped collection is to convert an existing, regular col-
lection into a capped collection. This can be done using the convertToCapped
command—in the following example, we convert the test collection to a capped col-
lection of 10,000 bytes:

> db.runCommand({convertToCapped: "test", size: 10000});
{ "ok" : true }

Sorting Au Naturel
There is a special type of sort that you can do with capped collections, called a natural
sort. Natural order is just the order that documents appear on disk (see Figure 7-3).

Because documents in a capped collection are always kept in insertion order, natural
order is the same as insertion order. As mentioned earlier, queries on a capped collection
return documents in insertion order by default. You can also sort in reverse insertion
order with a natural sort (see Figure 7-4):

> db.my_collection.find().sort({"$natural" : -1})

Capped Collections | 99

www.it-ebooks.info

http://www.it-ebooks.info/

Sorting by {"$natural" : 1} is identical to the default sort. Noncapped collections do
not guarantee that documents are stored in any particular order, so their natural or-
dering is not as significant.

Figure 7-3. Sort by {"$natural" : 1}

Figure 7-4. Sort by {"$natural" : -1}

100 | Chapter 7: Advanced Topics

www.it-ebooks.info

http://www.it-ebooks.info/

Tailable Cursors
Tailable cursors are a very special type of persistent cursor that are not closed when
their results are exhausted. They were inspired by the tail -f command and, similar to
the command, will continue fetching output for as long as possible. Because the cursors
do not die when they runs out of results, they can continue to fetch new results as they
are added to the collection. Tailable cursors can be used only on capped collections.

Again, the Mongo shell does not allow you to use tailable cursors, but using one in PHP
looks something like the following:

$cursor = $collection->find()->tailable();

while (true) {
 if (!$cursor->hasNext()) {
 if ($cursor->dead()) {
 break;
 }
 sleep(1);
 }
 else {
 while (cursor->hasNext()) {
 do_stuff(cursor->getNext());
 }
 }
}

Although the cursor has not died, it will be either processing results or waiting for more
results to arrive.

GridFS: Storing Files
GridFS is a mechanism for storing large binary files in MongoDB. There are several
reasons why you might consider using GridFS for file storage:

• Using GridFS can simplify your stack. If you’re already using MongoDB, GridFS
obviates the need for a separate file storage architecture.

• GridFS will leverage any existing replication or autosharding that you’ve set up for
MongoDB, so getting failover and scale-out for file storage is easy.

• GridFS can alleviate some of the issues that certain filesystems can exhibit when
being used to store user uploads. For example, GridFS does not have issues with
storing large numbers of files in the same directory.

• You can get great disk locality with GridFS, because MongoDB allocates data files
in 2GB chunks.

GridFS: Storing Files | 101

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with GridFS: mongofiles
The easiest way to get up and running with GridFS is by using the mongofiles utility.
mongofiles is included with all MongoDB distributions and can be used to upload,
download, list, search for, or delete files in GridFS. As with any of the other command-
line tools, run mongofiles --help to see the options available for mongofiles. The fol-
lowing session shows how to use mongofiles to upload a file from the filesystem to
GridFS, list all of the files in GridFS, and download a file that we’ve
previously uploaded:

$ echo "Hello, world" > foo.txt
$./mongofiles put foo.txt
connected to: 127.0.0.1
added file: { _id: ObjectId('4c0d2a6c3052c25545139b88'),
 filename: "foo.txt", length: 13, chunkSize: 262144,
 uploadDate: new Date(1275931244818),
 md5: "a7966bf58e23583c9a5a4059383ff850" }
done!
$./mongofiles list
connected to: 127.0.0.1
foo.txt 13
$ rm foo.txt
$./mongofiles get foo.txt
connected to: 127.0.0.1
done write to: foo.txt
$ cat foo.txt
Hello, world

In the previous example, we perform three basic operations using mongofiles: put,
list, and get. The put operation takes a file in the filesystem and adds it to GridFS,
list will list any files that have been added to GridFS, and get does the inverse of
put: it takes a file from GridFS and writes it to the filesystem. mongofiles also supports
two other operations: search for finding files in GridFS by filename and delete for
removing a file from GridFS.

Working with GridFS from the MongoDB Drivers
We’ve seen how easy it is to work with GridFS from the command line, and it’s equally
easy to work with from the MongoDB drivers. For example, we can use PyMongo, the
Python driver for MongoDB, to perform the same series of operations as we did with
mongofiles:

>>> from pymongo import Connection
>>> import gridfs
>>> db = Connection().test
>>> fs = gridfs.GridFS(db)
>>> file_id = fs.put("Hello, world", filename="foo.txt")
>>> fs.list()
[u'foo.txt']
>>> fs.get(file_id).read()
'Hello, world'

102 | Chapter 7: Advanced Topics

www.it-ebooks.info

http://www.it-ebooks.info/

The API for working with GridFS from PyMongo is very similar to that of mongofiles:
we can easily perform the basic put, get, and list operations. Almost all of the
MongoDB drivers follow this basic pattern for working with GridFS, while often ex-
posing more advanced functionality as well. For driver-specific information on GridFS,
please check out the documentation for the specific driver you’re using.

Under the Hood
GridFS is a lightweight specification for storing files that is built on top of normal
MongoDB documents. The MongoDB server actually does almost nothing to “special-
case” the handling of GridFS requests; all of the work is handled by the client-side
drivers and tools.

The basic idea behind GridFS is that we can store large files by splitting them up into
chunks and storing each chunk as a separate document. Because MongoDB supports
storing binary data in documents, we can keep storage overhead for chunks to a min-
imum. In addition to storing each chunk of a file, we store a single document that groups
the chunks together and contains metadata about the file.

The chunks for GridFS are stored in their own collection. By default chunks will use
the collection fs.chunks, but this can be overridden if needed. Within the chunks col-
lection the structure of the individual documents is pretty simple:

{
 "_id" : ObjectId("..."),
 "n" : 0,
 "data" : BinData("..."),
 "files_id" : ObjectId("...")
}

Like any other MongoDB document, the chunk has its own unique "_id". In addition,
it has a couple of other keys. "files_id" is the "_id" of the file document that contains
the metadata for this chunk. "n" is the chunk number; this attribute tracks the order
that chunks were present in the original file. Finally, "data" contains the binary data
that makes up this chunk of the file.

The metadata for each file is stored in a separate collection, which defaults to fs.files.
Each document in the files collection represents a single file in GridFS and can contain
any custom metadata that should be associated with that file. In addition to any user-
defined keys, there are a couple of keys that are mandated by the GridFS specification:

_id
A unique id for the file—this is what will be stored in each chunk as the value for
the "files_id" key.

length
The total number of bytes making up the content of the file.

GridFS: Storing Files | 103

www.it-ebooks.info

http://www.it-ebooks.info/

chunkSize
The size of each chunk comprising the file, in bytes. The default is 256K, but this
can be adjusted if needed.

uploadDate
A timestamp representing when this file was stored in GridFS.

md5
An md5 checksum of this file’s contents, generated on the server side.

Of all of the required keys, perhaps the most interesting (or least self-explanatory) is
"md5". The value for "md5" is generated by the MongoDB server using the filemd5 com-
mand, which computes the md5 checksum of the uploaded chunks. This means that
users can check the value of the "md5" key to ensure that a file was uploaded correctly.

When we understand the underlying GridFS specification, it becomes trivial to imple-
ment features that the driver we’re using might not implement for us. For example, we
can use the distinct command to get a list of unique filenames stored in GridFS:

> db.fs.files.distinct("filename")
["foo.txt"]

Server-Side Scripting
JavaScript can be executed on the server using the db.eval function. It can also be stored
in the database and is used in some database commands.

db.eval
db.eval is a function that allows you to execute arbitrary JavaScript on the MongoDB
server. It takes a string of JavaScript, sends it to MongoDB (which executes it), and
returns the result.

db.eval can be used to imitate multidocument transactions: db.eval locks the database,
executes the JavaScript, and unlocks the database. There’s no built-in rollback, but this
does give you a guarantee of a series of operations occurring in a certain order (unless
an error occurs).

There are two options for sending code: enclosing it in a function or not. The following
two lines are equivalent:

> db.eval("return 1;")
1
> db.eval("function() { return 1; }")
1

Defining an enclosing function is necessary only if you are passing in arguments. These
can be passed using db.eval’s second argument, which is an array of values. For
example, if we wanted to pass the username as an argument to a function, we could
say the following:

104 | Chapter 7: Advanced Topics

www.it-ebooks.info

http://www.it-ebooks.info/

> db.eval("function(u) { print('Hello, '+u+'!'); }", [username])

You can pass in as many arguments as necessary. For instance, if we want a sum of
three numbers, we can do the following:

> db.eval("function(x,y,z) { return x + y + z; }", [num1, num2, num3])

num1 becomes x, num2 becomes y, and num3 becomes z. If you would like to use a variable
number of parameters, arguments in JavaScript are stored in an arguments array when
a function is called.

As a db.eval expression becomes more complex, debugging can be tricky. The Java-
Script code is run by the database and often doesn’t have useful line numbers in error
messages. A good way of debugging is printing to the database log, which you can do
with the print function:

> db.eval("print('Hello, world');");

Stored JavaScript
MongoDB has a special collection for each database called system.js, which can store
JavaScript variables. These variables can then be used in any of MongoDB’s JavaScript
contexts, including "$where" clauses, db.eval calls, and MapReduce jobs. You can add
variables to system.js with a simple insert:

> db.system.js.insert({"_id" : "x", "value" : 1})
> db.system.js.insert({"_id" : "y", "value" : 2})
> db.system.js.insert({"_id" : "z", "value" : 3})

This defines variables x, y, and z in the global scope. Now, if we want to find their sum,
we can execute the following:

> db.eval("return x+y+z;")
6

system.js can be used to store JavaScript code as well as simple values. This can be
handy for defining your own utilities. For example, if you want to create a logging
function to use in JavaScript code, you can store it in system.js:

> db.system.js.insert({"_id" : "log", "value" :
... function(msg, level) {
... var levels = ["DEBUG", "WARN", "ERROR", "FATAL"];
... level = level ? level : 0; // check if level is defined
... var now = new Date();
... print(now + " " + levels[level] + msg);
... }})

Now, in any JavaScript context, you can call this log function:

> db.eval("x = 1; log('x is '+x); x = 2; log('x is greater than 1', 1);");

The database log will then contain something like this:

Fri Jun 11 2010 11:12:39 GMT-0400 (EST) DEBUG x is 1
Fri Jun 11 2010 11:12:40 GMT-0400 (EST) WARN x is greater than 1

Server-Side Scripting | 105

www.it-ebooks.info

http://www.it-ebooks.info/

There are downsides to using stored JavaScript: it keeps portions of your code out of
source control, and it can obfuscate JavaScript sent from the client.

The best reason for storing JavaScript is if you have multiple parts of your code (or code
in different programs or languages) using a single JavaScript function. Keeping such
functions in a central location means they do not need to be updated in multiple places
if changes are required. Stored JavaScript can also be useful if your JavaScript code is
long and executed frequently, because storing it once can cut down on network
transfer time.

Security
Executing JavaScript is one of the few times you must be careful about security with
MongoDB. If done incorrectly, server-side JavaScript is susceptible to injection attacks
similar to those that occur in a relational database. Luckily, it is very easy to prevent
these attacks and use JavaScript safely.

Suppose you want to print “Hello, username!” to the user. If the username is in a variable
called username, you could write a JavaScript function such as the following:

> func = "function() { print('Hello, "+username+"!'); }"

If username is a user-defined variable, it could contain the string "'); db.dropData
base(); print('", which would turn the code into this:

> func = "function() { print('Hello, '); db.dropDatabase(); print('!'); }"

Now your entire database has been dropped!

To prevent this, you should use a scope to pass in the username. In PHP, for example,
this looks like this:

$func = new MongoCode("function() { print('Hello, "+username+"!'); }",
... array("username" => $username));

Now the database will harmlessly print this:

Hello, '); db.dropDatabase(); print('!

Most drivers have a special type for sending code to the database, since code can actually
be a composite of a string and a scope. A scope is just a document mapping variable
names to values. This mapping becomes a local scope for the JavaScript function being
executed.

The shell does not have a code type that includes scope; you can only
use strings or JavaScript functions with it.

106 | Chapter 7: Advanced Topics

www.it-ebooks.info

http://www.it-ebooks.info/

Database References
Perhaps one of the least understood features of MongoDB is its support for database
references, or DBRefs. DBRefs are like URLs: they are simply a specification for uniquely
identifying a reference to document. They do not automatically load the document any
more than a URL automatically loads a web page into a site with a link.

What Is a DBRef?
A DBRef is an embedded document, just like any other embedded document in
MongoDB. A DBRef, however, has specific keys that must be present. A simple example
looks like the following:

{"$ref" : collection, "$id" : id_value}

The DBRef references a specific collection and an id_value that we can use to find a
single document by its "_id" within that collection. These two pieces of information
allow us to use a DBRef to uniquely identify and reference any document within a
MongoDB database. If we want to reference a document in a different database, DBRefs
support an optional third key that we can use, "$db":

{"$ref" : collection, "$id" : id_value, "$db" : database}

DBRefs are one place in MongoDB where the order of keys in a docu-
ment matters. The first key in a DBRef must be "$ref", followed by
"$id", and then (optionally) "$db".

Example Schema
Let’s look at an example schema that uses DBRefs to reference documents across col-
lections. The schema consists of two collections, users and notes. Users can create notes,
which can reference users or other notes. Here are a couple of user documents, each
with a unique username as its "_id" and a separate free-form "display_name":

{"_id" : "mike", "display_name" : "Mike D"}
{"_id" : "kristina", "display_name" : "Kristina C"}

Notes are a little more complex. Each has a unique "_id". Normally this "_id" would
probably be an ObjectId, but we use an integer here to keep the example concise. Notes
also have an "author", some "text", and an optional set of "references" to other notes
or users:

{"_id" : 5, "author" : "mike", "text" : "MongoDB is fun!"}
{"_id" : 20, "author" : "kristina", "text" : "... and DBRefs are easy, too",
 "references": [{"$ref" : "users", "$id" : "mike"}, {"$ref" : "notes", "$id" : 5}]}

The second note contains some references to other documents, each stored as a
DBRef. Our application code can use those DBRefs to get the documents for the “mike”

Database References | 107

www.it-ebooks.info

http://www.it-ebooks.info/

user and the “MongoDB is fun!” note, both of which are associated with Kristina’s note.
This dereferencing is easy to implement; we use the value of the "$ref" key to get the
collection to query on, and we use the value of the "$id" key to get the "_id" to
query for:

> var note = db.notes.findOne({"_id" : 20});
> note.references.forEach(function(ref) {
... printjson(db[ref.$ref].findOne({"_id" : ref.$id}));
... });
{ "_id" : "mike", "display_name" : "Mike D" }
{ "_id" : 5, "author" : "mike", "text" : "MongoDB is fun!" }

Driver Support for DBRefs
One thing that can be confusing about DBRefs is that not all drivers treat them as normal
embedded documents. Some provide a special type for DBRefs that will be automati-
cally translated to and from the normal document representation. This is mainly pro-
vided as a convenience for developers, because it can make working with DBRefs a little
less verbose. As an example, here we represent the same note as earlier using PyMongo
and its DBRef type:

>>> note = {"_id": 20, "author": "kristina",
... "text": "... and DBRefs are easy, too",
... "references": [DBRef("users", "mike"), DBRef("notes", 5)]}

When the note is saved, the DBRef instances will automatically be translated to the
equivalent embedded documents. When the note is returned from a query, the opposite
will happen, and we’ll get DBRef instances back.

Some drivers also add other helpers for working with DBRefs, like methods to handle
dereferencing or even mechanisms for automatically dereferencing DBRefs as they are
returned in query results. This helper functionality tends to vary from driver to driver,
so for up-to-date information on what’s supported, you should reference driver-specific
documentation.

When Should DBRefs Be Used?
DBRefs are not essential for representing references to other documents in MongoDB.
In fact, even the previous example does some referencing using a different mechanism:
the "author" key in each note just stores the value of the author document’s "_id" key.
We don’t need to use a DBRef because we know that each author is a document in the
users collection. We’ve seen another example of this type of referencing as well: the
"files_id" key in GridFS chunk documents is just an "_id" reference to a file document.
With this option in mind, we have a decision to make each time we need to store a
reference: should we use a DBRef or just store an "_id"?

Storing "_id"s is nice because they are more compact than DBRefs and also can be a
little more lightweight for developers to work with. DBRefs, on the other hand, are

108 | Chapter 7: Advanced Topics

www.it-ebooks.info

http://www.it-ebooks.info/

capable of referencing documents in any collection (or even database) without the de-
veloper having to know or remember what collection the referenced document might
reside in. DBRefs also enable drivers and tools to provide some more enhanced func-
tionality (e.g., automatic dereferencing) and could allow for more advanced support
on the server side in the future.

In short, the best times to use DBRefs are when you’re storing heterogeneous references
to documents in different collections, like in the previous example or when you want
to take advantage of some additional DBRef-specific functionality in a driver or tool.
Otherwise, it’s generally best to just store an "_id" and use that as a reference, because
that representation tends to be more compact and easier to work with.

Database References | 109

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8

Administration

Administering MongoDB is usually a simple task. From taking backups to setting up
multinode systems with replication, most administrative tasks are quick and painless.
This reflects a general philosophy of MongoDB, which is to minimize the number of
dials in the system. Whenever possible, configuration is done automatically by the
system rather than forcing users and administrators to tweak configuration settings.
That said, there are still some administrative tasks that require manual intervention.

In this chapter we’ll be switching gears from the developer perspective and discussing
what you need to know to work with MongoDB from the operations or administration
side. Whether you’re working for a startup where you are both the engineering and ops
teams or you’re a DBA looking to work with MongoDB, this is the chapter for you.
Here's the big picture:

• MongoDB is run as a normal command-line program using the mongod executable.

• MongoDB features a built-in admin interface and monitoring functionality that is
easy to integrate with third-party monitoring packages.

• MongoDB supports basic, database-level authentication including read-only users
and a separate level of authentication for admin access.

• There are several different ways of backing up a MongoDB system, the choice of
which depends on a couple of key considerations.

Starting and Stopping MongoDB
In Chapter 2, we covered the basics of starting MongoDB. This chapter will go into
more detail about what administrators need to know to deploy Mongo robustly in
production.

111

www.it-ebooks.info

http://www.it-ebooks.info/

Starting from the Command Line
The MongoDB server is started with the mongod executable. mongod has many configu-
rable startup options; to view all of them, run mongod --help from the command line.
A couple of the options are widely used and important to be aware of:

--dbpath
Specify an alternate directory to use as the data directory; the default is /data/db/
(or C:\data\db\ on Windows). Each mongod process on a machine needs its own data
directory, so if you are running three instances of mongod, you’ll need three separate
data directories. When mongod starts up, it creates a mongod.lock file in its data
directory, which prevents any other mongod process from using that directory. If
you attempt to start another MongoDB server using the same data directory, it will
give an error:

"Unable to acquire lock for lockfilepath: /data/db/mongod.lock."

--port
Specify the port number for the server to listen on. By default, mongod uses port
27017, which is unlikely to be used by another process (besides other mongod pro-
cesses). If you would like to run more than one mongod process, you’ll need to specify
different ports for each one. If you try to start mongod on a port that is already being
used, it will give an error:

"Address already in use for socket: 0.0.0.0:27017"

--fork
Fork the server process, running MongoDB as a daemon.

--logpath
Send all output to the specified file rather than outputting on the command line.
This will create the file if it does not exist, assuming you have write permissions to
the directory. It will also overwrite the log file if it already exists, erasing any older
log entries. If you’d like to keep old logs around, use the --logappend option in
addition to --logpath.

--config
Use a configuration file for additional options not specified on the command line.
See “File-Based Configuration” on page 113 for details.

So, to start the server as a daemon listening on port 5586 and sending all output to
mongodb.log, we could run this:

$./mongod --port 5586 --fork --logpath mongodb.log
forked process: 45082
all output going to: mongodb.log

When you first install and start MongoDB, it is a good idea to look at the log. This
might be an easy thing to miss, especially if MongoDB is being started from an init
script, but the log often contains important warnings that prevent later errors from

112 | Chapter 8: Administration

www.it-ebooks.info

http://www.it-ebooks.info/

occurring. If you don’t see any warnings in the MongoDB log on startup, then you are
all set. However, you might see something like this:

$./mongod
Sat Apr 24 11:53:49 Mongo DB : starting : pid = 18417 port = 27017
dbpath = /data/db/ master = 0 slave = 0 32-bit

WARNING: This is development version of MongoDB.
 Not recommended for production.

** NOTE: when using MongoDB 32 bit, you are limited to about
** 2 gigabytes of data see
** http://blog.mongodb.org/post/137788967/32-bit-limitations
** for more

Sat Apr 24 11:53:49 db version v1.5.1-pre-, pdfile version 4.5
Sat Apr 24 11:53:49 git version: f86d93fd949777d5fbe00bf9784ec0947d6e75b9
Sat Apr 24 11:53:49 sys info: Linux ubuntu 2.6.31-15-generic ...
Sat Apr 24 11:53:49 waiting for connections on port 27017
Sat Apr 24 11:53:49 web admin interface listening on port 28017

The MongoDB being run here is a development version—if you download a stable
release, it will not have the first warning. The second warning occurs because we are
running a 32-bit build of MongoDB. We are limited to about 2GB of data when running
32 bit, because MongoDB uses a memory-mapped file-based storage engine (see Ap-
pendix C for details on MongoDB’s storage engine). If you are using a stable release on
a 64-bit machine, you won’t get either of these messages, but it’s a good idea to un-
derstand how MongoDB logs work and get used to how they look.

The log preamble won’t change when you restart the database, so feel free to run
MongoDB from an init script and ignore the logs, once you know what they say. How-
ever, it’s a good idea to check again each time you do an install, upgrade, or recover
from a crash, just to make sure MongoDB and your system are on the same page.

File-Based Configuration
MongoDB supports reading configuration information from a file. This can be useful
if you have a large set of options you want to use or are automating the task of
starting up MongoDB. To tell the server to get options from a configuration file, use
the -f or --config flags. For example, run mongod --config ~/.mongodb.conf to use
~/.mongodb.conf as a configuration file.

The options supported in a configuration file are exactly the same as those accepted at
the command line. Here’s an example configuration file:

Start MongoDB as a daemon on port 5586

port = 5586
fork = true # daemonize it!

Starting and Stopping MongoDB | 113

www.it-ebooks.info

http://www.it-ebooks.info/

logpath = mongodb.log

This configuration file specifies the same options we used earlier when starting with
regular command-line arguments. It also highlights most of the interesting aspects of
MongoDB configuration files:

• Any text on a line that follows the # character is ignored as a comment.

• The syntax for specifying options is option = value, where option is case-sensitive.

• For command-line switches like --fork, the value true should be used.

Stopping MongoDB
Being able to safely stop a running MongoDB server is at least as important as being
able to start one. There are a couple of different options for doing this effectively.

The most basic way to stop a running MongoDB server is to send it a SIGINT or
SIGTERM signal. If the server is running as the foreground process in a terminal, this
can be done by pressing Ctrl-C. Otherwise, a command like kill can be used to send
the signal. If mongod has 10014 as its PID, the command would be kill -2 10014
(SIGINT) or kill 10014 (SIGTERM).

When mongod receives a SIGINT or SIGTERM, it will do a clean shutdown. This means
it will wait for any currently running operations or file preallocations to finish (this
could take a moment), close all open connections, flush all data to disk, and halt.

It is important not to send a SIGKILL message (kill -9) to a running
MongoDB server. Doing so will cause the database to shut down with-
out going through the steps outlined earlier and could lead to corrupt
data files. If this happens, the database should be repaired (see “Re-
pair” on page 124) before being started back up.

Another way to cleanly shut down a running server is to use the shutdown command,
{"shutdown" : 1}. This is an admin command and must be run on the admin database.
The shell features a helper function to make this easier:

> use admin
switched to db admin
> db.shutdownServer();
server should be down...

Monitoring
As the administrator of a MongoDB server, it’s important to monitor the health and
performance of your system. Fortunately, MongoDB has functionality that makes
monitoring easy.

114 | Chapter 8: Administration

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Admin Interface
By default, starting mongod also starts up a (very) basic HTTP server that listens on a
port 1,000 higher than the native driver port. This server provides an HTTP interface
that can be used to see basic information about the MongoDB server. All of the infor-
mation presented can also be seen through the shell, but the HTTP interface gives a
nice, easy-to-read overview.

To see the admin interface, start the database and go to http://localhost:28017 in a web
browser. (Use 1,000 higher than the port you specified, if you used the --port option
when starting MongoDB.) You’ll see a page that looks like Figure 8-1.

Figure 8-1. The admin interface

As you can see, this interface gives access to assertion, locking, indexing, and replication
information about the MongoDB server. It also gives some more general information,
like the log preamble and access to a list of available database commands.

To make full use of the admin interface (e.g., to access the command list), you’ll need
to turn on REST support with --rest. You can also turn off the admin interface alto-
gether by starting mongod with the --nohttpinterface option.

Monitoring | 115

www.it-ebooks.info

http://localhost:28017
http://www.it-ebooks.info/

Do not attempt to connect a driver to the HTTP interface port, and do
not try to connect to the native driver port via HTTP. The driver port
handles only the native MongoDB wire protocol; it will not handle
HTTP requests. For example, if you go to http://localhost:27017 in a web
browser, you will see:

You are trying to access MongoDB on the native driver port.
 For http diagnostic access, add 1000 to the port number

Similarly, you cannot use the native MongoDB wire protocol when con-
necting on the admin interface’s port.

serverStatus
The most basic tool for getting statistics about a running MongoDB server is the
serverStatus command, which has the following output (exact keys present may vary
by platform/server version):

> db.runCommand({"serverStatus" : 1})
{
 "version" : "1.5.3",
 "uptime" : 166,
 "localTime" : "Thu Jun 10 2010 15:47:40 GMT-0400 (EDT)",
 "globalLock" : {
 "totalTime" : 165984675,
 "lockTime" : 91471425,
 "ratio" : 0.551083556358441
 },
 "mem" : {
 "bits" : 64,
 "resident" : 101,
 "virtual" : 2824,
 "supported" : true,
 "mapped" : 336
 },
 "connections" : {
 "current" : 141,
 "available" : 19859
 },
 "extra_info" : {
 "note" : "fields vary by platform"
 },
 "indexCounters" : {
 "btree" : {
 "accesses" : 1563,
 "hits" : 1563,
 "misses" : 0,
 "resets" : 0,
 "missRatio" : 0
 }
 },
 "backgroundFlushing" : {
 "flushes" : 2,
 "total_ms" : 44,

116 | Chapter 8: Administration

www.it-ebooks.info

http://localhost:27017
http://www.it-ebooks.info/

 "average_ms" : 22,
 "last_ms" : 36,
 "last_finished" : "Thu Jun 10 2010 15:46:54 GMT-0400 (EDT)"
 },
 "opcounters" : {
 "insert" : 38195,
 "query" : 8874,
 "update" : 4058,
 "delete" : 389,
 "getmore" : 888,
 "command" : 17731
 },
 "asserts" : {
 "regular" : 0,
 "warning" : 0,
 "msg" : 0,
 "user" : 5054,
 "rollovers" : 0
 },
 "ok" : true
}

Raw status information can also be retrieved as JSON using the
MongoDB HTTP interface, at the /_status (http://localhost:28017/_sta
tus) URL: this includes the output of serverStatus, as well as the output
of some other useful commands. See “Using the Admin Inter-
face” on page 115 for more on the admin interface.

serverStatus provides a detailed look at what is going on inside a MongoDB server.
Information such as the current server version, uptime (in seconds), and current num-
ber of connections is easily available. Some of the other information in the
serverStatus response might need some explaining, however.

The value for "globalLock" gives a quick look at how much time a global write lock has
been held on the server (the times are given in microseconds). "mem" contains informa-
tion on how much data the server has memory mapped and what the virtual and resi-
dent memory sizes are for the server process (all in megabytes). "indexCounters" gives
information on the number of B-Tree lookups that have had to go to disk ("misses")
versus successful lookups from memory ("hits")—if this ratio starts to increase you
should consider adding more RAM, or system performance might suffer. "background
Flushing" tells us how many background fsyncs have been performed and how long
they’ve taken. One of the most important pieces of the response is the "opcounters"
document, which contains counters for each of the major operation types. Finally,
"asserts" counts any assertions that have occurred on the server.

All of the counters in the serverStatus output are tracked from the time the server was
started and will eventually roll over if the counts get high enough. When a rollover
occurs for any counter, all counters will roll over, and the value of "rollovers" in the
"asserts" document will increment.

Monitoring | 117

www.it-ebooks.info

http://localhost:28017/_status
http://localhost:28017/_status
http://www.it-ebooks.info/

mongostat
Although powerful, serverStatus is not exactly a user-friendly mechanism for moni-
toring server health and performance. Fortunately, MongoDB distributions also ship
with mongostat, which puts a friendly face on the output of serverStatus.

mongostat prints some of the most important information available from
serverStatus. It prints a new line every second, which gives a more real-time view to
the static counters we saw previously. The columns printed by mongostat have names
like inserts/s, commands/s, vsize, and % locked, each of which corresponds exactly to
data available in serverStatus.

Third-Party Plug-Ins
Most administrators are probably already using monitoring packages to keep track of
their servers, and the presence of serverStatus and the /_status URL make it pretty easy
to write a MongoDB plug-in for any such tool. At the time of this writing, MongoDB
plug-ins exist for at least Nagios, Munin, Ganglia, and Cacti. For an up-to-date list of
third-party plug-ins, check out the MongoDB documentation on monitoring tools.

Security and Authentication
One of the first priorities for any systems administrator is to ensure their systems are
secure. The best way to handle security with MongoDB is to run it in a trusted envi-
ronment, ensuring that only trusted machines are able to connect to the server. That
said, MongoDB supports per connection authentication, albeit with a pretty coarse-
grained permissions scheme.

Authentication Basics
Each database in a MongoDB instance can have any number of users. When security
is enabled, only authenticated users of a database are able to perform read or write
operations on it. In the context of authentication, MongoDB treats one database as
special: admin. A user in the admin database can be thought of as a superuser. After
authenticating, admin users are able to read or write from any database and are able to
perform certain admin-only commands, like listDatabases or shutdown.

Before starting the database with security turned on, it’s important that at least one
admin user has been added. Let’s run through a quick example, starting from a shell
connected to a server without security turned on:

> use admin
switched to db admin
> db.addUser("root", "abcd");
{
 "user" : "root",

118 | Chapter 8: Administration

www.it-ebooks.info

http://dochub.mongodb.org/core/monitoring
http://www.it-ebooks.info/

 "readOnly" : false,
 "pwd" : "1a0f1c3c3aa1d592f490a2addc559383"
}
> use test
switched to db test
> db.addUser("test_user", "efgh");
{
 "user" : "test_user",
 "readOnly" : false,
 "pwd" : "6076b96fc3fe6002c810268702646eec"
}
> db.addUser("read_only", "ijkl", true);
{
 "user" : "read_only",
 "readOnly" : true,
 "pwd" : "f497e180c9dc0655292fee5893c162f1"
}

Here we’ve added an admin user, root, and two users on the test database. One of those
users, read_only, has read permissions only and cannot write to the database. From
the shell, a read-only user is created by passing true as the third argument to addUser.
To call addUser, you must have write permissions for the database in question; in this
case we can call addUser on any database because we have not enabled security yet.

The addUser method is useful for more than just adding new users: it
can be used to change a user’s password or read-only status. Just call
addUser with the username and a new password or read-only setting for
the user.

Now let’s restart the server, this time adding the --auth command-line option to enable
security. After enabling security, we can reconnect from the shell and try it:

> use test
switched to db test
> db.test.find();
error: { "$err" : "unauthorized for db [test] lock type: -1 " }
> db.auth("read_only", "ijkl");
1
> db.test.find();
{ "_id" : ObjectId("4bb007f53e8424663ea6848a"), "x" : 1 }
> db.test.insert({"x" : 2});
unauthorized
> db.auth("test_user", "efgh");
1
> db.test.insert({"x": 2});
> db.test.find();
{ "_id" : ObjectId("4bb007f53e8424663ea6848a"), "x" : 1 }
{ "_id" : ObjectId("4bb0088cbe17157d7b9cac07"), "x" : 2 }
> show dbs
assert: assert failed : listDatabases failed:{
 "assertion" : "unauthorized for db [admin] lock type: 1

Security and Authentication | 119

www.it-ebooks.info

http://www.it-ebooks.info/

",
 "errmsg" : "db assertion failure",
 "ok" : 0
}
> use admin
switched to db admin
> db.auth("root", "abcd");
1
> show dbs
admin
local
test

When we first connect, we are unable to perform any operations (read or write) on the
test database. After authenticating as the read_only user, however, we are able to per-
form a simple find. When we try to insert data, we are again met with a failure because
of the lack of authorization. test_user, which was not created as read-only, is able to
insert data normally. As a nonadmin user, though, test_user is not able to list all of the
available databases using the show dbs helper. The final step is to authenticate as an
admin user, root, who is able to perform operations of any kind on any particular
database.

How Authentication Works
Users of a given database are stored as documents in its system.users collection. The
structure of a user document is {"user" : username, "readOnly" : true, "pwd" :
password hash}. The password hash is a hash based on the username and password
chosen.

Knowing where and how user information is stored makes performing some common
administration tasks trivial. For example, to remove a user, simply remove the user
document from the system.users collection:

> db.auth("test_user", "efgh");
1
> db.system.users.remove({"user" : "test_user"});
> db.auth("test_user", "efgh");
0

When a user authenticates, the server keeps track of that authentication by tying it to
the connection used for the authenticate command. This means that if a driver or tool
is employing connection pooling or fails over to another node, any authenticated users
will need to reauthenticate on any new connections. Some drivers may be capable of
handling this transparently, but if not, it will need to be done manually. If that is the
case, then it might be best to avoid using --auth altogether (again, by deploying
MongoDB in a trusted environment and handling authentication on the client side).

120 | Chapter 8: Administration

www.it-ebooks.info

http://www.it-ebooks.info/

Other Security Considerations
There are a couple of options besides authentication that should be considered when
locking down a MongoDB instance. First, even when using authentication, the
MongoDB wire protocol is not encrypted. If that is a requirement, consider using SSH
tunneling or another similar mechanism to encrypt traffic between clients and the
MongoDB server.

We suggest always running your MongoDB servers behind a firewall or on a network
accessible only through your application servers. If you do have MongoDB on a ma-
chine accessible to the outside world, however, it is recommended that you start it with
the --bindip option, which allows you to specify a local IP address that mongod will be
bound to. For instance, to only allow connections from an application server running
on the same machine, you could run mongod --bindip localhost.

As documented in the section “Using the Admin Interface” on page 115, by default
MongoDB starts up a very simple HTTP server that allows you to see information
about current operations, locking, and replication from your browser. If you don’t want
this information exposed, you can turn off the admin interface by using the
--nohttpinterface option.

Finally, you can entirely disallow server-side JavaScript execution by starting the
database with --noscripting.

Backup and Repair
Taking backups is an important administrative task with any data storage system. Of-
ten, doing backups properly can be tricky, and the only thing worse than not taking
backups at all is taking them incorrectly. Luckily, MongoDB has several different op-
tions that make taking backups a painless process.

Data File Backup
MongoDB stores all of its data in a data directory. By default, this directory is /data/
db/ (or C:\data\db\ on Windows). The directory to use as the data directory is config-
urable through the --dbpath option when starting MongoDB. Regardless of where the
data directory is, its contents form a complete representation of the data stored in
MongoDB. This suggests that making a backup of MongoDB is as simple as creating a
copy of all of the files in the data directory.

It is not safe to create a copy of the data directory while MongoDB is
running unless the server has done a full fsync and is not allowing writes.
Such a backup will likely turn out to be corrupt and need repairing (see
the section “Repair” on page 124).

Backup and Repair | 121

www.it-ebooks.info

http://www.it-ebooks.info/

Because it is not safe in general to copy the data directory while MongoDB is running,
one option for taking a backup is to shut down the MongoDB server and then copy the
data directory. Assuming the server is shut down safely (see the section “Starting and
Stopping MongoDB” on page 111), the data directory will represent a safe snapshot of
the data stored when it was shut down. That directory can be copied as a backup before
restarting the server.

Although shutting down the server and copying the data directory is an effective and
safe method of taking backups, it is not ideal. In the remainder of this chapter, we’ll
look at techniques for backing up MongoDB without requiring any downtime.

mongodump and mongorestore
One method for backing up a running instance of MongoDB is to use the mongodump
utility that is included with all MongoDB distributions. mongodump works by querying
against a running MongoDB server and writing all of the documents it contains to disk.
Because mongodump is just a regular client, it can be run against a live instance of
MongoDB, even one handling other requests and performing writes.

Because mongodump operates using the normal MongoDB query mecha-
nism, the backups it produces are not necessarily point-in-time snap-
shots of the server’s data. This is especially evident if the server is actively
handling writes during the course of the backup.

Another consequence of the fact that mongodump acts through the normal
query mechanism is that it can cause some performance degradation for
other clients throughout the duration of the backup.

Like most of the command-line tools included with MongoDB, we can see the options
available for mongodump by running with the --help option:

$./mongodump --help
options:
 --help produce help message
 -v [--verbose] be more verbose (include multiple times for more
 verbosity e.g. -vvvvv)
 -h [--host] arg mongo host to connect to ("left,right" for pairs)
 -d [--db] arg database to use
 -c [--collection] arg collection to use (some commands)
 -u [--username] arg username
 -p [--password] arg password
 --dbpath arg directly access mongod data files in the given path,
 instead of connecting to a mongod instance - needs
 to lock the data directory, so cannot be used if a
 mongod is currently accessing the same path
 --directoryperdb if dbpath specified, each db is in a separate
 directory
 -o [--out] arg (=dump) output directory

122 | Chapter 8: Administration

www.it-ebooks.info

http://www.it-ebooks.info/

Along with mongodump, MongoDB distributions include a corresponding tool for re-
storing data from a backup, mongorestore. mongorestore takes the output from running
mongodump and inserts the backed-up data into a running instance of MongoDB. The
following example session shows a hot backup of the database test to the backup di-
rectory, followed by a separate call to mongorestore:

$./mongodump -d test -o backup
connected to: 127.0.0.1
DATABASE: test to backup/test
 test.x to backup/test/x.bson
 1 objects
$./mongorestore -d foo --drop backup/test/
connected to: 127.0.0.1
backup/test/x.bson
 going into namespace [foo.x]
 dropping
 1 objects

In the previous example, we use -d to specify a database to restore to, in this case foo.
This option allows us to restore a backup to a database with a different name than the
original. We also use the --drop option, which will drop the collection (if it exists)
before restoring data to it. Otherwise, the data will be merged into any existing collec-
tion, possibly overwriting some documents. Again, for a complete list of options, run
mongorestore --help.

fsync and Lock
Although mongodump and mongorestore allow us to take backups without shutting down
the MongoDB server, we lose the ability to get a point-in-time view of the data.
MongoDB’s fsync command allows us to copy the data directory of a running
MongoDB server without risking any corruption.

The fsync command will force the MongoDB server to flush all pending writes to disk.
It will also, optionally, hold a lock preventing any further writes to the database until
the server is unlocked. This write lock is what allows the fsync command to be useful
for backups. Here is an example of how to run the command from the shell, forcing an
fsync and acquiring a write lock:

> use admin
switched to db admin
> db.runCommand({"fsync" : 1, "lock" : 1});
{
 "info" : "now locked against writes, use db.$cmd.sys.unlock.findOne() to unlock",
 "ok" : 1
}

At this point, the data directory represents a consistent, point-in-time snapshot of our
data. Because the server is locked for writes, we can safely make a copy of the data

Backup and Repair | 123

www.it-ebooks.info

http://www.it-ebooks.info/

directory to use as a backup. This is especially useful when running on a snapshotting
filesystem, like LVM* or EBS†, where taking a snapshot of the data directory is a fast
operation.

After performing the backup, we need to unlock the database again:

> db.$cmd.sys.unlock.findOne();
{ "ok" : 1, "info" : "unlock requested" }
> db.currentOp();
{ "inprog" : [] }

Here we run the currentOp command to ensure that the lock has been released. (It may
take a moment after the unlock is first requested.)

The fsync command allows us to take very flexible backups, without shutting down
the server or sacrificing the point-in-time nature of the backup. The price we’ve paid,
however, is a momentary block against write operations. The only way to have a point-
in-time snapshot without any downtime for reads or writes is to backup from a slave.

Slave Backups
Although the options discussed earlier provide a wide range of flexibility in terms of
backups, none is as flexible as backing up from a slave server. When running MongoDB
with replication (see Chapter 9), any of the previously mentioned backup techniques
can be applied to a slave server rather than the master. The slave will always have a
copy of the data that is nearly in sync with the master. Because we’re not depending
on the performance of the slave or its availability for reads or writes, we are free to use
any of the three options above: shutting down, the dump and restore tools, or the
fsync command. Backing up from a slave is the recommended way to handle data
backups with MongoDB.

Repair
We take backups so that when a disaster occurs, which could be anything from a power
failure to an elephant on the loose in the data center, our data is safe. There will un-
fortunately always be cases when a server with no backups (or slaves to failover to)
fails. In the case of a power failure or a software crash, the disk will be fine when the
machine comes back up. Because of the way MongoDB stores data, however, we are
not guaranteed that the data on the disk is OK to use: corruption might have occurred
(see Appendix C for more on MongoDB’s storage engine). Luckily, MongoDB has built-
in repairing functionality to attempt to recover corrupt data files.

* A logical volume manager for Linux

† Amazon’s Elastic Block Store

124 | Chapter 8: Administration

www.it-ebooks.info

http://www.it-ebooks.info/

A repair should be run after any unclean shutdown of MongoDB. If an unclean shut-
down has occurred, you’ll be greeted with the following warning when trying to start
the server back up:

old lock file: /data/db/mongod.lock. probably means unclean shutdown
recommend removing file and running --repair
see: http://dochub.mongodb.org/core/repair for more information

The easiest way to repair all of the databases for a given server is to start up a server
with --repair: mongod --repair. The underlying process of repairing a database is ac-
tually pretty easy to understand: all of the documents in the database are exported and
then immediately imported, ignoring any that are invalid. After that is complete, all
indexes are rebuilt. Understanding this mechanism explains some of the properties of
repair. It can take a long time for large data sets, because all of the data is validated and
all indexes are rebuilt. Repairing can also leave a database with fewer documents than
it had before the corruption originally occurred, because any corrupt documents are
simply ignored.

Repairing a database will also perform a compaction. Any extra free
space (which might exist after dropping large collections or removing
large number of documents, for example) will be reclaimed after a
repair.

To repair a single database on a running server, you can use the repairDatabase method
from the shell. If we wanted to repair the database test, we would do the following:

> use test
switched to db test
> db.repairDatabase()
{ "ok" : 1 }

To do the same from a driver rather than the shell, issue the repairDatabase command,
{"repairDatabase" : 1}.

Repairing to eliminate corruption should be treated as a last resort. The most effective
way to manage data is to always stop the MongoDB server cleanly, use replication for
failover, and take regular backups.

Backup and Repair | 125

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9

Replication

Perhaps the most important job of any MongoDB administrator is making sure that
replication is set up and functioning correctly. Use of MongoDB’s replication func-
tionality is always recommended in production settings, especially since the current
storage engine does not provide single-server durability (see Appendix C for details).
Replicas can be used purely for failover and data integrity, or they can be used in more
advanced ways, such as for scaling out reads, taking hot backups, or as a data source
for offline batch processing. In this chapter, we’ll cover everything you need to know
about replication.

Master-Slave Replication
Master-slave replication is the most general replication mode supported by MongoDB.
This mode is very flexible and can be used for backup, failover, read scaling, and more
(see Figures 9-1 and 9-2).

Figure 9-1. A master with one slave

127

www.it-ebooks.info

http://www.it-ebooks.info/

The basic setup is to start a master node and one or more slave nodes, each of which
knows the address of the master. To start the master, run mongod --master. To start a
slave, run mongod --slave --source master_address, where master_address is the ad-
dress of the master node that was just started.

It is simple to try this on a single machine, although in production you would use
multiple servers. First, create a directory for the master to store data in and choose a
port (10000):

$ mkdir -p ~/dbs/master
$./mongod --dbpath ~/dbs/master --port 10000 --master

Now set up the slave, choosing a different data directory and port. For a slave, you also
need to tell it who its master is with the --source option:

$ mkdir -p ~/dbs/slave
$./mongod --dbpath ~/dbs/slave --port 10001 --slave --source localhost:10000

All slaves must be replicated from a master node. There is currently no mechanism for
replicating from a slave (daisy chaining), because slaves do not keep their own oplog
(see “How It Works” on page 138 for more on the oplog).

There is no explicit limit on the number of slaves in a cluster, but having a thousand
slaves querying a single master will likely overwhelm the master node. In practice,
clusters with less than a dozen slaves tend to work well.

Options
There are a few other useful options in conjunction with master-slave replication:

--only
Use on a slave node to specify only a single database to replicate. (The default is
to replicate all databases.)

Figure 9-2. A master with three slaves

128 | Chapter 9: Replication

www.it-ebooks.info

http://www.it-ebooks.info/

--slavedelay
Use on a slave node to add a delay (in seconds) to be used when applying operations
from the master. This makes it easy to set up delayed slaves, which can be useful
in case a user accidentally deletes important documents or inserts bad data. Either
of those operations will be replicated to all slaves. By delaying the application of
operations, you have a window in which recovery from the bad operation is
possible.

--fastsync
Start a slave from a snapshot of the master node. This option allows a slave to
bootstrap much faster than doing a full sync, if its data directory is initialized with
a snapshot of the master’s data.

--autoresync
Automatically perform a full resync if this slave gets out of sync with the master
(see “How It Works” on page 138).

--oplogSize
Size (in megabytes) for the master’s oplog (see “How It Works” on page 138 for
more on the oplog).

Adding and Removing Sources
You can specify a master by starting your slave with the --source option, but you can
also configure its source(s) from the shell.

Suppose we have a master at localhost:27017. We could start a slave without any source
and then add the master to the sources collection:

$./mongod --slave --dbpath ~/dbs/slave --port 27018

Now we can add localhost:27017 as a source for our slave by starting the shell and
running the following:

> use local
> db.sources.insert({"host" : "localhost:27017"})

If you watch the slave’s log, you can see it sync to localhost:27017.

If we do a find on the sources collection immediately after inserting the source, it will
show us the document we inserted:

> db.sources.find()
{
 "_id" : ObjectId("4c1650c2d26b84cc1a31781f"),
 "host" : "localhost:27017"
}

Master-Slave Replication | 129

www.it-ebooks.info

http://www.it-ebooks.info/

Once the slave’s log shows that it has finished syncing, the document will be updated
to reflect this:

> db.sources.find()
{
 "_id" : ObjectId("4c1650c2d26b84cc1a31781f"),
 "host" : "localhost:27017",
 "source" : "main",
 "syncedTo" : {
 "t" : 1276530906000,
 "i" : 1
 },
 "localLogTs" : {
 "t" : 0,
 "i" : 0
 },
 "dbsNextPass" : {
 "test_db" : true
 }
}

Now, suppose we are going into production and we want to change the slave’s con-
figuration such that it slaves off of prod.example.com. We can change the source for the
slave using insert and remove:

> db.sources.insert({"host" : "prod.example.com:27017"})
> db.sources.remove({"host" : "localhost:27017"})

As you can see, sources can be manipulated like a normal collection and provides a
great deal of flexibility for managing slaves.

If you slave off of two different masters with the same collections,
MongoDB will attempt to merge them, but correctly doing so is not
guaranteed. If you are using a single slave with multiple different mas-
ters, it is best to make sure the masters use different namespaces.

Replica Sets
A replica set is basically a master-slave cluster with automatic failover. The biggest
difference between a master-slave cluster and a replica set is that a replica set does not
have a single master: one is elected by the cluster and may change to another node if
the current master goes down. However, they look very similar: a replica set always has
a single master node (called a primary) and one or more slaves (called secondaries). See
Figures 9-3, 9-4, and 9-5.

The nice thing about replica sets is how automatic everything is. First, the set itself does
a lot of the administration for you, promoting slaves automatically and making sure
you won’t run into inconsistencies. For a developer, they are easy to use: you specify a
few servers in a set, and the driver will automatically figure out all of the servers in the
set and handle failover if the current master dies.

130 | Chapter 9: Replication

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 9-3. A replica set with two members

Figure 9-4. When the primary server goes down, the secondary server will become master

Figure 9-5. If the original primary comes back up, it will begin slaving off of the new primary

Replica Sets | 131

www.it-ebooks.info

http://www.it-ebooks.info/

Initializing a Set
Setting up a replica set is a little more involved than setting up a master-slave cluster.
We’ll just start out by setting up the smallest set possible: two servers.

You cannot specify localhost addresses as members, so you need to
figure out what the hostname is of your machine. On *NIX, this can be
done with the following:

$ cat /etc/hostname
morton

First, we create our data directories and choose ports for each server:

$ mkdir -p ~/dbs/node1 ~/dbs/node2

We have one more decision to make before we start up the servers: we must choose a
name for this replica set. This name makes it easy to refer to the set as a whole and
distinguish between sets. We’ll call our replica set "blort".

Now we can actually start up the servers. The only new option is --replSet, which lets
the server know that it’s a member of the replSet "blort" that contains another member
at morton:10002 (which hasn’t been started yet):

$./mongod --dbpath ~/dbs/node1 --port 10001 --replSet blort/morton:10002

We start up the other server in the same way:

$./mongod --dbpath ~/dbs/node2 --port 10002 --replSet blort/morton:10001

If we wanted to add a third server, we could do so with either of these commands:

$./mongod --dbpath ~/dbs/node3 --port 10003 --replSet blort/morton:10001
$./mongod --dbpath ~/dbs/node3 --port 10003 --replSet blort/morton:10001,morton:10002

One of the nice things about replica sets is that they are self-detecting: you can specify
a single server in the set, and MongoDB will figure out and connect to the rest of the
nodes automatically.

Once you have a few servers up, you’ll notice that the server logs are complaining about
the replica set not being initialized. This is because there’s one more step: initializing
the set in the shell.

Connect to one of the servers (we use morton:10001 in the following example) with the
shell. Initializing the set is a database command that has to be run only once:

$./mongo morton:10001/admin
MongoDB shell version: 1.5.3
connecting to localhost:10001/admin
type "help" for help
> db.runCommand({"replSetInitiate" : {
... "_id" : "blort",
... "members" : [
... {

132 | Chapter 9: Replication

www.it-ebooks.info

http://www.it-ebooks.info/

... "_id" : 1,

... "host" : "morton:10001"

... },

... {

... "_id" : 2,

... "host" : "morton:10002"

... }

...]}})
{
 "info" : "Config now saved locally. Should come online in about a minute.",
 "ok" : true
}

The initialization document is a bit complicated, but going through it key by key should
make sense:

"_id" : "blort"
The name of this set.

"members" : [...]
A list of servers in the set. You can add more later. Each server document has (at
least) two keys:

"_id" : N
Each server needs a unique ID.

"host" : hostname
This is the key that actually specifies the host.

Now you should see some log messages about which server is being elected primary.

If we connect to the other server and do a find on the local.system.replset namespace,
you can see that the configuration has been propagated to the other server in the set.

At the time of this writing, replica sets are still under development and
have not yet been released in a production version of MongoDB. As
such, the information here is subject to change. For the most up-to-date
documentation on replica sets, see the MongoDB wiki.

Nodes in a Replica Set
At any point in time, one node in the cluster is primary, and the rest are secondary. The
primary node is essentially the master, the difference being that which node is desig-
nated as primary can vary over time.

Replica Sets | 133

www.it-ebooks.info

http://www.mongodb.org/display/DOCS/Replica+Sets
http://www.it-ebooks.info/

There are several different types of nodes that can coexist in a replica set:

standard
This is a regular replica set node. It stores a full copy of the data being replicated,
takes part in voting when a new primary is being elected, and is capable of becoming
the primary node in the set.

passive
Passive nodes store a full copy of the data and participate in voting but will never
become the primary node for the set.

arbiter
An arbiter node participates only in voting; it does not receive any of the data being
replicated and cannot become the primary node.

The difference between a standard node and a passive node is actually more of a sliding
scale; each participating node (nonarbiter) has a priority setting. A node with priority
0 is passive and will never be selected as primary. Nodes with nonzero priority will be
selected in order of decreasing priority, using freshness of data to break ties between
nodes with the same priority. So, in a set with two priority 1 nodes and a priority 0.5
node, the third node will be elected primary only if neither of the priority 1 nodes are
available.

Standard and passive nodes can be configured as part of a node’s description, using the
priority key:

> members.push({
... "_id" : 3,
... "host" : "morton:10003",
... "priority" : 40
... });

The default priority is 1, and priorities must be between 0 and 1000 (inclusive).

Arbiters are specified using the "arbiterOnly" key.

> members.push({
... "_id" : 4,
... "host" : "morton:10004",
... "arbiterOnly" : true
... });

There is more information about arbiters in the next section.

Secondary nodes will pull from the primary node’s oplog and apply operations, just
like a slave in a master-slave system. A secondary node will also write the operation to
its own local oplog, however, so that it is capable of becoming the primary. Operations
in the oplog also include a monotonically increasing ordinal. This ordinal is used to
determine how up-to-date the data is on any node in the cluster.

134 | Chapter 9: Replication

www.it-ebooks.info

http://www.it-ebooks.info/

Failover and Primary Election
If the current primary fails, the rest of the nodes in the set will attempt to elect a new
primary node. This election process will be initiated by any node that cannot reach the
primary. The new primary must be elected by a majority of the nodes in the set. Arbiter
nodes participate in voting as well and are useful for breaking ties (e.g., when the par-
ticipating nodes are split into two halves separated by a network partition). The new
primary will be the node with the highest priority, using freshness of data to break ties
between nodes with the same priority (see Figures 9-6, 9-7, and 9-8).

The primary node uses a heartbeat to track how many nodes in the cluster are visible
to it. If this falls below a majority, the primary will automatically fall back to secondary
status. This prevents the primary from continuing to function as such when it is sepa-
rated from the cluster by a network partition.

Whenever the primary changes, the data on the new primary is assumed to be the most
up-to-date data in the system. Any operations that have been applied on any other
nodes (i.e., the former primary node) will be rolled back, even if the former primary
comes back online. To accomplish this rollback, all nodes go through a resync process
when connecting to a new primary. They look through their oplog for operations that
have not been applied on the primary and query the new primary to get an up-to-date
copy of any documents affected by such operations. Nodes that are currently in the
process of resyncing are said to be recovering and will not be eligible for primary election
until the process is complete.

Figure 9-6. A replica set can have several servers of different priority levels

Replica Sets | 135

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 9-7. If the primary goes down, the highest-priority servers will compare how up-to-date they are

Figure 9-8. The highest-priority most-up-to-date server will become the new primary

Performing Operations on a Slave
The primary purpose and most common use case of a MongoDB slave is to function
as failover mechanism in the case of data loss or downtime on the master node. There
are other valid use cases for a MongoDB slave, however. A slave can be used as a source
for taking backups (see Chapter 8). It can also be used for scaling out reads or for
performing data processing jobs on.

136 | Chapter 9: Replication

www.it-ebooks.info

http://www.it-ebooks.info/

Read Scaling
One way to scale reads with MongoDB is to issue queries against slave nodes. By issuing
queries on slaves, the workload for the master is reduced. In general, this is a good
approach to scaling when your workload is read heavy—if you have a more write-
intensive workload, see Chapter 10 to learn how to scale with autosharding.

One important note about using slaves to scale reads in MongoDB is
that replication is asynchronous. This means that when data is inserted
or updated on the master, the data on the slave will be out-of-date mo-
mentarily. This is important to consider if you are serving some requests
using queries to slaves.

Scaling out reads with slaves is easy: just set up master-slave replication like usual, and
make connections directly to the slave servers to handle queries. The only trick is that
there is a special query option to tell a slave server that it is allowed to handle a query.
(By default, queries will not be executed on a slave.) This option is called slaveOkay,
and all MongoDB drivers provide a mechanism for setting it. Some drivers also provide
facilities to automate the process of distributing queries to slaves—this varies on a per-
driver basis, however.

Using Slaves for Data Processing
Another interesting technique is to use slaves as a mechanism for offloading intensive
processing or aggregation to avoid degrading performance on the master. To do this,
start a normal slave, but with the addition of the --master command-line argument.
Starting with both --slave and --master may seem like a bit of a paradox. What it
means, however, is that you’ll be able to write to the slave, query on it like usual, and
basically treat it like you would a normal MongoDB master node. In addition, the slave
will continue to replicate data from the actual master. This way, you can perform
blocking operations on the slave without ever affecting the performance of the master
node.

When using this technique, you should be sure never to write to any
database on the slave that is being replicated from the master. The slave
will not revert any such writes in order to properly mirror the master.

The slave should also not have any of the databases that are being re-
plicated when it first starts up. If it does, those databases will not ever
be fully synced but will just update with new operations.

Performing Operations on a Slave | 137

www.it-ebooks.info

http://www.it-ebooks.info/

How It Works
At a very high level, a replicated MongoDB setup always consists of at least two servers,
or nodes. One node is the master and is responsible for handling normal client requests.
The other node(s) is a slave and is responsible for mirroring the data stored on the
master. The master keeps a record of all operations that have been performed on it.
The slave periodically polls the master for any new operations and then performs them
on its copy of the data. By performing all of the same operations that have been per-
formed on the master node, the slave keeps its copy of the data up-to-date with the
master’s.

The Oplog
The record of operations kept by the master is called the oplog, short for operation log.
The oplog is stored in a special database called local, in the oplog.$main collection.
Each document in the oplog represents a single operation performed on the master
server. The documents contain several keys, including the following:

ts
Timestamp for the operation. The timestamp type is an internal type used to track
when operations are performed. It is composed of a 4-byte timestamp and a 4-byte
incrementing counter.

op
Type of operation performed as a 1-byte code (e.g., “i” for an insert).

ns
Namespace (collection name) where the operation was performed.

o
Document further specifying the operation to perform. For an insert, this would
be the document to insert.

One important note about the oplog is that it stores only operations that change the
state of the database. A query, for example, would not be stored in the oplog. This
makes sense because the oplog is intended only as a mechanism for keeping the data
on slaves in sync with the master.

The operations stored in the oplog are also not exactly those that were performed on
the master server itself. The operations are transformed before being stored such that
they are idempotent. This means that operations can be applied multiple times on a
slave with no ill effects, so long as the operations are applied in the correct order (e.g.,
an incrementing update, using "$inc", will be transformed to a "$set" operation).

A final important note about the oplog is that it is stored in a capped collection (see
“Capped Collections” on page 97). As new operations are stored in the oplog, they will
automatically replace the oldest operations. This guarantees that the oplog does not
grow beyond a preset bound. That bound is configurable using the --oplogSize option

138 | Chapter 9: Replication

www.it-ebooks.info

http://www.it-ebooks.info/

when starting the server, which allows you to specify the size of the oplog in megabytes.
By default, 64-bit instances will use 5 percent of available free space for the oplog. This
space will be allocated in the local database and will be preallocated when the server
starts.

Syncing
When a slave first starts up, it will do a full sync of the data on the master node. The
slave will copy every document from the master node, which is obviously an expensive
operation. After the initial sync is complete, the slave will begin querying the master’s
oplog and applying operations in order to stay up-to-date.

If the application of operations on the slave gets too far behind the actual operations
being performed on the master, the slave will fall out of sync. An out-of-sync slave is
unable to continue to apply operations to catch up to the master, because every oper-
ation in the master’s oplog is too “new.” This could happen if the slave has had down-
time or is busy handling reads. It can also happen following a full sync, if the sync takes
long enough that the oplog has rolled over by the time it is finished.

When a slave gets out of sync, replication will halt, and the slave will need to be fully
resynced from the master. This resync can be performed manually by running the
command {"resync" : 1} on the slave’s admin database or automatically by starting
the slave with the --autoresync option. Either way, doing a resync is a very expensive
operation, and it’s a situation that is best avoided by choosing a large enough oplog size.

To avoid out of sync slaves, it’s important to have a large oplog so that the master can
store a long history of operations. A larger oplog will obviously use up more disk space,
but in general this is a good trade-off to make (hence the default oplog size of 5 percent
of free space). For more information on sizing the oplog, see “Administra-
tion” on page 141.

Replication State and the Local Database
The local database is used for all internal replication state, on both the master and the
slave. The local database’s name is local, and its contents will never be replicated.
Thus, the local database is guaranteed to be local to a single MongoDB server.

Use of the local database isn’t limited to MongoDB internals. If you have
documents that you don’t want to replicate, just store them in a collec-
tion in the local database.

How It Works | 139

www.it-ebooks.info

http://www.it-ebooks.info/

Other replication state stored on the master includes a list of its slaves. (Slaves perform
a handshake using the handshake command when they connect to the master.) This list
is stored in the slaves collection:

> db.slaves.find()
{ "_id" : ObjectId("4c1287178e00e93d1858567c"), "host" : "127.0.0.1",
 "ns" : "local.oplog.$main", "syncedTo" : { "t" : 1276282710000, "i" : 1 } }
{ "_id" : ObjectId("4c128730e6e5c3096f40e0de"), "host" : "127.0.0.1",
 "ns" : "local.oplog.$main", "syncedTo" : { "t" : 1276282710000, "i" : 1 } }

Slaves also store state in the local database. They store a unique slave identifier in the
me collection, and a list of sources, or nodes, that they are slaving from, in the sources
collection:

> db.sources.find()
{ "_id" : ObjectId("4c1287178e00e93d1858567b"), "host" : "localhost:27017",
 "source" : "main", "syncedTo" : { "t" : 1276283096000, "i" : 1 },
 "localLogTs" : { "t" : 0, "i" : 0 } }

Both the master and slave keep track of how up-to-date a slave is, using the timestamp
stored in "syncedTo". Each time the slave queries the oplog for new operations, it uses
"syncedTo" to specify which new operations it needs to apply or to find out if it is out
of sync.

Blocking for Replication
MongoDB’s getLastError command allows developers to enforce guarantees about
how up-to-date replication is by using the optional "w" parameter. Here we run a
getLastError that will block until at least N servers have replicated the last write
operation:

> db.runCommand({getLastError: 1, w: N});

If N is not present or is less than two, the command will return immediately. If N is
two, the master won’t respond to the command until at least one slave has replicated
the last operation. (The master itself is included toward N.) The master uses the
"syncedTo" information stored in local.slaves to track how up-to-date each slave is.

When specifying "w", getLastError takes an additional parameter, "wtimeout", which
is a timeout in milliseconds. This allows the getLastError to time out and return an
error before the last operation has replicated to N servers. (By default the command has
no timeout.)

Blocking for replication will cause write operations to slow down significantly, partic-
ularly for large values of "w". In practice, setting "w" to two or three for important
operations will yield a good combination of efficiency and safety.

140 | Chapter 9: Replication

www.it-ebooks.info

http://www.it-ebooks.info/

Administration
In this section, we’ll introduce some administration concepts that are specific to
replication.

Diagnostics
MongoDB includes a couple of useful administrative helpers for inspecting the status
of replication. When connected to the master, use the db.printReplicationInfo
function:

> db.printReplicationInfo();
 configured oplog size: 10.48576MB
 log length start to end: 34secs (0.01hrs)
 oplog first event time: Tue Mar 30 2010 16:42:57 GMT-0400 (EDT)
 oplog last event time: Tue Mar 30 2010 16:43:31 GMT-0400 (EDT)
 now: Tue Mar 30 2010 16:43:37 GMT-0400 (EDT)

This gives information about the size of the oplog and the date ranges of operations
contained in the oplog. In this example, the oplog is about 10MB and is only able to
fit about 30 seconds of operations. This is almost certainly a case where we should
increase the size of the oplog (see the next section). We want the log length to be at
least as long as the time it takes to do a full resync—that way, we don’t run into a case
where a slave is already out of sync by the time its initial sync (or resync) is finished.

The log length is computed by taking the time difference between the
first and last operation in the oplog. If the server has just started, then
the first operation will be relatively recent. In that case, the log length
will be small, even though the oplog probably still has free space avail-
able. The log length is a more useful metric for servers that have been
operational long enough for the oplog to “roll over.”

We can also get some information when connected to the slave, using the
db.printSlaveReplicationInfo function:

> db.printSlaveReplicationInfo();
 source: localhost:27017
 syncedTo: Tue Mar 30 2010 16:44:01 GMT-0400 (EDT)
 = 12secs ago (0hrs)

This will show a list of sources for the slave, each with information about how far behind
the master it is. In this case, we are only 12 seconds behind the master.

Changing the Oplog Size
If we find that the oplog size needs to be changed, the simplest way to do so is to stop
the master, delete the files for the local database, and restart with a new setting for

Administration | 141

www.it-ebooks.info

http://www.it-ebooks.info/

--oplogSize. To change the oplog size to size, we shut down the master and run the
following:

$ rm /data/db/local.*
$./mongod --master --oplogSize size

size is specified in megabytes.

Preallocating space for a large oplog can be time-consuming and might
cause too much downtime for the master node. It is possible to manually
preallocate data files for MongoDB if that is the case; see the MongoDB
documentation on halted replication for more detailed information.

After restarting the master, any slaves should either be restarted with the
--autoresync or have a manual resync performed.

Replication with Authentication
If you are using replication in tandem with MongoDB’s support for authentication (see
“Authentication Basics” on page 118), there is some additional configuration that needs
to be performed to allow the slave to access the data on the master. On both the master
and the slave, a user needs to be added to the local database, with the same username
and password on each node. Users on the local database are similar to users on ad-
min; they have full read and write permissions on the server.

When the slave attempts to connect to the master, it will authenticate using a user
stored in local.system.users. The first username it will try is “repl,” but if no such user
is found, it will just use the first available user in local.system.users. So, to set up
replication with authentication, run the following code on both the master and any
slaves, replacing password with a secure password:

> use local
switched to db local
> db.add User("repl", password);
{
 "user" : "repl",
 "readOnly" : false,
 "pwd" : "..."
}

The slave will then be able to replicate from the master.

142 | Chapter 9: Replication

www.it-ebooks.info

http://www.mongodb.org/display/DOCS/Halted+Replication
http://www.mongodb.org/display/DOCS/Halted+Replication
http://www.it-ebooks.info/

CHAPTER 10

Sharding

Sharding is MongoDB’s approach to scaling out. Sharding allows you to add more
machines to handle increasing load and data size without affecting your application.

Introduction to Sharding
Sharding refers to the process of splitting data up and storing different portions of the
data on different machines; the term partitioning is also sometimes used to describe
this concept. By splitting data up across machines, it becomes possible to store more
data and handle more load without requiring large or powerful machines.

Manual sharding can be done with almost any database software. It is when an appli-
cation maintains connections to several different database servers, each of which are
completely independent. The application code manages storing different data on dif-
ferent servers and querying against the appropriate server to get data back. This ap-
proach can work well but becomes difficult to maintain when adding or removing nodes
from the cluster or in the face of changing data distributions or load patterns.

MongoDB supports autosharding, which eliminates some of the administrative head-
aches of manual sharding. The cluster handles splitting up data and rebalancing auto-
matically. Throughout the rest of this book (and most MongoDB documentation in
general), the terms sharding and autosharding are used interchangeably, but it’s im-
portant to note the difference between that and manual sharding in an application.

Autosharding in MongoDB
The basic concept behind MongoDB’s sharding is to break up collections into smaller
chunks. These chunks can be distributed across shards so that each shard is responsible
for a subset of the total data set. We don’t want our application to have to know what
shard has what data, or even that our data is broken up across multiple shards, so we
run a routing process called mongos in front of the shards. This router knows where all
of the data is located, so applications can connect to it and issue requests normally. As

143

www.it-ebooks.info

http://www.it-ebooks.info/

far as the application knows, it’s connected to a normal mongod. The router, knowing
what data is on which shard, is able to forward the requests to the appropriate shard(s).
If there are responses to the request, the router collects them and sends them back to
the application.

In a nonsharded MongoDB setup, you would have a client connecting to a mongod
process, like in Figure 10-1. In a sharded setup, like Figure 10-2, the client connects to
a mongos process, which abstracts the sharding away from the application. From the
application’s point of view, a sharded setup looks just like a nonsharded setup. There
is no need to change application code when you need to scale.

Figure 10-1. Nonsharded client connection

Figure 10-2. Sharded client connection

144 | Chapter 10: Sharding

www.it-ebooks.info

http://www.it-ebooks.info/

If you are using an old version of MongoDB, you should upgrade to at
least 1.6.0 before using sharding. Sharding has been around for a while,
but the first production-ready release is 1.6.0.

When to Shard
One question people often have is when to start sharding. There are a couple of signs
that sharding might be a good idea:

• You’ve run out of disk space on your current machine.

• You want to write data faster than a single mongod can handle.

• You want to keep a larger proportion of data in memory to improve performance.

In general, you should start with a nonsharded setup and convert it to a sharded one,
if and when you need.

The Key to Sharding: Shard Keys
When you set up sharding, you choose a key from a collection and use that key’s values
to split up the data. This key is called a shard key.

Let’s look at an example to see how this works: suppose we had a collection of docu-
ments representing people. If we chose "name" as our shard key, one shard could hold
documents where the "name" started with A–F, the next shard could hold names from
G–P, and the final shard would hold names from Q–Z. As you added (or removed)
shards, MongoDB would rebalance this data so that each shard was getting a balanced
amount of traffic and a sensible amount of data (e.g., if a shard is getting a lot of traffic,
it might have less data than a shard with data that is less “hot”).

Sharding an Existing Collection
Suppose we have an existing collection of logs and we want to shard it. If we enable
sharding and tell MongoDB to use "timestamp" as the shard key, we’ll have a single
shard with all of our data. We can insert any data we’d like, and it will all go to that
one shard.

Now, suppose we add a new shard. Once this shard is up and running, MongoDB will
break up the collection into two pieces, called chunks. A chunk contains all of the
documents for a range of values for the shard key, so one chunk would have documents
with a timestamp value between -∞ and, say, June 26, 2003, and the other chunk would
have timestamps between June 27, 2003 and ∞. One of these chunks would then be
moved to the new shard.

If we get a new document with a timestamp value before June 27, 2003, we’ll add that
to the first chunk; otherwise, we’ll add the document to the second chunk.

The Key to Sharding: Shard Keys | 145

www.it-ebooks.info

http://www.it-ebooks.info/

Incrementing Shard Keys Versus Random Shard Keys
The distribution of inserts across shards is very dependent on which key we’re
sharding on.

If we choose to shard on something like "timestamp", where the value is probably going
to increase and not jump around a lot, we’ll be sending all of the inserts to one shard
(the one with the [June 27, 2003, ∞] chunk). Notice that, if we add a new shard and it
splits the data again, we’ll still be inserting on just one server. If we add a new shard,
MongoDB might split [June 27, 2003, ∞] into [June 27, 2003, December 12, 2010) and
[December 12, 2010, ∞]. We’ll always have a chunk that will be “some date through
infinity,” which is where our inserts will be going. This isn’t good for a very high write
load, but it will make queries on the shard key very efficient.

If we have a high write load and want to evenly distribute writes across multiple shards,
we should pick a shard key that will jump around more. This could be a hash of the
timestamp in the log example or a key like "logMessage", which won’t have any par-
ticular pattern to it.

Whether your shard key jumps around or increases steadily, it is important to choose
a key that will vary somewhat. If, for example, we had a "logLevel" key that had only
values "DEBUG", "WARN", or "ERROR", MongoDB won’t be able to break up your data into
more than three chunks (because there are only three different values). If you have a
key with very little variation and want to use it as a shard key anyway, you can do so
by creating a compound shard key on that key and a key that varies more, like
"logLevel" and "timestamp".

Determining which key to shard on and creating shard keys should be reminiscent of
indexing, because the two concepts are similar. In fact, often your shard key will just
be the index you use most often.

How Shard Keys Affect Operations
To the end user, a sharded setup should be indistinguishable from a nonsharded one.
However, it can be useful, especially when setting up sharding, to understand how
different queries will be done depending on the shard key chosen.

Suppose we have the collection described in the previous section, which is sharded on
the "name" key and has three shards with names ranging from A to Z. Different queries
will be executed in different ways:

db.people.find({"name" : "Susan"})
mongos will send this query directly to the Q–Z shard, receive a response from that
shard, and send it to the client.

db.people.find({"name" : {"$lt" : "L"}})
mongos will send the query to the A–F and G–P shards in serial. It will forward their
responses to the client.

146 | Chapter 10: Sharding

www.it-ebooks.info

http://www.it-ebooks.info/

db.people.find().sort({"email" : 1})
mongos will query all of the shards and do a merge sort when it gets the results to
make sure it is returning them in the correct order. mongos uses cursors to retrieve
data from each server, so it does not need to get the entire data set in order to start
sending batches of results to the client.

db.people.find({"email" : "joe@example.com"})
mongos does not keep track of the "email" key, so it doesn’t know which shard to
send this to. Thus, it sends the query to all of the shards in serial.

If we insert a new document, mongos will send that document to the appropriate shard,
based on the value of its "name" key.

Setting Up Sharding
There are two steps to setting up sharding: starting the actual servers and then deciding
how to shard your data.

Sharding basically involves three different components working together:

shard
A shard is a container that holds a subset of a collection’s data. A shard is either a
single mongod server (for development/testing) or a replica set (for production).
Thus, even if there are many servers in a shard, there is only one master, and all of
the servers contain the same data.

mongos
This is the router process and comes with all MongoDB distributions. It basically
just routes requests and aggregates responses. It doesn’t store any data or config-
uration information. (Although it does cache information from the config servers.)

config server
Config servers store the configuration of the cluster: which data is on which shard.
Because mongos doesn’t store anything permanently, it needs somewhere to get the
shard configuration. It syncs this data from the config servers.

If you are working with MongoDB already, you probably have a shard ready to go.
(Your current mongod can become your first shard.) The following section shows how
to create a new shard from scratch, but feel free to use your existing database instead.

Starting the Servers
First we need to start up our config server and mongos. The config server needs to be
started first, because mongos uses it to get its configuration. The config server can be
started like any other mongod process:

$ mkdir -p ~/dbs/config
$./mongod --dbpath ~/dbs/config --port 20000

Setting Up Sharding | 147

www.it-ebooks.info

http://www.it-ebooks.info/

A config server does not need much space or resources. (A generous estimate is 1KB of
config server space per 200MB of actual data.)

Now you need a mongos process for your application to connect to. Routing servers
don’t even need a data directory, but they need to know where the config server is:

$./mongos --port 30000 --configdb localhost:20000

Shard administration is always done through a mongos.

Adding a shard

A shard is just a normal mongod instance (or replica set):

$ mkdir -p ~/dbs/shard1
$./mongod --dbpath ~/dbs/shard1 --port 10000

Now we’ll connect to the mongos process we started and add the shard to the cluster.
Start up a shell connected to your mongos:

$./mongo localhost:30000/admin
MongoDB shell version: 1.6.0
url: localhost:30000/admin
connecting to localhost:30000/admin
type "help" for help
>

Make sure you’re connected to mongos, not a mongod. Now you can add this shard with
the addshard database command:

> db.runCommand({addshard : "localhost:10000", allowLocal : true})
{
 "added" : "localhost:10000",
 "ok" : true
}

The "allowLocal" key is necessary only if you are running the shard on localhost.
MongoDB doesn’t want to let you accidentally set up a cluster locally, so this lets it
know that you’re just in development and know what you’re doing. If you’re in pro-
duction, you should have shards on different machines (although there can be some
overlap; see the next section for details).

Whenever we want to add a new shard, we can run the addshard database command.
MongoDB will take care of integrating it into the cluster.

Sharding Data
MongoDB won’t just distribute every piece of data you’ve ever stored: you have to
explicitly turn sharding on at both the database and collection levels. Let’s look at an
example: we’ll shard the bar collection in the foo database on the "_id" key. First, we
enable sharding for foo:

> db.runCommand({"enablesharding" : "foo"})

148 | Chapter 10: Sharding

www.it-ebooks.info

http://www.it-ebooks.info/

Sharding a database results in its collections being stored on different shards and is a
prerequisite to sharding one of its collections.

Once you’ve enabled sharding on the database level, you can shard a collection by
running the shardcollection command:

> db.runCommand({"shardcollection" : "foo.bar", "key" : {"_id" : 1}})

Now the collection will be sharded by the "_id" key. When we start adding data, it will
automatically distribute itself across our shards based on the values of "_id".

Production Configuration
The example in the previous section is fine for trying sharding or for development.
However, when you move an application into production, you’ll want a more robust
setup. To set up sharding with no points of failure, you’ll need the following:

• Multiple config servers

• Multiple mongos servers

• Replica sets for each shard

• w set correctly (see the previous chapter for information on w and replication)

A Robust Config
Setting up multiple config servers is simple. As of this writing, you can have one config
server (for development) or three config servers (for production).

Setting up multiple config servers is the same as setting up one; you just do it three times:

$ mkdir -p ~/dbs/config1 ~/dbs/config2 ~/dbs/config3
$./mongod --dbpath ~/dbs/config1 --port 20001
$./mongod --dbpath ~/dbs/config2 --port 20002
$./mongod --dbpath ~/dbs/config3 --port 20003

Then, when you start a mongos, you should connect it to all three config servers:

$./mongos --configdb localhost:20001,localhost:20002,localhost:20003

Config servers use two-phase commit, not the normal MongoDB asynchronous repli-
cation, to maintain separate copies of the cluster’s configuration. This ensures that they
always have a consistent view of the cluster’s state. It also means that if a single config
server is down, the cluster’s configuration information will go read-only. Clients are
still able to do both reads and writes, but no rebalancing will happen until all of the
config servers are back up.

Many mongos
You can also run as many mongos processes as you want. One recommended setup is
to run a mongos process for every application server. That way, each application server

Production Configuration | 149

www.it-ebooks.info

http://www.it-ebooks.info/

can talk to mongos locally, and if the server goes down, no one will be trying to talk to
a mongos that isn’t there.

A Sturdy Shard
In production, each shard should be a replica set. That way, an individual server can
fail without bringing down the whole shard. To add a replica set as a shard, pass its
name and a seed to the addshard command.

For example, say we have a replica set named "foo" containing a server at
prod.example.com:27017 (among other servers). We could add this set to the cluster
with the following:

> db.runCommand({"addshard" : "foo/prod.example.com:27017"})

If prod.example.com goes down, mongos will know that it is connected to a replica set
and use the new primary for that set.

Physical Servers
This may seem like an overwhelming number of machines: three config servers, at least
two mongods per shard, and as many mongos processes as you want. However, not ev-
erything has to have its own machine. The main thing to avoid is putting an entire
component on one machine. For example, avoid putting all three config servers, all of
your mongos processes, or an entire replica set on one machine. However, a config server
and mongos processes can happily share a box with a member of a replica set.

Sharding Administration
Sharding information is mostly stored in the config database, which can be accessed
from any connection to a mongos process.

config Collections
All of the code in the following sections assume that you are running a shell connected
to a mongos process and have already run use config.

Shards

You can find a list of shards in the shards collection:

> db.shards.find()
{ "_id" : "shard0", "host" : "localhost:10000" }
{ "_id" : "shard1", "host" : "localhost:10001" }

Each shard is assigned a unique, human-readable _id.

150 | Chapter 10: Sharding

www.it-ebooks.info

http://www.it-ebooks.info/

Databases

The databases collection contains a list of databases that exist on the shards and infor-
mation about them:

> db.databases.find()
{ "_id" : "admin", "partitioned" : false, "primary" : "config" }
{ "_id" : "foo", "partitioned" : false, "primary" : "shard1" }
{ "_id" : "x", "partitioned" : false, "primary" : "shard0" }
{
 "_id" : "test",
 "partitioned" : true,
 "primary" : "shard0",
 "sharded" : {
 "test.foo" : {
 "key" : {"x" : 1},
 "unique" : false
 }
 }
}

Every database available is listed here and has some basic information available.

"_id" : string
The _id is the database’s name.

"partitioned" : boolean
If "partitioned" is true, then the enablesharding command has been run on this
database.

"primary" : string
The value corresponds to a shard "_id" and indicates where this database’s “home”
is. A database always has a home, whether it is sharded. In a sharded setup, a new
database will be created on a random shard. This home is where it will start creating
data files. If it is sharded, it will use other servers as well, but it will start out on
this shard.

Chunks

Chunk information is stored in the chunks collection. This is where things get more
interesting; you can actually see how your data has been divided up across the cluster:

> db.chunks.find()
{
 "_id" : "test.foo-x_MinKey",
 "lastmod" : { "t" : 1276636243000, "i" : 1 },
 "ns" : "test.foo",
 "min" : {
 "x" : { $minKey : 1 }
 },
 "max" : {
 "x" : { $maxKey : 1 }
 },

Sharding Administration | 151

www.it-ebooks.info

http://www.it-ebooks.info/

 "shard" : "shard0"
}

This is what a collection with a single chunk will look like: the chunk range goes from
-∞ (MinKey) to ∞ (MaxKey).

Sharding Commands
We’ve already covered some of the basic commands, such as adding chunks and ena-
bling sharding on a collection. There are a couple more commands that are useful for
administering a cluster.

Getting a summary

The printShardingStatus function will give you a quick summary of the previous
collections:

> db.printShardingStatus()
--- Sharding Status ---
 sharding version: { "_id" : 1, "version" : 3 }
 shards:
 { "_id" : "shard0", "host" : "localhost:10000" }
 { "_id" : "shard1", "host" : "localhost:10001" }
 databases:
 { "_id" : "admin", "partitioned" : false, "primary" : "config" }
 { "_id" : "foo", "partitioned" : false, "primary" : "shard1" }
 { "_id" : "x", "partitioned" : false, "primary" : "shard0" }
 { "_id" : "test", "partitioned" : true, "primary" : "shard0",
 "sharded" : { "test.foo" : { "key" : { "x" : 1 }, "unique" : false } } }
 test.foo chunks:
 { "x" : { $minKey : 1 } } -->> { "x" : { $maxKey : 1 } } on : shard0
 { "t" : 1276636243000, "i" : 1 }

Removing a shard

Shards can be removed from a cluster with the removeshard command. removeshard
drains all of the chunks on a given shard to the other shards.

> db.runCommand({"removeshard" : "localhost:10000"});
{
 "started draining" : "localhost:10000",
 "ok" : 1
}

As the shard is drained, removeshard will give you the status of how much remains on
the shard.

> db.runCommand({"removeshard" : "localhost:10000"});
{
 "msg" : "already draining...",
 "remaining" : {
 "chunks" : 39,
 "dbs" : 2
 },

152 | Chapter 10: Sharding

www.it-ebooks.info

http://www.it-ebooks.info/

 "ok" : 1
}

Finally, when the shard has finished draining, removeshard shows that the shard has
been successfully removed.

As of version 1.6.0, if a removed shard was the primary shard for a
database, the database has to be manually moved (using the
moveprimary command):

> db.runCommand({"moveprimary" : "test", "to" : "localhost:10001"})
{
 "primary" : "localhost:10001",
 "ok" : 1
}

This will likely be automated in future releases.

Sharding Administration | 153

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11

Example Applications

Throughout this text, almost all of the examples have been in JavaScript. This chapter
explores using MongoDB with languages that are more likely to be used in a real
application.

Chemical Search Engine: Java
The Java driver is the oldest MongoDB driver. It has been used in production for years
and is stable and a popular choice for enterprise developers.

We’ll be using the Java driver to build a search engine for chemical compounds, heavily
inspired by http://www.chemeo.com. This search engine has the chemical and physical
properties of thousands of compounds on file, and its goal is to make this information
fully searchable.

Installing the Java Driver
The Java driver comes as a JAR file that can be downloaded from Github. To install,
add the JAR to your classpath.

All of the Java classes you will probably need to use in a normal application are in the
com.mongodb and com.mongodb.gridfs packages. There are a number of other packages
included in the .JAR that are useful if you are planning on manipulating the driver’s
internals or expanding its functionality, but most applications can ignore them.

Using the Java Driver
Like most things in Java, the API is a bit verbose (especially compared to the other
languages’ APIs). However, all of the concepts are similar to using the shell, and almost
all of the method names are identical.

The com.mongodb.Mongo class creates a connection to a MongoDB server. You can access
a database from the connection and then get a collection from the database:

155

www.it-ebooks.info

http://www.chemeo.com
http://www.github.com/mongodb/mongo-java-driver/downloads
http://www.it-ebooks.info/

import com.mongodb.Mongo;
import com.mongodb.DB;
import com.mongodb.DBCollection;

class ChemSearch {

 public static void main(String[] args) {
 Mongo connection = new Mongo();
 DB db = connection.getDB("search");
 DBCollection chemicals = db.getCollection("chemicals");

 /* ... */
 }
}

This will connect to localhost:27017 and get the search.chemicals namespace.

Documents in Java must be instances of org.bson.DBObject, an interface that is basically
an ordered java.util.Map. While there are a few ways to create a document in Java, the
simplest one is to use the com.mongodb.BasicDBObject class. Thus, creating the docu-
ment that could be represented by the shell as {"x" : 1, "y" : "foo"} would look like
this:

BasicDBObject doc = new BasicDBObject();
doc.put("x", 1);
doc.put("y", "foo");

If we wanted to add an embedded document, such as "z" : {"hello" : "world"}, we
would create another BasicDBObject and then put it in the top-level one:

BasicDBObject z = new BasicDBObject();
z.put("hello", "world");

doc.put("z", z);

Then we would have the document {"x" : 1, "y" : "foo", "z" : {"hello" :
"world"}}.

From there, all of the other methods implemented by the Java driver are similar to the
shell. For instance, we could say chemicals.insert(doc) or chemicals.find(doc). There
is full API documentation for the Java driver at http://api.mongodb.org/java and some
articles on specific areas of interest (concurrency, data types, etc.) at the MongoDB Java
Language Center.

Schema Design
The interesting thing about this problem is that there are thousands of possible prop-
erties for each chemical, and we want to be able to search for any of them efficiently.
Take two simple examples: silicon and silicon nitride. A document representing silicon
might look something like this:

{
 "name" : "silicon",

156 | Chapter 11: Example Applications

www.it-ebooks.info

http://api.mongodb.org/java
http://www.mongodb.org/display/DOCS/Java+Language+Center
http://www.mongodb.org/display/DOCS/Java+Language+Center
http://www.it-ebooks.info/

 "mw" : 32.1173
}

mw stands for “molecular weight.”

Silicon nitride might have a couple other properties, so its document would look
like this:

{
 "name" : "silicon nitride",
 "mw" : 42.0922,
 "ΔfH°gas" : {
 "value" : 372.38,
 "units" : "kJ/mol"
 },
 "S°gas" : {
 "value" : 216.81,
 "units" : "J/mol×K"
 }
}

MongoDB lets us store chemicals with any number or structure of properties, which
makes this application nicely extensible, but there’s no efficient way to index it in its
current form. To be able to quickly search for any property, we would need to index
almost every key! As we learned in Chapter 5, this is a bad idea.

There is a solution. We can take advantage of the fact that MongoDB indexes every
element of an array, so we can store all of the properties we want to search for in an
array with common key names. For example, with silicon nitride we can add an array
just for indexing containing each property of the given chemical:

{
 "name" : "silicon nitride",
 "mw" : 42.0922,
 "ΔfH°gas" : {
 "value" : 372.38,
 "units" : "kJ/mol"
 },
 "S°gas" : {
 "value" : 216.81,
 "units" : "J/mol×K"
 },
 "index" : [
 {"name" : "mw", "value" : 42.0922},
 {"name" : "ΔfH°gas", "value" : 372.38},
 {"name" : "S°gas", "value" : 216.81}
]
}

Silicon, on the other hand, would have a single-element array with just the molecular
weight:

{
 "name" : "silicon",
 "mw" : 32.1173,

Chemical Search Engine: Java | 157

www.it-ebooks.info

http://www.it-ebooks.info/

 "index" : [
 {"name" : "mw", "value" : 32.1173}
]
}

Now, all we need to do is create a compound index on the "index.name" and
"index.value" keys. Then we’ll be able to do a fairly quick search through the chemical
compounds for any attribute.

Writing This in Java
Going back to our original Java code snippet, we’ll create a compound index with the
ensureIndex function:

BasicDBObject index = new BasicDBObject();
index.put("index.name", 1);
index.put("index.value", 1);

chemicals.ensureIndex(index);

Creating a document for, say, silicon nitride is not difficult, but it is verbose:

public static DBObject createSiliconNitride() {
 BasicDBObject sn = new BasicDBObject();
 sn.put("name", "silicon nitride");
 sn.put("mw", 42.0922);

 BasicDBObject deltafHgas = new BasicDBObject();
 deltafHgas.put("value", 372.38);
 deltafHgas.put("units", "kJ/mol");

 sn.put("ΔfH°gas", deltafHgas);

 BasicDBObject sgas = new BasicDBObject();
 sgas.put("value", 216.81);
 sgas.put("units", "J/mol×K");

 sn.put("S°gas", sgas);

 ArrayList<BasicDBObject> index = new ArrayList<BasicDBObject>();
 index.add(BasicDBObjectBuilder.start()
 .add("name", "mw").add("value", 42.0922).get());
 index.add(BasicDBObjectBuilder.start()
 .add("name", "ΔfH°gas").add("value", 372.38).get());
 index.add(BasicDBObjectBuilder.start()
 .add("name", "S°gas").add("value", 216.81).get());

 sn.put("index", index);

 return sn;
}

Arrays can be represented by anything that implements java.util.List, so we create
a java.util.ArrayList of embedded documents for the chemical’s properties.

158 | Chapter 11: Example Applications

www.it-ebooks.info

http://www.it-ebooks.info/

Issues
One issue with this structure is that, if we are querying for multiple criteria, search
order matters. For example, suppose we are looking for all documents with a molecular
weight of less than 1000, a boiling point greater than 0°, and a freezing point of -20°.
Naively, we could do this query by concatenating the criteria in an $all conditional:

BasicDBObject criteria = new BasicDBObject();

BasicDBObject all = new BasicDBObject();

BasicDBObject mw = new BasicDBObject("name", "mw");
mw.put("value", new BasicDBObject("$lt", 1000));

BasicDBObject bp = new BasicDBObject("name", "bp");
bp.put("value", new BasicDBObject("$gt", 0));

BasicDBObject fp = new BasicDBObject("name", "fp");
fp.put("value", -20);

all.put("$elemMatch", mw);
all.put("$elemMatch", bp);
all.put("$elemMatch", fp);
criteria.put("index", new BasicDBObject("$all", all));

chemicals.find(criteria);

The problem with this approach is that MongoDB can use an index only for the first
item in an $all conditional. Suppose there are 1 million documents with a "mw" key
whose value is less than 1,000. MongoDB can use the index for that part of the query,
but then it will have to scan for the boiling and freezing points, which will take a long
time.

If we know some of the characteristics of our data, for instance, that there are only 43
chemicals with a freezing point of -20°, we can rearrange the $all to do that query first:

all.put("$elemMatch", fp);
all.put("$elemMatch", mw);
all.put("$elemMatch", bp);
criteria.put("index", new BasicDBObject("$all", all));

Now the database can quickly find those 43 elements and, for the subsequent clauses,
has to scan only 43 elements (instead of 1 million). Figuring out a good ordering for
arbitrary searches is the real trick of course, of course. This could be done with pattern
recognition and data aggregation algorithms that are beyond the scope of this book.

News Aggregator: PHP
We will be creating a basic news aggregation application: users submit links to inter-
esting sites, and other users can comment and vote on the quality of the links (and other

News Aggregator: PHP | 159

www.it-ebooks.info

http://www.it-ebooks.info/

comments). This will involve creating a tree of comments and implementing a voting
system.

Installing the PHP Driver
The MongoDB PHP driver is a PHP extension. It is easy to install on almost any system.
It should work on any system with PHP 5.1 or newer installed.

Windows install

Look at the output of phpinfo() and determine the version of PHP you are running
(PHP 5.2 and 5.3 are supported on Windows; 5.1 is not), including VC version, if
shown. If you are using Apache, you should use VC6; otherwise, you’re probably run-
ning a VC9 build. Some obscure Zend installs use VC8. Also notice whether it is thread-
safe (usually abbreviated “ts”).

While you’re looking at phpinfo(), make a note of the extension_dir value, which is
where we’ll need to put the extension.

Now that you know what you’re looking for, go to Github. Download the package that
matches your PHP version, VC version, and thread safety. Unzip the package, and move
php_mongo.dll to the extension_dir directory.

Finally, add the following line to your php.ini file:

extension=php_mongo.dll

If you are running an application server (Apache, WAMPP, and so on), restart it. The
next time you start PHP, it will automatically load the Mongo extension.

Mac OS X Install

It is easiest to install the extension through PECL, if you have it available. Try running
the following:

$ pecl install mongo

Some Macs do not, however, come with PECL or the correct PHP libraries to install
extensions.

If PECL does not work, you can download binary builds for OS X, available at
Github (http://www.github.com/mongodb/mongo-php-driver/downloads). Run php -i to
see what version of PHP you are running and what the value of extension_dir is, and
then download the correct version. (It will have “osx” in the filename.) Unarchive the
extension, and move mongo.so to the directory specified by extension_dir.

After the extension is installed via either method, add the following line to your
php.ini file:

extension=mongo.so

160 | Chapter 11: Example Applications

www.it-ebooks.info

http://www.github.com/mongodb/mongo-php-driver/downloads
http://www.github.com/mongodb/mongo-php-driver/downloads
http://www.it-ebooks.info/

Restart any application server you might have running, and the Mongo extension will
be loaded the next time PHP starts.

Linux and Unix install

Run the following:

$ pecl install mongo

Then add the following line to your php.ini file:

extension=mongo.so

Restart any application server you might have running, and the Mongo extension will
be loaded the next time PHP is started.

Using the PHP Driver
The Mongo class is a connection to the database. By default, the constructor attempts to
connect to a database server running locally on the default port.

You can use the __get function to get a database from the connection and a collection
from the database (even a subcollection from a collection). For example, this connects
to MongoDB and gets the bar collection in the foo database:

<?php

$connection = new Mongo();

$collection = $connection->foo->bar;

?>

You can continue chaining getters to access subcollections. For example, to get the
bar.baz collection, you can say the following:

$collection = $connection->foo->bar->baz;

Documents are represented by associative arrays in PHP. Thus, something like {"foo" :
"bar"} in JavaScript could be represented as array("foo" => "bar") in PHP. Arrays are
also represented as arrays in PHP, which sometimes leads to confusion: ["foo", "bar",
"baz"] in JavaScript is equivalent to array("foo", "bar", "baz").

The PHP driver uses PHP’s native types for null, booleans, numbers, strings, and arrays.
For all other types, there is a Mongo-prefixed type: MongoCollection is a collection,
MongoDB is a database, and MongoRegex is a regular expression. There is extensive
documentation in the PHP manual for all of these classes.

News Aggregator: PHP | 161

www.it-ebooks.info

http://us2.php.net/manual/en/book.mongo.php
http://www.it-ebooks.info/

Designing the News Aggregator
We’ll be creating a simple news aggregator, where users can submit links to interesting
stories and other users can vote and comment on them. We will just be covering two
aspects of it: creating a tree of comments and handling votes.

To store the submissions and comments, we need only a single collection, posts. The
initial posts linking to some article will look something like the following:

{
 "_id" : ObjectId(),
 "title" : "A Witty Title",
 "url" : "http://www.example.com",
 "date" : new Date(),
 "votes" : 0,
 "author" : {
 "name" : "joe",
 "_id" : ObjectId(),
 }
}

The comments will be almost identical, but they need a "content" key instead of a
"url" key.

Trees of Comments
There are several different ways to represent a tree in MongoDB; the choice of which
representation to use depends on the types of query being performed.

We’ll be storing an array of ancestors tree: each node will contain an array of its parent,
grandparent, and so on. So, if we had the following comment structure:

original link
|- comment 1
| |- comment 3 (reply to comment 1)
| |- comment 4 (reply to comment 1)
| |- comment 5 (reply to comment 4)
|- comment 2
| |- comment 6 (reply to comment 2)

then comment 5’s array of ancestors would contain the original link’s _id, comment
1’s _id, and comment 4’s _id. Comment 2’s ancestors would be the original link’s
_id and comment 2’s _id. This allows us to easily search for “all comments for link
X" or “the subtree of comment 2’s replies.”

This method of storing comments assumes that we are going to have a lot of them and
that we might be interested in seeing just parts of a comment thread. If we knew that
we always wanted to display all of the comments and there weren’t going to be
thousands, we could store the entire tree of comments as an embedded document in
the submitted link’s document.

162 | Chapter 11: Example Applications

www.it-ebooks.info

http://www.it-ebooks.info/

Using the array of ancestors approach, when someone wants to create a new comment,
we need to add a new document to the collection. To create this document, we create
a leaf document by linking it to the parent’s "_id" value and its array of ancestors.

function createLeaf($parent, $replyInfo) {
 $child = array(
 "_id" => new MongoId(),
 "content" => $replyInfo['content'],
 "date" => new MongoDate(),
 "votes" => 0,
 "author" => array(
 "name" => $replyInfo['name'],
 "name" => $replyInfo['name'],
),
 "ancestors" => $parent['ancestors'],
 "parent" => $parent['_id']
);

 // add the parent's _id to the ancestors array
 $child['ancestors'][] = $parent['_id'];

 return $child;
}

Then we can add the new comment to the posts collection:

$comment = createLeaf($parent, $replyInfo);

$posts = $connection->news->posts;
$posts->insert($comment);

We can get a list of the latest submissions (sans comments) with the following:

$cursor = $posts->find(array("ancestors" => array('$size' => 0)));
$cursor = $cursor->sort(array("date" => -1));

If someone wants to see the comments for a given post, we can find them all with the
following:

$cursor = $posts->find(array("ancestors" => $postId));

In fact, we can use this query to access any subtree of comments. If the root of the
subtree is passed in as $postId, every child will contain $postId in its ancestor’s array
and be returned.

To make these queries fast, we should index the "date" and "ancestors" keys:

$pageOfComments = $posts->ensureIndex(array("date" => -1, "ancestors" => 1));

Now we can quickly query for the main page, a tree of comments, or a subtree of
comments.

News Aggregator: PHP | 163

www.it-ebooks.info

http://www.it-ebooks.info/

Voting
There are many ways of implementing voting, depending on the functionality and in-
formation you want: do you allow up and down votes? Will you prevent users from
voting more than once? Will you allow them to switch their vote? Do you care when
people voted, to see if a link is trending? Each of these requires a different solution with
far more complex coding than the simplest way of doing it: using "$inc":

$posts->update(array("_id" => $postId), array('$inc' => array("votes", 1)));

For a controversial or popular link, we wouldn’t want people to be able to vote hun-
dreds of times, so we want to limit users to one vote each. A simple way to do this is
to add a "voters" array to keep track of who has voted on this post, keeping an array
of user "_id" values. When someone tries to vote, we do an update that checks the user
"_id" against the array of "_id" values:

$posts->update(array("_id" => $postId, "voters" => array('$ne' => $userId)),
 array('$inc' => array("votes", 1), '$push' => array("voters" => $userId)));

This will work for up to a couple million users. For larger voting pools, we would hit
the 4MB limit, and we would have to special-case the most popular links by putting
spillover votes into a new document.

Custom Submission Forms: Ruby
MongoDB is a popular choice for Ruby developers, likely because the document-
oriented approach meshes well with Ruby’s dynamism and flexibility. In this example
we’ll use the MongoDB Ruby driver to build a framework for custom form submissions,
inspired by a New York Times blog post about how it uses MongoDB to handle
submission forms (http://open.blogs.nytimes.com/2010/05/25/building-a-better-submis
sion-form/). For even more documentation on using MongoDB from Ruby, check out
the Ruby Language Center.

Installing the Ruby Driver
The Ruby driver is available as a RubyGem, hosted at http://rubygems.org. Installation
using the gem is the easiest way to get up and running. Make sure you’re using an up-
to-date version of RubyGems (with gem update --system) and then install the
mongo gem:

$ gem install mongo
Successfully installed bson-1.0.2
Successfully installed mongo-1.0.2
2 gems installed
Installing ri documentation for bson-1.0.2...
Building YARD (yri) index for bson-1.0.2...
Installing ri documentation for mongo-1.0.2...
Building YARD (yri) index for mongo-1.0.2...

164 | Chapter 11: Example Applications

www.it-ebooks.info

http://open.blogs.nytimes.com/2010/05/25/building-a-better-submission-form/
http://open.blogs.nytimes.com/2010/05/25/building-a-better-submission-form/
http://www.mongodb.org/display/DOCS/Ruby+Language+Center
http://rubygems.org
http://www.it-ebooks.info/

Installing RDoc documentation for bson-1.0.2...
Installing RDoc documentation for mongo-1.0.2...

Installing the mongo gem will also install the bson gem on which it depends. The
bson gem handles all of the BSON encoding and decoding for the driver (for more on
BSON, see “BSON” on page 179). The bson gem will also make use of C extensions
available in the bson_ext gem to improve performance, if that gem has been installed.
For maximum performance, be sure to install bson_ext:

$ gem install bson_ext
Building native extensions. This could take a while...
Successfully installed bson_ext-1.0.1
1 gem installed

If bson_ext is on the load path, it will be used automatically.

Using the Ruby Driver
To connect to an instance of MongoDB, use the Mongo::Connection class. Once we have
an instance of Mongo::Connection, we can get an individual database (here we use the
stuffy database) using bracket notation:

> require 'rubygems'
 => true
> require 'mongo'
 => true
> db = Mongo::Connection.new["stuffy"]

The Ruby driver uses hashes to represent documents. Aside from that, the API is similar
to that of the shell with most method names being the same. (Although the Ruby driver
uses underscore_naming, whereas the shell often uses camelCase.) To insert the docu-
ment {"x" : 1} into the bar collection and query for the result, we would do the
following:

> db["bar"].insert :x => 1
 => BSON::ObjectID('4c168343e6fb1b106f000001')
> db["bar"].find_one
 => {"_id"=>BSON::ObjectID('4c168343e6fb1b106f000001'), "x"=>1}

There are some important gotchas about documents in Ruby that you need to be
aware of:

• Hashes are ordered in Ruby 1.9, which matches how documents work in
MongoDB. In Ruby 1.8, however, hashes are unordered. The driver provides a
special type, BSON::OrderedHash, which must be used instead of a regular hash
whenever key order is important.

• Hashes being saved to MongoDB can have symbols as either keys or values. Hashes
returned from MongoDB will have symbol values wherever they were present in
the input, but any symbol keys will be returned as strings. So, {:x => :y} will
become {"x" => :y}. This is a side effect of the way documents are represented in
BSON (see Appendix C for more on BSON).

Custom Submission Forms: Ruby | 165

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Form Submission
The problem at hand is to generate custom forms for user-submitted data and to handle
user submissions for those forms. Forms are created by editors and can contain arbitrary
fields, each with different types and rules for validation. Here we’ll leverage the ability
to embed documents and store each field as a separate document within a form. A form
document for a comment submission form might look like this:

comment_form = {
 :_id => "comments",
 :fields => [
 {
 :name => "name",
 :label => "Your Name",
 :help_text => "Required",
 :required => true,
 :type => "string",
 :max_length => 200
 },
 {
 :name => "email",
 :label => "Your E-mail Address",
 :help_text => "Required, but will not be displayed",
 :required => true,
 :type => "email"
 },
 {
 :name => "comment",
 :label => "Your Comment",
 :help_text => "Comments will be moderated",
 :required => true,
 :type => "string",
 :word_limit => 200
 }
]
}

This form shows some of the benefits of working with a document-oriented database
like MongoDB. First, we’re able to embed the form’s fields directly within the form
document. We don’t need to store them separately and do a join—we can get the entire
representation for a form by querying for a single document. We’re also able to specify
different keys for different types of fields. In the previous example, the name field has
a :max_length, key and the comment field has a :word_limit key, while the email field
has neither.

In this example we use "_id" to store a human-readable name for our form. This works
well because we need to index on the form name anyway to make queries efficient.
Because the "_id" index is a unique index, we’re also guaranteed that form names will
be unique across the system.

When an editor adds a new form, we simply save the resultant document. To save the
comment_form document that we created, we’d do the following:

166 | Chapter 11: Example Applications

www.it-ebooks.info

http://www.it-ebooks.info/

db["forms"].save comment_form

Each time we want to render a page with the comment form, we can query for the form
document by its name:

db["forms"].find_one :_id => "comments"

The single document returned contains all the information we need in order to render
the form, including the name, label, and type for each input field that needs to be
rendered. When a form needs to be changed, editors can easily add a field or specify
additional constraints for an existing field.

When we get a user submission for a form, we can run the same query as earlier to get
the relevant form document. We’ll need this in order to validate that the user’s sub-
mission includes values for all required fields and meets any other requirements speci-
fied in our form. After validation, we can save the submission as a separate document
in a submissions collection. A submission for our comment form might look like this:

comment_submission = {
 :form_id => "comments",
 :name => "Mike D.",
 :email => "mike@example.com",
 :comment => "MongoDB is flexible!"
}

We’re again leveraging the document model by including custom keys for each sub-
mission (here we use :name, :email, and :comment). The only key that we require in each
submission is :form_id. This allows us to efficiently retrieve all submissions for a certain
form:

db["submissions"].find :form_id => "comments"

To perform this query, we should have an index on :form_id:

db["submissions"].create_index :form_id

We can also use :form_id to retrieve the form document for a given submission.

Ruby Object Mappers and Using MongoDB with Rails
There are several libraries written on top of the basic Ruby driver to provide things like
models, validations, and associations for MongoDB documents. The most popular of
these tools seem to be MongoMapper and Mongoid. If you’re used to working with
tools like ActiveRecord or DataMapper, you might consider using one of these object
mappers in addition to the basic Ruby driver.

MongoDB also works nicely with Ruby on Rails, especially when working with one of
the previously mentioned mappers. There are up-to-date instructions on integrating
MongoDB with Rails on the MongoDB site.

Custom Submission Forms: Ruby | 167

www.it-ebooks.info

http://mongomapper.com/
http://mongoid.org/
http://www.mongodb.org/display/DOCS/Rails+-+Getting+Started
http://www.it-ebooks.info/

Real-Time Analytics: Python
The Python driver for MongoDB is called PyMongo. In this section, we’ll use PyMongo
to implement some real-time tracking of metrics for a web application. The most up-
to-date documentation on PyMongo is available at http://api.mongodb.org/python.

Installing PyMongo
PyMongo is available in the Python Package Index and can be installed using
easy_install (http://pypi.python.org/pypi/setuptools):

$ easy_install pymongo
Searching for pymongo
Reading http://pypi.python.org/simple/pymongo/
Reading http://github.com/mongodb/mongo-python-driver
Best match: pymongo 1.6
Downloading ...
Processing pymongo-1.6-py2.6-macosx-10.6-x86_64.egg
Moving ...
Adding pymongo 1.6 to easy-install.pth file

Installed ...
Processing dependencies for pymongo
Finished processing dependencies for pymongo

This will install PyMongo and will attempt to install an optional C extension as well.
If the C extension fails to build or install, everything will continue to work, but per-
formance will suffer. An error message will be printed during install in that case.

As an alternative to easy_install, PyMongo can also be installed by running python
setup.py install from a source checkout.

Using PyMongo
We use the pymongo.connection.Connection class to connect to a MongoDB server. Here
we create a new Connection and use attribute-style access to get the analytics database:

from pymongo import Connection
db = Connection().analytics

The rest of the API for PyMongo is similar to the API of the MongoDB shell; like the
Ruby driver, PyMongo uses underscore_naming instead of camelCase, however.
Documents are represented using dictionaries in PyMongo, so to insert and retrieve the
document {"a" : [1, 2, 3]}, we do the following:

db.test.insert({"a": [1, 2, 3]})
db.test.find_one()

Dictionaries in Python are unordered, so PyMongo provides an ordered subclass of
dict, pymongo.son.SON. In most places where ordering is required, PyMongo provides

168 | Chapter 11: Example Applications

www.it-ebooks.info

http://api.mongodb.org/python
http://pypi.python.org/pypi/pymongo/
http://pypi.python.org/pypi/setuptools
http://www.it-ebooks.info/

APIs that hide it from the user. If not, applications can use SON instances instead of
dictionaries to ensure their documents maintain key order.

MongoDB for Real-Time Analytics
MongoDB is a great tool for tracking metrics in real time for a couple of reasons:

• Upsert operations (see Chapter 3) allow us to send a single message to either create
a new tracking document or increment the counters on an existing document.

• The upsert we send does not wait for a response; it’s fire-and-forget. This allows
our application code to avoid blocking on each analytics update. We don’t need
to wait and see whether the operation is successful, because an error in analytics
code wouldn’t get reported to a user anyway.

• We can use an $inc update to increment a counter without having to do a separate
query and update operation. We also eliminate any contention issues if multiple
updates are happening simultaneously.

• MongoDB’s update performance is very good, so doing one or more updates per
request for analytics is reasonable.

Schema
In our example we will be tracking page views for our site, with hourly roll-ups. We’ll
track both total page views as well as page views for each individual URL. The goal is
to end up with a collection, hourly, containing documents like this:

{ "hour" : "Tue Jun 15 2010 9:00:00 GMT-0400 (EDT)", "url" : "/foo", "views" : 5 }
{ "hour" : "Tue Jun 15 2010 9:00:00 GMT-0400 (EDT)", "url" : "/bar", "views" : 5 }
{ "hour" : "Tue Jun 15 2010 10:00:00 GMT-0400 (EDT)", "url" : "/", "views" : 12 }
{ "hour" : "Tue Jun 15 2010 10:00:00 GMT-0400 (EDT)", "url" : "/bar", "views" : 3 }
{ "hour" : "Tue Jun 15 2010 10:00:00 GMT-0400 (EDT)", "url" : "/foo", "views" : 10 }
{ "hour" : "Tue Jun 15 2010 11:00:00 GMT-0400 (EDT)", "url" : "/foo", "views" : 21 }
{ "hour" : "Tue Jun 15 2010 11:00:00 GMT-0400 (EDT)", "url" : "/", "views" : 3 }
...

Each document represents all of the page views for a single URL in a given hour. If a
URL gets no page views in an hour, there is no document for it. To track total page
views for the entire site, we’ll use a separate collection, hourly_totals, which has the
following documents:

{ "hour" : "Tue Jun 15 2010 9:00:00 GMT-0400 (EDT)", "views" : 10 }
{ "hour" : "Tue Jun 15 2010 10:00:00 GMT-0400 (EDT)", "views" : 25 }
{ "hour" : "Tue Jun 15 2010 11:00:00 GMT-0400 (EDT)", "views" : 24 }
...

The difference here is just that we don’t need a "url" key, because we’re doing site-
wide tracking. If our entire site doesn’t get any page views during an hour, there will
be no document for that hour.

Real-Time Analytics: Python | 169

www.it-ebooks.info

http://www.it-ebooks.info/

Handling a Request
Each time our application receives a request, we need to update our analytics collections
appropriately. We need to add a page view both to the hourly collection for the specific
URL requested and to the hourly_totals collection. Let’s define a function that takes a
URL and updates our analytics appropriately:

from datetime import datetime

def track(url):
 hour = datetime.utcnow().replace(minute=0, second=0, microsecond=0)
 db.hourly.update({"hour": hour, "url": url},
 {"$inc": {"views": 1}}, upsert=True)
 db.hourly_totals.update({"hour": hour},
 {"$inc": {"views": 1}}, upsert=True)

We’ll also want to make sure that we have indexes in place to be able to perform these
updates efficiently:

from pymongo import ASCENDING

db.hourly.create_index([("url", ASCENDING), ("hour", ASCENDING)], unique=True)
db.hourly_totals.create_index("hour", unique=True)

For the hourly collection, we create a compound index on "url" and "hour", while for
hourly_totals we just index on "hour". Both of the indexes are created as unique, because
we want only one document for each of our roll-ups.

Now, each time we get a request, we just call track a single time with the requested
URL. It will perform two upserts; each will create a new roll-up document if necessary
or increment the "views" for an existing roll-up.

Using Analytics Data
Now that we’re tracking page views, we need a way to query that data and put it to
use. Here we print the hourly page view totals for the last 10 hours:

from pymongo import DESCENDING

for rollup in db.hourly_totals.find().sort("hour", DESCENDING).limit(10):
 pretty_date = rollup["hour"].strftime("%Y/%m/%d %H")
 print "%s - %d" % (pretty_date, rollup["views"])

This query will be able to leverage the index we’ve already created on "hour". We can
perform a similar operation for an individual url:

for rollup in db.hourly.find({"url": url}).sort("hour", DESCENDING).limit(10):
 pretty_date = rollup["hour"].strftime("%Y/%m/%d %H")
 print "%s - %d" % (pretty_date, rollup["views"])

The only difference is that here we add a query document for selecting an individual
"url". Again, this will leverage the compound index we’ve already created on "url",
and "hour".

170 | Chapter 11: Example Applications

www.it-ebooks.info

http://www.it-ebooks.info/

Other Considerations
One thing we might want to consider is running a periodic cleaning task to remove old
analytics documents. If we’re displaying only the last 10 hours of data, then we can
conserve space by not keeping around a month’s worth of documents. To remove all
documents older than 24 hours, we can do the following, which could be run using
cron or a similar mechanism:

from datetime import timedelta

remove_before = datetime.utcnow() - timedelta(hours=24)

db.hourly.remove({"hour": {"$lt": remove_before}})
db.hourly_totals.remove({"hour": {"$lt": remove_before}})

In this example, the first remove will actually need to do a table scan because we haven’t
defined an index on "hour". If we need to perform this operation efficiently (or any
other operation querying by "hour" for all URLs), we should consider adding a second
index on "hour" to the hourly collection.

Another important note about this example is that it would be easy to add tracking for
other metrics besides page views or to do roll-ups on a window other than hourly (or
even to do roll-ups on multiple windows at once). All we need to do is to tweak the
track function to perform upserts tracking whatever metric we’re interested in, at
whatever granularity we want.

Real-Time Analytics: Python | 171

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A

Installing MongoDB

Installing MongoDB is a simple process on most platforms. Precompiled binaries are
available for Linux, Mac OS X, Windows, and Solaris. This means that, on most plat-
forms, you can download the archive from http://www.mongodb.org, inflate it, and run
the binary. The MongoDB server requires a directory it can write database files to and
a port it can listen for connections on. This section covers the entire install on the two
variants of system: Windows and everything else (Linux, Max, Solaris).

When we speak of “installing MongoDB,” generally what we are talking about is setting
up mongod, the core database server. mongod is used in a single-server setup as either
master or slave, as a member of a replica sets, and as a shard. Most of the time, this will
be the MongoDB process you are using. Other binaries that come with the download
are covered in Chapter 8.

Choosing a Version
MongoDB uses a fairly simple versioning scheme: even-point releases are stable, and
odd-point releases are development versions. For example, anything starting with 1.6
is a stable release, such as 1.6.0, 1.6.1, and 1.6.15. Anything starting with 1.7 is a
development release, such as 1.7.0, 1.7.2, or 1.7.10. Let’s take the 1.6/1.7 release as a
sample case to demonstrate how the versioning timeline works:

1. Developers release 1.6.0. This is a major release and will have an extensive change-
log. Everyone in production is advised to upgrade as soon as possible.

2. After the developers start working on the milestones for 1.8, they release 1.7.0.
This is the new development branch that is fairly similar to 1.6.0, but probably
with an extra feature or two and maybe some bugs.

3. As the developers continue to add features, they will release 1.7.1, 1.7.2, and so on.

4. Any bug fixes or “nonrisky” features will be backported to the 1.6 branch, and
1.6.1, 1.6.2, and so on, will be released. Developers are conservative about what

173

www.it-ebooks.info

http://www.mongodb.org
http://www.it-ebooks.info/

is backported; few new features are ever added to a stable release. Generally, only
bug fixes are ported.

5. After all of the major milestones have been reached for 1.8.0, developers will release
something like, say, 1.7.5.

6. After extensive testing of 1.7.5, usually there are a couple minor bugs that need to
be fixed. Developers fix these bugs and release 1.7.6.

7. Developers repeat step 6 until no new bugs are apparent, and then 1.7.6 (or what-
ever the latest release ended up being) is renamed 1.8.0. That is, the last develop-
ment release in a series becomes the new stable release.

8. Start over from step 1, incrementing all versions by .2.

Thus, the initial releases in a development branch may be highly unstable (x.y.0, x.y.1,
x.y.2), but usually, by the time a branch gets to x.y.5, it’s fairly close to production-
ready. You can see how close a production release is by browsing the core server road-
map on the MongoDB bug tracker.

If you are running in production, you should use a stable release unless there are features
in the development release that you need. Even if you need certain features from a
development release, it is worth first getting in touch with the developers through the
mailing list and IRC to let them know you are planning on going into production with
a development release and get advice about keeping your data safe. (Of course, this is
always a good idea.)

If you are just starting development on a project, using a development release may be
a better choice. By the time you deploy to production, there will probably be a stable
release (MongoDB keeps a regular cycle of stable releases every couple of months), and
you’ll get to use the latest features. However, you must balance this against the possi-
bility that you would run into server bugs, which could be confusing or discouraging
to most new users.

Windows Install
To install MongoDB on Windows, download the Windows zip from the MongoDB
downloads page. Use the advice in the previous section to choose the correct version
of MongoDB. There are 32-bit and 64-bit releases for Windows, so select whichever
version you’re running. When you click the link, it will download the .zip. Use your
favorite extraction tool to unzip the archive.

Now you need to make a directory in which MongoDB can write database files. By
default, MongoDB tries to use C:\data\db as its data directory. You can create this
directory or any other empty directory anywhere on the filesystem. If you chose to use
a directory other than C:\data\db, you’ll need to specify the path when you start
MongoDB, which is covered in a moment.

174 | Appendix A: Installing MongoDB

www.it-ebooks.info

http://jira.mongodb.org
http://www.mongodb.org/display/DOCS/Downloads
http://www.mongodb.org/display/DOCS/Downloads
http://www.it-ebooks.info/

Now that you have a data directory, open the command prompt (cmd.exe). Navigate
to the directory where you unzipped the MongoDB binaries and run the following:

$ bin\mongod.exe

If you chose a directory other than C:\data\db, you’ll have to specify it here, with the
--dbpath argument:

$ bin\mongod.exe --dbpath C:\Documents and Settings\Username\My Documents\db

See the Chapter 8 section for more common options, or run mongod.exe --help to see
all options.

Installing as a Service
MongoDB can also be installed as a service on Windows. To install, simply run with
the full path, escape any spaces, and use the --install option. For example:

$ C:\mongodb-windows-32bit-1.6.0\bin\mongod.exe
 --dbpath "\"C:\Documents and Settings\Username\My Documents\db\"" --install

It can then be started and stopped from the Control Panel.

POSIX (Linux, Mac OS X, and Solaris) Install
Choose a version of MongoDB, based on the advice in the section “Choosing a Ver-
sion” on page 173. Go to the MongoDB downloads page, and select the correct version
for your OS.

If you are using a Mac, check whether you’re running 32-bit or 64-bit.
Macs are especially picky that you choose the correct build and will
refuse to start MongoDB and give confusing error messages if you
choose the wrong build. You can check what you’re running by clicking
the apple in the upper-left corner and selecting the About This Mac
option.

You must create a directory for the database to put its files. By default, the database
will use /data/db, although you can specify any other directory. If you create the default
directory, make sure it has the correct write permissions. You can create the directory
and set the permissions by running the following:

$ mkdir -p /data/db
$ chown -R $USER:$USER /data/db

mkdir -p creates the directory and all its parents, if necessary (i.e., if the /data directory
didn’t exist, it will create the /data directory and then the /data/db directory). chown
changes the ownership of /data/db so that your user can write to it. Of course, you can
also just create a directory in your home folder and specify that MongoDB should use
that when you start the database, to avoid any permissions issues.

POSIX (Linux, Mac OS X, and Solaris) Install | 175

www.it-ebooks.info

http://www.mongodb.org/display/DOCS/Downloads
http://www.it-ebooks.info/

Decompress the .tar.gz file you downloaded from http://www.mongodb.org.

$ tar zxf mongodb-linux-i686-1.6.0.tar.gz
$ cd mongodb-linux-i686-1.6.0

Now you can start the database:

$ bin/mongod

Or if you’d like to use an alternate database path, specify it with the --dbpath option:

$ bin/mongod --dbpath ~/db

See Chapter 8 for a summary of the most common options, or run mongod with
--help to see all the possible options.

Installing from a Package Manager
On these systems, there are many package managers that can also be used to install
MongoDB. If you prefer using one of these, there are official packages for Debian and
Ubuntu and unofficial ones for Red Hat, Gentoo, and FreeBSD. If you use an unofficial
version, make sure to check the logs when you start the database; sometimes these
packages are not built with UTF-8 support.

On Mac, there are also unofficial packages in Homebrew and MacPorts. If you go for
the MacPorts version, be forewarned: it takes hours to compile all the Boost libraries,
which are MongoDB prerequisites. Start the download, and leave it overnight.

Regardless of the package manager you use, it is a good idea to figure out where it is
putting the MongoDB log files before you have a problem and need to find them. It’s
important to make sure they’re being saved properly in advance of any possible issues.

176 | Appendix A: Installing MongoDB

www.it-ebooks.info

http://www.mongodb.org
http://www.it-ebooks.info/

APPENDIX B

mongo: The Shell

Throughout this text, we use the mongo binary, which is the database shell. We generally
assume that you are running it on the same machine as mongod and that you are running
mongod on the default port, but if you are not, you can specify this on startup and have
the shell connect to another server:

$ bin/mongo staging.example.com:20000

This would connect to a mongod running at staging.example.com on port 20000.

The shell also, by default, starts out connected to the test database. If you’d like db to
refer to a different database, you can use /dbname after the server address:

$ bin/mongo localhost:27017/admin

This connects to mongod running locally on the default port, but db will immediately
refer to the admin database.

You can also start the shell without connecting to any database by using the --nodb
option. This is useful if you’d like to just play around with JavaScript or connect later:

$ bin/mongo --nodb
MongoDB shell version: 1.5.3
type "help" for help
>

Keep in mind that db isn’t the only database connection you can have. You can connect
to as many databases as you would like from the shell, which can be handy in multi-
server environments. Simply use the connect() method, and assign the resulting con-
nection to any variable you’d like. For instance, with sharding, we might want mongos
to refer to the mongos server and also have a connection to each shard:

> mongos = connect("localhost:27017")
connecting to: localhost:27017
localhost:27017
> shard0 = connect("localhost:30000")
connecting to: localhost:30000
localhost:30000
> shard1 = connect("localhost:30001")

177

www.it-ebooks.info

http://www.it-ebooks.info/

connecting to: localhost:30001
localhost:30001

Then, we can use mongos, shard0, or shard1 as the db variable is usually used. (Although
special helpers, such as use foo or show collections, will not work.)

Shell Utilities
There are a number of useful shell functions that were not covered earlier.

For administrating multiple databases, it can be useful to have multiple database var-
iables, not db. For example, with sharding, you may want to maintain a separate variable
pointing to your config database:

> config = db.getSisterDB("config")
config
> config.shards.find()
...

You can even connect to multiple servers within a single shell using the connect
function:

> shard_db = connect("shard.example.com:27017/mydb")
connecting to shard.example.com:27017/mydb
mydb
>

The shell can also run shell commands:

> runProgram("echo", "Hello", "world")
shell: started mongo program echo Hello world
0
> sh6487| Hello world

(The output looks strange because the shell is running.)

178 | Appendix B: mongo: The Shell

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX C

MongoDB Internals

For the most part, users of MongoDB can treat it as a black box. When trying to un-
derstand performance characteristics or looking to get a deeper understanding of the
system, it helps to know a little bit about the internals of MongoDB, though.

BSON
Documents in MongoDB are an abstract concept—the concrete representation of a
document varies depending on the driver/language being used. Because documents are
used extensively for communication in MongoDB, there also needs to be a represen-
tation of documents that is shared by all drivers, tools, and processes in the MongoDB
ecosystem. That representation is called Binary JSON (BSON).

BSON is a lightweight binary format capable of representing any MongoDB document
as a string of bytes. The database understands BSON, and BSON is the format in which
documents are saved to disk.

When a driver is given a document to insert, use as a query, and so on, it will encode
that document to BSON before sending it to the server. Likewise, documents being
returned to the client from the server are sent as BSON strings. This BSON data is
decoded by the driver to its native document representation before being returned to
the client.

The BSON format has three primary goals:

Efficiency
BSON is designed to represent data efficiently, without using much extra space.
In the worst case BSON is slightly less efficient than JSON and in the best case
(e.g., when storing binary data or large numerics), it is much more efficient.

Traversability
In some cases, BSON does sacrifice space efficiency to make the format easier to
traverse. For example, string values are prefixed with a length rather than relying

179

www.it-ebooks.info

http://www.it-ebooks.info/

on a terminator to signify the end of a string. This traversability is useful when the
MongoDB server needs to introspect documents.

Performance
Finally, BSON is designed to be fast to encode to and decode from. It uses C-style
representations for types, which are fast to work with in most programming
languages.

For the exact BSON specification, see http://www.bsonspec.org.

Wire Protocol
Drivers access the MongoDB server using a lightweight TCP/IP wire protocol. The
protocol is documented on the MongoDB wiki but basically consists of a thin wrapper
around BSON data. For example, an insert message consists of 20 bytes of header data
(which includes a code telling the server to perform an insert and the message length),
the collection name to insert into, and a list of BSON documents to insert.

Data Files
Inside of the MongoDB data directory, which is /data/db/ by default, there are separate
files for each database. Each database has a single .ns file and several data files, which
have monotonically increasing numeric extensions. So, the database foo would be
stored in the files foo.ns, foo.0, foo.1, foo.2, and so on.

The numeric data files for a database will double in size for each new file, up to a
maximum file size of 2GB. This behavior allows small databases to not waste too much
space on disk, while keeping large databases in mostly contiguous regions on disk.

MongoDB also preallocates data files to ensure consistent performance. (This behavior
can be disabled using the --noprealloc option.) Preallocation happens in the back-
ground and is initiated every time that a data file is filled. This means that the MongoDB
server will always attempt to keep an extra, empty data file for each database to avoid
blocking on file allocation.

Namespaces and Extents
Within its data files, each database is organized into namespaces, each storing a specific
type of data. The documents for each collection have their own namespace, as does
each index. Metadata for namespaces is stored in the database’s .ns file.

The data for each namespace is grouped on disk into sections of the data files, called
extents. In Figure C-1 the foo database has three data files, the third of which has been
preallocated and is empty. The first two data files have been divided up into extents
belonging to several different namespaces.

180 | Appendix C: MongoDB Internals

www.it-ebooks.info

http://www.bsonspec.org
http://www.mongodb.org/display/DOCS/Mongo+Wire+Protocol
http://www.it-ebooks.info/

Figure C-1 shows us several interesting things about namespaces and extents. Each
namespace can have several different extents, which are not (necessarily) contiguous
on disk. Like data files for a database, extents for a namespace grow in size with each
new allocation. This is done to balance wasted space used by a namespace versus the
desire to keep data for a namespace mostly contiguous on disk. The figure also shows
a special namespace, $freelist, which keeps track of extents that are no longer in use
(e.g., extents from a dropped collection or index). When a namespace allocates a new
extent, it will first search the freelist to see whether an appropriately sized extent is
available.

Memory-Mapped Storage Engine
The default storage engine (and only supported storage engine at the time of this writ-
ing) for MongoDB is a memory-mapped engine. When the server starts up, it memory
maps all its data files. It is then the responsibility of the operating system to manage
flushing data to disk and paging data in and out. This storage engine has several im-
portant properties:

• MongoDB’s code for managing memory is small and clean, because most of that
work is pushed to the operating system.

• The virtual size of a MongoDB server process is often very large, exceeding the size
of the entire data set. This is OK, because the operating system will handle keeping
the amount of data resident in memory contained.

Figure C-1. Namespaces and extents

Memory-Mapped Storage Engine | 181

www.it-ebooks.info

http://www.it-ebooks.info/

• MongoDB cannot control the order that data is written to disk, which makes it
impossible to use a writeahead log to provide single-server durability. Work is
ongoing on an alternative storage engine for MongoDB to provide single-server
durability.

• 32-bit MongoDB servers are limited to a total of about 2GB of data per mongod.
This is because all of the data must be addressable using only 32 bits.

182 | Appendix C: MongoDB Internals

www.it-ebooks.info

http://www.it-ebooks.info/

Index

Symbols
32-bit integer type, 16
64-bit floating point number type, 16
64-bit integer type, 16
$ (dollar sign) reserved character, 8

in conditionals, 45
key names and, 6
in update modifiers, 28

using to add, change, or remove key/
value pairs, 30

. (dot)
dot notation in queries for embedded keys,

54
in namespaced subcollection names, 8
key names and, 6

\0 (null character), 8
" " (quotes, double), using in strings, 28
' ' (quotes, single), using with strings, 28
_ (underscore), key names starting with, 6

A
addShard command, 148
$addToSet array modifier, 33
addUser() method, 118
admin database, 9

switching to, 114
users as superusers, 118

admin interface, 115
administration, 3, 111–125

authentication basics, 118
backup and repair, 121–125

repairing corrupted data files, 124
slave backups, 124
using fsync and lock, 123

using mongodump and mongorestore,
122

file-based configuration, 113
monitoring, 114–118
of replication, 141

authentication, 142
changing oplog size, 142
diagnostics, 141

security and authentication, 118–121
how authentication works, 120
other security considerations, 121

of sharding, 150–153
config collections, 150
printShardingStatus() function, 152
removeshard commands, 152

starting MongoDB from command line,
112–113

stopping MongoDB, 114
age-out (automatic), of data in capped

collections, 99
aggregation, 3
aggregation tools, 81–92

count() function, 81
distinct command, 81
finalizers, 85
function as grouping key, 86
group command, 82
MapReduce, 86–92

categorizing web pages (example), 89
finding all keys in collection (example),

87–89
MongoDB and MapReduce, 90

$all conditional, 51, 159
allowLocal key, 148

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

183

www.it-ebooks.info

http://www.it-ebooks.info/

analytics application (real-time), using Python,
168–171

application examples, 155–171
custom submission forms, using Ruby

driver, 164–167
custom form submission, 166
installing Ruby driver, 164
object mappers and MongoDB with

Rails, 167
using Ruby driver, 165

news aggregator using PHP driver, 160–
164

designing news aggregator, 162
installing PHP driver, 160
trees of comments, 162
using PHP driver, 161
voting, 164

real-time analytics using Python driver, 168
handling a request, 170
installing PyMongo, 168
other considerations, 171
schema, 169
using analytics data, 170
using PyMongo, 168

search engine for chemicals, using Java
driver, 155–159

coding in Java, 158
installing Java driver, 155
issues with, 159
schema design, 156
using Java driver, 155

arbiter nodes, 134
arbiterOnly key, 134
array modifiers, 31–34

$ positional operator, 34
$addToSet, 33

using with $each, 33
$ne, 32
$pop, 34
$pull, 34
$push, 32
positional array modifications, 34
speed of, 35

array of ancestors tree, 162
array type, 17
ArrayList class (Java), 158
arrays, 19

indexing of elements in MongoDB, 157
querying, 51–53

$all conditional, 51
$size conditional, 52
$slice operator, 52

ascending sorts, 58
authentication, 118–120

basics of, 118
how it works, 120
replication with, 142

autosharding, 143, 144
(see also sharding)

B
background fsyncs, 117
background option for building indexes, 76
backups, 121–124

restores from, using mongorestore, 123
slave server, 124
using fsync and lock commands, 123
using mongodump, 122

BasicDBObject class (Java), 156
batch inserts, 23
binary data type, 17
binary files, storing (see GridFS)
blocking

during index creation, 76
for replication, 140

boolean type, 16
$box option, finding points within rectangle,

78
BSON, 179
bson gem and bson_ext gem, 165
buildInfo command, 95

C
capped collections, 97–101

creating, 99
natural sorting, 99
properties and use cases, 98
tailable cursors, 101

case-sensitivity in MongoDB, 6
$center option, finding points within a circle,

78
characters

not allowed in database names, 9
not allowed in keys, 6

chunks, 144
distribution over shards, 145
information about, 151

184 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

splitting documents into (GridFS), 103
chunkSize key (GridFS), 104
client, shell as stand-alone MongoDB client,

12
$cmd collection, 94
code examples from this book, xv
code type, 17
collections, 5, 7

capped (see capped collections)
dropping all indexes on, 77
enabling sharding on, 148
fetching collections with inconvenient

names, 15
fixed-size, 3
fully qualified names (namespaces), 9
grouped into databases by MongoDB, 9
help for, 14
inserting documents into, 23
MongoCollection, 161
names of, and index name size, limiting for

namespaces, 76
naming, 8
reasons for separate collections, 7
schema-free, 7
subcollections, 8
system.indexes, 75

collStats command, 95
com.mongodb and com.mongodb.gridfs

packages, 155
com.mongodb.BasicDBObject class, 156
com.mongodb.Mongo class, 155
command line, starting MongoDB, 112
command response, 94
commands (see database commands)
comparison operators, 47
comparison order for types, 58
compound geospatial indexes, 78
compound unique indexes, 70
condition, including for group command, 83
conditionals, 47–49

$not metaconditional, 49
in OR queries, 48
rules for, 49

config database, 9
config servers, 147

setting up multiple, 149
starting, 147

configuration file, 113
connect() method, 177

Connection class (PyMongo), 168
Connection class (Ruby), 165
connection pooling, 44
connections, client requests and, 43
convertToCapped command, 99
count() function, 81
create operations, MongoDB shell, 12
createCollection command, 99
Ctrl-C to stop MongoDB, 114
currentOp command, 124
cursor.hasNext() method, 56
cursor.next() method, 56
cursors, 56–63

advanced query options, 60
avoiding large skips, 59–60
client-side and database, 63
death and cleanup of, 63
getting consistent results, 61
limits, skips, and sorts, 57
tacking explain onto, 70
tailable, 101

D
data directory, 10, 121

creating on Linux, Mac OS X, and Solaris,
175

creating on Windows, 174
data files, 180
data model, document-oriented, 1
data processing, using slave servers, 137
data types, 15–22

arrays, 19
basic, 16
changing key type with $set update

modifier, 29
comparison order, 58
dates, 19
embedded documents, 20
_id and ObjectIds, 20
numbers, 18
type-sensitivity in MongoDB, 6
type-specific queries, 49–53
used by PHP driver, 161
values in documents, 6

database commands, 93–97
how they work in MongoDB, 94
listing commands supported by MongoDB

server, 95

Index | 185

www.it-ebooks.info

http://www.it-ebooks.info/

most frequently used MongoDB commands,
95

database references (DBRefs), 107–109
definition of DBRef, 107
driver support for, 108
example schema, 107
when to use, 108

databases
enabling sharding on, 148
help for database-level commands, 14
listing for shards, 151
in MongoDB, 9, 161

dates
data types for, 19
date type, 17

db variable, 12
db.addUser() method, 118
db.drop_collection() function, 26
db.eval() function, 104
db.getCollection() function, 15
db.listCommands() function, 95
db.printReplicationInfo() function, 141
db.runCommand() function, 93
db.version function, 15
DBObject interface, 156
decrementing, using $inc update modifier, 30
deletes

all indexes on a collection, 77
delete operations, MongoDB shell, 14

descending sorts, 58
diagnostic tools for replication, 141
dictionaries in Python, 169
distinct command, 81, 95

listing unique filenames stored in GridFS,
104

document-oriented databases, 1
documents

in Java, 156
in MongoDB, 5
in PHP, 161
in Python, 168
real-time analytics application using

PyMongo, 169
removing outdated, in analytics application,

171
in Ruby, gotchas with, 165

dot notation (.), querying for embedded keys,
54

doubles, representing numbers in MongoDB,
18

drop command, 94, 95
dropDatabase command, 95
dropIndexes command, 76, 95
drop_collection() function, 26
duplicates

dropping when creating indexes, 70
duplicate keys, not allowed in MongoDB, 6

dynamic query optimizer (see query optimizer)

E
$each array modifier, 33
$elemMatch conditional, 55
embedded document type, 17
embedded documents, 20

indexing keys in, 68
querying on, 53

emit function, 87
encrypting traffic between clients and server,

121
errors

catching normal errors with safe operations,
43

getLastError command, 38, 93, 96
escaping special characters, 28
eval() function, 104
example applications (see application

examples)
$exists conditional, 50
explain tool, 70–75

output from query using index on two keys,
73

output from query with index on single key,
72

output from simple query on database
without indexes, 71

extents, 180

F
features in MongoDB, 2
file storage, 3
files, storing (see GridFS)
files_id keys, 103
finalizers, 85

passing finalize function to MapReduce, 90
find() method, 13, 45

chaining limit() method to, 57

186 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

chaining skip method to, 57
geospatial queries, 77
sorting returns, 58
specifying keys to return, 46

findAndModify command, 39–41, 96
values for keys, 40

findOne() method, 13
fire-and-forget functions, 41
fixed-size collections, 3
floating-point numbers, 16

representation of integers as doubles in
MongoDB, 18

forEach loop, using cursor class in, 56
fs.chunks collection, 103
fs.files collection, 103
fsync command, 123
functions

JavaScript, defining and calling, 11
printing JavaScript source code for, 14
using as keys, 86

G
geoNear command, 78
geospatial indexes, 77–79

assumption of a flat plane, spherical earth
and, 79

compound, 78
values range, 77

getLastError command, 38, 93, 96
Github, 160
gps key, 77
GridFS, 101–104

file storage, 101
getting started with, using mongofiles, 102
how it works, 103
use of compound unique index, 70
working with, from MongoDB drivers, 102

group command, 82
component keys, 83
condition for documents to be processed,

83
using a finalizer, 85
using function as key, 86

$gt (greater than) conditional, 47
$gte (greater than or equal to) conditional, 47

H
handshake command, 140

hardware failures, 41
hashes in Ruby, 165
hasNext() method, 56
help command, 14
hint tool, 75
HTTP admin interface, 10, 115

I
_id keys, 20

autogeneration of, 22
DBRefs versus, 108
GridFS, 103
unique indexes on, 69

immortal function, 63
importing data, using batch inserts, 24
$in conditional

type-specific queries, 50
using in OR queries, 48

$inc update modifier, 28
incrementing a counter, 169
incrementing and decrementing with, 30

indexes
administration of, 75

adding, removing, and dropping all
indexes, 76

$all conditional and, 159
for collections of documents in MongoDB,

7
compound geospatial indexes, 78
dropIndexes command, 95
forcing Mongo to use indexes you want for

a query, 75
real-time analytics using PyMongo

(example), 170
unique, 69

compound unique indexes, 70
dropping duplicates, 70

uniquely identifying, 69
indexing, 2, 65–79

on all keys in your query, 66
arrays, selecting elements by index, 34
chemical search engine using Java driver

(example), 157
creating compound index, 158

disadvantage of indexes, 67
geospatial, 77–79
keys in embedded documents, 68
on multiple keys, considering index

direction, 66

Index | 187

www.it-ebooks.info

http://www.it-ebooks.info/

questions to consider when creating
indexes, 68

scaling indexes, 68
on single key used in query, 65
for sorts, 69
using explain, 70–75
using hint, 75

insert() method, 12
inserts, 23

batch inserts, 23
into capped collections, 98
insert() method, 12
interleaved inserts/queries, 44
internals and implications, 24
safe inserts for documents with duplicate

value for unique key, 69
safe operations, 42
upserts, 36

installation, MongoDB, 173–176
choosing a version, 173
POSIX install on Linux, Mac OS X, and

Solaris, 175
Windows install, 174

integers
32- and 64-bit, 16
basic data types and, 16
representation as floating-point numbers,

18
isMaster command, 96

J
Java

documentation for Java driver and articles,
156

search engine for chemical compounds,
155–159

java.util.ArrayList, 158
JavaScript

Date class, 19
executing as part of query with $where

clause, 55
MongoDB shell, 11
server-side execution, disallowing, 121
server-side scripting, 104–107

db.eval() function, 104
security and, 106
stored JavaScript, 105

stored, in MongoDB, 3
JSON (JavaScript Object Notation), 16

data types, 16

K
$keyf key, 86
key/value pairs

functions as keys, 86
keys in MapReduce operations, 90
in MongoDB documents, 6
specifying keys to return with find method,

46
keys

removing with $unset update modifier, 29
setting value with $set update modifier, 29

kill command, 114

L
latitude and longitude in geospatial indexing,

77
length key (GridFS), 103
libraries (JavaScript), leveraging in MongoDB

shell, 11
limits for query results, 57
Linux

installing MongoDB, 175
installing PHP driver, 161

listCommands command, 95, 96
listDatabases command, 96
local database, 9, 139

user for slave and master server, 142
local.system.replset namespace, 133
local.system.users namespace, 142
localhost, running shard on, 148
locking

fsync command, holding a lock, 123
information about, 117

logging
creating function for JavaScript code, 105
inspecting MongoDB log after installation,

113
use of capped collections for, 99

$lt (less than) conditional, 47

M
Mac OS X

installing MongoDB, 175
installing PHP driver, 160

manual sharding, 143

188 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

map collection, finding all documents in order
by distance from a point, 77

map step (MapReduce), 86
getting all keys of all documents in

collection, 87
MapReduce, 3, 86–92

finalize function passed to, 90
finding all keys in a collection, 87

MapReduce function in MongoDB, 88
metainformation in document returned,

88
getting more output from, 92
keeping output collections from, 90
optional keys that can be passed to, 90
running on subset of documents, 91
using scope with, 92

master-slave replication, 127–130
adding and removing sources, 129
options, 128

Math.random function, 60
maximum value type, 17
md5 key (GridFS), 104
memory management, 3

information on memory from serverStatus,
117

keeping index in memory, 68
memory-mapped storage engine, 181
metadata for namespaces, 180
minimum value type, 17
modifiers, update (see update modifiers)
mongo (shell), 177–178, 177

(see also shell)
--nodb option, 177
utilities, 178

Mongo class (Java), 155
mongo gem, installing, 164
Mongo::Connection class (Ruby), 165
mongod executable

--master option, 128
--replSet option, 132
--rest option, 115
running, 10
--slave option, 128
startup options, 112

--bindip, 121
--config, 112
--dbpath, 112, 176
--fork, 112
--logpath, 112

--nohttpinterface, 115
--noscripting, 121
--oplogSize, 139
--port, 112, 115
--repair, 125

stopping, 10, 114
mongod.exe, installation options, 175
MongoDB

advantages offered by, 1–4
data types, 15
getting and starting, 10
installing, 173–176
shell, 11–15

MongoDB Java Language Center, 156
mongodump utility, 122
mongofiles utility, 102
mongorestore utility, 123
mongos routing process, 144, 147

connecting to, 148
running multiple, 150

mongostat utility, 118
monitoring, 114–118

server health and performance, using
serverStatus, 116

third-party plug-ins for, 118
using admin interface, 115
using mongostat for serverStatus output,

118

N
namespaced subcollections, 8
namespaces, 9

and extents, 180
for indexes, 76

naming
collections, 8
databases, 9
indexes, 69

natural sorts, 99
$ne (not equal) conditional, 47
$near conditional, 77
news aggregator using PHP (example), 160–

164
next() method, using on cursor, 56
$nin (not in) conditional, 48
nodes

master and slave (see master-slave
replication)

types in replica sets, 133

Index | 189

www.it-ebooks.info

http://www.it-ebooks.info/

$not conditional, 49
null character (\0), 8
null type, 16

queries for, 49
numbers, data types for, 18

O
object id type, 17
ObjectIds, 20–22
oplog, 99, 138

changing size of, 142
getting information about, 141

OR queries, 48
org.bson.DBObject interface, 156

P
package manager, installing MongoDB from,

176
pagination

combining find, limit, and sort methods for,
58

query results without skip, 59
partitioning, 143
passive nodes, 134
performance, 3

index creation and, 76
indexes and, 67
price of safe operations, 42
speed of update modifiers, 35

Perl
$ (dollar sign) in MongoDB update

modifiers, 28
Perl Compatible Regular Expression (PCRE)

library, 50
PHP

$ (dollar sign) in MongoDB update
modifiers, 28

news aggregator application (example),
160–164

using tailable cursor in, 101
PID (process identifier) for ObjectId-generating

process, 22
ping command, 96
plain queries, 60
point-in-time data snapshots, 123
points

finding document in map collection by order
of distance from, 77

finding in a shape, 78
$pop array modifier, 34
positional operator ($), 34
POSIX install (MongoDB), 175
preallocation of data files, 180
primary, 130
primary node, 133

failure of, and election of new primary, 135
printReplicationInfo() function, 141
printShardingStatus() function, 152
priority key, 134
processes

PID for ObjectId-generating process, 22
status of, 39

$pull array modifier, 34
$push array modifier, 32
PyMongo

DBRef type, 108
real-time analytics application (example),

168–171
pymongo.connection.Connection class, 168
Python Package Index, 168

Q
queries, 45–63

commands implemented as, 94
cursors, 56–63

advanced query options, 60
avoiding large skips, 59–60
getting consistent results, 61
limits, skips, and sorts, 57

find() method, 45
specifying keys to return, 46

geospatial, 77–79
handling on slave servers, 137
matching more complex criteria, 47

conditionals, 47
$not conditional, 49
OR queries, 48
rules for conditionals, 49

querying on embedded documents, 53
restrictions on, 47
type-specific, 49–53

arrays, 51–53
null type, 49
regular expressions, 50

$where clauses in, 55
query optimizer, 3

choosing index to use, 75

190 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

reordering query terms to take advantage of
indexes, 67

quotation marks in strings, 28

R
random function, 60
range queries, using conditionals, 47
read scaling with slave servers, 137
real-time analytics, MongoDB for, 169
reduce step (MapReduce), 86

calling reduce in MongoDB (example), 87
references to documents, uniquely identifying

(see database references)
regular expressions, 50

MongoRegex, 161
regular expression type, 17

relational databases
document-oriented databases versus, 1
features not available in MongoDB, 3

remove() function, 14
query document as parameter, 25

removes, 25
safe operations, 42
speed of, 25

removeshard command, 152
renameCollection command, 96
repair of corrupt data files, 124
repairDatabase command, 96
repairDatabase() method, 125
replica sets, 130

failover and primary election, 135
initializing, 132

keys in initialization document, 133
nodes in, 133
shards as, 150

replication, 127–142
administration of, 141

authentication, 142
changing oplog size, 142
diagnostics, 141

blocking for, 140
master-slave, 127–130
oplog, 138
performing operations on a slave, 136
replica sets (see replica sets)
replication state and local database, 139
syncing slave to master node, 139

replSetInitiate command, 132
requests

batch inserts and, 24
connections and, 43

reserved database names, 9
REST support, 115
restores, 121

(see also administration, backup and repair)
using mongorestore utility, 123

resync command, 139
retrieve operations, MongoDB shell, 13
routing process (mongos), 144, 147, 148
Ruby

custom submission forms application
(example), 164–167

object mappers and using MongoDB with
Rails, 167

RubyGems, 164
runCommand() function, 93

S
safe operations, 42

catching normal errors, 43
save function, 38
scaling with MongoDB, 2
schema-free collections, 7
schema-free MongoDB, 2
schemas

chemical search engine using Java driver
(example), 156

example schema using DBRefs, 107
real-time analytics application using

PyMongo, 169
scope, using with MapReduce, 92
search engine for chemicals, using Java driver

(example), 155–159
secondaries, 130
secondary nodes, 133
security

authentication, 118–120
execution of server-side JavaScript, 106
other considerations, 121

server-side scripting, 104–107
disallowing server-side JavaScript

execution, 121
servers

database server offloading processing and
logic to client side, 3

for production sharding, 150
serverStatus command, 96, 116–118

Index | 191

www.it-ebooks.info

http://www.it-ebooks.info/

information from, printing with mongostat,
118

$set update modifier, 29
shapes, finding all documents within, 78
shardCollection command, 149
sharding, 143–153

administration, 150–153
config collections, 150
printShardingStatus command, 152
removeshard command, 152

autosharding in MongoDB, 144
database variable pointing to config

database, 178
defined, 143
production configuration, 149
setting up, 147

sharding data, 148
starting servers, 147

shard keys, 145
effects of shard keys on operations, 146
existing collection, 145
incrementing, versus random shard keys,

146
when to shard, 145

shards, 144
adding a shard, 148
defined, 147
listing in shards collection, 150
replica sets as, 150

shell, 5, 11–15, 177–178
connecting to database, 177
create operations, 12
creating a cursor, 56
delete operations, 14
figuring out what functions are doing, 14
help with, 14
JavaScript functions provided by,

autogenerated API, 15
MongoDB client, 12
repairing single database on running server,

125
retrieve operations, 13
running, 11
running scripts, 37
save function, 38
starting without connecting to database,

177
update operations, 13
utilities, 178

shutdown command, 114
SIGINT or SIGTERM signal, 114
skips

avoiding large skips, 59–60
finding a random document, 59

skipping query results, 57
slave nodes

adding and removing sources, 129
secondaries, in replica sets, 130
setting up, 128
syncing to master node, 139

slave servers
backups, 124
performing operations on, 136

$slice operator, 52
snapshots of data, 123
Solaris, installing MongoDB, 175
sorting

find() method results, 58
indexing for, 69
natural sorts, 99

sources collection, 140
sources for slave nodes, 129
standard nodes, 134
starting MongoDB, 111–113

file-based configuration, 113
from command line, 112

status of processes, 39
stopping MongoDB, 114
storage engine, 113, 181
strings

matching with regular expressions, 50
string type, 16

subcollections, 8
accessing using variables, 15

submission forms (custom), using Ruby, 164–
167

symbol type, 17
syncedTo, 140
syncing slave to master node, 139
system prefix, collection names, 8
system.indexes collection, 75
system.js collection, 105
system.namespaces collection, lists of index

names, 76

T
table scans, 66
tailable cursors, 101

192 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

third-party plug-ins for monitoring, 118
timestamps

in ObjectIds, 21
stored in syncedTo, 140
uploadDate in GridFS, 104

trees of comments (news aggregator example),
162

type-sensitivity in MongoDB, 6

U
undefined type, 17
Unix, installing PHP driver, 161
update modifiers, 27–36

$ positional operator, 34
$inc, 28, 30
$set, 29
$unset, 29
array modifiers, 31–34

$addToSet, 33
$ne, 32
$pop, 34
$pull, 34
$push, 32

speed of, 35
updates, 26

replacing a document, 26
returning updated documents, 39–41
safe operations, 42
update operations, MongoDB shell, 13
updating multiple documents, 38
upserts, 36
using modifiers, 27–36

uploadDate key (GridFS), 104
upserts

real-time analytics application (example),
170

real-time analytics using MongoDB, 169
save shell helper function, 38

V
values in documents, 6
variables

JavaScript, in shell, 12
using to access subcollections, 15

versions, MongoDB, 173
voting, implementing, 164

W
web page for this book, xvi
web pages

categorizing, using MapReduce, 89
tracking views with analytics application,

168–170
$where clauses in queries, 55
Windows systems

installing MongoDB, 174
installing PHP driver, 160
running mongod executable, 10

wire protocol, 180
$within conditional, 78
wrapped queries, 60

Index | 193

www.it-ebooks.info

http://www.it-ebooks.info/

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

www.it-ebooks.info

http://www.it-ebooks.info/

About the Authors
Kristina Chodorow is a core contributor to the MongoDB project. She has worked
on the database server, PHP driver, Perl driver, and many other MongoDB-related
projects. She has given talks at conferences around the world, including OSCON,
LinuxCon, FOSDEM, and Latinoware, and maintains a website about MongoDB and
other topics at http://www.snailinaturtleneck.com. She works as a software engineer for
10gen and lives in New York City.

Michael Dirolf, also a software engineer at 10gen, is the lead maintainer for PyMongo
(the MongoDB Python driver), and the former maintainer for the MongoDB Ruby
driver. He has also contributed to the MongoDB server and worked on several other
related libraries and tools. He has given talks about MongoDB at major conferences
around the world, but currently resides in New York City.

Colophon
The animal on the cover of MongoDB: The Definitive Guide is a mongoose lemur, a
member of a highly diverse group of primates endemic to Madagascar. Ancestral lemurs
are believed to have inadvertently traveled to Madagascar from Africa (a trip of at least
350 miles) by raft some 65 million years ago. Freed from competition with other African
species (such as monkeys and squirrels), lemurs adapted to fill a wide variety of eco-
logical niches, branching into the almost 100 species known today. These animals’
otherworldly calls, nocturnal activity, and glowing eyes earned them their name, which
comes from the lemures (specters) of Roman myth. Malagasy culture also associates
lemurs with the supernatural, variously considering them the souls of ancestors, the
source of taboo, or spirits bent on revenge. Some villages identify a particular species
of lemur as the ancestor of their group.

Mongoose lemurs (Eulemur mongoz) are medium-sized lemurs, about 12 to 18 inches
long and 3 to 4 pounds. The bushy tail adds an additional 16 to 25 inches. Females and
young lemurs have white beards, while males have red beards and cheeks. Mongoose
lemurs eat fruit and flowers and they act as pollinators for some plants; they are par-
ticularly fond of the nectar of the kapok tree. They may also eat leaves and insects.

Mongoose lemurs inhabit the dry forests of northwestern Madagascar. One of the two
species of lemur found outside of Madagascar, they also live in the Comoros Islands
(where they are believed to have been introduced by humans). They have the unusual
quality of being cathemeral (alternately wakeful during the day and at night), changing
their activity patterns to suit the wet and dry seasons. Mongoose lemurs are threatened
by habitat loss and they are classified as a vulnerable species.

The cover image is from Lydekker’s Royal Natural History. The cover font is Adobe
ITC Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont’s TheSansMonoCondensed.

www.it-ebooks.info

http://www.snailinaturtleneck.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

	Copyright
	Table of Contents
	Foreword
	Preface
	How This Book Is Organized
	Getting Up to Speed with MongoDB
	Developing with MongoDB
	Advanced Usage
	Administration
	Developing Applications with MongoDB
	Appendixes

	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments
	Acknowledgments from Kristina
	Acknowledgments from Michael

	Chapter 1. Introduction
	A Rich Data Model
	Easy Scaling
	Tons of Features…
	…Without Sacrificing Speed
	Simple Administration
	But Wait, That’s Not All…

	Chapter 2. Getting Started
	Documents
	Collections
	Schema-Free
	Naming
	Subcollections

	Databases
	Getting and Starting MongoDB
	MongoDB Shell
	Running the Shell
	A MongoDB Client
	Basic Operations with the Shell
	Create
	Read
	Update
	Delete

	Tips for Using the Shell
	Inconvenient collection names

	Data Types
	Basic Data Types
	Numbers
	Dates
	Arrays
	Embedded Documents
	_id and ObjectIds
	ObjectIds
	Autogeneration of _id

	Chapter 3. Creating, Updating, and Deleting
 Documents
	Inserting and Saving Documents
	Batch Insert
	Inserts: Internals and Implications

	Removing Documents
	Remove Speed

	Updating Documents
	Document Replacement
	Using Modifiers
	Getting started with the "$set" modifier
	Incrementing and decrementing
	Array modifiers
	Positional array modifications
	Modifier speed

	Upserts
	The save Shell Helper

	Updating Multiple Documents
	Returning Updated Documents

	The Fastest Write This Side of Mississippi
	Safe Operations
	Catching “Normal” Errors

	Requests and Connections

	Chapter 4. Querying
	Introduction to find
	Specifying Which Keys to Return
	Limitations

	Query Criteria
	Query Conditionals
	OR Queries
	$not
	Rules for Conditionals

	Type-Specific Queries
	null
	Regular Expressions
	Querying Arrays
	$all
	$size
	The $slice operator

	Querying on Embedded Documents

	$where Queries
	Cursors
	Limits, Skips, and Sorts
	Comparison order

	Avoiding Large Skips
	Paginating results without skip
	Finding a random document

	Advanced Query Options
	Getting Consistent Results

	Cursor Internals

	Chapter 5. Indexing
	Introduction to Indexing
	Scaling Indexes
	Indexing Keys in Embedded Documents
	Indexing for Sorts
	Uniquely Identifying Indexes

	Unique Indexes
	Dropping Duplicates
	Compound Unique Indexes

	Using explain and hint
	Index Administration
	Changing Indexes

	Geospatial Indexing
	Compound Geospatial Indexes
	The Earth Is Not a 2D Plane

	Chapter 6. Aggregation
	count
	distinct
	group
	Using a Finalizer
	Using a Function as a Key

	MapReduce
	Example 1: Finding All Keys in a Collection
	Example 2: Categorizing Web Pages
	MongoDB and MapReduce
	The finalize function
	Keeping output collections
	MapReduce on a subset of documents
	Using a scope
	Getting more output

	Chapter 7. Advanced Topics
	Database Commands
	How Commands Work
	Command Reference

	Capped Collections
	Properties and Use Cases
	Creating Capped Collections
	Sorting Au Naturel
	Tailable Cursors

	GridFS: Storing Files
	Getting Started with GridFS: mongofiles
	Working with GridFS from the MongoDB Drivers
	Under the Hood

	Server-Side Scripting
	db.eval
	Stored JavaScript
	Security

	Database References
	What Is a DBRef?
	Example Schema
	Driver Support for DBRefs
	When Should DBRefs Be Used?

	Chapter 8. Administration
	Starting and Stopping MongoDB
	Starting from the Command Line
	File-Based Configuration
	Stopping MongoDB

	Monitoring
	Using the Admin Interface
	serverStatus
	mongostat
	Third-Party Plug-Ins

	Security and Authentication
	Authentication Basics
	How Authentication Works
	Other Security Considerations

	Backup and Repair
	Data File Backup
	mongodump and mongorestore
	fsync and Lock
	Slave Backups
	Repair

	Chapter 9. Replication
	Master-Slave Replication
	Options
	Adding and Removing Sources

	Replica Sets
	Initializing a Set
	Nodes in a Replica Set
	Failover and Primary Election

	Performing Operations on a Slave
	Read Scaling
	Using Slaves for Data Processing

	How It Works
	The Oplog
	Syncing
	Replication State and the Local Database
	Blocking for Replication

	Administration
	Diagnostics
	Changing the Oplog Size
	Replication with Authentication

	Chapter 10. Sharding
	Introduction to Sharding
	Autosharding in MongoDB
	When to Shard

	The Key to Sharding: Shard Keys
	Sharding an Existing Collection
	Incrementing Shard Keys Versus Random Shard Keys
	How Shard Keys Affect Operations

	Setting Up Sharding
	Starting the Servers
	Adding a shard

	Sharding Data

	Production Configuration
	A Robust Config
	Many mongos
	A Sturdy Shard
	Physical Servers

	Sharding Administration
	config Collections
	Shards
	Databases
	Chunks

	Sharding Commands
	Getting a summary
	Removing a shard

	Chapter 11. Example Applications
	Chemical Search Engine: Java
	Installing the Java Driver
	Using the Java Driver
	Schema Design
	Writing This in Java
	Issues

	News Aggregator: PHP
	Installing the PHP Driver
	Windows install
	Mac OS X Install
	Linux and Unix install

	Using the PHP Driver
	Designing the News Aggregator
	Trees of Comments
	Voting

	Custom Submission Forms: Ruby
	Installing the Ruby Driver
	Using the Ruby Driver
	Custom Form Submission
	Ruby Object Mappers and Using MongoDB with Rails

	Real-Time Analytics: Python
	Installing PyMongo
	Using PyMongo
	MongoDB for Real-Time Analytics
	Schema
	Handling a Request
	Using Analytics Data
	Other Considerations

	Appendix A. Installing MongoDB
	Choosing a Version
	Windows Install
	Installing as a Service

	POSIX (Linux, Mac OS X, and Solaris) Install
	Installing from a Package Manager

	Appendix B. mongo: The Shell
	Shell Utilities

	Appendix C. MongoDB Internals
	BSON
	Wire Protocol
	Data Files
	Namespaces and Extents
	Memory-Mapped Storage Engine

	Index

