
M A N N I N G

Kyle Banker

IN ACTION

www.it-ebooks.info

http://www.it-ebooks.info/

MongoDB in Action
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

MongoDB in Action
KYLE BANKER

M A N N I N G

SHELTER ISLAND

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964
Email: orders@manning.com

©2012 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editors: Jeff Bleiel, Sara Onstine
20 Baldwin Road Copyeditor: Benjamin Berg
PO Box 261 Proofreader: Katie Tennant
Shelter Island, NY 11964 Typesetter: Dottie Marsico

Cover designer: Marija Tudor

ISBN 9781935182870
Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – MAL – 16 15 14 13 12 11

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

www.manning.com
http://www.it-ebooks.info/

 This book is dedicated to peace and human dignity
 and to all those who work for these ideals
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

brief contents
PART 1 GETTING STARTED ..1

1 ■ A database for the modern web 3

2 ■ MongoDB through the JavaScript shell 23

3 ■ Writing programs using MongoDB 37

PART 2 APPLICATION DEVELOPMENT IN MONGODB.................53

4 ■ Document-oriented data 55

5 ■ Queries and aggregation 76

6 ■ Updates, atomic operations, and deletes 101

PART 3 MONGODB MASTERY...127

7 ■ Indexing and query optimization 129

8 ■ Replication 156

9 ■ Sharding 184

10 ■ Deployment and administration 218
vii

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

contents
preface xv
acknowledgments xvii
about this book xviii
about the cover illustration xxi

PART 1 GETTING STARTED ...1

1 A database for the modern web 3
1.1 Born in the cloud 5
1.2 MongoDB’s key features 5

The document data model 5 ■ Ad hoc queries 8 ■ Secondary
indexes 10 ■ Replication 10 ■ Speed and durability 11
Scaling 12

1.3 MongoDB’s core server and tools 13
The core server 14 ■ The JavaScript shell 14 ■ Database
drivers 15 ■ Command-line tools 16

1.4 Why MongoDB? 16
MongoDB versus other databases 17 ■ Use cases and
production deployments 19

1.5 Tips and limitations 21
1.6 Summary 22
ix

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTSx

2 MongoDB through the JavaScript shell 23
2.1 Diving into the MongoDB shell 24

Starting the shell 24 ■ Inserts and queries 25 ■ Updating
documents 26 ■ Deleting data 28

2.2 Creating and querying with indexes 29
Creating a large collection 29 ■ Indexing and explain() 31

2.3 Basic administration 33
Getting database information 33 ■ How commands work 34

2.4 Getting help 35
2.5 Summary 36

3 Writing programs using MongoDB 37
3.1 MongoDB through the Ruby lens 38

Installing and connecting 38 ■ Inserting documents in Ruby 39
Queries and cursors 40 ■ Updates and deletes 41 ■ Database
commands 42

3.2 How the drivers work 43
Object ID generation 43 ■ BSON 44 ■ Over the network 45

3.3 Building a simple application 47
Setting up 47 ■ Gathering data 48 ■ Viewing the archive 50

3.4 Summary 52

PART 2 APPLICATION DEVELOPMENT IN MONGODB........53

4 Document-oriented data 55
4.1 Principles of schema design 56
4.2 Designing an e-commerce data model 57

Products and categories 58 ■ Users and orders 61
Reviews 64

4.3 Nuts and bolts: on databases, collections,
and documents 65
Databases 65 ■ Collections 67 ■ Documents and insertion 70

4.4 Summary 75

5 Queries and aggregation 76
5.1 E-commerce queries 77
Products, categories, and reviews 77 ■ Users and orders 79

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS xi

5.2 MongoDB’s query language 81
Query selectors 81 ■ Query options 90

5.3 Aggregating orders 92
Grouping reviews by user 92 ■ Map-reduce for orders by
region 94

5.4 Aggregation in detail 95
Maxima and minima 95 ■ Distinct 96 ■ Group 96
Map-reduce 98

5.5 Summary 100

6 Updates, atomic operations, and deletes 101
6.1 A brief tour of document updates 102
6.2 E-commerce updates 104

Products and categories 104 ■ Reviews 108
Orders 110

6.3 Atomic document processing 112
Order state transitions 112 ■ Inventory management 114

6.4 Nuts and bolts: MongoDB updates and deletes 118
Update types and options 118 ■ Update operators 119
The findAndModify command 123 ■ Deletes 124
Concurrency, atomicity, and isolation 124 ■ Update
performance notes 125

6.5 Summary 126

PART 3 MONGODB MASTERY..127

7 Indexing and query optimization 129
7.1 Indexing theory 130

A thought experiment 130 ■ Core indexing concepts 133
B-trees 136

7.2 Indexing in practice 137
Index types 138 ■ Index administration 140

7.3 Query optimization 144
Identifying slow queries 144 ■ Examining slow queries 147
Query patterns 153

7.4 Summary 155
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTSxii

8 Replication 156
8.1 Replication overview 157

Why replication matters 157 ■ Replication use cases 158

8.2 Replica sets 159
Setup 159 ■ How replication works 163
Administration 169

8.3 Master-slave replication 177
8.4 Drivers and replication 177

Connections and failover 177 ■ Write concern 179
Read scaling 181 ■ Tagging 182

8.5 Summary 183

9 Sharding 184
9.1 Sharding overview 185

What sharding is 185 ■ How sharding works 187

9.2 A sample shard cluster 190
Setup 191 ■ Writing to a sharded cluster 195

9.3 Querying and indexing a shard cluster 200
Shard query types 200 ■ Indexing 204

9.4 Choosing a shard key 205
Ineffective shard keys 205 ■ Ideal shard keys 207

9.5 Sharding in production 208
Deployment and configuration 208 ■ Administration 212

9.6 Summary 217

10 Deployment and administration 218
10.1 Deployment 219

Deployment environment 219 ■ Server configuration 223
Data imports and exports 225 ■ Security 226

10.2 Monitoring and diagnostics 228
Logging 228 ■ Monitoring tools 229 ■ External monitoring
applications 232 ■ Diagnostic tools (mongosniff,
bsondump) 233

10.3 Maintenance 234
Backups and recovery 234 ■ Compaction and repair 235

Upgrading 236

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS xiii

10.4 Performance troubleshooting 237
Check indexes and queries for efficiency 238 ■ Add RAM 238
Increase disk performance 239 ■ Scale horizontally 239
Seek professional assistance 240

10.5 Summary 240

appendix A Installation 241
appendix B Design patterns 249
appendix C Binary data and GridFS 260
appendix D MongoDB in PHP, Java, and C++ 266
appendix E Spatial indexing 274

index 279
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

preface
Databases are the workhorses of the information age. Like Atlas, they go largely unno-
ticed in supporting the digital world we’ve come to inhabit. It’s easy to forget that our
digital interactions, from commenting and tweeting to searching and sorting, are in
essence interactions with a database. Because of this fundamental yet hidden func-
tion, I always experience a certain sense of awe when thinking about databases, not
unlike the awe one might feel when walking across a suspension bridge normally
reserved for automobiles.

 The database has taken many forms. The indexes of books and the card catalogs
that once stood in libraries are both databases of a sort, as are the ad hoc structured
text files of the Perl programmers of yore. Perhaps most recognizable now as data-
bases proper are the sophisticated, fortune-making relational databases that underlie
much of the world’s software. These relational databases, with their idealized third-
normal forms and expressive SQL interfaces, still command the respect of the old
guard, and appropriately so.

 But as a working web application developer a few years back, I was eager to sample
the emerging alternatives to the reigning relational database. When I discovered
MongoDB, the resonance was immediate. I liked the idea of using a JSON-like struc-
ture to represent data. JSON is simple, intuitive, human-friendly. That MongoDB also
based its query language on JSON lent a high degree of comfort and harmony to the
usage of this new database. The interface came first. Compelling features like easy
replication and sharding made the package all the more intriguing. And by the time
I’d built a few applications on MongoDB and beheld the ease of development it
xv

imparted, I’d become a convert.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

PREFACExvi

 Through an unlikely turn of events, I started working for 10gen, the company
spearheading the development of this open source database. For two years, I’ve had
the chance to improve various client drivers and work with numerous customers on
their MongoDB deployments. The experience gained through this process has, I
hope, been distilled faithfully into the book you’re reading now.

 As a piece of software and a work in progress, MongoDB is still far from perfection.
But it’s also successfully supporting thousands of applications atop database clusters
small and large, and it’s maturing daily. It’s been known to bring out wonder, even
happiness, in many a developer. My hope is that it can do the same for you.
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

acknowledgments
Thanks are due to folks at Manning for helping make this book a reality. Michael Ste-
phens helped conceive the book, and my development editors, Sara Onstine and Jeff
Bleiel, pushed the book to completion while being helpful along the way. My thanks
goes to them.

 Book writing is a time-consuming enterprise, and it’s likely I wouldn’t have found
the time to finish this book had it not been for the generosity of Eliot Horowitz and
Dwight Merriman. Eliot and Dwight, through their initiative and ingenuity, created
MongoDB, and they trusted me to document the project. My thanks to them.

 Many of the ideas in this book owe their origin to conversations I had with col-
leagues at 10gen. In this regard, special thanks are due to Mike Dirolf, Scott Hernan-
dez, Alvin Richards, and Mathias Stearn. I’m especially indebted to Kristina
Chowdorow, Richard Kreuter, and Aaron Staple for providing expert reviews of entire
chapters.

 The following reviewers read the manuscript at various stages during its develop-
ment. I’d like to thank them for providing valuable feedback: Kevin Jackson, Hardy
Ferentschik, David Sinclair, Chris Chandler, John Nunemaker, Robert Hanson,
Alberto Lerner, Rick Wagner, Ryan Cox, Andy Brudtkuhl, Daniel Bretoi, Greg Don-
ald, Sean Reilly, Curtis Miller, Sanchet Dighe, Philip Hallstrom, and Andy Dingley.
Thanks also to Alvin Richards for his thorough technical review of the final manu-
script shortly before it went to press.

 Pride of place goes to my amazing wife, Dominika, for her patience and support,
and my wonderful son, Oliver, just for being awesome.
xvii

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

about this book
This book is for application developers and DBAs wanting to learn MongoDB from the
ground up. If you’re new to MongoDB, you’ll find in this book a tutorial that moves at
a comfortable pace. If you’re already a user, the more detailed reference sections in
the book will come in handy and should fill any gaps in your knowledge. In terms of
depth, the material should be suitable for all but the most advanced users.

 The code examples are written in JavaScript, the language of the MongoDB shell,
and Ruby, a popular scripting language. Every effort has been made to provide simple
but useful examples, and only the plainest features of the JavaScript and Ruby lan-
guages are used. The main goal is to present the MongoDB API in the most accessible
way possible. If you have experience with other programming languages, you should
find the examples easy to follow.

 One more note about languages. If you’re wondering, “Why couldn’t this book use
language X?” you can take heart. The officially supported MongoDB drivers feature
consistent and analogous APIs. This means that once you learn the basic API for one
driver, you can pick up the others fairly easily. To assist you, this book provides an over-
view of the PHP, Java, and C++ drivers in appendix D.

How to use this book

This book is part tutorial, part reference. If you’re brand new to MongoDB, then read-
ing through the book in order makes a lot of sense. There are numerous code exam-
ples that you can run on your own to help solidify the concepts. At minimum, you’ll
need to install MongoDB and optionally the Ruby driver. Instructions for these instal-
xviii

lations can be found in appendix A.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

ABOUT THIS BOOK xix

 If you’ve already used MongoDB, then you may be more interested in particular
topics. Chapters 7–10 and all of the appendixes stand on their own and can safely be
read in any order. Additionally, chapters 4–6 contain the so-called “nuts and bolts” sec-
tions, which focus on fundamentals. These also can be read outside the flow of the
surrounding text.

Roadmap

This book is divided into three parts.
 Part 1 is an end-to-end introduction to MongoDB. Chapter 1 gives an overview of

MongoDB’s history, features, and use cases. Chapter 2 teaches the database’s core con-
cepts through a tutorial on the MongoDB command shell. Chapter 3 walks through
the design of a simple application that uses MongoDB on the back end.

 Part 2 is an elaboration of the MongoDB API presented in part 1. With a specific
focus on application development, the three chapters in part 2 progressively describe
a schema and its operations for an e-commerce app. Chapter 4 delves into documents,
the smallest unit of data in MongoDB, and puts forth a basic e-commerce schema
design. Chapters 5 and 6 then teach you how to work with this schema by covering
queries and updates. To augment the presentation, each of the chapters in part 2 con-
tains a detailed breakdown of its subject matter.

 Part 3 focuses on performance and operations. Chapter 7 is a thorough study of
indexing and query optimization. Chapter 8 concentrates on replication, with strate-
gies for deploying MongoDB for high availability and read scaling. Chapter 9
describes sharding, MongoDB’s path to horizontal scalability. And chapter 10 provides
a series of best practices for deploying, administering, and troubleshooting MongoDB
installations.

 The book ends with five appendixes. Appendix A covers installation of MongoDB
and Ruby (for the driver examples) on Linux, Mac OS X, and Windows. Appendix B
presents a series of schema and application design patterns, and it also includes a list
of anti-patterns. Appendix C shows how to work with binary data in MongoDB and
how to use GridFS, a spec implemented by all the drivers, to store especially large files
in the database. Appendix D is a comparative study of the PHP, Java, and C++ drivers.
Appendix E shows you how to use spatial indexing to query on geo-coordinates.

Code conventions and downloads

All source code in the listings and in the text is presented in a fixed-width font,
which separates it from ordinary text.

 Code annotations accompany some of the listings, highlighting important con-
cepts. In some cases, numbered bullets link to explanations that follow in the text.

 As an open source project, 10gen keeps MongoDB’s bug tracker open to the com-
munity at large. At several points in the book, particularly in the footnotes, you’ll see
references to bug reports and planned improvements. For example, the ticket for
adding full-text search to the database is SERVER-380. To view the status of any such
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

ABOUT THIS BOOKxx

ticket, point your browser to http://jira.mongodb.org, and enter the ticket ID in the
search box.

 You can download the book’s source code, with some sample data, from the book’s
site at http://mongodb-book.com as well as from the publisher’s website at http://
manning.com/MongoDBinAction.

Software requirements

To get the most out of this book, you’ll need to have MongoDB installed on your sys-
tem. Instructions for installing MongoDB can be found in appendix A and also on the
official MongoDB website (http://mongodb.org).

 If you want to run the Ruby driver examples, you’ll also need to install Ruby. Again,
consult appendix A for instructions on this.

Author Online

The purchase of MongoDB in Action includes free access to a private forum run by
Manning Publications where you can make comments about the book, ask technical
questions, and receive help from the author and other users. To access and subscribe
to the forum, point your browser to www.manning.com/MongoDBinAction. This
page provides information on how to get on the forum once you are registered, what
kind of help is available, and the rules of conduct in the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It’s not a commitment to any specific amount of participation on the part of the
author, whose contribution to the book’s forum remains voluntary (and unpaid). We
suggest you try asking him some challenging questions, lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://manning.com/MongoDBinAction
http://manning.com/MongoDBinAction
http://jira.mongodb.org
http://mongodb.org
www.manning.com/MongoDBinAction
http://www.it-ebooks.info/

about the cover illustration
The figure on the cover of MongoDB in Action is captioned “Le Bourginion,” or a resi-
dent of the Burgundy region in northeastern France. The illustration is taken from a
nineteenth-century edition of Sylvain Maréchal’s four-volume compendium of
regional dress customs published in France. Each illustration is finely drawn and col-
ored by hand. The rich variety of Maréchal’s collection reminds us vividly of how cul-
turally apart the world’s towns and regions were just 200 years ago. Isolated from each
other, people spoke different dialects and languages. In the streets or in the country-
side, it was easy to identify where they lived and what their trade or station in life was
just by their dress.

 Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns or regions. Perhaps we have traded cultural diversity
for a more varied personal life—certainly for a more varied and fast-paced technolog-
ical life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Maréchal’s pictures.
xxi

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

Part 1

Getting started

This part of the book provides a broad, practical introduction to MongoDB.
It also introduces the JavaScript shell and the Ruby driver, both of which are
used in examples throughout the book.

 In chapter 1, we’ll look at MongoDB’s history, design goals, and application
use cases. We’ll also see what makes MongoDB unique as we contrast it with
other databases emerging in the “NoSQL” space.

 In chapter 2, you’ll become conversant in the language of MongoDB’s shell.
You’ll learn the basics of MongoDB’s query language, and you’ll practice by cre-
ating, querying, updating, and deleting documents. We’ll round out the chapter
with some advanced shell tricks and MongoDB commands.

 Chapter 3 introduces the MongoDB drivers and MongoDB’s data format,
BSON. Here you’ll learn how to talk to the database through the Ruby program-
ming language, and you’ll build a simple application in Ruby demonstrating
MongoDB’s flexibility and query power.
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

A database for
the modern web
If you’ve built web applications in recent years, you’ve probably used a relational
database as the primary data store, and it probably performed acceptably. Most
developers are familiar with SQL, and most of us can appreciate the beauty of a well-
normalized data model, the necessity of transactions, and the assurances provided
by a durable storage engine. And even if we don’t like working with relational data-
bases directly, a host of tools, from administrative consoles to object-relational map-
pers, helps alleviate any unwieldy complexity. Simply put, the relational database is
mature and well known. So when a small but vocal cadre of developers starts advo-
cating alternative data stores, questions about the viability and utility of these new
technologies arise. Are these new data stores replacements for relational database
systems? Who’s using them in production, and why? What are the trade-offs involved
in moving to a nonrelational database? The answers to those questions rest on the

In this chapter
 MongoDB’s history, design goals, and key features

 A brief introduction to the shell and the drivers

 Use cases and limitations
3

answer to this one: why are developers interested in MongoDB?

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

4 CHAPTER 1 A database for the modern web

 MongoDB is a database management system designed for web applications and
internet infrastructure. The data model and persistence strategies are built for high
read and write throughput and the ability to scale easily with automatic failover.
Whether an application requires just one database node or dozens of them,
MongoDB can provide surprisingly good performance. If you’ve experienced difficul-
ties scaling relational databases, this may be great news. But not everyone needs to
operate at scale. Maybe all you’ve ever needed is a single database server. Why then
would you use MongoDB?

 It turns out that MongoDB is immediately attractive, not because of its scaling strat-
egy, but rather because of its intuitive data model. Given that a document-based data
model can represent rich, hierarchical data structures, it’s often possible to do with-
out the complicated multi-table joins imposed by relational databases. For example,
suppose you’re modeling products for an e-commerce site. With a fully normalized
relational data model, the information for any one product might be divided among
dozens of tables. If you want to get a product representation from the database shell,
we’ll need to write a complicated SQL query full of joins. As a consequence, most
developers will need to rely on a secondary piece of software to assemble the data into
something meaningful.

 With a document model, by contrast, most of a product’s information can be rep-
resented within a single document. When you open the MongoDB JavaScript shell,
you can easily get a comprehensible representation of your product with all its infor-
mation hierarchically organized in a JSON-like structure.1 You can also query for it and
manipulate it. MongoDB’s query capabilities are designed specifically for manipulat-
ing structured documents, so users switching from relational databases experience a
similar level of query power. In addition, most developers now work with object-
oriented languages, and they want a data store that better maps to objects. With
MongoDB, the object defined in the programming language can be persisted “as is,”
removing some of the complexity of object mappers.

 If the distinction between a tabular and object representation of data is new to
you, then you probably have a lot of questions. Rest assured that by the end of this
chapter I’ll have provided a thorough overview of MongoDB’s features and design
goals, making it increasingly clear why developers from companies like Geek.net
(SourceForge.net) and The New York Times have adopted MongoDB for their proj-
ects. We’ll see the history of MongoDB and lead into a tour of the database’s main
features. Next, we’ll explore some alternative database solutions and the so-called
NoSQL movement,2 explaining how MongoDB fits in. Finally, I’ll describe in general
where MongoDB works best and where an alternative data store might be preferable.

1 JSON is an acronym for JavaScript Object Notation. As we’ll see shortly, JSON structures are comprised of keys
and values, and they can nest arbitrarily deep. They’re analogous to the dictionaries and hash maps of other
programming languages.

2 The umbrella term NoSQL was coined in 2009 to lump together the many nonrelational databases gaining in

popularity at the time.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

5MongoDB’s key features

1.1 Born in the cloud
The history of MongoDB is brief but worth recounting, for it was born out of a much
more ambitious project. In mid-2007, a startup called 10gen began work on a software
platform-as-a-service, composed of an application server and a database, that would
host web applications and scale them as needed. Like Google’s AppEngine, 10gen’s
platform was designed to handle the scaling and management of hardware and soft-
ware infrastructure automatically, freeing developers to focus solely on their applica-
tion code. 10gen ultimately discovered that most developers didn’t feel comfortable
giving up so much control over their technology stacks, but users did want 10gen’s new
database technology. This led 10gen to concentrate its efforts solely on the database
that became MongoDB.

 With MongoDB’s increasing adoption and production deployments large and
small, 10gen continues to sponsor the database’s development as an open source proj-
ect. The code is publicly available and free to modify and use, subject to the terms of
its license. And the community at large is encouraged to file bug reports and submit
patches. Still, all of MongoDB’s core developers are either founders or employees of
10gen, and the project’s roadmap continues to be determined by the needs of its user
community and the overarching goal of creating a database that combines the best
features of relational databases and distributed key-value stores. Thus, 10gen’s busi-
ness model is not unlike that of other well-known open source companies: support the
development of an open source product and provide subscription services to end
users.

 This history contains a couple of important ideas. First is that MongoDB was origi-
nally developed for a platform that, by definition, required its database to scale grace-
fully across multiple machines. The second is that MongoDB was designed as a data
store for web applications. As we’ll see, MongoDB’s design as a horizontally scalable
primary data store sets it apart from other modern database systems.

1.2 MongoDB’s key features
A database is defined in large part by its data model. In this section, we’ll look at the
document data model, and then we’ll see the features of MongoDB that allow us to
operate effectively on that model. We’ll also look at operations, focusing on
MongoDB’s flavor of replication and on its strategy for scaling horizontally.

1.2.1 The document data model

MongoDB’s data model is document-oriented. If you’re not familiar with documents
in the context of databases, the concept can be most easily demonstrated by example.

{ _id: ObjectID('4bd9e8e17cefd644108961bb'),
title: 'Adventures in Databases',

Listing 1.1 A document representing an entry on a social news site

_id field
is primary key
url: 'http://example.com/databases.txt',

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

6 CHAPTER 1 A database for the modern web

author: 'msmith',
vote_count: 20,

tags: ['databases', 'mongodb', 'indexing'],

image: {
url: 'http://example.com/db.jpg',
caption: '',
type: 'jpg',
size: 75381,
data: "Binary"

},

comments: [
{ user: 'bjones',

text: 'Interesting article!'
},

{ user: 'blogger',
text: 'Another related article is at http://example.com/db/db.txt'

}
]
}

Listing 1.1 shows a sample document representing an article on a social news site
(think Digg). As you can see, a document is essentially a set of property names and
their values. The values can be simple data types, such as strings, numbers, and dates.
But these values can also be arrays and even other documents C. These latter con-
structs permit documents to represent a variety of rich data structures. You’ll see that
our sample document has a property, tags B, which stores the article’s tags in an
array. But even more interesting is the comments property D, which references an
array of comment documents.

 Let’s take a moment to contrast this with a standard relational database representa-
tion of the same data. Figure 1.1 shows a likely relational analogue. Since tables are
essentially flat, representing the various one-to-many relationships in your post is
going to require multiple tables. You start with a posts table containing the core infor-
mation for each post. Then you create three other tables, each of which includes a
field, post_id, referencing the original post. The technique of separating an object’s
data into multiple tables likes this is known as normalization. A normalized data set,
among other things, ensures that each unit of data is represented in one place only.

 But strict normalization isn’t without its costs. Notably, some assembly is required.
To display the post we just referenced, you’ll need to perform a join between the post
and tags tables. You’ll also need to query separately for the comments or possibly
include them in a join as well. Ultimately, the question of whether strict normalization
is required depends on the kind of data you’re modeling, and I’ll have much more to
say about the topic in chapter 4. What’s important to note here is that a document-
oriented data model naturally represents data in an aggregate form, allowing you to
work with an object holistically: all the data representing a post, from comments to
tags, can be fitted into a single database object.

Tags stored as
array of strings

B

Attribute points to
another documentC

Comments stored as
array of comment objects

D

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

7MongoDB’s key features

You’ve probably noticed that in addition to providing a richness of structure, docu-
ments need not conform to a prespecified schema. With a relational database, you
store rows in a table. Each table has a strictly defined schema specifying which col-
umns and types are permitted. If any row in a table needs an extra field, you have to
alter the table explicitly. MongoDB groups documents into collections, containers
that don’t impose any sort of schema. In theory, each document in a collection can
have a completely different structure; in practice, a collection’s documents will be rel-
atively uniform. For instance, every document in the posts collection will have fields
for the title, tags, comments, and so forth.

 But this lack of imposed schema confers some advantages. First, your application
code, and not the database, enforces the data’s structure. This can speed up initial
application development when the schema is changing frequently. Second, and more
significantly, a schemaless model allows you to represent data with truly variable prop-
erties. For example, imagine you’re building an e-commerce product catalog. There’s
no way of knowing in advance what attributes a product will have, so the application
will need to account for that variability. The traditional way of handling this in a fixed-
schema database is to use the entity-attribute-value pattern,3 shown in figure 1.2. What
you’re seeing is one section of the data model for Magento, an open source
e-commerce framework. Note the series of tables that are all essentially the same,
except for a single attribute, value, that varies only by data type. This structure allows

id
author_id
title
url
vote_count

posts
int(11)
int(11)
varchar(255)
text
smallint(5)

id
post_id
caption
type
size
location

images
int(11)
int(11)
int(11)
varchar(255)
mediumint(8)
varchar(255)

id
post_id
user_id
text

comments
int(11)
int(11)
int(11)
text

id int(11)
text varchar(255)

tags

id int(11)
post_id int(11)
tag_id int(11)

posts_tags

Figure 1.1 A basic relational data model
for entries on a social news site
3 http://en.wikipedia.org/wiki/Entity-attribute-value_model

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://en.wikipedia.org/wiki/Entity-attribute-value_model
http://www.it-ebooks.info/

8 CHAPTER 1 A database for the modern web

an administrator to define additional product types and their attributes, but the result
is significant complexity. Think about firing up the MySQL shell to examine or update
a product modeled in this way; the SQL joins required to assemble the product would
be enormously complex. Modeled as a document, no join is required, and new attri-
butes can be added dynamically.

1.2.2 Ad hoc queries

To say that a system supports ad hoc queries is to say that it’s not necessary to define in
advance what sorts of queries the system will accept. Relational databases have this
property; they will faithfully execute any well-formed SQL query with any number of
conditions. Ad hoc queries are easy to take for granted if the only databases you’ve

entity_id
entity_type_id
attribute_set_id
type_id
sku

catalog_product_entity

value_id
entity_type_id
attribute_id
store_id
entity_id
value

catalog_product_entity_datetime
int(11)
smallint(5)
smallint(5)
smallint(5)
int(10)
datetime

int(11)
int(5)
int(5)
varchar(32)
ivarchar(64)

value_id
entity_type_id
attribute_id
store_id
entity_id
value

catalog_product_entity_decimal
int(11)
smallint(5)
smallint(5)
smallint(5)
int(10)
decimal(12, 4)

value_id
entity_type_id
attribute_id
store_id
entity_id
value

catalog_product_entity_int
int(11)
smallint(5)
smallint(5)
smallint(5)
int(10)
int(11)

value_id
entity_type_id
attribute_id
store_id
entity_id
value

catalog_product_entity_text
int(11)
smallint(5)
smallint(5)
smallint(5)
int(10)
text

value_id
entity_type_id
attribute_id
store_id
entity_id
value

catalog_product_entity_varchar
int(11)
smallint(5)
smallint(5)
smallint(5)
int(10)
varchar(255)

Figure 1.2 A portion of the schema for
the PHP e-commerce project Magento.
These tables facilitate dynamic attribute
creation for products.
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

9MongoDB’s key features

ever used have been relational. But not all databases support dynamic queries. For
instance, key-value stores are queryable on one axis only: the value’s key. Like many
other systems, key-value stores sacrifice rich query power in exchange for a simple
scalability model. One of MongoDB’s design goals is to preserve most of the query
power that’s been so fundamental to the relational database world.

 To see how MongoDB’s query language works, let’s take a simple example involv-
ing posts and comments. Suppose you want to find all posts tagged with the term poli-
tics having greater than 10 votes. A SQL query would look like this:

SELECT * FROM posts
INNER JOIN posts_tags ON posts.id = posts_tags.post_id
INNER JOIN tags ON posts_tags.tag_id == tags.id
WHERE tags.text = 'politics' AND posts.vote_count > 10;

The equivalent query in MongoDB is specified using a document as a matcher. The
special $gt key indicates the greater-than condition.

db.posts.find({'tags': 'politics', 'vote_count': {'$gt': 10}});

Note that the two queries assume a different data model. The SQL query relies on a
strictly normalized model, where posts and tags are stored in distinct tables, whereas
the MongoDB query assumes that tags are stored within each post document. But
both queries demonstrate an ability to query on arbitrary combinations of attributes,
which is the essence of ad hoc queryability.

 As mentioned earlier, some databases don’t support ad hoc queries because the
data model is too simple. For example, you can query a key-value store by primary key
only. The values pointed to by those keys are opaque as far as the queries are con-
cerned. The only way to query by a secondary attribute, such as this example’s vote
count, is to write custom code to manually build entries where the primary key indi-
cates a given vote count and the value stores a list of the primary keys of the docu-
ments containing said vote count. If you took this approach with a key-value store,
you’d be guilty of implementing a hack, and although it might work for smaller data
sets, stuffing multiple indexes into what’s physically a single index isn’t a good idea.
What’s more, the hash-based index in a key-value store won’t support range queries,
which would probably be necessary for querying on an item like a vote count.

 If you’re coming from a relational database system where ad hoc queries are the
norm, then it’s sufficient to note that MongoDB features a similar level of queryability.
If you’ve been evaluating a variety of database technologies, you’ll want to keep in
mind that not all of these technologies support ad hoc queries and that if you do need
them, MongoDB could be a good choice. But ad hoc queries alone aren’t enough.
Once your data set grows to a certain size, indexes become necessary for query effi-
ciency. Proper indexes will increase query and sort speeds by orders of magnitude;
consequently, any system that supports ad hoc queries should also support secondary
indexes.
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

10 CHAPTER 1 A database for the modern web

1.2.3 Secondary indexes

The best way to understand database indexes is by analogy: many books have indexes
mapping keywords to page numbers. Suppose you have a cookbook and want to find
all recipes calling for pears (maybe you have a lot of pears and don’t want them to go
bad). The time-consuming approach would be to page through every recipe, check-
ing each ingredient list for pears. Most people would prefer to check the book’s index
for the pears entry, which would give a list of all the recipes containing pears. Database
indexes are data structures that provide this same service.

 Secondary indexes in MongoDB are implemented as B-trees. B-tree indexes, also
the default for most relational databases, are optimized for a variety of queries, includ-
ing range scans and queries with sort clauses. By permitting multiple secondary
indexes, MongoDB allows users to optimize for a wide variety of queries.

 With MongoDB, you can create up to 64 indexes per collection. The kinds of
indexes supported include all the ones you’d find in an RDMBS; ascending, descend-
ing, unique, compound-key, and even geospatial
indexes are supported. Because MongoDB and most
RDBMSs use the same data structure for their indexes,
advice for managing indexes in both of these systems is
compatible. We’ll begin looking at indexes in the next
chapter, and because an understanding of indexing is
so crucial to efficiently operating a database, I devote all
of chapter 7 to the topic.

1.2.4 Replication

MongoDB provides database replication via a topology
known as a replica set. Replica sets distribute data across
machines for redundancy and automate failover in the
event of server and network outages. Additionally, repli-
cation is used to scale database reads. If you have a read-
intensive application, as is commonly the case on the
web, it’s possible to spread database reads across
machines in the replica set cluster.

 Replica sets consist of exactly one primary node and
one or more secondary nodes. Like the master-slave
replication that you may be familiar with from other
databases, a replica set’s primary node can accept both
reads and writes, but the secondary nodes are read-only.
What makes replica sets unique is their support for
automated failover: if the primary node fails, the cluster
will pick a secondary node and automatically promote it
to primary. When the former primary comes back
online, it’ll do so as a secondary. An illustration of this
process is provided in figure 1.3.

Primary

1. A working replica set

Primary

2. Original primary node fails and
 a secondary is promoted to primary

X

Primary

3. Original primary comes back online
 as a secondary

Secondary

Secondary

Secondary

Secondary

Secondary
 I discuss replication in chapter 8.
Figure 1.3 Automated failover
with a replica set

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

11MongoDB’s key features

1.2.5 Speed and durability

To understand MongoDB’s approach to durability, it pays to consider a few ideas first.
In the realm of database systems there exists an inverse relationship between write
speed and durability. Write speed can be understood as the volume of inserts, updates,
and deletes that a database can process in a given time frame. Durability refers to level
of assurance that these write operations have been made permanent.

 For instance, suppose you write 100 records of 50 KB each to a database and then
immediately cut the power on the server. Will those records be recoverable when you
bring the machine back online? The answer is, maybe, and it depends on both your
database system and the hardware hosting it. The problem is that writing to a magnetic
hard drive is orders of magnitude slower than writing to RAM. Certain databases, such
as memcached, write exclusively to RAM, which makes them extremely fast but com-
pletely volatile. On the other hand, few databases write exclusively to disk because the
low performance of such an operation is unacceptable. Therefore, database designers
often need to make compromises to provide the best balance of speed and durability.

 In MongoDB’s case, users control the speed and durability trade-off by choosing
write semantics and deciding whether to enable journaling. All writes, by default, are
fire-and-forget, which means that these writes are sent across a TCP socket without
requiring a database response. If users want a response, they can issue a write using a
special safe mode provided by all drivers. This forces a response, ensuring that the write
has been received by the server with no errors. Safe mode is configurable; it can also
be used to block until a write has been replicated to some number of servers. For
high-volume, low-value data (like clickstreams and logs), fire-and-forget-style writes
can be ideal. For important data, a safe-mode setting is preferable.

 In MongoDB v2.0, journaling is enabled by default. With journaling, every write is
committed to an append-only log. If the server is ever shut down uncleanly (say, in a
power outage), the journal will be used to ensure that MongoDB’s data files are restored
to a consistent state when you restart the server. This is the safest way to run MongoDB.

Transaction logging
One compromise between speed and durability can be seen in MySQL’s InnoDB.
InnoDB is a transactional storage engine, which by definition must guarantee
durability. It accomplishes this by writing its updates in two places: once to a
transaction log and again to an in-memory buffer pool. The transaction log is
synced to disk immediately, whereas the buffer pool is only eventually synced by
a background thread. The reason for this dual write is because, generally speak-
ing, random I/O is much slower that sequential I/O. Since writes to the main data
files constitute random I/O, it’s faster to write these changes to RAM first, allow-
ing the sync to disk to happen later. But since some sort of write to disk is nec-
essary to guarantee durability, it’s important that the write be sequential; this is
what the transaction log provides. In the event of an unclean shutdown, InnoDB
can replay its transaction log and update the main data files accordingly. This
provides an acceptable level of performance while guaranteeing a high level of

durability.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

12 CHAPTER 1 A database for the modern web

It’s possible to run the server without journaling as a way of increasing performance
for some write loads. The downside is that the data files may be corrupted after an
unclean shutdown. As a consequence, anyone planning to disable journaling must
run with replication, preferably to a second data center, to increase the likelihood that
a pristine copy of the data will still exist even if there’s a failure.

 The topics of replication and durability are vast; you’ll see a detailed exploration of
them in chapter 8.

1.2.6 Scaling

The easiest way to scale most databases is to upgrade the hardware. If your application
is running on a single node, it’s usually possible to add some combination of disk
IOPS, memory, and CPU to ease any database bottlenecks. The technique of augment-
ing a single node’s hardware for scale is known as vertical scaling or scaling up. Vertical
scaling has the advantages of being simple, reliable, and cost-effective up to a certain
point. If you’re running on virtualized hardware (such as Amazon’s EC2), then you
may find that a sufficiently large instance isn’t available. If you’re running on physical
hardware, there may come a point where the cost of a more powerful server becomes
prohibitive.

 It then makes sense to consider scaling horizontally, or scaling out. Instead of beefing
up a single node, scaling horizontally means distributing the database across multiple
machines. Because a horizontally scaled architecture can use commodity hardware,
the costs for hosting the total data set can be significantly reduced. What’s more, the
the distribution of data across machines mitigates the consequences of failure.
Machines will unavoidably fail from time to time. If you’ve scaled vertically, and the
machine fails, then you need to deal with the failure of a machine upon which most of
your system depends. This may not be an issue if a copy of the data exists on a repli-
cated slave, but it’s still the case that only a single server need fail to bring down the
entire system. Contrast that with failure inside a horizontally scaled architecture. This
may be less catastrophic since a single machine represents a much smaller percentage
of the system as a whole.

 MongoDB has been designed to make horizontal scaling manageable. It does so
via a range-based partitioning mechanism, known as auto-sharding, which automati-
cally manages the distribution of data across nodes. The sharding system handles the
addition of shard nodes, and it also facilitates automatic failover. Individual shards are
made up of a replica set consisting of at least two nodes,4 ensuring automatic recovery
with no single point of failure. All this means that no application code has to handle
these logistics; your application code communicates with a sharded cluster just as it
speaks to a single node.

 We’ve covered a lot of MongoDB’s most compelling features; in chapter 2, we’ll
begin to see how some of these work in practice. But at this point, we’re going to take
4 Technically, each replica set will have at least three nodes, but only two of these need carry a copy of the data.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

13MongoDB’s core server and tools

a more pragmatic look at the database. In the next section, we’ll look at MongoDB in
its environment, the tools that ship with the core server, and a few ways of getting data
in and out.

1.3 MongoDB’s core server and tools
MongoDB is written in C++ and actively developed by 10gen. The project compiles on
all major operating systems, including Mac OS X, Windows, and most flavors of Linux.
Precompiled binaries are available for each of these platforms at mongodb.org.
MongoDB is open source and licensed under the GNU-AGPL. The source code is
freely available on GitHub, and contributions from the community are frequently
accepted. But the project is guided by the 10gen core server team, and the over-
whelming majority of commits come from this group.

ON THE GNU-AGPL The GNU-AGPL is subject to some controversy. What this
licensing means in practice is that the source code is freely available and that
contributions from the community are encouraged. The primary limitation
of the GNU-AGPL is that any modifications made to the source code must be
published publicly for the benefit of the community. For companies wanting
to safeguard their core server enhancements, 10gen provides special commer-
cial licenses.

MongoDB v1.0 was released in November 2009. Major releases appear approximately
once every three months, with even point numbers for stable branches and odd num-
bers for development. As of this writing, the latest stable release is v2.0.5

68 GB RAM
1690 GB storage

200 GB RAM
5000 GB storage

68 GB RAM
1690 GB storage

68 GB RAM
1690 GB storage

68 GB RAM
1690 GB storage

Scaling up increases the capacity of
a single machine.

Scaling out adds more machines
of the similar size.

Original database

Figure 1.4 Horizontal versus vertical scaling
5 You should always use the latest stable point release; for example, v2.0.1.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

14 CHAPTER 1 A database for the modern web

 What follows is an overview of the components that ship with MongoDB along with
a high-level description of the tools and language drivers for developing applications
with the database.

1.3.1 The core server

The core database server runs via an executable called mongod (mongodb.exe on Win-
dows). The mongod server process receives commands over a network socket using a
custom binary protocol. All the data files for a mongod process are stored by default in
/data/db.6

mongod can be run in several modes, the most common of which is as a member of
a replica set. Since replication is recommended, you generally see replica set configu-
rations consisting of two replicas, plus an arbiter process residing on a third server.7

For MongoDB’s auto-sharding architecture, the components consist of mongod pro-
cesses configured as per-shard replica sets, with special metadata servers, known as
config servers, on the side. A separate routing server called mongos is also used to send
requests to the appropriate shard.

 Configuring a mongod process is relatively simple compared with other database
systems such as MySQL. Though it’s possible to specify standard ports and data direc-
tories, there are few options for tuning the database. Database tuning, which in most
RDBMSs means tinkering with a wide array of parameters controlling memory alloca-
tion and the like, has become something of a black art. MongoDB’s design philosophy
dictates that memory management is better handled by the operating system than by a
DBA or application developer. Thus, data files are mapped to a system’s virtual mem-
ory using the mmap() system call. This effectively offloads memory management
responsibilities to the OS kernel. I’ll have more to say about mmap() later in the book;
for now it suffices to note that the lack of configuration parameters is a design feature,
not a bug.

1.3.2 The JavaScript shell

The MongoDB command shell is a JavaScript-based tool for administering the data-
base and manipulating data. The mongo executable loads the shell and connects to a
specified mongod process. The shell has many of the same powers as the MySQL shell,
the primary difference being that SQL isn’t used. Instead, most commands are issued
using JavaScript expressions. For instance, you can pick your database and then insert
a simple document into the users collection like so:

> use mongodb-in-action
> db.users.insert({name: "Kyle"})

The first command, indicating which database you want to use, will be familiar to
users of MySQL. The second command is a JavaScript expression that inserts a simple
document. To see the results of your insert, you can issue a simple query:

6 c:\data\db on Windows.

7 These arbiter processes are lightweight and can easily be run on an app server, for instance.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

15MongoDB’s core server and tools

> db.users.find()
{ _id: ObjectId("4ba667b0a90578631c9caea0"), name: "Kyle" }

The find method returns the inserted document, with the an object ID added. All
documents require a primary key stored in the _id field. You’re allowed to enter a cus-
tom _id as long as you can guarantee its uniqueness. But if you omit the _id alto-
gether, then a MongoDB object ID will be inserted automatically.

 In addition to allowing you to insert and query for data, the shell permits you to
run administrative commands. Some examples include viewing the current database
operation, checking the status of replication to a secondary node, and configuring a
collection for sharding. As you’ll see, the MongoDB shell is indeed a powerful tool
that’s worth getting to know well.

 All that said, the bulk of your work with MongoDB will be done through an appli-
cation written in a given programming language; to see how that’s done, we must say a
few things about MongoDB’s language drivers.

1.3.3 Database drivers

If the notion of a database driver conjures up nightmares of low-level device hacking,
don’t fret. The MongoDB drivers are easy to use. Every effort has been made to pro-
vide an API that matches the idioms of the given language while also maintaining rela-
tively uniform interfaces across languages. For instance, all of the drivers implement
similar methods for saving a document to a collection, but the representation of the
document itself will usually be whatever is most natural to each language. In Ruby,
that means using a Ruby hash. In Python, a dictionary is appropriate. And in Java,
which lacks any analogous language primitive, you represent documents using a spe-
cial document builder class that implements LinkedHashMap.

 Because the drivers provide a rich, language-centric interface to the database, little
abstraction beyond the driver itself is required to build an application. This contrasts
notably with the application design for an RDBMS, where a library is almost certainly
necessary to mediate between the relational data model of the database and the
object-oriented model of most modern programming languages. Still, even if the heft
of an object-relational mapper isn’t required, many developers like using a thin wrap-
per over the drivers to handle associations, validations, and type checking.8

 At the time of this writing, 10gen officially supports drivers for C, C++, C#, Erlang,
Haskell, Java, Perl, PHP, Python, Scala, and Ruby—and the list is always growing. If you
need support for another language, there’s probably a community-supported driver
for it. If no community-supported driver exists for your language, specifications for
building a new driver are documented at mongodb.org. Since all of the officially sup-
ported drivers are used heavily in production and provided under the Apache license,
plenty of good examples are freely available for would-be driver authors.

 Beginning in chapter 3, I describe how the drivers work and how to use them to
write programs.

8 A few popular wrappers at the time of this writing include Morphia for Java, Doctrine for PHP, and Mongo-

Mapper for Ruby.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

16 CHAPTER 1 A database for the modern web

1.3.4 Command-line tools

MongoDB is bundled with several command-line utilities:

 mongodump and mongorestore—Standard utilities for backing up and restoring
a database. mongodump saves the database’s data in its native BSON format and
thus is best used for backups only; this tool has the advantage of being usable
for hot backups which can easily be restored with mongorestore.

 mongoexport and mongoimport—These utilities export and import JSON, CSV,
and TSV data; this is useful if you need your data in widely supported formats.
mongoimport can also be good for initial imports of large data sets, although
you should note in passing that before importing, it’s often desirable to adjust
the data model to take best advantage of MongoDB. In those cases, it’s easier to
import the data through one of the drivers using a custom script.

 mongosniff—A wire-sniffing tool for viewing operations sent to the database.
Essentially translates the BSON going over the wire to human-readable shell
statements.

 mongostat—Similar to iostat; constantly polls MongoDB and the system to
provide helpful stats, including the number of operations per second (inserts,
queries, updates, deletes, and so on.), the amount of virtual memory allocated,
and the number of connections to the server.

 The remaining utilities, bsondump and monfiles, are discussed later in the book.

1.4 Why MongoDB?
I’ve already provided a few reasons why MongoDB might be a good choice for your
projects. Here, I’ll make this more explicit, first by considering the overall design
objectives of the MongoDB project. According to its creators, MongoDB has been
designed to combine the best features of key-value stores and relational databases.
Key-value stores, because of their simplicity, are extremely fast and relatively easy to
scale. Relational databases are more difficult to scale, at least horizontally, but admit a
rich data model and a powerful query language. If MongoDB represents a mean
between these two designs, then the reality is a database that scales easily, stores rich
data structures, and provides sophisticated query mechanisms.

 In terms of use cases, MongoDB is well suited as a primary data store for web appli-
cations, for analytics and logging applications, and for any application requiring a
medium-grade cache. In addition, because it easily stores schemaless data, MongoDB
is also good for capturing data whose structure can’t be known in advance.

 The preceding claims are bold. In order to substantiate them, we’re going to take
a broad look at the varieties of databases currently in use and contrast them with
MongoDB. Next, I’ll discuss some specific MongoDB use cases and provide examples
of them in production. Finally, I’ll discuss some important practical considerations for
using MongoDB.
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

17Why MongoDB?

1.4.1 MongoDB versus other databases

The number of available databases has exploded, and weighing one against another
can be difficult. Fortunately, most of these databases fall under one of a few catego-
ries. In the sections that follow, I describe simple and sophisticated key-value stores,
relational databases, and document databases, and show how these compare and con-
trast with MongoDB.

SIMPLE KEY-VALUE STORES

Simple key-value stores do what their name implies: they index values based on a sup-
plied key. A common use case is caching. For instance, suppose you needed to cache
an HTML page rendered by your app. The key in this case might be the page’s URL,
and the value would be the rendered HTML itself. Note that as far as a key-value store
is concerned, the value is an opaque byte array. There’s no enforced schema, as you’d
find in a relational database, nor is there any concept of data types. This naturally lim-
its the operations permitted by key-value stores: you can put a new value and then use
its key either to retrieve that value or delete it. Systems with such simplicity are gener-
ally fast and scalable.

 The best-known simple key-value store is memcached (pronounced mem-cash-dee).
Memcached stores its data in memory only, so it trades persistence for speed. It’s also
distributed; memcached nodes running across multiple servers can act as a single data
store, eliminating the complexity of maintaining cache state across machines.

 Compared with MongoDB, a simple key-value store like memcached will often
allow for faster reads and writes. But unlike MongoDB, these systems can rarely act as
primary data stores. Simple key-value stores are best used as adjuncts, either as

Table 1.1 Database families

Examples Data model Scalability model Use cases

Simple
key-value stores

Memcached Key-value, where the
value is a binary blob.

Variable. Memcached
can scale across
nodes, converting all
available RAM into a
single, monolithic data
store.

Caching. Web ops.

Sophisticated
key-value stores

Cassandra,
Project Voldemort,
Riak

Variable. Cassandra
uses a key-value struc-
ture known as a col-
umn. Voldemort stores
binary blobs.

Eventually consistent,
multinode distribution
for high availability and
easy failover.

High throughput
verticals (activity
feeds, message
queues). Caching.
Web ops.

Relational
databases

Oracle database,
MySQL,
PostgreSQL

Tables. Vertical scaling. Lim-
ited support for cluster-
ing and manual
partitioning.

System requiring
transactions
(banking, finance)
or SQL. Normal-
ized data model.
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

18 CHAPTER 1 A database for the modern web

caching layers atop a more traditional database or as simple persistence layers for
ephemeral services like job queues.

SOPHISTICATED KEY-VALUE STORES

It’s possible to refine the simple key-value model to handle complicated read/write
schemes or to provide a richer data model. In these cases, we end up with what we’ll
term a sophisticated key-value store. One example is Amazon’s Dynamo, described in a
widely studied white paper entitled Dynamo: Amazon’s Highly Available Key-value Store.
The aim of Dynamo is to be a database robust enough to continue functioning in the
face of network failures, data center outages, and other similar disruptions. This
requires that the system can always be read from and written to, which essentially
requires that data be automatically replicated across multiple nodes. If a node fails, a
user of the system, perhaps in this case a customer with an Amazon shopping cart,
won’t experience any interruptions in service. Dynamo provides ways of resolving the
inevitable conflicts that arise when a system allows the same data to be written to mul-
tiple nodes. At the same time, Dynamo is easily scaled. Because it’s masterless—all
nodes are equal—it’s easy to understand the system as a whole, and nodes can be
added easily. Although Dynamo is a proprietary system, the ideas used to build it have
inspired many systems falling under the NoSQL umbrella, including Cassandra, Proj-
ect Voldemort, and Riak.

 Looking at who developed these sophisticated key-value stores, and how they’ve
been used in practice, you can see where these systems shine. Let’s take Cassandra,
which implements many of Dynamo’s scaling properties while providing a column-
oriented data model inspired by Google’s BigTable. Cassandra is an open source ver-
sion of a data store built by Facebook for its inbox search feature. The system scaled
horizontally to index more than 50 TB of inbox data, allowing for searches on inbox
keywords and recipients. Data was indexed by user ID, where each record consisted of
an array of search terms for keyword searches and an array of recipient IDs for recipi-
ent searches.9

 These sophisticated key-value stores were developed by major internet companies
such as Amazon, Google, and Facebook to manage cross sections of systems with
extraordinarily large amounts of data. In other words, sophisticated key-value stores
manage a relatively self-contained domain that demands significant storage and avail-
ability. Because of their masterless architecture, these systems scale easily with the
addition of nodes. They opt for eventual consistency, which means that reads don’t
necessarily reflect the latest write. But what users get in exchange for weaker consis-
tency is the ability to write in the face of any one node’s failure.

 This contrasts with MongoDB, which provides strong consistency, a single master
(per shard), a richer data model, and secondary indexes. The last two of these attri-
butes go hand in hand; if a system allows for modeling multiple domains, as, for
example, would be required to build a complete web application, then it’s going to be
necessary to query across the entire data model, thus requiring secondary indexes.
9 http://mng.bz/5321

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://mng.bz/5321
http://www.it-ebooks.info/

19Why MongoDB?

 Because of the richer data model, MongoDB can be considered a more general
solution to the problem of large, scalable web applications. MongoDB’s scaling archi-
tecture is sometimes criticized because it’s not inspired by Dynamo. But there are dif-
ferent scaling solutions for different domains. MongoDB’s auto-sharding is inspired
by Yahoo!’s PNUTS data store and Google’s BigTable. Anyone who reads the white
papers presenting these data stores will see that MongoDB’s approach to scaling has
already been implemented, and successfully so.

RELATIONAL DATABASES

Much has already been said of relational databases in this introduction, so in the inter-
est of brevity, I need only discuss what RDBMSs have with common with MongoDB and
where they diverge. MongoDB and MySQL10 are both capable of representing a rich
data model, although where MySQL uses fixed-schema tables, MongoDB has schema-
free documents. MySQL and MongoDB both support B-tree indexes, and those accus-
tomed to working with indexes in MySQL can expect similar behavior in MongoDB.
MySQL supports both joins and transactions, so if you must use SQL or if you require
transactions, then you’ll need to use MySQL or another RDBMS. That said,
MongoDB’s document model is often rich enough to represent objects without
requiring joins. And its updates can be applied atomically to individual documents,
providing a subset of what’s possible with traditional transactions. Both MongoDB and
MySQL support replication. As for scalability, MongoDB has been designed to scale
horizontally, with sharding and failover handled automatically. Any sharding on
MySQL has to be managed manually, and given the complexity involved, it’s more
common to see a vertically scaled MySQL system.

DOCUMENT DATABASES

Few databases identify themselves as document databases. As of this writing, the only
well-known document database apart from MongoDB is Apache’s CouchDB.
CouchDB’s document model is similar, although data is stored in plain text as JSON,
whereas MongoDB uses the BSON binary format. Like MongoDB, CouchDB supports
secondary indexes; the difference is that the indexes in CouchDB are defined by writ-
ing map-reduce functions, which is more involved than the declarative syntax used by
MySQL and MongoDB. They also scale differently. CouchDB doesn’t partition data
across machines; rather, each CouchDB node is a complete replica of every other.

1.4.2 Use cases and production deployments

Let’s be honest. You’re not going to choose a database solely on the basis of its fea-
tures. You need to know that real businesses are using it successfully. Here I provide
a few broadly defined use cases for MongoDB and give some examples of its use in
production.11

10 I’m using MySQL here generically, since the features I’m describing apply to most relational databases.

11 For an up-to-date list of MongoDB production deployments, see http://mng.bz/z2CH.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://mng.bz/z2CH
http://www.it-ebooks.info/

20 CHAPTER 1 A database for the modern web

WEB APPLICATIONS

MongoDB is well suited as a primary data store for web applications. Even a simple
web application will require numerous data models for managing users, sessions, app-
specific data, uploads, and permissions, to say nothing of the overarching domain.
Just as this aligns well with the tabular approach provided by relational databases, so
too does it benefit from MongoDB’s collection and document model. And because
documents can represent rich data structures, the number of collections needed will
usually be less than the number of tables required to model the same data using a
fully normalized relational model. In addition, dynamic queries and secondary
indexes allow for the easy implementation of most queries familiar to SQL developers.
Finally, as a web application grows, MongoDB provides a clear path for scale.

 In production, MongoDB has proven capable of managing all aspects of an app,
from the primary data domain to add-ons such as logging and real-time analytics. This
is the case with The Business Insider (TBE), which has used MongoDB as its primary data
store since January 2008. TBE is a news site, although it gets substantial traffic, serving
more than a million unique page views per day. What’s interesting in this case is that
in addition to handling the site’s main content (posts, comments, users, and so on),
MongoDB also processes and stores real-time analytics data. These analytics are used
by TBE to generate dynamic heat maps indicating click-through rates for the various
news stories. The site doesn’t host enough data to warrant sharding yet, but it does use
replica sets to ensure automatic failover in the event of an outage.

AGILE DEVELOPMENT

Regardless of what you may think about the agile development movement, it’s hard to
deny the desirability of building an application quickly. A number of development
teams, including those from Shutterfly and The New York Times, have chosen
MongoDB in part because they can develop applications much more quickly on it than
on relational databases. One obvious reason for this is that MongoDB has no fixed
schema, so all the time spent committing, communicating, and applying schema
changes is saved.

 In addition, less time need be spent shoehorning the relational representation of
data into an object-oriented data model or dealing with the vagaries, and optimizing
the SQL produced by, an ORM. Thus, MongoDB often complements projects with
shorter development cycles and agile, mid-sized teams.

ANALYTICS AND LOGGING

I alluded earlier to the idea that MongoDB works well for analytics and logging, and
the number of application using MongoDB for these is growing fast. Often, a well-
established company will begin its forays into the MongoDB world with special apps
dedicated to analytics. Some of these companies include GitHub, Disqus, Justin.tv,
and Gilt Groupe, among others.

 MongoDB’s relevance to analytics derives from its speed and from two key features:
targeted atomic updates and capped collections. Atomic updates let clients efficiently
increment counters and push values onto arrays. Capped collections, often useful for

logging, feature fixed allocation, which lets them age out automatically. Storing

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

21Tips and limitations

logging data in a database, as compared with the file system, provides easier organiza-
tion and much greater query power. Now, instead of using grep or a custom log search
utility, users can employ the MongoDB query language they know and love to examine
log output.

CACHING

A data model that allows for a more holistic representation of objects, combined with
faster average query speeds, frequently allows MongoDB to be run in place of the more
traditional MySQL/memcached duo. For example, TBE, mentioned earlier, has been
able to dispense with memcached, serving page requests directly from MongoDB.

VARIABLE SCHEMAS

Look at this code example:12

curl https://stream.twitter.com/1/statuses/sample.json -umongodb:secret
| mongoimport -c tweets

Here you’re pulling down a small sample of the Twitter stream and piping that
directly into a MongoDB collection. Since the stream produces JSON documents,
there’s no need to munge the data before sending it to database. The mongoimport
tool directly translates the data to BSON. This means that each tweet is stored with its
structure intact, as a separate document in the collection. So you can immediately
operate on the data, whether you want to query, index, or perform a map-reduce
aggregation on it. And there’s no need to declare the structure of the data in advance.

 If your application needs to consume a JSON API, then having a system that so eas-
ily translates JSON is invaluable. If you can’t possibly know the structure of your data
before you store it, then MongoDB’s lack of schema constraints may greatly simply
your data model.

1.5 Tips and limitations
For all these good features, it’s worth keeping in mind a system’s trade-offs and limita-
tions. Some limitations should be noted before building a real-world application on
MongoDB and running in production. Most of these are consequences of MongoDB’s
use of memory-mapped files.

 First, MongoDB should usually be run on 64-bit machines. 32-bit systems are capa-
ble of addressing only 4 GB of memory. Acknowledging that typically half of this mem-
ory will be allocated by the operating system and program processes, this leaves just
2 GB of memory on which to map the data files. So if you’re running 32-bit, and if you
have even a modest number of indexes defined, you’ll be strictly limited to as little as
1.5 GB of data. Most production systems will require more than this, and so a 64-bit
system will be necessary.13

12 This idea comes from http://mng.bz/52XI. If you want to run this code, you’ll need to replace
<code>-umongodb:secret</code> with your own Twitter username and password.

13 64-bit architectures can theoretically address up to 16 exabytes of memory, which is for all intents and pur-

poses unlimited.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://mng.bz/52XI
http://www.it-ebooks.info/

22 CHAPTER 1 A database for the modern web

 A second consequence of using virtual memory mapping is that memory for the
data will be allocated automatically, as needed. This makes it trickier to run the data-
base in a shared environment. As with database servers in general, MongoDB is best
run on a dedicated server.

 Finally, it’s important to run MongoDB with replication, especially if you’re not run-
ning with journaling enabled. Because MongoDB uses memory-mapped files, any
unclean shutdown of a mongod not running with journaling may result in corruption.
Therefore, it’s necessary in this case to have a replicated backup available for failover.
This is good advice for any database—it’d be imprudent not to do likewise with any seri-
ous MySQL deployment—but it’s especially important with nonjournaled MongoDB.

1.6 Summary
We’ve covered a lot. To summarize, MongoDB is an open source, document-based
database management system. Designed for the data and scalability requirements of
modern internet applications, MongoDB features dynamic queries and secondary
indexes; fast atomic updates and complex aggregations; and support for replication
with automatic failover and sharding for scaling horizontally.

 That’s a mouthful; but if you’ve read this far, you should have a good feel for all
these capabilities. You’re probably itching to code. After all, it’s one thing to talk
about a database’s features, but another to use the database in practice. Fortunately,
that’s what you’ll be doing in the next two chapters. First, you’ll get acquainted with
the MongoDB JavaScript shell, which is incredibly useful for interacting with the data-
base. Then, in chapter 3, you’ll start experimenting with the driver, and you’ll build a
simple MongoDB-based application in Ruby.
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

MongoDB through
the JavaScript shell
The previous chapter hinted at the experience of running MongoDB. If you’re
ready for a more hands-on introduction, this is it. Using the MongoDB shell, this
chapter teaches the database’s basic concepts through a series of exercises. You’ll
learn how to create, read, update, and delete (CRUD) documents and, in the pro-
cess, get to know MongoDB’s query language. In addition, we’ll take a preliminary
look at database indexes and how they’re used to optimize queries. Then we’ll end
the chapter by exploring some basic administrative commands, and I’ll suggest a
few ways of getting help as you continue on. Think of this chapter as both an elabo-
ration of the concepts already introduced and as a practical tour of the most com-
mon tasks performed from the MongoDB shell.

 If you’re completely new to MongoDB’s shell, know that it provides all the fea-
tures that you’d expect of such a tool; it allows you to examine and manipulate data

In this chapter
 CRUD operations in the MongoDB shell

 Building indexes and using explain()

 Getting help
23

and administer the database server itself. Where it differs from similar tools is in its

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

24 CHAPTER 2 MongoDB through the JavaScript shell

query language. Instead of employing a standardized query language such as SQL, you
interact with the server using the JavaScript programming language and a simple API.
If you’re not familiar with JavaScript, rest assured that only a superficial knowledge of
the language is necessary to take advantage of the shell, and all examples in this chap-
ter will be explained thoroughly.

 You’ll benefit most from this chapter if you follow along with the examples, but to
do that, you’ll need to have MongoDB installed on your system. Installation instruc-
tions can be found in appendix A.

2.1 Diving into the MongoDB shell
MongoDB’s JavaScript shell makes it easy to play with data and get a tangible sense for
documents, collections, and the database’s particular query language. Think of the
following walkthrough as a practical introduction to MongoDB.

 We’ll begin by getting the shell up and running. Then we’ll look at how JavaScript
represents documents, and you’ll learn how to insert these documents into a MongoDB
collection. To verify these inserts, you’ll practice querying the collection. Then it’s on
to updates. Finally, you’ll learn how to clear and drop collections.

2.1.1 Starting the shell

If you’ve followed the instructions in appendix A, you should have a working
MongoDB installation on your computer. Make sure you have a running mongod
instance; once you do, start the MongoDB shell by running the mongo executable:

./mongo

If the shell program starts successfully, your screen will look like the screenshot in fig-
ure 2.1. The shell heading displays the version of MongoDB you’re running along
with some additional information about the currently selected database.

 If you know some JavaScript, you can start entering code and exploring the shell
right away. Otherwise, read on to see how to insert your first datum.

Figure 2.1 The MongoDB JavaScript shell on startup
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

25Diving into the MongoDB shell

2.1.2 Inserts and queries

If no other database is specified on startup, the shell selects a default database called
test. As a way of keeping all the subsequent tutorial exercises under the same
namespace, let’s start by switching to the tutorial database:

> use tutorial
switched to db tutorial

You’ll see a message verifying that you’ve switched databases.

ON CREATING DATABASES AND COLLECTIONS You may be wondering how we
can switch to the tutorial database without explicitly creating it. In fact, creat-
ing the database isn’t required. Databases and collections are created only
when documents are first inserted. This behavior is consistent with
MongoDB’s dynamic approach to data; just as the structure of documents
need not be defined in advance, individual collections and databases can be
created at runtime. This can lead to a simplified and accelerated develop-
ment process, and essentially facilitates dynamic namespace allocation, which
can frequently be useful. That said, if you’re concerned about databases or
collections being created accidentally, most of the drivers let you enable a
strict mode to prevent such careless errors.

It’s time to create your first document. Since you’re using a JavaScript shell, your doc-
uments will be specified in JSON (JavaScript Object Notation). For instance, the sim-
plest imaginable document describing a user might look like this:

{username: "jones"}

The document contains a single key and value for storing Jones’s username. To save
this document, you need to choose a collection to save it to. Appropriately enough,
you’ll save it to the users collection. Here’s how:

> db.users.insert({username: "smith"})

You may notice a slight delay after entering this code. At this point, neither the
tutorial database nor the users collection has been created on disk. The delay is
caused by the allocation of the initial data files for both.

 If the insert succeeds, then you’ve just saved your first document. You can issue a
simple query to verify that the document has been saved:

> db.users.find()

The response will look something like this:

{ _id : ObjectId("4bf9bec50e32f82523389314"), username : "smith" }

Note that an _id field has been added to the document. You can think of the _id
value as the document’s primary key. Every MongoDB document requires an _id,
and if one isn’t present when the document is created, then a special MongoDB
object ID will be generated and added to the document at that time. The object ID

that appears in your console won’t be the same as the one in the code listing, but it

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

26 CHAPTER 2 MongoDB through the JavaScript shell

will be unique among all _id values in the collection, which is the only hard require-
ment for the field.

 I’ll have more to say about object IDs in the next chapter. Let’s continue for now by
adding a second user to the collection:

> db.users.save({username: "jones"})

There should now be two documents in the collection. Go ahead and verify this by
running the count command:

> db.users.count()
2

Now that you have more than one document in the collection, we can look at some
slightly more sophisticated queries. Like before, you can still query for all the docu-
ments in the collection:

> db.users.find()
{ _id : ObjectId("4bf9bec50e32f82523389314"), username : "smith" }
{ _id : ObjectId("4bf9bec90e32f82523389315"), username : "jones" }

But you can also pass a simple query selector to the find method. A query selector is a
document that’s used to match against all documents in the collection. To query for
all documents where the username is jones, you pass a simple document that acts as
your query selector like so:

> db.users.find({username: "jones"})
{ _id : ObjectId("4bf9bec90e32f82523389315"), username : "jones" }

The query selector {username: "jones"} returns all documents where the username
is jones—it literally matches against the existing documents.

 I’ve just presented the basics of creating and reading data. Now it’s time to look at
how to update that data.

2.1.3 Updating documents

All updates require at least two arguments. The first specifies which documents to
update, and the second defines how the selected documents should be modified.
There are two styles of modification; in this section we’re going to focus on targeted
modifications, which are most representative of MongoDB’s distinct features.

 To take an example, suppose that user smith decides to add her country of resi-
dence. You can record this with the following update:

> db.users.update({username: "smith"}, {$set: {country: "Canada"}})

This update tells MongoDB to find a document where the username is smith, and
then to set the value of the country property to Canada. If you now issue a query,
you’ll see that the document has been updated accordingly:

> db.users.find({username: "smith"})
{ "_id" : ObjectId("4bf9ec440e32f82523389316"),
"country" : "Canada", username : "smith" }

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

27Diving into the MongoDB shell

If the user later decides that she no longer wants her country stored in her profile, she
can remove the value just as easily using the $unset operator:

> db.users.update({username: "smith"}, {$unset: {country: 1}})

Let’s enrich this example. You’re representing your data with documents, which, as
you saw in chapter 1, can contain complex data structures. So let’s suppose that, in
addition to storing profile information, your users can also store lists of their favorite
things. A good document representation might look something like this:

{ username: "smith",
favorites: {

cities: ["Chicago", "Cheyenne"],
movies: ["Casablanca", "For a Few Dollars More", "The Sting"]

}
}

The favorites key points to an object containing two other keys which point to lists
of favorite cities and movies. Given what you know already, can you think of a way to
modify the original smith document to look like this? The $set operator should come
to mind. Note in this example that you’re practically rewriting the document and that
this is a perfectly acceptable use of $set:

> db.users.update({username: "smith"},
{ $set: {favorites:

{
cities: ["Chicago", "Cheyenne"],
movies: ["Casablanca", "The Sting"]

}
}
})

Let’s modify jones similarly, but in this case you’ll add a couple of favorite movies:

db.users.update({username: "jones"},
{"$set": {favorites:

{
movies: ["Casablanca", "Rocky"]

}
}

})

Now query the users collection to make sure that both updates succeeded:

> db.users.find()

With a couple of example documents at your fingertips, you can now begin to see the
power of MongoDB’s query language. In particular, the query engine’s ability to reach
into nested inner objects and match against array elements proves useful in this situa-
tion. You can accomplish this kind query using a special dot notation. Suppose that
you want to find all users who like the movie Casablanca. Such a query looks like this:

> db.users.find({"favorites.movies": "Casablanca"})
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

28 CHAPTER 2 MongoDB through the JavaScript shell

The dot between favorites and movies instructs the query engine to look for a key
named favorites that points to an object with an inner key named movies and then
to match the value of the inner key. Thus this query returns both user documents. To
take a more involved example, suppose you know, a priori, that any user who likes Cas-
ablanca also like The Maltese Falcon and that you want to update your database to reflect
this fact. How would you represent this as a MongoDB update?

 You could conceivably use the $set operator again, but that would require you to
rewrite and send the entire array of movies. Since all you want to do is add an element
to the list, you’re better off using either $push or $addToSet. Both operators add an
item to an array, but the second does so uniquely, preventing a duplicate addition.
This is the update you’re looking for:

db.users.update({"favorites.movies": "Casablanca"},
{$addToSet: {"favorites.movies": "The Maltese Falcon"} },

false,
true)

Most of this should be decipherable. The first argument, a query selector, matches
against users who have Casablanca in their movies list. The second argument adds The
Maltese Falcon to that list using the $addToSet operator. The third argument, false,
can be ignored for now. The fourth argument, true, indicates that this is a multi-
update. By default, a MongoDB update operation will apply only to the first document
matched by the query selector. If you want the operation to apply to all documents
matched, then you must be explicit about that. Because you want your update to apply
to both smith and jones, the multi-update is necessary.

 We’ll cover updates in more detail later, but do try these examples before moving on.

2.1.4 Deleting data

You now know the basics of creating, reading, and updating data through the
MongoDB shell. We’ve saved the simplest operation, removing data, for last.

 If given no parameters, a remove operation will clear a collection of all its docu-
ments. To get rid of, say, a foo collection, you enter

> db.foo.remove()

You often need to remove only a certain subset of a collection’s documents, and for
that, you can pass a query selector to the remove() method. If you want to remove all
users whose favorite city is Cheyenne, the expression is pretty straightforward:

> db.users.remove({"favorites.cities": "Cheyenne"})

Note that the remove() operation doesn’t actually delete the collection; it merely
removes documents from a collection. You can think of it as being analogous to SQL’s
DELETE and TRUNCATE TABLE directives.

 If your intent is to delete the collection along with all of its indexes, use the drop()
method:
> db.users.drop()

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

29Creating and querying with indexes

Creating, reading, updating, and deleting are the basic operations of any database; if
you’ve followed along, you should be in a position to continue practicing basic CRUD
operations in MongoDB. In the next section, you’ll learn how to enhance your que-
ries, updates, and deletes by taking a brief look at secondary indexes.

2.2 Creating and querying with indexes
It’s common to create indexes to enhance query performance. Fortunately,
MongoDB’s indexes can be created easily from the shell. If you’re new to database
indexes, this section should make clear the need for them; if you already have index-
ing experience, you’ll see how easy it is to create indexes and then profile queries
against them using the explain() method.

2.2.1 Creating a large collection

An indexing example only makes sense if you have a collection with many documents.
So you’ll add 200,000 simple documents to a numbers collection. Since the MongoDB
shell is also a JavaScript interpreter, the code to accomplish this is simple:

for(i=0; i<200000; i++) {
db.numbers.save({num: i});

}

This is a lot of documents, so don’t be surprised if the insert takes a few seconds to
complete. Once it returns, you can run a couple of queries to verify that all the docu-
ments are present:

> db.numbers.count()
200000

> db.numbers.find()
{ "_id" : ObjectId("4bfbf132dba1aa7c30ac830a"), "num" : 0 }
{ "_id" : ObjectId("4bfbf132dba1aa7c30ac830b"), "num" : 1 }
{ "_id" : ObjectId("4bfbf132dba1aa7c30ac830c"), "num" : 2 }
{ "_id" : ObjectId("4bfbf132dba1aa7c30ac830d"), "num" : 3 }
{ "_id" : ObjectId("4bfbf132dba1aa7c30ac830e"), "num" : 4 }
{ "_id" : ObjectId("4bfbf132dba1aa7c30ac830f"), "num" : 5 }
{ "_id" : ObjectId("4bfbf132dba1aa7c30ac8310"), "num" : 6 }
{ "_id" : ObjectId("4bfbf132dba1aa7c30ac8311"), "num" : 7 }
{ "_id" : ObjectId("4bfbf132dba1aa7c30ac8312"), "num" : 8 }
{ "_id" : ObjectId("4bfbf132dba1aa7c30ac8313"), "num" : 9 }
{ "_id" : ObjectId("4bfbf132dba1aa7c30ac8314"), "num" : 10 }
{ "_id" : ObjectId("4bfbf132dba1aa7c30ac8315"), "num" : 11 }
{ "_id" : ObjectId("4bfbf132dba1aa7c30ac8316"), "num" : 12 }
{ "_id" : ObjectId("4bfbf132dba1aa7c30ac8317"), "num" : 13 }
{ "_id" : ObjectId("4bfbf132dba1aa7c30ac8318"), "num" : 14 }
{ "_id" : ObjectId("4bfbf132dba1aa7c30ac8319"), "num" : 15 }
{ "_id" : ObjectId("4bfbf132dba1aa7c30ac831a"), "num" : 16 }
{ "_id" : ObjectId("4bfbf132dba1aa7c30ac831b"), "num" : 17 }
{ "_id" : ObjectId("4bfbf132dba1aa7c30ac831c"), "num" : 18 }
{ "_id" : ObjectId("4bfbf132dba1aa7c30ac831d"), "num" : 19 }
has more
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

30 CHAPTER 2 MongoDB through the JavaScript shell

The count() command shows that you’ve inserted 200,000 documents. The subse-
quent query displays the first 20 results. You can display additional results with the it
command:

> it
{ "_id" : ObjectId("4bfbf132dba1aa7c30ac831e"), "num" : 20 }
{ "_id" : ObjectId("4bfbf132dba1aa7c30ac831f"), "num" : 21 }
{ "_id" : ObjectId("4bfbf132dba1aa7c30ac8320"), "num" : 22 }
...

The it command instructs the shell to return the next result set.1

 With a sizeable set of documents available, let’s try a few queries. Given what you
know about MongoDB’s query engine, a simple query matching a document on its
num attribute makes sense:

> db.numbers.find({num: 500})
{ "_id" : ObjectId("4bfbf132dba1aa7c30ac84fe"), "num" : 500 }

But more interestingly, you can also issue range queries using the special $gt and $lt
operators. You first saw these operators in chapter 1. (They stand for greater than and
less than, respectively.) Here’s how you query for all documents with a num value
greater than 199,995:

> db.numbers.find({num: {"$gt": 199995 }})
{ "_id" : ObjectId("4bfbf1dedba1aa7c30afcade"), "num" : 199996 }
{ "_id" : ObjectId("4bfbf1dedba1aa7c30afcadf"), "num" : 199997 }
{ "_id" : ObjectId("4bfbf1dedba1aa7c30afcae0"), "num" : 199998 }
{ "_id" : ObjectId("4bfbf1dedba1aa7c30afcae1"), "num" : 199999 }

You can also combine the two operators to specify upper and lower boundaries:

> db.numbers.find({num: {"$gt": 20, "$lt": 25 }})
{ "_id" : ObjectId("4bfbf132dba1aa7c30ac831f"), "num" : 21 }
{ "_id" : ObjectId("4bfbf132dba1aa7c30ac8320"), "num" : 22 }
{ "_id" : ObjectId("4bfbf132dba1aa7c30ac8321"), "num" : 23 }
{ "_id" : ObjectId("4bfbf132dba1aa7c30ac8322"), "num" : 24 }

You can see that by using a simple JSON document, you’re able to specify a sophisti-
cated range query much in the way you might do in SQL. Because $gt and $lt are just
two of a host of special keywords that comprise the MongoDB query language, you’ll
be seeing many more example queries in later chapters.

 Of course, queries like this are of little value if they’re not also efficient. In the next
section, we’ll start thinking about query efficiency by exploring MongoDB’s indexing
features.

1 You may be wondering what’s happening behind the scenes here. All queries create a cursor, which allows for
iteration over a result set. This is somewhat hidden when using the shell, so it’s not necessary to discuss in
detail at the moment. If you can’t wait to learn more about cursors and their idiosyncrasies, see chapters 3

and 4.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

31Creating and querying with indexes

2.2.2 Indexing and explain()

If you’ve spent time working with relational databases, you’re probably familiar with
SQL’s EXPLAIN. EXPLAIN describes query paths and allows developers to diagnose slow
operations by determining which indexes a query has used. MongoDB has its own ver-
sion of EXPLAIN that provides the same service. To get an idea of how it works, let’s
apply it to one of the queries you just issued. Try running the following on your system:

> db.numbers.find({num: {"$gt": 199995 }}).explain()

The result should look something like what you see in the following listing.

{
"cursor" : "BasicCursor",
"nscanned" : 200000,
"nscannedObjects" : 200000,
"n" : 4,
"millis" : 171,
"nYields" : 0,
"nChunkSkips" : 0,
"isMultiKey" : false,
"indexOnly" : false,
"indexBounds" : { }

}

Examining the explain() output, you may be surprised to see that the query engine
has to scan the entire collection, all 200,000 documents (nscanned), to return just
four results (n). The BasicCursor cursor type verifies that this query hasn’t used an
index to return the result set. Such a large difference between the number of docu-
ments scanned and the number returned marks this as an inefficient query. In a real-
world situation, where the collection and the documents themselves would likely be
larger, the time needed to process the query would be substantially greater than the
171 milliseconds noted here.

 What this collection needs is an index. You can create an index for the num key
using the ensureIndex() method. Try entering the following index creation code
yourself:

> db.numbers.ensureIndex({num: 1})

As with other MongoDB operations, such as queries and updates, you pass a docu-
ment to the ensureIndex() method to define the index’s keys. In this case, the {num:
1} document indicates that an ascending index should be built on the num key for all
documents in the numbers collection.

 You can verify that the index has been created by calling the getIndexes()
method:

> db.numbers.getIndexes()
[

Listing 2.1 Typical explain() output for an unindexed query
{

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

32 CHAPTER 2 MongoDB through the JavaScript shell

"name" : "_id_",
"ns" : "tutorial.numbers",
"key" : {

"_id" : 1
}

},

{
"_id" : ObjectId("4bfc646b2f95a56b5581efd3"),
"ns" : "tutorial.numbers",
"key" : {

"num" : 1
},
"name" : "num_1"

}
]

The collection now has two indexes. The first is the standard _id index that’s automat-
ically built for every collection; the second is the index you just created on num.

 If you run your query with the explain() method, you’ll now see a dramatic differ-
ence in query response time, as shown in the next listing.

> db.numbers.find({num: {"$gt": 199995 }}).explain()
{

"cursor" : "BtreeCursor num_1",
"indexBounds" : [

[
{

"num" : 199995
},
{

"num" : 1.7976931348623157e+308
}

]
],
"nscanned" : 5,
"nscannedObjects" : 4,
"n" : 4,
"millis" : 0

}

Now that the query utilizes the index on num, it scans only the five documents pertain-
ing to the query. This reduces the total time to serve the query from 171 ms to less
than 1 ms.

 If this example intrigues you, be sure to check out chapter 7, which is devoted to
indexing and query optimization. Now we’ll proceed now to look at the basic adminis-
trative commands required to get information about our MongoDB instance. You’ll
also learn some techniques for getting help from the shell, which will aid in mastering
the various shell commands.

Listing 2.2 explain() output for an indexed query
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

33Basic administration

2.3 Basic administration
This chapter promised to be an introduction to MongoDB via the JavaScript shell.
You’ve already learned the basics of data manipulation and indexing. Here I’ll present
some techniques for getting information about your mongod process. For instance,
you’ll probably want to know how much space your various collections are taking up
or how many indexes you’ve defined on a given collection. The commands detailed
here can take you a long way in helping you to diagnose performance issues and keep
tabs on your data.

 We’ll also look at MongoDB’s command interface. Most of the special, non-CRUD
operations that can be performed on a MongoDB instance, from server status checks
to data file integrity verification, are implemented using database commands. I’ll
explain what commands are in the MongoDB context and show how easy they are to
use. Finally, it’s always good to know where to look for help. To that end, I’ll point out
some places in the shell where you can turn for help to further your exploration of
MongoDB.

2.3.1 Getting database information

You’ll often want to know which collections and databases exist on a given installation.
Fortunately, the MongoDB shell provides a number of commands, along with some
syntactic sugar, for getting information about the system.

show dbs prints a list of all the databases on the system:

> show dbs
admin
local
test
tutorial

show collections displays a list of all the collections defined on the current data-
base.2 If the tutorial database is still selected, you’ll see a list of the collections you
worked with in the preceding tutorial:

> show collections
numbers
system.indexes
users

The one collection that you may not recognize is system.indexes. This is a special
collection that exists for every database. Each entry in system.indexes defines an
index for the database. You can query this collection directly, but its output is more
easily viewed using the getIndexes() method, as we saw earlier.

 For lower-level insight into databases and collections, the stats() method proves
useful. When run on a database object, you’ll get the following output:

> db.stats()
{

2 You can also enter the more succinct show tables.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

34 CHAPTER 2 MongoDB through the JavaScript shell

"collections" : 4,
"objects" : 200012,
"dataSize" : 7200832,
"storageSize" : 21258496,
"numExtents" : 11,
"indexes" : 3,
"indexSize" : 27992064,
"ok" : 1

}

You can also run the stats() command on an individual collection:

> db.numbers.stats()
{

"ns" : "tutorial.numbers",
"count" : 200000,
"size" : 7200000,
"storageSize" : 21250304,
"numExtents" : 8,
"nindexes" : 2,
"lastExtentSize" : 10066176,
"paddingFactor" : 1,
"flags" : 1,
"totalIndexSize" : 27983872,
"indexSizes" : {

"_id_" : 21307392,
"num_1" : 6676480

},
"ok" : 1

}

Some of the values provided in these result documents are useful only in complicated
debugging situations. But at the very least, you’ll be able to find out how much space a
given collection and its indexes are occupying.

2.3.2 How commands work

A certain set of MongoDB operations—distinct from the insert, update, delete, and
query operations described so far in this chapter—are known as database commands.
Database commands are generally administrative, as with the stats() methods just
presented, but they may also control core MongoDB features, such as map-reduce.

 Regardless of the functionality they provide, what all database commands have in
common is their implementation as queries on a special virtual collection called $cmd.
To show what this means, let’s take a quick example. Recall how you invoked the
stats() database command:

> db.stats()

The stats() method is a helper that wraps the shell’s command invocation method.
Try entering the following equivalent operation:

> db.runCommand({dbstats: 1})
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

35Getting help

The results are identical to what’s provided by the stats() method. Note that the
command is defined by the document {dbstats: 1}. In general, you can run any
available command by passing its document definition to the runCommand method.
Here’s how you’d run the collection stats command:

> db.runCommand({collstats: 'numbers'})

The output should look familiar.
 But to get to the heart of database commands, you need to see how the run-

Command() method actually works. That’s not hard to find out because the MongoDB
shell will print the implementation of any method whose executing parentheses are
omitted. So instead of running the command like this

> db.runCommand()

You can execute the parentheses-less version and see the internals:

> db.runCommand
function (obj) {

if (typeof obj == "string") {
var n = {};
n[obj] = 1;
obj = n;

}
return this.getCollection("$cmd").findOne(obj);

}

The last line in the function is nothing more than a query on the $cmd collection. To
define it properly, then, a database command is a query on a special collection, $cmd,
where the query selector defines the command itself. That’s all there is to it. Can you
think of a way to run the collection stats command manually? It’s this simple:

db.$cmd.findOne({collstats: 'numbers'});

Using the runCommand helper is easier, but it’s always good to know what’s going on
just beneath the surface.

2.4 Getting help
By now, the value of the MongoDB shell as a testing ground for experimenting with
data and administering the database should be evident. But since you’ll likely be
spending a lot of time in the shell, it’s worth knowing how to get help.

 The built-in help commands are the first place to look. db.help() prints a list of
commonly used methods for operating on database objects. You’ll find a similar list of
methods for operating on collections by running db.foo.help().

 There’s also built-in tab completion. Start typing the first characters of any method
and then press the Tab key twice. You’ll see a list of all matching methods. Here’s the
tab completion for collection methods beginning with get:

> db.foo.get

db.foo.getCollection(db.foo.getIndexSpecs(db.foo.getName(

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

36 CHAPTER 2 MongoDB through the JavaScript shell

db.foo.getDB(db.foo.getIndexes(db.foo.getShardVersion(
db.foo.getFullName(db.foo.getIndices(
db.foo.getIndexKeys(db.foo.getMongo(

If you’re more ambitious, and comfortable with JavaScript, the shell makes it easy to
examine the implementation of any given method. For instance, suppose you’d like to
know exactly how the save() method works. Sure, you could go trolling through the
MongoDB source code, but there’s an easier way. Simply enter the method name with-
out the executing parentheses. Here’s how you’d normally execute save():

> db.numbers.save({num: 123123123});

And this is how you can check the implementation:

> db.numbers.save
function (obj) {

if (obj == null || typeof obj == "undefined") {
throw "can't save a null";

}
if (typeof obj._id == "undefined") {

obj._id = new ObjectId;
return this.insert(obj);

} else {
return this.update({_id:obj._id}, obj, true);

}
}

Read the function definition closely, and you’ll see that save() is merely a wrapper for
insert() and update(). If the object you’re trying to save doesn’t have an _id field,
then the field is added, and insert() is invoked; otherwise, an update is performed.

 This trick for examining the shell’s methods comes in handy; keep this technique
at hand as you continue exploring the MongoDB shell.

2.5 Summary
You’ve now seen the document data model in practice, and we’ve demonstrated a vari-
ety of common MongoDB operations on that data model. You’ve learned how to cre-
ate indexes, and seen a real-life example of index-based performance improvements
through the use of explain(). In addition, you should be able to extract information
about the collections and databases on your system, you now know all about the clever
$cmd collection, and if you ever need help, you’ve picked up a few tricks for finding
your way around.

 You can learn a lot by working in the MongoDB shell, but there’s no substitute for
the experience of building a real application. That’s why, in the next chapter, we’re
going from a carefree data playground to a real-world data workshop. You’ll see how
the drivers work, and then, using the Ruby driver, you’ll build a simple application,
hitting MongoDB with some real live data.
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

Writing programs
using MongoDB
It’s time to get practical. Though there’s much to learn from experimenting with
the MongoDB shell, you can see the real value of this database only after you’ve
built something with it. That means jumping into programming and taking a first
look at the MongoDB drivers. As mentioned before, 10gen provides officially sup-
ported, Apache-licensed MongoDB drivers for all of the most popular program-
ming languages. The driver examples in the book use Ruby, but the principles I’ll
illustrate are universal and easily transferable to other drivers. If you’re curious,
appendix D showcases driver APIs for PHP, Java, and C++.

We’re going to explore programming in MongoDB in three stages. First, you’ll
install the MongoDB Ruby driver and introduce the basic CRUD operations. This
should go quickly and feel familiar, since the driver API is similar to that of the

In this chapter
 Introducing the MongoDB API through Ruby

 How the drivers work

 The BSON format and the MongoDB network protocol

 Building a complete sample application
37

shell. Next, we’re going to delve deeper into the driver, explaining how it interfaces

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

38 CHAPTER 3 Writing programs using MongoDB

with MongoDB. Without getting too low-level, this section will show you what’s going
on behind the scenes with the drivers in general. Finally, you’ll develop a simple Ruby
application for monitoring Twitter. Working with a real-world data set, you’ll begin to
see how MongoDB works in the wild. This final section will also lay the groundwork
for the more in-depth examples presented in part 2.

3.1 MongoDB through the Ruby lens
Normally when you think of drivers, what come to mind are low-level bit manipula-
tions and obtuse interfaces. Thankfully, the MongoDB language drivers are nothing
like that; instead, they’ve been designed with intuitive, language-sensitive APIs, so that
many applications can sanely use a MongoDB driver as the sole interface to the data-
base. The driver APIs are also fairly consistent across languages, which means that
developers can easily move between languages as needed. If you’re an application
developer, you can expect to find yourself comfortable and productive with any of the
MongoDB drivers without having to concern yourself with low-level implementation
details.

 In this first section, you’ll install the MongoDB Ruby driver, connect to the data-
base, and learn how to perform basic CRUD operations. This will lay the groundwork
for the application you’ll build at the end of the chapter.

3.1.1 Installing and connecting

You can install the MongoDB Ruby driver using RubyGems, Ruby’s package manage-
ment system.

NOTE If you don’t have Ruby installed on your system, you can find detailed
installation instructions at http://www.ruby-lang.org/en/downloads/. You’ll
also need Ruby’s package manager, RubyGems. Instructions for installing
RubyGems can be found at http://docs.rubygems.org/read/chapter/3.

gem install mongo

This should install both the mongo and bson1 gems. You should see output like the fol-
lowing (the version numbers will likely be newer that what’s shown here):

1 BSON, which is explained in the next section, is the JSON-inspired binary format that MongoDB uses to rep-

New to Ruby?
Ruby is a popular and readable scripting language. The code examples have been
designed to be as explicit as possible, so that even programmers unfamiliar with
Ruby can benefit. Any Ruby idioms that may be hard to understand will be explained
in the text. If you’d like to spend a few minutes getting up to speed with Ruby, start
with the official 20-minute tutorial at http://mng.bz/THR3.
resent documents. The bson Ruby gem serializes Ruby objects to and from BSON.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.ruby-lang.org/en/downloads/
http://docs.rubygems.org/read/chapter/3
http://mng.bz/THR3
http://www.it-ebooks.info/

39MongoDB through the Ruby lens

Successfully installed bson-1.4.0
Successfully installed mongo-1.4.0
2 gems installed
Installing ri documentation for bson-1.4.0...
Installing ri documentation for mongo-1.4.0...
Installing RDoc documentation for bson-1.4.0...
Installing RDoc documentation for mongo-1.4.0...

We’ll start by connecting to MongoDB. First, make sure that mongod is running. Next,
create a file called connect.rb and enter the following code:

require 'rubygems'
require 'mongo'

@con = Mongo::Connection.new
@db = @con['tutorial']
@users = @db['users']

The first two require statements ensure that you’ve loaded the driver. The next three
lines instantiate a connection, assign the tutorial database to the @db variable, and
store a reference to the users collection in the @users variable. Save the file and run it:

$ruby connect.rb

If no exceptions are raised, you’ve successfully connected to MongoDB from Ruby.
That may not seem glamorous, but connecting is the first step in using MongoDB
from any language. Next, you’ll use that connection to insert some documents.

3.1.2 Inserting documents in Ruby

All of the MongoDB drivers are designed to use the most natural document represen-
tation for their language. In JavaScript, JSON objects are the obvious choice, since
JSON is a document data structure; in Ruby, the hash data structure makes the most
sense. The native Ruby hash differs from a JSON object only in a couple small ways;
most notably, where JSON separates keys and values with a colon, Ruby uses a hash
rocket (=>).2

 If you’re following along, go ahead and continue adding code to the connect.rb
file. Alternatively, a nice approach is to use Ruby’s interactive REPL, irb. You can
launch irb and require connect.rb so that you’ll immediately have access to the con-
nection, database, and collection objects initialized therein. You can then run Ruby
code and receive immediate feedback. Here’s an example:

$ irb -r connect.rb
irb(main):001:0> id = @users.save({"lastname" => "knuth"})
=> BSON::ObjectId('4c2cfea0238d3b915a000004')
irb(main):002:0> @users.find_one({"_id" => id})
=> {"_id"=>BSON::ObjectId('4c2cfea0238d3b915a000004'), "lastname"=>"knuth"}

2 In Ruby 1.9, you may optionally use a colon as the key-value separator, but we’ll be sticking with the hash

rocket in the interest of backward compatibility.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

40 CHAPTER 3 Writing programs using MongoDB

Let’s build some documents for your users collection. You’ll create two documents rep-
resenting two users, smith and jones. Each document, expressed as a Ruby hash, is
assigned to a variable:

smith = {"last_name" => "smith", "age" => 30}
jones = {"last_name" => "jones", "age" => 40}

To save the documents, you’ll pass them to the collection’s insert method. Each call
to insert returns a unique ID, which you’ll store in a variable to simplify later retrieval:

smith_id = @users.insert(smith)
jones_id = @users.insert(jones)

You can verify that the documents have been saved with some simple queries. As usual,
each document’s object ID will be stored in the _id key. So you can query with the
user collection’s find_one method like so:

@users.find_one({"_id" => smith_id})
@users.find_one({"_id" => jones_id})

If you’re running the code in irb, the return values for these queries will appear at
the prompt. If the code is being run from a Ruby file, prepend Ruby’s p method to
print the output to the screen:

p @users.find_one({"_id" => smith_id})

You’ve successfully inserted two documents from Ruby. Let’s now take a closer look at
queries.

3.1.3 Queries and cursors

You just used the driver’s find_one method to retrieve a single result. It was simple,
but that’s because find_one hides some of the details of performing queries with
MongoDB. You’ll see how this is so by looking at the standard find method. Here are
two possible find operations on your data set:

@users.find({"last_name" => "smith"})

@users.find({"age" => {"$gt" => 20}})

It should be clear that the first query searches for all user documents where the
last_name is smith and that the second query matches all documents where the age is
greater than 30. Try entering the second query in irb:

irb(main):008:0> @users.find({"age" => {"$gt" => 30}})
=> <#Mongo::Cursor:0x10109e118 ns="tutorial.users"

@selector={"age" => "$gt" => 30}}>

The first thing you’ll notice is that the find method doesn’t return a result set, but
rather a cursor object. Cursors, found in many database systems, return query result
sets in batches for efficiency iteratively. Imagine that your users collection contained
a million documents matching your query. Without a cursor, you’d need to return all
those documents at once. Returning such a huge result right away would mean
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

41MongoDB through the Ruby lens

copying all that data into memory, transferring it over the wire, and then deserializing
it on the client side. This would be unnecessarily resource intensive. To prevent this,
queries instantiate a cursor, which is then used to retrieve a result set in manageable
chunks. Of course, this is all opaque to the user; as you request more results from the
cursor, successive calls to MongoDB occur as needed to fill the driver’s cursor buffer.

 Cursors are explained in more detail in the next section. Returning to the exam-
ple, you’ll now fetch the results of the $gt query:

cursor = @users.find({"age" => {"$gt" => 20}})

cursor.each do |doc|
puts doc["last_name"]

end

Here you use Ruby’s each iterator, which passes each result to a code block. Here, the
last_name attribute is then printed to the console. If you’re not familiar with Ruby
iterators, here’s a more language-neutral equivalent:

cursor = @users.find({"age" => {"$gt" => 20}})

while doc = cursor.next
puts doc["last_name"]

end

In this case, you use a simple while loop that iterates over the cursor by assigning suc-
cessive calls to the cursor’s next method to a local variable, doc.

 The fact that you even have to think about cursors here may come as a surprise
given the shell examples from the previous chapter. But the shell uses cursors the
same way every driver does; the difference is that the shell automatically iterates over
the first 20 cursor results when you call find(). To get the remaining results, you can
continue iterating manually by entering the it command.

3.1.4 Updates and deletes

Recall from the previous chapter that updates require at least two arguments: a query
selector and an update document. Here’s a simple example using the Ruby driver:

@users.update({"last_name" => "smith"}, {"$set" => {"city" => "Chicago"}})

This update finds the first user with a last_name of smith and, if found, sets the value
of city to Chicago. This update uses the $set operator.

 By default, MongoDB updates apply to a single document only. In this case, even if
you have multiple users with the last name of smith, only one document will be
updated. To apply the update to a particular smith, you’d need to add more condi-
tions to your query selector. But if you actually want to apply the update to all smith
documents, you must issue a multi-update. You can do this by passing :multi => true as
the third argument to the update method:

@users.update({"last_name" => "smith"},
{"$set" => {"city" => "New York"}}, :multi => true)
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

42 CHAPTER 3 Writing programs using MongoDB

Deleting data is much simpler. You simply use the remove method. This method takes
an optional query selector which will remove only those documents matching the
selector. If no selector is provided, all documents in the collection will be removed.
Here, you’re removing all user documents where the age attribute is greater than or
equal to 40:

@users.remove({"age" => {"$gte" => 40}})

With no arguments, the remove method deletes all remaining documents:

@users.remove

You may recall from the previous chapter that remove doesn’t actually drop the collec-
tion. To drop a collection and all its indexes, use the drop_collection method:

connection = Mongo::Connection.new
db = connection['tutorial']
db.drop_collection('users')

3.1.5 Database commands

You saw in the last chapter the centrality of database commands. There, we looked at
the two stats commands. Here, we’ll look at how you can run commands from the
driver using the listDatabases command as an example. This is one of a number of
commands that must be run on the admin database, which is treated specially when
authentication is enabled. For details on the authentication and the admin database,
see chapter 10.

 First, you instantiate a Ruby database object referencing the admin database. You
then pass the command’s query specification to the command method:

@admin_db = @con['admin']
@admin_db.command({"listDatabases" => 1})

The response is a Ruby hash listing all the existing databases and their sizes on disk:

{
"databases" => [

{
"name" => "tutorial",
"sizeOnDisk" => 218103808,
"empty" => false

},
{

"name" => "admin",
"sizeOnDisk" => 1,
"empty" => true

},
{

"name" => "local",
"sizeOnDisk" => 1,
"empty" => true

}

],

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

43How the drivers work

"totalSize" => 218103808,
"ok" => true

}

Once you get used to representing documents as Ruby hashes, the transition from the
shell API is almost seamless. It’s okay if you’re still feeling shaky about using MongoDB
with Ruby; you’ll get more practice in section 3.3. But for now we’re going to take a
brief intermission to see how the MongoDB drivers work. This will shed more light on
some of MongoDB’s design and better prepare you to use the drivers effectively.

3.2 How the drivers work
At this point it’s natural to wonder what’s going on behind the scenes when you issue
commands through a driver or via the MongoDB shell. In this section, we’ll peel away
the curtain to see how the drivers serialize data and communicate it to the database.

 All MongoDB drivers perform three major functions. First, they generate
MongoDB object IDs. These are the default values stored in the _id field of all docu-
ments. Next, the drivers convert any language-specific representation of documents to
and from BSON, the binary data format used by MongoDB. In the foregoing examples,
the driver serializes all the Ruby hashes into BSON and then deserializes the BSON
that’s returned from the database back to Ruby hashes.

 The drivers’ final function is to communicate with the database over a TCP socket
using the MongoDB wire protocol. The details of the protocol are beyond our scope.
But the style of socket communication, in particular whether writes on the socket wait
for a response, is important, and we’ll explore the topic in this section.

3.2.1 Object ID generation

Every MongoDB document requires a primary key. That key, which must be unique
for all documents in each collection, is referenced by a document’s _id field. Develop-
ers are free to use their own custom values as the _id, but when not provided, a
MongoDB object ID will be used. Before sending a document to the server, the driver
checks whether the _id field is present. If the field is missing, an object ID proper will
be generated and stored as _id.

 Because a MongoDB object ID is a globally unique identifier, it’s safe to assign the
ID to a document at the client without having to worry about creating a duplicate ID.
Now, you’ve certainly seen object IDs in the wild, but you may not have noticed that
they’re made up of 12 bytes. These bytes have a specific structure which is illustrated
in figure 3.1.

 The most significant four bytes carry a standard Unix timestamp that encodes the
number of seconds since the epoch. The next three bytes store the machine id, which
is followed by a two-byte process id. The final three bytes store a process-local counter
that’s incremented each time an object ID is generated.

4c291856 238d3b 19b2 000001
4-byte timestamp machine id process id counter Figure 3.1 MongoDB object ID format

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

44 CHAPTER 3 Writing programs using MongoDB

 One of the incidental benefits of using MongoDB object IDs is that they include a
timestamp. Most of the drivers allow you to extract the timestamp, thus providing the
document creation time, with resolution to the nearest second, for free. Using the
Ruby driver, you can call an object ID’s generation_time method to get that ID’s cre-
ation time as a Ruby Time object:

irb(main):002:0> id = BSON::ObjectId.new
=> BSON::ObjectId('4c41e78f238d3b9090000001')
irb(main):003:0> id.generation_time
=> Sat Jul 17 17:25:35 UTC 2010

Naturally, you can also use object IDs to issue range queries on object creation time.
For instance, if you wanted to query for all documents created between October 2010
and November 2010, you could create two object IDs whose timestamps encode those
dates and then issue a range query on _id. Since Ruby provides methods for generat-
ing object IDs from any Time object, the code for doing this is trivial:

oct_id = BSON::ObjectId.from_time(Time.utc(2010, 10, 1))
nov_id = BSON::ObjectId.from_time(Time.utc(2010, 11, 1))

@users.find({'_id' => {'$gte' => oct_id, '$lt' => nov_id}})

I’ve explained the rationale for MongoDB object IDs and the meaning behind the
bytes. All that remains is to see how they’re encoded. That’s the subject of the next
section, where we discuss BSON.

3.2.2 BSON

BSON is the binary format used to represent documents in MongoDB. BSON acts as
both a storage and command format: all documents are stored on disk as BSON, and
all queries and commands are specified using BSON documents. Consequently, all
MongoDB drivers must be able to translate between some language-specific document
representation and BSON.

BSON defines the data types you can use with MongoDB. Knowing which types
BSON comprises, as well as a bit about their encoding, will take you a long way in using
MongoDB effectively and diagnosing certain performance issues when they occur.

 At the time of this writing, the BSON specification includes 19 data types. What this
means is that each value within a document must be convertible into one of these
types in order to be stored in MongoDB. The BSON types include many that you’d
expect: UTF-8 string, 32- and 64-bit integer, double, Boolean, timestamp, and UTC
datetime. But a number of types are specific to MongoDB. For instance, the object ID
format described in the previous section gets its own type; there’s a binary type for
opaque blobs; and there’s even a symbol type for languages that support it.

 Figure 3.2 illustrates how you serialize a Ruby hash into a bona fide BSON docu-
ment. The Ruby document contains an object ID and a string. When translated to a
BSON document, what comes first is a 4-byte header indicating the document’s size
(you can see that this one is 38 bytes). Next are the two key-value pairs. Each pair

begins with a byte denoting its type, followed by a null-terminated string for the key

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

45How the drivers work

name, which is then followed by the value being stored. Finally, a null byte terminates
the document.

 Though knowing the ins and outs of BSON isn’t a strict requirement, experience
shows that some familiarity benefits the MongoDB developer. To take just one exam-
ple, it’s possible to represent an object ID as a string or as a BSON object ID proper. As
a consequence, these two shell queries aren’t equivalent:

db.users.find({_id : ObjectId('4c41e78f238d3b9090000001')});
db.users.find({_id : '4c41e78f238d3b9090000001'})

Only one of these two queries can match the _id field, and that’s entirely dependent
on whether the documents in the users collection are stored as BSON object IDs or as
BSON strings that indicate the hex values of the ID.3 What all of this goes to show is that
knowing even a bit about BSON can go a long way in diagnosing simple code issues.

3.2.3 Over the network

In addition to creating object IDs and serializing to BSON, the MongoDB drivers have
one more obvious core function: to communicate with the database server. As
mentioned, this communication occurs over a TCP socket using a custom wire

3 Incidentally, if you’re storing MongoDB object IDs, you should store them as BSON object IDs, not as strings.
Apart from being the object ID storage convention, BSON object IDs take up less than half the space of

 "name" => "smith"
}

0 0 0 38

7 4c 2a 2d 31 23 8d 3b 19 b2 00 00 03_ i d 0

2 n a m e 0 0 0 0 6 s m i t h 0

0

{
 "_id" => ObjectId('4c2a2d31238d3b19b2000003'),

BSON serialization

MongoDB document as Ruby hash

MongoDB document as BSON

Type 7 (Object Id), "_id" key, 12-byte id

Type 2 (String), "name" key, string length, and string value

Document null terminator

Document length in bytes

Figure 3.2 Translating
from Ruby to BSON
strings.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

46 CHAPTER 3 Writing programs using MongoDB

protocol.4 This TCP business is fairly low-level and not so germane to the concerns of
most application developers. What’s relevant here is an understanding of when the
drivers wait for responses from the server and when they “fire and forget” instead.

 I’ve already spoken about how queries work, and obviously, every query requires a
response. To recap, a query is initiated when a cursor object’s next method is invoked.
At that point, the query is sent to the server, and the response is a batch of documents.
If that batch satisfies the query, no further round trips to the server will be necessary.
But if there happen to be more query results than can fit in the first server response, a
so-called getmore directive will be sent to the server to fetch the next set of query
results. As the cursor is iterated, successive getmore calls will be made until the query
is complete.

 There’s nothing surprising about the network behavior for queries just described,
but when it comes to database writes (inserts, updates, and removes), the default
behavior may seem unorthodox. That’s because, by default, the drivers don’t wait for a
response from the server when writing to the server. So when you insert a document,
the driver writes to the socket and assumes that the write has succeeded. One tactic
that makes this possible is client-side object ID generation: since you already have the
document’s primary key, there’s no need to wait for the server to return it.

 This fire-and-forget write strategy puts a lot of users on edge; fortunately, this
behavior is configurable. All of the drivers implement a write safety mode that can be
enabled for any write (insert, update, or delete). In Ruby, you can issue a safe insert
like so:

@users.insert({"last_name" => "james"}, :safe => true)

When writing in safe mode, the driver appends a special command called get-
lasterror to the insert message. This accomplishes two things. First, because get-
lasterror is a command, and thus requires a round trip to the server, it ensures that
the write has arrived. Second, the command verifies that the server hasn’t thrown any
errors on the current connection. If an error has been thrown, the drivers will raise an
exception, which can be handled gracefully. You can use safe mode to guarantee that
application-critical writes reach the server, but you might also employ safe mode when
you expect an explicit error. For instance, you’ll often want to enforce the uniqueness
of a value. If you’re storing user data, you’ll maintain a unique index on the username
field. The unique index will cause the insert of a document with a duplicate username
to fail, but the only way to know that it has failed at insert time is to use safe mode.

 For most purposes, it’s prudent to enable safe mode by default. You may then opt to
disable safe mode for the parts of an application that write lower-value data requiring
higher throughput. Weighing this trade-off isn’t always easy, and there are several more
safe mode options to consider. We’ll discuss these in much more detail in chapter 8.

 By now, you should be feeling more comfortable with how the drivers work, and
you’re probably itching to build a real application. In the next section, we’ll put it all
together, using the Ruby driver to construct a basic Twitter monitoring app.
4 A few drivers also support communication over Unix domain sockets.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

47Building a simple application

3.3 Building a simple application
We’ll build a simple application for archiving and displaying tweets. You can imagine
this being a component in a larger application that allows users to keep tabs on search
terms relevant to their businesses. This example will demonstrate how easy it is to con-
sume JSON from an API like Twitter’s and convert that to MongoDB documents. If you
were doing this with a relational database, you’d have to devise a schema in advance,
probably consisting of multiple tables, and then declare those tables. Here, none of
that is required, yet you’ll still preserve the rich structure of the tweet documents, and
you’ll be able to query them effectively.

 Let’s call the app TweetArchiver. TweetArchiver will consist of two components:
the archiver and the viewer. The archiver will call the Twitter search API and store the
relevant tweets, and the viewer will display the results in a web browser.

3.3.1 Setting up

This application requires three Ruby libraries. You can install them like so:

gem install mongo
gem install twitter
gem install sinatra

It’ll be useful to have a configuration file that you can share between the archiver and
viewer scripts. Create a file called config.rb, and initialize the following constants:

DATABASE_NAME = "twitter-archive"
COLLECTION_NAME = "tweets"
TAGS = ["mongodb", "ruby"]

First you specify the names of the database and collection you’ll be using for your
application. Then you define an array of search terms, which you’ll send to the Twit-
ter API.

 The next step is to write the archiver script. You start with a TweetArchiver class.
You’ll instantiate the class with a search term. Then you’ll call the update method on
the TweetArchiver instance, which issues a Twitter API call, and save the results to a
MongoDB collection.

 Let’s start with the class’s constructor:

def initialize(tag)
connection = Mongo::Connection.new
db = connection[DATABASE_NAME]
@tweets = db[COLLECTION_NAME]

@tweets.create_index([['id', 1]], :unique => true)
@tweets.create_index([['tags', 1], ['id', -1]])

@tag = tag
@tweets_found = 0

end

The initialize method instantiates a connection, a database object, and the collec-

tion object you’ll use to store the tweets. This method also creates a couple of indexes.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

48 CHAPTER 3 Writing programs using MongoDB

Every tweet will have an id field (distinct from MongoDB’s _id field) which references
the tweet’s internal Twitter ID. You’re creating a unique index on this field to keep
from inserting the same tweet twice.

 You’re also creating a compound index on tags ascending and id descending.
Indexes can be specified in ascending or descending order. This matters mainly when
creating compound indexes; you should always choose the directions based on your
expected query patterns. Since you’re going to want to query for a particular tag and
show the results from newest to oldest, an index with tags ascending and ID descending
will make that query use the index both for filtering results and for sorting them. As you
can see here, you indicate index direction with 1 for ascending and -1 for descending.

3.3.2 Gathering data

MongoDB allows you to insert data regardless of its structure. Since you don’t need to
know which fields you’ll be given in advance, Twitter is free to modify its API’s return
values with practically no consequences to your application. Normally, using an
RDBMS, any change to Twitter’s API (or more generally, to your data source) will
require a database schema migration. With MongoDB, your application might need to
change to accommodate new data schemas, but the database itself can handle any
document-style schema automatically.

 The Ruby Twitter library returns Ruby hashes, so you can pass these directly to
your MongoDB collection object. Within your TweetArchiver, you add the following
instance method:

def save_tweets_for(term)
Twitter::Search.new.containing(term).each do |tweet|

@tweets_found += 1
tweet_with_tag = tweet.to_hash.merge!({"tags" => [term]})
@tweets.save(tweet_with_tag)

end
end

Before saving each tweet document, you make one small modification. To simplify later
queries, you add the search term to a tags attribute. Then you pass the modified doc-
ument to the save method. Here, then, is the complete listing for the archiver class.

require 'rubygems'
require 'mongo'
require 'twitter'

require 'config'

class TweetArchiver

Create a new instance of TweetArchiver
def initialize(tag)

connection = Mongo::Connection.new
db = connection[DATABASE_NAME]
@tweets = db[COLLECTION_NAME]

Listing 3.1 A class for fetching tweets and archiving them in MongoDB
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

49Building a simple application

@tweets.create_index([['id', 1]], :unique => true)
@tweets.create_index([['tags', 1], ['id', -1]])

@tag = tag
@tweets_found = 0

end

def update
puts "Starting Twitter search for '#{@tag}'..."
save_tweets_for(@tag)
print "#{@tweets_found} tweets saved.\n\n"

end

private

def save_tweets_for(term)
Twitter::Search.new(term).each do |tweet|

@tweets_found += 1
tweet_with_tag = tweet.to_hash.merge!({"tags" => [term]})
@tweets.save(tweet_with_tag)

end
end

end

All that remains is to write a script to run the TweetArchiver code against each of the
search terms. Create a file called update.rb containing the following:

require 'config'
require 'archiver'

TAGS.each do |tag|
archive = TweetArchiver.new(tag)
archive.update

end

Next, run the update script:

ruby update.rb

You’ll see some status messages indicating that tweets have been found and saved. You
can verify that the script works by opening up the MongoDB shell and querying the
collection directly:

> use twitter-archive
switched to db twitter-archive
> db.tweets.count()
30

To keep the archive current, you can rerun the update script once every few minutes
using a cron job. But that’s an administrative detail. What’s important here is that
you’ve managed to store tweets from Twitter searches in only a few lines of code.5 Now
comes the task of displaying the results.
5 It’s possible to accomplish this in far fewer lines of code. Doing so is left as an exercise to the reader.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

50 CHAPTER 3 Writing programs using MongoDB

3.3.3 Viewing the archive

You’ll use Ruby’s Sinatra web framework to build a simple app to display the results.
Create a file called viewer.rb and place it in the same directory as the other scripts.
Next, make a subdirectory called views, and place a file there called tweets.erb. The
project’s file structure should looks like this:

- config.rb
- archiver.rb
- update.rb
- viewer.rb
- /views

- tweets.erb

Now edit viewer.rb with the following code.

require 'rubygems'
require 'mongo'
require 'sinatra'

require 'config'

configure do
db = Mongo::Connection.new[DATABASE_NAME]
TWEETS = db[COLLECTION_NAME]

end

get '/' do
if params['tag']

selector = {:tags => params['tag']}
else

selector = {}
end

@tweets = TWEETS.find(selector).sort(["id", -1])

erb :tweets
end

The first lines require the necessary libraries along with your config file B. Next
there’s a configuration block that creates a connection to MongoDB and stores a ref-
erence to your tweets collection in the constant TWEETS C.

 The real meat of the application is in the lines beginning with get '/' do. The
code in this block handles requests to the application’s root URL. First, you build your
query selector. If a tags URL parameter has been provided then you create a query
selector that restricts the result set to the given tags D. Otherwise, you create a blank
selector, which returns all documents in the collection E. You then issue the query F.
By now you should know that what gets assigned to the @tweets variable isn’t a result
set, but a cursor. You’ll iterate over that cursor in your view.

 The last line G renders the view file tweets.erb, whose full code listing is shown next.

Listing 3.2 A simple Sinatra application for displaying and searching the Tweet archive

Require
libraries

B

Instantiate
collection
for tweets

C

Dynamically build
query selector

D

Or use
blank selector

E

Issue queryF
Render viewG
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

51Building a simple application

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html lang='en' xml:lang='en' xmlns='http://www.w3.org/1999/xhtml'>
<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>

<style>
body {

background-color: #DBD4C2;
width: 1000px;
margin: 50px auto;

}

h2 {
margin-top: 2em;

}
</style>

</head>

<body>

<h1>Tweet Archive</h1>

<% TAGS.each do |tag| %>
<a href="/?tag=<%= tag %>"><%= tag %>

<% end %>

<% @tweets.each do |tweet| %>
<h2><%= tweet['text'] %></h2>
<p>

<a href="http://twitter.com/<%= tweet['from_user'] %>">
<%= tweet['from_user'] %>

on <%= tweet['created_at'] %>

</p>

<img src="<%= tweet['profile_image_url'] %>" width="48" />
<% end %>

</body>
</html>

Most of the code is just HTML with some ERB mixed in.6 The important parts come
near the end, with the two iterators. The first of these cycles through the list of tags to
display links for restricting the result set to a given tag. The second iterator, beginning
with the @tweets.each code, cycles through each tweet to display the tweet’s text, cre-
ation date, and user profile image. You can see results by running the application:

$ ruby viewer.rb

Listing 3.3 HTML with embedded Ruby for rendering the Tweets

6 ERB stands for embedded Ruby. The Sinatra app runs the tweets.erb file through an ERB processor and eval-

uates any Ruby code between <% and %> in the context of the application.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

52 CHAPTER 3 Writing programs using MongoDB

If the application starts without error, you’ll see the standard Sinatra startup message:

$ ruby viewer.rb
== Sinatra/1.0.0 has taken the stage on 4567 for development
with backup from Mongrel

You can then point your web browser to http://localhost:4567. The page should look
something like the screenshot in figure 3.3. Try clicking on the links at the top of the
screen to narrow the results to a particular tag.

 That’s the extent of the application. It’s admittedly simple, but it demonstrates
some of the ease of using MongoDB. You didn’t have to define your schema in
advance; you took advantage of secondary indexes to make your queries fast and pre-
vent duplicate inserts; and you had a relatively simple integration with your program-
ming language.

3.4 Summary
You’ve just learned the basics of talking to MongoDB through the Ruby program-
ming language. You saw how easy it is to represent documents in Ruby, and how simi-
lar Ruby’s CRUD API is to that of the MongoDB shell. We dove into some internals,
learning how the drivers in general are built and looking in detail at object IDs,
BSON, and the MongoDB network protocol. Finally, you built a simple application to
show the use of MongoDB with real data. Though you certainly shouldn’t feel you’ve
reached MongoDB mastery, the prospect of writing applications with the database
should be in reach.

 Beginning with chapter 4, we’re going to take everything you’ve learned so far and
drill down. Specifically, we’ll investigate how you might build an e-commerce applica-
tion in MongoDB. That would be an enormous project, so we’ll focus solely on a few
sections on the back end. I’ll present some data models for that domain, and you’ll

Figure 3.3 The Tweet Archiver output rendered in a web browser
see how to insert and query that kind of data.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

Part 2

Application
development

in MongoDB

The second part of this book is a deep exploration of MongoDB’s docu-
ment data model, query language, and CRUD (create, read, update, and delete)
operations.

 We’ll make these topics concrete by progressively designing an e-commerce
data model and the CRUD operations necessary for managing such data. Thus
each chapter will present its subject matter in a top-down fashion, first by pre-
senting examples within the sample e-commerce application’s domain, and then
by systematically filling in the details. On your first reading, you may want to
read the e-commerce examples only and save the detailed material for later, or
vice versa.

 In chapter 4, you’ll learn some schema design principles and then construct
a basic e-commerce data model for products, categories, users, orders, and prod-
uct reviews. Then you’ll learn about how MongoDB organizes data on the data-
base, collection, and document levels. This will include a summary of BSON’s
core data types.

 Chapter 5 covers MongoDB’s query language and aggregation functions.
You’ll learn how to issue common queries against the data model developed in
the previous chapter, and you’ll practice a few aggregations. Then, in the nuts
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

and bolts sections, you’ll see the semantics of query operators presented in detail. The
chapter ends with an explanation of the map-reduce and grouping functions.

 In presenting MongoDB’s update and delete operations, chapter 6 brings us full
circle by showing the rationale for the e-commerce data model. You’ll learn how to
maintain the category hierarchy and how to manage inventory transactionally. In
addition, the update operators will be covered in detail along with the powerful find-
AndModify command.
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

Document-oriented data
This chapter takes a closer look at document-oriented data modeling and at how
data is organized at the database, collection, and document levels in MongoDB. I’ll
start with a brief, general discussion of schema design. This is helpful because a
large number of MongoDB users have never designed schemas for databases other
than the traditional RDBMS. This exploration of principles sets the stage for the sec-
ond part of the chapter, where we examine the design of an e-commerce schema in
MongoDB. Along the way, you’ll see how this schema differs from an equivalent
RDBMS schema, and you’ll learn how the typical relationships between entities, such
as one-to-many and many-to-many, are represented in MongoDB. The e-commerce
schema presented here will also serve as a basis for our discussions of queries, aggre-
gation, and updates in subsequent chapters.

 Since documents are the raw materials of MongoDB, I’ll devote the final por-
tion of this chapter to the small details and corner cases surrounding documents
and their environs. This implies a more detailed discussion of databases, collec-
tions, and documents than you’ve seen up to this point. But if you read to the end,

In this chapter
 Schema design

 Data models for e-commerce

 Databases, collections, and documents
55

you’ll be familiar with most of the obscure features and limitations of document

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

56 CHAPTER 4 Document-oriented data

data in MongoDB. You may also find yourself returning to this final section of the
chapter later on, as it contains many of the gotchas you’ll encounter when using
MongoDB in the wild.

4.1 Principles of schema design
Database schema design is the process of choosing the best representation for a data set
given the features of the database system, the nature of the data, and the application
requirements. The principles of schema design for relational database systems are well
established. With RDBMSs, you’re encouraged to shoot for a normalized data model,
which helps to ensure generic queryability and avoid updates to data that might result
in inconsistencies. Moreover, the established patterns prevent developers from having
to wonder how to model, say, one-to-many and many-to-many relationships. But
schema design is never an exact science, even with relational databases. Performance-
intensive applications, or applications that have to consume unstructured data, may
require a more generic data model. Some applications are so demanding in their stor-
age and scaling requirements that they’re forced to break all the old schema design
rules. FriendFeed is a great example of this, and the article describing the site’s unorth-
odox data model is well worth your time (see http://mng.bz/ycG3).

 If you’re coming from the RDBMS world, you may be troubled by MongoDB’s lack
of hard schema design rules. Good practices have emerged, but there’s still usually
more than one good way to model a given data set. The premise of this section is that
principles can drive schema design, but the reality is that those principles are pliable.
To get you thinking, here are a few questions you can bring to the table when model-
ing data with any database system.

 What’s the basic unit of data? In an RDBMS, you have tables with columns and
rows. In a key-value store, you have keys pointing to amorphous values. In
MongoDB, the basic unit of data is the BSON document.

 How can you query and update that data? Once you understand the basic data
type, you need to know how to manipulate it. RDBMSs feature ad hoc queries
and joins. MongoDB also allows ad hoc queries, but joins aren’t supported. Sim-
ple key-value stores only permit fetching values by a single key.

Databases also diverge in the kinds of updates they permit. With an RDBMS,
you can update documents in sophisticated ways using SQL and wrap multiple
updates in a transaction to get atomicity and rollback. MongoDB doesn’t sup-
port transactions, but it does support a variety of atomic update operations that
can work on the internal structures of a complex document. With simple key-
value stores, you might be able to update a value, but every update will usually
mean replacing the value completely.

The essential point is that building the best data model means understand-
ing the features of your database. If you want to model data well in MongoDB,
you must start with the knowledge of exactly which sorts of queries and updates
it’s best at.
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://mng.bz/ycG3
http://mng.bz/ycG3
http://www.it-ebooks.info/

57Designing an e-commerce data model

 What are your application access patterns? In addition to understanding the basic
unit of data and the features of the database, you also need to pin down the
needs of your application. If you read the FriendFeed article just mentioned,
you’ll see how the idiosyncrasies of an application can easily demand a schema
that goes against firmly held data modeling principles. The upshot is that you
must ask numerous questions about the application before you can determine
the ideal data model. What’s the read/write ratio? What sorts of queries do you
need? How is the data updated? What concurrency issues can you expect? How
well structured is the data?

The best schema designs are always the product of deep knowledge of the database
you’re using, good judgment about the requirements of the application at hand, and
plain old experience. The examples in this chapter, and the schema design patterns in
appendix B, have been designed to help you develop a good sense for schema design
in MongoDB. Having studied these examples, you’ll be well prepared to design the
best schemas for your own applications.

4.2 Designing an e-commerce data model
Demonstrations of next-generation data stores typically revolve around social media:
Twitter-like demo apps are the norm. Unfortunately, such apps tend to have rather
simple data models. That’s why, in this and in subsequent chapters, we’ll look at the
much richer domain of e-commerce. E-commerce has the advantage of including a
large number of familiar data modeling patterns. Plus, it’s not hard to imagine how
products, categories, product reviews, and orders are typically modeled in an RDBMS.
This should make the upcoming examples more instructive, since you’ll be able to
contrast them with some of your preconceived notions of schema design.

 E-commerce has often been a domain exclusive to RDBMSs, and this is true for a
couple of reasons. The first is that e-commerce sites generally require transactions,
and transactions are an RDBMS staple. The second is that, until recently, domains that
require rich data models and sophisticated queries have been assumed to fit best
within the realm of the RDBMS. The following examples call into question this second
assumption.

 Before we proceed, a note on scope is in order. Building an entire e-commerce
back end isn’t practical within the space of this book. What we’ll do instead is pick out
a handful of e-commerce entities and show how they might be modeled in MongoDB.
In particular, we’ll look at products and categories, users and orders, and product
reviews. For each entity, I’ll show an example document. Then, we’ll hint at some of
the database features that complement the document’s structure.

 For many developers, data model goes hand in hand with object mapping, and for that
purpose you’ve probably used an object-relational mapping library, such as Java’s
Hibernate framework or Ruby’s ActiveRecord. Such libraries are all but necessary for
building applications efficiently on an RDBMS. But they’re less necessary with

MongoDB. This is due in part to the fact that a document is already an object-like

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

58 CHAPTER 4 Document-oriented data

representation. It’s also partly due to drivers, which provide a fairly high-level inter-
face to MongoDB. You can frequently build entire applications on MongoDB using
the driver interface alone.

 That said, object mappers are convenient because they facilitate validation, type
checking, and associations. A number of mature MongoDB object mappers provide an
extra layer of abstraction above the basic language drivers, and you might consider
using one on a larger project.1 But regardless of the object mapper, you’re always ulti-
mately dealing with documents. That’s why this chapter focuses on the documents
themselves. Knowing the shape of documents in a well-designed MongoDB schema will
prepare you to work with the database intelligently, with or without an object mapper.

4.2.1 Products and categories

Products and categories are the mainstays of any e-commerce site. Products, in a nor-
malized RDBMS model, tend to require a large number of tables. There’s always a
table for basic product information, such as the name and SKU, but there’ll be other
tables to relate shipping information and pricing histories. If the system allows prod-
ucts with arbitrary attributes, then a complicated series of tables will be necessary to
define and store those attributes, as you saw in chapter 1 in the Magento example.
This multitable schema will be facilitated by the RDBMS’s ability to join tables.

 Modeling a product in MongoDB should be less complicated. Because collections
don’t enforce a schema, any product document will have room for whichever
dynamic attributes the product needs. And by using arrays to contain inner docu-
ment structures, you can typically condense a multitable RDBMS representation into a
single MongoDB collection. More concretely, here’s a sample product from a garden-
ing store.

doc =
{ _id: new ObjectId("4c4b1476238d3b4dd5003981"),

slug: "wheel-barrow-9092",
sku: "9092",
name: "Extra Large Wheel Barrow",
description: "Heavy duty wheel barrow...",

details: {
weight: 47,
weight_units: "lbs",
model_num: 4039283402,
manufacturer: "Acme",
color: "Green"

},

total_reviews: 4,
average_review: 4.5,

1 To find out which object mappers are most current for your language of choice, consult the recommenda-

Listing 4.1 A sample product document
tions at http://mongodb.org.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://mongodb.org
http://www.it-ebooks.info/

59Designing an e-commerce data model

pricing: {
retail: 589700,
sale: 489700,

},

price_history: [
{retail: 529700,
sale: 429700,
start: new Date(2010, 4, 1),
end: new Date(2010, 4, 8)

},

{retail: 529700,
sale: 529700,
start: new Date(2010, 4, 9),
end: new Date(2010, 4, 16)

},
],

category_ids: [new ObjectId("6a5b1476238d3b4dd5000048"),
new ObjectId("6a5b1476238d3b4dd5000049")],

main_cat_id: new ObjectId("6a5b1476238d3b4dd5000048"),

tags: ["tools", "gardening", "soil"],

}

The document contains the basic name, sku, and description fields. There’s also the
standard MongoDB object ID stored in the _id field. In addition, you’ve defined a
slug, wheel-barrow-9092, to provide a meaningful URL. MongoDB users sometimes
complain about the ugliness of object IDs in URLs. Naturally, you don’t want URLs that
look like this:

http://mygardensite.org/products/4c4b1476238d3b4dd5003981

Meaningful IDs are so much better:

http://mygardensite.org/products/wheel-barrow-9092

I generally recommend building a slug field if a URL will be generated for the docu-
ment. Such a field should have a unique index on it so that the value can be used as a
primary key. Assuming you’re storing this document in the products collection, you
can create the unique index like so:

db.products.ensureIndex({slug: 1}, {unique: true})

If you have a unique index on slug, you’ll need to insert your product document
using safe mode so that you’ll know if the insert fails. That way, you can retry with a
different slug if necessary. To take an example, imagine your gardening store has mul-
tiple wheelbarrows for sale. When you start selling a new wheelbarrow, your code will
need to generate a unique slug for the new product. Here’s how you’d perform the
insert from Ruby:

@products.insert({:name => "Extra Large Wheel Barrow",

:sku => "9092",

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

60 CHAPTER 4 Document-oriented data

:slug => "wheel-barrow-9092"},
:safe => true)

What’s important to note here is that you specify :safe => true. If the insert suc-
ceeds without raising an exception, you know you’ve chosen a unique slug. But if an
exception is raised, your code will need to retry with a new value for the slug.

 Continuing on, you have a key, details, that points to a sub-document containing
various product details. You’ve specified the weight, weight units, and the manufac-
turer’s model number. You might store other ad hoc attributes here as well. For
instance, if you were selling seeds, you might include attributes for the expected yield
and time to harvest, and if you were selling lawnmowers, you could include horse-
power, fuel type, and mulching options. The details attribute provides a nice con-
tainer for these kinds of dynamic attributes.

 Note that you can also store the product’s current and past prices in the same doc-
ument. The pricing key points to an object containing retail and sale prices.
price_history, by contrast, references a whole array of pricing options. Storing cop-
ies of documents like this is a common versioning technique.

 Next, there’s an array of tag names for the product. You saw a similar tagging
example in chapter 1, but the technique bears repeating. Since you can index array
keys, this is the simplest and best way of storing relevant tags on an item while at the
same time assuring efficient queryability.

 But what about relationships? You’ve been able to use rich document structures
such as sub-documents and arrays to store product details, prices, and tags all in a sin-
gle document. And yet, you eventually need to relate to documents in other collec-
tions. To start, you’ll relate products to a category structure. This relationship between
products and categories is usually conceived of as many-to-many, where each product
can belong to more than one category, and each category can contain multiple prod-
ucts. In an RDMBS, you’d use a join table to represent a many-to-many relationship
like this one. Join tables store all the relationship references between two tables in a
single table. Using a SQL join, it’s then possible to issue a single query to retrieve a
product with all its categories, and vice versa.

 MongoDB doesn’t support joins, so you need a different many-to-many strategy.
Looking at your wheelbarrow document, you’ll see a field called category_ids con-
taining an array of object IDs. Each object ID acts as a pointer to the _id field of some
category document. For reference, here’s a sample category document.

doc =
{ _id: new ObjectId("6a5b1476238d3b4dd5000048"),

slug: "gardening-tools",
ancestors: [{ name: "Home",

_id: new ObjectId("8b87fb1476238d3b4dd500003"),
slug: "home"

},

Listing 4.2 A category document
{ name: "Outdoors",

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

61Designing an e-commerce data model

_id: new ObjectId("9a9fb1476238d3b4dd5000001"),
slug: "outdoors"

}
],

parent_id: new ObjectId("9a9fb1476238d3b4dd5000001"),

name: "Gardening Tools",
description: "Gardening gadgets galore!",

}

If you go back to the product document and look carefully at the object IDs in its
category_ids field, you’ll see that the product is related to the Gardening Tools cate-
gory just shown. Having the category_ids array key in the product document enables
all the kinds of queries you might issue on a many-to-many relationship. For instance,
to query for all products in the Gardening Tools category, the code is simple:

db.products.find({category_ids => category['_id']})

To query for all categories from a given product, you use the $in operator. This is
analogous to SQL’s IN directive:

db.categories.find({_id: {$in: product['category_ids']}})

With the many-to-many relationship described, I’ll say a few words about the category
document itself. You’ll notice the standard _id, slug, name, and description fields.
These are straightforward, but the array of parent documents may not be. Why are
you redundantly storing such a large percentage of each of the document’s ancestor
categories? The fact is that categories are always conceived of as a hierarchy, and the
ways of representing such a hierarchy in a database are many.2 The strategy you
choose is always dependent on the needs of the application. In this case, because
MongoDB doesn’t support joins, we’ve elected to denormalize the parent category
names in each child document. This way, when querying for the Gardening Products
category, there’s no need to perform additional queries to get the names and URLs of
the parent categories, Outdoors and Home.

 Some developers would consider this level of denormalization unacceptable.
There are other options for representing a tree, and one of these is discussed in
appendix B. But for the moment, try to be open to the possibility that what best deter-
mine the schema are the demands of the application, and not necessarily the dictates
of theory. When you see more examples of querying and updating this structure in
the next two chapters, the rationale will become clearer.

4.2.2 Users and orders

Looking at how you model users and orders illustrates another common relationship:
one-to-many. That is, every user has many orders. In an RDBMS, you’d use a foreign
key in your orders table; here, the convention is similar. Examine the following listing:

2 Two such methods, the adjacency list and the nested set, are presented in this MySQL developer article:

http://mng.bz/83w4.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://mng.bz/83w4
http://www.it-ebooks.info/

62 CHAPTER 4 Document-oriented data

doc =
{ _id: ObjectId("6a5b1476238d3b4dd5000048")

user_id: ObjectId("4c4b1476238d3b4dd5000001")

state: "CART",

line_items: [
{ _id: ObjectId("4c4b1476238d3b4dd5003981"),

sku: "9092",
name: "Extra Large Wheel Barrow",
quantity: 1,
pricing: {

retail: 5897,
sale: 4897,

}
},

{ _id: ObjectId("4c4b1476238d3b4dd5003981"),
sku: "10027",
name: "Rubberized Work Glove, Black",
quantity: 2,
pricing: {

retail: 1499,
sale: 1299

}
}

],

shipping_address: {
street: "588 5th Street",
city: "Brooklyn",
state: "NY",
zip: 11215

},

sub_total: 6196
}

The second order attribute, user_id, stores a given user’s _id. It’s effectively a pointer
to the sample user, shown in listing 4.4 (we’ll discuss this listing presently). This
arrangement makes it easy to query either side of the relationship. To find all orders
for a given user is simple:

db.orders.find({user_id: user['_id']})

The query for getting the user for a particular order is equally simple:

user_id = order['user_id']
db.users.find({_id: user_id})

Using an object ID as a reference in this way, it’s easy to build a one-to-many relation-
ship between orders and users.

 We’ll now look at some other salient aspects of the order document. In general,
you’re using the rich representation afforded by the document data model. You’ll see

Listing 4.3 An e-commerce order, with line items, pricing, and a shipping address
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

63Designing an e-commerce data model

that the document includes both the line items and the shipping address. These attri-
butes, in a normalized relational model, would be located in separate tables. Here, the
line items consist of an array of sub-documents, each describing a product in the shop-
ping cart. The shipping address attribute points to a single object containing address
fields.

 Let’s take a moment to discuss the merits of this representation. First, there’s a win
for the human mind. Your entire concept of an order, including line items, shipping
address, and eventual payment information, can be encapsulated in a single entity.
When querying the database, you can return the entire order object with one simple
query. What’s more, the products, as they appeared when purchased, are effectively
frozen within your order document. Finally, as you’ll see in the next two chapters, and
as you may sense, you can easily query and modify this order document.

 The user document presents similar patterns, as it stores a list of address docu-
ments along with a list of payment method documents. In addition, at the top level of
the document, you find the basic attributes common to any user model. And as with
the slug field on your product, keep a unique index on the username field.

{ _id: new ObjectId("4c4b1476238d3b4dd5000001"),
username: "kbanker",
email: "kylebanker@gmail.com",
first_name: "Kyle",
last_name: "Banker",
hashed_password: "bd1cfa194c3a603e7186780824b04419",

addresses: [
{name: "home",
street: "588 5th Street",
city: "Brooklyn",
state: "NY",
zip: 11215},

{name: "work",
street: "1 E. 23rd Street",
city: "New York",
state: "NY",
zip: 10010}

],

payment_methods: [
{name: "VISA",
last_four: 2127,
crypted_number: "43f6ba1dfda6b8106dc7",
expiration_date: new Date(2014, 4)

}
]

}

Listing 4.4 A user document, with addresses and payment methods
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

64 CHAPTER 4 Document-oriented data

4.2.3 Reviews

We’ll close the sample data model with product reviews. Relationally speaking, each
product has many reviews. Here, that relationship is encoded using an object ID refer-
ence, review_id, which you can see in this sample review document.

{ _id: new ObjectId("4c4b1476238d3b4dd5000041"),
product_id: new ObjectId("4c4b1476238d3b4dd5003981"),
date: new Date(2010, 5, 7),
title: "Amazing",
text: "Has a squeaky wheel, but still a darn good wheel barrow.",
rating: 4,

user_id: new ObjectId("4c4b1476238d3b4dd5000041"),
username: "dgreenthumb",

helpful_votes: 3,
voter_ids: [new ObjectId("4c4b1476238d3b4dd5000041"),

new ObjectId("7a4f0376238d3b4dd5000003"),
new ObjectId("92c21476238d3b4dd5000032")

]
}

Most of the remaining attributes are self-explanatory. You store the review’s date,
title, and text; the rating provided by the user; and the user’s ID. But it may come as
a surprise that you store the username as well. After all, if this were an RDBMS, you’d
be able to pull in the username with a join on the users table. Since you don’t have
the join option with MongoDB, you can proceed in one of two ways: either query
against the user collection for each review or accept some denormalization. Issuing a
query for every review might be unnecessarily costly when the attribute being que-
ried (the username) is extremely unlikely to change. To be sure, you could go the
normalized route and display all reviews in just two MongoDB queries. But here
you’re designing a schema for the common case. This does mean that a username
update is more expensive, since a username will need to change in every place that
it appears, but again, that happens infrequently enough to justify this as a reason-
able design choice.

 Also noteworthy is the decision to store votes in the review document itself. It’s
common for users to be able to vote on reviews. Here, you store the object ID of each
voting user in an array of voter IDs. This allows you to prevent users from voting on a
review more than once, and it also gives you the ability to query for all the reviews a
user has voted on. Note also that you cache the total number of helpful votes, which
among other things allows you to sort reviews based on helpfulness.

 With that, we’ve covered a basic e-commerce data model. If this is your first time
looking at a MongoDB data model, then contemplating the utility of this model may
require a leap of faith. Rest assured that the mechanics of all of this—from adding

Listing 4.5 A document representing a product review
votes uniquely, to modifying orders, to querying products intelligently—will be

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

65Nuts and bolts: on databases, collections, and documents

explored and explained in the next two chapters, which discuss querying and updat-
ing, respectively.

4.3 Nuts and bolts: on databases, collections,
and documents
We’re going to take a break from the e-commerce example to look at some of the core
details of using databases, collections, and documents. Much of this involves defini-
tions, special features, and edge cases. If you’ve ever wondered how MongoDB allo-
cates data files, which data types are strictly permitted within a document, or what the
benefits of using capped collections are, read on.

4.3.1 Databases

A database is a logical and physical grouping of collections. In this section, we’ll dis-
cuss the details of creating and deleting databases. We’ll also jump down a level to see
how MongoDB allocates space for individual databases on the file system.

MANAGING DATABASES

There’s no explicit way to create a database in MongoDB. Instead, a database is cre-
ated automatically once you write to a collection in that database. Have a look at this
Ruby code:

@connection = Mongo::Connection.new
@db = @connection['garden']

Assuming that the database doesn’t exist already, the database has yet to be created on
disk even after executing this code. All you’ve done is instantiate an instance of the
class Mongo::DB. Only when you write to a collection are the data files created. Con-
tinuing on:

@products = @db['products']
@products.save({:name => "Extra Large Wheel Barrow"})

When you call save on the products collection, the driver tells MongoDB to insert the
product document into the garden.products namespace. If that namespace doesn’t
exist, then it’s created; part of this involves allocating the garden database on disk.

 To delete a database, which means dropping all its collections, you issue a special
command. You can drop the garden database from Ruby like so:

@connection.drop_database('garden')

From the MongoDB shell, you run the dropDatabase() method:

use garden
db.dropDatabase();

Do be careful when dropping databases; there’s no way to undo this operation.
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

66 CHAPTER 4 Document-oriented data

DATA FILES AND ALLOCATION

When you create a database, MongoDB allocates a set of data files on disk. All collec-
tions, indexes, and other metadata for the database are stored in these files. The data
files reside in whichever directory you’ve designated as the dbpath when starting
nmongod. When left unspecified, mongod stores all its files in /data/db.3 Let’s see how
this directory looks after creating the garden database:

$ cd /data/db
$ ls -al
drwxr-xr-x 6 kyle admin 204 Jul 31 15:48 .
drwxrwxrwx 7 root admin 238 Jul 31 15:46 ..
-rwxr-xr-x 1 kyle admin 67108864 Jul 31 15:47 garden.0
-rwxr-xr-x 1 kyle admin 134217728 Jul 31 15:46 garden.1
-rwxr-xr-x 1 kyle admin 16777216 Jul 31 15:47 garden.ns
-rwxr-xr-x 1 kyle admin 6 Jul 31 15:48 mongod.lock

First note the mongod.lock file, which stores the server’s process ID.4 The database
files themselves are all named after the database they belong to. garden.ns is the first
file to be generated. The file’s extension, ns, stands for namespaces. Every collection
and index in a database gets its own namespace, and the metadata for each
namespace is stored in this file. By default, the .ns file is fixed to 16 MB, which lets it
store approximately 24,000 namespaces. This means that the sum of the number of
indexes and collections in your database can’t exceed 24,000. You’re not likely to
need anywhere close to this number of collections or indexes. But on the off chance
that you need even more, you can makes the file larger by using the --nssize server
option.

 In addition to creating the namespace file, MongoDB allocates space for the col-
lections and indexes in files ending with incrementing integers starting with 0. Study
the directory listing and you’ll see two core data files, the 64 MB garden.0 and the
128 MB garden.1. The initial size of these files often comes as a shock to new users.
But MongoDB favors this preallocation to ensure that as much data as possible will be
stored contiguously. This way, when you query and update the data, those operations
are more likely to occur in proximity, rather than being spread across the disk.

 As you add data to your database, MongoDB continues to allocate more data files.
Each new data file gets twice the space of the previously allocated file until the largest
preallocated size of 2 GB is reached. Thus, garden.2 will be 256 MB, garden.3 will use
512 MB, and so forth. The assumption here is that, if the total data size is growing at a
constant rate, the data files should be allocated increasingly, which is a pretty standard
allocation strategy. Certainly one consequence is that the difference between allo-
cated space and actual space used can be high.5

3 On Windows, it’s c:\data\db.
4 Never delete or alter the lock file unless you’re recovering from an unclean shutdown. If you start mongod

and get an error message about the lock file, there’s a good chance that you’ve shut down uncleanly, and you
may have to initiate a recovery process. We discuss this further in chapter 10.

5 This may present a problem in deployments where space is at a premium. For those situations, you may use

some combination of the --noprealloc and --smallfiles server options.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

67Nuts and bolts: on databases, collections, and documents

 You can always check the amount of space used versus allocated using the stats
command:

> db.stats()
{

"collections" : 3,
"objects" : 10004,
"avgObjSize" : 36.005,
"dataSize" : 360192,
"storageSize" : 791296,
"numExtents" : 7,
"indexes" : 1,
"indexSize" : 425984,
"fileSize" : 201326592,
"ok" : 1

}

In this example, the fileSize field indicates the total size of files allocated for this
database. This is simply the sum of the sizes of the garden database’s two data files,
garden.0 and garden.1. Trickier is the difference between dataSize and storageSize.
The former is the actual size of the BSON objects in the database; the latter includes
extra space reserved for collection growth and also unallocated deleted space.6

Finally, the indexSize value shows the total size of indexes for this database. It’s
important to keep an eye on total index size, as database performance will be best
when all utilized indexes can fit in RAM. I’ll elaborate on this in chapters 7 and 10
when presenting techniques for troubleshooting performance issues.

4.3.2 Collections

Collections are containers for structurally or conceptually similar documents. Here,
I’ll describe creating and deleting collections in more detail. Then I’ll present
MongoDB’s special capped collections, and we’ll look at some examples of how the
core server uses collections internally.

MANAGING COLLECTIONS

As you saw in the previous section, you create collections implicitly by inserting docu-
ments into a particular namespace. But because more than one collection type exists,
MongoDB also provides a command for creating collections. From the shell:

db.createCollection("users")

When creating a standard collection, you have the option of preallocating a specific
number of bytes. This usually isn’t necessary but can be done like so:

db.createCollection("users", {size: 20000})

Collection names may contain numbers, letters, or . characters, but must begin with
a letter or number. Internally, a collection name is identified by its namespace name,

6 Technically, collections are allocated space inside each data file in chunks called extents. The storageSize

is the total space allocated for collection extents.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

68 CHAPTER 4 Document-oriented data

which includes the name of the database it belongs to. Thus, the products collection
is technically referred to as garden.products when referenced in a message to or
from the core server. This fully qualified collection name can’t be longer than 128
characters.

 It’s sometimes useful to include the . character in collection names to provide a
kind of virtual namespacing. For instance, you can imagine a series of collections with
titles like the following:

products.categories
products.images
products.reviews

Keep in mind that this is just an organizational principle; the database treats collec-
tions named with a . just like any other collection.

 Because I’ve already spoken about removing documents from collections and
dropping collections completely, you only need to note that collections can also be
renamed. As an example, you can rename the products collection with the shell’s
renameCollection method:

db.products.renameCollection("store_products")

CAPPED COLLECTIONS

In addition to the standard collections you’ve created so far, it’s also possible to create
what’s known as a capped collection. Capped collections were originally designed for
high-performance logging scenarios. They’re distinguished from standard collections
by their fixed size. This means that once a capped collection reaches its maximum
size, subsequent inserts will overwrite the least-recently-inserted documents in the col-
lection. This design prevents users from having to prune the collection manually
when only recent data may be of value.

 To understand how you might use a capped collection, imagine you want to keep
track of users’ actions on your site. Such actions might include viewing a product, add-
ing to the cart, checking out, and purchasing. You can write a script to simulate log-
ging these user actions to a capped collection. In the process, you’ll see some of these
collections’ interesting properties. Here’s a simple demonstration.

require 'rubygems'
require 'mongo'

VIEW_PRODUCT = 0
ADD_TO_CART = 1
CHECKOUT = 2
PURCHASE = 3

@con = Mongo::Connection.new
@db = @con['garden']

@db.drop_collection("user.actions")

Listing 4.6 Simulating the logging of user actions to a capped collection
@db.create_collection("user.actions", :capped => true, :size => 1024)

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

69Nuts and bolts: on databases, collections, and documents

@actions = @db['user.actions']

40.times do |n|
doc = {

:username => "kbanker",
:action_code => rand(4),
:time => Time.now.utc,
:n => n

}

@actions.insert(doc)
end

First, you create a 1 KB capped collection called users.actions using the DB#create_
collection method.7 Next, you insert 20 sample log documents. Each document con-
tains a username, an action code (stored as an integer from 0 through 3), and a time-
stamp. You’ve included an incrementing integer, n, so that you can identify which
documents have aged out. Now let’s query the collection from the shell:

> use garden
> db.user.actions.count();
10

Even though you’ve inserted 20 documents, only 10 documents exist in the collection.
If you query the collection, you’ll see why:

db.user.actions.find();
{ "_id" : ObjectId("4c55f6e0238d3b201000000b"), "username" : "kbanker",

"action_code" : 0, "n" : 10, "time" : "Sun Aug 01 2010 18:36:16" }
{ "_id" : ObjectId("4c55f6e0238d3b201000000c"), "username" : "kbanker",

"action_code" : 4, "n" : 11, "time" : "Sun Aug 01 2010 18:36:16" }
{ "_id" : ObjectId("4c55f6e0238d3b201000000d"), "username" : "kbanker",

"action_code" : 2, "n" : 12, "time" : "Sun Aug 01 2010 18:36:16" }
...

The documents are returned in order of insertion. If you look at the n values, it’s clear
that the oldest document in the collection is the tenth document inserted, which
means that documents 0 through 9 have already aged out. Since this capped collec-
tion has a maximum size of 1024 bytes, and contains just 10 documents, you can con-
clude that each document is roughly 100 bytes in length. You’ll see how to confirm
this assumption in the next subsection.

 Before doing so, I should point out a couple more differences between capped
and standard collections. First, the index on _id isn’t created by default for a capped
collection. This is a performance optimization; without an index, inserts take less
time. If you do want an index on _id, you can build the index manually. With no
indexes defined, it’s best to think of a capped collection as a data structure that you
process sequentially in lieu of querying randomly. For this purpose, MongoDB pro-
vides a special sort operator for returning a collection’s documents in natural

7 The equivalent creation command from the shell would be db.createCollection("users.actions",

{capped: true, size: 1024}).

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

70 CHAPTER 4 Document-oriented data

insertion order.8 Your previous query returned items from your collection in forward
natural order. To return them in reverse natural order, you must use the $natural
sort operator:

> db.user.actions.find().sort({"$natural": -1});

In addition to ordering documents naturally and eschewing indexes, capped collec-
tions limit certain CRUD operations. For one, you can’t delete individual documents
from a capped collection; nor can you perform any update that will increase the size
of a document.9

SYSTEM COLLECTIONS

Part of MongoDB’s design lies in its own internal use of collections. Two of these spe-
cial system collections that are always present are system.namespaces and system
.indexes. You can query the former to see all the namespaces defined for the current
database:

> db.system.namespaces.find();
{ "name" : "garden.products" }
{ "name" : "garden.system.indexes" }
{ "name" : "garden.products.$_id_" }
{ "name" : "garden.user.actions", "options" :

{ "create": "user.actions", "capped": true, "size": 1024 } }

The latter collection, system.indexes, stores each index definition for the current
database. To see a list of indexes you’ve defined for the garden database, just query
the collection:

> db.system.indexes.find();
{ "name" : "_id_", "ns" : "garden.products", "key" : { "_id" : 1 } }

system.namespaces and system.indexes are both standard collections, but
MongoDB uses capped collections for replication. Each member of a replica set logs
all its writes to a special capped collection called oplog.rs. Secondary nodes then
read from this collection sequentially and apply new operations to themselves. We’ll
discuss this systems collection in more detail in chapter 9.

4.3.3 Documents and insertion

We’ll round out this chapter with some details on documents and their insertion.

DOCUMENT SERIALIZATION, TYPES, AND LIMITS

As stated in the previous chapter, all documents must be serialized to BSON before
being sent to MongoDB; they’re later deserialized from BSON by the driver into the
language’s native document representation. Most of the drivers provide a simple
interface for serializing to and from BSON, and it’s useful knowing how this works for

8 The natural order is the order in which documents are stored on disk.
9 Since capped collections were originally designed for logging, there was no need to implement the deletion

or updating of documents, as this would’ve complicated the code responsible for aging out old documents.

Without these features, capped collections preserve the simplicity and efficiency they were designed for.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

71Nuts and bolts: on databases, collections, and documents

your driver in case you ever need to examine what’s being sent to the database. For
instance, when demonstrating capped collections, it was reasonable to assume that the
sample document size was roughly 100 bytes. You can check this assumption using the
Ruby driver’s BSON serializer:

doc = {
:_id => BSON::ObjectId.new,
:username => "kbanker",
:action_code => rand(5),
:time => Time.now.utc,
:n => 1

}

bson = BSON::BSON_CODER.serialize(doc)

puts "Document #{doc.inspect} takes up #{bson.length} bytes as BSON"

The serialize method returns a byte array. If you run the preceding code, you’ll get
a BSON object 82 bytes long, which isn’t far from the estimate. If you ever want to
check the BSON size of an object using the shell, that’s also straightforward:

> doc = {
_id: new ObjectId(),
username: "kbanker",
action_code: Math.ceil(Math.random() * 5),
time: new Date(),
n: 1

}

> Object.bsonsize(doc);
82

Again, you get 82 bytes. The difference between the 82-byte document size and the
100-byte estimate is due to normal collection and document overhead.

 Deserializing BSON is just as straightforward. Try running this code to verify that it
works:

deserialized_doc = BSON::BSON_CODER.deserialize(bson)

puts "Here's our document deserialized from BSON:"
puts deserialized_doc.inspect

Do note that you can’t serialize just any Ruby hash. To serialize without error, the key
names must be valid, and each of the values must be convertible into a BSON type. A
valid key name consists of a null-terminated string with a maximum length of 255
bytes. The string may consist of any combination of ASCII characters, with three
exceptions: it can’t begin with a $, it must not contain any . characters, and it must
not contain the null byte except in the final position. When programming in Ruby,
you may use symbols as hash keys, but they’ll be converted into their string equivalents
when serialized.

 It’s important to consider the length of the key names you choose, since key names
are stored in the documents themselves. This contrasts with an RDBMS, where column

names are always kept separate from the rows they refer to. So when using BSON, if you

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

72 CHAPTER 4 Document-oriented data

can live with dob in place of date_of_birth as a key name, you’ll save 10 bytes per doc-
ument. That may not sound like much, but once you have a billion such documents,
you’ll have saved nearly 10 GB of storage space just by using a shorter key name. This
doesn’t mean you should go to unreasonable lengths to ensure small key names; be
sensible. But if you expect massive amounts of data, economizing on key names will
save space.

 In addition to valid key names, documents must contain values that can be serial-
ized into BSON. A table of BSON types, with examples and notes, can be found at
http://bsonspec.org. Here, I’ll only point out some of the highlights and gotchas.

Strings
All string values must be encoded as UTF-8. Though UTF-8 is quickly becoming the
standard for character encoding, there are plenty of situations when an older encod-
ing is still used. Users typically encounter issues with this when importing data gener-
ated by legacy systems into MongoDB. The solution usually involves either converting
to UTF-8 before inserting or, barring that, storing the text as the BSON binary type.10

Numbers
BSON specifies three numeric types: double, int, and long. This means that BSON can
encode any IEEE floating-point value and any signed integer up to eight bytes in
length. When serializing integers in dynamic languages, the driver will automatically
determine whether to encode as an int or a long. In fact, there’s only one common
situation where a number’s type must be made explicit, which is when inserting
numeric data via the JavaScript shell. JavaScript, unhappily, natively supports just a sin-
gle numeric type called Number, which is equivalent to an IEEE double. Consequently,
if you want to save a numeric value from the shell as an integer, you need to be
explicit, using either NumberLong() or NumberInt(). Try this example:

db.numbers.save({n: 5});
db.numbers.save({ n: NumberLong(5) });

You’ve just saved two documents to the numbers collection. And though their values
are equal, the first is saved as a double and the second as a long integer. Querying for
all documents where n is 5 will return both documents:

> db.numbers.find({n: 5});
{ "_id" : ObjectId("4c581c98d5bbeb2365a838f9"), "n" : 5 }
{ "_id" : ObjectId("4c581c9bd5bbeb2365a838fa"), "n" : NumberLong(5) }

But you can see that the second value is marked as a long integer. Another way to see
this is to query by BSON type using the special $type operator. Each BSON type is iden-
tified by an integer, beginning with 1. If you consult the BSON spec at http://
bsonspec.org, you’ll see that doubles are type 1 and that 64-bit integers are type 18.
Thus, you can query the collection for values by type:

10 Incidentally, if you’re new to character encodings, you owe it to yourself to read Joel Spolsky’s well-known
introduction (http://mng.bz/LVO6). If you’re a Rubyist, you may also want to read James Edward Gray’s

series on character encodings in Ruby 1.8 and 1.9 (http://mng.bz/wc4J).

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://bsonspec.org
http://mng.bz/LVO6
http://mng.bz/wc4J
http://bsonspec.org
http://bsonspec.org
http://www.it-ebooks.info/

73Nuts and bolts: on databases, collections, and documents

> db.numbers.find({n: {$type: 1}});
{ "_id" : ObjectId("4c581c98d5bbeb2365a838f9"), "n" : 5 }

> db.numbers.find({n: {$type: 18}});
{ "_id" : ObjectId("4c581c9bd5bbeb2365a838fa"), "n" : NumberLong(5) }

This verifies the difference in storage. You’ll probably never use the $type operator in
production, but as seen here, it’s a great tool for debugging.

 The only other issue that commonly arises with BSON numeric types is the lack of
decimal support. This means that if you’re planning on storing currency values in
MongoDB, you need to use an integer type and keep the values in cents.

Datetimes
The BSON datetime type is used to store temporal values. Time values are represented
using a signed 64-bit integer marking milliseconds since the Unix epoch, in UTC
(Coordinated Universal Time). A negative value marks milliseconds prior to the
epoch.11

 A couple usage notes follow. First, if you’re creating dates in JavaScript, keep in mind
that months in JavaScript dates are 0-based. This means that new Date(2011, 5, 11) will
create a date object representing June 11, 2011. Next, if you’re using the Ruby driver to
store temporal data, the BSON serializer expects a Ruby Time object in UTC. Conse-
quently, you can’t use date classes that maintain a time zone since a BSON datetime can’t
encode that data.

Custom types
But what if you must store your times with their time zones? Sometimes the basic
BSON types don’t suffice. Though there’s no way to create a custom BSON type, you
can compose the various primitive BSON values to create your own virtual type. For
instance, if you wanted to store times with zone, you might use a document structure
like this, in Ruby:

{:time_with_zone =>
{:time => Time.utc.now,
:zone => "EST"

}
}

It’s not difficult to write an application so that it transparently handles these compos-
ite representations. This is usually how it’s done in the real world. For example,
MongoMapper, an object mapper for MongoDB written in Ruby, allows you to define
to_mongo and from_mongo methods for any object to accommodate these sorts of cus-
tom composite types.
11 The Unix epoch is defined as midnight, January 1, 1970, coordinated universal time.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

74 CHAPTER 4 Document-oriented data

Limits on document size
BSON documents in MongoDB v2.0 are limited to 16 MB in size.12 The limit exists for
two related reasons. First, it’s there to prevent developers from creating ungainly data
models. Though poor data models are still possible with this limit, the 16 MB limit
helps discourage documents with especially deep levels of nesting, which is a common
data modeling error made by novice MongoDB users. Deeply nested documents are
difficult to work with; it’s often better to expand the nested documents into separate
collections.

 The second reason for the 16 MB limit is performance-related. On the server side,
querying a large document requires that the document be copied into a buffer before
being sent to the client. This copying can get expensive, especially (as is often the
case) when the client doesn’t need the entire document.13 In addition, once sent,
there’s the work of transporting the document across the network and then deserializ-
ing it on the driver side. This can become especially costly if large batches of multi-
megabyte documents are being requested at once.

 The upshot is that if you have especially large objects, you’re probably better off
splitting them up, modifying your data model, and using an extra collection or two. If
you’re simply storing large binary objects, like images or videos, that’s a slightly differ-
ent case. See appendix C for techniques on handling large binary objects.

BULK INSERTS

As soon as you have valid documents, the process of inserting them is straightforward.
Most of the relevant details about inserting documents, including object ID genera-
tion, how inserts work on the network layer, and safe mode, were covered in chapter 3.
But one final feature, bulk inserts, is worth discussing here.

 All of the drivers make it possible to insert multiple documents at once. This can
be extremely handy if you’re inserting lots of data, as in an initial bulk import or a
migration from another database system. Recall the earlier example of inserting 40
documents into the user.actions collection. If you look at the code, you’ll see that
you’re inserting just one document at a time. With the following code, you build an
array of 40 documents in advance and then pass the entire array of documents to the
insert method:

docs = (0..40).map do |n|
{ :username => "kbanker",

:action_code => rand(5),
:time => Time.now.utc,
:n => n

}
end

12 The number has varied by server version and is continually increasing. To see the limit for your server version,
run db.ismaster from the shell, and examine the maxBsonObjectSize field. If you can’t find this field,
then the limit is 4 MB (and you’re using a very old version of MongoDB).

13 As you’ll see in the next chapter, you can always specify which fields of a document to return in a query to

limit response size. If you’re doing this frequently, it may be worth reevaluating your data model.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

75Summary

@col = @db['test.bulk.insert']
@ids = @col.insert(docs)

puts "Here are the ids from the bulk insert: #{@ids.inspect}"

Instead of returning a single object ID, a bulk insert returns an array with the object
IDs of all documents inserted. Users commonly ask what the ideal bulk insert size is,
but the answer to this is dependent on too many factors to respond concretely, and
the ideal number can range from 10 to 200. Benchmarking will be the best counsel in
this case. The only limitation imposed by the database here is a 16 MB cap on any one
insert operation. Experience shows that the most efficient bulk inserts will fall well
below this limit.

4.4 Summary
We’ve covered a lot of ground in this chapter; congratulations for making it this far!

 We began with a theoretical discussion of schema design and then proceeded to
outline the data model for an e-commerce application. This gave you a chance to see
what documents might look like in a production system, and it should’ve gotten you
thinking in a more concrete way about the differences between schemas in RDMBSs
and MongoDB.

 We ended the chapter with a harder look at databases, documents, and collections;
you may return to this section later on for reference. I’ve explained the rudiments of
MongoDB, but we haven’t really started moving data around. That’ll all change in the
next chapter, where we explore the power of ad hoc queries.
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

Queries and aggregation
MongoDB doesn’t use SQL. Rather, it features its own JSON-like query language.
We’ve been exploring this language throughout the book, but here we turn to
some meatier, real-world examples. In particular, we’re going to revisit the e-
commerce data model introduced in the last chapter and present a variety of que-
ries against it. Among the queries you’ll practice are _id lookups, ranges, ordering,
and projections. We’ll also survey the MongoDB query language as a whole, look-
ing at each available query operator in detail.

 In addition to queries, we’ll cover the related topic of aggregation. Queries
allow you to get at the data as it’s stored; aggregation functions summarize and
reframe that data. First you’ll see how to aggregate over this book’s sample
e-commerce data set, focusing on MongoDB’s group and map-reduce functions.
Later I’ll present a complete reference to these functions.

 Keep in mind as you’re reading this chapter that MongoDB’s query language
and aggregation functions are still works in progress, and refinements are being
added with each release. As it stands, mastering queries and aggregations in

In this chapter
 Querying an e-commerce data model

 The MongoDB query language in detail

 Aggregation with map-reduce and group
76

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

77E-commerce queries

MongoDB isn’t so much a matter of mapping out every nook as it is finding the best
ways to accomplish everyday tasks. Through the examples in this chapter, I’ll point out
the clearest routes to take. By the end of the chapter, you should have a good intuitive
understanding of queries and aggregation in MongoDB, and you’ll be ready to apply
these tools to the design of application schemas.

5.1 E-commerce queries
This section continues our exploration of the e-commerce data model sketched out in
the previous chapter. We’ve defined a document structure for products, categories,
users, orders, and product reviews. Now, with that structure in mind, we’ll look at how
you might query these entities in a typical e-commerce application. Some of these
queries are simple. For instance, _id lookups shouldn’t be a mystery at this point. But
we’ll also examine a few more sophisticated patterns, including querying for and dis-
playing a category hierarchy, as well as providing filtered views of product listings. In
addition, we’ll keep efficiency in mind by looking at possible indexes for some of
these queries.

5.1.1 Products, categories, and reviews

Most e-commerce applications provide at least two basic views of products and catego-
ries. First is the product home page, which highlights a given product, displays
reviews, and gives some sense of the product’s categories. Second is the product listing
page, which allows users to browse the category hierarchy and view thumbnails of all
the products within a selected category. Let’s begin with the product home page, in
many ways the simpler of the two.

 Imagine that your product page URLs are keyed on a product slug. In that case, you
can get all the data you need for your product page with the following three queries:

db.products.findOne({'slug': 'wheel-barrow-9092'})
db.categories.findOne({'_id': product['main_cat_id']})
db.reviews.find({'product_id': product['_id']})

The first query finds the product with the slug wheel-barrow-9092. Once you have
your product, you query for its category information with a simple _id query on the
categories collection. Finally, you issue another simple lookup that gets all the
reviews associated with the product.

 You’ll notice that the first two queries use the find_one method but that the last
uses find instead. All of the MongoDB drivers provide these two methods, and so it’s
worth recalling the difference between them. As discussed in chapter 3, find returns a
cursor object, whereas findOne returns a document. The findOne just referenced is
equivalent to the following:

db.products.find({'slug': 'wheel-barrow-9092'}).limit(1)

If you’re expecting a single document, findOne will return that document if it exists.
If you need to return multiple documents, remember that you’ll be using find, and
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

78 CHAPTER 5 Queries and aggregation

that this method will return a cursor. You’ll then need to iterate over that cursor some-
where in your application.

 Now look again at the product page queries. See anything unsettling? If the query
for reviews seems a bit liberal, you’re right. This query says to return all reviews for the
given product, but this wouldn’t be prudent in cases where a product had hundreds of
reviews. Most applications paginate reviews, and for this MongoDB provides skip and
limit options. You can use these options to paginate the review document like so:

db.reviews.find({'product_id': product['_id']}).skip(0).limit(12)

You also want to display reviews in a consistent order, which means you have to sort
your query results. If you want to sort by the number of helpful votes received by each
review, you can specify that easily:

db.reviews.find({'product_id': product['id']}).sort(
 {helpful_votes: -1}).limit(12)

In short, this query tells MongoDB to return the first 12 reviews sorted by the total
number of helpful votes in descending order. Now, with the skip, limit, and sort in
place, you simply need to decide whether to paginate in the first place. For this, you
can issue a count query. You then use the results of the count in combination with the
page of reviews you want. Your queries for the product page are complete:

product = db.products.findOne({'slug': 'wheel-barrow-9092'})
category = db.categories.findOne({'_id': product['main_cat_id']})
reviews_count = db.reviews.count({'product_id': product['_id']})
reviews = db.reviews.find({'product_id': product['_id']}).

skip((page_number - 1) * 12).
limit(12).
sort({'helpful_votes': -1})

These lookups should use indexes. You’ve already seen that slugs, because they serve
as alternate primary keys, should have a unique index on them, and you know that all
_id fields will automatically have a unique index for standard collections. But it’s also
important that you have an index on any fields acting as references. In this case, that
would include the user_id and product_id fields on the reviews collection.

 With the queries for the product home pages in place, you can now turn to the
product listing page. Such a page will display a given category with a browsable listing
of products contained therein. Links to parent and sibling categories will also appear
on the page.

 A product listing page is defined by its category; thus, requests for the page will use
the category’s slug:

category = db.categories.findOne({'slug': 'outdoors'})
siblings = db.categories.find({'parent_id': category['_id']})
products = db.products.find({'category_id': category['_id']}).

skip((page_number - 1) * 12).
limit(12).
sort({helpful_votes: -1})
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

79E-commerce queries

Siblings are any other categories with the same parent ID, so the query for siblings is
straightforward. Since products all contain an array of category IDs, the query to find
all products in a given category is also trivial. You also apply the same pagination pat-
tern that you used for reviews, except that you sort by average product rating. You can
imagine providing alternative sort methods (by name, price, and so forth). For those
cases, you simply change the sort field.1

 The product listing page has a base case, where you’re viewing just the root-level
categories but no products. A query against the categories collection for a nil parent
ID is all that’s required to get these root-level categories:

categories = db.categories.find({'parent_id': nil})

5.1.2 Users and orders

The queries in the previous section were generally limited to _id lookups and sorts. In
looking at users and orders, we’ll dig deeper, since you’ll want to generate basic
reports on orders.

 But let’s start with something simpler: user authentication. Users log in to the
application by providing a username and password. Thus, you’d expect to see the fol-
lowing query pretty frequently:

db.users.findOne({username: 'kbanker',
hashed_password: 'bd1cfa194c3a603e7186780824b04419'})

If the user exists and the password is correct, you’ll get back an entire user document;
otherwise, the query will return nothing. This query is acceptable. But if you’re con-
cerned with performance, you’ll optimize by selecting the _id fields only so that you
can initiate a session. After all, the user document stores addresses, payment methods,
and other personal information. Why send that data across the network and deserial-
ize on the driver side if all you need is a single field? You limit the fields returned
using a projection:

db.users.findOne({username: 'kbanker',
hashed_password: 'bd1cfa194c3a603e7186780824b04419'},
{_id: 1})

The response now consists exclusively of the document’s _id field:

{ _id: ObjectId("4c4b1476238d3b4dd5000001") }

There are a few other ways you might want to query the users collection. For instance,
imagine you have an administrative back end allowing you to find users by different cri-
teria. Frequently, you’ll want to perform a lookup on a single field, such as last_name:

db.users.find({last_name: 'Banker'})

1 It’s important to consider whether these sorts will be efficient. You may choose to rely on your index to handle
sorting for you, but as you add more sort options, the number of indexes grows, and the cost of maintaining
those indexes may not be reasonable. This will be especially true if the number of products per category is

small. We’ll discuss this further in chapter 8, but start thinking about these trade-offs now.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

80 CHAPTER 5 Queries and aggregation

This works, but there are limits to searching for an exact match. For one, you might
not know how to spell a given user’s name. In this case, you’ll want some way of query-
ing for a partial match. Suppose you know that the user’s last name starts with Ba. In
SQL, you could use a LIKE condition to represent this query:

SELECT * from users WHERE last_name LIKE 'Ba%'

The semantic equivalent in MongoDB is a regular expression:

db.users.find({last_name: /^Ba/})

As with an RDBMS, a prefix search like this one can take advantage of an index.2

 When it comes to marketing to your users, you’ll most likely want to target ranges
of users. For instance, if you wanted to get all users residing in Upper Manhattan, you
could issue this range query on a user’s ZIP code:

db.users.find({'addresses.zip': {$gte: 10019, $lt: 10040}})

Recall that each user document contains an array of one or more addresses. This
query will match a user document if any ZIP code among those addresses falls within
the range specified. To make this query efficient, you’ll want an index defined on
addresses.zip.

 Targeting users by location probably isn’t the most effective way to generate con-
versions. Users can be much more meaningfully grouped by what they’ve purchased,
which in this case requires a two-step query: you first need to get a set of orders based
on a particular product, and once you have the orders, you can query for the associ-
ated users.3 Suppose you want to target all users who’ve purchased the large wheelbar-
row. Again you use MongoDB’s dot notation to reach into the line_items array and
search for a given SKU:

db.orders.find({'line_items.sku': "9092")

You can also imagine wanting to limit this result set to orders made within a certain
time frame. If so, you can easily add a query condition that sets a minimum order date:

db.orders.find({'line_items.sku': "9092",
'purchase_date': {$gte: new Date(2009, 0, 1)}})

Assuming these queries are issued frequently, you’ll want a compound index ordered
first by SKU and second by date of purchase. You can create such an index like so:

db.orders.ensureIndex({'line_items.sku': 1, 'purchase_date': 1})

When you query the orders collection, all you’re looking for is a list of user IDs. Thus,
you have an opportunity to be more efficient by using a projection. In the following
code snippet, you first specify that you want the user_id field only. You then

2 If you’re not familiar with regular expressions, take note: the regular expression /^Ba/ can be read as “the
beginning of the line followed by a B followed by an a.”

3 If you’re coming from a relational database, the inability here to issue a JOIN query across orders and users

might bother you, but try not to let it. It’s common to perform this sort of client-side join with MongoDB.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

81MongoDB’s query language

transform the query results into a simple array of IDs and then use that array to query
the users collection with the $in operator:

user_ids = db.orders.find({'line_items.sku': "9092",
purchase_date: {'$gt': new Date(2009, 0, 1)}},
{user_id: 1, _id: 0}).toArray().map(function(doc) { return doc['_id'] })

users = db.users.find({_id: {$in: user_ids}})

This technique of querying a collection using an array of IDs and $in will be efficient
for arrays of IDs having up to a few thousand elements. For larger data sets, where you
might have a million users who’ve purchased the wheelbarrow, it’ll be more prudent to
write those user IDs to a temporary collection and then process the query sequentially.

 You’ll see more examples of querying this data in the next chapter, and later on,
you’ll learn how to get insight from the data using MongoDB’s aggregation functions.
But with this introduction under your belt, we’re now going to look at MongoDB’s
query language in some depth, explaining the syntax in general and each operator in
particular.

5.2 MongoDB’s query language
It’s time we explore MongoDB’s query language in all its glory. I’ll begin with a gen-
eral description of queries, their semantics, and their types. I’ll then discuss cursors,
since every MongoDB query is, fundamentally, the instantiation of a cursor and the
fetching of that cursor’s result set. With these fundamentals out of the way, I’ll present
a taxonomy of all MongoDB query operators.4

5.2.1 Query selectors

We begin with an overview of query selectors, paying particular attention to all the
kinds of queries you can express with them.

SELECTOR MATCHING

The simplest way to specify a query is with a selector whose key-value pairs literally
match against the document you’re looking for. A couple of examples:

db.users.find({last_name: "Banker"})
db.users.find({first_name: "Smith", age: 40})

The second query reads, “Find me all users such that the first_name is Smith and the
age is 40.” Note that whenever you pass more than one key-value pair, both must
match; the query conditions function as a Boolean AND. If you want to express a Bool-
ean OR, see the upcoming section on Boolean operators.

RANGES

You frequently need to query for documents whose values span a certain range. In
SQL, you use <, <=, >, and >=; with MongoDB, you get the analogous set of operators
$lt, $lte, $gt, and $gte. You’ve been using these operators throughout the book,
4 Unless you’re a glutton for details, this taxonomy may safely be skimmed on first reading.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

82 CHAPTER 5 Queries and aggregation

and their behavior is as expected. But beginners sometimes struggle with combining
these operators. A common mistake is to repeat the search key:

db.users.find({age: {$gte: 0}, age: {$lte: 30})

Because keys can’t be at the same level in the same document, this query selector is
invalid, and will apply only one of the two range operators. You can properly express
this query as follows:

db.users.find({age: {$gte: 0, $lte: 30})

The only other surprise regarding the range operators involves types. Range queries
will match values only if they have the same type as the value to be compared against.5

For example, suppose you have a collection with the following documents:

{ "_id" : ObjectId("4caf82011b0978483ea29ada"), "value" : 97 }
{ "_id" : ObjectId("4caf82031b0978483ea29adb"), "value" : 98 }
{ "_id" : ObjectId("4caf82051b0978483ea29adc"), "value" : 99 }
{ "_id" : ObjectId("4caf820d1b0978483ea29ade"), "value" : "a" }
{ "_id" : ObjectId("4caf820f1b0978483ea29adf"), "value" : "b" }
{ "_id" : ObjectId("4caf82101b0978483ea29ae0"), "value" : "c" }

You then issue the following query:

db.items.find({value: {$gte: 97})

You may think that this query should return all six documents, since the strings are
numerically equivalent to the integers 97, 98, and 99. But this isn’t the case. This
query returns the integer results only. If you want the string results, you must query
with a string instead:

db.items.find({value: {$gte: "a"})

You won’t need to worry about this type restriction as long as you never store multiple
types for the same key within the same collection. This is a good general practice, and
you should abide by it.

SET OPERATORS

Three query operators—$in, $all, and $nin—take a list of one or more values as
their predicate. $in returns a document if any of the given values matches the search
key. You might use this operator to return all products belonging to some discrete set
of categories. If the following list of category IDs

[ObjectId("6a5b1476238d3b4dd5000048"),
ObjectId("6a5b1476238d3b4dd5000051"),
ObjectId("6a5b1476238d3b4dd5000057")

]

corresponds to the lawnmowers, hand tools, and work clothing categories, then the
query to find all products belonging to these categories looks like this:
5 Note that the numeric types—integer, long integer, and double—have type equivalence for these queries.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

83MongoDB’s query language

db.products.find({main_cat_id: { $in:
[ObjectId("6a5b1476238d3b4dd5000048"),
ObjectId("6a5b1476238d3b4dd5000051"),
ObjectId("6a5b1476238d3b4dd5000057")] } })

Another way of thinking about the $in operator is as a kind of Boolean inclusive OR
against a single attribute. Expressed this way, the previous query might be read, “Find
me all products whose category is lawnmowers or hand tools or work clothing.” Note
that if you need a Boolean OR over multiple attributes, you’ll want to use the $or oper-
ator, described in the next section.

$in is frequently used with lists of IDs. See the example earlier in this chapter for
an example of another query that uses $in to return all users who’ve bought a particu-
lar product.

$nin returns a document only when none of the given elements matches. You
might use $nin to find all products that are neither black nor blue:

db.products.find('details.color': { $nin: ["black", "blue"] }

Finally, $all matches if every given element matches the search key. If you wanted to
find all products tagged as gift and garden, $all would be a good choice:

db.products.find(tags: { $all: ["gift", "garden"] }

Naturally, this query make sense only if the tags attribute stores an array of terms, like
this:

{ name: "Bird Feeder",
tags: ["gift", "birds", "garden"]

}

When using the set operators, keep in mind that $in and $all can take advantage of
indexes, but $nin can’t and thus requires a collection scan. If you use $nin, try to use
it in combination with another query term that does use an index. Better yet, find a dif-
ferent way to express the query. You may, for instance, be able to store an attribute
whose presence indicates a condition equivalent to your $nin query. For example, if
you commonly issue a query for {timeframe: {$nin: ['morning', 'afternoon']}},
you may be able to express this more directly as {timeframe: 'evening'}.

BOOLEAN OPERATORS

MongoDB’s Boolean operators include $ne, $not, $or, $and, and $exists.
$ne, the not equal to operator, works as you’d expect. In practice, it’s best used in

combination with at least one other operator; otherwise, it’s likely to be inefficient
because it can’t take advantage of indexes. For example, you might use $ne to find all
products manufactured by ACME that aren’t tagged with gardening :

db.products.find('details.manufacturer': 'ACME', tags: {$ne: "gardening"} }

$ne works on keys pointing to single values and to arrays, as shown in the example
where you match against the tags array.
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

84 CHAPTER 5 Queries and aggregation

 Whereas $ne matches the negation of a specified value, $not negates the result of
another MongoDB operator or regular expression query. Before you use $not, keep
in mind that most query operators already have a negated form ($in and $nin, $gt
and $lte, etc.); $not shouldn’t be used with any of these. Reserve $not for times when
the operator or regex you’re using lacks a negated form. For example, if you wanted
to query for all users with last names not beginning with B you could use $not like so:

db.users.find(last_name: {$not: /^B/} }

$or expresses the logical disjunction of two values for two different keys. This is an
important point: if the possible values are scoped to the same key, use $in instead.
Trivially, finding all products that are either blue or green looks like this:

db.products.find('details.color': {$in: ['blue', 'green']} }

But finding all products that are either blue or made by ACME requires $or:

db.products.find({ $or: [{'details.color': 'blue'}, 'details.manufacturer':
'ACME'}] })

$or takes an array of query selectors, where each selector can be arbitrarily complex
and may itself contain other query operators.6

 Like $or, the $and operator also takes an array of query selectors. Because
MongoDB interprets all query selectors containing more than one key by ANDing the
conditions, you should use $and only when you can’t express an AND in a simpler way.
For example, suppose you want to find all products that are tagged with gift or holiday
and either gardening or landscaping. The only way to express this query is with the con-
junction of two $in queries:

db.products.find({$and: [
{tags: {$in: ['gift', 'holiday']}},
{tags: {$in: ['gardening', 'landscaping']}}

]
}
)

The final operator we’ll discuss in this section is $exists. This operator is necessary
because collections don’t enforce a fixed schema, so you occasionally need a way to
query for documents containing a particular key. Recall that we’d planned to use each
product’s details attribute to store custom fields. You might for instance store a
color field inside the details attribute. But if only a subset of all products specify a
set of colors, then you can query for the ones that don’t like so:

db.products.find({'details.color': {$exists: false}})

The opposite query is also possible:

db.products.find({'details.color': {$exists: true}})
6 Not including $or.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

85MongoDB’s query language

Here you’re basically checking for existence. But there’s another way to check for
existence which is practically equivalent: to match an attribute against the null value.
Using this technique, you can alter the preceding queries. The first could be
expressed like this:

db.products.find({'details.color': null})

And the second like this:

db.products.find({'details.color': {$ne: null}})

MATCHING SUB-DOCUMENTS

Some of the entities in this book’s e-commerce data model have keys that point to a
single embedded object. The product’s details attribute is one good example.
Here’s part of the relevant document, expressed as JSON:

{ _id: ObjectId("4c4b1476238d3b4dd5003981"),
slug: "wheel-barrow-9092",
sku: "9092",

details: {
model_num: 4039283402,
manufacturer: "Acme",
manufacturer_id: 432,
color: "Green"

}
}

Yoiu can query such objects by separating the relevant keys with a . (dot). For instance,
if you want to find all products manufactured by Acme, you can use this query:

db.products.find({'details.manufacturer_id': 432});

Such queries can be specified arbitrarily deep. Thus, supposing you had the following
slightly modified representation:

{ _id: ObjectId("4c4b1476238d3b4dd5003981"),
slug: "wheel-barrow-9092",
sku: "9092",

details: {
model_num: 4039283402,
manufacturer: { name: "Acme",

id: 432 },
color: "Green"

}
}

The key in the query selector would contain two dots:

db.products.find({'details.manufacturer.id': 432});

But in addition to matching against an individual sub-document attribute, you can
also match an object as a whole. For example, imagine you’re using MongoDB to store
market positions. To save space, you forgo the standard object ID and replace it with a
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

86 CHAPTER 5 Queries and aggregation

compound key consisting of a stock symbol and a timestamp. Here’s how a representa-
tive document might look:7

{ _id: {sym: 'GOOG', date: 20101005}
open: 40.23,
high: 45.50,
low: 38.81,
close: 41.22

}

You could then find the summary of GOOG for October 5, 2010 with the following _id
query:

db.ticks.find({_id: {sym: 'GOOG', date: 20101005} });

It’s important to realize that a query matching an entire object like this will perform a
strict byte-by-byte comparison, which means that the order of the keys matters. The
following query isn’t equivalent and won’t match the sample document:

db.ticks.find({_id: {date: 20101005, sym: 'GOOG'} });

Though the order of keys will be preserved in JSON documents entered via the shell,
this isn’t necessarily true for document representations in all the various language
drivers. For example, hashes in Ruby 1.8 aren’t order-preserving. To preserve key
order in Ruby 1.8, you must use an object of class BSON::OrderedHash instead:

doc = BSON::OrderedHash.new
doc['sym'] = 'GOOG'
doc['date'] = 20101005
@ticks.find(doc)

Be sure to check whether the language you’re using supports ordered dictionaries; if
not, the language’s MongoDB driver will always provide an ordered alternative.

ARRAYS

Arrays give the document model much of its power. As you’ve seen, arrays are used to
store lists of strings, object IDs, and even other documents. Arrays afford rich yet com-
prehensible documents; it stands to reason that MongoDB would let query and index
the array type with ease. And it’s true: the simplest array queries look just like queries
on any other document type. Take product tags again. These tags are represented as a
simple list of strings:

{ _id: ObjectId("4c4b1476238d3b4dd5003981"),
slug: "wheel-barrow-9092",
sku: "9092",

tags: ["tools", "equipment", "soil"] }

Querying for products with the tag soil is trivial and uses the same syntax as querying a
single document value:

db.products.find({tags: "soil"})

7 In a potential high-throughput scenario, you’d want to limit document size as much as possible. You could

accomplish this in part by using short key names. Thus you might use the key name o in place of open.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

87MongoDB’s query language

Importantly, this query can take advantage of an index on the tags field. So if you
build the required index and run your query with explain(), you’ll see that a B-tree
cursor is used:

db.products.ensureIndex({tags: 1})
db.products.find({tags: "soil"}).explain()

When you need more control over your array queries, you can use dot notation to
query for a value at a particular position within the array. Here’s how you’d restrict the
previous query to the first of a product’s tags:

db.products.find({'tags.0': "soil"})

It might not make much sense to query tags in this way, but imagine you’re dealing
with user addresses. These you might represent with an array of sub-documents:

{ _id: ObjectId("4c4b1476238d3b4dd5000001")
username: "kbanker",

addresses: [
{name: "home",
street: "588 5th Street",
city: "Brooklyn",
state: "NY",
zip: 11215},

{name: "work",
street: "1 E. 23rd Street",
city: "New York",
state "NY",
zip 10010},

]
}

You might stipulate that the zeroth element of the array always be the user’s primary
shipping address. Thus, to find all users whose primary shipping address is in New
York, you could again specify the zeroth position and combine that with a dot to target
the state field:

db.users.find({'addresses.0.state': "NY"})

You can just as easily omit the position and specify a field alone. The following query
will return a user document if any of the addresses in the list is in New York:

db.users.find({'addresses.state': "NY"})

As before, you’ll want to index this dotted field:

db.users.ensureIndex({'addresses.state': 1})

Note that you use the same dot notation regardless of whether a field points to a sub-
document or to an array of sub-documents. This is powerful, and the consistency is
reassuring. But ambiguity can arise when querying against more than one attribute
within an array of sub-objects. For example, suppose you want to fetch a list of all users
whose home address is in New York. Can you think of a way to express this query?
db.users.find({'addresses.name': 'home', 'addresses.state': 'NY'})

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

88 CHAPTER 5 Queries and aggregation

The problem with this query is that the field references aren’t restricted to a single
address. In other words, this query will match as long as one of the addresses is desig-
nated as “home” and one is in New York, but what you want is for both attributes to
apply to the same address. Fortunately, there’s a query operator for this. To restrict
multiple conditions to the same sub-document, you use the $elemMatch operator. You
can properly satisfy the query like so:

db.users.find({addresses: {$elemMatch: {name: 'home', state: 'NY'}}})

Logically, you use $elemMatch only when you need to match two or more attributes in
a sub-document.

 The only array operator left to discuss is the $size operator. This operator allows
you to query for an array by its size. For example, if you want to find all users with
exactly three addresses, you can use the $size operator like so:

db.users.find({addresses: {$size: 3}})

At the time of this writing, the $size operator doesn’t use an index and is limited to
exact matches (you can’t specify a range of sizes).8 Therefore, if you need to perform
queries based on the size of an array, you should cache the size in its own attribute
within the document and update it manually as the array changes. For instance, you
might consider adding an address_length field to your user document. You could
then build an index on this field and issue all the range and exact match queries you
require.

JAVASCRIPT

If you can’t express your query with the tools described thus far, then you may need to
write some JavaScript. You can use the special $where operator to pass a JavaScript
expression to any query. Within a JavaScript context, the keyword this refers to the
current document. Let’s take a contrived example:

db.reviews.find({$where: "function() { return this.helpful_votes > 3; }"}})

There’s also an abbreviated form for simple expressions like this one:

db.reviews.find({$where: "this.helpful_votes > 3"}})

This query works, but you’d never want to use it because you can easily express it using
the standard query language. The problem is that JavaScript expressions can’t use an
index, and they incur substantial overhead because they must be evaluated within a
JavaScript interpreter context. For these reasons, you should issue JavaScript queries
only when you can’t express your query using the standard query language. If you do
find yourself needing JavaScript, try to combine the JavaScript expression with at least
one standard query operator. The standard query operator will pare down the result
set, reducing the number of documents that must be loaded into a JS context. Let’s
take a quick example to see how this might make sense.
8 See https://jira.mongodb.org/browse/SERVER-478 for updates on this issue.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

https://jira.mongodb.org/browse/SERVER-478
http://www.it-ebooks.info/

89MongoDB’s query language

 Imagine that, for each user, you’ve calculated a rating reliability factor. This is
essentially an integer that, when multiplied by the user’s rating, results in a more nor-
malized rating. Suppose further that you want to query a particular user’s reviews and
only return a normalized rating greater than 3. Here’s how that query would look:

db.reviews.find({user_id: ObjectId("4c4b1476238d3b4dd5000001"),
$where: "(this.rating * .92) > 3"})

This query meets both recommendations: it uses a standard query on a presumably-
indexed user_id field, and it employs a JavaScript expression that’s absolutely beyond
the capabilities of the standard query language.

 In addition to recognizing the attendant performance penalties, it’s good to be
aware of the possibility of JavaScript injection attacks. An injection attack becomes pos-
sible whenever a user is allowed to enter code directly into a JavaScript query. Though
there’s never any danger of users being able to write or delete in this way, they might
be able to read sensitive data. An incredibly unsafe JavaScript query in Ruby might
look something like this:

@users.find({$where => "this.#{attribute} == #{value}"})

Assuming that users could control the values of attribute and value, they might
manipulate the query to search the collection on any attribute pair. Though this
wouldn’t be the worst imaginable intrusion, you’d be wise to prevent its possibility.

REGULAR EXPRESSIONS

We saw near the beginning the chapter that you can use a regular expression within a
query. In that example, I showed a prefix expression, /^Ba/, to find last names begin-
ning with Ba, and I pointed out that this query would use an index. In fact, much
more is possible. MongoDB is compiled with PCRE (http://mng.bz/hxmh), which
supports a huge gamut of regular expressions.

 With the exception of the prefix-style query just described, regular expressions
queries can’t use an index. Thus I recommend using them as you would a JavaScript
expression—in combination with at least one other query term. Here’s how you might
query a given user’s reviews for text containing the words best or worst. Note that you
use the i regex flag9 to indicate case insensitivity:

db.reviews.find({user_id: ObjectId("4c4b1476238d3b4dd5000001"),
text: /best|worst/i })

If the language you’re using has a native regex type, you can use a native regex object
to perform the query. You can express an identical query in Ruby like so:

@reviews.find({:user_id => BSON::ObjectId("4c4b1476238d3b4dd5000001"),
 :text => /best|worst/i })

9 The case-insensitive option will always prevent an index from being used to serve the query, even in the case

of a prefix match.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://mng.bz/hxmh
http://www.it-ebooks.info/

90 CHAPTER 5 Queries and aggregation

If you’re querying from an environment that doesn’t support a native regex type, you
can use the special $regex and $options operators. Using these operators from the
shell, you can express the query in yet another way:

db.reviews.find({user_id: ObjectId("4c4b1476238d3b4dd5000001"),
 text: {$regex: "best|worst", $options: "i" })

MISCELLANEOUS QUERY OPERATORS

Two more query operators aren’t easily categorized and thus deserve their own sec-
tion. The first is $mod, which allows you to query documents matching a given modulo
operation. For instance, you can find all order subtotals that are evenly divisible by 3
using the following query:

db.orders.find({subtotal: {$mod: [3, 0]}})

You can see that the $mod operator takes an array having two values. The first is the
divisor and the second is the expected remainder. Thus, this query technically reads,
“Find all documents with subtotals that return a remainder of 0 when divided by 3.”
This is a contrived example, but it demonstrates the idea. If you end up using the $mod
operator, keep in mind that it won’t use an index.

 The second miscellaneous operator is the $type operator, which matches values by
their BSON type. I don’t recommend storing multiple types for the same field within a
collection, but if the situation ever arises, you have a query operator that essentially
lets you test against type. This came in handy recently when I discovered a user whose
_id queries weren’t always matching when they should. The problem was that the user
had been storing IDs as both strings and as proper object IDs. These are represented
as BSON types 2 and 7, respectively, and to a new user, the distinction is easy to miss.

 Correcting the issue first required finding all documents with ids stored as strings.
The $type operator can help do just that:

db.users.find({_id: {$type: 2}})

5.2.2 Query options

All queries require a query selector. Even if empty, the query selector essentially
defines the query. But when issuing a query, you have a variety of query options to
choose from which allow you to further constrain the result set. I describe those
options here.

PROJECTIONS

You can use a projection to select a subset of fields to return from each document in a
query result set. Especially in cases where you have large documents, using a projec-
tion will minimize the costs of network latency and deserialization. Projections are
most commonly defined as a set of fields to return:

db.users.find({}, {username: 1})

This query returns user documents excluding all but two fields: the username and the

_id field, which is always included by default.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

91MongoDB’s query language

 In some situations you may want to specify fields to exclude, instead. For instance,
this book’s user document contains shipping addresses and payment methods, but
you don’t usually need these. To exclude them, add those fields to the projection with
a value of 0:

db.users.find({}, {addresses: 0, payment_methods: 0})

In addition to including and excluding fields, you can also return a range of values
stored in an array. For example, you might want to store product reviews within the
product document itself. In this case, you’d still want to be able to paginate those
reviews, and for that you could use the $slice operator. To return the first 12 reviews,
or the last 5, you’d use $slice like so:

db.products.find({}, {reviews: {$slice: 12}})
db.products.find({}, {reviews: {$slice: -5}})

$slice can also take a two-element array whose values represent numbers to skip and
limit, respectively. Here’s how to skip the first 24 reviews and limit the number of
reviews to 12:

db.products.find({}, {reviews: {$slice: [24, 12]}})

Finally, note that using $slice won’t prevent other fields from being returned. If you
want to limit the other fields in the document, you must do so explicitly. For example,
here’s how you can modify the previous query to return the reviews and the review rat-
ing only:

db.products.find({}, {reviews: {$slice: [24, 12]}, 'reviews.rating': 1})

SORTING

You can sort any query result by one or more fields in ascending or descending order.
A simple sort of reviews by rating, descending from highest to lowest, looks like this:

db.reviews.find({}).sort({rating: -1})

Naturally, it might be more useful to sort by helpfulness and then by rating:

db.reviews.find({}).sort({helpful_votes:-1, rating: -1})

In compound sorts like this, the order does matter. As noted elsewhere, JSON entered
via the shell is ordered. Since Ruby hashes aren’t ordered, you indicate sort order in
Ruby with an array of arrays, which is ordered:

@reviews.find({}).sort([['helpful_votes', -1], [rating, -1]])

The way you specify sorts in MongoDB is straightforward, but two topics, discussed
elsewhere, are essential to a good understand of sorting. The first is knowing how to
sort according to insertion order using the $natural operator. This is discussed in
chapter 4. The second, and more relevant, is knowing how to ensure that sorts can
efficiently use indexes. We’ll get to that in chapter 8, but feel free to skip ahead if
you’re heavily using sorts now.
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

92 CHAPTER 5 Queries and aggregation

SKIP AND LIMIT

There’s nothing mysterious about the semantics of skip and limit. These query
options should always work as you expect.

 But you should beware of passing large values (say, values greater than 10,000) for
skip because serving such queries requires scanning over a number of documents
equal to the skip value. For example, imagine that you’re paginating a million docu-
ments sorted by date, descending, with 10 results per page. This means that the query
to display the 50,000th page will include a skip value of 500,000, which is incredibly
inefficient. A better strategy is to omit the skip altogether and instead add a range con-
dition to the query that indicates where the next result set begins. Thus, this query

db.docs.find({}).skip(500000).limit(10).sort({date: -1})

becomes this:

db.docs.find({date: {$gt: previous_page_date}}).limit(10).sort({date: -1})

This second query will scan far fewer items than the first. The only potential problem
is that if date isn’t unique for each document, the same document may be displayed
more than once. There are many strategies for dealing with this, but the solutions are
left as exercises for the reader.

5.3 Aggregating orders
You’ve already seen a basic example of MongoDB’s aggregation in the count com-
mand, which you used for pagination. Most databases provide count plus a lot of
other built-in aggregation functions for calculating sums, averages, variances, and the
like. These features are on the MongoDB roadmap, but until they’re implemented,
you can use group and map-reduce to script any aggregate function, from simple sums
to standard deviations.

5.3.1 Grouping reviews by user

It’s common to want to know which users provide the most valuable reviews. Since the
application allows users to votes on reviews, it’s technically possible to calculate the
total number of votes for all of a user’s reviews along with the average number of votes
a user receives per review. Though you could get these stats by querying all reviews
and doing some basic client-side processing, you can also use MongoDB’s group com-
mand to get the result from the server.

group takes a minimum of three arguments. The first, key, defines how your data
will be grouped. In this case, you want your results to be grouped by user, so your
grouping key is user_id. The second argument, known as the reduce function, is a
JavaScript function that aggregates over a result set. The final argument to group is an
initial document for the reduce function.

 This sounds more complicated than it is. To see why, let’s look more closely at the
initial document you’ll use and at its corresponding reduce function:

initial = {review: 0, votes: 0};
reduce = function(doc, aggregator) {

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

93Aggregating orders

aggregator.reviews += 1.0;
aggregator.votes += doc.votes;

}

You can see that the initial document defines the values that you want for each group-
ing key. In other words, once you’ve run group, you want a result set that, for each
user_id, gives you the total number of reviews written and the sum of votes for all
those reviews. The work of generating those sums is done by the reduce function. Sup-
pose I’ve written five reviews. This means that five review documents will be tagged
with my user ID. Each of those five documents will be passed to the reduce function as
the doc argument. At first the value of aggregator is the initial document. Succes-
sive values are added to the aggregator for each document processed.

 Here’s how you’d execute this group command from the JavaScript shell.

results = db.reviews.group({
key: {user_id: true},
initial: {reviews: 0, votes: 0.0},
reduce: function(doc, aggregator) {

aggregator.reviews += 1;
aggregator.votes += doc.votes;

}
finalize: function(doc) {

doc.average_votes = doc.votes / doc.reviews;
}

})

You should note that you’ve passed an extra argument to group. You originally wanted
the average number of votes per review. But this average can’t be calculated until you
have the total number of votes for all reviews and the total number of reviews. This is
what the finalizer is for. It’s a JavaScript function that’s applied to each grouped result
before the group command returns. In this case, you use the finalizer to calculate the
average number of votes per review.

 Here are the results of running this aggregation on a sample data set.

[
{user_id: ObjectId("4d00065860c53a481aeab608"),
votes: 25.0,
reviews: 7,
average: 3.57

},

{user_id: ObjectId("4d00065860c53a481aeab608"),
votes: 25.0,
reviews: 7,
average: 3.57

}

Listing 5.1 Using MongoDB’s group command

Listing 5.2 Results of the group command
]

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

94 CHAPTER 5 Queries and aggregation

We’ll revisit the group command and all of its other options and idiosyncrasies at the
end of the chapter.

5.3.2 Map-reduce for orders by region

You can think of MongoDB’s map-reduce as a more flexible variation on group. With
map-reduce, you have finer-grained control over the grouping key, and you have a
variety of output options, including the ability to store the results in a new collection,
allowing for flexible retrieval of that data later on. Let’s use an example to see these
differences in practice.

 Chances are that you’ll want to be able to generate some sales stats. How many
items are you selling each month? What are the total dollars in sales for each month
over the past year? You can easily answer these questions using map-reduce. The first
step, as the name implies, is to write a map function. The map function is applied to
each document in the collection and, in the process, fulfills two purposes: it defines
which keys which you’re grouping on, and it packages all the data you’ll need for your
calculation. To see this process in action, look closely at the following function:

map = function() {
var shipping_month = this.purchase_date.getMonth() +

'-' + this.purchase_data.getFullYear();

var items = 0;
this.line_items.forEach(function(item) {

tmpItems += item.quantity;
});

emit(shipping_month, {order_total: this.sub_total, items_total: 0});
}

First, know that the variable this always refers to a document being iterated over. In
the function’s first line, you get an integer value denoting the month the order was
created.10 You then call emit(). This is a special method that every map function must
invoke. The first argument to emit() is the key to group by, and the second is usually
a document containing values to be reduced. In this case, you’re grouping by month,
and you’re going to reduce over each order’s subtotal and item count. The corre-
sponding reduce function should make this more clear:

reduce = function(key, values) {
var tmpTotal = 0;
var tmpItems = 0;

tmpTotal += doc.order_total;
tmpItems += doc.items_total;

return ({total: tmpTotal, items: tmpItems});
}

10 Because JavaScript months are zero-based, the month value will range from 0–11. You’ll need to add 1 to get
a sensible numerical month representation. Added to this is a - followed by the year. So the keys look like

1-2011, 2-2011, and so on.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

95Aggregation in detail

The reduce function will be passed a key and an array of one or more values. Your job
in writing a reduce function is to make sure that those values are aggregated together
in the desired way and then returned as a single value. Because of map-reduce’s itera-
tive nature, reduce may be invoked more than once, and your code must take this into
account. All this means in practice is that the value returned by the reduce function
must be identical in form to the value emitted by the map function. Look closely and
you’ll see that this is the case.

 The shell’s map-reduce method requires a map and a reduce function as argu-
ments. But this example adds two more. The first is a query filter, which limits the doc-
uments involved in the aggregation to orders made since the beginning of 2010. The
second argument is the name of the output collection:

filter = {purchase_date: {$gte: new Date(2010, 0, 1)}}
db.orders.mapReduce(map, reduce, {query: filter, out: 'totals'})

The results are stored in a collection called totals, and you can query this collec-
tion like you do any other. The following listing displays the results of querying one
of these collections. The _id field holds your grouping key and the year and month,
and the value field references the reduced totals.

> db.totals.find()
{ _id: "1-2011", value: { total: 32002300, items: 59 }}
{ _id: "2-2011", value: { total: 45439500, items: 71 }}
{ _id: "3-2011", value: { total: 54322300, items: 98 }}
{ _id: "4-2011", value: { total: 75534200, items: 115 }}
{ _id: "5-2011", value: { total: 81232100, items: 121 }}

The examples here should give you some sense of MongoDB’s aggregation capabili-
ties in practice. In the next section, we’ll cover most of the hairy details.

5.4 Aggregation in detail
Here I’ll provide some extra details on MongoDB’s aggregation functions.

5.4.1 Maxima and minima

You’ll commonly need to find min and max values for a given value in a collection.
Databases using SQL provide special min() and max() functions, but MongoDB
doesn’t. Instead, you must specify these queries literally. To find a maximum value,
you can sort descending by the desired value and limit the result set to just one docu-
ment. You can get a corresponding minimum by reversing the sort. For example, if
you wanted to find the review with the greatest number of helpful votes, your query
would need to sort by that value and limit by one:

db.reviews.find({}).sort({helpful_votes: -1}).limit(1)

The helpful_votes field in the returned document will contain the maximum value
for that field. To get the minimum value, just reverse the sort order:

Listing 5.3 Querying the map-reduce output collection
db.reviews.find({}).sort({helpful_votes: 1}).limit(1)

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

96 CHAPTER 5 Queries and aggregation

If you’re going to issue this query in a production situation, you’ll ideally have an
index on helpful_votes. If you want the review with the greatest number of helpful
votes for a particular product, you’ll want a compound index on product_id and
helpful_votes. If the reason for this isn’t clear, refer to chapter 7.

5.4.2 Distinct

MongoDB’s distinct command is the simplest tool for getting a list of distinct values
for a particular key. The command works for both single keys and array keys.
distinct covers an entire collection by default but can be constrained with a query
selector.

 You can use distinct to get a list of all the unique tags on the products collection
as follows:

db.products.distinct("tags")

It’s that simple. If you want to operate on a subset of the products collection, you can
pass a query selector as the second argument. Here, the query limits the distinct tag
values to products in the Gardening Tools category:

db.products.distinct("tags",
{category_id: ObjectId("6a5b1476238d3b4dd5000048")})

AGGREGATION COMMAND LIMITATIONS For all their practicality, distinct and
group suffer from a significant limitation: they can’t return a result set greater
than 16 MB. The 16 MB limit isn’t a threshold imposed on these commands
per se but rather on all initial query result sets. distinct and group are imple-
mented as commands, which means that they’re implemented as queries on
the special $cmd collection, and their being queries is what subjects them to
this limitation. If distinct or group can’t handle your aggregation result size,
then you’ll want to use map-reduce instead, where the results can be stored in
a collection rather than being returned inline.

5.4.3 Group

group, like distinct, is a database command, and thus its result set is subject to the
same 16 MB response limitation. Furthermore, to reduce memory consumption,
group won’t process more than 10,000 unique keys. If your aggregate operation fits
within these bounds, then group can be a good choice because it’s frequently faster
than map-reduce.

 You’ve already seen a semi-involved example of grouping reviews by user. Let’s
quickly review the options to be passed to group:

 key—A document describing the fields to group by. For instance, to group by
category_id, you’d use {category_id: true} as your key. The key can also be
compound. For instance, if you wanted to group a series of posts by user_id
and rating, your key would look like this: {user_id: true, rating: true}.
The key option is required unless you’re using keyf.
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

97Aggregation in detail

 keyf—A JavaScript function that, when applied to a document, generates a key
for that document. This is useful when the key for grouping needs to be calcu-
lated. For instance if you wanted to group a result set by the day of the week
each document was created on but didn’t actually store that value, then you
could use a key function to generate the key:
function(doc) {

return {day: doc.created_at.getDay();
}

This function will generate keys like this one: {day: 1}. Note that keyf is
required if you don’t specify a standard key.

 initial—A document that will be used as the starting basis for the results of
the aggregation. When the reduce function is first run, this initial document
will be used as the first value of the aggregator and will usually contain all the
keys you aggregate over. So, for instance, if you’re calculating sums of votes and
total documents for each grouped item, then your initial document will look
like this: {vote_sum: 0.0, doc_count: 0}.

Note that this parameter is required.

 reduce—A JavaScript function to perform the aggregation. This function will
receive two arguments: the current document being iterated and an aggregator
document to store the results of the aggregation. The initial value of the aggre-
gator will be the value of the initial document. Here’s a sample reduce func-
tion aggregating votes and view sums:
function(doc, aggregator) {

aggregator.doc_count += 1;
aggregator.vote_sum += doc.vote_count;

}

Note that the reduce function doesn’t need to return anything; it merely needs
to modify the aggregator object. Note also that the reduce function is required.

 cond—A query selector that filters the documents to be aggregated over. If you
don’t want your group operation to process the entire collection, then you must
supply a query selector. For example, if you wanted to aggregate over only those
documents having more than five votes, you could provide the following query
selector: {vote_count: {$gt: 5}}

 finalize—A JavaScript function that will be applied to each result document
before returning the result set. This function gives you a way to post-process the
results of a group operation. A common use is averaging. You can use the exist-
ing values in a grouped result to add another value to store the average:

function(doc) {
doc.average = doc.vote_count / doc.doc_count;

}

group is admittedly tricky at first, what with all the options just presented. But with a
little practice, you’ll quickly grow accustomed to its ways.
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

98 CHAPTER 5 Queries and aggregation

5.4.4 Map-reduce

You may be wondering why MongoDB would support both group and map-reduce,
since they provide such similar functionality. In fact, group preceded map-reduce as
MongoDB’s sole aggregator. map-reduce was added later on for a couple of related
reasons. First, operations in the map-reduce style were becoming more mainstream,
and it seemed prudent to integrate this budding way of thinking into the product.11

The second reason was much more practical: iterating over large data sets, especially
in a sharded configuration, required a distributed aggregator. Map-reduce (the para-
digm) provided just that.

map-reduce includes many options. Here they are in all their byzantine detail:

 map—A JavaScript function to be applied to each document. This function must
call emit() to select the keys and values to be aggregated. Within the function
context, the value of this is a reference to the current document. So, for exam-
ple, if you wanted to group your results by user ID and produce totals on a vote
count and document count, then your map function would look like this:
function() {

emit(this.user_id, {vote_sum: this.vote_count, doc_count: 1});
}

 reduce—A JavaScript function that receives a key and a list of values. This func-
tion must always return a value having the same structure as each of the values
provided in the values array. A reduce function typically iterates over the list of
values and aggregates them in the process. Sticking to our example, here’s how
you’d reduce the mapped values:

function(key, values) {
var vote_sum = 0;
var doc_sum = 0;

values.forEach(function(value) {
vote_sum += value.vote_sum;
doc_sum += value.doc_sum;

});
return {vote_sum: vote_sum, doc_sum: doc_sum};

}

Note that the value of the key parameter frequently isn’t used in the aggrega-
tion itself.

 query—A query selector that filters the collection to be mapped. This parame-
ter serves the same function as group’s cond parameter.

11 A lot of developers first saw map-reduce in a famous paper by Google on distributed computations (http://
labs.google.com/papers/mapreduce.html). The ideas in this paper helped form the basis for Hadoop, an
open source framework that uses distributed map-reduce to process large data sets. The map-reduce idea then

spread. CouchDB, for instance, employed a map-reduce paradigm for declaring indexes.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

99Aggregation in detail

 sort—A sort to be applied to the query. This is most useful when used in con-
junction with the limit option. That way, you could run map-reduce on the
1,000 most-recently-created documents.

 limit—An integer specifying a limit to be applied to the query and sort.
 out—This parameter determines how the output is returned. To return all out-

put as the result of the command itself, pass {inline: 1} as the value. Note that
this works only when the result set fits within the 16 MB return limit.

The other option is to place the results into an output collection. To do this,
the value of out must be a string identifying the name of the collection where
the results are to be stored.

One problem with writing to an output collection is that you may overwrite
existing data if you’ve recently run a similar map-reduce. Therefore, two other
collection output options exist: one for merging the results with the old data
and another for reducing against the data. In the merge case, notated as
{merge: "collectionName"}, the new results will overwrite any existing items
having the same key. In the reduce case, {reduce: "collectionName"}, existing
keys’ values will be reduced against new values using the reduce function. The
reduce output method is especially helpful for performing iterative map-
reduce, where you want to integrate new data into an existing aggregation.
When you run the new map-reduce against the collection, you simply add a
query selector to limit the data set over which the aggregation is run.

 finalize—A JavaScript function to be applied to each resulting document
after the reduce phase is complete.

 scope—A document that specifies values for variables to be globally accessible
by the map, reduce, and finalize functions.

 verbose—A Boolean that, when true, will include in the command’s return
document statistics on the execution time of the map-reduce job.

Alas, there’s one important limitation to be aware of when thinking about MongoDB’s
map-reduce and group: speed. On large data sets, these aggregation functions often
won’t perform as quickly as some users may need. This can be blamed almost entirely
on the MongoDB’s JavaScript engine. It’s hard to achieve high performance with a
JavaScript engine that runs single-threaded and interpreted (not compiled).

 But despair not. map-reduce and group are widely used and adequate in a lot of sit-
uations. For those cases when they’re not, an alternative and a hope for the future
exist. The alternative is to run aggregations elsewhere. Users with especially large data
sets have experienced great success running the data through a Hadoop cluster. The
hope for the future is a newer set of aggregation functions that use compiled, multi-
threaded code. These are planned to be released some time after MongoDB v2.0; you
can track progress at https://jira.mongodb.org/browse/SERVER-447.
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

https://jira.mongodb.org/browse/SERVER-447
http://www.it-ebooks.info/

100 CHAPTER 5 Queries and aggregation

5.5 Summary
Queries and aggregations make up a critical corner of the MongoDB interface. So
once you’ve skimmed this chapter’s reference, you’re encouraged to put the query
and aggregation mechanisms to the test. If you’re ever unsure of how a particular
combination of query operators will serve you, the shell is always a ready test bed.

 We’ll be using MongoDB queries pretty consistently from now on, and the next
chapter is a good reminder of that. There, we tackle document updates. Since queries
play a key role in most updates, you can look forward to yet more exploration of the
query language elaborated here.
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

Updates,
atomic operations,

and deletes
To update is to write to existing documents. But to do this effectively requires a
thorough understanding of the kinds of document structures available and of the
query expressions made possible by MongoDB. Having studied the e-commerce
data model throughout the last two chapters, you should have a good sense for the
ways in which schemas are designed and queried. We’ll use all of this knowledge in
our study of updates.

 Specifically, we’ll look more closely at why we model the category hierarchy in
such a denormalized way, and how MongoDB’s updates make that structure reason-
able. We’ll explore inventory management and solve a few tricky concurrency
issues in the process. You’ll get to know a host of new update operators, learn some

In this chapter
 Updating documents

 Processing documents atomically

 Category hierarchies and inventory management
101

tricks that take advantage of the atomicity of update operations, and experience

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

102 CHAPTER 6 Updates, atomic operations, and deletes

the power of the findAndModify command. After numerous examples, there will be a
section devoted to the nuts and bolts of each update operator. I’ll also include some
notes on concurrency and optimization, and then end with a brief but important sum-
mary of how to delete data in MongoDB.

 By the end of the chapter, you’ll have been exposed to the full range of
MongoDB’s CRUD operations, and you’ll be well on your way to designing applica-
tions that best take advantage of MongoDB’s interface and data model.

6.1 A brief tour of document updates
If you need to update a document in MongoDB, you have two ways of going about it.
You can either replace the document altogether or you can use some combination of
update operators to modify specific fields within the document. As a way of setting the
stage for the more detailed examples to come, I’ll begin this chapter with a simple
demonstration of these two techniques. I’ll then provide some reasons for preferring
one over the other.

 To start, recall the sample user document. The document includes a user’s first and
last names, email address, and shipping addresses. You’ll undoubtedly need to update
an email address from time to time, so let’s begin with that. To replace the document
altogether, we first query for the document, then modify it on the client side, and then
issue the update with the modified document. Here’s how that looks in Ruby:

user_id = BSON::ObjectId("4c4b1476238d3b4dd5000001")
doc = @users.find_one({:_id => user_id})

doc['email'] = 'mongodb-user@10gen.com'
@users.update({:_id => user_id}, doc, :safe => true)

With the user’s _id at hand, you first query for the document. Next you modify the doc-
ument locally, in this case changing the email attribute. Then you pass the modified
document to the update method. The final line says, “Find the document in the users
collection with the given _id, and replace that document with the one I’ve provided.”

 That’s how you modify by replacement; now let’s look at modification by operator:

@users.update({:_id => user_id},
{'$set' => {:email => 'mongodb-user@10gen.com'}},
:safe => true)

The example uses $set, one of several special update operators, to modify the email
address in a single request to the server. In this case, the update request is much more
targeted: find the given user document and set its email field to mongodb-
user@10gen.com.

 How about another example? This time you want to add another shipping address
to the user’s list of addresses. Here’s how you’d do that as a document replacement:

doc = @users.find_one({:_id => user_id})

new_address = {

:name => "work",

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

103A brief tour of document updates

:street => "17 W. 18th St.",
:city => "New York",
:state => "NY",
:zip => 10011

}
doc['shipping_addresses'].append(new_address)
@users.update({:_id => user_id}, doc)

And here’s the targeted approach:

@users.update({:_id => user_id},
{'$push' => {:addresses =>

{:name => "work",
:street => "17 W. 18th St.",
:city => "New York",
:state => "NY",

:zip => 10011
}

}
})

The replacement approach, like before, fetches the user document from the server,
modifies it, and then resends it. The update statement here is identical to the one you
used to update the email address. By contrast, the targeted update uses a different
update operator, $push, to push the new address onto the existing addresses array.

 Now that you’ve seen a couple of updates in action, can you think of some reasons
why you might use one method over the other? Which one do you find more intuitive?
Which do you think is better for performance?

 Modification by replacement is the more generic approach. Imagine that your
application presents an HTML form for modifying user information. With document
replacement, data from the form post, once validated, can be passed right to
MongoDB; the code to perform the update is the same regardless of which user attri-
butes are modified. So, for instance, if you were going to build a MongoDB object
mapper that needed to generalize updates, then updates by replacement would prob-
ably make for a sensible default.1

 But targeted modifications generally yield better performance. For one thing,
there’s no need for the initial round trip to the server to fetch the document to mod-
ify. And just as importantly, the document specifying the update is generally small. If
you’re updating via replacement, and your documents average 100 KB in size, then
that’s 100 KB sent to the server per update! Contrast that with the way updates are
specified using $set and $push in the preceding examples; the documents specifying
these updates can be less than 100 bytes each, regardless of the size of the document
being modified. For this reason, the use of targeted updates frequently means less
time spent serializing and transmitting data.

1 This is the strategy employed by most MongoDB object mappers, and it’s easy to understand why. If users are
given the ability to model entities of arbitrary complexity, then issuing an update via replacement is much

easier than calculating the ideal combination of special update operators to employ.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

104 CHAPTER 6 Updates, atomic operations, and deletes

 In addition, targeted operations allow you to update documents atomically. For
instance, if you need to increment a counter, then updates via replacement are far
from ideal; the only way to make them atomic is to employ some sort of optimistic
locking. With targeted updates, you can use $inc to modify a counter atomically. This
means that even with a large number of concurrent updates, each $inc will be applied
in isolation, all or nothing.2

OPTIMISTIC LOCKING Optimistic locking, or optimistic concurrency control, is a tech-
nique for ensuring a clean update to a record without having to lock it. The
easiest way to understand this technique is to think of a wiki. It’s possible to
have more than one user editing a wiki page at the same time. But the situa-
tion you never want is for a user to be editing and updating an out-of-date ver-
sion of the page. Thus, an optimistic locking protocol is used. When a user
tries to save their changes, a timestamp is included in the attempted update.
If that timestamp is older than the latest saved version of the page, then the
user’s update can’t go through. But if no one has saved any edits to the page,
the update is allowed. This strategy allows multiple users to edit at the same
time, which is much better than the alternative concurrency strategy of
requiring each user to take out a lock to edit any one page.

Now that you understand the kinds of updates available, you’ll be in a position to
appreciate the strategies I’ll introduce in the next section. There, we’ll return to the
e-commerce data model to answer some of the more difficult questions about operat-
ing on that data in production.

6.2 E-commerce updates
It’s easy to provide stock examples for updating this or that attribute in a MongoDB
document. But with a production data model and a real application, complications
will arise, and the update for any given attribute might not be a simple one-liner. In
the following sections, I’ll use the e-commerce data model you saw in the last two
chapters to provide a representative sample of the kinds of updates you’d expect to
make in a production e-commerce site. You may find certain updates intuitive and
other not so much. But overall, you’ll develop a better appreciation for the schema
developed in chapter 4 and an improved understanding of the features and limita-
tions of MongoDB’s update language.

6.2.1 Products and categories

Here you’ll see a couple of examples of targeted updates in action, first looking at
how you calculate average product ratings and then at the more complicated task of
maintaining the category hierarchy.

2 The MongoDB documentation uses the term atomic updates to signify what I’m calling targeted updates. This
new terminology is an attempt to clarify the use of the word atomic. In fact, all updates issued to the core server
occur atomically, isolated on a per-document basis. The update operators are called atomic because they

make it possible to update a document without first having to query it.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

105E-commerce updates

AVERAGE PRODUCT RATINGS

Products are amenable to numerous update strategies. Assuming that administrators
are provided with an interface for editing product information, the easiest update
involves fetching the current product document, merging that data with the user’s
edits, and issuing a document replacement. At other times, you may need to update
just a couple of values, where a targeted update is clearly the way to go. This is the case
with average product ratings. Because users need to sort product listings based on
average product rating, you store that rating in the product document itself and
update the value whenever a review is added or removed.

 Here’s one way of issuing this update:

average = 0.0
count = 0
total = 0
cursor = @reviews.find({:product_id => product_id}, :fields => ["rating"])
while cursor.has_next? && review = cursor.next()

total += review['rating']
count += 1

end

average = total / count

@products.update({:_id => BSON::ObjectId("4c4b1476238d3b4dd5003981")},
{'$set' => {:total_reviews => count, :average_review => average}})

This code aggregates and produces the rating field from each product review and
then produces an average. You also use the fact that you’re iterating over each rating
to count the total ratings for the product. This saves an extra database call to the
count function. With the total number of reviews and their average rating, the code
issues a targeted update, using $set.

 Performance-conscious users may balk at the idea of reaggregating all product
reviews for each update. The method provided here, though conservative, will likely
be acceptable for most situations. But other strategies are possible. For instance, you
could store an extra field on the product document that caches the review ratings
total. After inserting a new review, you’d first query for the product to get the current
total number of reviews and the ratings total. Then you’d calculate the average and
issue an update using a selector like the following:

{'$set' => {:average_review => average, :ratings_total => total},
'$inc' => {:total_reviews => 1}})

Only by benchmarking against a system with representative data can you say whether
this approach is worthwhile. But the example shows that MongoDB frequently pro-
vides more than one valid path. The requirements of the application will help you
decide which is best.

THE CATEGORY HIERARCHY

With many databases, there’s no easy way to represent a category hierarchy. This is true
of MongoDB, although the document structure does help the situation somewhat.

Documents permit a strategy that optimizes for reads, since each category can contain

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

106 CHAPTER 6 Updates, atomic operations, and deletes

a list of its ancestors. The one tricky requirement is keeping all the ancestor lists up to
date. Let’s look at an example to see how this is done.

 What you need first is a generic method for updating the ancestor list for any given
category. Here’s one possible solution:

def generate_ancestors(_id, parent_id)
ancestor_list = []
while parent = @categories.find_one(:_id => parent_id) do

ancestor_list.unshift(parent)
parent_id = parent['parent_id']

end

@categories.update({:_id => _id},
{"$set" {:ancestors => ancestor_list}})

end

This method works by walking backward up the category hierarchy, making successive
queries to each node’s parent_id attribute until reaching the root node (where
parent_id is nil). All the while, it builds an in-order list of ancestors, storing that
result in the ancestor_list array. Finally, it updates the category’s ancestors attri-
bute using $set.

 Now that you have that basic building block, let’s look at the process of inserting a
new category. Imagine you have a simple category hierarchy that looks like the one
you see in figure 6.1.

 Suppose you want to add a new category called Gardening and place it under the
Home category. You insert the new category document and then run your method to
generate its ancestors:

category = {
:parent_id => parent_id,
:slug => "gardening",
:name => "Gardening",
:description => "All gardening implements, tools, seeds, and soil."

}
gardening_id = @categories.insert(category)
generate_ancestors(gardening_id, parent_id)

Home

Outdoors

Tools Seedlings Planters Lawn care
Figure 6.1 An initial category hierarchy

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

107E-commerce updates

Figure 6.2 displays the updated tree.
 That’s easy enough. But what if you now want to place the Outdoors category

underneath Gardening? This is potentially complicated because it alters the ancestor
lists of a number of categories. You can start by changing the parent_id of Outdoors
to the _id of Gardening. This turns out to be not too difficult:

@categories.update({:_id => outdoors_id},
{'$set' => {:parent_id => gardening_id}})

Since you’ve effectively moved the Outdoors category, all the descendants of Out-
doors are going to have invalid ancestor lists. You can rectify this by querying for all
categories with Outdoors in their ancestor lists and then regenerating those lists.
MongoDB’s power to query into arrays makes this trivial:

@categories.find({'ancestors.id' => outdoors_id}).each do |category|
generate_ancestors(category['_id'], outdoors_id)

end

That’s how you handle an update to a category’s parent_id attribute, and you can see
the resulting category arrangement in figure 6.3.

Home

Outdoors Gardening

Tools Seedlings Planters Lawn care

Figure 6.2 Adding a Gardening category

Home

Outdoors

Gardening

Tools Seedlings Planters Lawn care
Figure 6.3 The category tree
in its final state
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

108 CHAPTER 6 Updates, atomic operations, and deletes

But now what if you update a category name? If you change the name of Outdoors to
The Great Outdoors, then you also have to change Outdoors wherever it appears in
the ancestor lists of other categories. You may be justified in thinking, “See? This is
where denormalization comes to bite you,” but it should make you feel better to know
that you can perform this update without recalculating any ancestor list. Here’s how:

doc = @categories.find_one({:_id => outdoors_id})
doc['name'] = "The Great Outdoors"
@categories.update({:_id => outdoors_id}, doc)

@categories.update({'ancestors.id' => outdoors_id},
{'$set' => {'ancestors.$'=> doc}}, :multi => true)

You first grab the Outdoors document, alter the name attribute locally, and then
update via replacement. Now you use the updated Outdoors document to replace its
occurrences in the various ancestor lists. You accomplish this using the positional
operator and a multi-update. The multi-update is easy to understand; recall that you
need to specify :multi => true if you want the update to affect all documents match-
ing the selector. Here, you want to update each category that has the Outdoors cate-
gory in its ancestor list.

 The positional operator is more subtle. Consider that you have no way of knowing
where in a given category’s ancestor list the Outdoors category will appear. You thus
need a way for the update operator to dynamically target the position of the Outdoors
category in the array for any document. Enter the positional operator. This operator,
here the $ in ancestors.$, substitutes the array index matched by the query selector
with itself, and thus enables the update.

 Because of the need to update individual sub-documents within arrays, you’ll
always want to keep the positional operator at hand. In general, these techniques for
updating the category hierarchy will be applicable whenever you’re dealing with
arrays of sub-documents.

6.2.2 Reviews

Not all reviews are created equal, which is why this application allows users to vote on
them. These votes are elementary; they indicate that the given review is helpful.
You’ve modeled reviews so that they cache the total number of helpful votes and keep
a list of each voter’s ID. The relevant section of each review document looks like this:

{helpful_votes: 3,
voter_ids: [ObjectId("4c4b1476238d3b4dd5000041"),

ObjectId("7a4f0376238d3b4dd5000003"),
ObjectId("92c21476238d3b4dd5000032")

]}

You can record user votes using targeted updates. The strategy is to use the $push
operator to add the voter’s ID to the list and the $inc operator to increment the total
number of votes, both in the same update operation:

db.reviews.update({_id: ObjectId("4c4b1476238d3b4dd5000041")},

{$push: {voter_ids: ObjectId("4c4b1476238d3b4dd5000001")},

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

109E-commerce updates

$inc: {helpful_votes: 1}
})

This is almost correct. But you need to ensure that the update happens only if the vot-
ing user hasn’t yet voted on this review. So you modify the query selector to match
only when the voter_ids array doesn’t contain the ID you’re about to add. You can
easily accomplish this using the $ne query operator:

query_selector = {_id: ObjectId("4c4b1476238d3b4dd5000041"),
voter_ids: {$ne: ObjectId("4c4b1476238d3b4dd5000001")}}

db.reviews.update(query_selector,
{$push: {voter_ids: ObjectId("4c4b1476238d3b4dd5000001")},
$inc : {helpful_votes: 1}

})

This is an especially powerful demonstration of MongoDB’s update mechanism and
how it can be used with a document-oriented schema. Voting, in this case, is both
atomic and efficient. The atomicity ensures that, even in a high-concurrency environ-
ment, it’ll be impossible for any one user to vote more than once. The efficiency lies
in the fact that the test for voter membership and the updates to the counter and the
voter list all occur in the same request to the server.

 Now, if you do end up using this technique to record votes, it’s especially impor-
tant that any other updates to the review document also be targeted. This is because
updating by replacement could conceivably result in an inconsistency. Imagine, for
instance, that a user updates the content of their review and that this update occurs
via replacement. When updating by replacement, you first query for the document
you want to update. But between the time that you query for the review and replace it,
it’s possible that a different user might vote on the review. This sequence of events is
illustrated in figure 6.4.

 It should be clear that the document replacement at T3 will overwrite the votes
update happening at T2. It’s possible to avoid this using the optimistic locking

Process 1 at T1
Queries for a review

Process 2 at T2
Updates votes on

review

Process 1 at T3
Replaces review

{:text => "Awesome",
:votes => 3}

{:text => "Awesome",
:votes => 4}

{:text => "Incredible!",
:votes => 3}

T1

Processes

Review documents

T2 T3

Figure 6.4 When a review is updated concurrently via targeted and replacement updates, data

can be lost.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

110 CHAPTER 6 Updates, atomic operations, and deletes

technique described earlier, but it’s probably easier to ensure that all updates in this
case are targeted.

6.2.3 Orders

The atomicity and efficiency of updates that you saw in reviews can also be applied to
orders. Specifically, you’re going to see how to implement an Add to Cart function
using a targeted update. This is a two-step process. First, you construct the product
document that you’ll be storing in the order’s line-item array. Then you issue a tar-
geted update, indicating that this is to be an upsert—an update that will insert a new
document if the document to be updated doesn’t exist. (I’ll describe upserts in detail
in the next section.) The upsert will create a new order object if it doesn’t yet exist,
seamlessly handling both initial and subsequent additions to the shopping cart.3

 Let’s begin by constructing a sample document to add to the cart:

cart_item = {
_id: ObjectId("4c4b1476238d3b4dd5003981"),
slug: "wheel-barrow-9092",
sku: "9092",

name: "Extra Large Wheel Barrow",

pricing: {
retail: 589700,
sale: 489700

}
}

You’ll most likely build this document by querying the products collection and then
extracting whichever fields need to be preserved as a line item. The product’s _id,
sku, slug, name, and price fields should suffice.4 With the cart item document, you
can then upsert into the orders collection:

selector = {user_id: ObjectId("4c4b1476238d3b4dd5000001"),
state: 'CART',
'line_items.id':

{'$ne': ObjectId("4c4b1476238d3b4dd5003981")}
}

update = {'$push': {'line_items': cart_item}}

db.orders.update(selector, update, true, false)

To make the code more clear, I’m constructing the query selector and the update doc-
ument separately. The update document pushes the cart item document onto the
array of line items. As the query selector indicates, this update won’t succeed unless
this particular item doesn’t yet exist in that array. Of course, the first time a user

3 I’m using the terms shopping cart and order interchangeably because they’re both represented using the same
document. They’re formally differentiated only by the document’s state field (a document with a state of
CART is a shopping cart).
4 In a real e-commerce application, you’ll want to verify that the price has not changed at checkout time.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

111E-commerce updates

executes the Add to Cart function, no shopping cart will exist at all. That’s why you
use an upsert here. The upsert will construct the document implied by the keys and
values of the query selector and those of the update document. Therefore, the initial
upsert will produce an order document looking like this one:

{
user_id: ObjectId("4c4b1476238d3b4dd5000001"),
state: 'CART',
line_items: [{

_id: ObjectId("4c4b1476238d3b4dd5003981"),
slug: "wheel-barrow-9092",
sku: "9092",

name: "Extra Large Wheel Barrow",

pricing: {
retail: 589700,
sale: 489700

}
}]

}

You then need to issue another targeted update to ensure that the item quantities and
order subtotal are correct:

selector = {user_id: ObjectId("4c4b1476238d3b4dd5000001"),
state: "CART",
'line_items.id': ObjectId("4c4b1476238d3b4dd5003981")}

update = {$inc:
{'line_items.$.qty': 1,
sub_total: cart_item['pricing']['sale']

}
}

db.orders.update(selector, update)

Notice that you use the $inc operator to update the overall subtotal and quantity on
the individual line item. This latter update is facilitated by the positional operator ($),
introduced in the previous subsection. The main reason you need this second update
is to handle the case where the user clicks Add to Cart on an item that’s already in the
cart. For this case, the first update won’t succeed, but you’ll still need to adjust the
quantity and subtotal. Thus, after clicking Add to Cart twice on the wheelbarrow prod-
uct, the cart should look like this:

{
'user_id': ObjectId("4c4b1476238d3b4dd5000001"),
'state' : 'CART',
'line_items': [{

_id: ObjectId("4c4b1476238d3b4dd5003981"),
qty: 2,
slug: "wheel-barrow-9092",
sku: "9092",
name: "Extra Large Wheel Barrow",

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

112 CHAPTER 6 Updates, atomic operations, and deletes

pricing: {
retail: 589700,
sale: 489700

}
}],

subtotal: 979400
}

There are now two wheelbarrows in the cart, and the subtotal reflects that.
 There are still more operations you’ll need to fully implement a shopping cart.

Most of these, such as removing an item from the cart or clearing a cart altogether,
can be implemented with one or more targeted updates. If that’s not obvious, the
upcoming subsection describing each query operator should make it clear. As for the
actual order processing, that can be handled by advancing the order document
through a series of states and applying each state’s processing logic. We’ll demonstrate
this in the next section, where I explain atomic document processing and the find-
AndModify command.

6.3 Atomic document processing
One tool you won’t want to do without is MongoDB’s findAndModify command.5 This
command allows you to atomically update a document and return it in the same
round trip. This is a big deal because of what it enables. For instance, you can use
findAndModify to build job queues and state machines. You can then use these primi-
tive constructs to implement basic transactional semantics, which greatly expand the
range of applications you can build using MongoDB. With these transaction-like fea-
tures, you can construct an entire e-commerce site on MongoDB—not just the prod-
uct content, but the checkout mechanism and the inventory management as well.

 To demonstrate, we’ll look at two examples of the findAndModify command in
action. First, I’ll show how to handle basic state transitions on the shopping cart.
Then we’ll look at a slightly more involved example of managing a limited inventory.

6.3.1 Order state transitions

All state transitions have two parts: a query ensuring a valid initial state and an update
that effects the change of state. Let’s skip forward a few steps in the order process and
assume that the user is about to click the Pay Now button to authorize the purchase. If
you’re going to authorize the user’s credit card synchronously on the application side,
then you need to ensure these things:

1 You authorize for the amount that the user sees on the checkout screen.
2 The cart’s contents never change while in the process of authorization.

5 The way this command is identified can vary by environment. The shell helper is invoked camel case as
db.orders.findAndModify, whereas Ruby uses underscores: find_and_modify. To confuse the issue
even more, the core server knows the command as findandmodify. You’ll use this final form if you ever need

to issue the command manually.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

113Atomic document processing

3 Errors in the authorization process return the cart to its previous state.
4 If the credit card is successfully authorized, the payment information is posted

to the order, and that order’s state is transitioned to SHIPMENT PENDING.

The first step is to get the order into the new PRE-AUTHORIZE state. You use find-
AndModify to find the user’s current order object and ensure that the object is in a
CART state:

db.orders.findAndModify({
query: {user_id: ObjectId("4c4b1476238d3b4dd5000001"),

state: "CART" },

update: {"$set": {"state": "PRE-AUTHORIZE"},
new: true}

 })

If successful, findAndModify will return the transitioned order object.6 Once the
order is in the PRE-AUTHORIZE state, the user won’t be able to edit the cart’s contents.
This is because all updates to the cart always ensure a state of CART. Now, in the pre-
authorization state, you take the returned order object and recalculate the various
totals. Once you have those totals, you issue a new findAndModify which transitions
the document’s state to AUTHORIZING only if the new totals match the old totals.
Here’s what that findAndModify looks like:

db.orders.findAndModify({
query: {user_id: ObjectId("4c4b1476238d3b4dd5000001"),

total: 99000,
state: "PRE-AUTHORIZE" },

update: {"$set": {"state": "AUTHORIZING"}}
})

If this second findAndModify fails, then you must return the order’s state to CART and
report the updated totals to the user. But if it succeeds, then you know that the total to
be authorized is the same total that was presented to the user. This means that you can
move on to the actual authorization API call. Thus, the application now issues a credit
card authorization request on the user’s credit card. If the credit card fails to autho-
rize, you record the failure and, like before, return the order to its CART state.

 But if the authorization is successful, you write the authorization info to the order
and transition it to the next state. The following strategy does both in the same find-
AndModify call. Here, the example uses a sample document representing the authori-
zation receipt, which is attached to the original order:

auth_doc = {ts: new Date(),
cc: 3432003948293040,
id: 2923838291029384483949348,
gateway: "Authorize.net"}

6 By default, the findAndModify command returns the document as it appears prior to the update. To return

the modified document, you must specify {new: true} as as in this example.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

114 CHAPTER 6 Updates, atomic operations, and deletes

db.orders.findAndModify({
query: {user_id: ObjectId("4c4b1476238d3b4dd5000001"),

state: "AUTHORIZING" },

update: {"$set":
{"state": "PRE-SHIPPING"},
"authorization": auth}

})

It’s important to be aware of the MongoDB features that facilitate this transactional
process. There’s the ability to modify any one document atomically. There’s the guar-
antee of consistent reads along a single connection. And finally, there’s the document
structure itself, which allows these operations to fit within the single-document atom-
icity that MongoDB provides. In this case, that structure allows you to fit line items,
products, pricing, and user ownership into the same document, ensuring that you
only ever need to operate on that one document to advance the sale.

 This ought to strike you as impressive. But it may lead you to wonder, as it did me,
whether any multi-object transaction-like behavior can be implemented with MongoDB.
The answer is a cautious affirmative and can be demonstrated by looking into another
e-commerce centerpiece: inventory management.

6.3.2 Inventory management

Not every e-commerce site needs strict inventory management. Most commodity items
can be replenished in a reasonable enough time to allow any order to go through
regardless of the actual number of items on hand. In cases like these, managing inven-
tory is easily handled by managing expectations; as soon as only a few items remain in
stock, adjust the shipping estimates.

 One-of-a-kind items present a different challenge. Imagine you’re selling concert
tickets with assigned seats or handmade works of art. These products can’t be hedged;
users will always need a guarantee that they can purchase the products they’ve
selected. Here I’ll present a possible solution to this problem using MongoDB. This
will further illustrate the creative possibilities in the findAndModify command and the
judicious use of the document model. It’ll also show how to implement transactional
semantics across multiple documents.

 The way you model inventory can be best understood by thinking about a real
store. If you’re in a gardening store, you can see and feel the physical inventory; doz-
ens of shovels, rakes, and clippers may line the aisles. If you take a shovel and place it
in your cart, that’s one less shovel available for the other customers. As a corollary, no
two customers can have the same shovel in their shopping carts at the same time. You
can use this simple principle to model inventory. For every physical piece of inven-
tory in your warehouse, you store a corresponding document in an inventory collec-
tion. If there are 10 shovels in the warehouse, there are 10 shovel documents in the
database. Each inventory item is linked to a product by sku, and each of these items
can be in one of four states: AVAILABLE (0), IN_CART (1), PRE_ORDER (2), or

PURCHASED (3).

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

115Atomic document processing

 Here’s a method that inserts three shovels, three rakes, and three sets of clippers as
available inventory:

3.times do
@inventory.insert({:sku => 'shovel', :state => AVAILABLE})
@inventory.insert({:sku => 'rake', :state => AVAILABLE})
@inventory.insert({:sku => 'clippers', :state => AVAILABLE})

end

We’ll handle inventory management with a special inventory fetching class. We’ll first
look at how this fetcher works and then we’ll peel back the covers to reveal its imple-
mentation.

 The inventory fetcher can add arbitrary sets of products to a shopping cart. Here
you create a new order object and a new inventory fetcher. You then ask the fetcher to
add three shovels and one set of clippers to a given order by passing an order ID and
two documents specifying the products and quantities you want to the add_to_cart
method:

@order_id = @orders.insert({:username => 'kbanker', :item_ids => []})
@fetcher = InventoryFetcher.new(:orders => @orders,

:inventory => @inventory)

@fetcher.add_to_cart(@order_id,
{:sku => "shovel", :qty => 3},
{:sku => "clippers", :qty => 1})

order = @orders.find_one({"_id" => @order_id})
puts "\nHere's the order:"
p order

The add_to_cart method will raise an exception if it fails to add every item to a cart.
If it succeeds, the order should look like this:

{"_id" => BSON::ObjectId('4cdf3668238d3b6e3200000a'),
"username"=>"kbanker",
"item_ids" => [BSON::ObjectId('4cdf3668238d3b6e32000001'),

BSON::ObjectId('4cdf3668238d3b6e32000004'),
BSON::ObjectId('4cdf3668238d3b6e32000007'),
BSON::ObjectId('4cdf3668238d3b6e32000009')],

}

The _id of each physical inventory item will be stored in the order document. You can
query for each of these items like so:

puts "\nHere's each item:"
order['item_ids'].each do |item_id|

item = @inventory.find_one({"_id" => item_id})
p item

end

Looking at each of these items individually, you can see that each has a state of 1, cor-
responding to the IN_CART state. You should also notice that each item records the
time of the last state change with a timestamp. You can later use this timestamp to
expire items that have been in a cart for too long. For instance, you might give users

15 minutes to check out from the time they add products to their cart:

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

116 CHAPTER 6 Updates, atomic operations, and deletes

{"_id" => BSON::ObjectId('4cdf3668238d3b6e32000001'),
"sku"=>"shovel", "state"=>1, "ts"=>"Sun Nov 14 01:07:52 UTC 2010"}

{"_id"=>BSON::ObjectId('4cdf3668238d3b6e32000004'),
"sku"=>"shovel", "state"=>1, "ts"=>"Sun Nov 14 01:07:52 UTC 2010"}

{"_id"=>BSON::ObjectId('4cdf3668238d3b6e32000007'),
"sku"=>"shovel", "state"=>1, "ts"=>"Sun Nov 14 01:07:52 UTC 2010"}

{"_id"=>BSON::ObjectId('4cdf3668238d3b6e32000009'),
"sku"=>"clippers", "state"=>1, "ts"=>"Sun Nov 14 01:07:52 UTC 2010"}

If this InventoryFetcher’s API makes any sense, you should have a least a few hunches
about how you’d implement inventory management. Unsurprisingly, the findAnd-
Modify command resides at its core. The full source code for the InventoryFetcher,
including a test suite, is included with the source code of this book. We’re not going to
look at every line of code, but we’ll highlight the three key methods that make it work.

 First, when you pass a list of items to be added to your cart, the fetcher attempts to
transition each item from the state of AVAILABLE to IN_CART. If at any point this opera-
tion fails (if any one item can’t be added to the cart), then the entire operation is
rolled back. Have a look at the add_to_cart method that you invoked earlier:

def add_to_cart(order_id, *items)
item_selectors = []
items.each do |item|

item[:qty].times do
item_selectors << {:sku => item[:sku]}

end
end

transition_state(order_id, item_selectors, :from => AVAILABLE,
 :to => IN_CART)
end

This method doesn’t do much. It basically takes the specification for items to add to
the cart and expands the quantities so that one item selector exists for each physical
item that will be added to the cart. For instance, this document, which says that you
want to add two shovels

{:sku => "shovel", :qty => 2}

becomes this:

[{:sku => "shovel"}, {:sku => "shovel"}]

You need a separate query selector for each item you want to add to your cart. Thus,
the method passes the array of item selectors to another method called transition
_state. For example, the code above specifies that the state should be transitioned
from AVAILABLE to IN_CART:

def transition_state(order_id, selectors, opts={})
items_transitioned = []

begin

for selector in selectors do

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

117Atomic document processing

query = selector.merge(:state => opts[:from])

physical_item = @inventory.find_and_modify(:query => query,
:update => {'$set' => {:state => opts[:to], :ts => Time.now.utc}})

if physical_item.nil?
raise InventoryFetchFailure

end

items_transitioned << physical_item['_id']

@orders.update({:_id => order_id},
{"$push" => {:item_ids => physical_item['_id']}})

end

rescue Mongo::OperationFailure, InventoryFetchFailure
rollback(order_id, items_transitioned, opts[:from], opts[:to])
raise InventoryFetchFailure, "Failed to add #{selector[:sku]}"

end

items_transitioned.size
end

To transition state, each selector gets an extra condition, {:state => AVAILABLE}, and
then the selector is passed to findAndModify which, if matched, sets a timestamp and
the item’s new state. The method then saves the list of items transitioned and updates
the order with the ID of the item just added.

 If the findAndModify command fails and returns nil, then you raise an Inventory-
FetchFailure exception. If the command fails because of networking errors, you res-
cue the inevitable Mongo::OperationFailure exception. In both cases, you rescue by
rolling back all the items transitioned thus far and then raise an InventoryFetch-
Failure, which includes the SKU of the item that couldn’t be added. You can then res-
cue this exception on the application layer to fail gracefully for the user.

 All that now remains is to examine the rollback code:

def rollback(order_id, item_ids, old_state, new_state)
@orders.update({"_id" => order_id},

{"$pullAll" => {:item_ids => item_ids}})

item_ids.each do |id|
@inventory.find_and_modify(

:query => {"_id" => id, :state => new_state},
:update => {"$set" => {:state => old_state, :ts => Time.now.utc}}

)
end

end

You use the $pullAll operator to remove all of the IDs just added to the order’s
item_ids array. You then iterate over the list of item IDs and transition each one back
to its old state.

 The transition_state method can be used as the basis for other methods that
move items through their successive states. It wouldn’t be difficult to integrate this
into the order transition system that you built in the previous subsection. But that

must be left as an exercise for the reader.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

118 CHAPTER 6 Updates, atomic operations, and deletes

 You may justifiably ask whether this system is robust enough for production. This
question can’t be answered easily without knowing more particulars, but what can be
stated assuredly is that MongoDB provides enough features to permit a usable solu-
tion when you need transaction-like behavior. Granted, no one should be building a
banking system on MongoDB. But if some sort of transactional behavior is required,
it’s reasonable to consider MongoDB for the task, especially when you want to run the
application entirely on one database.

6.4 Nuts and bolts: MongoDB updates and deletes
To really understand updates in MongoDB, you need a holistic understanding of
MongoDB’s document model and query language, and the examples in the preceding
sections are great for helping with that. But here, as in all of this book’s nuts-and-bolts
sections, we get down to brass tacks. This mostly involves brief summaries of each fea-
ture of the MongoDB update interface, but I also include several notes on perfor-
mance. For brevity’s sake, all of the upcoming examples will be in JavaScript.

6.4.1 Update types and options

MongoDB supports both targeted updates and updates via replacement. The former
are defined by the use of one or more update operators; the latter by a document that
will be used to replace the document matched by the update’s query selector.

Note that an update will fail if the update document is ambiguous. Here, we’ve com-
bined an update operator, $addToSet, with replacement-style semantics, {name:
"Pitchfork"}:

db.products.update({}, {name: "Pitchfork", $addToSet: {tags: 'cheap'}})

If your intention is to change the document’s name, you must use the $set operator:

db.products.update({},

Syntax note: updates versus queries
Users new to MongoDB sometimes have difficulty distinguishing between the update
and query syntaxes. Targeted updates, at least, always begin with the update opera-
tor, and this operator is almost always a verb-like construct. Take the $addToSet
operator, for example:

db.products.update({}, {$addToSet: {tags: 'green'}})

If you add a query selector to this update, note that the query operator is semanti-
cally adjectival and comes after the field name to query on:

db.products.update({'price' => {$lte => 10}},
 {$addToSet: {tags: 'cheap'}})

 Basically, update operators are prefix whereas query operators are usually infix.
{$set: {name: "Pitchfork"}, $addToSet: {tags: 'cheap'}})

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

119Nuts and bolts: MongoDB updates and deletes

MULTIDOCUMENT UPDATES

An update will, by default, only update the first document matched by its query selec-
tor. To update all matching documents, you need to explicitly specify a multi-
document update. In the shell, you can express this by passing true as the fourth
argument of the update method. Here’s how you’d add the cheap tags to all docu-
ments in the products collection:

db.products.update({}, {$addToSet: {tags: 'cheap'}}, false, true)

With the Ruby driver (and most other drivers), you can express multidocument
updates more clearly:

@products.update({}, {'$addToSet' => {'tags' => 'cheap'}}, :multi => true)

UPSERTS

It’s common to need to insert if an item doesn’t exist but update it if it does. You can
handle this normally tricky-to-implement pattern using MongoDB upserts. If the
query selector matches, the update takes place normally. But if no document matches
the query selector, a new document will be inserted. The new document’s attributes
will be a logical merging of the query selector and the targeted update document.7

 Here’s a simple example of an upsert using the shell:

db.products.update({slug: 'hammer'}, {$addToSet: {tags: 'cheap'}}, true)

And here’s an equivalent upsert in Ruby:

@products.update({'slug' => 'hammer'},
{'$addToSet' => {'tags' => 'cheap'}}, :upsert => true)

As you should expect, upserts can can insert or update only one document at a time.
You’ll find upserts incredibly valuable when you need to update atomically and when
there’s uncertainly about a document’s prior existence. For a practical example, see
section 6.2.3, which describes adding products to a cart.

6.4.2 Update operators

MongoDB supports a host of update operators. Here I provide brief examples of each
of them.

STANDARD UPDATE OPERATORS

This first set of operators is the most generic, and each works with almost any data
type.

$inc
You use the $inc operator to increment or decrement a numeric value:

db.products.update({slug: "shovel"}, {$inc: {review_count: 1}})
db.users.update({username: "moe"}, {$inc: {password_retires: -1})

But you can also use $inc to add or subtract from numbers arbitrarily:

db.readings.update({_id: 324}, {$inc: {temp: 2.7435}})
7 Note that upserts don’t work with replacement-style update documents.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

120 CHAPTER 6 Updates, atomic operations, and deletes

$inc is as efficient as it is convenient. Because it rarely changes the size of a document,
an $inc usually occurs in-place on disk, thus affecting only the value pair specified.8

 As demonstrated in the code for adding products to a shopping cart, $inc works
with upserts. For example, you can change the preceding update to an upsert like so:

db.readings.update({_id: 324}, {$inc: {temp: 2.7435}}, true)

If no reading with an _id of 324 exists, a new document will be created with said _id
and a temp with the value of the $inc, 2.7435.

$set and $unset
If you need to set the value of a particular key in a document, you’ll want to use $set.
You can set a key to a value having any valid BSON type. This means that all of the fol-
lowing updates are possible:

db.readings.update({_id: 324}, {$set: {temp: 97.6}})
db.readings.update({_id: 325}, {$set: {temp: {f: 212, c: 100} })
db.readings.update({_id: 326}, {$set: {temps: [97.6, 98.4, 99.1]}})

If the key being set already exists, then its value will be overwritten; otherwise, a new
key will be created.

$unset removes the provided key from a document. Here’s how to remove the
temp key from the reading document:

db.readings.update({_id: 324}, {$unset: {temp: 1})

You can also use $unset on embedded documents and on arrays. In both cases, you
specify the inner object using dot notation. If you have these two documents in your
collection

{_id: 325, 'temp': {f: 212, c: 100}}
{_id: 326, temps: [97.6, 98.4, 99.1]}

then you can remove the Fahrenheit reading in the first document and the zeroth ele-
ment in the second document like so:

db.readings.update({_id: 325},
 {$unset: {'temp.f': 1}})

db.readings.update({_id: 236},
 {$pop: {temps: -1})

This dot notation for accessing sub-documents and array elements can also be used
with $set.

$rename
If you need to change the name of a key, use $rename:

db.readings.update({_id: 324}, {$rename: {'temp': 'temperature'})

You can also rename a sub-document:

db.readings.update({_id: 325}, {$rename: {'temp.f': 'temp.farenheit'})

8 Exceptions to this rule arise when the numeric type changes. If the $inc results in a 32-bit integer being con-

verted to a 64-bit integer, then the entire BSON document will have to be rewritten in-place.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

121Nuts and bolts: MongoDB updates and deletes

ARRAY UPDATE OPERATORS

The centrality of arrays in MongoDB’s document model should be apparent. Naturally,
MongoDB provides a handful of update operators that apply exclusively to arrays.

$push and $pushAll
If you need to append values to an array, $push and $pushAll are your friends. The
first of these, $push, will add a single value to an array, whereas $pushAll supports
adding a list of values. For example, adding a new tag to the shovel product is easy
enough:

db.products.update({slug: 'shovel'}, {$push: {'tags': 'tools'}})

If you need to add a few tags in the same update, that’s not a problem either:

db.products.update({slug: 'shovel'},
{$pushAll: {'tags': ['tools', 'dirt', 'garden']}})

Note you can push values of any type onto an array, not just scalars. For an example of
this, see the code in the previous section that pushed a product onto the shopping
cart’s line items array.

$addToSet and $each
$addToSet also appends a value to an array but does so in a more discerning way: the
value is added only if it doesn’t already exist in the array. Thus, if your shovel has
already been tagged as a tool then the following update won’t modify the document
at all:

db.products.update({slug: 'shovel'}, {$addToSet: {'tags': 'tools'}})

If you need to add more than one value to an array uniquely in the same operation,
then you must use $addToSet with the $each operator. Here’s how that looks:

db.products.update({slug: 'shovel'},
{$addToSet: {'tags': {$each: ['tools', 'dirt', 'steel']}}})

Only those values in the $each that don’t already exist in tags will be appended.

$pop
The most elementary way to remove an item from an array is with the $pop operator. If
$push appends an item to an array, a subsequent $pop will remove that last item

Using $unset with arrays
Note that using $unset on individual array elements may not work exactly like you
want it to. Instead of removing the element altogether, it merely sets that element’s
value to null. To completely remove an array element, see the $pull and $pop
operators.

db.readings.update({_id: 325}, {$unset: {'temp.f': 1})
db.readings.update({_id: 326}, {$unset: {'temp.0': 1})
pushed. Though it’s frequently used with $push, you can use $pop on its own. If your

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

122 CHAPTER 6 Updates, atomic operations, and deletes

tags array contains the values ['tools', 'dirt', 'garden', 'steel'], then the fol-
lowing $pop will remove the steel tag:

db.products.update({slug: 'shovel'}, {$pop: {'tags': 1}})

Like $unset, $pop’s syntax is {$pop: {'elementToRemove': 1}}. But unlike $unset,
$pop takes a second possible value of -1 to remove the first element of the array.
Here’s how to remove the tools tag from the array:

db.products.update({slug: 'shovel'}, {$pop: {'tags': -1}})

One possible point of frustration is that you can’t actually return the value that $pop
removes from the array. Thus, despite its name, $pop doesn’t work exactly like the
stack operation you probably have in mind. Be aware of this.

$pull and $pullAll
$pull is $pop’s more sophisticated cousin. With $pull, you specify exactly which array
element to remove by value, not by position. Returning to the tags example, if you
need to remove the tag dirt, you don’t need to know where in the array it’s located;
you simply tell the $pull operator to remove it:

db.products.update({slug: 'shovel'}, {$pull {'tags': 'dirt'}})

$pullAll works analogously to $pushAll, allowing you to provide a list of values to
remove. To remove both the tags dirt and garden, you can use $pullAll like so:

db.products.update({slug: 'shovel'}, {$pullAll {'tags': ['dirt', 'garden']}})

POSITIONAL UPDATES

It’s common to model data in MongoDB using an array of sub-documents, but it
wasn’t so easy to manipulate those sub-documents until the positional operator came
along. The positional operator allows you to update a sub-document in an array. You
identify which sub-document you want to update by using dot notation in your query
selector. This is hard to understand without an example, so suppose you have an order
document, part of which looks like this:

{ _id: new ObjectId("6a5b1476238d3b4dd5000048"),
line_items: [

{ _id: ObjectId("4c4b1476238d3b4dd5003981"),
sku: "9092",
name: "Extra Large Wheel Barrow",
quantity: 1,
pricing: {

retail: 5897,
sale: 4897,

}
},

{ _id: ObjectId("4c4b1476238d3b4dd5003981"),
sku: "10027",
name: "Rubberized Work Glove, Black",
quantity: 2,
pricing: {
retail: 1499,

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

123Nuts and bolts: MongoDB updates and deletes

sale: 1299,
}

}
]

}

You want to be able to set the quantity of the second line item, with the SKU of 10027,
to 5. The problem is that you don’t know where in the line_items array this particu-
lar sub-document resides. You don’t even know whether it exists. But a simple query
selector, and an update document using the positional operator, solve both of these
problems:

query = {_id: ObjectId("4c4b1476238d3b4dd5003981"),
'line_items.sku': "10027"}

update = {$set: {'line_items.$.quantity': 5}}

db.orders.update(query, update)

The positional operator is the $ that you see in the 'line_items.$.quantity' string.
If the query selector matches, then the index of the document having a SKU of 10027
will replace the positional operator internally, thereby updating the correct document.

 If your data model includes sub-documents, then you’ll find the positional opera-
tor very useful for performing nuanced document updates.

6.4.3 The findAndModify command

With so many fleshed-out examples of using the findAndModify command earlier in
this chapter, it only remains to enumerate its options. Of the following, the only
options required are query and either update or remove:

 query—A document query selector. Defaults to {}.
 update—A document specifying an update. Defaults to {}.
 remove—A Boolean value that, when true, removes the object and then returns

it. Defaults to false.
 new—A Boolean that, if true, returns the modified document as it appears after

the update has been applied. Defaults to false.
 sort—A document specifying a sort direction. Because findAndModify will

modify only one document at a time, the sort option can be used to help con-
trol which matching document is processed. For example, you might sort by
{created_at: -1} to process to most recently created matching document.

 fields—If you only need to return a subset of fields, use this option to specify
them. This is especially helpful with larger documents. The fields are specified
just as they would be in any query. See the section on fields in chapter 5 for
examples.

 upsert—A Boolean that, when true, treats findAndModify as an upsert. If the
document sought doesn’t exist, it’ll be created. Note that if you want to return
the newly created document, you also need to specify {new: true}.
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

124 CHAPTER 6 Updates, atomic operations, and deletes

6.4.4 Deletes

You’ll be relieved to learn that removing documents poses few challenges. You can
remove an entire collection or you can pass a query selector to the remove method to
delete only a subset of a collection. Deleting all reviews is simple:

db.reviews.remove({})

But it’s much more common to delete only the reviews of a particular user:

db.reviews.remove({user_id: ObjectId('4c4b1476238d3b4dd5000001')})

Thus, all calls to remove take an optional query specifier for selecting exactly which
documents to delete. As far as the API goes, that’s all there is to say. But you’ll have a
few questions surrounding the concurrency and atomicity of these operations. I’ll
explain that in the next section.

6.4.5 Concurrency, atomicity, and isolation

It’s important to understand how concurrency works in MongoDB. As of MongoDB
v2.0, the locking strategy is rather coarse; a single global reader-writer lock reigns over
the entire mongod instance. What this means is that at any moment in time, the data-
base permits either one writer or multiple readers (but not both). This sounds a lot
worse than it is in practice because there exist quite a few concurrency optimizations
around this lock. One is that the database keeps an internal map of which document
are in RAM. For requests to read or write documents not residing in RAM, the database
yields to other operations until the document can be paged into memory.

 A second optimization is the yielding of write locks. The issue is that if any one
write takes a long time to complete, all other read and write operations will be
blocked for the duration of the original write. All inserts, updates, and removes take a
write lock. Inserts rarely take a long time to complete. But updates that affect, say, an
entire collection, as well as deletes that affect a lot of documents, can run long. The
current solution to this is to allow these long-running ops to yield periodically for
other readers and writers. When an operation yields, it pauses itself, releases its lock,
and resumes later.9

 But when updating and removing documents, this yielding behavior can be a
mixed blessing. It’s easy to imagine situations where you’d want all documents
updated or removed before any other operation takes place. For these cases, you can
use a special option called $atomic to keep the operation from yielding. You simply
add the $atomic operator to the query selector like so:

db.reviews.remove({user_id: ObjectId('4c4b1476238d3b4dd5000001'),
{$atomic: true}})

9 Granted, the yielding and resuming generally happen within the space of a few of milliseconds. So we’re not

necessarily talking about an egregious interruption here.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

125Nuts and bolts: MongoDB updates and deletes

The same can be applied to any multi-update. This forces the entire multi-update to
complete in isolation:

db.reviews.update({$atomic: true}, {$set: {rating: 0}}, false, true)

This update sets each review’s rating to 0. Because the operation happens in isolation,
the operation will never yield, ensuring a consistent view of the system at all times.10

6.4.6 Update performance notes

Experience shows that having a basic mental model of how updates affect a document
on disk helps users design systems with better performance. The first thing you should
understand is the degree to which an update can be said to happen “in-place.” Ideally,
an update will affect the smallest portion of a BSON document on disk, as this leads to
the greatest efficiency. But this isn’t always what happens. Here, I’ll explain how this
can be so.

 There are essentially three kinds of updates to a document on disk. The first, and
most efficient, takes place when only a single value is updated and the size of the over-
all BSON document doesn’t change. This most commonly happens with the $inc
operator. Because $inc is only incrementing an integer, the size of that value on disk
won’t change. If the integer represents an int it’ll always take up four bytes on disk;
long integers and doubles will require eight bytes. But altering the values of these
numbers doesn’t require any more space and, therefore, only that one value within
the document must be rewritten on disk.

 The second kind of update changes the size or structure of a document. A BSON
document is literally represented as a byte array, and the first four bytes of the docu-
ment always store the document’s size. Thus, if you use the $push operator on a docu-
ment, you’re both increasing the overall document’s size and changing its structure.
This requires that the entire document be rewritten on disk. This isn’t going to be hor-
ribly inefficient, but it’s worth keeping in mind. If multiple update operators are
applied in the same update, then the document must be rewritten once for each oper-
ator. Again, this usually isn’t a problem, especially if writes are taking place in RAM. But
if you have extremely large documents, say around 4 MB, and you’re $pushing values
onto arrays in those documents, then that’s potentially lot of work on the server side.11

 The final kind of update is a consequence of rewriting a document. If a document
is enlarged and can no longer fit in its allocated space on disk, then not only does it
need to be rewritten, but it must also be moved to a new space. This moving operation
can be potentially expensive if it occurs often. MongoDB attempts to mitigate this by
dynamically adjusting a padding factor on a per-collection basis. This means that if,
within a given collection, lots of updates are taking place that require documents to
be relocated, then the internal padding factor will be increased. The padding factor is

10 Note that if an operation using $atomic fails halfway through, there’s no implicit rollback. Half the docu-
ments will have been updated while the other half will still have their original value.
11 It should go without saying that if you intend to do a lot of updates, it’s best to keep your documents small.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

126 CHAPTER 6 Updates, atomic operations, and deletes

multiplied by the size of each inserted document to get the amount of extra space to
create beyond the document itself. This may reduce the number of future document
relocations.

 To see a given collection’s padding factor, run the collection stats command:

db.tweets.stats()
{

"ns" : "twitter.tweets",
"count" : 53641,
"size" : 85794884,
"avgObjSize" : 1599.4273783113663,
"storageSize" : 100375552,
"numExtents" : 12,
"nindexes" : 3,
"lastExtentSize" : 21368832,
"paddingFactor" : 1.2,
"flags" : 0,
"totalIndexSize" : 7946240,
"indexSizes" : {
"_id_" : 2236416,
"user.friends_count_1" : 1564672,
"user.screen_name_1_user.created_at_-1" : 4145152

},
"ok" : 1 }

This collection of tweets has a padding factor of 1.2, which indicates that when a 100-
byte document is inserted, MongoDB will allocate 120 bytes on disk. The default pad-
ding value is 1, which indicates that no extra space will be allocated.

 Now, a brief word of warning. The considerations mentioned here apply especially
to deployments where the data size exceeds RAM or where an extreme write load is
expected. So, if you’re building an analytics system for a high-traffic site, take the
information here with more than a grain of salt.

6.5 Summary
We’ve covered a lot in this chapter. The variety of updates may at first feel like a lot to
take in, but the power that these updates represent should be reassuring. The fact is
that MongoDB’s update language is as sophisticated as its query language. You can
update a simple document as easily as you can a complex, nested structure. When
needed, you can atomically update individual documents and, in combination with
findAndModify, build transactional workflows.

 If you’ve finished this chapter and feel like you can apply the examples here on
your own, then you’re well on your way to becoming a MongoDB guru.
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

Part 3

MongoDB mastery

Having read the first two parts of the book, you should understand
MongoDB quite well from a developer’s perspective. Now it’s time to switch
roles. In this final part of the book, we’ll look at MongoDB from the database
administrator’s perspective. This means we’ll cover all the things you need to
know about performance, deployments, fault tolerance, and scalability.

 To get the best performance from MongoDB, you have to design efficient
queries and then ensure that they’re properly indexed. This is what you’ll learn
in chapter 7. You’ll see why indexes are important, and you’ll learn how they’re
chosen and then traversed by the query optimizer. You’ll also learn how to use
helpful tools like the query explainer and the profiler.

 Chapter 8 is devoted to replication. You’ll spend most of this chapter learn-
ing how replica sets work and how to deploy them intelligently for high availabil-
ity and automatic failover. In addition, you’ll learn how to use replication to
scale application reads and to customize the durability of writes.

 Horizontal scalability is the holy grail for modern database systems;
MongoDB scales horizontally by partitioning data in a processes known as shard-
ing. Chapter 9 presents sharding theory and practice, showing when to use it,
how to design schemas around it, and how to deploy it.

 The last chapter describes the niceties of deployment and administration. In
chapter 10 we’ll look at specific hardware and operating system recommenda-
tions. You’ll then learn how to back up, monitor, and troubleshoot live
MongoDB clusters.
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing and query
optimization
Indexes are enormously important. With the right indexes in place, MongoDB can
use its hardware efficiently and serve your application’s queries quickly. But having
the wrong indexes produces the opposite result: slow queries and poorly utilized
hardware. It stands to reason that anyone wanting to use MongoDB effectively must
understand indexing.

 But for many developers, indexes are a topic shrouded in mystery. This need
not be the case. Once you’ve finished this chapter, you should have a good mental
model for thinking clearly about indexes. To introduce the concepts of indexing,
we’ll begin with a modest thought experiment. We’ll then explore some core
indexing concepts and provide an overview of the B-tree data structure underlying
each MongoDB index.

In this chapter
 Basic indexing concepts and theory

 Managing indexes

 Optimizing queries
129

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

130 CHAPTER 7 Indexing and query optimization

 Then it’s on to indexing in practice. We’ll discuss unique, sparse, and multikey
indexes, and provide a number of pointers on index administration. Next, we’ll delve
into query optimization, describing how to use explain() and work harmoniously
with the query optimizer.

7.1 Indexing theory
We’ll proceed gradually, beginning with an extended analogy and ending with an
exposition of some of MongoDB’s key implementation details. Along the way, I’ll
define and provide examples of a number of important terms. If you’re not too famil-
iar with compound-key indexes, virtual memory, and index data structures, then you
should find this section eminently edifying.

7.1.1 A thought experiment

To understand indexing, you need a picture in your head. So imagine a cookbook.
And not just any cookbook: a massive cookbook, 5,000 pages long with the most deli-
cious recipes for every occasion, cuisine, and season, with all the good ingredients you
might find at home. This is the cookbook to end them all. Let’s call it The Cookbook
Omega.

 Although this might be the best of all possible cookbooks, there are two tiny prob-
lems with The Cookbook Omega. The first is that the recipes are in random order. On
page 3,475 you have Australian Braised Duck, and on page 2 you’ll find Zacatecan
Tacos.

 That would be manageable were it not for the second problem: The Cookbook
Omega has no index.

 So here’s the first question to ask yourself: with no index, how do you find the rec-
ipe for Rosemary Potatoes in The Cookbook Omega? Your only choice is to scan
through every page of the book until you find the recipe. If the recipe is on
page 3,973, that’s how many pages you have to look through. In the worst case, where
the recipe is on the last page, you have to look at every single page.

 That would be madness. The solution is to build an index.
 There are several ways you can imagine searching for a recipe, but the recipe’s

name is probably a good place to start. If you create an alphabetical listing of each rec-
ipe name followed by its page number, then you’ll have indexed the book by recipe
name. A few entries might look like this:

 Tibetan Yak Soufflé: 45
 Toasted Sesame Dumplings: 4,011
 Turkey à la King: 943

As long as you know the name of the recipe (or even the first few letters of that name),
you can use this index to quickly find any recipe in the book. If that’s the only way you
expect to search for recipes, then your work is done.
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

131Indexing theory

 But this is unrealistic because you can also imagine wanting to find recipes based
on, say, the ingredients you have in your pantry. Or perhaps you want to search by cui-
sine. For those cases, you need more indexes.

 So here’s a second question. With just one index on the recipe name, how do you
find all the chicken recipes? Again, lacking the proper indexes, you’d have to scan the
entire book, all 5,000 pages. This is true for any search on ingredients or cuisine.

 So you need to build another index, this time on ingredients. In this index, you
have an alphabetical listing of ingredients each pointing to all the page numbers of
recipes containing that ingredient. The most basic index on ingredients would thus
look like this:

 Cashews: 3, 20, 42, 88, 103, 1,215...
 Cauliflower: 2, 47, 88, 89, 90, 275...
 Chicken: 7, 9, 80, 81, 82, 83, 84...
 Currants: 1,001, 1,050, 2,000, 2,133...

Is this the index you thought you were going to get? Is it even helpful?
 This index is good if all you need is a list of recipes for a given ingredient. But if

you want to include any other information about the recipe in your search, you still
have some scanning to do—once you know the page numbers where Cauliflower is
referenced, you then need to go to each of those pages to get the name of the recipe
and what type of cuisine it is. This is better than paging through the whole book, but
you can do better.

 For example, imagine that you randomly discovered a great chicken recipe in The
Cookbook Omega several months ago, but you’ve forgotten its name. As of now, you
have two indexes, one on recipe name and the other on ingredients. Can you think of
a way to use these two indexes in combination to find your long-lost chicken recipe?

 In fact, this is impossible. If you start with the index on recipe name, but don’t
remember the name of the recipe, then searching this index is little better than pag-
ing through the entire book. If you start with the index on ingredients, then you’ll
have a list of page numbers to check, but those page numbers can in no way be
plugged into the index on recipe name. Therefore, you can only use one index in this
case, and it happens that the one on ingredients is more helpful.

ONE INDEX PER QUERY Users commonly believe that a query on two fields can
be resolved using two separate indexes on those fields. An algorithm exists for
this: look up the page numbers in each index matching each term, and then
scan the union of those pages for the individual recipes matching both terms.
A number of pages won’t match, but you’ll still narrow down the total num-
ber of scanned items. Some databases implement this algorithm, but
MongoDB doesn’t. Even if it did, searching two fields that comprise a com-
pound index will always be more efficient than what I just described. Keep in
mind that the database will use a single index per query and that if you’re
going to be querying on more than one field, ensure that a compound index

for those fields exists.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

132 CHAPTER 7 Indexing and query optimization

So what to do? Happily, there’s a solution to the
long-lost chicken recipe, and its answer lies in the
use of compound indexes.

 The two indexes you’ve created so far are single-
key indexes: they both order just one key from each
recipe. You’re going to build yet another index for
The Cookbook Omega, but this time, instead of
using one key per index, you’ll use two. Indexes
that use more than one key like this are called com-
pound indexes.

 This compound index uses both ingredients and
recipe name, in that order. You’ll notate the index
like this: ingredient-name. Part of this index would
look like what you see in figure 7.1

 The value of this index for a human is obvious.
You can now search by ingredient and probably find
the recipe you want, even if you only remember the
initial part of the name. For a machine, it’s still valu-
able for this use case and will keep the database
from having to scan every recipe name listed for
that ingredient. This compound index would be
especially useful if, as with The Cookbook Omega,
there were several hundred (or thousand) chicken recipes. Can you see why?

 One thing to notice: with compound indexes, order matters. Imagine the reverse
compound index on name-ingredient. Would this index be interchangeable with the
compound index we just explored?

 Definitely not. With the new index, once you have the recipe name, your search is
already limited to a single recipe, a single page in your cookbook. So if this index were
used on a search for the recipe Cashew Marinade and the ingredient Bananas, then
the index could confirm that no such recipe exists. But this use case is the opposite
one: you know the ingredient, but not the recipe name.

 The cookbook now has three indexes: one on recipe name, one on ingredient,
and one on ingredient-name. This means that you can safely eliminate the single-key
index on ingredient. Why? Because a search on a single ingredient can use the index
on ingredient-name. That is, if you know the ingredient, you can traverse this com-
pound index to get a list of all page numbers containing said ingredient. Look again
at the sample entries for this index to see why this is so.

 The goal of this section was to present an extended metaphor for readers who
need a better mental model of indexes. From this metaphor, you can derive a few sim-
ple rules of thumb:

Figure 7.1 A compound index
inside a cookbook
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

133Indexing theory

1 Indexes significantly reduce the amount of work required to fetch documents.
Without the proper indexes, the only way to satisfy a query is to scan all docu-
ments linearly until the query conditions are met. This frequently means scan-
ning entire collections.

2 Only one single-key index will be used to resolve a query.1 For queries contain-
ing multiple keys (say, ingredient and recipe name), a compound index con-
taining those keys will best resolve the query.

3 An index on ingredients can and should be eliminated if you have a second
index on ingredient-cuisine. More generally, if you have a compound index
on a-b, then a second index on a alone will be redundant.2

4 The order of keys in a compound index matters.

Bear in mind that this cookbook analogy can be taken only so far. It’s a model for
understanding indexes, but it doesn’t fully correspond to the way MongoDB’s indexes
work. In the next section, we’ll elaborate on the rules of thumb just presented, and
we’ll explore indexing in MongoDB in detail.

7.1.2 Core indexing concepts

The preceding thought experiment hinted at a number of core indexing concepts.
Here and throughout the rest of the chapter, we’ll unpack those ideas.

SINGLE-KEY INDEXES

With a single-key index, each entry in the index corresponds to a single value from
each of the documents indexed. The default index on _id is a good example of a
single-key index. Because this field is indexed, each document’s _id also lives in an
index for fast retrieval by that field.

COMPOUND-KEY INDEXES

For the moment, MongoDB uses one index per query.3 But you often need to query
on more than one attribute, and you want such a query to be as efficient as possible.
For example, imagine that you’ve built two indexes on the products collection from
this book’s e-commerce example: one index on manufacturer and another on price.
In this case, you’ve created two entirely distinct data structures that, when traversed,
are ordered like the lists you see in figure 7.2.

 Now, imagine your query looks like this:

db.products.find({'details.manufacturer': 'Acme',
 'pricing.sale': {$lt: 7500}})

This query says to find all Acme products costing less than $75.00. If you issue this
query with single-key indexes on manufacturer and price, only one of these will be

1 The one exception is queries using the $or operator. But as a general rule, this isn’t possible, or even desir-
able, in MongoDB.

2 There are exceptions. If b is a multikey index, it may make sense to have indexes on both a-b and a.
3 There are rare exceptions to this rule. For instance, queries with $or may use a different index for each clause
of the $or query. But each individual clause by itself still uses just one index.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

134 CHAPTER 7 Indexing and query optimization

used. The query optimizer will pick the more efficient of the two, but neither will give
you an ideal result. To satisfy the query using these indexes, you’d have to traverse
each structure separately and then grab the list of disk locations that match and calcu-
late their union. MongoDB doesn’t support this right now, in part because using a
compound index for this case is so much more efficient.

 A compound index is a single index where each entry is composed of more than
one key. If you were to build a compound-key index on manufacturer and price, the
ordered representation would look like what you see in figure 7.3.

 In order to fulfill your query, the query optimizer only need find the first entry in
the index where manufacturer is Acme and price is $75.00. From there, the results
can be retrieved with a simple scan of the successive index entries, stopping when the
value of manufacturer no longer equals Acme.

 There are two things you should notice about the way this index and query work
together. The first is that the order of the index’s keys matters. If you had declared a
compound index where price was the first key and manufacturer the second, then
your query would’ve been far less efficient. Hard to see why? Take a look at the struc-
ture of the entries in such an index in figure 7.4.

 Keys must be compared in the order in which they appear. Unfortunately, this
index doesn’t provide an easy way to jump to all the Acme products. So the only way to
fulfill your query would be to look at every product whose price is less than $75.00 and
then select only those products made by Acme. To put this in perspective, imagine
that your collection had a million products, all priced under $100.00 and evenly dis-
tributed by price. Under these circumstances, fulfilling your query would require that
you scan 750,000 index entries. By contrast, using the original compound index,

Ace

Acme

Acme

Acme

Acme

Biz

Ox12

OxFF

OxA1

Ox0B

Ox1C

OxEE

Manufacturers and disk locations

7999

7500

7500

7500

7499

7499

OxFF

Ox12

OxEE

OxA1

Ox0B

Ox1C

Sale prices and disk locations

Traversal

Figure 7.2 Single-key
index traversal

Prices and manufacturers, with disk locations

Traversal7500 - Acme

7999 - Acme

7500 - Biz

7499 - Acme

7499 - Acme

7500 - Ace

Ox12

OxFF

OxA1

Ox0B

Ox1C

OxEE

Figure 7.4 A compound-key index with the

Ace - 8000

Acme - 7999

Acme - 7500

Acme - 7499

Acme - 7499

Biz - 8999

Ox12

OxFF

OxA1

Ox0B

Ox1C

OxEE

Manufacturers and prices, with disk locations

Traversal

Figure 7.3 Compound-key index traversal

keys reversed

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

135Indexing theory

where manufacturer precedes price, the number of entries scanned would be the
same as the number of entries returned. This is because once you’ve arrived at the
entry for (Acme - 7500), it’s a simple, in-order scan to serve the query.

 So the order of keys in a compound index matters. If that seems clear, then the sec-
ond thing you should understand is why we’ve chosen the first ordering over the sec-
ond. This may be obvious from the diagrams, but there’s another way to look at the
problem. Look again at the query: the two query terms specify different kinds of
matches. On manufacturer, you want to match the term exactly. But on price, you
want to match a range of values, beginning with 7500. As a general rule, a query where
one term demands an exact match and another specifies a range requires a com-
pound index where the range key comes second. We’ll revisit this idea in the section
on query optimization.

INDEX EFFICIENCY

Although indexes are essential for good query performance, each new index imposes
a small maintenance cost. It should be easy to see why. Whenever you add a document
to a collection, each index on that collection must be modified to include the new
document. So if a particular collection has 10 indexes, then that makes 10 separate
structures to modify on each insert. This holds for any write operation, whether you’re
removing a document or updating a given document’s indexed keys.

 For read-intensive applications, the cost of indexes is almost always justified. Just
realize that indexes do impose a cost and that they therefore must be chosen with
care. This means ensuring that all of your indexes are used and that none of them are
redundant. You can do this in part by profiling your application’s queries, and I’ll
describe this process later in the chapter.

 But there’s a second consideration here. Even with all the right indexes in place,
it’s still possible that those indexes won’t result in faster queries. This occurs when
indexes and a working data set don’t fit in RAM.

 You may recall from chapter 1 that MongoDB tells the operating system to map all
data files to memory using the mmap() system call. From this point on, the data files,
which include all documents, collections, and their indexes, are swapped in and out
of RAM by the operating system in 4 KB chunks called pages.4 Whenever data from a
given page is requested, the operating system must ensure that the page is available in
RAM. If it’s not, then a kind of exception known as a page fault is raised, and this tells
the memory manager to load the page from disk into RAM.

 With sufficient RAM, all of the data files in use will eventually be loaded into mem-
ory. Whenever that memory is altered, as in the case of a write, those changes will be
flushed to disk asynchronously by the OS, but the write will be fast, occurring directly
in RAM. When data fits into RAM, you have the ideal situation because the number of
disk accesses is reduced to a minimum. But if the working data set can’t fit into RAM,
then page faults will start to creep up. This means that the operating system will be
4 The 4 KB page size is standard but not universal.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

136 CHAPTER 7 Indexing and query optimization

going to disk frequently, greatly slowing read and write operations. In the worst case,
as data size becomes much larger than available RAM, a situation can occur where, for
any read or write, data must be paged to and from disk. This is known as thrashing, and
it causes performance to take a severe dive.

 Fortunately, this situation is relatively easy to avoid. At minimum, you need to
make sure that your indexes will fit in RAM. This is one reason why it’s important to
avoid creating any unneeded indexes. With extra indexes in place, more RAM will be
required to maintain those indexes. Along the same lines, each index should have
only the keys it needs: a triple-key compound index might be necessary at times, but
be aware that it’ll use more space than a simple single-key index.

 Ideally, indexes and a working data set fit in RAM. But estimating how much RAM
this requires for any given deployment isn’t always easy. You can always discover total
index size by looking at the results of the stats command. But finding out working
set size is less clear-cut because it’s different for every application. The working set is the
subset of total data commonly queried and updated. For instance, suppose you have a
million users. If only half of them are active, then your working set for the user collec-
tion is half the total data size. If all users are active, then the working set is equal to the
entire data set.

 In chapter 10, we’ll revisit the concept of the working set, and we’ll look at specific
ways to diagnose hardware-related performance issues. For now, be aware of the
potential costs of adding new indexes, and keep an eye on the ratio of index and
working set size to RAM. Doing so will help you to maintain good performance as your
data grows.

7.1.3 B-trees

As mentioned, MongoDB represents indexes internally as B-trees. B-trees are ubiqui-
tous (see http://mng.bz/wQfG), having remained in popular use for database
records and indexes since at least the late 1970s.5 If you’ve used other database sys-
tems, then you may already be familiar with the various consequences of using B-trees.
This is good because it means you can effectively transfer most of your knowledge of
indexing. If you don’t know much about B-trees, that’s okay, too; this section will pres-
ent the concepts most relevant to your work with MongoDB.

 B-trees have two overarching traits that make them ideal for database indexes.
First, they facilitate a variety of queries, including exact matches, range conditions,
sorting, prefix matching, and index-only queries. Second, they’re able to remain bal-
anced in spite of the addition and removal of keys.

 We’ll look at a simple representation of a B-tree and then discuss some principles
that you’ll want to keep in mind. So imagine that you have a collection of users and
that you’ve created a compound index on last name and age.6 An abstract representa-
tion of the resulting B-tree might look something like figure 7.5.

5 MongoDB uses B-trees for its indexes only; collections are stored as doubly-linked lists.

6 Indexing on last name and age is a bit contrived, but it nicely illustrates the concepts.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://mng.bz/wQfG
http://www.it-ebooks.info/

137Indexing in practice

A B-tree, as you might guess, is a tree-like data structure. Each node in the tree can
contain multiple keys. You can see in the example that the root node contains two
keys, each of which is in the form of a BSON object representing an indexed value
from the users collection. So in reading the contents of the root node, you can see
the keys for two documents, indicating last names Edwards and Perry, with ages of 21
and 18, respectively. Each of these keys includes two pointers: one to the data file it
belongs to and another to the child node. Additionally, the node itself points to
another node with values less than the node’s smallest value.

 One thing to notice is that each node has some empty space (not to scale). In
MongoDB’s B-tree implementation, a new node is allocated 8,192 bytes, which means
that in practice, each node may contain hundreds of keys. This depends on the aver-
age index key size; in this case, that average key size might be around 30 bytes. The
maximum key size in MongoDB v2.0 is 1024 bytes. Add to this a per-key overhead of
18 bytes and a per-node overhead of 40 bytes, and this results in about 170 keys per
node.7

 This is relevant because users frequently want to know why index sizes are what
they are. So you now know that each node is 8 KB, and you can estimate how many
keys will fit into each node. To calculate this, keep in mind that B-tree nodes are usu-
ally intentionally kept around 60% full by default.

 If the preceding made sense, then in addition to gaining a superficial mental
model of B-trees, you should walk away with some ideas about how they use space and
how they’re maintained: a couple more reminders that indexes aren’t free. Choose
them carefully.

7.2 Indexing in practice
With most of the theory behind us, we’ll now look at some refinements on our con-
cept of indexing in MongoDB. We’ll then proceed to some of the niceties of index
administration.

["Edwards", 21] ["Perry", 18]

["Adams", 17] ["Banks", 27] (Preallocated space)

(Preallocated space)

Bucket

Bucket

Bucket

["Ryan", 20]["Richards", 19] (Empty)

["Grant", 19] ["Morton", 27] (Preallocated space)

Bucket

Figure 7.5 Sample B-tree structure
7 (8192 - 40) / (30 + 18) = 169.8

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

138 CHAPTER 7 Indexing and query optimization

7.2.1 Index types

All indexes in MongoDB use the same underlying data structure, but indexes with a
variety of properties are nevertheless permitted. In particular, unique, sparse, and
multikey indexes are frequently used, and here I describe them in some detail.8

UNIQUE INDEXES

To create a unique index, specify the unique option:

db.users.ensureIndex({username: 1}, {unique: true})

Unique indexes enforce uniqueness across all their entries. Thus if you try to insert a
document into this book’s sample application’s users collection with an already-
indexed username value, then the insert will fail with the following exception:

E11000 duplicate key error index:
gardening.users.$username_1 dup key: { : "kbanker" }

If using a driver, this exception will be caught only if you perform the insert using
your driver’s safe mode. See chapter 3 for a discussion of this.

 If you need a unique index on a collection, it’s usually best to create the index
before inserting any data. If you create the index in advance, you guarantee the unique-
ness constraint from the start. When creating a unique index on a collection that
already contains data, you run the risk of failure since it’s possible that duplicate keys
may already exist in the collection. When duplicate keys exist, the index creation fails.

 If you do find yourself needing to create a unique index on an established collec-
tion, you have a couple of options. The first is to repeatedly attempt to create the
unique index and use the failure messages to manually remove the documents with
duplicate keys. But if the data isn’t so important, you can also instruct the database to
drop documents with duplicate keys automatically using the dropDups option. To take
an example, if your users collection already contains data, and if you don’t care that
documents with duplicate keys are removed, then you can issue the index creation
command like this:

db.users.ensureIndex({username: 1}, {unique: true, dropDups: true})

Note that the choice of duplicate key documents to be preserved is arbitrary, so use
this feature with extreme care.

SPARSE INDEXES

Indexes are dense by default. This means that for every document in an indexed col-
lection, there will be a corresponding entry in the index even if the document lacks
the indexed key. For example, recall the products collection from your e-commerce
data model, and imagine that you’ve built an index on the product attribute
category_ids. Now suppose that a few products haven’t been assigned to any
categories. For each of these categoryless products, there will still exist a null entry in
the category_ids index. You can query for those null values like so:

8 Note that MongoDB also supports spatial indexes, but because they’re so specialized, I explain them sepa-

rately in appendix E.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

139Indexing in practice

db.products.find({category_ids: null})

Here, when searching for all products lacking a category, the query optimizer will still
be able to use the index on category_ids to locate the corresponding products.

 But there are two cases where a dense index is undesirable. The first is when you
want a unique index on a field that doesn’t appear in every document in the collection.
For instance, you definitely want a unique index on every product’s sku field. But sup-
pose that, for some reason, products are entered into the system before a sku is
assigned. If you have a unique index on sku and attempt to insert more than one prod-
uct without a sku, then the first insert will succeed, but all subsequent inserts will fail
because there will already be an entry in the index where sku is null. This is a case
where a dense index doesn’t serve your purpose. What you want instead is a sparse index.

 In a sparse index, only those documents having some value for the indexed key will
appear. If you want to create a sparse index, all you have to do is specify {sparse:
true}. So for example, you can create a unique, sparse index on sku like so:

db.products.ensureIndex({sku: 1}, {unique: true, sparse: true})

There’s another case where a sparse index is desirable: when a large number of docu-
ments in a collection don’t contain the indexed key. For example, suppose you
allowed anonymous reviews on your e-commerce site. In this case, half the reviews
might lack a user_id field, and if that field were indexed, then half the entries in that
index would be null. This would be inefficient for two reasons. First, it would increase
the size of the index. Second, it would require updates to the index when adding and
removing documents with null user_id fields.

 If you rarely (or never) expect queries on anonymous reviews, you might elect to
build a sparse index on user_id. Here again, setting the sparse option is simple:

db.reviews.ensureIndex({user_id: 1}, {sparse: true})

Now, only those reviews linked to a user via the user_id field will be indexed.

MULTIKEY INDEXES

You’ve seen in earlier chapters several examples of indexing fields whose values are
arrays.9 This is made possible by what’s known as a multikey index, which allows multi-
ple entries in the index to reference the same document. This makes sense if we take
a simple example. Suppose you have a product document with a few tags like this:

{ name: "Wheelbarrow",
tags: ["tools", "gardening", "soil"]

}

If you create an index on tags, then each value in this document’s tags array will
appear in the index. This means that a query on any one of these array values can use
the index to locate the document. This is the idea behind a multikey index: multiple
index entries, or keys, end up referencing the same document.
9 Think of category IDs, for instance.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

140 CHAPTER 7 Indexing and query optimization

 Multikey indexes are always enabled in MongoDB. Anytime an indexed field con-
tains an array, each array value will be given its own entry in the index.

 The intelligent use of multikey indexes is essential to proper MongoDB schema
design. This should be evident from the examples presented in chapters 4 through 6;
several more examples are provided in the design patterns section of appendix B.

7.2.2 Index administration

When it comes to administering indexes in MongoDB, there may be some gaps in
your operational knowledge. Here we’ll see index creation and deletion in detail and
address questions surrounding compaction and backups.

CREATING AND DELETING INDEXES

By now you’ve created quite a few indexes, so there should be no mysteries surround-
ing the index creation syntax. Simply call one of the index creation helper methods,
either in the shell or with your language of choice, and a document defining the new
index will be placed into the special system.indexes collection.

 Though it’s usually easier to use a helper method to create an index, you can also
insert an index specification manually (this is what the helper methods do). You just
need to be sure you’ve specified the minimum set of keys: ns, key, and name. ns is the
namespace, key is the field or combination of fields to index, and name is a name used
to refer to the index. Any additional options, like sparse, can also be specified here.
So for example, let’s create a sparse index on the users collection:

spec = {ns: "green.users", key: {'addresses.zip': 1}, name: 'zip'}
db.system.indexes.insert(spec, true)

If no errors are returned on insert, then the index now exists, and you can query the
system.indexes collection to prove it

db.system.indexes.find()
{ "_id" : ObjectId("4d2205c4051f853d46447e95"), "ns" : "green.users",

"key" : { "addresses.zip" : 1 }, "name" : "zip", "v" : 1 }

If you’re running MongoDB v2.0 or later, you’ll see that an extra key, v, has been
added. This version field allows for future changes in the internal index format but
should be of little concern to application developers.

 To delete an index, you might think that all you need to do is remove the index
document from system.indexes, but this operation is prohibited. Instead, you must
delete indexes using the database command deleteIndexes. As with index creation,
there are helpers for deleting indexes, but if you want to run the command itself, you
can do that too. The command takes as its argument a document containing the col-
lection name and either the name of the index to drop or * to drop all indexes. To
manually drop the index you just created, issue the command like so:

use green
db.runCommand({deleteIndexes: "users", index: "zip"})

In most cases, you’ll simply use the shell’s helpers to create and drop indexes:
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

141Indexing in practice

use green
db.users.ensureIndex({zip: 1})

You can then check the index specifications with the getIndexSpecs() method:

> db.users.getIndexSpecs()
[

{
"v" : 1,
"key" : {

"_id" : 1
},
"ns" : "green.users",
"name" : "_id_"

},
{

"v" : 1,
"key" : {

"zip" : 1
},
"ns" : "green.users",
"name" : "zip_1"

}
]

Finally, you can drop the index using the dropIndex() method. Note that you must
supply the index’s name as specified in the spec:

use green
db.users.dropIndex("zip_1")

Those are the basics of creating and deleting indexes. For what to expect when an
index is created, read on.

BUILDING INDEXES

Most of the time, you’ll want to declare your indexes before putting your application
into production. This allows indexes to be built incrementally, as the data is inserted.
But there are two cases where you might choose to build an index after the fact. The
first case occurs when you need to import a lot of data before switching into produc-
tion. For instance, you might be migrating an application to MongoDB and need to
seed the database with user information from a data warehouse. You could create the
indexes on your user data in advance, but doing so after you’ve imported the data will
ensure an ideally balanced and compacted index from the start. This will also mini-
mize the net time to build the index.

 The second (and more obvious) case for creating indexes on existing data sets is
when you have to optimize for new queries.

 Regardless of why you’re creating new indexes, the process isn’t always pleasing.
For large data sets, building an index can take hours, even days. But you can monitor
the progress of an index build from the MongoDB logs. Let’s take an example from a
data set that we’ll use in the next section. First, you declare an index to be built:
db.values.ensureIndex({open: 1, close: 1})

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

142 CHAPTER 7 Indexing and query optimization

BE CAREFUL DECLARING INDEXES Because it’s so easy to declare indexes, it’s
also easy to inadvertently trigger an index build. If the data set is large
enough, then the build will take a long time. And in a production situation,
this can be a nightmare since there’s no easy way to kill an index build. If this
ever happens to you, you’ll have to fail over to a secondary node—if you have
one. But the most prudent advice is to treat an index build as a kind of data-
base migration, and ensure that your application code never declares indexes
automatically.

The index builds in two steps. In the first step, the values to be indexed are sorted. A
sorted data set makes for a much more efficient insertion into the B-tree. Note that
the progress of the sort is indicated by the ratio of the number of documents sorted to
the total number of documents:

[conn1] building new index on { open: 1.0, close: 1.0 } for stocks.values
1000000/4308303 23%
2000000/4308303 46%
3000000/4308303 69%
4000000/4308303 92%
Tue Jan 4 09:59:13 [conn1] external sort used : 5 files in 55 secs

For step two, the sorted values are inserted into the index. Progress is indicated in the
same way, and when complete, the time it took to complete the index build is indi-
cated as the insert time into system.indexes:

1200300/4308303 27%
2227900/4308303 51%
2837100/4308303 65%
3278100/4308303 76%
3783300/4308303 87%
4075500/4308303 94%

Tue Jan 4 10:00:16 [conn1] done building bottom layer, going to commit
Tue Jan 4 10:00:16 [conn1] done for 4308303 records 118.942secs
Tue Jan 4 10:00:16 [conn1] insert stocks.system.indexes 118942ms

In addition to examining the MongoDB log, you can check the index build progress
by running the shell’s currentOp() method:10

> db.currentOp()
{

"inprog" : [
{

"opid" : 58,
"active" : true,
"lockType" : "write",
"waitingForLock" : false,
"secs_running" : 55,
"op" : "insert",
"ns" : "stocks.system.indexes",

10 Note that if you’ve started the index build from the MongoDB shell, you’ll have to open a new instance of the

shell to run currentOp concurrently. For more about db.currentOp(), see chapter 10.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

143Indexing in practice

"query" : {

},
"client" : "127.0.0.1:53421",
"desc" : "conn",
"msg" : "index: (1/3) external sort 3999999/4308303 92%"

}
]

}

The last field, msg, describes the build’s progress. Note also the lockType, which indi-
cates that the index build takes a write lock. This means that no other client can read
or write from the database at this time. If you’re running in production, this is obvi-
ously a bad thing, and it’s the reason why long index builds can be so vexing. We’re
going to look right now at two possible solutions to this problem.

Background indexing
If you’re running in production and can’t afford to halt access to the database, you
can specify that an index be built in the background. Although the index build will
still take a write lock, the job will yield to allow other readers and writers to access the
database. If your application typically exerts a heavy load on MongoDB, then a back-
ground index build will degrade performance, but this may be acceptable under cer-
tain circumstances. For example, if you know that the index can be built within a time
window where application traffic is at a minimum, then background indexing in this
case might be a good choice.

 To build an index in the background, specify {background: true} when you
declare the index. The previous index can be built in the background like so:

db.values.ensureIndex({open: 1, close: 1}, {background: true})

Offline indexing
If your production data set is too large to be indexed within a few hours, then you’ll
need to make alternate plans. This will usually involve taking a replica node offline,
building the index on that node by itself, and then allowing the node to catch up with
the master replica. Once it’s caught up, you can promote the node to primary and
then take another secondary offline and build its version of the index. This tactic pre-
sumes that your replication oplog is large enough to prevent the offline node from
becoming stale during the index build. The next chapter covers replication in detail
and should help you plan for a migration such as this.

BACKUPS

Because indexes are hard to build, you may want to back them up. Unfortunately, not
all backup methods include indexes. For instance, you might be tempted to use
mongodump and mongorestore, but these utilities preserve collections and index decla-
rations only. This means that when you run mongorestore, all the indexes declared
for any collections you’ve backed up will be re-created. As always, if your data set is
large, the time it takes to build these indexes may be unacceptable.
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

144 CHAPTER 7 Indexing and query optimization

 Consequently, if you want your backups to include indexes, then you’ll want to opt
for backing up the MongoDB data files themselves. More details about this, and gen-
eral instructions for backups, can be found in chapter 10.

COMPACTION

If your application heavily updates existing data, or performs a lot of large deletions,
then you may end up with a highly fragmented index. B-trees will coalesce on their
own somewhat, but this isn’t always sufficient to offset a high delete volume. The pri-
mary symptom of a fragmented index is an index size much larger than you’d expect
for the given data size. This fragmented state can result in indexes using more RAM
than necessary. In these cases, you may want to consider rebuilding one or more
indexes. You can do this by dropping and recreating individual indexes or by running
the reIndex command, which will rebuild all indexes for a given collection:

db.values.reIndex();

Be careful about reindexing: the command will take out a write lock for the duration
of the rebuild, temporarily rendering your MongoDB instance unusable. Reindexing
is best done offline, as described earlier for building indexes on a secondary. Note
that the compact command, discussed in chapter 10, will also rebuild indexes for the
collection on which it’s run.

7.3 Query optimization
Query optimization is the process of identifying slow queries, discovering why they’re
slow, and then taking steps to speed them up. In this section, we’ll look at each step of
the query optimization process in turn so that by the time you finish reading, you’ll
have a framework for addressing problematic queries on any MongoDB installation.

 Before diving in, I must warn that the techniques presented here can’t be used to
solve every query performance problem. The causes of slow queries vary too much.
Poor application design, inappropriate data models, and insufficient physical hard-
ware are all common culprits, and their remedies require a significant time invest-
ment. Here we’ll look at ways to optimize queries by restructuring the queries
themselves and by building the most useful indexes. I’ll also describe other avenues
for investigation when these techniques fail to deliver.

7.3.1 Identifying slow queries

If your MongoDB-based application feels sluggish, then it’s past time to start profiling
your queries. Any disciplined approach to application design should include a query
audit; given how easy MongoDB makes this there’s no excuse. Though the require-
ments will vary per application, it’s safe to assume that for most apps, queries
shouldn’t take much longer than 100 milliseconds. The MongoDB logger has this
assumption ingrained, since it prints a warning whenever any operation, including a
query, takes more than 100 ms. The logs, therefore, are the first place you should look

for slow queries.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

145Query optimization

 It’s unlikely that any of the data sets we’ve worked with up until now have been
large enough to generate queries lasting longer than 100 ms. So for the following
examples, we’ll use a data set consisting of daily NASDAQ summaries. If you want to
follow along, you’ll want to have this data locally. To import it, first download the
archive from http://mng.bz/ii49. Then unzip the file to a temporary folder. You’ll see
the following output:

$ unzip stocks.zip
Archive: stocks.zip

creating: dump/stocks/
inflating: dump/stocks/system.indexes.bson
inflating: dump/stocks/values.bson

Finally, restore the dump like so:

$ mongorestore -d stocks -c values dump/stocks

The stocks data set is large and easy to work with. For a certain subset of the NASDAQ
stock exchange’s symbols, there exists a document for each day’s high, low, close, and
volume for a 25-year period beginning in 1983. Given the number and size of the doc-
uments in this collection, it’s easy to generate one of the log warnings. Try querying
for the first occurrence of Google’s stock price:

db.values.find({"stock_symbol": "GOOG"}).sort({date: -1}).limit(1)

You’ll notice that this takes some time to run. And if you check the MongoDB log,
you’ll see the expected slow query warning. Here’s a sample of the output to expect:

Thu Nov 16 09:40:26 [conn1] query stocks.values
ntoreturn:1 scanAndOrder reslen:210 nscanned:4308303
{ query: { stock_symbol: "GOOG" }, orderby: { date: -1.0 } }
nreturned:1 4011ms

There’s a lot of information here, and we’ll go over the meaning of all of it when we
discuss explain(). For now, if you read the message carefully, you should be able to
extract the most important parts: that it’s a query on stocks.values; that the query
selector consists of a match on stock_symbol and that a sort is being performed;
maybe most significantly, that the query takes a whopping 4 seconds (4011ms).

 Warnings like this must be addressed. They’re so critical that it’s worth your while
to occasionally cull them from your MongoDB logs. This can be accomplished easily
with grep:

grep -E '([0-9])+ms' mongod.log

If 100 ms is too high a threshold, you can lower it with the --slowms server option. If
you define slow as taking longer than 50 ms, then start mongod with --slowms 50.

 Of course, grepping logs isn’t very systematic. You can use the MongoDB logs to
check for slow queries, but the procedure is rather coarse, and should be reserved as a
kind of sanity check in a staging or production environment. To identity slow queries
before they become a problem, you want a precision tool. MongoDB’s built-in query

profiler is exactly that.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://mng.bz/ii49
http://www.it-ebooks.info/

146 CHAPTER 7 Indexing and query optimization

USING THE PROFILER

For identifying slow queries, you can’t beat the built-in profiler. Profiling is disabled by
default, so let’s get started by enabling it. From the MongoDB shell, enter the following:

use stocks
db.setProfilingLevel(2)

First you select the database you want to profile; profiling is always scoped to a particu-
lar database. Then you set the profiling level to 2. This is the most verbose level; it
directs the profiler to log every read and write. A couple other options are available.
To log only slow (100 ms) operations, set the profiling level to 1. To disable the query
profiler altogether, set it to 0. And to log only operations taking longer than a certain
threshold in milliseconds, pass the number of milliseconds as the second argument
like this:

use stocks
db.setProfilingLevel(1, 50)

Once you’ve enabled the profiler, it’s time to issue some queries. Let’s run another
query on the stocks database. Try finding the highest closing price in the data set:

db.values.find({}).sort({close: -1}).limit(1)

The profiling results are stored in a special capped collection called system.profile.
Recall that capped collections are fixed in size and that data is written to them in a cir-
cular way so that once the collection reaches its max size, new documents overwrite
the oldest documents. The system.profile collection is allocated 128 KB, thus ensur-
ing that the profile data never consumes much in the way of resources.

 You can query system.profile as you would any capped collection. For instance,
you can find all queries that took longer than 150 ms like so:

db.system.profile.find({millis: {$gt: 150}})

And because capped collections maintain natural insertion order, you can use the
$natural operator to sort so that the most recent results are displayed first:

db.system.profile.find().sort({$natural: -1}).limit(5)

Returning to the query you just issued, you should see an entry in the result set that
looks something like this:

{ "ts" : ISODate("2011-09-22T22:42:38.332Z"),
"op" : "query", "ns" : "stocks.values",
"query" : { "query" : { }, "orderby" : { "close" : -1 } },
"ntoreturn" : 1, "nscanned" : 4308303, "scanAndOrder" : true,
"nreturned" : 1, "responseLength" : 194, "millis" : 14576,
"client" : "127.0.0.1", "user" : "" }

Another expensive query: this one took nearly 15 seconds! In addition to the time it
took to complete, you get all same information about the query that you saw in the
MongoDB log’s slow query warning, which is enough to start the deeper investigation

that we’ll cover in the next section.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

147Query optimization

 But before moving on, a few more words about profiling strategy are in order. A
good way to use the profiler is to start it with a coarse setting and work downward. First
ensure that no queries take longer than 100 ms, then move down to 75 ms, and so on.
While the profiler is enabled, you’ll want to put your application through its paces. At
a minimum, this means ensuring that every read and write is performed. But to be
thorough, those reads and writes must be executed under real conditions, where the
data sizes, query load, and hardware are representative of the application’s produc-
tion environment.

 The query profiler is useful, but to get the most out of it, you need to be methodi-
cal. Better to be surprised with a few slow queries in development than in production,
where the remedies are much more costly.

7.3.2 Examining slow queries

With MongoDB’s profiler, finding slow queries is easy. Discovering why these queries
are slow is trickier because the process may require some detective work. As men-
tioned, the causes of slow queries are manifold. If you’re lucky, then resolving a slow
query may be as easy as adding an index. In more difficult cases, you might have to
rearrange indexes, restructure the data model, or upgrade hardware. But you should
always look at the simplest case first, and that’s what you’re going to do here.

 In the simplest case, a lack of indexes, inappropriate indexes, or less-than-ideal
queries will be the root of the problem. You can find out for sure by running an
explain on the offending queries. Let’s explore how to do that now.

USING AND UNDERSTANDING EXPLAIN()
MongoDB’s explain command provides detailed information about a given query’s
path.11 Let’s dive right in and see what information can be gleaned from running an
explain on the last query you ran in the previous section. To run explain from the
shell, you need only attach the explain() method call:

db.values.find({}).sort({close: -1}).limit(1).explain()
{

"cursor" : "BasicCursor",
"nscanned" : 4308303,
"nscannedObjects" : 4308303,
"n" : 1,
"scanAndOrder" : true,
"millis" : 14576,
"nYields" : 0,
"nChunkSkips" : 0,
"indexBounds" : { }

}

The millis field indicates that this query takes more than 14 seconds, and there’s
an obvious reason for this. Look at the nscanned value: this shows that the query

11 You may recall that I introduced explain in chapter 2, but only briefly. Here I’ll provide a complete treat-

ment of the command and its output.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

148 CHAPTER 7 Indexing and query optimization

engine had to scan 4,308,303 documents to fulfill the query. Now, quickly run a
count on the values collection:

db.values.count()
4308303

The number of documents scanned is the same as the total number of documents in
the collection. So you’ve performed a complete collection scan. If your query were
expected to return every document in the collection, then this wouldn’t be a bad
thing. But since you’re returning one document, as indicated by the explain value n,
this is problematic. Generally speaking, you want the values of n and nscanned to be as
close together as possible. When doing a collection scan, this is almost never the case.
The cursor field tells you that you’ve been using a BasicCursor, which only confirms
that you’re scanning the collection itself and not an index.

 A second datum here further explains the slowness of the query: the scanAndOrder
field. This indicator appears when the query optimizer can’t use an index to return a
sorted result set. Therefore, in this case, not only does the query engine have to scan
the collection, it also has to sort the result set manually.

 The poor performance is unacceptable, but fortunately the fix is simple. All you
need to do is build an index on the close field. Go ahead and do that now and then
reissue the query:12

db.values.ensureIndex({close: 1})
db.values.find({}).sort({close: -1}).limit(1).explain()
{

"cursor" : "BtreeCursor close_1 reverse",
"nscanned" : 1,
"nscannedObjects" : 1,
"n" : 1,
"millis" : 0,
"nYields" : 0,
"nChunkSkips" : 0,
"indexBounds" : {

"close" : [
[

{
"$maxElement" : 1

},
{

"$minElement" : 1
}

]
]

}
}

What a difference! The query now takes less than a millisecond to process. You can see
from the cursor field that you’re using a BtreeCursor on the index named close_1
12 Note that building the index may take a few minutes.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

149Query optimization

and that you’re iterating over the index in reverse order. In the indexBounds field,
you see the special values $maxElement and $minElement. These indicate that the
query spans the entire index. So in this case, the query optimizer walks the rightmost
edge of the B-tree until it reaches the maximum key and then works its way backward.
Since you’ve specified a limit of 1, the query is complete once the max element is
found. And of course, since the index keeps the entries in order, there’s no longer a
need for the manual sort indicated by scanAndOrder.

 You’ll see slightly different output if you use the indexed key in your query selector.
Take a look at the explain plan for a query selecting closing values greater than 500:

> db.values.find({close: {$gt: 500}}).explain()
{

"cursor" : "BtreeCursor close_1",
"nscanned" : 309,
"nscannedObjects" : 309,
"n" : 309,
"millis" : 5,
"nYields" : 0,
"nChunkSkips" : 0,
"indexBounds" : {

"close" : [
[

500,
1.7976931348623157e+308

]
]

}
}

You’re still scanning the same number of documents that you’re returning (n and
nscanned are the same), which is ideal. But note the difference in the way the index
boundaries are specified. Instead of the $maxElement and $minElement keys, the
boundaries are actual values. The lower bound is 500 and the upper bound is effec-
tively infinite. These values must share the same class of data type that you’re querying
on; since you’re querying on a number, the index bounds are numeric. If you were to
query on a string range instead, then the boundaries would be strings. 13

 Before continuing on, try running explain() on a few queries of your own, and
pay attention to the difference between n and nscanned.

MONGODB’S QUERY OPTIMIZER AND HINT()
The query optimizer is the piece of software that determines which index, if any, will
most efficiently serve a given query. To select an ideal index for your queries, the
query optimizer uses a fairly simple set of rules:

1 Avoid scanAndOrder. If the query includes a sort, attempt to sort using an
index.

13 If this isn’t making any sense, recall that a given index can contain keys of multiple data types. Thus, query

results will always be limited by the data type used in the query.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

150 CHAPTER 7 Indexing and query optimization

2 Satisfy all fields with useful indexing constraints—attempt to use indexes for the
fields in the query selector.

3 If the query implies a range or includes a sort, then choose an index where that
last key used can help satisfy the range or sort.

If all of these conditions can be met for any one index, then that index will be consid-
ered optimal and will be used. If more than one index qualifies as optimal, then one
of the optimal indexes will be chosen arbitrarily. There’s a lesson here: if you can
build optimal indexes for your queries, you make the query optimizer’s job a lot eas-
ier. Strive for that if you can.

 Let’s look at a query that satisfies an index (and the query optimizer) perfectly. Go
back to the stock symbol data set. Now imagine you want to issue the following query,
which fetches all of Google’s closing values greater than 200:

db.values.find({stock_symbol: "GOOG", close: {$gt: 200}})

The optimal index for this query includes both keys but places the close key last to
allow for the range query:

db.values.ensureIndex({stock_symbol: 1, close: 1})

You’ll see that if you run the query, both keys are used, and the index bounds are as
expected:

db.values.find({stock_symbol: "GOOG", close: {$gt: 200}}).explain()
{

"cursor" : "BtreeCursor stock_symbol_1_close_1",
"nscanned" : 730,
"nscannedObjects" : 730,
"n" : 730,
"millis" : 1,
"nYields" : 0,
"nChunkSkips" : 0,
"isMultiKey" : false,
"indexOnly" : false,
"indexBounds" : {

"stock_symbol" : [
[

"GOOG",
"GOOG"

]
],
"close" : [

[
200,
1.7976931348623157e+308

]
]

}
}
>

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

151Query optimization

This is the optimal explain output for this query: the values of n and nscanned are the
same. But now consider the case where no one index perfectly serves the query. For
example, imagine that you don’t have an index on {stock_symbol: 1, close: 1} but
that, instead, you have a separate index on each of those fields. Using the shorthand
getIndexKeys() to list indexes, you’d see this:

db.values.getIndexKeys()
[{ "_id" : 1 }, { "close" : 1 }, { "stock_symbol" : 1 }]

Because your query includes both the stock_symbol and close keys, there’s no obvi-
ous index to use. This is where the query optimizer comes in, and the heuristic is
more straightforward than you might imagine. It’s based purely on the value of
nscanned. In other words, the optimizer chooses the index that requires scanning the
least number of index entries. When the query is first run, the optimizer creates a
query plan for each index that might efficiently satisfy the query. The optimizer then
runs each plan in parallel.14 The plan that finishes with the lowest value for nscanned
is declared the winner. The optimizer then halts any long-running plans and saves the
winner for future use.

 You can see this process in action by issuing your query and running explain().
First, drop the compound index on {stock_symbol: 1, close: 1} and build separate
indexes on each of these keys:

db.values.dropIndex("stock_symbol_1_close_1")
db.values.ensureIndex({stock_symbol: 1})
db.values.ensureIndex({close: 1})

Then pass true to the explain method, which will include the list of plans the query
optimizer attempts. You can see the output in listing 7.1.

db.values.find({stock_symbol: "GOOG", close: {$gt: 200}}).explain(true)
{

"cursor" : "BtreeCursor stock_symbol_1",
"nscanned" : 894,
"nscannedObjects" : 894,
"n" : 730,
"millis" : 8,
"nYields" : 0,
"nChunkSkips" : 0,
"isMultiKey" : false,
"indexOnly" : false,
"indexBounds" : {

"stock_symbol" : [
[

"GOOG",
"GOOG"

]
]

Listing 7.1 Viewing query plans with explain(true)
14 Technically, the plans are interleaved.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

152 CHAPTER 7 Indexing and query optimization

},
"allPlans" : [

{
"cursor" : "BtreeCursor close_1",
"indexBounds" : {

"close" : [
[

100,
1.7976931348623157e+308

]
]

}
},
{

"cursor" : "BtreeCursor stock_symbol_1",
"indexBounds" : {

"stock_symbol" : [
[

"GOOG",
"GOOG"

]
]

}
},
{

"cursor" : "BasicCursor",
"indexBounds" : {
}

}
]

}

You’ll see right away that the query plan chooses the index on {stock_symbol: 1} to
fulfill the query. Lower down, the allPlans key points to a list that includes two addi-
tional query plans: one for the index on {close: 1}, and the other a collection scan
with a BasicCursor.

 It’s understandable why the optimizer rejects the collection scan, but it might be
less clear why the index on {close :1} doesn’t satisfy. You can use hint() to find out.
hint() forces the query optimizer to use a particular index:

query = {stock_symbol: "GOOG", close: {$gt: 100}}
db.values.find(query).hint({close: 1}).explain()
{

"cursor" : "BtreeCursor close_1",
"nscanned" : 5299,
"n" : 730,
"millis" : 36,
"indexBounds" : {

"close" : [
[

200,
1.7976931348623157e+308

]
]

}

}

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

153Query optimization

Look at the value for nscanned: 5,299. This is much greater than the 894 entries
scanned previously, and the time it takes to complete the query bears this out.

 All that’s left to understand is how the query optimizer caches and expires its
choice of query plan. After all, you wouldn’t want the optimizer running all those
plans in parallel on each query.

 When a successful plan is discovered, the query pattern, the value for nscanned,
and the index spec are recorded. For the query we’ve been working with, the
recorded structure looks something like this:

{ pattern: {stock_symbol: 'equality', close: 'bound',
index: {stock_symbol: 1},
nscanned: 894 }

The query pattern records the kind of match for each key. Here, you’re requesting an
exact match on stock_symbol (equality), and a range match on close (bound).15

Whenever a new query matches this pattern, the index will be used.
 But this shouldn’t hold forever, and it doesn’t. The optimizer automatically expires

a plan after any of the following events:

 100 writes are made to the collection.
 Indexes are added or removed from the collection.
 A query using a cached query plan does a lot more work than expected. Here,

what qualifies as “a lot more work” is a value for nscanned exceeding the cached
nscanned value by at least a factor of 10.

In the last of these cases, the optimizer will immediately begin interleaving other
query plans in case a different index proves more efficient.

7.3.3 Query patterns

Here I present several common query patterns and the indexes to use with them.

SINGLE-KEY INDEXES

To review single-key indexes, recall the index you created for the stock values collection
on closing numbers, {close: 1}. This index can be used in the following scenarios.

Exact matches
An exact match. For instance, all entries with a closing value of 100:

db.values.find({close: 100})

Sorting
A sort on the indexed field. For example:

db.values.find({}).sort({close: 1})

In the case of a sort with no query selector, you’ll probably want to tack on a limit
unless you actually plan to iterate over the entire collection.

15 In case you’re interested, three kinds of range matches are stored: upper, lower, and upper-and-lower. The

query pattern also includes any sort specification.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

154 CHAPTER 7 Indexing and query optimization

Range queries
A range query with or without a sort on the same field. For example, all closing values
greater than or equal to 100:

db.values.find({close: {$gte: 100})

If you add a sort clause on the same key, the optimizer will still be able to use the same
index:

db.values.find({close: {$gte: 100}).sort({close: 1})

COMPOUND-KEY INDEXES

Compound-key indexes are a little more complicated, but their uses are analogous to
those of single-key indexes. The main thing to remember is that a compound-key
index can efficiently serve just a single range or sort per query. Let’s imagine a triple-
compound key index, again for stock values, on {close: 1, open: 1, date: 1}. Fol-
lowing are some possible scenarios.

Exact matches
An exact match on the first key, the first and second keys, or the first, second, and
third keys, in that order:

db.values.find({close: 1})
db.values.find({close: 1, open: 1})
db.values.find({close: 1, open: 1, date: "1985-01-08"})

Range matches
An exact match on any set of leftmost keys (including none), followed by either a
range or a sort using the next key to the right. Thus, all the following queries are ideal
for the triple-key index:

db.values.find({}).sort({close: 1})
db.values.find({close: {$gt: 1}})

db.values.find({close: 100}).sort({open: 1})
db.values.find({close: 100, open: {$gt: 1}})

db.values.find({close: 1, open: 1.01, date: {$gt: "2005-01-01"}})
db.values.find({close: 1, open: 1.01}).sort({date: 1})

COVERING INDEXES

If you’ve never heard of covering indexes, then realize from the start that the term is
something of a misnomer. A covering index isn’t, as the name would suggest, a kind of
index but rather a special use of an index. In particular, an index can be said to cover a
query if all the data required by the query resides in the index itself. Covered index
queries are also known as index-only queries, since these queries are served without hav-
ing to reference the indexed documents themselves. This can result in increased
query performance.

 Using a covering index in MongoDB is easy. Simply select a set of fields that reside
in a single index, and exclude the _id field (since this field likely isn’t part of the
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

155Summary

index you’re using). Here’s an example that uses the triple-compound index you cre-
ated in the previous section:

db.values.find({open: 1}, {open: 1, close: 1, date: 1, _id: 0})

If you run explain() on this query, you’ll see a field labeled indexOnly that’s set to
true. This indicates that the index, and no actual collection data, was used to serve
the query.

 Query optimization is always application-specific, but the hope is that the ideas and
techniques provided here will help you tune your queries for the better. Empirical
approaches are always useful. Make a habit of profiling and explaining your queries.
In the process, you’ll continue learning about the hidden corners of the query opti-
mizer, and you’ll ensure efficient queries for your application.

7.4 Summary
This chapter is hefty, no doubt, as indexing is an admittedly rich subject. If not all the
ideas are clear, that’s okay. You should at least come away with a few techniques for
examining indexes and avoiding slow queries, and you should know enough to keep
learning. With the complexity involved in indexing and query optimization, plain old
experimentation may be your best teacher from here on out.
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

Replication
Replication is central to most database management systems because of one inevita-
ble fact: failures happen. If you want your live production data to be available even
after a failure, you need to be sure that your production databases are available on
more than one machine. Replication ensures against failure, providing high avail-
ability and disaster recovery.

 I begin this chapter by introducing replication in general and discussing its
main use cases. I’ll then cover MongoDB’s replication through a detailed study of
replica sets. Finally, I’ll describe how to connect to replicated MongoDB clusters
using the drivers, how to use write concern, and how to load balance reads across
replicas.

In this chapter
 Basic replication concepts

 Administering replica sets and handling failover

 Replica set connections, write concern, read scaling,
and tagging
156

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

157Replication overview

8.1 Replication overview
Replication is the distribution and maintenance of a live database server across multi-
ple machines. MongoDB provides two flavors of replication: master-slave replication and
replica sets. For both, a single primary node receives all writes, and then all secondary
nodes read and apply those writes to themselves asynchronously.

 Master-slave replication and replica sets use the same replication mechanism, but
replica sets additionally ensure automated failover: if the primary node goes offline
for any reason, then one of the secondary nodes will automatically be promoted to
primary, if possible. Replica sets provide other enhancements too, such as easier
recovery and more sophistical deployment topologies. For these reasons, there are
now few compelling reasons to use simple master-slave replication.1 Replica sets are
thus the recommend replication strategy for production deployments; consequently,
I’ll devote the bulk of this chapter to explanations and examples of replica sets, with
only a brief overview of master-slave replication.

8.1.1 Why replication matters

All databases are vulnerable to failures of the environments in which they run. Repli-
cation provides a kind of insurance against these failures. What sort of failure am I
talking about? Here are some of the more common scenarios:

 The network connection between the application and the database is lost.
 Planned downtime prevents the server from coming back online as expected.

Any institution housing servers will be forced to schedule occasional downtime,
and the results of this downtime aren’t always easy to predict. A simple reboot
will keep a database server offline for at least a few minutes. But then there’s the
question of what happens when the reboot is complete. There are times when
newly installed software or hardware will prevent the operating system from
starting up properly.

 There’s a loss of power. Although most modern data centers feature redundant
power supplies, nothing prevents user error within the data center itself or an
extended brownout or blackout from shutting down your database server.

 A hard drive fails on the database server. Frequently having a mean time to fail-
ure of just a few years, hard drives fail more often than you might think.2

In addition to protecting against external failures, replication has been important for
MongoDB in particular for durability. When running without journaling enabled,
MongoDB’s data files aren’t guaranteed to be free of corruption in the event of an
unclean shutdown. Without journaling, replication must always be run to guarantee a
clean copy of the data files if a single node shuts down hard.

1 The only time you should opt for MongoDB’s master-slave replication is when you’d require more than 11
slave nodes, since a replica set can have no more than 12 members.

2 You can read a detailed analysis of consumer hard drive failure rates in Google’s “Failure Trends in a Large

Disk Drive Population” (http://research.google.com/archive/disk_failures.pdf).

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://research.google.com/archive/disk_failures.pdf
http://www.it-ebooks.info/

158 CHAPTER 8 Replication

 Of course, replication is desirable even when running with journaling. After all,
you still want high availability and fast failover. In this case, journaling expedites recov-
ery because it allows you to bring failed nodes back online simply by replaying the
journal. This is much faster than resyncing from an existing replica or copying a rep-
lica’s data files manually.

 Journaled or not, MongoDB’s replication greatly increases the reliability of the
overall database deployments and is highly recommended.

8.1.2 Replication use cases

You may be surprised at how versatile a replicated database can be. In particular, repli-
cation facilitates redundancy, failover, maintenance, and load balancing. Here we take
a brief look at each of these use cases.

 Replication is designed primarily for redundancy. It essentially ensures that repli-
cated nodes stay in sync with the primary node. These replicas can live in the same
data center as the primary, or they can be distributed geographically as an additional
failsafe. Because replication is asynchronous, any sort of network latency or partition
between nodes will have no affect on the performance of the primary. As another
form of redundancy, replicated nodes can also be delayed by a constant number of
seconds behind the primary. This provides insurance against the case where a user
inadvertently drops a collection or an application somehow corrupts the database.
Normally, these operations will be replicated immediately; a delayed replica gives
administrators time to react and possibly save their data.

 It’s important to note that although they’re redundant, replicas aren’t a replace-
ment for backups. A backup represents a snapshot of the database at a particular time
in the past, whereas a replica is always up to date. There are cases where a data set is
large enough to render backups impractical, but as a general rule, backups are pru-
dent and recommended even when running with replication.

 Another use case for replication is failover. You want your systems to be highly
available, but this is possible only with redundant nodes and the ability to switch over
to those nodes in an emergency. Conveniently, MongoDB’s replica sets can frequently
make this switch automatically.

 In addition to providing redundancy and failover, replication simplifies mainte-
nance, usually by allowing you to run expensive operations on a node other than the
primary. For example, it’s common practice to run backups against a secondary node
to keep unnecessary load off the primary and to avoid downtime. Another example
involves building large indexes. Because index builds are expensive, you may opt to
build on a secondary node first, swap the secondary with the existing primary, and
then build again on the new secondary.

 Finally, replication allows you to balance reads across replicas. For applications
whose workloads are overwhelmingly read-heavy, this is the easiest way to scale
MongoDB. But for all its promise, scaling reads with secondaries isn’t practical if any
of the following apply:
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

159Replica sets

 The allotted hardware can’t process the given workload. As an example, I men-
tioned working sets in the previous chapter. If your working data set is much
larger than the available RAM, then sending random reads to the secondaries is
still likely to result in excessive disk access, and thus slow queries.

 The ratio of writes to reads exceeds 50%. This is an admittedly arbitrary ratio,
but it’s a reasonable place to start. The issue here is that every write to the pri-
mary must eventually be written to all the secondaries as well. Therefore direct-
ing reads to secondaries that are already processing a lot of writes can
sometimes slow the replication process and may not result in increased read
throughput.

 The application requires consistent reads. Secondary nodes replicate asynchro-
nously and therefore aren’t guaranteed to reflect the latest writes to the pri-
mary node. In pathological cases, secondaries can run hours behind.

So you can balance read load with replication, but only in special cases. If you need to
scale and any of the preceding conditions apply, then you’ll need a different strategy,
involving sharding, augmented hardware, or some combination of the two.

8.2 Replica sets
Replica sets are a refinement on master-slave replication, and they’re the recom-
mended MongoDB replication strategy. We’ll start by configuring a sample replica set.
I’ll then describe how replication actually works, as this knowledge is incredibly
important for diagnosing production issues. We’ll end by discussing advanced config-
uration details, failover and recovery, and best deployment practices.

8.2.1 Setup

The minimum recommended replica set configuration consists of three nodes. Two of
these nodes serve as first-class, persistent mongod instances. Either can act as the rep-
lica set primary, and both have a full copy of the data. The third node in the set is an
arbiter, which doesn’t replicate data, but merely acts as a kind of neutral observer. As
the name suggests, the arbiter arbitrates: when failover is required, the arbiter helps
to elect a new primary node. You can see an illustration of the replica set you’re about
to set up in figure 8.1.

 Start by creating a data directory for each replica set member:

mkdir /data/node1
mkdir /data/node2
mkdir /data/arbiter

Next, start each member as a separate mongod. Since you’ll be running each process
on the same machine, it’s probably easiest to start each mongod in a separate terminal
window:

mongod --replSet myapp --dbpath /data/node1 --port 40000
mongod --replSet myapp --dbpath /data/node2 --port 40001

mongod --replSet myapp --dbpath /data/arbiter --port 40002

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

160 CHAPTER 8 Replication

If you examine the mongod log output, the first thing you’ll notice are error messages
saying that the configuration can’t be found. The is completely normal:

[startReplSets] replSet can't get local.system.replset
config from self or any seed (EMPTYCONFIG)

[startReplSets] replSet info you may need to run replSetInitiate

To proceed, you need to configure the replica set. Do so by first connecting to one of
the non-arbiter mongods just started. These examples were produced running these
mongod processes locally, so you’ll connect via the local hostname, in this case, arete.

 Connect, and then run the rs.initiate() command:

> rs.initiate()
{

"info2" : "no configuration explicitly specified -- making one",
"me" : "arete:40000",
"info" : "Config now saved locally. Should come online in about a minute
.",

"ok" : 1
}

Within a minute or so, you’ll have a one-member replica set. You can now add the
other two members using rs.add():

> rs.add("localhost:40001")
{ "ok" : 1 }
> rs.add("arete.local:40002", {arbiterOnly: true})
{ "ok" : 1 }

Note that for the second node, you specify the arbiterOnly option to create an arbi-
ter. Within a minute, all members should be online. To get a brief summary of the rep-

Secondary

Replication

Ping

Ping

Ping

Primary data center Secondary data center

Primary

Secondary

Figure 8.1 A basic replica set
consisting of a primary, a
secondary, and an arbiter
lica set status, run the db.isMaster() command:

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

161Replica sets

> db.isMaster()
{

"setName" : "myapp",
"ismaster" : false,
"secondary" : true,
"hosts" : [

"arete:40001",
"arete:40000"

],
"arbiters" : [

"arete:40002"
],
"primary" : "arete:40000",
"maxBsonObjectSize" : 16777216,
"ok" : 1

}

A more detailed view of the system is provided by the rs.status() method. You’ll see
state information for each node. Here’s the complete status listing:

> rs.status()
{

"set" : "myall",
"date" : ISODate("2011-09-27T22:09:04Z"),
"myState" : 1,
"members" : [

{
"_id" : 0,
"name" : "arete:40000",
"health" : 1,
"state" : 1,
"stateStr" : "PRIMARY",
"optime" : {

"t" : 1317161329000,
"i" : 1

},
"optimeDate" : ISODate("2011-09-27T22:08:49Z"),
"self" : true

},
{

"_id" : 1,
"name" : "arete:40001",
"health" : 1,
"state" : 2,
"stateStr" : "SECONDARY",
"uptime" : 59,
"optime" : {

"t" : 1317161329000,
"i" : 1

},
"optimeDate" : ISODate("2011-09-27T22:08:49Z"),
"lastHeartbeat" : ISODate("2011-09-27T22:09:03Z"),
"pingMs" : 0

},
{

"_id" : 2,

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

162 CHAPTER 8 Replication

"name" : "arete:40002",
"health" : 1,
"state" : 7,
"stateStr" : "ARBITER",
"uptime" : 5,
"optime" : {

"t" : 0,
"i" : 0

},
"optimeDate" : ISODate("1970-01-01T00:00:00Z"),
"lastHeartbeat" : ISODate("2011-09-27T22:09:03Z"),
"pingMs" : 0

}
],
"ok" : 1

}

Unless your MongoDB database contains a lot of data, the replica set should come
online within 30 seconds. During this time, the stateStr field of each node should
transition from RECOVERING to PRIMARY, SECONDARY, or ARBITER.

 Now even if the replica set status claims that replication is working, you may want
to see some empirical evidence of this. So go ahead and connect to the primary node
with the shell and insert a document:

$ mongo arete:40000
> use bookstore
switched to db bookstore
> db.books.insert({title: "Oliver Twist"})
> show dbs
admin (empty)
bookstore 0.203125GB
local 0.203125GB

Initial replication should occur almost immediately. In another terminal window,
open a new shell instance, but this time point it to the secondary node. Query for the
document just inserted; it should have arrived:

$ mongo arete:40001
> show dbs
admin (empty)
bookstore 0.203125GB
local 0.203125GB
> use bookstore switched to db bookstore
> db.books.find()
{ "_id" : ObjectId("4d42ebf28e3c0c32c06bdf20"), "title" : "Oliver Twist" }

If replication is indeed working as displayed here, then you’ve successfully configured
your replica set.

 It should be satisfying to see replication in action, but perhaps more interesting is
automated failover. Let’s test that now. It’s always tricky to simulate a network parti-
tion, so we’ll go the easy route and just kill a node. You could kill the secondary, but
that merely stops replication, with the remaining nodes maintaining their current sta-

tus. If you want to see a change of system state, you need to kill the primary. A

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

163Replica sets

standard CTRL-C or kill -2 will do the trick. You can also connect to the primary
using the shell and run db.shutdownServer().

 Once you’ve killed the primary, note that the secondary detects the lapse in the
primary’s heartbeat. The secondary then elects itself primary. This election is possible
because a majority of the original nodes (the arbiter and the original secondary) are
still able to ping each other. Here’s an excerpt from the secondary node’s log:

[ReplSetHealthPollTask] replSet info arete:40000 is down (or slow to respond)
Mon Jan 31 22:56:22 [rs Manager] replSet info electSelf 1
Mon Jan 31 22:56:22 [rs Manager] replSet PRIMARY

If you connect to the new primary node and check the replica set status, you’ll see that
the old primary is unreachable:

> rs.status()
{

"_id" : 0,
"name" : "arete:40000",
"health" : 1,
"state" : 6,
"stateStr" : "(not reachable/healthy)",
"uptime" : 0,
"optime" : {

"t" : 1296510078000,
"i" : 1

},
"optimeDate" : ISODate("2011-01-31T21:43:18Z"),
"lastHeartbeat" : ISODate("2011-02-01T03:29:30Z"),
"errmsg": "socket exception"

}

Post-failover, the replica set consists of just two nodes. Because the arbiter has no data,
your application will continue to function as long as it communicates with the primary
node only.3 Even so, replication isn’t happening, and there’s now no possibility of
failover. The old primary must be restored. Assuming that the old primary was shut
down cleanly, you can bring it back online, and it’ll automatically rejoin the replica set
as a secondary. Go ahead and try that now by restarting the old primary node.

 That’s a clean overview of replica sets. Some of the details are, unsurprisingly,
messier. In the next two sections, you’ll see how replica sets actually work, and look at
deployment, advanced configuration, and how to handle tricky scenarios that may
arise in production.

8.2.2 How replication works

Replica sets rely on two basic mechanisms: an oplog and a heartbeat. The oplog enables
the replication of data, and the heartbeat monitors health and triggers failover. You’ll

3 Applications sometimes query secondary nodes for read scaling. If that’s happening, then this kind of failure
will cause read failures. Thus it’s important to design your application with failover in mind. More on this at

the end of the chapter.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

164 CHAPTER 8 Replication

now see how both of these mechanisms work in turn. You should in the process begin
to understand and predict replica set behavior, particularly in failure scenarios.

ALL ABOUT THE OPLOG

At the heart of MongoDB’s replication stands the oplog. The oplog is a capped collec-
tion that lives in a database called local on every replicating node and records all
changes to the data. Every time a client writes to the primary, an entry with enough
information to reproduce the write is automatically added to the primary’s oplog.
Once the write is replicated to a given secondary, that secondary’s oplog also stores a
record of the write. Each oplog entry is identified with a BSON timestamp, and all sec-
ondaries use the timestamp to keep track of the latest entry they’ve applied.4

 To better see how this works, let’s look more closely at a real oplog and at the oper-
ations recorded therein. First connect with the shell to the primary node started in
the previous section, and switch to the local database:

> use local
switched to db local

The local database stores all the replica set metadata and the oplog. Naturally, this
database isn’t replicated itself. Thus it lives up to its name; data in the local database
is supposed to be unique to the local node and therefore shouldn’t be replicated.

 If you examine the local database, you’ll see a collection called oplog.rs, which is
where every replica set stores its oplog. You’ll also see a few system collections. Here’s
the complete output:

> show collections
me
oplog.rs
replset.minvalid
slaves
system.indexes
system.replset

replset.minvalid contains information for the initial sync of a given replica set
member, and system.replset stores the replica set config document. me and slaves
are used to implement write concern, described at the end of this chapter, and system
.indexes is the standard index spec container.

 First we’ll focus on the oplog. Let’s query for the oplog entry corresponding to the
book document you added in the previous section. To do so, enter the following
query. The resulting document will have four fields, and we’ll discuss each in turn:

> db.oplog.rs.findOne({op: "i"})
{ "ts" : { "t" : 1296864947000, "i" : 1 }, "op" : "i", "ns" :

"bookstores.books", "o" : { "_id" : ObjectId("4d4c96b1ec5855af3675d7a1"),
"title" : "Oliver Twist" }

}

4 The BSON timestamp is a unique identifier comprising the number of seconds since the epoch and an incre-

menting counter.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

165Replica sets

The first field, ts, stores the entry’s BSON timestamp. Pay particular attention here;
the shell displays the timestamp as a subdocument with two fields, t for the seconds
since epoch and i for the counter. This might lead you to believe that you could query
for the entry like so:

db.oplog.rs.findOne({ts: {t: 1296864947000, i: 1}})

In fact, this query returns null. To query with a timestamp, you need to explicitly con-
struct a timestamp object. All the drivers have their own BSON timestamp construc-
tors, and so does JavaScript. Here’s how to use it:

db.oplog.rs.findOne({ts: new Timestamp(1296864947000, 1)})

Returning to the oplog entry, the second field, op, specifies the opcode. This tells
the secondary node which operation the oplog entry represents. Here you see an i,
indicating an insert. After op comes ns to signify the relevant namespace (database
and collection) and o, which for insert operations contains a copy of the inserted
document.

 As you examine oplog entries, you may notice that operations affecting multiple
documents are analyzed into their component parts. For multi-updates and mass
deletes, a separate entry is created in the oplog for each document affected. For
example, suppose you add a few more Dickens books to the collection:

> use bookstore
db.books.insert({title: "A Tale of Two Cities"})
db.books.insert({title: "Great Expectations"})

Now with four books in the collection, let’s issue a multi-update to set the author’s
name:

db.books.update({}, {$set: {author: "Dickens"}}, false, true)

How does this appear in the oplog?

> use local
> db.oplog.$main.find({op: "u"})
{ "ts" : { "t" : 1296944149000, "i" : 1 }, "op" : "u",
"ns" : "bookstore.books",
"o2" : { "_id" : ObjectId("4d4dcb89ec5855af365d4283") },
"o" : { "$set" : { "author" : "Dickens" } } }

{ "ts" : { "t" : 1296944149000, "i" : 2 }, "op" : "u",
"ns" : "bookstore.books",
"o2" : { "_id" : ObjectId("4d4dcb8eec5855af365d4284") },
"o" : { "$set" : { "author" : "Dickens" } } }

{ "ts" : { "t" : 1296944149000, "i" : 3 }, "op" : "u",
"ns" : "bookstore.books",
"o2" : { "_id" : ObjectId("4d4dcbb6ec5855af365d4285") },
"o" : { "$set" : { "author" : "Dickens" } } }

As you can see, each updated document gets its own oplog entry. This normalization is
done as part of the more general strategy of ensuring that secondaries always end up
with the same data as the primary. To guarantee this, every applied operation must be
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

166 CHAPTER 8 Replication

idempotent—it can’t matter how many times a given oplog entry is applied; the result
must always be the same. Other multidocument operations, like deletes, will exhibit
the same behavior. You’re encouraged to try different operations and see how they
ultimately appear in the oplog.

 To get some basic information about the oplog’s current status, you can run the
shell’s db.getReplicationInfo() method:

> db.getReplicationInfo()
{

"logSizeMB" : 50074.10546875,
"usedMB" : 302.123,
"timeDiff" : 294,
"timeDiffHours" : 0.08,
"tFirst" : "Thu Jun 16 2011 21:21:55 GMT-0400 (EDT)",
"tLast" : "Thu Jun 16 2011 21:26:49 GMT-0400 (EDT)",
"now" : "Thu Jun 16 2011 21:27:28 GMT-0400 (EDT)"

}

Here you see the timestamps of the first and last entries in this oplog. You can find
these oplog entries manually by using the $natural sort modifier. For example, the
following query fetches the latest entry: db.oplog.rs.find().sort({$natural: -1})
.limit(1)

 The only important thing left to understand about replication is how the secondar-
ies keep track of their place in the oplog. The answer lies in the fact that secondaries
also keep an oplog. This is a significant improvement upon master-slave replication,
so it’s worth taking a moment to explore the rationale.

 Imagine you issue a write to the primary node of a replica set. What happens next?
First, the write is recorded and then added to the primary’s oplog. Meanwhile, all sec-
ondaries have their own oplogs that replicate the primary’s oplog. So when a given
secondary node is ready to update itself, it does three things. First, it looks at the time-
stamp of the latest entry in its own oplog. Next, it queries the primary’s oplog for all
entries greater than that timestamp. Finally, it adds each of those entries to its own
oplog and applies the entries to itself.5 This means that, in case of failover, any second-
ary promoted to primary will have an oplog that the other secondaries can replicate
from. This feature essentially enables replica set recovery.

 Secondary nodes use long polling to immediately apply new entries from the pri-
mary’s oplog. Thus secondaries will usually be almost completely up to date. When
they do fall behind, because of network partitions or maintenance on secondaries
themselves, the latest timestamp in each secondary’s oplog can be used to monitor
any replication lag.

HALTED REPLICATION

Replication will halt permanently if a secondary can’t find the point it’s synced to in
the primary’s oplog. When that happens, you’ll see an exception in the secondary’s
log that looks like this:

5 When journaling is enabled, documents are written to the core data files and to the oplog simultaneously in

an atomic transaction.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

167Replica sets

repl: replication data too stale, halting
Fri Jan 28 14:19:27 [replsecondary] caught SyncException

Recall that the oplog is a capped collection. This means that entries in the collection
eventually age out. Once a given secondary fails to find the point at which it’s synced
in the primary’s oplog, there’s no longer any way of ensuring that the secondary is a
perfect replica of the primary. Because the only remedy for halted replication is a
complete resync of the primary’s data, you’ll want to strive to avoid this state. To do
that, you’ll need to monitor secondary delay, and you’ll need to have a large enough
oplog for your write volume. You’ll learn more about monitoring in chapter 10.
Choosing the right oplog size is what we’ll cover next.

SIZING THE REPLICATION OPLOG

The oplog is a capped collection and as such, it can’t be resized once it’s been created
(at least, as of MongoDB v2.0).6 This makes it important to choose an initial oplog size
carefully.

 The default oplog sizes vary somewhat. On 32-bit systems, the oplog will default to
50 MB, whereas on 64-bit systems, the oplog will be the larger of 1 GB or 5% of free
disk space.7 For many deployments, 5% of free disk space will be more than enough.
One way to think about an oplog of this size is to recognize that once it overwrites
itself 20 times, the disk will likely be full.

 That said, the default size won’t be ideal for all applications. If you know that your
application will have a high write volume, you should do some empirical testing
before deploying. Set up replication and then write to the primary at the rate you’ll
have in production. You’ll want to hammer the server in this way for at least an hour.
Once done, connect to any replica set member and get the current replication info:

db.getReplicationInfo()

Once you know how much oplog you’re generating per hour, you can then decide
how much oplog space to allocate. You should probably shoot for being able to with-
stand at least eight hours of secondary downtime. You want to avoid having to com-
pletely resync any node, and increasing the oplog size will buy you time in the event of
network failures and the like.

 If you want to change the default oplog size, you must do so the first time you start
each member node using mongod’s --oplogSize option. The value is in megabytes.
Thus you can start mongod with a 1 GB oplog like so:

mongod --replSet myapp --oplogSize 1024

HEARTBEAT AND FAILOVER

The replica set heartbeat facilitates election and failover. By default, each replica set
member pings all the other members every two seconds. In this way, the system can

6 The option to increase the size of a capped collection is a planned feature. See https://jira.mongodb.org/
browse/SERVER-1864.

7 Unless you’re running on OS X, in which case the oplog will be 192 MB. This smaller size is due to the assump-

tion that OSX machines are development machines.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

https://jira.mongodb.org/browse/SERVER-1864
https://jira.mongodb.org/browse/SERVER-1864
http://www.it-ebooks.info/

168 CHAPTER 8 Replication

ascertain its own health. When you run rs.status(), you see the timestamp of each
node’s last heartbeat along with its state of health (1 means healthy and 0 means
unresponsive).

 As long as every node remains healthy and responsive, the replica set will hum
along its merry way. But if any node becomes unresponsive, action may be taken. What
every replica set wants is to ensure that exactly one primary node exists at all times.
But this is possible only when a majority of nodes is visible. For example, look back at
the replica set you built in the previous section. If you kill the secondary, then a major-
ity of nodes still exists, so the replica set doesn’t change state but simply waits for the
secondary to come back online. If you kill the primary, then a majority still exists, but
there’s no primary. Therefore, the secondary is automatically promoted to primary. If
more than one secondary happens to exist, then the most current secondary will be
the one elected.

 But there are other possible scenarios. Imagine that both the secondary and the
arbiter are killed. Now the primary remains, but there’s no majority—only one of
the three original nodes remains healthy. In this case, you’ll see a message like this
in the primary’s log:

Tue Feb 1 11:26:38 [rs Manager] replSet can't see a majority of the set,
relinquishing primary

Tue Feb 1 11:26:38 [rs Manager] replSet relinquishing primary state
Tue Feb 1 11:26:38 [rs Manager] replSet SECONDARY

With no majority, the primary actually demotes itself to a secondary. This may seem
puzzling, but think about what might happen if this node were allowed to remain pri-
mary. If the heartbeats fail due to some kind of network partition, then the other
nodes will still be online. If the arbiter and secondary are still up and able to see each
other, then according to the rule of the majority, the remaining secondary will
become a primary. If the original primary doesn’t step down, then you’re suddenly in
an untenable situation: a replica set with two primary nodes. If the application contin-
ues to run, then it might write to and read from two different primaries, a sure recipe
for inconsistency and truly bizarre application behavior. Therefore, when the primary
can’t see a majority, it must step down.

COMMIT AND ROLLBACK

One final important point to understand about replica sets is the concept of a commit.
In essence, you can write to a primary node all day long, but those writes won’t be con-
sidered committed until they’ve been replicated to a majority of nodes. What do I
mean by committed here? The idea can best be explained by example. Imagine again
the replica set you built in the previous section. Suppose you issue a series of writes to
the primary that don’t get replicated to the secondary for some reason (connectivity
issues, secondary is down for backup, secondary is lagging, and so forth). Now sup-
pose further that the secondary is suddenly promoted to primary. You write to the new
primary, and eventually the old primary comes back online and tries to replicate from
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

169Replica sets

the new primary. The problem here is that the old primary has a series of writes that
don’t exist in the new primary’s oplog. This situation triggers a rollback.

 In a rollback, all writes that were never replicated to a majority are undone. This
means that they’re removed from both the secondary’s oplog and the collection
where they reside. If a secondary has registered a delete, then the node will look for
the deleted document in another replica and restore it to itself. The same is true for
dropped collections and updated documents.

 The reverted writes are stored in the rollback subdirectory of the relevant node’s
data path. For each collection with rolled-back writes, a separate BSON file will be cre-
ated whose filename includes the time of the rollback. In the event that you need to
restore the reverted documents, you can examine these BSON files using the bsondump
utility and manually restore them, possibly using mongorestore.

 If you ever find yourself having to restore rolled-back data, you’ll realize that this is
a situation you want to avoid, and fortunately you can to some extent. If your applica-
tion can tolerate the extra write latency, you can use write concern, described later, to
ensure that your data is replicated to a majority of nodes on each write (or perhaps
after every several writes). Being smart about write concern and about monitoring of
replication lag in general will help you mitigate or even avoid the problem of rollback
altogether.

 In this section you learned perhaps a few more replication internals than expected,
but the knowledge should come in handy. Understanding how replication works goes
a long way in helping you to diagnose any issues you may have in production.

8.2.3 Administration

For all the automation they provide, replica sets have some potentially complicated
configuration options. In what follows, I’ll describe these options in detail. In the
interest of keeping things simple, I’ll also suggest which options can be safely ignored.

CONFIGURATION DETAILS

Here I present the mongod startup options pertaining to replica sets, and I describe the
structure of the replica set configuration document.

Replication options
Earlier, you learned how to initiate a replica set using the shell’s rs.initiate() and
rs.add() methods. These methods are convenient, but they hide certain replica set
configuration options. Here you’ll see how to use a configuration document to initi-
ate and update a replica set’s configuration.

 A configuration document specifies the configuration of the replica set. To create
one, first add a value for _id that matches the name you passed to the --replSet
parameter:

> config = {_id: "myapp", members: []}
{ "_id" : "myapp", "members" : [] }

The individual members can be defined as part of the configuration document as

follows:

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

170 CHAPTER 8 Replication

config.members.push({_id: 0, host: 'arete:40000'})
config.members.push({_id: 1, host: 'arete:40001'})
config.members.push({_id: 2, host: 'arete:40002', arbiterOnly: true})

Your configuration document should now look like this:

> config
{

"_id" : "myapp",
"members" : [

{
"_id" : 0,
"host" : "arete:40000"

},
{

"_id" : 1,
"host" : "arete:40001"

},
{

"_id" : 2,
"host" : "arete:40002",
"arbiterOnly" : true

}
]

}

You can then pass the document as the first argument to rs.initiate() to initiate the
replica set.

 Technically, the document consists of an _id containing the name of the replica
set, an array specifying between 3 and 12 members, and an optional subdocument for
specifying certain global settings. This sample replica set uses the minimum required
configuration parameters, plus the optional arbiterOnly setting.

 The document requires an _id that matches the replica set’s name. The initiation
command will verify that each member node has been started with the --replSet
option with that name. Each replica set member requires an _id consisting of increas-
ing integers starting from 0. Members also require a host field with a host name and
optional port.

 Here you initiate the replica set using the rs.initiate() method. This is a simple
wrapper for the replSetInitiate command. Thus you could’ve started the replica set
like so:

db.runCommand({replSetInitiate: config});

config is simply a variable holding your configuration document. Once initiated,
each set member stores a copy of this configuration document in the local database’s
system.replset collection. If you query the collection, you’ll see that the document
now has a version number. Whenever you modify the replica set’s configuration, you
must also increment this version number.

 To modify a replica set’s configuration, there’s a separate command, replSet-
Reconfig, which takes a new configuration document. The new document can specify

the addition or removal of set members along with alterations to both member-specific

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

171Replica sets

and global configuration options. The process of modifying a configuration docu-
ment, incrementing the version number, and passing it as part of the replSetReconfig
can be laborious, so there exist a number of shell helpers to ease the way. To see a list
of them all, enter rs.help() at the shell. You’ve already seen rs.add().

 Bear in mind that whenever a replica set reconfiguration results in the election of
a new primary node, all client connections will be closed. This is done to ensure that
clients won’t attempt to send fire-and-forget writes to a secondary node.

 If you’re interested in configuring a replica set from one of the drivers, you can see
how by examining the implementation of rs.add(). Enter rs.add (the method with-
out the parentheses) at the shell prompt to see how the method works.

Configuration document options
Until now, we’ve limited ourselves to the simplest replica set configuration document.
But these documents support several options for both replica set members and for the
replica set as a whole. We’ll begin with the member options. You’ve seen _id, host,
and arbiterOnly. Here are these plus the rest, in all their gritty detail:

 _id(required)—A unique incrementing integer representing the member’s ID.
These _id values begin at 0 and must be incremented by one for each member
added.

 host(required)—A string storing the host name of this member along with an
optional port number. If the port is provided, it should be separated from the
host name by a colon (for example, arete:30000). If no port number is speci-
fied, the default port, 27017, will be used.

 arbiterOnly—A Boolean value, true or false, indicating whether this mem-
ber is an arbiter. Arbiters store configuration data only. They’re lightweight
members that participate in primary election but not in the replication itself.

 priority—An integer from 0 to 1000 that helps to determine the likelihood
that this node will be elected primary. For both replica set initiation and
failover, the set will attempt to elect as primary the node with the highest prior-
ity, as long as it’s up to date.

There are also cases where you might want a node never to be primary (say, a
disaster recovery node residing in a secondary data center). In those cases, set
the priority to 0. Nodes with a priority of 0 will be marked as passive in the
results to the isMaster() command and will never be elected primary.

 votes—All replica set members get one vote by default. The votes setting
allows you to give more than one vote to an individual member.

This option should be used with extreme care, if at all. For one thing, it’s dif-
ficult to reason about replica set failover behavior when not all members have
the same number of votes. Moreover, the vast majority of production deploy-
ments will be perfectly well served with one vote per member. So if you do
choose to alter the number of votes for a given member, be sure to think
through and simulate the various failure scenarios very carefully.
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

172 CHAPTER 8 Replication

 hidden—A Boolean value that, when true, will keep this member from show-
ing up in the responses generated by the isMaster command. Because the
MongoDB drivers rely on isMaster for knowledge of the replica set topology,
hiding a member keeps the drivers from automatically accessing it. This set-
ting can be used in conjunction with buildIndexes and must be used with
slaveDelay.

 buildIndexes—A Boolean value, defaulting to true, that determines whether
this member will build indexes. You’ll want to set this value to false only on
members that will never become primary (those with a priority of 0).

This option was designed for nodes used solely as backups. If backing up
indexes is important, then you shouldn’t use this option.

 slaveDelay—The number of seconds that a given secondary should lag behind
the primary. This option can be used only with nodes that will never become pri-
mary. So to specify a slaveDelay greater than 0, be sure to also set a priority of 0.

You can use a delayed slave as insurance against certain kinds of user errors.
For example, if you have a secondary delayed by 30 minutes and an administra-
tor accidentally drops a database, then you have 30 minutes to react to this
event before it’s propagated.

 tags—A document containing an arbitrary set of key-value pairs, usually used
to identify this member’s location in a particular data center or server rack.
Tags are used for specifying granular write concern and read settings, and
they’re discussed in section 8.4.9.

That sums up the options for individual replica set members. There are also two
global replica set configuration parameters scoped under a settings key. In the rep-
lica set configuration document, they appear like this:

{
settings: {

getLastErrorDefaults: {w: 1},
getLastErrorModes: {

multiDC: { dc: 2 }
}

}
}

 getLastErrorDefaults—A document specifying the default arguments to be
used when the client calls getLastError with no arguments. This option should
be treated with care because it’s also possible to set global defaults for getLast-
Error within the drivers, and you can imagine a situation where application
developers call getLastError not realizing that an administrator has specified a
default on the server.

For more details on getLastError, see section 3.2.3 on write concern. Briefly,
to specify that all writes are replicated to at least two members with a timeout of
500 ms, you’d specify this value in the config like so: settings: { getLastError-

Defaults: {w: 2, wtimeout: 500} }.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

173Replica sets

 getLastErrorModes—A document defining extra modes for the getLastError
command. This feature is dependent on replica set tagging and is described in
detail in section 8.4.4.

REPLICA SET STATUS

You can see the status of a replica set and its members by running the replSetGet-
Status command. To invoke this command from the shell, run the rs.status()
helper method. The resulting document indicates the extant members and their
respective states, uptime, and oplog times. It’s important to understand replica set
member state; you can see a complete list of possible values in table 8.1.

 You can consider a replica set stable and online when all its nodes are in any of
states 1, 2, or 7 and when at least one node is running as the primary. You can use the
replSetGetStatus command from an external script to monitor overall state, replica-
tion lag, and uptime, and this is recommended for production deployments.8

Table 8.1 Replica set states

State State string Notes

0 STARTUP Indicates that the replica set is negotiating with other nodes by pinging
all set members and sharing config data.

1 PRIMARY This is the primary node. A replica set will always have at most one pri-
mary node.

2 SECONDARY This is a secondary, read-only node. This node may become a primary in
the event of a failover if and only if its priority is greater than 0 and it’s
not marked as hidden.

3 RECOVERING This node is unavailable for reading and writing. You usually see this
state after a failover or upon adding a new node. While recovering, a
data file sync is often in progress; you can verify this by examine the
recovering node’s logs.

4 FATAL A network connection is still established, but the node isn’t responding
to pings. This usually indicates a fatal error on the machine hosting the
node marked FATAL.

5 STARTUP2 An initial data file sync is in progress.

6 UNKNOWN A network connection has yet to be made.

7 ARBITER This node is an arbiter.

8 DOWN The node was accessible and stable at some point but isn’t currently
responding to heartbeat pings.

9 ROLLBACK A rollback is in progress.

8 Note that in addition to running the status command, you can get a useful visual through the web console.

Chapter 10 discusses the web console and shows an example of its use with replica sets.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

174 CHAPTER 8 Replication

FAILOVER AND RECOVERY

You saw in the sample replica set a couple examples of failover. Here I summarize the
rules of failover and provide some suggestions on handling recovery.

 A replica set will come online when all members specified in the configuration can
communicate with each other. Each node is given one vote by default, and those votes
are used to form a majority and elect a primary. This means that a replica set can be
started with as few as two nodes (and votes). But the initial number of votes also
decides what constitutes a majority in the event of a failure.

 Let’s assume that you’ve configured a replica set of three complete replicas (no
arbiters) and thus have the recommended minimum for automated failover. If the pri-
mary fails, and the remaining secondaries can see each other, then a new primary can
be elected. As for deciding which one, the secondary with the most up-to-date oplog
(or higher priority) will be elected primary.

Failure modes and recovery
Recovery is the process of restoring the replica set to its original state following a fail-
ure. There are two overarching failure categories to be handled. The first comprises
what is called clean failures, where a given node’s data files can still be assumed to be
intact. One example of this is a network partition. If a node loses its connections to
the rest of the set, then you need only wait for connectivity to be restored, and the par-
titioned node will resume as a set member. A similar situation occurs when a given
node’s mongod process is terminated for any reason but can be brought back online
cleanly.9 Again, once the process is restarted, it can rejoin the set.

 The second type of failure comprises all categorical failures, where either a node’s
data files no longer exist or must be presumed corrupted. Unclean shutdowns of the
mongod process without journaling enabled and hard drive crashes are both examples
of this kind of failure. The only ways to recover a categorically failed node are to com-
pletely replace the data files via a resync or to restore from a recent backup. Let’s look
a both strategies in turn.

 To completely resync, start a mongod with an empty data directory on the failed
node. As long as the host and port haven’t changed, the new mongod will rejoin the
replica set and then resync all the existing data. If either the host or port has changed,
then after bringing the mongod back online, you’ll also have to reconfigure the replica
set. As an example, suppose the node at arete:40001 is rendered unrecoverable and
you bring up a new node at foobar:40000. You can reconfigure the replica set by grab-
bing the configuration document, modifying the host for the second node, and then
passing that to the rs.reconfig() method:

> use local
> config = db.system.replset.findOne()
{

"_id" : "myapp",

9 For instance, if MongoDB is shut down cleanly then you know that the data files are okay. Alternatively, if run-

ning with journaling, the MongoDB instance should be recoverable regardless of how it’s killed.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

175Replica sets

"version" : 1,
"members" : [

{
"_id" : 0,
"host" : "arete:30000"

},
{

"_id" : 1,
"host" : "arete:30001"

},
{

"_id" : 2,
"host" : "arete:30002"

}
]

}
> config.members[1].host = "foobar:40000"
arete:40000
> rs.reconfig(config)

Now the replica set will identify the new node, and the new node should start to sync
from an existing member.

 In addition to restoring via a complete resync, you also have the option of restor-
ing from a recent backup. You’ll typically perform backups from one of the secondary
nodes by making snapshots of the data files and then storing them offline.10 Recovery
via backup is possible only if the oplog within the backup isn’t stale relative to the
oplogs of the current replica set members. This means that the latest operation in the
backup’s oplog must still exist in the live oplogs. You can use the information pro-
vided by db.getReplicationInfo() to see right away if this is the case. When you do,
don’t forget to take into account the time it’ll take to restore the backup. If the
backup’s latest oplog entry is likely to go stale in the time it takes to copy the backup
to a new machine, then you’re better off performing a complete resync.

 But restoring from backup can be faster, in part because the indexes don’t have to
be rebuilt from scratch. To restore from a backup, copy the backed-up data files to a
mongod data path. The resync should begin automatically, and you can check the logs
or run rs.status() to verify this.

DEPLOYMENT STRATEGIES

You now know that a replica set can consist of up to 12 nodes, and you’ve been pre-
sented with a dizzying array of configuration options and considerations regarding
failover and recovery. There are a lot of ways you might configure a replica set, but in
this section I’ll present a couple that will work for the majority of cases.

 The most minimal replica set configuration providing automated failover is the
one you built earlier consisting of two replicas and one arbiter. In production, the
arbiter can run on an application server while each replica gets its own machine. This
configuration is economical and sufficient for many production apps.
10 Backups are discussed in detail in chapter 10.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

176 CHAPTER 8 Replication

 But for applications where uptime is critical, you’ll want a replica set consisting of
three complete replicas. What does the extra replica buy you? Think of the scenario
where a single node fails completely. You still have two first-class nodes available while
you restore the third. As long as a third node is online and recovering (which may
take hours), the replica set can still fail over automatically to an up-to-date node.

 Some applications will require the redundancy afforded by two data centers, and
the three-member replica set can also work in this case. The trick is to use one of the
data centers for disaster recovery only. Figure 8.2 shows an example of this. Here, the
primary data center houses a replica set primary and secondary, and a backup data
center keeps the remaining secondary as a passive node (with priority 0).

 In this configuration, the replica set primary will always be one of the two nodes liv-
ing in data center A. You can lose any one node or any one data center and still keep
the application online. Failover will usually be automatic, except in the cases where
both of A’s nodes are lost. Because it’s rare to lose two nodes at once, this would likely
represent the complete failure or partitioning of data center A. To recover quickly,
you could shut down the member in data center B and restart it without the --repl-
Set flag. Alternatively, you could start two new nodes in data center B and then force a
replica set reconfiguration. You’re not supposed to reconfigure a replica set when a
majority of nodes is unreachable, but you can do so in emergencies using the force
option. For example, if you’ve defined a new configuration document, config, then
you can force reconfiguration like so:

> rs.reconfig(config, {force: true})

As with any production system, testing is key. Make sure that you test for all the typical
failover and recovery scenarios in a staging environment comparable to what you’ll be

Secondary

Replication

Ping

Ping

Ping

Primary data center Secondary data center

Primary

Secondary
(priority = 0)

Figure 8.2 A three-node
replica set with members in

two data centers

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

177Drivers and replication

running in production. Knowing from experience how your replica set will behave in
these failures cases will secure some peace of mind and give you the wherewithal to
calmly deal with emergencies as they occur.

8.3 Master-slave replication
Master-slave replication is the original replication paradigm in MongoDB. This flavor
of replication is easy to configure and has the advantage of supporting any number of
slave nodes. But master-slave replication is no longer recommended for production
deployments. There are a couple reasons for this. First, failover is completely manual.
If the master node fails, then an administrator must shut down a slave and restart it as
a master node. Then the application must be reconfigured to point to the new master.
Second, recovery is difficult. Because the oplog exists only on the master node, a fail-
ure requires that a new oplog be created on the new master. This means that any
other existing nodes will need to resync from the new master in the event of a failure.

 In short, there are few compelling reasons to use master-slave replication. Replica
sets are the way forward, and they’re the flavor of replication you should use.

8.4 Drivers and replication
If you’re building an application and using MongoDB’s replication, then you need to
know about three application-specific topics. The first concerns connections and
failover. Next comes write concern, which allows you to decide to what degree a given
write should be replicated before the application continues. The final topic, read scal-
ing, allows an application to distribute reads across replicas. I’ll discuss these topics
one by one.

8.4.1 Connections and failover

The MongoDB drivers present a relatively uniform interface for connecting to replica
sets.

SINGLE-NODE CONNECTIONS

You’ll always have the option of connecting to a single node in a replica set. There’s
no difference between connecting to a node designated as a replica set primary and
connecting to one of the vanilla standalone nodes we’ve used for the examples
throughout the book. In both cases, the driver will initiate a TCP socket connection
and then run the isMaster command. This command then returns a document like
the following:

{ "ismaster" : true, "maxBsonObjectSize" : 16777216, "ok" : 1 }

What’s most important to the driver is that the isMaster field be set to true, which
indicates that the given node is either a standalone, a master running master-slave rep-
lication, or a replica set primary.11 In all of these cases, the node can be written to, and
the user of the driver can perform any CRUD operation.

11 The isMaster command also returns a value for the maximum BSON object size for this version of the

server. The drivers then validate that all BSON objects are within this limit prior to inserting them.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

178 CHAPTER 8 Replication

 But when connecting directly to a replica set secondary, you must indicate that you
know you’re connecting to such a node (for most drivers, at least). In the Ruby driver,
you accomplish this with the :slave_ok parameter. Thus to connect directly to the
first secondary you created earlier in the chapter, the Ruby code would look like this:

@con = Mongo::Connection.new('arete', 40001, :slave_ok => true)

Without the :slave_ok argument, the driver will raise an exception indicating that it
couldn’t connect to a primary node. This check is in place to keep you from inadver-
tently writing to a secondary node. Though such attempts to write will always be
rejected by the server, you won’t see any exceptions unless you’re running the opera-
tions with safe mode enabled.

 The assumption is that you’ll usually want to connect to a primary node master;
the :slave_ok parameter is enforced as a sanity check.

REPLICA SET CONNECTIONS

You can connect to any replica set member individually, but you’ll normally want to con-
nect to the replica set as a whole. This allows the driver to figure out which node is pri-
mary and, in the case of failover, reconnect to whichever node becomes the new
primary.

 Most of the officially supported drivers provide ways of connecting to a replica set.
In Ruby, you connect by creating a new instance of ReplSetConnection, passing in a
list of seed nodes:

Mongo::ReplSetConnection.new(['arete', 40000], ['arete', 40001])

Internally, the driver will attempt to connect to each seed node and then call the
isMaster command. Issuing this command to a replica set returns a number of
important set details:

> db.isMaster()
{

"setName" : "myapp",
"ismaster" : true,
"secondary" : false,
"hosts" : [

"arete:40000",
"arete:40001"

],
"arbiters" : [

"arete:40002"
],
"maxBsonObjectSize" : 16777216,
"ok" : 1

}

Once a seed node responds with this information, the driver has everything it needs.
Now it can connect to the primary member, again verify that this member is still pri-
mary, and then allow the user to read and write through this node. The response

object also allows the driver to cache the addresses of the remaining secondary and

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

179Drivers and replication

arbiter nodes. If an operation on the primary fails, then on subsequent requests, the
driver can attempt to connect to one of the remaining nodes until it can reconnect to
a primary.

 It’s important to keep in mind that although replica set failover is automatic, the
drivers don’t attempt to hide the fact that a failover has occurred. The course of
events goes something like this: First, the primary fails or a new election takes place.
Subsequent requests will reveal that the socket connection has been broken, and the
driver will then raise a connection exception and close any open sockets to the data-
base. It’s now up to the application developer to decide what happens next, and this
decision will depend on both the operation being performed and the specific needs
of the application.

 Keeping in mind that the driver will automatically attempt to reconnect on any
subsequent request, let’s imagine a couple of scenarios. First, suppose that you only
issue reads to the database. In this case, there’s little harm in retrying a failed read
since there’s no possibility of changing database state. But now imagine that you also
regularly write to the database. As stated many times before, you can write to the data-
base with and without safe mode enabled. With safe mode, the driver appends to each
write a call to the getlasterror command. This ensures that the write has arrived
safely and reports any server errors back to the application. Without safe mode, the
driver simply writes to the TCP socket.

 If your application writes without safe mode and a failover occurs, then you’re left
in an uncertain state. How many of the recent writes made it to the server? How many
were lost in the socket buffer? The indeterminate nature of writing to a TCP socket
makes answering these questions practically impossible. How big of a problem this is
depends on the application. For logging, non-safe-mode writes are probably accept-
able, since losing writes hardly changes the overall logging picture; but for users creat-
ing data in the application, non-safe-mode writes can be a disaster.

 With safe mode enabled, only the most recent write is in question; it may have
arrived on the server, or it may not have. At times it’ll be appropriate to retry the write,
and at other times an application error should be thrown. The drivers will always raise
an exception; developers can then decide how these exceptions are handled.

 In any case, retrying an operation will cause the driver to attempt to reconnect to
the replica set. But since drivers will differ somewhat in their replica set connection
behavior, you should always consult your driver’s documentation for specifics.

8.4.2 Write concern

It should be clear now that running in safe mode by default is reasonable for most
applications, as it’s important to know that writes have arrived error-free at the pri-
mary server. But greater levels of assurance are frequently desired, and write concern
addresses this by allowing developers to specify the extent to which a write should be
replicated before allowing the application to continue on. Technically, you control
write concern via two parameters on the getlasterror command: w and wtimeout.
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

180 CHAPTER 8 Replication

The first value, w, admits a few possible values, but usually indicates the total number
of servers that the latest write should be replicated to; the second is a timeout that
causes the command to return an error if the write can’t be replicated in the specified
number of milliseconds.

 For example, if you want to make sure that a given write is replicated to at least one
server, then you can indicate a w value of 2. If you want the operation to time out if this
level of replication isn’t achieved in 500 ms, you include a wtimeout of 500. Note that
if you don’t specify a value for wtimeout, and the replication for some reason never
occurs, then the operation will block indefinitely.

 When using a driver, you enable write concern not by calling getLastError explic-
itly but rather by creating a write concern object or by setting the appropriate safe
mode option; it depends on the specific driver’s API.12 In Ruby, you can specify a write
concern on a single operation like so:

@collection.insert(doc, :safe => {:w => 2, :wtimeout => 200})

Sometimes you simply want to ensure that a write is replicated to a majority of avail-
able nodes. For this case, you can set a w value of majority:

@collection.insert(doc, :safe => {:w => "majority"})

Even fancier options exist. For instance, if you’ve enabled journaling, then you can
also force that the journal be synced to disk by adding the j option:

@collection.insert(doc, :safe => {:w => 2, :j => true})

Many drivers also support setting default write concern values for a given connection
or database. To find out how to set write concern in your particular case, check your
driver’s documentation. A few more language examples can be found in appendix D.

 Write concern works with both replica sets and master-slave replication. If you
examine the local databases, you’ll see a couple collections, me on secondary nodes
and slaves on the primary node, that are used to implement write concern. Whenever
a secondary polls a primary, the primary makes a note of the latest oplog entry applied
to each secondary in its slaves collection. Thus, the primary knows what each second-
ary has replicated at all times and can therefore reliably answer the getlasterror com-
mand’s write requests.

 Keep in mind that using write concern with values of w greater than 1 will intro-
duce extra latency. Configurable write concern essentially allows you to make the
trade-off between speed and durability. If you’re running with journaling, then a write
concern with w equal to 1 should be fine for most applications. On the other hand, for
logging or analytics, you might elect to disable journaling and write concern alto-
gether and rely solely on replication for durability, allowing that you may lose some
writes in the event of a failure. Consider these trade-offs carefully and test the differ-
ent scenarios when designing your application.
12 There are examples of setting write concern in Java, PHP, and C++ in appendix D.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

181Drivers and replication

8.4.3 Read scaling

Replicated databases are great for read scaling. If a single server can’t handle the
application’s read load, then you have the option to route queries to more than one
replica. Most of the drivers have built-in support for sending queries to secondary
nodes. With the Ruby driver, this is provided as an option on the ReplSetConnection
constructor:

Mongo::ReplSetConnection.new(['arete', 40000],
['arete', 40001], :read => :secondary)

When the :read argument is set to :secondary, the connection object will choose a
random, nearby secondary to read from.

 Other drivers can be configured to read from secondaries by setting a slaveOk
option. When the Java driver is connected to a replica set, setting slaveOk to true will
enable secondary load balancing on a per-thread basis. The load balancing implemen-
tations found in the drivers are designed to be generally applicable, so they may not
work for all apps. When that’s the case, users frequently customize their own. As usual,
consult your driver’s documentation for specifics.

 Many MongoDB users scale with replication in production. But there are three
cases where this sort of scaling won’t be sufficient. The first concerns the number of
servers needed. As of MongoDB v2.0, replica sets support a maximum of 12 members,
7 of which can vote. If you need even more replicas for scaling, you can use master-slave
replication. But if you don’t want to sacrifice automated failover and you need to scale
beyond the replica set maximum, then you’ll need to migrate to a sharded cluster.

 The second case involves applications with a high write load. As mentioned at the
beginning of the chapter, secondaries must keep up with this write load. Sending
reads to write-laden secondaries may inhibit replication.

 A third situation that replica scaling can’t handle is consistent reads. Because repli-
cation is asynchronous, replicas aren’t always going to reflect the latest writes to the
primary. Therefore, if your application reads arbitrarily from secondaries, then the
picture presented to end users isn’t always guaranteed to be fully consistent. For appli-
cations whose main purpose is to display content, this almost never presents a prob-
lem. But other apps, where users are actively manipulating data, will require
consistent reads. In these cases, you have two options. The first is to separate the parts
of the application that need consistent reads from the parts that don’t. The former
can always be read from the primary, and the latter can be distributed to secondaries.
When this strategy is either too complicated or simply doesn’t scale, sharding is the
way to go.13

13 Note that to get consistent reads from a sharded cluster, you must always read from the primary nodes of each

shard, and you must issue safe writes.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

182 CHAPTER 8 Replication

8.4.4 Tagging

If you’re using either write concern or read scaling, you may find yourself wanting
more granular control over exactly which secondaries receive writes or reads. For
example, suppose you’ve deployed a five-node replica set across two data centers, NY
and FR. The primary data center, NY, contains three nodes, and the secondary data
center, FR, contains the remaining two. Let’s say that you want to use write concern to
block until a certain write has been replicated to at least one node in data center FR.
With what you know about write concern right now, you’ll see that there’s no good
way to do this. You can’t use a w value of majority, since this will translate into a value
of 3, and the most likely scenario is that the three nodes in NY will acknowledge first.
You could use a value of 4, but this won’t hold up well if, say, you lose one node from
each data center.

 Replica set tagging solves this problem by allowing you to define special write con-
cern modes that target replica set members with certain tags. To see how this works,
you first need to learn how to tag a replica set member. In the config document, each
member can have a key called tags pointing to an object containing key-value pairs.
Here’s an example:

{
"_id" : "myapp",
"version" : 1,
"members" : [

{
"_id" : 0,
"host" : "ny1.myapp.com:30000",
"tags": { "dc": "NY", "rackNY": "A" }

},
{

"_id" : 1,
"host" : "ny2.myapp.com:30000",
"tags": { "dc": "NY", "rackNY": "A" }

},
{

"_id" : 2,
"host" : "ny3.myapp.com:30000",
"tags": { "dc": "NY", "rackNY": "B" }

},
{

"_id" : 3,
"host" : "fr1.myapp.com:30000",
"tags": { "dc": "FR", "rackFR": "A" }

},
{

"_id" : 4,
"host" : "fr2.myapp.com:30000",
"tags": { "dc": "FR", "rackFR": "B" }

}
],
settings: {

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

183Summary

getLastErrorModes: {
multiDC: { dc: 2 } },
multiRack: { rackNY: 2 } },

}
}

}

This is a tagged configuration document for the hypothetical replica set spanning two
data centers. Note that each member’s tag document has two key-value pairs: the first
identifies the data center and the second names the local server rack for the given
node. Keep in mind that the names used here are completely arbitrary and only
meaningful in the context of this application; you can put anything in a tag docu-
ment. What’s most important is how you use it.

 That’s where getLastErrorModes come into play. These allow you to define
modes for the getLastError command that implement specific write concern
requirements. In the example, you’ve defined two of these. The first, multiDC, is
defined as { "dc": 2 }, which indicates that a write should be replicated to nodes
tagged with at least two different values for dc. If you examine the tags, you’ll see this
will necessarily ensure that the write has been propagated to both data centers. The
second mode specifies that at least two server racks in NY should have received the
write. Again the tags should make this clear.

 In general, a getLastErrorModes entry consists of a document with one or more
keys (in this case, dc and rackNY) whose values are integers. These integers indicate
the number of different tagged values for the key that must be satisfied for the get-
LastError command to complete successfully. Once you’ve define these modes, you
can use them as values for w in your application. For example, using the first mode in
Ruby looks like this:

@collection.insert(doc, :safe => {:w => "multiDC"})

In addition to making write concern more sophisticated, tagging promises to provide
more granular control over which replicas are used for read scaling. Unfortunately, at
the time of this writing, the semantics for reading against tags haven’t been defined or
implemented in the official MongoDB drivers. For updates, follow the issue for the
Ruby driver at https://jira.mongodb.org/browse/RUBY-326.

8.5 Summary
It should be clear from all that we’ve discussed that replication is incredibly useful and
that it’s also essential for most deployments. MongoDB’s replication is supposed to be
easy, and setting it up usually is. But when it comes to backing up and failing over,
there are bound to be hidden complexities. For these complex cases, let experience,
and some help from this chapter, breed familiarity.
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

https://jira.mongodb.org/browse/RUBY-326
http://www.it-ebooks.info/

Sharding
MongoDB was designed from the start to support sharding. This has always been an
ambitious goal because building a system that supports automatic range-based par-
titioning and balancing, with no single point of failure, is hard. Thus the initial sup-
port for production-level sharding was first made available in August 2010 with the
release of MongoDB v1.6. Since then, numerous improvements have been made to
the sharding subsystem. Sharding effectively enables users to keep large volumes of
data evenly distributed across nodes and to add capacity as needed. In this chapter,
I’ll present the layer that makes this possible in all its glory.

 We’ll begin with a sharding overview, discussing what sharding is, why it’s impor-
tant, and how it’s implemented in MongoDB. Although this will give you a basic
working knowledge of sharding, you won’t fully understand it until you set up your
own sharded cluster. That’s what you’ll do in the second section, where you’ll build
a sample cluster to host data from a massive Google Docs-like application. We’ll

In this chapter
 Sharding concepts

 Setting up and loading a sample shard cluster

 Administration and failover
184

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

185Sharding overview

then discuss some sharding mechanics, describing how queries and indexing work
across shards. We’ll look at the ever-important choice of shard key. And I’ll end the
chapter with a lot of specific advice on running sharding in production.

 Sharding is complicated. To get the most out of this chapter, you should run the
examples. You’ll have no trouble running the sample cluster entirely on one machine;
once you do, start experimenting with it. There’s nothing like having a live sharded
deployment on hand for understanding MongoDB as a distributed system.

9.1 Sharding overview
Before you build your first sharded cluster, it’s useful to understand what sharding is
and why it’s sometimes appropriate. The explanation about why sharding matters gets
to one of the core justifications for the MongoDB project as a whole. Once you under-
stand why sharding is important, you’ll appreciate learning about the core compo-
nents that make up a sharded cluster and the key concepts that underlie MongoDB’s
sharding machinery.

9.1.1 What sharding is

Up until this point, you’ve used MongoDB as a single server, where each mongod
instance contains a complete copy of your application’s data. Even when using replica-
tion, each replica clones every other replica’s data entirely. For the majority of applica-
tions, storing the complete data set on a single server is perfectly acceptable. But as
the size of the data grows, and as an application demands greater read and write
throughput, commodity servers may not be sufficient. In particular, these servers may
not be able to address enough RAM, or they might not have enough CPU cores, to pro-
cess the workload efficiently. In addition, as the size of the data grows, it may become
impractical to store and manage backups for such a large data set all on one disk or
RAID array. If you’re to continue to use commodity or virtualized hardware to host the
database, then the solution to these problems is to distribute the database across more
than one server. The method for doing this is sharding.

 Numerous large web applications, notably Flickr and LiveJournal, have imple-
mented manual sharding schemes to distribute load across MySQL databases. In these
implementations, the sharding logic lives entirely inside the application. To under-
stand how this works, imagine that you had so many users that you needed to distrib-
ute your Users table across multiple database servers. You could do this by designating
one database as the lookup database. This database would contain the metadata map-
ping each user ID (or some range of user IDs) to a given shard. Thus a query for a user
would actually involve two queries: the first query would contact the lookup database
to get the user’s shard location and then a second query would be directed to the indi-
vidual shard containing the user data.

 For these web applications, manual sharding solves the load problem, but the
implementation isn’t without its faults. The most notable of these is the difficulty
involved in migrating data. If a single shard is overloaded, the migration of that data to
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

186 CHAPTER 9 Sharding

other shards is an entirely manual process. A second problem with manual sharding is
the difficulty of writing reliable application code to route reads and writes and manage
the database as a whole. Recently, frameworks for managing manual sharding have
been released, most notably Twitter’s Gizzard (see http://mng.bz/4qvd).

 But as anyone who’s manually sharded a database will tell you, getting it right isn’t
easy. MongoDB was built in large part to address this problem. Because sharding is at
the heart of MongoDB, users need not worry about having to design an external
sharding framework when the time comes to scale horizontally. This is especially
important for handling the hard problem of balancing data across shards. The code
that makes balancing work isn’t the sort of thing that most people can cook up over a
weekend.

 Perhaps most significantly, MongoDB has been designed to present the same inter-
face to the application before and after sharding. This means that application code
needs little if any modification when the database must be converted to a sharded
architecture.

 You should now have some sense for the rationale behind automated sharding. Still,
before describing the MongoDB sharding process in more detail, we should pause for
a moment to answer another obvious first question: when is sharding necessary?

WHEN TO SHARD

The question of when to shard is more straightforward than you might expect. We’ve
talked about the importance of keeping indexes and the working data set in RAM, and
this is the primary reason to shard. If an application’s data set continues to grow
unbounded, then there will come a moment when that data no longer fits in RAM. If
you’re running on Amazon’s EC2, then you’ll hit that threshold at 68 GB because
that’s the amount of RAM available on the largest instance at the time of this writing.
Alternatively, you may run your own hardware with much more than 68 GB of RAM, in
which case you’ll probably be able to delay sharding for some time. But no machine
has infinite capacity for RAM; therefore, sharding eventually becomes necessary.

 To be sure, there are some fudge factors here. For instance, if you have your own
hardware and can store all your data on solid state drives (an increasingly affordable
prospect), then you’ll likely be able to push the data-to-RAM ratio without negatively
affecting performance. It might also be the case that your working set is a fraction of
your total data size and that, therefore, you can operate with relatively little RAM. On
the flip side, if you have an especially demanding write load, then you may want to
shard well before data reaches the size of RAM, simply because you need to distribute
the load across machines to get the desired write throughput.

 Whatever the case, the decision to shard an existing system will always be based on
regular analyses of disk activity, system load, and the ever-important ratio of working
set size to available RAM.
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://mng.bz/4qvd
http://www.it-ebooks.info/

187Sharding overview

9.1.2 How sharding works

To understand how MongoDB’s sharding works, you need to know about the compo-
nents that make up a sharded cluster, and you need to understand the software pro-
cesses that coordinate those components. These are the subjects of the next two
sections.

SHARDING COMPONENTS

A sharded cluster consists of shards, mongos routers, and config servers. Refer to the
diagram in figure 9.1 as we discuss each of these components.

Shards
A MongoDB shard cluster distributes data across one or more shards. Each shard is
deployed as a MongoDB replica set, and this set stores some portion of the cluster’s
total data. Because each shard is a replica set, each shard has its own replication mech-
anism and can fail over automatically. You can connect directly to an individual shard
just as you would to a standalone replica set. But if you connect to a replica set that’s
part of a sharded cluster, you’ll see just a portion of the cluster’s total data.

Mongos routers
If each shard contains part of the cluster’s data, then you still need an interface to the
cluster as a whole. That’s where mongos comes in. The mongos process is a router that
directs all reads and writes to the appropriate shard. In this way, mongos provides cli-
ents with a coherent view of the system.

mongos processes are lightweight and nonpersistent. They typically reside on the
same machines as the application servers, ensuring that only one network hop is

Shard A
(replica set)

Shard B
(replica set)

Metadata

mongos router
(in-memory copy

g data)

g
server

g
server

g
server

Application

Reads and writes

Two-phase commits

Figure 9.1 Components in a

MongoDB shard cluster

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

188 CHAPTER 9 Sharding

required for requests to any given shard. In other words, the application connects
locally to a mongos, and the mongos manages connections to the individual shards.

Config servers
If mongos processes are nonpersistent, then something must durably store the shard
cluster’s canonical state; that’s the job of the config servers. The config servers persist
the shard cluster’s metadata. This data includes the global cluster configuration; the
locations of each database, collection, and the particular ranges of data therein; and a
change log preserving a history of the migrations of data across shards.

 The metadata held by the config servers is central to the proper functioning and
upkeep of the cluster. For instance, every time a mongos process is started, the mongos
fetches a copy of the metadata from the config servers. Without this data, no coherent
view of the shard cluster is possible. The importance of this data, then, informs the
design and deployment strategy for the config servers.

 If you examine figure 9.1, you’ll see that there are three config servers, but that
they’re not deployed as a replica set. They demand something stronger than asyn-
chronous replication; when the mongos process writes to them, it does so using a two-
phase commit. This guarantees consistency across config servers. You must run exactly
three config servers in any production deployment of sharding, and these servers
must reside on separate machines for redundancy.1

 You now know what a shard cluster consists of, but you’re probably still wondering
about the sharding machinery itself. How is data actually distributed? I’ll explain that
in the next section by introducing the core sharding operations.

CORE SHARDING OPERATIONS

A MongoDB shard cluster distributes data across shards on two levels. The coarser of
these is by database. As you create new databases in the cluster, each database is
assigned to a different shard. If you do nothing else, a database and all its collections
will live forever on the shard where they were created.

 Because most applications will keep all their data in the same physical database,
this distribution isn’t very helpful. You need to distribute on a more granular level,
and the collection satisfies this requirement. MongoDB’s sharding is designed specifi-
cally to distribute individual collections across shards. To understand this better, let’s
imagine how this might work in a real application.

 Suppose you’re building a cloud-based office suite for managing spreadsheets and
that you’re going to store all the data in MongoDB.2 Users will be able to create as
many documents as they want, and you’ll store each one as a separate MongoDB doc-
ument in a single spreadsheets collection. Assume that over time, your application
grows to a million users. Now imagine your two primary collections: users and
spreadsheets. The users collection is manageable. Even with a million users, at 1 KB

1 You can also run just a single config server, but only as a way of more easily testing sharding. Running with
just one config server in production is like taking a transatlantic flight in a single-engine jet: it might get you
there, but lose an engine and you’re hosed.

2 Think something like Google Docs, which, among other things, allows users to create spreadsheets and pre-

sentations.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

189Sharding overview

per user document, the collection is roughly 1 GB and can easily be served by a single
machine. But the spreadsheets collection is a different story. If you assume that each
user owns an average of 50 spreadsheets, and that each averages 50 KB in size, then
you’re talking about a 1 TB spreadsheets collection. If this is a highly active applica-
tion, then you’ll want to keep the data in RAM. To keep this data in RAM and distribute
reads and writes, you must shard the collection. That’s where sharding comes into play.

Sharding a collection
MongoDB’s sharding is range-based. This means that every document in a sharded
collection must fall within some range of values for a given key. MongoDB uses a so-
called shard key to place each document within one of these ranges.3 You can under-
stand this better by looking at a sample document from the theoretical spreadsheet
management application:

{
_id: ObjectId("4d6e9b89b600c2c196442c21")
filename: "spreadsheet-1",
updated_at: ISODate("2011-03-02T19:22:54.845Z"),
username: "banks",
data: "raw document data"

}

When you shard this collection, you must declare one or more of these fields as the
shard key. If you choose _id, then documents will be distributed based on ranges of
object IDs. But for reasons that will become clear later, you’re going to declare a com-
pound shard key on username and _id; therefore, each range will usually represent
some series of user names.

 You’re now in a position to understand the concept of a chunk. A chunk is a contig-
uous range of shard key values located on a single shard. As an example, you can
imagine the docs collection being divided across two shards, A and B, into the chunks
you see in table 9.1. Each chunk’s range is marked by a start and end value.

 A cursory glance at this table reveals one of the main, sometimes counterintuitive,
properties of chunks: that although each individual chunk represents a contiguous
range of data, those ranges can appear on any shard.

 A second important point about chunks is
that they’re not physical but logical. In other
words, a chunk doesn’t represent a contiguous
series of document on disk. Rather, to say that
the chunk beginning with harris and ending with
norris exists on shard A is simply to say that any
document with a shard key falling within this
range can be found in shard A’s docs collection.
This implies nothing about the arrangement of
those documents within the collection.

Table 9.1 Chunks and shards

Start End Shard

-∞ abbot B

abbot dayton A

dayton harris B

harris norris A

norris ∞ B
3 Alternate distributed databases might use the terms partition key or distribution key instead.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

190 CHAPTER 9 Sharding

Splitting and migrating
At the heart of the sharding mechanism are the splitting and migration of chunks.

 First, consider the idea of splitting chunks. When you initially set up a sharded
cluster, just one chunk exists. That one chunk’s range encompasses the entire sharded
collection. How then do you arrive at a sharded cluster with multiple chunks? The
answer is that chunks are split once they reach a certain size threshold. The default
max chunk size is 64 MB or 100,000 documents, whichever comes first. As data is
added to a new sharded cluster, the original chunk eventually reaches one of these
thresholds, triggering a chunk split. Splitting a chunk is a simple operation; it basically
involves dividing the original range into two ranges so that two chunks, each repre-
senting the same number of documents, are created.

 Note that chunk splitting is logical. When MongoDB splits a chunk, it merely modi-
fies the chunk metadata so that one chunk becomes two. Splitting a chunk, therefore,
does not affect the physical ordering of the documents in a sharded collection. This
means that splitting is simple and fast.

 But as you’ll recall, one of the biggest difficulties in designing a sharding system is
ensuring that data is always evenly balanced. MongoDB’s sharded clusters balance by
moving chunks between shards. We call this migrating, and unlike splitting, it’s a real,
physical operation.

 Migrations are managed by a software process known as the balancer. The bal-
ancer’s job is to ensure that data remains evenly distributed across shards. It accom-
plishes this by keeping track of the number of chunks on each shard. Though the
heuristic varies somewhat depending on total data size, the balancer will usually
initiate a balancing round when the difference between the shard with the greatest
number of chunks and the shard with the least number of chunks is greater than
eight. During the balancing round, chunks are migrated from the shard with the
greater number of chunks to the shard with fewer chunks until the two shards are
roughly even.

 Don’t worry too much if this doesn’t make sense yet. The next section, where I’ll
demonstrate sharding with a sample cluster, will bring the concepts of the shard key
and chunking into the light of practice.

9.2 A sample shard cluster
The best way to get a handle on sharding is to see how it works in action. Fortunately,
it’s possible to set up a sharded cluster on a single machine, and that’s exactly what
we’ll do now.4 We’ll then simulate the behavior of the sample cloud-based spreadsheet
application described in the previous section. Along the way, we’ll examine the global
shard configuration and see first-hand how data is partitioned based on the shard key.

4 The idea is that you can run every mongod and mongos process on a single machine for testing. Later in the
chapter, we’ll look at production sharding configurations and the minimum number of machines required

for a viable deployment.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

191A sample shard cluster

9.2.1 Setup

You set up a shard cluster in two phases. In the first, you start all the required mongod
and mongos processes. In the second, the easier of the two, you issue a series of com-
mands to initiate the cluster. The shard cluster you’ll build will consist of two shards
and three config servers. You’ll also start a single mongos to communicate with the
cluster. Figure 9.2 shows a map of all the processes that you’ll launch with their port
numbers in parentheses.

 You’ll be running a bunch of commands to bring the cluster online, so if you find
yourself losing the forest for the trees, refer back to this figure.

STARTING THE SHARDING COMPONENTS

Let’s start by creating the data directories for the two replica sets that will serve as our
shards.

$ mkdir /data/rs-a-1
$ mkdir /data/rs-a-2
$ mkdir /data/rs-a-3
$ mkdir /data/rs-b-1
$ mkdir /data/rs-b-2
$ mkdir /data/rs-b-3

Next, start each mongod. Because you’re running so many processes, you’ll use the --
fork option to run them in the background.5 The commands for starting the first rep-
lica set are shown next.

5 If you’re running Windows, note that fork won’t work for you. Because you’ll have to open a new terminal

mongos
(40000)

g
server

(27019)

g
server

(27021)
Ruby application

(load.rb)

Reads and writes

mongod
(30000)

mongod
(30001)

mongod
arbiter

(30002)

mongod
(30100)

mongod
(30101)

mongod
arbiter

(30102)

Shard A Shard B

g cluster App and router

g
server

(27020)

Figure 9.2 A map of
processes comprising the
sample shard cluster
window for each process, you’re best off omitting the logpath option as well.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

192 CHAPTER 9 Sharding

$ mongod --shardsvr --replSet shard-a --dbpath /data/rs-a-1 \
--port 30000 --logpath /data/rs-a-1.log --fork --nojournal

$ mongod --shardsvr --replSet shard-a --dbpath /data/rs-a-2 \
--port 30001 --logpath /data/rs-a-2.log --fork --nojournal

$ mongod --shardsvr --replSet shard-a --dbpath /data/rs-a-3 \
--port 30002 --logpath /data/rs-a-3.log --fork --nojournal

And here are the commands for the second one:

$ mongod --shardsvr --replSet shard-b --dbpath /data/rs-b-1 \
--port 30100 --logpath /data/rs-b-1.log --fork --nojournal

$ mongod --shardsvr --replSet shard-b --dbpath /data/rs-b-2 \
--port 30101 --logpath /data/rs-b-2.log --fork --nojournal

$ mongod --shardsvr --replSet shard-b --dbpath /data/rs-b-3 \
--port 30102 --logpath /data/rs-b-3.log --fork --nojournal

As usual, you now need to initiate these replica sets. Connect to each one individually,
run rs.initiate(), and then add the remaining nodes. The first should look like this:6

$ mongo arete:30000
> rs.initiate()

You’ll have to wait a minute or so before the initial node becomes primary. Once it
does, you can add the remaining nodes:

> rs.add("arete:30000")
> rs.add("arete:30001", {arbiterOnly: true})

Initiating the second replica set is similar. Again, wait a minute after running rs
.initiate():

$ mongo arete:30100
> rs.initiate()
> rs.add("arete:30100")
> rs.add("arete:30101", {arbiterOnly: true})

Finally, verify that both replica sets are online by running the rs.status() command
from the shell on each one. If everything checks out, you’re ready to start the config
servers.7 Now you create each config server’s data directory and then start a mongod for
each one using the configsvr option:

$ mkdir /data/config-1
$ mongod --configsvr --dbpath /data/config-1 --port 27019 \

--logpath /data/config-1.log --fork --nojournal

$ mkdir /data/config-2
$ mongod --configsvr --dbpath /data/config-2 --port 27020 \

--logpath /data/config-2.log --fork --nojournal

$ mkdir /data/config-3
$ mongod --configsvr --dbpath /data/config-3 --port 27021 \

--logpath /data/config-3.log --fork --nojournal

6 arete is the name of the local host.
7 Again, if running on Windows, omit the --fork and --logpath options, and start each mongod in a new
window.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

193A sample shard cluster

Ensure that each config server is up and running by connecting with the shell or by
tailing the log file and verifying that each process is listening on the configured port.
Looking at the logs for any one config server, you should see something like this:

Wed Mar 2 15:43:28 [initandlisten] waiting for connections on port 27020
Wed Mar 2 15:43:28 [websvr] web admin interface listening on port 28020

If each config server is running, you can go ahead and start the mongos. The mongos
must be started with the configdb option, which takes a comma-separated list of con-
fig database addresses:8

$ mongos --configdb arete:27019,arete:27020,arete:27021 \
--logpath /data/mongos.log --fork --port 40000

CONFIGURING THE CLUSTER

You have all the sharding components in place. Now it’s time to configure the cluster.
Start by connecting to the mongos. To simplify the task, you’ll use the sharding helper
methods. These are methods run on the global sh object. To see a list of all available
helper methods, run sh.help().

 You’ll enter a series of configuration commands beginning with the addshard com-
mand. The helper for this command is sh.addShard(). This method takes a string
consisting of the name of a replica set followed by the addresses of two or more seed
nodes for connecting. Here you specify the two replica sets you created along with the
addresses of the two non-arbiter members of each set:

$ mongo arete:40000
> sh.addShard("shard-a/arete:30000,arete:30001")

{ "shardAdded" : "shard-a", "ok" : 1 }
> sh.addShard("shard-b/arete:30100,arete:30101")

{ "shardAdded" : "shard-b", "ok" : 1 }

If successful, the command response will include the name of the shard just added.
You can examine the config database’s shards collection to see the effect of your
work. Instead of using the use command, you’ll use the getSiblingDB() method to
switch databases:

> db.getSiblingDB("config").shards.find()
{ "_id" : "shard-a", "host" : "shard-a/arete:30000,arete:30001" }
{ "_id" : "shard-b", "host" : "shard-b/arete:30100,arete:30101" }

As a shortcut, the listshards command returns the same information:

> use admin
> db.runCommand({listshards: 1})

While we’re on the topic of reporting on sharding configuration, the shell’s
sh.status() method nicely summarizes the cluster. Go ahead and try running it
now.
8 Be careful not to put spaces between the config server addresses when specifying them.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

194 CHAPTER 9 Sharding

 The next configuration step is to enable sharding on a database. This is a prerequi-
site for sharding any collection. Your application’s database will be called cloud-docs,
and so you enable sharding like so:

> sh.enableSharding("cloud-docs")

Like before, you can check the config data to see the change you just made. The con-
fig database holds a collection called databases that contains a list of databases. Each
document specifies the database’s primary shard location and whether it’s partitioned
(whether sharding is enabled):

> db.getSiblingDB("config").databases.find()
{ "_id" : "admin", "partitioned" : false, "primary" : "config" }
{ "_id" : "cloud-docs", "partitioned" : true, "primary" : "shard-a" }

Now all you need to do is shard the spreadsheets collection. When you shard a col-
lection, you define a shard key. Here you’ll use the compound shard key {user-
name: 1, _id: 1} because it’s good for distributing data and makes it easy to view
and comprehend chunk ranges:

> sh.shardCollection("cloud-docs.spreadsheets", {username: 1, _id: 1})

Again, you can verify the configuration by checking the config database for sharded
collections:

> db.getSiblingDB("config").collections.findOne()
{

"_id" : "cloud-docs.spreadsheets",
"lastmod" : ISODate("1970-01-16T00:50:07.268Z"),
"dropped" : false,
"key" : {

"username" : 1,
"_id" : 1

},
"unique" : false

}

This sharded collection definition may remind you of something; it looks a bit like an
index definition, especially with its unique key. When you shard an empty collection,
MongoDB creates an index corresponding to the shard key on each shard.9 Verify this
for yourself by connecting directly to a shard and running the getIndexes() method.
Here you connect to your first shard, and the output contains the shard key index, as
expected:

$ mongo arete:30000
> use cloud-docs
> db.spreadsheets.getIndexes()
[

{
"name" : "_id_",

9 If you’re sharding an existing collection, you’ll have to create an index corresponding to the shard key before

you run the shardcollection command.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

195A sample shard cluster

"ns" : "cloud-docs.spreadsheets",
"key" : {

"_id" : 1
},
"v" : 0

},
{

"ns" : "cloud-docs.spreadsheets",
"key" : {

"username" : 1,
"_id" : 1

},
"name" : "username_1__id_1",
"v" : 0

}
]

Once you’ve sharded the collection, then at last, sharding is ready to go. You can now
write to the cluster and data will distribute. We’ll see how that works in the next section.

9.2.2 Writing to a sharded cluster

We’ll write to the sharded collection so that you can observe the formation and move-
ment of chunks, which is the essence of MongoDB’s sharding. The sample docu-
ments, each representing a single spreadsheet, will look like this:

{
_id: ObjectId("4d6f29c0e4ef0123afdacaeb"),
filename: "sheet-1",
updated_at: new Date(),
username: "banks",
data: "RAW DATA"

}

Note that the data field will contain a 5 KB string to simulate the raw data.
 This book’s source code includes a Ruby script you can use to write documents to

the cluster. The script takes a number of iterations as its argument, and for each itera-
tion, it inserts one 5 KB document for each of 200 users. The script’s source is here:

require 'rubygems'
require 'mongo'
require 'names'

@con = Mongo::Connection.new("localhost", 40000)
@col = @con['cloud']['spreadsheets']
@data = "abcde" * 1000

def write_user_docs(iterations=0, name_count=200)
iterations.times do |n|

name_count.times do |n|
doc = { :filename => "sheet-#{n}",

:updated_at => Time.now.utc,
:username => Names::LIST[n],
:data => @data
}

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

196 CHAPTER 9 Sharding

@col.insert(doc)
end

end
end

if ARGV.empty? || !(ARGV[0] =~ /^d+$/)
puts "Usage: load.rb [iterations] [name_count]"

else
iterations = ARGV[0].to_i

if ARGV[1] && ARGV[1] =~ /^d+$/
name_count = ARGV[1].to_i

else
name_count = 200

end

write_user_docs(iterations, name_count)
end

If you have the script on hand, you can run it from the command line with no argu-
ments to insert the initial iteration of 200 values:

$ ruby load.rb

Now connect to mongos via the shell. If you query the spreadsheets collection, you’ll
see that it contains exactly 200 documents and that they total around 1 MB. You can
also query a document, but be sure to exclude the sample data field (since you don’t
want to print 5 KB of text to the screen).

$ mongo arete:40000
> use cloud-docs
> db.spreadsheets.count()
200
> db.spreadsheets.stats().size
1019496
> db.spreadsheets.findOne({}, {data: 0})
{

"_id" : ObjectId("4d6d6b191d41c8547d0024c2"),
"username" : "Cerny",
"updated_at" : ISODate("2011-03-01T21:54:33.813Z"),
"filename" : "sheet-0"

}

Now you can check out what’s happened sharding-wise. Switch to the config database
and check the number of chunks:

> use config
> db.chunks.count()
1

There’s just one chunk so far. Let’s see how it looks:

> db.chunks.findOne()
{

"_id" : "cloud-docs.spreadsheets-username_MinKey_id_MinKey",

"lastmod" : {

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

197A sample shard cluster

"t" : 1000,
"i" : 0

},
"ns" : "cloud-docs.spreadsheets",
"min" : {

"username" : { $minKey : 1 },
"_id" : { $minKey : 1 }

},
"max" : {

"username" : { $maxKey : 1 },
"_id" : { $maxKey : 1 }

},
"shard" : "shard-a"

}

Can you figure out what range this chunk represents? If there’s just one chunk, then it
spans the entire sharded collection. That’s borne out by the min and max fields, which
show that the chunk’s range is bounded by $minKey and $maxKey.

MINKEY AND MAXKEY $minKey and $maxKey are used in comparison opera-
tions as the boundaries of BSON types. $minKey always compares lower than
all BSON types, and $maxKey compares greater than all BSON types. Because
the value for any given field can contain any BSON type, MongoDB uses
these two types to mark the chunk endpoints at the extremities of the
sharded collection.

You can see a more interesting chunk range by adding more data to the spreadsheets
collection. You’ll use the Ruby script again, but this time you’ll run 100 iterations,
which will insert an extra 20,000 documents totaling 100 MB:

$ ruby load.rb 100

Verify that the insert worked:

> db.spreadsheets.count()
20200
> db.spreadsheets.stats().size
103171828

Sample insert speed
Note that it may take several minutes to insert this data into the shard cluster. There
are three reasons for the slowness. First, you’re performing a round trip for each
insert, whereas you might be able to perform bulk inserts in a production situation.
Second, you’re inserting using Ruby, whose BSON serializer is slower than that of cer-
tain other drivers. Finally, and most significantly, you’re running all of the shard’s
nodes on a single machine. This places a huge burden on the disk, as four of your
nodes are being written to simultaneously (two replica set primaries, and two repli-
cating secondaries). Suffice it to say that in a proper production installation, this
insert would run much more quickly.
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

198 CHAPTER 9 Sharding

Having inserted this much data, you’ll definitely have more than one chunk. You can
check the chunk state quickly by counting the number of documents in the chunks
collection:

> use config
> db.chunks.count()
10

You can see more detailed information by running sh.status(). This method prints
all of the chunks along with their ranges. For brevity, I’ll only show the first two
chunks:

> sh.status()
sharding version: { "_id" : 1, "version" : 3 }
shards:
{ "_id": "shard-a", "host": "shard-a/arete:30000,arete:30001" }
{ "_id": "shard-b", "host": "shard-b/arete:30100,arete:30101" }

databases:
{ "_id": "admin", "partitioned": false, "primary": "config" }
{ "_id": "test", "partitioned": false, "primary": "shard-a" }
{ "_id": "cloud-docs", "partitioned": true, "primary": "shard-b" }

shard-a 5
shard-b 5

{ "username": { $minKey : 1 }, "_id" : { $minKey : 1 } } --
>> { "username": "Abdul",

"_id": ObjectId("4e89ffe7238d3be9f0000012") }
on: shard-a { "t" : 2000, "i" : 0 }

{ "username" : "Abdul",
"_id" : ObjectId("4e89ffe7238d3be9f0000012") } -->> {
"username" : "Buettner",
"_id" : ObjectId("4e8a00a0238d3be9f0002e98") }

on : shard-a { "t" : 3000, "i" : 0 }

The picture has definitely changed. You now have 10 chunks. Naturally, each chunk
represents a contiguous range of data. You can see that the first chunk with data is
composed of documents from $minKey to Abdul and that the second chunk runs from
Abdul to Buettner.10 But not only do you have more chunks—the chunks have
migrated to the second shard. You could visually scan the sh.status() output to see
this, but there’s an easier way:

> db.chunks.count({"shard": "shard-a"})
5
> db.chunks.count({"shard": "shard-b"})
5

As long as the cluster’s data size is small, the splitting algorithm dictates that splits hap-
pen often. That’s what you see now. This gives you a good distribution of data and
chunks early on. From now on, as long as writes remain evenly distributed across the
existing chunk ranges, few migrates will occur.
10 If you’re following along, note that your chunk distributions may differ somewhat.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

199A sample shard cluster

Now the split threshold will increase. You can see how the splitting slows down, and
how chunks start to grow toward their max size, by doing a more massive insert. Try
adding another 800 MB to the cluster:

$ ruby load.rb 800

This will take a lot time to run, so you may want to step away and grab a snack after
starting this load process. By the time it’s done, you’ll have increased the total data
size by a factor of eight. But if you check the chunking status, you’ll see that there are
only around twice as many chunks:

> use config
> db.chunks.count()
21

Given that there are more chunks, the average chunk ranges will be smaller, but each
chunk will include more data. So for example, the first chunk in the collection spans
from Abbott to Bender but it’s already nearly 60 MB in size. Because the max chunk
size is currently 64 MB, you’d soon see this chunk split if you were to continue insert-
ing data.

 Another thing to notice is that the distribution still looks pretty much even, as it
was before:

> db.chunks.count({"shard": "shard-a"})
11
> db.chunks.count({"shard": "shard-b"})
10

Although the number of chunks has increased during the last 800 MB insert round,
you can probably assume that no migrates occurred; a likely scenario is that each of
the original chunks split in two, with a single extra split somewhere in the mix. You
can verify this by querying the config database’s changelog collection:

> db.changelog.count({what: "split"})
20
> db.changelog.find({what: "moveChunk.commit"}).count()
6

Early chunk splitting
A sharded cluster will split chunks aggressively early on to expedite the migration of
data across shards. Specifically, when the number of chunks is less than 10, chunks
will split at one quarter of the max chunk size (16 MB), and when the number of
chunks is between 10 and 20, they’ll split at half the maximum chunk size (32 MB).

This has two nice benefits. First, it creates a lot of chunks up front, which initiates a
migration round. Second, that migration round occurs fairly painlessly, as the small
chunk size ensures that the total amount of migrated data is small.
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

200 CHAPTER 9 Sharding

This is in line with these assumptions. A total of 20 splits have occurred, yielding 20
chunks, but only 6 migrates have taken place. For an extra-deep look at what’s going
on here, you can scan the change log entries. For instance, here’s the entry recording
the first chunk move:

> db.changelog.findOne({what: "moveChunk.commit"})
{

"_id" : "arete-2011-09-01T20:40:59-2",
"server" : "arete",
"clientAddr" : "127.0.0.1:55749",
"time" : ISODate("2011-03-01T20:40:59.035Z"),
"what" : "moveChunk.commit",
"ns" : "cloud-docs.spreadsheets",
"details" : {

"min" : {
"username" : { $minKey : 1 },
"_id" : { $minKey : 1 }

},
"max" : {

"username" : "Abbott",
"_id" : ObjectId("4d6d57f61d41c851ee000092")

},
"from" : "shard-a",
"to" : "shard-b"

}
}

Here you see the movement of chunks from shard-a to shard-b. In general, the doc-
uments you find in the change log are quite readable. As you learn more about shard-
ing and begin prototyping your own shard clusters, the config change log makes an
excellent live reference on split and migrate behavior. Refer to it often.

9.3 Querying and indexing a shard cluster
From the application’s perspective, there’s no difference between querying a sharded
cluster and querying a single mongod. In both cases, the query interface and the pro-
cess of iterating over the result set are the same. But behind the scenes, things are dif-
ferent, and it’s worthwhile to understand exactly what’s going on.

9.3.1 Shard query types

Imagine you’re querying a shard cluster. How many shards does mongos need to con-
tact to return a proper query response? If you give it some thought, you’ll see that it
depends on whether the shard key is present in the query selector. Remember that the
config servers (and thus mongos) maintain a mapping of ranges to shards. These map-
pings are none other than the chunks that we examined earlier in the chapter. If a
query includes the shard key, then mongos can quickly consult the chunk data to deter-
mine exactly which shard contains the query’s result set. This is called a targeted query.

 But if the shard key isn’t part of the query, the query planner will have to visit all
shards to fulfill the query completely. This is known as a global or scatter/gather query.

The diagram in figure 9.3 illustrates both query types.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

201Querying and indexing a shard cluster

The explain command will show the exact query path taken by any given query
against a sharded cluster. Let’s start with a targeted query. Here you query for a docu-
ment located in the first chunk, order-wise, of your collection.

> selector = {username: "Abbott",
"_id" : ObjectId("4e8a1372238d3bece8000012")}

> db.spreadsheets.find(selector).explain()
{

"shards" : {
"shard-b/arete:30100,arete:30101" : [

{
"cursor" : "BtreeCursor username_1__id_1",
"nscanned" : 1,
"n" : 1,
"millis" : 0,
"indexBounds" : {

"username" : [
[

"Abbott",
"Abbott"

]
],
"_id" : [

[
ObjectId("4d6d57f61d41c851ee000092"),
ObjectId("4d6d57f61d41c851ee000092")

Shard A
(replica set)

Shard B
(replica set)

mongos router

Application
server

Application
server

mongos router

Query selector includes
the shard key (targeted).

Query selector lacks
the shard key (global).

Queries a single shard.
1. First query shard A.

2. Then shard B.

find({username: “Abbott”}) find({filename: “sheet-1”})

Figure 9.3 Targeted and global
queries against a shard cluster
]

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

202 CHAPTER 9 Sharding

]
}

}
]

},
"n" : 1,
"nscanned" : 1,
"millisTotal" : 0,
"numQueries" : 1,
"numShards" : 1

}

The explain plan clearly shows that the query hit one shard, shard B, to return a single
document.11 The query planner is also sophisticated enough to use any prefix subset
of the shard key for routing queries. This means you can also query by username
alone:

> db.spreadsheets.find({username: "Abbott"}).explain()
{

"shards" : {
"shard-b/arete:30100,arete:30101" : [

{
"cursor" : "BtreeCursor username_1__id_1",
"nscanned" : 801,
"n" : 801,

}
]

},
"n" : 801,
"nscanned" : 801,
"numShards" : 1

}

This query returns all 801 user documents but still goes to just one shard.
 But what about global queries? These too are easily explained. Here’s an example

of a query by the filename field, which is neither an index nor part of the shard key:

> db.spreadsheets.find({filename: "sheet-1"}).explain()
{

"shards" : {
"shard-a/arete:30000,arete:30002,arete:30001" : [

{
"cursor" : "BasicCursor",
"nscanned" : 102446,
"n" : 117,
"millis" : 85,

}
],
"shard-b/arete:30100,arete:30101" : [

{
"cursor" : "BasicCursor",
"nscanned" : 77754,
11 Note that in this and in the explain plans that follow, I’ve omitted several fields for the sake of brevity.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

203Querying and indexing a shard cluster

"nscannedObjects" : 77754,
"millis" : 65,

}
]

},
"n" : 2900,
"nscanned" : 180200,
"millisTotal" : 150,
"numQueries" : 2,
"numShards" : 2

}

As you should expect, this global query performs a table scan on both shards. If this
query were relevant to your application, you’d definitely want an index on filename.
But in either case, the query will search the entire cluster to return a complete result.

 Some queries require that you fetch an entire result set in parallel. For example,
suppose you want to sort spreadsheets by update time. This requires merging the
results within the mongos routing process. Without an index, a query like this is espe-
cially inefficient and frequently prohibited. So in the following example, where you
query for the most recently created documents, you first create the necessary index:

> db.spreadsheets.ensureIndex({updated_at: 1})
> db.spreadsheets.find({}).sort({updated_at: 1}).explain()
{

"shards" : {
"shard-a/arete:30000,arete:30002" : [

{
"cursor" : "BtreeCursor updated_at_1",
"nscanned" : 102446,
"n" : 102446,
"millis" : 191,

}
],
"shard-b/arete:30100,arete:30101" : [

{
"cursor" : "BtreeCursor updated_at_1",
"nscanned" : 77754,
"n" : 77754,
"millis" : 130,

}
]

},
"n" : 180200,
"nscanned" : 180200,
"millisTotal" : 321,
"numQueries" : 2,
"numShards" : 2

}

As expected, the cursor scans each shard’s updated_at index to return the most
recently updated documents.

 A more likely query is to return the latest documents updated by a given user.

Again, you’ll create the necessary index and issue the query:

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

204 CHAPTER 9 Sharding

> db.spreadsheets.ensureIndex({username: 1, updated_at: -1})
> db.spreadsheets.find({username: "Wallace"}).sort(

{updated_at: -1}).explain()
{

"clusteredType" : "ParallelSort",
"shards" : {

"shard-1-test-rs/arete:30100,arete:30101" : [
{

"cursor" : "BtreeCursor username_1_updated_at_-1",
"nscanned" : 801,
"n" : 801,
"millis" : 1,

}
]

},
"n" : 801,
"nscanned" : 801,
"numQueries" : 1,
"numShards" : 1

}

There are a couple of things to notice about this explain plan. The first is that the
query is directed to just a single shard. Since you’ve specified part of the shard key, the
query router can figure out which shard contains the relevant chunk. Realize then
that a sort doesn’t necessarily imply a trip to all shards; when the shard key is included
in a sort query, the number of shards to query can often be pared down. In this case
you hit just one shard, but you can imagine similar queries hitting some number of
shards fewer than the total.

 The second thing to notice from the explain plan is that the shard uses the {user-
name: 1, updated_at: -1} index to serve the query. This illustrates an important
point about how queries are processed in a sharded cluster. The shard key is used to
route the query to a given shard, but once there, each shard itself determines which
index to use to serve the query. Keep this in mind when designing queries and
indexes for your application.

9.3.2 Indexing

You just saw some examples of how indexed queries work in a sharded cluster. If
you’re ever unsure about how a given query will resolve, use explain() to get the
answer. This is usually straightforward, but a few more points about indexes should be
kept in mind when running a sharded cluster. I’ll enumerate them here:

1 Each shard maintains its own indexes. This should be obvious, but to be clear,
know that when you declare an index on a sharded collection, each shard builds
a separate index for its portion of the collection. For example, when you issued
the db.spreasheets.ensureIndex() command via mongos in the previous sec-
tion, each individual shard processed the index creation command individually.

2 It follows that the sharded collections on each shard should have the same

indexes. If this ever isn’t the case, you’ll see inconsistent query performance.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

205Choosing a shard key

3 Sharded collections permit unique indexes on the _id field and on the shard
key only. Unique indexes are prohibited elsewhere because enforcing them
would require intershard communication, which is complicated and still
deemed too slow to be worth implementing.

Once you understand how queries are routed and how indexing works, you should be
in a good position to write smart queries and indexes for your sharded cluster. Most all
the advice on indexing and query optimization from chapter 7 will apply, and you have
a powerful explain() tool to use when an empirical investigation proves necessary.

9.4 Choosing a shard key
So much depends upon the right choice of shard key. A poorly chosen shard key will
prevent your application from taking advantage of many of the benefits provided by
the sharded cluster. In the pathological case, both insert and query performance will
be significantly impaired. Adding to the gravity of the decision is that once you’ve cho-
sen a shard key, you’re stuck with it. Shard keys are immutable.12

 Part of having a good experience with sharding is knowing what makes a good
shard key. Because this isn’t immediately intuitive, I’ll start by describing the kinds of
shard keys that don’t work well. This will naturally lead to a discussion of the ones that
do.

9.4.1 Ineffective shard keys

Some shard keys distribute poorly. Others make it impossible to take advantage of the
principle of locality. Still others potentially prevent chunks from splitting. Here we
take a look at the kinds of shard keys that generate these sub-optimal states.

POOR DISTRIBUTION

The BSON object ID is the default primary key for every MongoDB document. A data
type so close to the heart of the MongoDB would at first appear a promising candidate
for a shard key. Alas, this appearance is deceiving. Recall that the most significant bits
of all object IDs form a timestamp. This means that object IDs are always ascending.
And, unfortunately, ascending values make for terrible shard keys.

 To see the problem with ascending shard keys, you need to remember that shard-
ing is range-based. With an ascending shard key, all the most recent inserts will fall
within some narrow continuous range. In sharding terms, this means that these inserts
will be routed to a single chunk, and thus to a single shard. This effectively nullifies
one of sharding’s greatest benefits: the automatic distribution of the insert load across
machines.13 It should be clear that if you want the insert load to be distributed across
shards, you can’t use an ascending shard key. You need something more random.

12 Note that there’s no good way to alter the shard key once you’ve created it. Your best bet is to create a new
sharded collection with the proper key, export the data from the old sharded collection, and then restore the
data to the new one.
13 Note that an ascending shard key shouldn’t affect updates as long as documents are updated randomly.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

206 CHAPTER 9 Sharding

LACK OF LOCALITY

An ascending shard key has a clear direction; a completely random shard key has no
direction at all. The former fails to distribute inserts; the latter might distribute them
too well. This may have a counterintuitive ring to it, as the whole point of sharding is
to distribute reads and writes. But we can illustrate with a simple thought experiment.

 Imagine that each of the documents in your sharded collection contains an MD5
and that the MD5 field is the shard key. Because the value of an MD5 will vary ran-
domly across documents, this shard key will ensure that inserts distribute evenly across
all shards in the cluster. This is desirable. But take a second to imagine how inserts
into each shard’s index on the MD5 fields will work. Because the MD5 is totally random,
each virtual memory page in the index is equally likely to be accessed on every insert.
Practically speaking, this means that the index must always fit in RAM and that if the
indexes and data ever grow beyond the limits of physical RAM, page faults, and thus
decreased performance, will be inevitable.

 This is basically a problem of locality of reference. The idea of locality, at least here, is
that data accessed within any given time interval is frequently related; this closeness
can be exploited for optimization. For example, although object IDs make for poor
shard keys, they do provide excellent locality because they’re ascending. This means
that successive inserts into the index will always occur within recently used virtual
memory pages; so only a small portion of the index need be in RAM at any one time.

 To take a less abstract example, imagine your application allows users to upload
photos and that each photo’s metadata is stored in a single document within a
sharded collection. Now suppose that a user performs a batch upload of 100 photos.
If the shard key is totally random, the database won’t be able to take advantage of the
locality here; inserts into the index will occur at 100 random locations. But let’s say
the shard key is the user’s ID. In this case, each write to the index will occur at
roughly the same location because every inserted document will have the same user
ID value. Here you take advantage of locality, and you realize potentially significant
gains in performance.

 Random shard keys present one more problem: any meaningful range query on
such a key will have to be sent to all shards. Think again about the sharded photos col-
lection just described. If you want your app to be able to display a user’s 10 most
recently created photos (normally a trivial query), a random shard key will still require
that this query be distributed to all shards. As you’ll see in the next section, a coarser-
grained shard key will permit a range query like this to take place on a single shard.

UNSPLITTABLE CHUNKS

If random and ascending shard keys don’t work well, then the next obvious option is a
coarse-grained shard key. A user ID is a good example of this. If you shard your photos
collection on a user ID, then you can expect to see inserts distributed across shards, if
only because it’s impossible to tell which users will insert data when. Thus the coarse-
grained shard key takes the element of randomness and uses that to the shard cluster’s

advantage.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

207Choosing a shard key

 The second benefit of a coarse-grained shard key is that it lets the system ride out
the efficiency gains provided by locality of reference. When a user inserts 100 photo
metadata documents, a shard key on the user ID field ensures that these inserts go to
the same shard and are written to roughly the same parts of the index. This is efficient.

 Distribution and locality are great benefits, but with a coarse-grained shard key
comes one intractable problem: the potential for uninhibited chunk growth. How is
that possible? Think for a moment about the sample shard key on user ID. What’s the
smallest possible chunk range permitted by this shard key? The smallest range will
span a single user ID; no smaller range is possible. This is problematic because every
data set has outliers. Suppose that you have a few outlier users whose number of pho-
tos stored exceeds the average user’s number by millions. Will the system ever be able
to split any one user’s photos into more than one chunk? The answer is, no. This is an
unsplittable chunk, and it’s a danger to a shard cluster because it can create an imbal-
ance of data across shards.

 Clearly, the ideal would be a shard key that combines the benefits of a coarse-
grained key with those of a fine-grained one. You’ll see what that looks like in the next
section.

9.4.2 Ideal shard keys

From the preceding, it should be clear that you want to choose a shard key that will

1 Distribute inserts evenly across shards
2 Ensure that CRUD operations can take advantage of locality
3 Be granular enough to allow chunks to split

Shard keys that fit these requirements are generally composed of two fields, the first
being coarse-grained and the second more fine-grained. A good example of this is the
shard key in the spreadsheets example. There, you declared a compound shard key
on {username: 1, _id: 1}. As various users insert into the cluster, you can expect that
most, if not all, of any one user’s spreadsheets will live on a single shard. Even when a
user’s documents reside on more than one shard, the presence of the unique _id field
in the shard key guarantees that queries and updates to any one document will always
be directed to a single shard. And if you need to perform a more sophisticated query
on a user’s data, you can be sure that the query will be routed only to those shards
containing that user’s data.

 Most importantly, the shard key on {username: 1, _id: 1} guarantees that chunks
will always be splittable, even if a given user creates a huge number of documents.

 Let’s take another example. Suppose you’re building a website analytics system. As
you’ll see in appendix B, a good data model for such a system would store one docu-
ment per page per month. Then, within that document, you’d store the data for each
day of the month, incrementing various counter fields for each page hit, and so on.
Here are the fields of a sample analytics document relevant to your shard key choice:
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

208 CHAPTER 9 Sharding

{ _id: ObjectId("4d750a90c35169d10fc8c982"),
domain: "org.mongodb",
url: "/downloads",
period: "2011-12"

}

The simplest shard key for a sharded collection containing documents like this would
consist of each page’s domain followed by its url: {domain: 1, url: 1}. All pages from
a given domain would generally live on a single shard, but the outlier domains with
massive numbers of pages would still be split across shards when necessary.

9.5 Sharding in production
When deploying a shard cluster to production, you’re presented with a number of
choices and challenges. Here I describe a couple of recommended deployment
topologies and provide some answers to common deployment questions. We’ll then
consider matters of server administration, including monitoring, backups, failover,
and recovery.

9.5.1 Deployment and configuration

Deployment and configuration are hard to get right the first time around. The follow-
ing are some guidelines for organizing the cluster and configuring with ease.

DEPLOYMENT TOPOLOGIES

To launch the sample MongoDB shard cluster, you had to start a total of nine pro-
cesses (three mongods for each replica set, plus three config servers). That’s a poten-
tially frightening number. First-time users might assume that running a two-shard
cluster in production would require nine separate machines. Fortunately, many fewer
are needed. You can see why by looking at the expected resource requirements for
each component of the cluster.

 Consider first the replica sets. Each replicating member contains a complete copy
of the data for its shard and may run as a primary or secondary node. These processes
will always require enough disk space to store their copy of the data, and enough RAM
to serve that data efficiently. Thus replicating mongods are the most resource-intensive
processes in a shard cluster and must be given their own machines.

 What about replica set arbiters? These processes store replica set config data only,
which is kept in a single document. Hence, arbiters incur little overhead and certainly
don’t need their own servers.

 Next are the config servers. These also store a relatively small amount of data. For
instance, the data on the config servers managing the sample replica set totaled only
about 30 KB. If you assume that this data will grow linearly with shard cluster data size,
then a 1 TB shard cluster might swell the config servers’ data size to a mere 30 MB.14

This means that config servers don’t necessarily need their own machines, either. But
14 That’s a highly conservative estimate. The real value will likely be far smaller.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

209Sharding in production

given the critical role played by the config servers, some users prefer to place them on
a few modestly provisioned machines (or virtual instances).

 From what you already know about replica sets and shard clusters, you can con-
struct a list of minimum deployment requirements:

1 Each member of a replica set, whether it’s a complete replica or an arbiter,
needs to live on a distinct machine.

2 Every replicating replica set member needs its own machine.
3 Replica set arbiters are lightweight enough to share a machine with another

process.
4 Config servers can optionally share a machine. The only hard requirement is

that all config servers in the config cluster reside on distinct machines.

Satisfying these rules might feel like tackling a logic problem. Fortunately, we’ll apply
them right now by looking at two reasonable deployment topologies for the sample
two-shard cluster. The first requires just four machines. The process layout is illus-
trated in figure 9.4.

 This configuration satisfies all the deployment rules just mentioned. Predominant
on each machine are the replicating nodes of each shard. The remaining processes
are arranged so that all three config servers and all members of each replica set live
on different machines. To speak of fault tolerance, this topology will tolerate the fail-
ure of any one machine. No matter which machine fails, the cluster will continue to
process reads and writes. If the failing machine happens to host one of the config

server
(27019)

Shard A
mongod
(27017)

server
(27019)

Shard B
mongod
(27017)

Shard A
arbiter

(30000)

Shard B
mongod
(27017)

Shard A
mongod
(27017)

Shard B
arbiter

(30000)
server

(27019)

Machine 1 Machine 2

Config Config

Config

Figure 9.4 A two-shard
cluster deployed across
Machine 3 Machine 4 four machines

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

210 CHAPTER 9 Sharding

servers, then all chunk splits and migrations will be suspended.15 Fortunately, suspend-
ing sharding operations rarely affects the working of a shard cluster; splitting and
migrating can wait until the lost machine is recovered.

 That’s the minimum recommend setup for a two-shard cluster. But applications
demanding the highest availability and the fastest paths to recovery will need some-
thing more robust. As discussed in the previous chapter, a replica set consisting of two
replicas and one arbiter is vulnerable while recovering. Having three nodes reduces
the fragility of the set during recovery and also allows you to keep a node in a second-
ary data center for disaster recovery. Figure 9.5 shows a robust two-shard cluster topol-
ogy. Each shard consists of a three-node replica set, where each node contains a
complete copy of the data. For disaster recovery, one config server and one node from
each shard are located in a secondary data center; to ensure that those nodes never
become primary, they’re given a priority of 0.

 With this configuration, each shard is replicated twice, not just once. Additionally,
the secondary data center has all the data necessary for a user to completely recon-
struct the shard cluster in the event of the failure of the first data center.

Shard A
mongod
(27017)

g
server

(27019)

Shard B
mongod
(27017)

Shard B
mongod
(27017)

Machine 3

Shard A
mongod
(27017)

g
server

(27019)

Machine 4

Machine 1 Machine 2

Shard B
mongod
(27017)
Priority 0

Shard A
mongod
(27017)
Priority 0

Machine 5 Machine 6

Data
center
(main)

Data
center
(recovery)

g
server

(27019)
Figure 9.5 A two-
shard cluster deployed
across six machines
and two data centers
15 All three config servers need to be online for any sharding operations to take place.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

211Sharding in production

The decision about which sharding topology is best for your application should always
be based on serious considerations about how much downtime you can tolerate, as
measured by your mean time to recovery (MTR). Think about the potential failure sce-
narios and simulate them. Consider the consequences for your application (and busi-
ness) if a data center should fail.

CONFIGURATION NOTES

The following are a few useful notes on configuring a sharded cluster.

Estimating cluster size
Users frequently want to know how many shards to deploy and how large each shard
should be. The answer, of course, depends on the circumstances. If you’re deploying
on Amazon’s EC2, you shouldn’t shard until you’ve maxed out the largest available
instances. At the time of this writing, the largest EC2 nodes have 68 GB of RAM. If
you’re running on your own hardware, you can easily go larger. It wouldn’t be unrea-
sonable to wait until you’ve reached 100 GB of data before going to shard.

 Naturally, each additional shard introduces extra complexity, and each shard also
requires replicas. Thus it’s better to have a small number of large shards than a large
number of small ones.

Sharding an existing collection
You can shard existing collections, but don’t be surprised if it takes some time to dis-
tribute the data across shards. Only one balancing round can happen at a time, and
the migrations will move only around 100-200 MB of data per minute. Thus, sharding
a 50 GB collection will take around eight hours, and this will likely involve some mod-
erate disk activity. In addition, when you initially shard a large collection like this, you
may have to split manually to expedite the sharding process, since splitting is trig-

Data center failures
The most likely data center failure is a power outage. When not running your
MongoDB servers without journaling enabled, a power outage will mean unclean
shutdowns of the MongoDB servers, potentially corrupting the data files. The only
reliable recovery from such a failure is a database repair, a lengthy process that guar-
antees downtime.

Most users will run their entire cluster within a single data center only, and this is
fine for plenty of applications. The main precaution to take in this case is to ensure
that at least one node from each shard, and one config server, is running with jour-
naling enabled. This will greatly expedite recovery once power is restored. Journaling
is covered in chapter 10.

Still, some failures are more severe. Power outages can sometimes last for days.
Floods, earthquakes, and other natural disasters can physically destroy a data cen-
ter. Users who want to be able to recover quickly from these kinds of failure must
deploy their shard clusters across multiple data centers.
gered by inserts.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

212 CHAPTER 9 Sharding

 Given this, it should be clear that sharding a collection at the last minute isn’t a
good response to a performance problem. If you plan on sharding a collection at
some point in the future, you should do so well in advance of any anticipated perfor-
mance degradation.

Presplitting chunks for initial load
If you have a large data set that you need to load into a sharded collection, and you
know something about the distribution of the data, then you can save a lot of time by
presplitting and then premigrating chunks. For example, suppose you wanted to
import the spreadsheet data into a fresh MongoDB shard cluster. You can ensure that
the data distributes evenly upon import by first splitting and then migrating chunks
across shards. You can use the split and moveChunk commands to accomplish this.
These are aliased by the sh.splitAt() and sh.moveChunks()helpers, respectively.

 Here’s an example of a manual chunk split. You issue the split command, specify
the collection you want, and then indicate a split point:

> sh.splitAt("cloud-docs.spreadsheets",
{ "username" : "Chen", "_id" : ObjectId("4d6d59db1d41c8536f001453") })

When run, this command will locate the chunk that logically contains the document
where username is Chen and _id is ObjectId("4d6d59db1d41c8536f001453").16 It
then splits the chunk at that point, which results in two chunks. You can continue
splitting like this until you have a set of chunks that nicely distribute the data. You’ll
want to make sure that you’ve created enough chunks to keep the average chunk size
well within the 64 MB split threshold. Thus if you expect to load 1 GB of data, you
should plan to create around 20 chunks.

 The second step is to ensure that all shards have roughly the same number of
chunks. Since all chunks will initially reside on the same shard, you’ll need to move
them. Each chunk can be moved using the moveChunk command. The helper method
simplifies this:

> sh.moveChunk("cloud-docs.spreadsheets", {username: "Chen"}, "shardB")

This says that you want to move the chunk that logically would contain the document
{username: "Chen"} to shard B.

9.5.2 Administration

I’ll round out this chapter with a few words about sharding administration.

MONITORING

A shard cluster is a complex piece of machinery; as such, you should monitor it
closely. The serverStatus and currentOp() commands can be run on any mongos,
and their output will reflect aggregate statistics across shards. I’ll discuss these com-
mands in more detail in the next chapter.

16 Note that such a document need not exist. That should be clear from the fact that you’re splitting chunks on

an empty collection.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

213Sharding in production

 In addition to aggregating server statistics, you’ll want to keep an eye on the distri-
bution of chunks and on individual chunk sizes. As you saw in the sample cluster, all of
this information is stored in the config database. If you ever detect unbalanced
chunks or unchecked chunk growth, you can use the split and movechunk com-
mands to address these issues. Alternatively, you can consult the logs to see whether
the balancing operation has halted for some reason.

MANUAL PARTITIONING

There are a couple of cases where you may want to manually split and migrate chunks
on a live shard cluster. For example, as of MongoDB v2.0, the balancer doesn’t directly
take into account the load on any one shard. Obviously, the more a shard is written to,
the larger its chunks become, and the more likely they are to eventually migrate. Nev-
ertheless, it’s not hard to imagine situations where you’d be able to alleviate load on a
shard by migrating chunks. This is another situation where the movechunk command
can be helpful.

ADDING A SHARD

If you’ve determined that you the need more capacity, you can add a new shard to an
existing cluster using the same method you used earlier:

sh.addShard("shard-c/rs1.example.net:27017,rs2.example.net:27017")

When adding capacity in this way, be realistic about how long it’ll take to migrate data
to the new shard. As stated earlier, you can expect data to migrate at a rate of 100–200
MB per minute. This means that if you need to add capacity to a sharded cluster, you
should do so long before performance starts to degrade. To determine when you
need to add a new shard, consider the rate at which your data set is growing. Obvi-
ously, you’ll want to keep indexes and working set in RAM. So a good rule of thumb is
to plan to add a new shard at least several weeks before the indexes and working set
on your existing shards reach 90% of RAM.

 If you’re not willing to play it safe, as described here, then you open yourself up to
a world of pain. Once your indexes and working set don’t fit in RAM, your application
can come to a halt, especially if the application demands high write and read through-
put. The problem is that the database will have to page to and from the disk, which
will slow reads and writes, backlogging operations that can’t be served into a read/
write queue. At that point, adding capacity is difficult because migrating chunks
between shards adds read load to existing shards. Obviously, when a database is over-
loaded, the last thing you want to do is add load.

 All of this is just to emphasize that you should monitor your cluster and add capac-
ity well before you need to.

REMOVING A SHARD

You may, in rare cases, want to remove a shard. You can do so using the removeshard
command:

> use admin

> db.runCommand({removeshard: "shard-1/arete:30100,arete:30101"})

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

214 CHAPTER 9 Sharding

{
"msg" : "draining started successfully",
"state" : "started",
"shard" : "shard-1-test-rs",
"ok" : 1 }

The command response indicates that chunks are now being drained from the shard
to be relocated to other shards. You can check the status of the draining process by
running the command again:

> db.runCommand({removeshard: "shard-1/arete:30100,arete:30101"})
{

"msg" : "draining ongoing",
"state" : "ongoing",
"remaining" : {

"chunks" : 376,
"dbs" : 3

},
"ok" : 1 }

Once the shard is drained, you also need to make sure that no database’s primary
shard is the shard you’re going to remove. You can check database shard membership
by querying the config.databases collection:

> use config
> db.databases.find()
{ "_id" : "admin", "partitioned" : false, "primary" : "config" }
{ "_id" : "cloud-docs", "partitioned" : true, "primary" : "shardA" }
{ "_id" : "test", "partitioned" : false, "primary" : "shardB" }

What you see here is that the cloud-docs database is owned by shardB but the test
database is owned by shardA. Since you’re removing shardB, you need to change the
test database’s primary node. You can accomplish that with the moveprimary command:

> db.runCommand({moveprimary: "test", to: "shard-0-test-rs" });

Run this command for each database whose primary is the shard to be removed. Then
run the removeshard command again to very the shard is completely drained:

> db.runCommand({removeshard: "shard-1/arete:30100,arete:30101"})
{ "msg": "remove shard completed successfully",

"stage": "completed",
"host": "arete:30100",
"ok" : 1

}

Once you see that the removal is completed, it’s safe to take the removed shard
offline.

UNSHARDING A COLLECTION

Although you can remove a shard, there’s no official way to unshard a collection. If
you do need to unshard a collection, your best option is to dump the collection and
then restore the data to a new collection with a different name.17 You can then drop
17 The utilities you use to dump and restore, mongodump and mongorestore, are covered in the next chapter.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

215Sharding in production

the sharded collection you dumped. For example, suppose that foo is a sharded col-
lection. You must dump foo by connecting to mongos with mongodump:

$ mongodump -h arete --port 40000 -d cloud-docs -c foo
connected to: arete:40000
DATABASE: cloud-docs to dump/cloud-docs

cloud-docs.foo to dump/cloud-docs/foo.bson
100 objects

This will dump the collection to a file called foo.bson. You can then restore that file
using mongorestore:

$ mongorestore -h arete --port 40000 -d cloud-docs -c bar
Tue Mar 22 12:06:12 dump/cloud-docs/foo.bson
Tue Mar 22 12:06:12 going into namespace [cloud-docs.bar]
Tue Mar 22 12:06:12 100 objects found

Once you’ve moved the data into an unsharded collection, you’re now free to drop
the old sharded collection, foo.

BACKING UP A SHARDED CLUSTER

To back up a sharded cluster, you need a copy of the config data, and you need a
copy of the data from each shard. There are two ways to get this data. The first is to
use the mongodump utility. Dump the data from one of the config servers and then
dump the data from each individual shard. Alternatively, you can run mongodump
through the mongos router and dump the entire sharded collection, including the
config database, at once. The main problem with this strategy is that the sharded clus-
ter’s total data might be too large to dump to a single machine.

 Another common way to back up a sharded cluster is to copy the data files from
one member of each shard and from one config server. This backup procedure is
described in the next chapter for an individual mongod process and replica set. You
merely need to apply that process to each shard and to one config server.

 Regardless of the backup procedure you decide upon, you need to ensure that
chunks aren’t in the process of moving when you back up the system. This means stop-
ping the balancer process.

Stopping the balancer
At the moment, disabling the balancer is a matter of upserting a document into the
config database’s settings collection:

> use config
> db.settings.update({_id: "balancer"}, {$set: {stopped: true}}, true);

Do be careful here: once you’ve updated the config, the balancer still might not be
done working. Before you proceed to back up the cluster, you’ll need to make sure
that the balancer has completed the latest balancing round. The best way to do this is
to check the locks collection for the entry with an _id value of balancer and ensure
that its state is 0. Here’s a sample entry from that collection:

> use config

> db.locks.find({_id: "balancer"})

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

216 CHAPTER 9 Sharding

{ "_id" : "balancer", "process" : "arete:40000:1299516887:1804289383",
"state" : 1,
"ts" : ObjectId("4d890d30bd9f205b29eda79e"),
"when" : ISODate("2011-03-22T20:57:20.249Z"),
"who" : "arete:40000:1299516887:1804289383:Balancer:846930886",
"why" : "doing balance round"

}

Any state greater than 0 indicates that balancing is happening. The process field
shows the host name and port of the computer running the mongos that’s orchestrat-
ing the balancing round. In this case, the host is arete:40000. If balancing ever fails
to stop after you modify the settings collection, you should examine the logs from the
balancing mongos for errors.

 Once you know that the balancer has stopped, it’s safe to run your backups. After
taking your backups, don’t forget to restart the balancer. You can do so by resetting
the stopped value:

> use config
> db.settings.update({_id: "balancer"}, {$set: {stopped: false}}, true);

To simplify some of these operations with the balancer, MongoDB v2.0 has introduced
a couple shell helpers. For example, you can start and stop the balancer with sh.set-
BalancerState():

> sh.setBalancerState(false)

This is equivalent to adjusting the stopped value in the settings collection. Once
you’ve disabled the balancer in this way, you make repeated calls to sh.isBalancer-
Running() until the balancer stops.

FAILOVER AND RECOVERY

Although we’ve covered general replica set failures, it’s also important to note a
sharded cluster’s potential points of failure along with best practices for recovery.

Failure of a shard member
Each shard consists of a replica set. Thus if any member of one of these replica sets
fails, a secondary member will be elected primary, and the mongos process will auto-
matically connect to it. Chapter 8 describes the specific steps to take in restoring a
failed replica set member. The method you choose depends on how the member has
failed, but regardless, the instructions are the same whether the replica set is part of a
sharded cluster or not.

 If you see anomalous behavior after a replica set failover, you can reset the system
by restarting all mongos processes. This will ensure proper connections to the new rep-
lica sets. In addition, if you notice that balancing isn’t working, you should check the
config database’s locks collection for entries whose process fields point to former
primary nodes. If you see such an entry, the lock document is stale, and you’re safe
manually deleting it.
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

217Summary

Failure of a config server
A sharded cluster requires three config servers for normal operation, but up to two of
these can fail. Whenever you have fewer than three config servers, your remaining
config servers will become read-only, and all splitting and balancing operations will be
suspended. Note that this won’t negatively affect the cluster as a whole. Reads and
writes to the cluster will still work, and the balancer will start from where it left off
once all three config servers are restored.

 To restore a config server, copy the data files from an existing config server to the
failed config server’s machine. Then restart the server.18

Failure of a mongos
The failure of a mongos process is nothing to worry about. If you’re hosting mongos on
an application server, and mongos fails, then it’s likely that your application server has
failed, too. Recovery in this case simply means restoring the server.

 Regardless of how mongos fails, the process has no state of its own. This means that
recovering a mongos is a simple matter of restarting the mongos process and pointing it
at the config servers.

9.6 Summary
Sharding is an effective strategy for maintaining high read and write performance on
large data sets. MongoDB’s sharding works well in numerous production deploy-
ments, and can work for you, too. Instead of having to worry about implementing
your own half-baked, custom sharding solution, you can take advantage of all the
effort that’s been put into MongoDB’s sharding mechanism. If you follow the advice
in this chapter, paying particular attention to the recommend deployment topologies,
the strategies for choosing a shard key, and the importance of keeping data in RAM,
then sharding will serve you well.

18 As always, before you copy any data files, make sure you either lock the mongod (as described in chapter 10)

or shut it down cleanly. Never copy data files while the server is live.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

Deployment and
administration
This book would be incomplete without a few notes on deployment and adminis-
tration. After all, it’s one thing to use MongoDB but another to keep it running
smoothly in production. The goal of this final chapter, then, is to prepare you to
make good decisions when deploying and administering MongoDB. You can think
of this chapter as providing the wisdom required to keep to you from experiencing
the unpleasantness of a production database meltdown.

 I’ll begin by addressing general deployment issues, including hardware require-
ments, security, and data imports and exports. Then I’ll outline methods for moni-
toring MongoDB. We’ll discuss maintenance responsibilities, the most important of
which is backups. And we’ll end the chapter with a general plan for addressing per-

In this chapter
 Deployment considerations and hardware

requirements

 Administration, backups, and security

 Performance troubleshooting
218

formance issues.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

219Deployment

10.1 Deployment
To deploy MongoDB for success, you need to choose the right hardware and the
appropriate server topology. If you have preexisting data, then you need to know how
to effectively import (and export) it. And finally, you need to make sure that your
deployment is secure. We’ll address all of these issues in the sections to come.

10.1.1 Deployment environment

Here I’ll present considerations for choosing good deployment environments for
MongoDB. I’ll discuss specific hardware requirements, such as CPU, RAM, and disks,
and provide recommendations for optimizing the operating system environment. I’ll
also provide some advice for deploying in the cloud.

ARCHITECTURE

Two notes on hardware architecture are in order.
 First, because MongoDB maps all data files to a virtual address space, all produc-

tion deployments should be run on 64-bit machines. As stated elsewhere, a 32-bit
architecture limits MongoDB to about 2 GB of storage. With journaling enabled, the
limit is reduced to around 1.5 GB. This is dangerous in production because, if these
limits are ever surpassed, MongoDB will behave unpredictably. Feel free to run on 32-
bit machines for unit testing and staging, but in production and for load testing, stick
to 64-bit architectures.

 Next, MongoDB must be run on little-endian machines. This usually isn’t difficult
to comply with, but users running SPARC, PowerPC, PA-RISC, and other big-endian
architectures will have to hold off.1 Most of the drivers support both little- and big-
endian byte orderings, so clients of MongoDB can usually run on either architecture.

CPU
MongoDB isn’t particularly CPU-intensive; database operations are rarely CPU-bound.
Your first priority when optimizing for MongoDB is to ensure that operations aren’t
I/O-bound (see the next two sections on RAM and disks).

 But once your indexes and working set fit entirely in RAM, you may see some CPU-
boundedness. If you have a single MongoDB instance serving tens (or hundreds) of
thousands of queries per second, you can realize performance increases by providing
more CPU cores. For reads that don’t use JavaScript, MongoDB can utilize all available
cores.

 If you do happen to see CPU saturation on reads, check your logs for slow query
warnings. You may be lacking the proper indexes, thereby forcing table scans. If you
have a lot of open clients and each client is running table scans, then the scanning
plus the resultant context switching will be CPU-intensive. The solution to this prob-
lem is to add the necessary indexes.

1 If you’re interested in big-endian support for the core server, see https://jira.mongodb.org/browse/

SERVER-1625.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

https://jira.mongodb.org/browse/SERVER-1625
https://jira.mongodb.org/browse/SERVER-1625
http://www.it-ebooks.info/

220 CHAPTER 10 Deployment and administration

 For writes, MongoDB will use only one core at a time. This is because of the global
write lock. Thus the only way to scale write load is ensure that writes aren’t I/O-bound,
and from there scale horizontally with sharding. This is mitigated somewhat in
MongoDB v2.0 because generally writes won’t take the lock around a page fault but
will instead allow another operation to complete. Still, a number of concurrency opti-
mizations are in the works. Among the possible options to be implemented are
collection-level locking and extent-based locking. Consult JIRA and the latest release
notes for the status of these improvements.

RAM
As with any database, MongoDB performs best with lots of RAM. Be sure to select hard-
ware (virtual or otherwise) with enough RAM to contain your frequently used indexes
plus your working data set. Then as your data grows, keep a close eye on the ratio of
RAM to working set size. If you allow working set size to grow beyond RAM, you may
start to see significant performance degradation. Paging from disk in and of itself isn’t
a problem, as it’s a necessary step in loading data into memory. But if you’re unhappy
with performance, excessive paging may be your problem. Chapter 7 discusses the
relationship between working set, index size, and RAM in great detail. At the end of
this chapter, you read about ways of identifying RAM deficiencies.

 There are a few use cases where you can safely let data size grow well beyond avail-
able RAM, but they’re the exception, not the rule. One example is using MongoDB as
an archive, where reads and writes seldom happen and where you don’t need fast
responses. In this case, having as much RAM as data might be prohibitively expensive
with little benefit, since the application won’t ever utilize so much RAM. For all data
sets, the key is testing. Test a representative prototype of your application to ensure
that you get the necessary baseline performance.

DISKS

When choosing disks, you need to consider IOPS (input/output operations per sec-
ond) and seek time. The differences between running on a single consumer-grade
hard drive, running in the cloud in a virtual disk (say, EBS), and running against a
high-performance SAN can’t be overemphasized. Some applications will perform
acceptably against a single network-attached EBS volume, but demanding applications
will require something more.

 Disk performance is important for a few reasons. The first is that, as you’re writing
to MongoDB, the server by default will force a sync to disk every 60 seconds. This is
known as a background flush. With a write-intensive app and a slow disk, the back-
ground flushing may be slow enough to negatively affect overall system performance.
Second, a fast disk will allow you to warm up the server much more quickly. Any time
you need to restart a server, you also have to load your data set into RAM. This hap-
pens lazily; each successive read or write to MongoDB will load a new virtual memory
page into RAM until the physical memory is full. A fast disk will make this process
much faster, which will increase MongoDB’s performance following a cold restart.

Finally, a fast disk can alter the required ratio of working set size to RAM for your

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

221Deployment

application. Using, say, a solid state drive, you may be able to run with much less RAM
(or much greater capacity) than you would otherwise.

 Regardless of the type of disk used, serious deployments will generally use, not a
single disk, but a redundant array of disks (RAID) instead. Users typically manage a
RAID cluster using Linux’s logical volume manager, LVM, with a RAID level of 10.
RAID 10 provides redundancy while maintaining acceptable performance, and is com-
monly used in MongoDB deployments.2

 If your data is spread across multiple databases within the same MongoDB server,
then you can also ensure capacity by using the server’s --directoryperdb flag. This
will create a separate directory in the data file path for each database. Using this, you
can conceivably mount a separate volume (RAIDed or not) for each database. This
may allow you to take advantage of some performance increases, since you’ll be able
to read from separate sets of spindles (or solid state drives).

FILE SYSTEMS

You’ll get the best performance from MongoDB if you run it on the right file system.
Two file systems in particular, ext4 and xfs, feature fast, contiguous disk allocation.
Using these file systems will speed up MongoDB’s frequent preallocations.

 Once you mount your fast file system, you can achieve another performance gain
by disabling updates to files’ last access time (atime). Normally, the operating system
will update a file’s atime every time the file is read or written. In a database environ-
ment, this amounts to a lot of unnecessary work. Disabling atime on Linux is relatively
easy. First, make a backup of the file system config file. Then open the original file in
your favorite editor:

sudo mv /etc/fstab /etc/fstab.bak
sudo vim /etc/fstab

For each mounted volume, you’ll see a list of settings aligned by column. Under the
options column, add the noatime directive:

file-system mount type options dump pass
UUID=8309beda-bf62-43 /ssd ext4 noatime 0 2

Then save your work. The new settings should take effect immediately.

FILE DESCRIPTORS

Some Linux systems cap the number of allowable open file descriptors at 1,024. This
is occasionally too low for MongoDB and may result in errors opening connections
(which you’ll see clearly in the logs). Naturally, MongoDB requires a file descriptor
for each open file and network connection. Assuming you store your data files in a
folder with the word data in it, you can see the number of data file descriptors using
lsof and a few well-placed pipes:

lsof | grep mongo | grep data | wc -l
2 For an overview of RAID levels, see http://en.wikipedia.org/wiki/Standard_RAID_levels.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://en.wikipedia.org/wiki/Standard_RAID_levels
http://www.it-ebooks.info/

222 CHAPTER 10 Deployment and administration

Counting the number of network connection descriptors is just as easy:

lsof | grep mongo | grep TCP | wc -l

When it comes to file descriptors, the best strategy is to start with a high limit so that
you never run out in production. You can check the current limit temporarily with the
ulimit utility:

ulimit -Hn

To raise the limit permanently, open your limits.conf file with your editor of choice:

sudo vim /etc/security/limits.conf

Then set the soft and hard limits. These are specified on a per-user basis. This exam-
ple assumes that the mongodb user will be running the mongod process:

mongod hard nofile 2048
mongod hard nofile 10240

The new settings will take effect when that user logs in again.

CLOCKS

It turns out that replication is susceptible to clock skew. If the clocks on the machines
hosting the various nodes of a replica set ever diverge, then replication may not func-
tion properly. This isn’t ideal, but fortunately there’s a solution. You need to ensure
that each of your servers uses NTP (Network Time Protocol) to keep their clocks synchro-
nized. On Unix variants, this means running the ntpd daemon. On Windows, the Win-
dows Time Services fulfills this role.

THE CLOUD

More and more users are running MongoDB in virtualized environments, collectively
known as the cloud. Among these, Amazon’s EC2 has become a deployment environ-
ment of choice because of its ease of use, wide geographic availability, and competitive
pricing. EC2, and other environments like it, can be adequate for deploying
MongoDB, but you should keep in mind the drawbacks, especially if your application
will be pushing MongoDB to its limits.

 The first problem with EC2 is that you’re forced to choose from a limited set of
instance types. At the time of this writing, you can’t get a virtual instance with more
than 68 GB of RAM. A limit like this forces you to shard your database once your work-
ing set grows beyond those 68 GB, and this might not be appropriate for every applica-
tion. If you can run on real hardware, you can run with more RAM; the cost of
hardware being equal, this can affect the decision to shard.

 Another potential problem is that EC2 is essentially a black box. You may experi-
ence service blips or instance slowdowns and have no way of diagnosing or remedying
them.

 The third issue concerns storage. EC2 allows you to mount virtual block devices
known as EBS volumes. EBS volumes provide a great deal of flexibility, allowing you to

add storage and move volumes across machines as needed. EBS also allows you to take

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

223Deployment

snapshots, which you can use for backups. The problem with EBS volumes is that they
don’t provide a high level of throughput, especially when compared to what’s possible
with physical disks. For this reason, most MongoDB users hosting serious applications
on EC2 run EBS with a RAID 10 for increased read throughput. This is all but required
for high-performance applications.

 For these reasons, rather than dealing with some of EC2’s limitations and unpre-
dictability, many users prefer to run MongoDB on their own physical hardware. Then
again, EC2 and the cloud in general are convenient and perfectly acceptable for a
wide variety of users. The lesson is to consider your application and test it in the cloud
before committing to cloud-based storage.

10.1.2 Server configuration

Once you’ve settled on a deployment environment, you need to decide on an overall
server configuration. This involves choosing a server topology and deciding whether,
and how, to use journaling.

CHOOSING A TOPOLOGY

The minimum recommended deployment topology is a three-member replica set. At
least two members of the set must be data-storing (non-arbiter) replicas residing on
separate machines. The third member may be yet another replica or it can be an arbi-
ter, which doesn’t necessarily need its own machine; you can run an arbiter on an
application server, for instance. Two reasonable replica set deployment configurations
are presented in chapter 8.

 If you expect your working set size to exceed RAM from the start, then you may
want to begin with a sharded cluster, which consists of at least two replica sets.
Detailed recommendation on sharded deployments, along with advice on when to
start sharding, are presented in chapter 9.

 You can deploy a single server to support testing and staging environments. But for
production deployments, a single server isn’t recommended, even if journaling is
enabled. Having just one machine complicates backup and recovery, and when there’s
a server failure, there’s nothing to fail over to.

 But you can make an exception in certain rare cases. If an application doesn’t
need high availability or quick recovery, and has a relatively small data set (say, < 1
GB), then running on a single server may be permissible. Still, considering the ever-
decreasing costs of hardware, and the numerous benefits of running with replication,
the arguments for foregoing a second machine are weak indeed.

JOURNALING

MongoDB v1.8 introduced journaling, and MongoDB v2.0 enables journaling by
default. When journaling is enabled, MongoDB will commit all writes to a journal
before writing to the core data files. This allows the MongoDB server to come back
online quickly and cleanly in the event of an unclean shutdown.

 Prior to v1.8, no such feature existed, and thus unclean shutdowns often led to

disaster. How was this possible? I’ve mentioned several times that MongoDB maps

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

224 CHAPTER 10 Deployment and administration

each data file to virtual memory. This means that when MongoDB writes, it writes to a
virtual memory address and not directly to disk. The OS kernel periodically syncs
these writes from virtual memory to disk, but the frequency and completeness of these
kernel syncs are indeterminate. So MongoDB forcibly syncs all data files every 60 sec-
onds using the fsync system call. The problem here is that if the MongoDB process is
killed with unsynced writes, there’s no way of knowing what state the data files are in.
They may be corrupted.

 In the event of an unclean shutdown of a nonjournaled mongod process, restoring
the data files to a consistent state requires running a repair. The repair process
rewrites the data files, discarding anything it can’t understand (corrupted data).
Because downtime and data loss are generally frowned upon, repairing in this way is
usually part of a last-ditch recovery effort. Resyncing from an existing replica is almost
always easier and more reliable. Being able to recover in this way is one of the reasons
why it’s so important to run with replication.

 Journaling obviates the need for database repairs because MongoDB can use the
journal to restore the data files to a consistent state. In MongoDB v2.0, journaling is
enabled by default, but you can disable it with the --nojournal flag:

$ mongod --nojournal

When enabled, the journal files will be kept in a directory called journal located just
below the main data path.

 If you run your MongoDB server with journaling enabled, keep a of couple points
in mind. First, journaling impairs write performance. Users wanting the highest write
performance and the assurance of a journal have a couple of options. One is to
enable journaling only on passive replicas. As long as these replicas can keep up with
the primary, there’ll be no sacrifice in performance. Another, perhaps complemen-
tary, solution is to mount a separate disk just for the journal. Then create a symlink
between the journal directory and the auxiliary volume. The auxiliary volume need
not be large; a 120 GB disk is more than sufficient, and a solid state drive (SSD) of this
size is affordable. Mounting a separate SSD for the journal files will ensure that jour-
naling runs with the smallest possible performance penalty.

 The second point is that journaling, by itself, does not guarantee that no write will
be lost. It guarantees only that MongoDB will always come back online in a consistent
state. Journaling works by syncing a write buffer to disk every 100 ms. So an unclean
shutdown can result in the loss of up to the last 100 ms of writes. If this isn’t acceptable
for any part of your application, you can use the j option on the getlasterror com-
mand to instruct the server to wait until the journal is synced before returning:

db.runCommand({getlasterror: 1, j: true})

On the application level, you’d run this as a safe mode option (just like w and wtime-
out). In Ruby, you might use the j option like this:

@collection.insert(doc, :safe => {:j => true})
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

225Deployment

Do be aware that running this after every write is unwise, because it’ll force every write
to wait for the next journal sync. This means that all writes may take up to 100 ms to
return. So use this feature with care.3

10.1.3 Data imports and exports

If you’re migrating an existing system to MongoDB, or if you need to seed the data-
base with information from, say, a data warehouse, then you’ll need an efficient
import method. You might also need a good export strategy, since you may have to
export data from MongoDB to external processing jobs. For example, exporting data
to Hadoop for batch processing has become a common practice.4

 There are two ways to import and export data with MongoDB. You can use the
included tools, mongoimport and mongoexport, or you can write a simple program
using one of the drivers.5

MONGOIMPORT AND MONGOEXPORT

Bundled with MongoDB are two utilities for importing and exporting data:
mongoimport and mongoexport. You can use mongoimport to import JSON, CSV, and
TSV files. This is frequently useful for loading data from relational databases into
MongoDB:

$ mongoimport -d stocks -c values --type csv --headerline stocks.csv

In the example, you import a CSV file called stocks.csv into the values collection of
the stocks database. The --headerline flag indicates that the first line of the CSV
contains the field names. You can see all the import options by running mongoimport
--help.

 Use mongoexport to export all of a collection’s data to a JSON or CSV file:

$ mongoexport -d stocks -c values -o stocks.csv

This command exports data to the file stocks.csv. As with its counterpart, you can see
the rest of mongoexport’s command options by starting it with the --help flag.

CUSTOM IMPORT AND EXPORT SCRIPTS

You’re likely to use MongoDB’s import and export tools when the data you’re dealing
with is relatively flat; once you introduce sub-documents and arrays, the CSV format
becomes awkward because it’s not designed to represent nested data. When you need
to export a rich document to CSV or import a CSV to a rich MongoDB document, it
may be easier to build a custom tool instead. You can do this using any of the drivers.
For example, MongoDB users commonly write scripts that connect to a relational
database and then combine the data from two tables into a single collection.

3 Future releases of MongoDB promise finer-grained control over journal syncing. Consult the latest release
notes for details.

4 For this particular use case, an officially supported MongoDB-Hadoop adapter is available at http://
github.com/mongodb/mongo-hadoop.
5 Note that importing and exporting data is distinct from backups, which are covered later in the chapter.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://github.com/mongodb/mongo-hadoop
http://github.com/mongodb/mongo-hadoop
http://www.it-ebooks.info/

226 CHAPTER 10 Deployment and administration

 That’s the tricky part about moving data in and out of MongoDB: the way the data
is modeled may differ between systems. In these cases, be prepared to use the drivers
as your conversion tools.

10.1.4 Security

Most RDBMSs feature elaborate security subsystems, allowing authorization of users
and groups with fine-grained control over permissions. By contrast, MongoDB v2.0
supports only a simple, per-database authentication mechanism. This makes the secu-
rity of the machines on which MongoDB is run all the more important. Here we’ll dis-
cuss a few considerations for running MongoDB in a secure environment and you’ll
show how authentication works.

SECURE ENVIRONMENTS

MongoDB, like all databases, should be run in a secure environment. Production
users of MongoDB must take advantage of the security features of modern operating
systems to ensure the safety of their data. Probably the most important of these fea-
tures is the firewall. The only potential difficulty in using a firewall with MongoDB is
knowing which machines need to communicate with each other. Fortunately, the com-
munication rules are simple. With a replica set, each node must be able to reach every
other node. In addition, all database clients must be able to connect with every replica
set node that the client might conceivably talk to.

 A shard cluster consists in part of replica sets. So all the replica set rules apply; the
client in the case of sharding is the mongos router. Additionally:

 All shards must be able to communicate directly with one another.
 Both the shards and the mongos routers must be able to talk to the config

servers.

A related security concern is the bind address. By default, MongoDB will listen on all
addresses on the machine. But you may want MongoDB to listen on one or more spe-
cific addresses instead. For this you can start mongod and mongos with the --bind_ip
option, which takes a list of one or more comma-separated IP addresses. For example,
to listen on the loopback interface as well as on the internal IP address 10.4.1.55,
you’d start mongod like this:

mongod --bind_ip 127.0.0.1,10.4.1.55

Do note that data between machines will be sent in the clear. Official SSL support is
scheduled to be release in MongoDB v2.2.

AUTHENTICATION

MongoDB’s authentication was originally built for users hosting MongoDB servers in
shared environments. It’s not feature-rich, but it’s useful when a little extra security is
required. Here we’ll first discuss the authentication API and then describe how to use
it with replica sets and sharding.
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

227Deployment

The authentication API
To get started with authentication, first create an admin user by switching to the admin
database and running db.addUser(). This method takes two arguments: a username
and a password:

> use admin
> db.addUser("boss", "supersecret")

Admin users can create other users and access all databases on the server. With an
admin user in place, you can enable authentication. To do so, restart the mongod
instance with the --auth option:

$ mongod --auth

Now only authorized users will be able to access the database. Restart the shell, and
then log in as the admin user with the db.auth() method:

> use admin
> db.auth("boss", "supersecret")

You can now create users for individual databases. If you want to create read-only
users, add true as the last argument to the db.addUser() method. Here you add two
users for the stocks database. The first has all permissions; the second can only read
from the database:

> use stocks
> db.addUser("trader", "moneyfornuthin")
> db.addUser("read-only-trader", "foobar", true)

Now, just three users—boss, trader, and read-only-trader—can access the stocks data-
base. If you ever want to see a list of all users with access to a given database, query the
system.users collection:

> db.system.users.find()
{ "_id" : ObjectId("4d82100a6dfa7bb906bc4df7"),

"user" : "trader", "readOnly" : false,
"pwd" : "e9ee53b89ef976c7d48bb3d4ea4bffc1" }

{ "_id" : ObjectId("4d8210176dfa7bb906bc4df8"),
"user" : "read-only-trader", "readOnly" : true,
"pwd" : "c335fd71fb5143d39698baab3fdc2b31" }

Deleting a user from this collection will revoke the user’s access to the database. If you
prefer a helper, you can use the shell’s db.removeUser() method, which does the
same thing.

 You don’t need to explicitly log out; terminating the connection (closing the shell)
will accomplish that just fine. But there is a command for logging out if you need it:

> db.runCommand({logout: 1})

Naturally, you can leverage all of the authentication logic we’ve been exploring here
using the drivers. Check your driver’s API for the details.
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

228 CHAPTER 10 Deployment and administration

Replica set authentication
Replica sets support the same authentication API just described, but enabling authen-
tication for a replica set requires a couple of extra steps. To start, create a file contain-
ing at least six characters from the Base64 character set.6 The contents of the file will
serve as a kind of password that each replica set member uses to authenticate with the
others. As an example, you might create a file called secret.txt and fill it with the
following:

tOps3cr3tpa55word

Place the file on each replica set member’s machine and adjust the permissions so
that it’s accessible only by the owner:

sudo chmod 600 /home/mongodb/secret.txt

Finally, start each replica set member by specifying the location of the password file
using the --keyFile option:

mongod --keyFile /home/mongodb/secret.txt

Authentication will now be enabled for the set. You’ll want to create an admin user in
advance, as you did in the previous section.

Sharding authentication
Sharding authentication is an extension of replica set authentication. Each replica set
in the cluster is secured as just described, by using a key file. In addition, all the config
servers and every mongos instance also use a key file containing the same password.
Start each of these processes with the --keyFile option pointing to the a file contain-
ing a password to be used by the entire shard cluster. Once you’ve done this, the
whole cluster can use authentication.

10.2 Monitoring and diagnostics
Once you’ve deployed MongoDB in production, you’ll want to keep an eye on it. If
performance is slowly degrading or if failures are occurring frequently, you’ll want to
be apprised of these. That’s where monitoring comes in. Let’s start with the simplest
kind of monitoring: logging. Then we’ll explore the built-in commands that provide
the most information about the running MongoDB server; these commands underlie
the mongostat utility and the web console, both of which I’ll describe in brief. I’ll
make a couple of recommendations on external monitoring tools. And then I’ll end
the section by presenting two diagnostic utilities: bsondump and mongosniff.

10.2.1 Logging

Logging is the first level of monitoring; as such, you should plan on keeping logs for
all your deployments.7 This usually isn’t a problem because MongoDB requires that

6 The Base64 character set consists of all uppercase and lowercase letters in the English alphabet, the digits 0-9,
and the + and / characters.
7 Never simply pipe logs to /dev/null or stdout.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

229Monitoring and diagnostics

you specify the --logpath option when running it in the background. But there are a
few extra settings to be aware of. To enable verbose logging, start the mongod process
with the -vvvvv option (the more v’s, the more verbose the output). This is handy if,
for instance, you need to debug some code and want to log every query. But do be
aware that verbose logging will make your logs quite large and may affect server
performance.

 Next you can start mongod with the --logappend option. This will append to an
existing log rather than overwriting it.

 Finally, if you have a long-running MongoDB process, you may want to write a
script that periodically rotates the log files. MongoDB provides the logrotate com-
mand for this purpose. Here’s how to run it from the shell:

> use admin
> db.runCommand({logrotate: 1})

Sending the SIGUSR1 signal to the process also runs the logrotate command. Here’s
how to send that signal to process number 12345:

$ kill -SIGUSR1 12345

10.2.2 Monitoring tools

Here I describe the monitoring commands and tools that ship with MongoDB.

DATABASE COMMANDS

Three database commands reveal MongoDB’s internal state. These underlie all
MongoDB monitoring applications.

serverStatus
The output to the serverStatus command is a veritable embarrassment of riches.
Among the statistics tracked are page faults, B-tree access rates, open connections,
and total inserts, updates, queries, and deletes. An abridged sample of the server-
Status command output is shown next:

> use admin
> db.runCommand({serverStatus: 1})
{

"host" : "ubuntu",
"version" : "1.8.0",
"process" : "mongod",
"uptime" : 246562,
"localTime" : ISODate("2011-03-13T17:01:37.189Z"),

"globalLock" : {
"totalTime" : 246561699894,
"lockTime" : 243,
"ratio" : 9.855545289656455e-10,
"currentQueue" : {

"total" : 0,
"readers" : 0,
"writers" : 0

},

},

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

230 CHAPTER 10 Deployment and administration

"mem" : {
"bits" : 64,
"resident" : 3580,
"virtual" : 9000,
"mapped" : 6591

}

"ok" : 1 }

The globalLock section is important because it indicates the total amount of time the
server has spent in a write lock. A high ratio may indicate a write bottleneck. The
currentQueue is perhaps a more concrete representation of bottlenecks. If a large
number of writes or reads are waiting in the queue, then some kind of optimization
may be in order.

 The mem section shows how the mongod process is using memory. The bits field
indicates that this is a 64-bit machine. resident is the amount of physical memory
occupied by MongoDB. virtual is the number of megabytes the process has mapped
to virtual memory, and mapped, a subset of virtual, indicates how much of that mem-
ory is mapped for the data files alone. In this case, about 6.5 GB of data files are
mapped to virtual memory, with 3.5 GB of that in physical memory. I’ve repeatedly
stated that the working set should ideally fit in RAM. The mem section can provide an
approximate indication of whether this is the case.

 The serverStatus output changes and improves with each MongoDB release, and
thus documenting it in a semi-permanent medium like this book isn’t always helpful.
You can see a detailed and up-to-date interpretation of this output at http://
www.mongodb.org/display/DOCS/serverStatus.

top
The top command displays operation counters on a per-database level. If your appli-
cation uses multiple physical databases, or if you’d like to see how long on average
operations are taking, then this is a useful command. Here’s some sample output:

> use admin
> db.runCommand({top: 1}) {
"totals" : { "cloud-docs" :
{ "total" : { "time" : 194470, "count" : 20 },

"readLock" : { "time" : 324, "count" : 12 },
"writeLock" : { "time" : 194146, "count" : 8 },
"queries" : { "time" : 194470, "count" : 20 },
"getmore" : { "time" : 0, "count" : 0 } },

"ok" : 1}

Here you see that a lot of time is being spent in a write lock. It may be worthwhile to
investigate this further to see whether writes are unnecessarily slow.

db.currentOp()
It’s frequently useful to know what MongoDB is doing right now. The db.currentOp()
method exposes this information by returning a list of all the operations currently
running along with any other operations waiting to run. Here’s an example of the

method’s output, run against the shard cluster you set up in the previous chapter:

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.mongodb.org/display/DOCS/serverStatus
http://www.mongodb.org/display/DOCS/serverStatus
http://www.it-ebooks.info/

231Monitoring and diagnostics

db.currentOp()
[{

"opid" : "shard-1-test-rs:1232866",
"active" : true,
"lockType" : "read",
"waitingForLock" : false,
"secs_running" : 11,
"op" : "query",
"ns" : "docs.foo",
"query" : {

"$where" : "this.n > 1000"
},
"client_s" : "127.0.0.1:38068",
"desc" : "conn"

}]

A particularly slow query is at work here. You can see that the query has been running
for a whopping eleven seconds and that like all queries, it’s taken a read lock. If this
operation is problematic, you might want to investigate its source by looking at the
client field. Alas, this is a sharded cluster, so the source is a mongos process, as indi-
cated by the field name client_s. If you need to kill the operation, you can pass the
opid to the db.killOp() method:

db.killOp("shard-1-test-rs:1232866")
{

"op" : "shard-1-test-rs:1233339",
"shard" : "shard-1-test-rs",
"shardid" : 1233339

}

If you’d like to see a verbose listing of all the operations running on the current
MongoDB server, you can issue the following virtual command:

db['$cmd.sys.inprog'].find({$all: 1})

MONGOSTAT

The db.currentOp() method shows only the operations queued or in progress at a
particular moment in time. Similarly, the serverStatus command provides a point-in-
time snapshot of various system fields and counters. But sometimes you need a view of
the system’s real-time activity, and that’s where mongostat comes in. Modeled after
iostat and other similar tools, mongostat polls the server at a fixed interval and dis-
plays an array of statistics, from the number of inserts per second to the amount of res-
ident memory, to the frequency of B-tree page misses.

 You can invoke the mongostat command on localhost, and the polling will occur
once a second:

$ mongostat

It’s also highly configurable, and you can start it with --help to see all the options.
One of the more notable features is cluster discovery; when you start mongostat with
the --discover option, you can point it to a single node, and it’ll discover the
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

232 CHAPTER 10 Deployment and administration

remaining nodes in a replica set or sharded cluster. It then displays the entire cluster’s
statistics in aggregate.

THE WEB CONSOLE

You can get a slightly more visual window into a running mongod process through the
web console. Every mongod listens for HTTP requests on the thousandth port above the
server port. Thus if you’re running a mongod on port 27017, the web console will be
available on port 28017. If running on localhost, you can point your web browser to
http://localhost:28017, and you’ll see a page like the one in figure 10.1.

 Yet more status information is available by enabling the server’s basic REST inter-
face. If you start mongod with the --rest flag, you’ll enable a number of extra web con-
sole commands that are linked to from the main web console landing page.

10.2.3 External monitoring applications

Most serious deployments will require an external monitoring application. Nagios and
Munin are two popular open source monitoring systems used to keep an eye on many
MongoDB deployments. You can use each of these with MongoDB by installing a sim-

Figure 10.1 The MongoDB web console
ple open source plug-in.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

233Monitoring and diagnostics

 Writing a plug-in for any arbitrary monitoring application isn’t difficult. It mostly
involves running various statistics commands against a live MongoDB database. The
serverStatus, dbstats, and collstats commands usually provide all the informa-
tion you might need, and you can get all of them straight from the HTTP REST inter-
face, avoiding the need for a driver.

10.2.4 Diagnostic tools (mongosniff, bsondump)

MongoDB includes two diagnostic utilities. The first is mongosniff, which sniffs pack-
ets from a client to the MongoDB server and prints them intelligibly. If you happen to
be writing a driver or debugging an errant connection, then this is your hammer. You
can start it up like this to listen on the local network interface at the default port:

sudo mongosniff --source NET I0

Then when you connect with any client, say the MongoDB shell, you’ll get an easy-to-
read stream of network chatter:

127.0.0.1:58022 -->> 127.0.0.1:27017 test.$cmd 61 bytes
id:89ac9c1d 2309790749 query: { isMaster: 1.0 } ntoreturn: -1

127.0.0.1:27017 <<-- 127.0.0.1:58022 87 bytes
reply n:1 cursorId: 0 { ismaster: true, ok: 1.0 }

You can see all the mongosniff options by running it with --help.
 Another useful utility is bsondump, which allows you to examine raw BSON files.

BSON files are generated by the mongodump utility (discussed later) and by replica set
rollbacks.8 For instance, let’s say you’ve dumped a collection with a single document.
If that collection ends up in a file called users.bson, then you can examine the con-
tents pretty easily:

$ bsondump users.bson
{ "_id" : ObjectId("4d82836dc3efdb9915012b91"), "name" : "Kyle" }

As you can see, bsondump prints the BSON as JSON by default. If you’re doing serious
debugging, you’ll want to see the real composition of BSON types and sizes. For that,
run the utility in debug mode:

$ bsondump --type=debug users.bson
--- new object ---

size : 37
_id

type: 7 size: 17
name

type: 2 size: 15

This gives you the total size of the object (37 bytes), the types of the two fields (7 and 2),
and those fields’ sizes.

8 There may be other situations where you’ll find raw BSON, but MongoDB’s data files aren’t one of them, so

don’t try to view them with bsondump.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

234 CHAPTER 10 Deployment and administration

10.3 Maintenance
Here I’ll describe the three most common MongoDB maintenance tasks. First, I’ll dis-
cuss backups. As with any database, prudence dictates a regular backup policy. Then,
I’ll describe compaction, as the data files may require it under rare circumstances.
Finally, I’ll briefly mention upgrades, as you’ll want to run the latest stable MongoDB
release when possible.

10.3.1 Backups and recovery

Part of running a production database deployment is being prepared for disasters.
Backups play an important role in this. When disaster strikes, a good backup can save
the day, and in these cases, you’ll never regret having invested time and diligence in a
regular backup policy. Yet some users still decide that they can live without backups.
These users have only themselves to blame when they can’t recover their databases.
Don’t be one of these users.

 There are two general strategies for backing up a MongoDB database. The first is
to use the mongodump and mongorestore utilities. The second, and probably the more
common, is to copy the raw data files.

MONGODUMP AND MONGORESTORE

mongodump writes the contents of a database as BSON files. mongorestore reads these
files and restores them. These tools are useful for backing up individual collections
and databases as well as the whole server. They can be run against a live server (you
don’t have to lock or shut down the server) or you can point them to a set of data files,
but only when the server is locked or shut down. The simplest way to run mongodump is
like so:

$ mongodump -h localhost --port 27017

This will dump each database and collection from the server at localhost to a directory
called dump. The dump will include all the documents from each collection, including
the system collections that define users and indexes. But significantly, the indexes
themselves won’t be included in the dump. The means that when you restore, any
indexes will have to be rebuilt. If you have an especially large data set, or a large num-
ber of indexes, this will take time.

 To restore BSON files, run mongorestore, and point it at the dump folder:

$ mongorestore -h localhost --port 27017 dump

Note that when restoring, mongorestore won’t drop data by default. So if you’re
restoring to an existing database, be sure to run with the --drop flag.

DATAFILE-BASED BACKUPS

Most users opt for a file-based backup, where the raw data files are copied to a new
location. This approach is often faster than mongodump, since the backups and restora-
tions require no transformation of the data.9 The only potential problem with a file-
9 As an example, this strategy preserves all indexes—no need to rebuild them on restore.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

235Maintenance

based backup is that it requires locking the database, but generally you’ll lock a
secondary node, and thus should be able to keep your application online for the dura-
tion of the backup.

COPYING THE DATA FILES Users frequently make the mistake of copying the
data files or taking a snapshot without first locking the database. With journal-
ing disabled, this will result in corruption of the copied files. When journaling
is enabled, it’s safe to take a snapshot, but copying the files themselves is
tricky, and easy to botch.

So regardless of whether journaling is enabled, the recommendation of
this book is to always lock the database before copying data files or taking a
disk snapshot. The resulting peace of mind and guaranteed file integrity are
well worth the minor delay incurred by locking.

To copy the data files, you first need to make sure that they’re in a consistent state. So
you either have to shut down the database or lock it. Since shutting down the database
might be too involved for some deployments, most users opt for the locking
approach. Here’s the command for syncing and locking:

> use admin
> db.runCommand({fsync: 1, lock: true})

At this point, the database is locked against writes and the data files are synced to disk.
This means that it’s now safe to copy the data files. If you’re running on a file system
or storage system that supports snapshots, then it’s best to take a snapshot and copy
later. This allows you to unlock quickly.

 If you can’t run a snapshot, then you’ll have to keep the database locked while you
copy the data files. If you’re copying data files from a secondary node, be sure that the
node is current with the primary and has enough oplog to remain offline for the dura-
tion of the backup.

 Once you’ve finished making a snapshot or backing up, you can unlock the data-
base. The somewhat arcane unlock command can be issued like so:

> db.$cmd.sys.unlock.findOne()
> { "ok" : 1, "info" : "unlock requested" }

Do note that this is merely a request to unlock; the database may not unlock right away.
Run the db.currentOp() method to verify that the database is no longer locked.

10.3.2 Compaction and repair

MongoDB includes a facility for repairing a database. You can initiate it from the com-
mand line to repair all databases on the server:

$ mongod --repair

Or you can run the repairDatabase command to repair a single database:

> use cloud-docs

> db.runCommand({repairDatabase: 1})

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

236 CHAPTER 10 Deployment and administration

Repair is an offline operation. While it’s running, the database will be locked against
reads and writes. The repair process works by reading and rewriting all data files, dis-
carding any corrupted documents in the process. It also rebuilds each index. This
means that to repair a database, you need enough free disk space to store the rewrite
of its data. To say repairs are expensive is an understatement, as repairing a very large
database can take days.

 MongoDB’s repair was originally used as a kind of last-ditch effort for recovering a
corrupted database. In the event of an unclean shutdown, without journaling
enabled, a repair is the only way to return the data files to a consistent state. Fortu-
nately, if you deploy with replication, run at least one server with journaling enabled,
and perform regular off-site backups, you should never have to recover by running a
repair. Relying on repair for recovery is foolish. Avoid it.

 What then might a database repair be good for? Running a repair will compact the
data files and rebuild the indexes. As of the v2.0 release, MongoDB doesn’t have great
support for data file compaction. So if you perform lots of random deletes, and espe-
cially if you’re deleting small documents (< 4 KB), it’s possible for total storage size to
remain constant or grow despite these regularly occurring deletes. Compacting the
data files is a good remedy for this excess use of space.

 If you don’t have the time or resources to run a complete repair, there are two
options, both of which operate on a single collection. You can either rebuild indexes
or compact the collection. To rebuild indexes, use the reIndex() method:

> use cloud-docs
> db.spreadsheets.reIndex()

This might be useful, but generally speaking, index space is efficiently reused; the
data file space is what can be a problem. So the compact command is usually a better
choice. compact will rewrite the data files and rebuild all indexes for one collection.
Here’s how you run it from the shell:

> db.runCommand({ compact: "spreadsheets" })

This command has been designed to be run on a live secondary, obviating the need for
downtime. Once you’ve finished compacting all the secondaries in a replica set, you
can step down the primary and then compact that node. If you must run the compact
command on the primary, you can do so by adding {force: true} to the command
key. Note that if you go this route, the command will write lock the system:

> db.runCommand({ compact: "spreadsheets", force: true })

10.3.3 Upgrading

MongoDB is still a relatively young project, which means that new releases generally
contain lots of important bug fixes and performance improvements. For this reason,
you should try to run the latest stable version of the software when possible. Upgrad-
ing, at least until v2.0, has been a simple process of shutting down the old mongod pro-

cess and starting the new one with the old data files. Subsequent versions of MongoDB

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

237Performance troubleshooting

are likely to make small changes to the index and data file formats, and this will
require a slightly more lengthy upgrade process. Always check the latest release notes
for accurate recommendations.

 Of course, when upgrading MongoDB, you’re probably going to be upgrading a
replicated cluster. In the case of a replica set, the general strategy is to upgrade one
node at a time, starting with the secondary nodes.

10.4 Performance troubleshooting
In this final section, I outline a heuristic for diagnosing and resolving performance
issues.

 Most of the performance issues in MongoDB deployments can be traced to a sin-
gle source: the hard disk. In essence, the more pressure placed on the disk, the
slower MongoDB runs. Thus the goal of most performance optimizations is to reduce
reliance on disk. There are several ways to accomplish this, but before we look at
them, it’s useful to know how to ascertain disk performance in the first place. On
Unix derivatives, the iostat tool is ideal for this. In the following example, I use the
-x option to show extended statistics, and you specify 2 to display those stats at two-
second intervals:10

$ iostat -x 2
Device: rsec/s wsec/s avgrq-sz avgqu-sz await svctm %util
sdb 0.00 3101.12 10.09 32.83 101.39 1.34 29.36

Device: rsec/s wsec/s avgrq-sz avgqu-sz await svctm %util
sdb 0.00 2933.93 9.87 23.72 125.23 1.47 34.13

For a detailed description of each of these fields, consult your system’s man pages. For
a quick diagnostic, you’ll be most interested in the last three columns. await indicates
the average time in milliseconds for serving I/O requests. This average includes time
spent in the I/O queue and time spent actually servicing I/O requests. svctime indi-
cates the average time spent serving requests alone. And %util is the percentage of
CPU time spent issuing I/O requests to the disk.

 The preceding iostat snippet shows moderate disk usage. The average time wait-
ing on I/O is around 100 ms (hint: that’s a lot!), the average service time is about 1 ms,
and the percent utilization is about 30%. If you were to investigate the MongoDB logs
on this machine, you’d likely see numerous slow operations (queries, inserts, or other-
wise). In fact, it’s those slow operations that would initially alerts you to a potential
problem. The iostat output can help you confirm the problem. Note that it’s not
uncommon to find MongoDB users whose systems approach 100% disk utilization;
these users generally find themselves frustrated with MongoDB, though the heavy uti-
lization is rarely MongoDB’s fault alone. In the next five sections, I’ll present some
remedies that optimize database operations and ease the load off the disk.
10 Note that this example is Linux-specific. On Mac OS X, the command is iostat -w 2.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

238 CHAPTER 10 Deployment and administration

10.4.1 Check indexes and queries for efficiency

When you discover a performance issue, indexes are the first place you should look.
This assumes that your application issues queries and updates, which are the primary
operations that can use indexes.11 Chapter 7 outlines a procedure for identifying and
fixing slow operations; this involves enabling the query profiler and then ensuring
that every query and update uses an index efficiently. In general, this means that each
operation scans as few documents as possible.

 It’s also important to make sure that there are no redundant indexes, since a
redundant index will take up space on disk, require more RAM, and demand more
work on each write. Chapter 7 mentions ways to eliminate these redundant indexes.

 What then? After auditing your indexes and queries, you may discover inefficien-
cies that, when corrected, fix the performance problems altogether. You’ll no longer
see slow query warnings in the logs, and the iostat output will show reduced utiliza-
tion. Adjusting indexes fixes performance issues more often than you might think;
this should always be the first place you look when addressing a performance issue.

10.4.2 Add RAM

But altering the indexes doesn’t always work. You might have the most optimized que-
ries and a perfect set of indexes, and still see high disk utilization. When this is the case,
you’ll first want to look at the ratio of index size and working set to physical RAM. To
start, run the stats() command on each of the databases used by your application:

> use app
> db.stats()
{

"db" : "app",
"collections" : 5,
"objects" : 3932487,
"avgObjSize" : 543.012,
"dataSize" : 2135390324,
"storageSize" : 2419106304,
"numExtents" : 38,
"indexes" : 4,
"indexSize" : 226608064,
"fileSize" : 6373244928,
"nsSizeMB" : 16,
"ok" : 1

}

Now look at the data size and index size. Here the data size is just over 2 GB, and the
index size is around 230 MB. Assuming that the working set comprises all the data in
the system, you’ll want at least 3 GB on this machine to keep from going to disk too
frequently. If this machine had just 1.5 GB RAM, then you’d expect to see high disk
utilization.
11 Certain database commands, like count, also use indexes.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

239Performance troubleshooting

 When looking at the database stats, it’s also worth noting the difference between
dataSize and storageSize. If storageSize exceeds dataSize by more than a factor
of two, then performance may suffer because of on-disk fragmentation. This fragmen-
tation can force the machine to use much more RAM than is required; so in this case,
you may want to try compacting your data files first before adding more RAM. See the
section on compaction earlier in the chapter for instructions on how to do this.

10.4.3 Increase disk performance

There are a couple of issues with adding RAM. The first is that it isn’t always possible;
for example, if you’re running on EC2, then the largest available virtual machine limits
you to 68 GB RAM. The second issue is that adding RAM doesn’t always solve the I/O
problem. For instance, if your application is write intensive, then the background
flushes or the paging of new data into RAM may overwhelm your disks anyway. Thus if
you have efficient indexes and sufficient RAM and still see disk I/O slowness, then you
may want to look into improving disk performance.

 There are two ways to increase disk performance. One is to purchase faster disks. A
15 K RPM drive or an SSD might be worth the investment. Alternatively, or in addition,
you can configure your disks in a RAID array, as this can increase both read and write
throughput.12 A RAID array may resolve I/O bottlenecks if configured properly. As men-
tioned, running a RAID 10 on EBS volumes increases read throughput significantly.

10.4.4 Scale horizontally

Horizontal scaling is the next obvious step to take in addressing a performance prob-
lem. Here there are two routes you can take. If your application is read intensive, it
may be that a single node can’t serve all the queries demanded of it, even with opti-
mized indexes and data in RAM. This may call for distribution of reads across replicas.
The official MongoDB drivers provide support for scaling across the members of a
replica set, and this strategy is worth a try before escalating to a sharded cluster.

 When all else fails, there’s sharding. You should move to a sharded cluster when
any of the following apply:

 You can’t fit your working set entirely into the physical RAM of any one
machine.

 The write load is too intensive for any one machine.

If you’ve set up a sharded cluster and still experience performance issues, then you
should first go back and make sure that all your indexes are optimized, that data is fit-
ting into RAM, and that your disks are performing effectively. To get the best hardware
utilization, you may need to add more shards.
12 The other nice thing about RAID is that with the right RAID level, you get disk redundancy.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

240 CHAPTER 10 Deployment and administration

10.4.5 Seek professional assistance

The sources of performance degradations are manifold and frequently idiosyncratic.
Anything from poor schema design to sneaky server bugs can negatively affect perfor-
mance. If you feel you’ve tried every possible remedy and still can’t get results, then you
should consider allowing someone experienced in the ways of MongoDB to audit your
system. A book can take you far, but an experienced human being can make all the dif-
ference in the world. When you’re at a loss for ideas and in doubt, seek professional
assistance. The solutions to performance issues are sometimes entirely unintuitive.

10.5 Summary
This chapter has presented the most important considerations for deploying
MongoDB in production. You should have the knowledge you need to select the right
hardware for MongoDB, monitor your deployments, and maintain regular backups.
In addition, you should have some idea about how to go about resolving performance
issues. Ultimately, this knowledge will develop with experience. But MongoDB is pre-
dictable enough to be amenable to the simple heuristic presented here. Except for
when it isn’t. MongoDB tries to make life simple, but databases and their interactions
with live applications are frankly complex. When this book’s advice fails to scale, a
knowledgeable expert can go a long way.
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

appendix A
Installation

In this appendix you’ll learn how to install MongoDB on Linux, Mac OS X, and Win-
dows, and you’ll get at an overview of MongoDB’s most commonly used configuration
options. For developers, there are a few notes on compiling MongoDB from its source.

 I’ll conclude with some pointers on installing Ruby and RubyGems; this will aid
those wanting to run the Ruby-based examples from the book.

A.1 Installation
Before we proceed to the installation instructions, a note on MongoDB versioning is
in order. Briefly, you should run the latest stable version for your architecture. Stable
releases of MongoDB are marked by an even minor version number. Thus,
versions 1.8, 2.0, and 2.2 are stable; 1.9 and 2.1 are development versions and should
not be used in production. The downloads page at http://mongodb.org provides stat-
ically linked binaries compiled for 32-bit and 64-bit systems. These binaries are avail-
able for the latest stable releases as well as for the development branches and nightly
builds of the latest revision. The binaries provide the easiest way to install MongoDB
across most platforms, including Linux, Mac OS X, Windows, and Solaris, and they’re
the method we’ll prefer here.

A.1.1 MongoDB on Linux

There are three ways to install MongoDB on Linux. You can download the precom-
piled binaries directly from the mongodb.org website, use a package manager, or
compile manually from source. We’ll discuss the first two in the next sections, and
then provide a few notes on compiling later in the appendix.

INSTALLING WITH PRECOMPILED BINARIES

First navigate to http://www.mongodb.org/downloads. There you’ll see a grid with all
the latest downloadable MongoDB binaries. Select the download URL for the latest
stable version for your architecture. These examples use MongoDB v2.0 compiled for
a 64-bit system.

 Download the archive using your web browser or the curl utility. Then expand the
archive using tar:

$ curl http://downloads.mongodb.org/linux/mongodb-linux-x86_64-2.0.0.tgz
> mongo.tg
241

$ tar -xzvf mongo.tgz

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://mongodb.org
http://www.it-ebooks.info/

242 APPENDIX A Installation

To run MongoDB, you’ll need a data directory. By default, the mongod daemon will
store its data files in /data/db. Create that directory, and ensure that it has the proper
permissions:

$ sudo mkdir -p /data/db/
$ sudo chown `id -u` /data/db

You’re ready to start the server. Just change to the MongoDB bin directory and launch
the mongod executable:

cd mongodb-linux-x86_64-2.0.0/bin
./mongod

If all goes well, you should see something like the following abridged startup log. Note
the last lines, confirming that the server is listening on the default port of 27017:

Thu Mar 10 11:28:51 [initandlisten] MongoDB starting :
pid=1773 port=27017 dbpath=/data/db/ 64-bit

Thu Mar 10 11:28:51 [initandlisten] db version v2.0.0, pdfile version 4.5
...
Thu Mar 10 11:28:51 [initandlisten] waiting for connections on port 27017
Thu Mar 10 11:28:51 [websvr] web admin interface listening on port 28017

If the server terminates unexpectedly, then refer to section A.5.

USING A PACKAGE MANAGER

Package managers can greatly simplify the installation of MongoDB. The only major
downside is that package maintainers may not always keep up with the latest MongoDB
releases. It’s important to run the latest stable point release, so if you do choose to use
a package manager, be sure that the version you’re installing is a recent one.

 If you happen to be running Debian, Ubuntu, CentOS, or Fedora, you’ll always
have access to the latest versions. This is because 10gen maintains and publishes its
own packages for these platforms. You can find more information on installing these
particular packages on the mongodb.org website. Instructions for Debian and
Ubuntu can be found at http://mng.bz/ZffG. For CentOS and Fedora, see http://
mng.bz/JSjC.

 Packages are also available for FreeBSD and ArchLinux. See their respective pack-
age repositories for details.

A.1.2 MongoDB on Mac OS X

There are three ways to install MongoDB on Mac OS X. You can download the pre-
compiled binaries directly from the mongodb.org website, use a package manager, or
compile manually from source. We’ll discuss the first two in the next sections, and
then provide a few notes on compiling later in the appendix.

PRECOMPILED BINARIES

First navigate to http://www.mongodb.org/downloads. There you’ll see a grid with all
the latest downloadable MongoDB binaries. Select the download URL for the latest
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://mng.bz/ZffG
http://mng.bz/JSjC
http://mng.bz/JSjC
http://www.mongodb.org/downloads
http://www.it-ebooks.info/

243APPENDIX A Installation

stable version for your architecture. The following example uses MongoDB v2.0 com-
piled for a 64-bit system.

 Download the archive using your web browser or the curl utility. Then expand the
archive using tar:

$ curl http://downloads.mongodb.org/osx/mongodb-osx-x86_64-2.0.0.tgz >
mongo.tgz

$ tar xzf mongo.tgz

To run MongoDB, you’ll need a data directory. By default, the mongod daemon will
store its data files in /data/db. Go ahead and create that directory:

$ mkdir -p /data/db/

You’re now ready to start the server. Just change to the MongoDB bin directory and
launch the mongod executable:

$ cd mongodb-osx-x86_64-2.0.0/bin
$./mongod

If all goes well, you should see something like the following abridged startup log. Note
the last lines, confirming that the server is listening on the default port of 27017:

Thu Mar 10 11:28:51 [initandlisten] MongoDB starting :
pid=1773 port=27017 dbpath=/data/db/ 64-bit

Thu Mar 10 11:28:51 [initandlisten] db version v2.0.0, pdfile version 4.5
...
Thu Mar 10 11:28:51 [initandlisten] waiting for connections on port 27017
Thu Mar 10 11:28:51 [websvr] web admin interface listening on port 28017

If the server terminates unexpectedly, then refer to section A.5.

USING A PACKAGE MANAGER

Package managers can greatly simplify the installation of MongoDB. The only major
downside is that package maintainers may not always keep up with the latest MongoDB
releases. It’s important to run the latest stable point release, so if you do choose to use
a package manager, be sure that the version you’re installing is a recent one.

 MacPorts (http://www.macports.org) and Homebrew (http://mxcl.github.com/
homebrew/) are two package managers for Mac OS X known to maintain up-to-date
versions of MongoDB. To install via MacPorts, run the following:

sudo port install mongodb

Note that MacPorts will build MongoDB and all its dependencies from scratch. If you
go this route, be prepared for a lengthy compile.

 Homebrew, rather than compiling, merely downloads the latest binaries, so it’s
much faster than MacPorts. You can install MongoDB through Homebrew as follows:

$ brew update
$ brew install mongodb

After installing, Homebrew will provide instructions on how to start MongoDB using

the Mac OS X launch agent.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.macports.org
http://mxcl.github.com/homebrew/
http://mxcl.github.com/homebrew/
http://www.it-ebooks.info/

244 APPENDIX A Installation

A.1.3 MongoDB on Windows

There two ways to install MongoDB on Windows. The easier, preferred way is to down-
load the precompiled binaries directly from the mongodb.org website. You can also
compile from source, but this is recommended only for developers and advanced
users. You can read about compiling from source in the next section.

PRECOMPILED BINARIES

First navigate to http://www.mongodb.org/downloads. There you’ll see a grid with all
the latest downloadable MongoDB binaries. Select the download URL for the latest
stable version for your architecture. Here we’ll install MongoDB v2.0 compiled for 64-
bit Windows.

 Download the appropriate distribution, and then unzip it. You can do this from
the Windows Explorer by locating the MongoDB .zip file, right-clicking on it, and
then selecting Extract All... You’ll then be able to choose the folder where the con-
tents will be unzipped.

 Alternatively, you can use the command line. First navigate to your Downloads
directory. Then use the unzip utility to extract the archive:

C:\> cd \Users\kyle\Downloads
C:\> unzip mongodb-win32-x86_64-2.0.0.zip

To run MongoDB, you’ll need a data folder. By default, the mongod daemon will store
its data files in C:\data\db. Open the Windows command prompt, and create the
folder like so:

C:\> mkdir \data
C:\> mkdir \data\db

You’re now ready to start the server. Just change to the MongoDB bin directory and
launch the mongod executable:

C:\> cd \Users\kyle\Downloads
C:\Users\kyle\Downloads> cd mongodb-win32-x86_64-2.0.0\bin
C:\Users\kyle\Downloads\mongodb-win32-x86_64-2.0.0\bin> mongod.exe

If all goes well, you should see something like the following abridged startup log. Note
the last lines, confirming that the server is listening on the default port of 27017:

Thu Mar 10 11:28:51 [initandlisten] MongoDB starting :
pid=1773 port=27017 dbpath=/data/db/ 64-bit

Thu Mar 10 11:28:51 [initandlisten] db version v2.0.0, pdfile version 4.5
...
Thu Mar 10 11:28:51 [initandlisten] waiting for connections on port 27017
Thu Mar 10 11:28:51 [websvr] web admin interface listening on port 28017

If the server terminates unexpectedly, then refer to section A.5.
 Finally, you’ll want to start the MongoDB shell. To do that, open a second terminal

window, and then launch mongo.exe:

C:\> cd \Users\kyle\Downloads\mongodb-win32-x86_64-2.0.0\bin

C:\Users\kyle\Downloads\mongodb-win32-x86_64-2.0.0\bin> mongo.exe

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.mongodb.org/downloads
http://www.it-ebooks.info/

245APPENDIX A Installation

A.1.4 Compiling MongoDB from source

Compiling MongoDB from source is recommended only for advanced users and
developers. If all you want to do is operate on the bleeding edge, without having to
compile, you can always download the nightly binaries for the latest revisions from the
mongodb.org website.

 That said, you may want to compile yourself. The trickiest part about compiling
MongoDB is managing the various dependencies. These include Boost, Spider-
Monkey, and PCRE. The latest compilation instructions for each platform can be
found at http://www.mongodb.org/display/DOCS/Building.

A.1.5 Troubleshooting

MongoDB is easy to install, but users occasionally experience minor problems. These
usually manifest as error messages generated when trying to start the mongod daemon.
Here I provide a list of the most common of these errors along with their resolutions.

WRONG ARCHITECTURE

If you try to run a binary compiled for a 64-bit system on a 32-bit machine, you’ll see
an error like the following:

-bash: ./mongod: cannot execute binary file

On Windows 7, the message is more helpful:

This version of
C:\Users\kyle\Downloads\mongodb-win32-x86_64-1.7.4\bin\mongod.exe
is not compatible with the version of Windows you're running.
Check your computer's system information to see whether you need
a x86 (32-bit) or x64 (64-bit) version of the program, and then
contact the software publisher.

The solution in both cases is to download and then run the 32-bit binary instead. Bina-
ries for both architectures are available on the MongoDB download site (http://
www.mongodb.org/downloads).

NONEXISTENT DATA DIRECTORY

MongoDB requires a directory for storing its data files. If the directory doesn’t exist,
you’ll see an error like the following:

dbpath (/data/db/) does not exist, terminating

The solution is to create this directory. To see how, consult the preceding instructions
for your operating system.

LACK OF PERMISSIONS

If you’re running on a Unix variant, you’ll need to make sure that the user running
the mongod executable has permissions to write to the data directory. Otherwise, you’ll
see this error

Permission denied: "/data/db/mongod.lock", terminating
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.mongodb.org/display/DOCS/Building
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.it-ebooks.info/

246 APPENDIX A Installation

or possibly this one:

Unable to acquire lock for lockfilepath: /data/db/mongod.lock, terminating

In either case, you can solve the problem by opening up permissions in the data direc-
tory using chmod or chown.

UNABLE TO BIND TO PORT

MongoDB runs by default on port 27017. If another process, or another mongod, is
bound to the same port, you’ll see this error:

listen(): bind() failed errno:98
Address already in use for socket: 0.0.0.0:27017

There are two possible solutions to this. The first is to find out what other process is
running on port 27017 and then terminate it. Alternatively, run mongod on a different
port using the --port flag. Here’s how to run MongoDB on port 27018:

mongod --port 27018

A.2 Basic configuration options
Here I present a brief overview of the flags most commonly used when running
MongoDB.

 --dbpath—The path to the directory where the data files are to be stored. This
defaults to /data/db.

 --logpath—The path to the filename where log output should be directed.
Log output will be printed to standard output (stdout) by default.

 --port—The port that MongoDB listens on. If not specified, this is set to
27017.

 --rest—This flag enables a simple REST interface that enhances the server’s
default web console. The web console is always available 1,000 port numbers
above the port the server listens on. Thus if the server is listening at localhost
on port 27017, then the web console will be available at http://localhost:28017/.
Spend some time exploring the web console and the commands it exposes, as
you can discover a lot about a live MongoDB server this way.

 --fork—Detaches the process to run as a daemon. Note that fork only works
on Unix variants. Windows users seeking similar functionality should look at the
instructions for running MongoDB as a proper Windows service. These are
available at mongodb.org.

Those are the most important of the MongoDB startup flags. Here’s an example of
their use on the command line:

$ mongod --dbpath /var/local/mongodb --logpath /var/log/mongodb.log
--port 27018 --rest --fork
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

247APPENDIX A Installation

Note that it’s also possible to specify all of these options in a config file. Simply create
a new text file (we’ll call it mongodb.conf) and you can specify all the preceding
options, one per line:

dbpath=/var/local/mongodb
logpath=/var/log/mongodb.log
port=27018
rest=true
fork=true

You can then invoke mongod using the config file with the -f option:

$ mongod -f mongodb.conf

If you ever find yourself connected to a MongoDB and wondering which options were
used at startup, you can get a list of them by running the getCmdLineOpts command:

> use admin
> db.runCommand({getCmdLineOpts: 1})

A.3 Installing Ruby
A number of the examples in this book are written in Ruby, so to run them yourself,
you’ll need a working Ruby installation. This means installing the Ruby interpreter as
well as Ruby’s package manager, RubyGems.

 You should use a version of Ruby greater than or equal to 1.8.7. Versions 1.8.7 and
1.9.3 are the most common production versions at the time of this writing.

A.3.1 Linux and Mac OS X

Ruby comes installed by default on Max OS X and on a number of Linux distributions.
You may want to check whether you have a recent version by running

ruby -v

If the command isn’t found, or if you’re running a version older than 1.8.7, you’ll
want to install or upgrade. There are detailed instructions for installing Ruby on Mac
OS X as well as on a number of Unix variants at http://www.ruby-lang.org/en/down-
loads/ (you may have to scroll down the page to see the instructions for the various
platforms). Most package managers (such as MacPorts and Aptitude) also maintain a
recent version of Ruby, and they’re likely to be the easiest avenue for getting a work-
ing Ruby installation.

 In addition to the Ruby interpreter, you need the Ruby package manager, Ruby-
Gems, to install the MongoDB Ruby driver. Find out whether RubyGems is installed by
running the gem command:

gem -v

You can install RubyGems through a package manager, but most users download the
latest version and use the included installer. Instructions for doing this can be found
at https://rubygems.org/pages/download.
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

https://rubygems.org/pages/download
http://www.it-ebooks.info/

248 APPENDIX A Installation

A.3.2 Windows

By far the easiest way to install Ruby and RubyGems on Windows is to use the Windows
Ruby Installer. The installer can be found here: http://rubyinstaller.org/downloads.
When you run the executable, a wizard will guide you through the installation of both
Ruby and RubyGems.

 In additional to installing Ruby, you can also install the Ruby DevKit, which per-
mits the easy compilation of Ruby C extensions. The MongoDB Ruby driver's BSON
library may optionally use these extensions.
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://rubyinstaller.org/downloads
http://www.it-ebooks.info/

appendix B
Design patterns

B.1 Patterns
The early chapters of this book implicitly advocate a certain set of design patterns.
Here I’ll summarize those patterns and augment them with a few patterns that fall
outside the flow of the text.

B.1.1 Embed versus reference

Suppose you’re building a simple application in MongoDB that stores blog posts and
comments. How do you represent this data? Do you embed the comments in their
respective blog post documents? Or is it better to create two collections, one for posts
and the other for comments, and then relate the comments to the posts with an object
id reference?

 This is the problem of embedding versus referencing, and it’s a common source
of confusion for new users of MongoDB. Fortunately, there’s a simple rule of thumb
that works for most schema design scenarios: Embed when the child objects always
appear in the context of their parent. Otherwise, store the child objects in a separate
collection.

 What does this mean for blog posts and comments? It depends on the application.
If the comments always appear within a blog post, and if they don’t need to be
ordered in arbitrary ways (by post date, comment rank, and so on), then embedding is
fine. But if, say, you want to be able to display the most recent comments, regardless of
which post they appear on, then you’ll want to reference. Embedding may provide a
slight performance advantage, but referencing is far more flexible.

B.1.2 One-to-many

As stated in the previous section, you can represent a one-to-many relationship by
either embedding or referencing. You should embed when the many object intrinsi-
cally belongs with its parent and rarely changes. The schema for a how-to applica-
tion illustrates this well. The steps in each guide can be represented as an array of
sub-documents because these steps are an intrinsic part of the guide, and rarely
change:

{ title: "How to soft-boil an egg",
249

steps: [

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

250 APPENDIX B Design patterns

{ desc: "Bring a pot of water to boil.",
materials: ["water", "eggs"] },

{ desc: "Gently add the eggs a cook for four minutes.",
materials: ["egg timer"]},

{ desc: "Cool the eggs under running water." },
]

}

When the two related entities will appear independently in the application, you’ll
want to relate. Many articles on MongoDB suggest that embedding comments in blog
posts is a good idea. But relating is far more flexible. For one thing, you can easily
show users a list of all their comments. You can also show all recent comments across
all posts. These features, considered de rigueur for most sites, aren’t possible with
embedded documents at this time.1 You typically relate documents using an object ID.
Here’s a sample post:

{ _id: ObjectId("4d650d4cf32639266022018d"),
title: "Cultivating herbs",
text: "Herbs require occasional watering..."

}

And here’s a comment, related by the post_id field:

{ _id: ObjectId("4d650d4cf32639266022ac01"),
post_id: ObjectId("4d650d4cf32639266022018d"),
username: "zjones",
text: "Indeed, basil is a hearty herb!"

}

The post and the comment live in their own collections, and it takes two queries to
display a post with its comments. Because you’ll be querying comments on their
post_id field, you’ll want an index there:

db.comments.ensureIndex({post_id: 1})

We used this one-to-many pattern extensively in chapters 4, 5, and 6; look there for
more examples.

B.1.3 Many-to-many

In RDBMSs, you use a join table to represent many-to-many relationships; in
MongoDB, you use array keys. You can see a clear example of this technique earlier in
the book where we relate products and categories. Each product contains an array of
category IDs, and both products and categories get their own collections. If you have
two simple category documents

{ _id: ObjectId("4d6574baa6b804ea563c132a"),
title: "Epiphytes"

}

1 There’s a popular feature request for virtual collections, which could provide the best of both worlds. See

http://jira.mongodb.org/browse/SERVER-142 to track this issue.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://jira.mongodb.org/browse/SERVER-142
http://www.it-ebooks.info/

251APPENDIX B Design patterns

{ _id: ObjectId("4d6574baa6b804ea563c459d"),
title: "Greenhouse flowers"

}

then a product belonging to both categories will look like this:

{ _id: ObjectId("4d6574baa6b804ea563ca982"),
name: "Dragon Orchid",
category_ids: [ObjectId("4d6574baa6b804ea563c132a"),

ObjectId("4d6574baa6b804ea563c459d")]
}

For efficient queries, you should index the array of category IDs:

db.products.ensureIndex({category_ids: 1})

Then, to find all products in the Epiphytes category, simply match against the
category_id field:

db.products.find({category_id: ObjectId("4d6574baa6b804ea563c132a")})

And to return all category documents related to the Dragon Orchid product, first get
the list of that product’s category IDs:

product = db.products.findOne({_id: ObjectId("4d6574baa6b804ea563c132a")})

And then query the categories collection using the $in operator:

db.categories.find({_id: {$in: product['category_ids']}})

You’ll notice that finding the categories requires two queries, whereas the product
search takes just one. This optimizes for the common case, as you’re more likely to
search for products in a category than the other way around.

B.1.4 Trees

Like most RDBMSs, MongoDB has no built-in facility for tree representation and tra-
versal. Thus if you need tree-like behavior, then you’ve got to roll your own solution. I
presented a solution to the category hierarchy problem in chapters 5 and 6. The strat-
egy there was to store a snapshot of the category’s ancestors within each category doc-
ument. This denormalization makes updates more complicated but greatly simplifies
reads.

 Alas, the denormalized ancestor approach isn’t great for all problems. Another
common tree scenario is the online forum, where hundreds of messages are fre-
quently nested many levels deep. There’s too much nesting, and too much data, for
the ancestor approach to work well here. A good alternative is the materialized path.

 Following the materialized path pattern, each node in the tree contains a path
field. This field stores the concatenation of each of the node’s ancestor’s IDs, and
root-level nodes have a null path because they have no ancestors. Let’s flesh out an
example to see how this works. First, look at the comment thread in figure B.1. This
represents a few questions and answers in thread about Greek history.
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

252 APPENDIX B Design patterns

Let’s see how these comments look as documents organized with a materialized path.
The first is a root-level comment, so the path is null:

{ _id: ObjectId("4d692b5d59e212384d95001"),
depth: 0,
path: null,
created: ISODate("2011-02-26T17:18:01.251Z"),
username: "plotinus",
body: "Who was Alexander the Great's teacher?",
thread_id: ObjectId("4d692b5d59e212384d95223a")

}

The other root-level question, the one by user seuclid, will have the same structure.
More illustrative are the follow-up comments to the question about Alexander the
Great’s teacher. Examine the first of these, and note that path contains the _id of the
immediate parent:

{ _id: ObjectId("4d692b5d59e212384d951002"),
depth: 1,
path: "4d692b5d59e212384d95001",
created: ISODate("2011-02-26T17:21:01.251Z"),
username: "asophist",
body: "It was definitely Socrates.",
thread_id: ObjectId("4d692b5d59e212384d95223a")

}

The next deeper comment’s path contains both the IDs of the original and immediate
parents, in that order and separated by a colon:

{ _id: ObjectId("4d692b5d59e212384d95003"),
depth: 2,
path: "4d692b5d59e212384d95001:4d692b5d59e212384d951002",
created: ISODate("2011-02-26T17:21:01.251Z"),
username: "daletheia",
body: "Oh you sophist...It was actually Aristotle!",
thread_id: ObjectId("4d692b5d59e212384d95223a")

}

5 points by kbanker 1 hour ago

Who was Alexander the Great's teacher?

2 points by asophist 1 hour ago

nitely Socrates.

10 points by daletheia 1 hour ago

Oh you sophist...It was actually Aristotle!

1 point by seuclid 2 hours ago

So who really discarded the parallel postulate? Figure B.1 Threaded comments
in a forum
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

253APPENDIX B Design patterns

At a minimum, you’ll want indexes on the thread_id and path fields, as you’ll always
be querying on exactly one of these fields:

db.comments.ensureIndex({thread_id: 1})
db.comments.ensureIndex({path: 1})

Now the question is how you go about querying and displaying the tree. One of the
advantages of the materialized path pattern is that you query the database only once,
whether you’re displaying the entire comment thread or just a sub-tree within the
thread. The query for the first of these is straightforward:

db.comments.find({thread_id: ObjectId("4d692b5d59e212384d95223a")})

The query for a particular sub-tree is more subtle because it uses a prefix query:

db.comments.find({path: /^4d692b5d59e212384d95001/})

This returns all comments with a path beginning with the specified string. This string
represents the _id of the comment with the username plotinus, and if you examine
the path field on each child comment, it’s easy to see that they’ll all satisfy the query.
And they’ll do so quickly because these prefix queries can use the index on path.

 Getting the list of comments is easy, since it requires just one database query. Dis-
playing them is trickier because you need a list that preserves thread order. This
requires a bit of client-side processing, which you can achieve with the following Ruby
methods.2 The first method, threaded_list, builds a list of all root-level comments
and a map that keys parent IDs to lists of child nodes:

def threaded_list(cursor, opts={})
list = []
child_map = {}
start_depth = opts[:start_depth] || 0

cursor.each do |comment|
if comment['depth'] == start_depth

list.push(comment)
else

matches = comment['path'].match(/([d|w]+)$/)
immediate_parent_id = matches[1]
if immediate_parent_id

child_map[immediate_parent_id] ||= []
child_map[immediate_parent_id] << comment

end
end

end

assemble(list, child_map)
end

The assemble method takes the list of root nodes and the child map and then builds
a new list in display order:

2 This book’s source code includes a complete example of threaded comments with materialized paths using

the display methods presented here.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

254 APPENDIX B Design patterns

def assemble(comments, map)
list = []
comments.each do |comment|

list.push(comment)
child_comments = map[comment['_id'].to_s]
if child_comments

list.concat(assemble(child_comments, map))
end

end

list
end

To print the comments, you merely iterate over the list, indenting appropriately for
each comment’s depth:

def print_threaded_list(cursor, opts={})
threaded_list(cursor, opts).each do |item|

indent = " " * item['depth']
puts indent + item['body'] + " #{item['path']}"

end
end

Querying for the comments and printing them is then straightforward:

cursor = @comments.find.sort("created")
print_threaded_list(cursor)

B.1.5 Worker queues

You can implement worker queues in MongoDB using either standard or capped col-
lections. In both cases, the findAndModify command will permit you to process queue
entries atomically.

 A queue entry requires a state and a timestamp plus any remaining fields to con-
tain the payload. The state can be encoded as a string, but an integer is more space-
efficient. We’ll use 0 and 1 to indicate processed and unprocessed, respectively. The time-
stamp is the standard BSON date. And the payload here is a simple plaintext message,
but could be anything in principle:

{ state: 0,
created: ISODate("2011-02-24T16:29:36.697Z"),
message: "hello world" }

You’ll need to declare an index that allows you to efficiently fetch the oldest unpro-
cessed entry (FIFO). A compound index on state and created fits the bill:

db.queue.ensureIndex({state: 1, created: 1})

You then use findAndModify to return the next entry and mark it as processed:

q = {state: 0}
s = {created: 1}
u = {$set: {state: 1}}
db.queue.findAndModify({query: q, sort: s, update: u})
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

255APPENDIX B Design patterns

If you’re using a standard collection, then you’ll need to be sure to remove old queue
entries. It’s possible to remove them at processing time using findAndModify’s
{remove: true} option. But some applications may want to postpone removal for a
later time, once the processing is complete.

 Capped collections may also serve as the basis for a worker queue. Without the
default index on _id, a capped collection has potentially faster insert speed, but the
difference will be negligible for most applications. The other potential advantage is
automatic deletion. But this feature is a double-edged sword: you’ll have to make sure
that the collection is large enough to prevent unprocessed entries from aging out.
Thus if you do use a capped collection, make it extra large. The ideal collection size
will depend on your queue write throughput and the average payload size.

 Once you’ve decided on the size of capped collection to use, the schema, index,
and findAndModify will be identical to those of the standard collection just described.

B.1.6 Dynamic attributes

MongoDB’s document data model is useful for representing entities whose attributes
vary. Products are the canonical example of this, and you saw some ways of modeling
these attributes earlier in the book. One viable way to model these attributes is to
scope them to a sub-document. In a single products collection, you can then store dis-
parate product types. You might store a set of headphones

{ _id: ObjectId("4d669c225d3a52568ce07646")
sku: "ebd-123"
name: "Hi-Fi Earbuds",
type: "Headphone",
attrs: { color: "silver",

freq_low: 20,
freq_hi: 22000,
weight: 0.5

}
}

and an SSD drive:

{ _id: ObjectId("4d669c225d3a52568ce07646")
sku: "ssd-456"
name: "Mini SSD Drive",
type: "Hard Drive",
attrs: { interface: "SATA",

capacity: 1.2 * 1024 * 1024 * 1024,
rotation: 7200,
form_factor: 2.5

}
}

If you need to frequently query on these attributes, you can create sparse indexes for
them. For example, you can optimize for range queries in headphone frequency
response:
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

256 APPENDIX B Design patterns

db.products.ensureIndex({"attrs.freq_low": 1, "attrs.freq_hi": 1},
{sparse: true})

You can also efficiently search hard disks by rotation speed with the following index:

db.products.ensureIndex({"attrs.rotation": 1}, {sparse: true})

The overall strategy here is to scope your attributes for readability and app discover-
ability and to use sparse indexes to keep null values out of the indexes.

 If your attributes are completely unpredictable, then you can’t build a separate
index for each one. You have to use a different strategy in this case as illustrated by the
following sample document:

{ _id: ObjectId("4d669c225d3a52568ce07646")
sku: "ebd-123"
name: "Hi-Fi Earbuds",
type: "Headphone",
attrs: [{n: "color", v: "silver"},

{n: "freq_low", v: 20},
{n: "freq_hi", v: 22000},
{n: "weight", v: 0.5}

]
}

Here attrs points to an array of sub-documents. Each of these documents has two val-
ues, n and v, corresponding to each dynamic attribute’s name and value. This normal-
ized representation allows you to index these attributes using a single compound index:

db.products.ensureIndex({"attrs.n": 1, "attrs.v": 1})

You can then query using these attributes, but to do that, you must use the $elem-
Match query operator:

db.products.find({attrs: {$elemMatch: {n: "color", v: "silver"}}})

Note that this strategy incurs a lot of overhead since it requires storing the key names
in the index. It would be important to test this for performance on a representative
data set before going into production.

B.1.7 Transactions

MongoDB doesn’t provide ACID guarantees over a series of operations, and no equiv-
alent of RDBMSs’ BEGIN, COMMIT, and ROLLBACK semantics exists. When you need these
features, use a different database (either for the data that needs proper transactions
or for the application as a whole). Still MongoDB supports atomic, durable updates
on individual documents and consistent reads, and these features, though primitive,
can be used to implement transaction-like behavior in an application.

 You saw an extended example of this in chapter 6’s treatments of order authoriza-
tion and inventory management. And the worker queue implementation earlier in
this appendix could easily be modified to support rollback. In both cases, the founda-
tion for transaction-like behavior is the ever-versatile findAndModify command, which

is used to atomically manipulate a state field on one or more documents.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

257APPENDIX B Design patterns

 The transactional strategy used in all these cases can be described as compensation-
driven.3 The compensation process in abstract works like this:

1 Atomically modify a document’s state.
2 Perform some unit of work, which may include atomically modifying other

documents.
3 Ensure that the system as a whole (all documents involved) is in a valid state. If

so, mark the transaction complete; otherwise, revert each document to its pre-
transaction state.

It’s worth noting that the compensation-driven strategy is all but necessary for long-
running and multistep transactions. The whole process of authorizing, shipping, and
canceling an order is just one example. For these cases, even an RDBMS with full trans-
actional semantics must implement a similar strategy.

 There may be no getting around certain applications’ requirements for multi-
object ACID transactions. But with the right patterns, MongoDB can pull some trans-
actional weight and might support the transactional semantic your application needs.

B.1.8 Locality and precomputation

MongoDB is frequently billed as an analytics database, and plenty of users store analyt-
ics data in MongoDB. A combination of atomic increments and rich documents seems
to work best. For example, here’s a document representing total page views for each
day of the month along with the total for the month as a whole. For brevity, the follow-
ing document contains totals only for the first five days of the month:

{ base: "org.mongodb", path: "/",
total: 99234,
days: {

"1": 4500,
"2": 4324,
"3": 2700,
"4": 2300,
"5": 0

}
}

You can update the totals for the day and month with a simple targeted update using
the $inc operator:

use stats-2011
db.sites-nov.update({ base: "org.mongodb", path: "/" },

$inc: {total: 1, "days.5": 1 });

Take a moment to notice the collection and database names. The collection, sites-
nov, is scoped to a given month, and the database, stats-2011, to a particular year.

3 Two pieces of literature covering compensation-driven transactions are worth studying. The original is Garcia-
Molina and Salem’s “Sagas” paper (http://mng.bz/73is). The less formal but no less interesting “Your Coffee

Shop Doesn’t Use Two-Phase Commit” by Gregor Hohpe (http://mng.bz/kpAq) is also a great read.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://mng.bz/73is
http://mng.bz/kpAq
http://www.it-ebooks.info/

258 APPENDIX B Design patterns

This gives the application good locality. When you query for recent visits, you’re
always querying a single collection that’s relatively small compared with the overall
analytics history. If you need to delete data, you can drop a time-scoped collection
rather than removing some subset of documents from a larger collection. That latter
operation may result in on-disk fragmentation.

 The other principle at work here is precomputation. Sometime near the beginning of
the month, you insert a template document with zeroed values for each day of the
month. As a result, the document will never change size as you increment the counters
therein because you’ll never actually be adding fields; you’ll only be changing their val-
ues in-place. This is important because it keeps the document from being relocated on
disk as you write to it. Relocation is slow and often results in fragmentation.

B.2 Anti-patterns
MongoDB lacks constraints, which can lead to poorly organized data. Here are a few
issues commonly found in problematic production deployments.

B.2.1 Careless indexing

When users experience performance problems, it’s not unusual to discover a whole
slew of unused or inefficient indexes. The most efficient set of indexes for an applica-
tion will always be based on an analysis of the queries being run. Be disciplined about
the optimization methods presented in chapter 7.

B.2.2 Motley types

Ensure that keys of the same name within a collection all share the same type. If you
store a phone number, for instance, then store it consistently, either as a string or an
integer (but not as both). The mixing of types in a single key’s value makes the appli-
cation logic complex, and makes BSON documents difficult to parse in certain
strongly typed languages.

B.2.3 Bucket collections

Collections should be used for one type of entity only; don’t put products and users in
the same collection. Because collections are cheap, each type within your application
should get its own collection.

B.2.4 Large, deeply nested documents

There are two misunderstandings about MongoDB’s document data model. One is
that you should never build relationships between collections, but rather represent all
relationships in the same document. This frequently degenerates into a mess, but
users nevertheless sometimes try it. The second misunderstanding stems from an
overly literal interpretation of the word document. A document, these users reason, is a
single entity just like a real-life document. This leads to large documents that are diffi-
cult to query and update, let alone comprehend.
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

259APPENDIX B Design patterns

 The bottom line here is that you should keep documents small (well under 100 KB
per document unless you’re storing raw binary data) and that you shouldn’t nest
more than a few levels deep. A smaller size makes document updates cheaper
because, in the case where a document needs to be rewritten on disk completely,
there’s less to rewrite. The other advantage is that the documents remain comprehen-
sible, which makes life easier for developers needing to understand the data model.

B.2.5 One collection per user

It’s rarely a good idea to build out one collection per user. One problem with this is
that the namespaces (indexes plus collections) max out at 24,000 by default. Once
you grow beyond that, you have to allocate a new database. In addition, each collec-
tion and its indexes introduce extra overhead, making this strategy a waste of space.

B.2.6 Unshardable collections

If you expect a collection to grow large enough to merit sharding, be sure that you
can eventually shard it. A collection is shardable if you can define an efficient shard
key for that collection. Review the tips in chapter 9 on choosing a shard key.
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

appendix C
Binary data and GridFS

For storing images, thumbnails, audio, and other binary files, many applications rely
on the file system only. Although file systems provide fast access to files, file system
storage can also can lead to organizational chaos. Consider that most file systems limit
the number of files per directory. If you have millions of files to keep track of, then
you need to devise a strategy for organizing files into multiple directories. Another dif-
ficulty involves metadata. Since the file metadata is still stored in a database, perform-
ing an accurate backup of the files and their metadata can be incredibly complicated.

 For certain use cases, it may make sense to store files in the database itself because
it simplifies file organization and backup. In MongoDB, you can use the BSON binary
type to store any kind of binary data. This data type corresponds to the RDBMS BLOB
(binary large object) type, and it’s the basis for two flavors of binary object storage pro-
vided by MongoDB.

 The first uses one document per file and is best for smaller binary objects. If you
need to catalog a large number of thumbnails or MD5s, then using single-document
binary storage can make life much easier. On the other hand, you might want to store
large images or audio files. In this case, GridFS, a Mongo DB API for storing binary
objects of any size, would be a better choice. In the next two sections, you’ll see com-
plete examples of both storage techniques.

C.1 Simple binary storage
BSON includes a first-class type for binary data. You can use this type to store binary
objects directly inside MongoDB documents. The only limit on object size is the docu-
ment size limit itself, which is 16 MB as of MongoDB v2.0. Because large documents
like this can tax system resources, you’re encouraged to use GridFS for any binary
objects you want to store that are larger than 1 MB.

 We’ll look at two reasonable uses of binary object storage in single documents.
First, you’ll see how to store an image thumbnail. Then, you’ll see how to store the
accompanying MD5.

C.1.1 Storing a thumbnail

Imagine you need to store a collection of image thumbnails. The code is straightfor-
ward. First, you get the image’s filename, canyon-thumb.jpg, and then read the data
260

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

261APPENDIX C Binary data and GridFS

into a local variable. Next, you wrap the raw binary data as a BSON binary object using
the Ruby driver’s BSON::Binary constructor:

require 'rubygems'
require 'mongo'

image_filename = File.join(File.dirname(__FILE__), "canyon-thumb.jpg")
image_data = File.open(image_filename).read

bson_image_data = BSON::Binary.new(image_data)

All that remains is to build a simple document to contain the binary data and then
insert it into the database:

doc = {"name" => "monument-thumb.jpg",
"data" => bson_image_data }

@con = Mongo::Connection.new
@thumbnails = @con['images']['thumbnails']
@image_id = @thumbnails.insert(doc)

To extract the binary data, fetch the document. In Ruby, the to_s method unpacks the
data into a binary string, and you can use this to compare the saved data to the original:

doc = @thumbnails.find_one({"_id" => @image_id})
if image_data == doc["data"].to_s

puts "Stored image is equal to the original file!"
end

If you run the preceding script, you’ll see a message indicating that the two files are
indeed the same.

C.1.2 Storing an MD5

It’s common to store a checksum as binary data, and this marks another potential use
of the BSON binary type. Here’s how you can generate an MD5 of the thumbnail and
add it to the document just stored:

require 'md5'
md5 = Digest::MD5.file(image_filename).digest
bson_md5 = BSON::Binary.new(md5, BSON::Binary::SUBTYPE_MD5)

@thumbnails.update({:_id => @image_id}, {"$set" => {:md5 => bson_md5}})

Note that when creating the BSON binary object, you tag the data with SUBTYPE_MD5.
The subtype is an extra field on the BSON binary type that indicates what kind of
binary data is being stored. However, this field is entirely optional and has no effect on
how the database stores or interprets the data.1

 It’s easy to query for the document just stored, but do notice that you exclude the
data field to keep the return document small and readable:

1 This wasn’t always technically true. The deprecated default subtype of 2 indicated that the attached binary
data also included four extra bytes to indicate the size, and this did affect a few database commands. The cur-
rent default subtype is 0, and all subtypes now store the binary payload the same way. Subtype can therefore

be seen as a kind of lightweight tag to be optionally used by application developers.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

262 APPENDIX C Binary data and GridFS

> use images
> db.thumbnails.findOne({}, {data: 0})
{

"_id" : ObjectId("4d608614238d3b4ade000001"),
"md5" : BinData(5,"K1ud3EUjT49wdMdkOGjbDg=="),
"name" : "monument-thumb.jpg"

}

See that the MD5 field is clearly marked as binary data, with the subtype and raw payload.

C.2 GridFS
GridFS is a convention for storing files of arbitrary size in MongoDB. The GridFS spec-
ification is implemented by all of the official drivers and by MongoDB’s mongofiles
tool, ensuring consistent access across platforms. GridFS is useful for storing large
binary objects in the database. It’s frequently fast enough to serve these object as well,
and the storage method is conducive to streaming.

 The term GridFS frequently leads to confusion, so two clarifications are worth mak-
ing right off the bat. The first is that GridFS isn’t an intrinsic feature of MongoDB. As
mentioned, it’s a convention that all the official drivers (and some tools) use to manage
large binary objects in the database. Second, it’s important to clarify that GridFS
doesn’t have the rich semantics of bona fide file systems. For instance, there’s no pro-
tocol for locking and concurrency, and this limits the GridFS interface to simple put,
get, and delete operations. This means that if you want to update a file, you need to
delete it and then put the new version.

 GridFS works by dividing a large file into small, 256 KB chunks and then storing
each chunk as a separate document. By default, these chunks are stored in a collec-
tion called fs.chunks. Once the chunks are written, the file’s metadata is stored in a
single document in another collection called fs.files. Figure C.1 contains a simplis-
tic illustration of this process applied to a theoretical 1 MB file called canyon.jpg.

 That should be enough theory to use GridFS. Next we’ll see GridFS in practice
through the Ruby GridFS API and the mongofiles utility.

C.2.1 GridFS in Ruby

Earlier you stored a small image thumbnail. The thumbnail took up only 10 KB and
was thus ideal for keeping in a single document. The original image is almost 2 MB
in size, and is therefore much more appropriate for GridFS storage. Here you’ll
store the original using Ruby’s GridFS API. First, you connect to the database and
then initialize a Grid object, which takes a reference to the database where the
GridFS file will be stored.

 Next, you open the original image file, canyon.jpg, for reading. The most basic
GridFS interface uses methods to put and get a file. Here you use the Grid#put
method, which takes either a string of binary data or an IO object, such as a file
pointer. You pass in the file pointer and the data is written to the database.
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

263APPENDIX C Binary data and GridFS

The method returns the file’s unique object ID:

@con = Mongo::Connection.new
@db = @con["images"]

@grid = Mongo::Grid.new(@db)

filename = File.join(File.dirname(__FILE__), "canyon.jpg")
file = File.open(filename, "r")

file_id = @grid.put(file, :filename => "canyon.jpg")

As stated, GridFS uses two collections for storing file data. The first, normally called
fs.files, keeps each file’s metadata. The second collection, fs.chunks, stores one or
more chunks of binary data for each file. Let’s briefly examine these from the shell.

 Switch to the images database, and query for the first entry in the fs.files collec-
tion. You’ll see the metadata for the file you just stored:

> use images
> db.fs.files.findOne()
{

"_id" : ObjectId("4d606588238d3b4471000001"),
"filename" : "canyon.jpg",
"contentType" : "binary/octet-stream",
"length" : 2004828,
"chunkSize" : 262144,
"uploadDate" : ISODate("2011-02-20T00:51:21.191Z"),
"md5" : "9725ad463b646ccbd287be87cb9b1f6e"

canyon.jpg
1MB

2. W les)

lename: "canyon.jpg" }

1. Write to chunks collection (fs.chunks)

les_id: 5, n: 0, data: BinData(0, "(256KB binary data)" }

les_id: 5, n: 1, data: BinData(0, "(256KB binary data)" }

les_id: 5, n: 2, data: BinData(0, "(256KB binary data)" }

les_id: 5, n: 3, data: BinData(0, "(256KB binary data)" }

Grid#put

Divide into chunks

W le metadata

GridFS Interface
(e.g., driver or mongofiles)

Figure C.1 Storing a file with GridFS
}

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

264 APPENDIX C Binary data and GridFS

These are the minimum required attributes for every GridFS file. Most are self-
explanatory. You can see that this file is about 2 MB and is divided into chunks 256 KB
in size. You’ll also notice an MD5. The GridFS spec requires a checksum to ensure that
the stored file is the same as the original.

 Each chunk stores the object ID of its file in a field called files_id. Thus you can
easily count the number of chunks this file uses:

> db.fs.chunks.count({"files_id" : ObjectId("4d606588238d3b4471000001")})
8

Given the chunk size and the total file size, eight chunks is exactly what you should
expect. The contents of the chunks themselves is easy to see, too. Like earlier, you’ll
want to exclude the data to keep the output readable. This query returns the first of
the eight chunks, as indicated by the value of n:

> db.fs.chunks.findOne({files_id: ObjectId("4d606588238d3b4471000001")},
{data: 0})

{
"_id" : ObjectId("4d606588238d3b4471000002"),
"n" : 0,
"files_id" : ObjectId("4d606588238d3b4471000001")

}

Reading GridFS files is as easy as writing them. In the following example, you use
Grid#get to return an IO-like GridIO object representing the file. You can then stream
the GridFS file back to the file system. Here, you read 256 KB at a time to write a copy
of the original file:

image_io = @grid.get(file_id)

copy_filename = File.join(File.dirname(__FILE__), "canyon-copy.jpg")
copy = File.open(copy_filename, "w")

while !image_io.eof? do
copy.write(image_io.read(256 * 1024))

end

copy.close

You can then verify for yourself that both files are the same:2

$ diff -s canyon.jpg canyon-copy.jpg
Files canyon.jpg and canyon-copy.jpg are identical

That’s the basics of reading and writing GridFS files from a driver. The various GridFS
APIs vary slightly, but with the foregoing examples and the basic knowledge of how
GridFS works, you should have no trouble making sense of your driver’s docs.
2 This code assumes that you have the diff utility installed.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

265APPENDIX C Binary data and GridFS

C.2.2 GridFS with mongofiles

The MongoDB distribution includes a handy utility called mongofiles for listing, put-
ting, getting, and deleting GridFS files using the command line. For example, you can
list the GridFS files in the images database:

$ mongofiles -d images list
connected to: 127.0.0.1
canyon.jpg 2004828

You can also easily add files. Here’s how you can add the copy of the image that you
wrote with the Ruby script:

$ mongofiles -d images put canyon-copy.jpg
connected to: 127.0.0.1
added file: { _id: ObjectId('4d61783326758d4e6727228f'),

filename: "canyon-copy.jpg",
chunkSize: 262144, uploadDate: new Date(1298233395296),
md5: "9725ad463b646ccbd287be87cb9b1f6e", length: 2004828 }

You can again list the files to verify that the copy was written:

$ mongofiles -d images list
connected to: 127.0.0.1
canyon.jpg 2004828
canyon-copy.jpg 2004828

mongofiles supports a number of options, and you can view them with the --help
parameter:

$ mongofiles --help
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

appendix D
MongoDB in PHP,

Java, and C++
This book has presented MongoDB through the lenses of JavaScript and Ruby. But
there are plenty of other ways to communicate with MongoDB, and this appendix
presents three that span the gamut. I’ll start with PHP because it’s a popular scripting
language. I include Java because it’s still arguably the language of the enterprise and
thus important to a lot of readers of this book. Plus, the Java driver’s API diverges sig-
nificantly from that of most scripting languages. Finally, I’ll present the C++ driver
because it’s a core part of MongoDB’s codebase, and it’s likely to be useful to develop-
ers wanting to build high-performance standalone applications.

 Each language section describes how to construct documents and make connec-
tions, and then ends with a complete program that inserts, updates, queries, and
deletes a sample document. All of the programs perform the same operations and pro-
duce the same output, so they’re easy to compare. The document in each program is
an example of what a simple web crawler might store; for reference, here it is in JSON:

{ url: "org.mongodb",
 tags: ["database", "open-source"],
 attrs: { "last-visit" : ISODate("2011-02-22T05:18:28.740Z"),
 "pingtime" : 20
 }
}

D.1 PHP
The PHP community has embraced MongoDB with zeal, thanks in no small part to the
quality of the driver. The sample code should feel roughly isomorphic to the equiva-
lent Ruby code.

D.1.1 Documents

PHP arrays are implemented as ordered dictionaries. They therefore map nicely to
BSON documents. You can create a simple document using PHP array literals:

$basic = array("username" => "jones", "zip" => 10011);
266

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

267APPENDIX D MongoDB in PHP, Java, and C++

PHP arrays can also be nested. This complex document contains an array of tags and a
sub-document with a last_access date and integer pingtime. Note you must use the
special MongoDate class to represent a date:

$doc = array("url" => "org.mongodb",
"tags" => array("database", "open-source"),
"attrs" => array("last_access" => new MongoDate(),

"pingtime" => 20
)

);

D.1.2 Connections

You can connect to a single node with the Mongo constructor:

$conn = new Mongo("localhost", 27017);

To connect to a replica set, pass a MongoDB connection URI to the Mongo constructor.
You must also specify array("replicaSet" => true):

$repl_conn = new Mongo("mongo://localhost:30000,localhost:30001",
array("replicaSet" => true));

MONGODB CONNECTION URIS The MongoDB connection URI is a standard way
to specify connection options across drivers. Most of the drivers will accept a
connection URI, and this can simplify configuration for a system that talks to a
MongoDB server across environments. See the official online MongoDB docs
for the latest URI specification.

PHP applications often run much more efficiently with persistent connections. If you
use them, be sure always to specify array("persistent" => "x"), where "x" repre-
sents a unique identifier for the persistent connection being created:

$conn = new Mongo("localhost", 27017, array("persist" => "x"));

D.1.3 Sample program

The following PHP program shows how to insert, update, query, and delete a docu-
ment. It also includes several PHP BSON document representations.

<?php
$m = new Mongo("localhost", 27017);
$db = $m->crawler;
$coll = $db->sites;

$doc = array("url" => "org.mongodb",
"tags" => array("database", "open-source"),
"attrs" => array("last_access" => new MongoDate(),

"pingtime" => 20
)

);

Listing D.1 Sample PHP driver usage
$coll->insert($doc);

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

268 APPENDIX D MongoDB in PHP, Java, and C++

print "Initial document:n";
print print_r($doc);

print "Updating pingtime...n";
$coll->update(

array("_id" => $doc["_id"]),
array('$set' => array('attrs.pingtime' => 30))

);

print "After update:n";
$cursor = $coll->find();
print print_r($cursor->getNext());

print "nNumber of site documents: " . $coll->count() . "n";

print "Removing documents...n";
$coll->remove();

?>

D.2 Java
Among MongoDB drivers, the Java driver may be the one most frequently used in pro-
duction. In addition to backing pure Java apps, the Java driver also forms the basis for
the drivers powering JVM languages like Scala, Clojure, and JRuby. Java’s lack of a dic-
tionary literal makes the building of BSON documents more verbose, but the driver on
the whole is still easy to use.

D.2.1 Documents

To construct a BSON document, you can initialize a BasicBSONObject, which imple-
ments the Map interface to provide a simple API centered around get() and put()
operations.

 The BasicBSONObject constructor takes an optional initial key-value pair for con-
venience. Using that, you can build a simple document like so:

DBObject simple = new BasicDBObject("username", "Jones");
simple.put("zip", 10011);

Adding a sub-document means creating an extra BasicBSONObject. The array can be
a normal Java array:

DBObject doc = new BasicDBObject();
String[] tags = { "database", "open-source" };

doc.put("url", "org.mongodb");
doc.put("tags", tags);

DBObject attrs = new BasicDBObject();
attrs.put("lastAccess", new Date());
attrs.put("pingtime", 20);

doc.put("attrs", attrs);

System.out.println(doc.toString());

Finally, note that you can inspect a document using its toString() method.
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

269APPENDIX D MongoDB in PHP, Java, and C++

D.2.2 Connections

Creating a single-node connection is easy as long as you remember to wrap the call in
a try block:

try {
Mongo conn = new Mongo("localhost", 27017);

} catch (Exception e) {
throw new RuntimeException(e);

}

To connect to a replica set, first build a list of ServerAddress objects. Then pass that
list to the Mongo constructor:

List servers = new ArrayList();
servers.add(new ServerAddress("localhost" , 30000));
servers.add(new ServerAddress("localhost" , 30001));

try {
Mongo replConn = new Mongo(servers);

} catch (Exception e) {
throw new RuntimeException(e);

The Java driver includes flexible support for write concern. You can specify a different
write concern on the Mongo, DB, and DBCollection objects, as well as on any of
DBCollection’s write methods. Here we specify a global write concern on the connec-
tion using the WriteConcern configuration class:

WriteConcern w = new WriteConcern(1, 2000);
conn.setWriteConcern(w);

D.2.3 Sample program

This Java program is a direct translation of the previous PHP program, and it should
be self-explanatory:

import com.mongodb.Mongo;
import com.mongodb.DB;
import com.mongodb.DBCollection;
import com.mongodb.BasicDBObject;
import com.mongodb.DBObject;
import com.mongodb.DBCursor;
import com.mongodb.WriteConcern;
import java.util.Date;

public class Sample {

public static void main(String[] args) {

Mongo conn;
try {

conn = new Mongo("localhost", 27017);
} catch (Exception e) {

throw new RuntimeException(e);
}

WriteConcern w = new WriteConcern(1, 2000);

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

270 APPENDIX D MongoDB in PHP, Java, and C++

conn.setWriteConcern(w);

DB db = conn.getDB("crawler");
DBCollection coll = db.getCollection("sites");

DBObject doc = new BasicDBObject();
String[] tags = { "database", "open-source" };

doc.put("url", "org.mongodb");
doc.put("tags", tags);

DBObject attrs = new BasicDBObject();
attrs.put("lastAccess", new Date());
attrs.put("pingtime", 20);

doc.put("attrs", attrs);

coll.insert(doc);

System.out.println("Initial document:n");
System.out.println(doc.toString());

System.out.println("Updating pingtime...n");
coll.update(new BasicDBObject("_id", doc.get("_id")),

new BasicDBObject("$set", new BasicDBObject("pingtime", 30)));

DBCursor cursor = coll.find();

System.out.println("After updaten");
System.out.println(cursor.next().toString());

System.out.println("Number of site documents: " + coll.count());

System.out.println("Removing documents...n");
coll.remove(new BasicDBObject());

}
}

D.3 C++
Reasons to recommend the C++ driver include its speed and its closeness to the core
server. You’d be hard pressed to find a faster driver, and if you’re interested in
MongoDB’s internals, then learning the C++ driver makes for a good entry point into
the source code. The C++ driver isn’t so much a standalone driver as an integral inter-
nal MongoDB API that’s intermingled with the core code base. That said, facilities
exist for using this code as an independent library.

D.3.1 Documents

There are two ways to create BSON documents in C++. You can use the somewhat ver-
bose BSONObjBuilder, or you can use the BSON macros that wrap it. I’ll show both
methods for each example document.

 Let’s start with a simple document:

BSONObjBuilder simple;
simple.genOID().append("username", "Jones").append("zip", 10011);
BSONObj doc = simple.obj();
cout << doc.jsonString();

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

271APPENDIX D MongoDB in PHP, Java, and C++

Note that you explicitly generate the object ID using the genOID() function. C++ BSON
objects are static, which means that the insert function can’t modify them like it does
in other drivers. If you want a handle on the object id after insert, then you need to
generate it yourself.

 Note also that you must convert the BSONObjBuilder into a BSONObj before it can
be used. You do this by calling the BSONObjBuilder’s obj() method.

 Now let’s generate the same document using the helper macros. BSON and GENOID
will save some typing:

BSONObj o = BSON(GENOID << "username" << "Jones" << "zip" << 10011);
cout << o.jsonString();

Constructing the more complex document will be reminiscent of Java, where you have
to build each sub-object separately. Note that you build the array with the standard
BSONObjBuilder, only you use numeric string indexes 0 and 1. This is in fact how
arrays are stored in BSON:

BSONObjBuilder site;
site.genOID().append("url", "org.mongodb");
BSONObjBuilder tags;
tags.append("0", "database");
tags.append("1", "open-source");
site.appendArray("tags", tags.obj());

BSONObjBuilder attrs;
time_t now = time(0);
attrs.appendTimeT("lastVisited", now);
attrs.append("pingtime", 20);
site.append("attrs", attrs.obj());

BSONObj site_obj = site.obj();

Like before, you’ll appreciate the macros for conciseness. Pay special attention to the
BSON_ARRAY and DATENOW macros, and note what constructs they replace in the
BSONObjBuilder version of the document:

BSONObj site_concise = BSON(GENOID << "url" << "org.mongodb"
<< "tags" << BSON_ARRAY("database" << "open-source")
<< "attrs" << BSON("lastVisited" << DATENOW << "pingtime" << 20));

Unique to C++ is the requirement that you explicitly mark BSON documents that will
be used as query selectors. One way to do this is with the Query() constructor:

BSONObj selector = BSON("_id" << 1);
Query * q1 = new Query(selector);
cout << q1->toString() << "n";

Again, the handy QUERY macro will usually be preferable:

Query q2 = QUERY("pingtime" << LT << 20);
cout << q2.toString() << "n";
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

272 APPENDIX D MongoDB in PHP, Java, and C++

D.3.2 Connections

You can easily create single-node connections by instantiating a DBClientConnection.
Always wrap this in a try block:

DBClientConnection conn;

try {
conn.connect("localhost:27017");

}
catch(DBException &e) {

cout << "caught " << e.what() << endl;
}

Connecting to a replica set first requires that you build a vector containing HostAnd-
Port objects. You then pass the name of the replica set and the vector to the
DBClientReplicaSet constructor. You can check the contents of the object by calling
toString():

std::vector<HostAndPort> seeds (2);
seeds.push_back(HostAndPort("localhost", 30000));
seeds.push_back(HostAndPort("localhost", 30001));

DBClientReplicaSet repl_conn("myset", seeds);
try {

repl_conn.connect();
catch(DBException &e) {

cout << "caught " << e.what() << endl;
}

cout << repl_conn.toString();

D.3.3 Sample program

The main thing to notice in the C++ code sample is that there are no explicit classes
for abstracting databases and collections. All inserts, updates, queries, and deletes go
through the connection object itself. You specify the database and collection as the
first argument to these methods in the form of a namespace (crawler.sites):

#include <iostream>
#include <ctime>
#include "client/dbclient.h"

using namespace mongo;

int main() {
DBClientConnection conn;

try {
conn.connect("localhost:27017");

}
catch(DBException &e) {

cout << "caught " << e.what() << endl;
}

BSONObj doc = BSON(GENOID << "url" << "org.mongodb"

<< "tags" << BSON_ARRAY("database" << "open-source")

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

273APPENDIX D MongoDB in PHP, Java, and C++

<< "attrs" << BSON("lastVisited" << DATENOW << "pingtime" << 20));

cout << "Initial document:n" << doc.jsonString() << "n";
conn.insert("crawler.sites", doc);

cout << "Updating pingtime...n";
BSONObj update = BSON("$set" << BSON("attrs.pingtime" << 30));
conn.update("crawler.sites", QUERY("_id" << doc["_id"]), update);

cout << "After update:n";
auto_ptr<DBClientCursor> cursor;
cursor = conn.query("crawler.sites", QUERY("_id" << doc["_id"]));
cout << cursor->next().jsonString() << "n";

cout << "Number of site documents: " <<
conn.count("crawler.sites") << "n";

cout << "Removing documents...n";
conn.remove("crawler.sites", BSONObj());

return 0;
}

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

appendix E
Spatial indexing

With the proliferation of smart mobile devices, the demand for location-based services
has been increasing steadily. To build these location-dependent applications requires
a database capable of indexing and querying spatial data. This feature was added to
the MongoDB road map fairly early on, and MongoDB’s spatial indexing, though not
as fully featured as, say, PostGIS, nevertheless now powers the location queries for a
number of popular sites.1

 As the name implies, spatial indexes are optimized for data representing locations.
In the case of MongoDB, this data is typically represented as longitude and latitude on
the geographic coordinate system. A spatial index on the data can then permit que-
ries based on a user’s location. For example, you might have a collection containing
menu data and coordinates for every restaurant in New York City. With an index on
those restaurant locations, you can query the database for the closest restaurant to the
Brooklyn Bridge serving caviar.

 What’s more, the indexer is generic enough to work outside the terrestrial. This
means that you can even use it to index locations on two-dimensional coordinate
planes or on the planet Mars.2 Regardless of your use case, spatial indexes are rela-
tively easy to build and query on. Here I’ll describe how to build these indexes, the
range of queries possible, and a few internal design specs.

E.1 Spatial indexing basics
We’ll use a US ZIP code database to demonstrate MongoDB’s spatial indexes. The data
is available at http://mng.bz/dOpd. When you unzip the archive, you’ll get a JSON
file that you can import using mongoimport, like so:

$ mongoimport -d geo -c zips zips.json

Let’s first look at a ZIP code document. If you followed the import instructions, you
should be able to fetch a document like so:

> use geo

1 The most prominent of these is Foursquare (http://foursquare.com). You can learn more about Four-
square’s MongoDB usage at http://mng.bz/rh4n.

2 A great example of the former is WordSquared (http://wordsquared.com), a Scrabble-like game that uses
274

MongoDB’s spatial indexing for queries against the tiles on its game board.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://mng.bz/dOpd
http://foursquare.com
http://mng.bz/rh4n
http://wordsquared.com
http://www.it-ebooks.info/

275APPENDIX E Spatial indexing

> db.zips.findOne({zip: 10011})
{
"_id" : ObjectId("4d291187888cec7267e55d24"),
"city" : "New York City",
"loc" : {

"lon" : -73.9996
"lat" : 40.7402,

},
"state" : "New York",
"zip" : 10011
}

In addition to the expected city, state, and ZIP fields, you’ll see a fourth field, loc, that
stores the coordinates for the geographic center of the given ZIP code. This is the field
you’ll want to index and query on. Only fields containing coordinate values can be
spatially indexed. But note that the form of the fields isn’t too strict. You could just as
easily use different keys to represent these coordinates:

{ "loc" : { "x" : -73.9996, "y" : 40.7402 } }

Or you might use a simple array pair:

{ "loc" : [-73.9996, 40.7402] }

As long as you use a sub-document or an array, each of which contains two values, the
field can be spatially indexed.

 Now, to create the index itself, you specify 2d as the index type:

> use geo
> db.zips.ensureIndex({loc: '2d'})

This builds a spatial index on the loc field. Only those documents containing a prop-
erly formatted coordinate pair will be indexed; thus spatial indexes are always sparse.
By default, the minimum and maximum coordinate values will be -180 and 180, respec-
tively. This is the proper range for geographic coordinates, but if you happen to be
indexing for a different domain, then you can set the min and max values as follows:

> use games
> db.moves.ensureIndex({loc: '2d'}, {min: 0, max: 64})

Once you’ve built a spatial index, you can perform spatial queries.3 The simplest and
most common type of spatial query is known as the $near query. When used in con-
junction with a limit, a $near query allows you to find the n nearest locations to a
given coordinate. For example, to find the three ZIP codes closest to Grand Central
Station, you can issue the following query:

> db.zips.find({'loc': {$near: [-73.977842, 40.752315]}}).limit(3)
{ "_id" : ObjectId("4d291187888cec7267e55d8d"), "city" : "New York City",

"loc" : { "lon" : -73.9768, "lat" : 40.7519 },
"state" : "New York", "zip" : 10168 }

{ "_id" : ObjectId("4d291187888cec7267e55d97"), "city" : "New York City",
3 Note that this contrasts with non-spatial queries, which can be issued with or without a supporting index.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

276 APPENDIX E Spatial indexing

"loc" : { "lon" : -73.9785, "lat" : 40.7514 },
"state" : "New York", "zip" : 10178 }

{ "_id" : ObjectId("4d291187888cec7267e55d8a"), "city" : "New York City",
"loc" : { "lon" : -73.9791, "lat" : 40.7524 },
"state" : "New York", "zip" : 10165 }

Specifying a reasonable limit will ensure the fastest query response times. If no limit is
given, then the limit will automatically be set to 100 to keep the query from returning
the entire data set. If you require more than 100 results, specify the number as a limit:

> db.zips.find({'loc': {$near: [-73.977842, 40.752315]}}).limit(500)

E.2 Advanced queries
Although $near queries are good for a lot of use cases, a few more advanced query
techniques are also available. Instead of querying, you can run a special command
called geoNear that returns the distances for each nearby object and several stats
about the query itself:

> db.runCommand({'geoNear': 'zips', near: [-73.977842, 40.752315], num: 2})
{

"ns" : "geo.zips",
"near" : "0110000111011010011111010110010011001111111011011100",
"results" : [

{
"dis" : 0.001121663764459287,
"obj" : {

"_id" : ObjectId("4d291187888cec7267e55d8d"),
"city" : "New York City",
"loc" : {

"lon" : -73.9768,
"lat" : 40.7519

},
"state" : "New York",
"zip" : 10168

}
},
{

"dis" : 0.001126847051610947,
"obj" : {

"_id" : ObjectId("4d291187888cec7267e55d97"),
"city" : "New York City",
"loc" : {

"lon" : -73.9785,
"lat" : 40.7514

},
"state" : "New York",
"zip" : 10178

}
}

],
"stats" : {

"time" : 0,

"btreelocs" : 4,

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

277APPENDIX E Spatial indexing

"nscanned" : 3,
"objectsLoaded" : 2,
"avgDistance" : 0.001124255408035117,
"maxDistance" : 0.001126847051610947

},
"ok" : 1

}

The dist field that accompanies each document is a measure of that item’s distance
from the center point. In this case, the distance is measured in degrees.

 Another slightly more advanced query allows searches within certain boundaries
using the $within query operator. So, for example, to find all ZIP codes within 0.011
degrees of Grand Central Station, you can issue the following $center query:

> center = [-73.977842, 40.752315]
> radius = 0.011
> db.zips.find({loc: {$within: {$center: [center, radius] }}}).count()
26

This is theoretically equivalent to running a $near query with the optional $max-
Distance parameter. Both queries return all results with the specified distance from
the center point.

> db.zips.find({'loc': {$near: [-73.977842, 40.752315],
$maxDistance: 0.011}}).count()

26

In addition to the $center operation, you can use the $box operator to return results
lying inside a particular bounding box. So, for example, to return all ZIP codes lying
within the box bounded by Grand Central Station and LaGuardia Airport, you could
issue the following:

> lower_left = [-73.977842, 40.752315]
> upper_right = [-73.923649, 40.762925]
> db.zips.find({loc: {$within:

{$box: [lower_left, upper_right] }}}).count()
15

Take note that the $box operator requires a two-element array, with the first element
being the lower-left coordinate and the second element being the upper-right coordi-
nate of the desired bounding box.

E.3 Compound spatial indexes
It’s possible to create compound spatial indexes, but only if the coordinate key comes
first. You might use a compound spatial index to enable queries on a location in addi-
tion to some type of metadata. For instance, imagine that the gardening store intro-
duced earlier in the book has retail locations and that different locations provide
different services. A couple of location documents might, in part, look like these:

{loc: [-74.2, 40.3], services: ['nursery', 'rentals']}
{loc: [-75.2, 39.3], services: ['rentals']}
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

278 APPENDIX E Spatial indexing

So to query efficiently on both location and services, you’d create the following com-
pound index:

> db.locations.ensureIndex({loc: '2d', services: 1})

This makes finding all retail stores with a nursery pretty trivial:

> db.locations.find({loc: [-73.977842, 40.752315], services: 'nursery'})

There’s not much more to compound spatial indexes than that. If you’re ever in
doubt about whether they’re effective for your application, be sure to try running
explain() on the relevant queries.

E.4 Spherical geometry
All of the spatial queries I’ve described thus far use a flat-earth model for distance
computations. In particular, the database uses Euclidean distance to determine the
distance between points.4 For a lot of use cases, including finding the closest n loca-
tions to a given point, this is perfectly acceptable, and the simplicity of the math
ensures the fastest query result.

 But the reality is that the earth is roughly spherical.5 This means that the Euclidean
distance calculations become less and less accurate as the distance between points
increases. For this reason, MongoDB also supports distance calculations based on a
two-dimensional spherical model. These queries yield more accurate distance results
at only a slight performance cost.

 To use spherical geometry, you need only make sure that all coordinates are stored
in longitude-latitude order and that any distances are expressed in radians. You can
then deploy most of the queries expressed earlier in their spherical forms. For exam-
ple, $nearSphere is the spherical equivalent of $near and is expressed as follows:

> db.zips.find({'loc': {$nearSphere: [-73.977842, 40.752315]}}).limit(3)

The geoNear command also supports spherical calculations with the addition of the
{ spherical: true } option:

> db.runCommand({'geoNear': 'zips',
near: [-73.977842, 40.752315], num: 2, spherical: true})

Finally, you can use $centerSphere to query within a circle using spherical distances.
Just be sure that when specifying the radius, you use radians:

center = [-73.977842, 40.752315]
radius_in_degrees = 0.11
radius_in_radians = radius_in_degrees * (Math.PI / 180);
db.zips.find({loc: {$within:

{$centerSphere: [center, radius_in_radians] }}})

4 http://en.wikipedia.org/wiki/Euclidean_distance

5 Roughly speaking because it’s technically an oblate spheroid, which means that it bulges at the equator.

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://en.wikipedia.org/wiki/Euclidean_distance
http://www.it-ebooks.info/

index
Symbols

_id (primary key field) 15, 25
_id field, for replica set

members 171
. (dot operator), with

queries 85
$atomic (to prevent

yielding) 124
$box (spatial query

selector) 277
$center (spatial query

selector) 277
$centerSphere (spatial query

selector) 278
$cmd collection 34
$cmd.sys.inprog (virtual

 collection for current
op) 231

$cmd.sys.unlock (unlock com-
mand path) 235

$elemMatch (query
operator) 87–88

$in (query operator) 61
$maxElement (explain

field) 149
$maxKey 197
$minElement (explain

field) 149
$minKey 197
$mod (query operator) 90
$natural (sort modifier), for

querying the oplog 166
$natural (sort operator) 70,

146
$near (spatial index query

$nearSphere (spatial query
selector) 278

$regex (query operator) 90
$slice (projection operator) 91
$type (query operator) 72
$unset 27
$within (spatial query

selector) 277

Numerics

10gen 5
subscription services 5

32-bit architecture 21
32-bit integer 72
64-bit architecture 21
64-bit integer 72

A

address already in use (error
message) 246

addshard command 193, 213
addShard() method 193
addUser() method 227
administration 33, 35
aggregation 92–95

calculating averages 93
finalizer function 93

AGPL (GNU) 13
allPlans (explain output) 151
Amazon EC2 186, 222
analytics 257–258

production use case 20
schema design for 257

and (Boolean) 81, 83
anti-patterns 258–259

bucket collections 258
careless indexing 258
collection per user 259
large documents 258
motley types 258
unshardable

collections 259
Apache license 15
AppEngine 5
application design

dynamic attributes 48
Twitter archiver 47, 52

arbiterOnly 171
arbiters 159
ArchLinux 242
arrays

indexing 87
See also multikey indexes

querying 80, 86–88
update operators for

121–122
using dot notation with 87

atime (file system
attribute) 221

atomic operations, with tar-
geted updates 104

atomicity 109
auth (mongod option) 227
auth() method 227
authentication 226–228

read-only access 227
averages, calculating

manually 105
279

selector) 275 shard key for 208

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

280 INDEX

B

backups 234–235
for sharded clusters 215–216
locking the database for 235

balancer process
sh.isBalancerRunning()

method 216
sh.setBalancerState()

method 216
stopping 215

balancing
balancer process 190
triggering of 190

big-endian support 219
BigTable (Google's internal

data store) 19
binary data

BSON binary subtypes 261
storage of 260–262

bind_ip (mongod option) 226
BLOB (RDBMS type) 260
BSON 44–45

:Binary (Ruby class) 261
:OrderedHash (Ruby

class) 86
custom types 73
examining raw 233
internal format example 44
key name overhead 71
maximum size of 177
numeric types 72
Object ID type. See Object

IDs
preserving key order 86
serialization of 70–72
sizing and updates 125
strings 72
time types 73
timestamp type 164–165
types 72–73
valid key names for 71

BSON types, min key and max
key 197

bsondump utility 233
BSONObjBuilder (C++

class) 271
B-trees 136–137

advantages of 136
estimating storage size 137
maximum key size 137
node structure 137

buildIndexes (replica set
option) 172

C

C++ driver 270–273
as an introduction to the

source code 270
creating connections

with 272
creating documents

with 270
sample MongoDB

program 272
capacity planning 211
capped collections 68–70

and replication 164
for implementing a

queue 255
indexes and 69
limitations of 70
natural ordering of 70

Cassandra database 17
CentOS 242
changelog (config

collection) 199
character encoding 72
chunks 189

collection storing chunk
ranges 196

counting 196
default max size 190
logical vs. physical 189
pre-splitting for faster

distribution 212
problem when too large to

split 206–207
splitting and migrating

of 190
clock skew 222
cloud deployment 222
collection scans 83, 148
collections 67–70

automatic creation of 25
capped. See capped

collections
drop() method 28
listing 33
renaming 68
sharding existing 211
stats 34
system. See system

collections
valid names for 67
virtual namespacing of 68

collstats command 35
command shell 14, 24

command-line options
246–247

getting from a running
mongod 247

commands 34
implementation of 34
max return size 96
runCommand() method 35

compensation-driven
mechanisms 257

compiling from source 245
concurrency 124–125, 220

optimistic locking 104
yielding strategy 124

config database 196
config files 247
config servers 188

deployment of 209
failure of 217
two-phase commit and 188

configdb (mongos option) 193
configsvr (mongod

option) 192
connecting to mongod 39
connection URIs 267
CouchDB (Apache document-

based data store) 19
count 78
count command 26
covering indexes 154–155
CPU. See hardware

requirements
createCollection() method 67
CSV format 225
currentOp() method 142, 230
cursor types

BasicCursor 31
BtreeCursor 32

cursors 40
BasicCursor (explain

output) 148
BtreeCursor (explain

output) 148
iterating 41
reasons for 40

D

data center awareness 182
data centers

multiple with replica
sets 176

multiple with sharding 210
data directory 242
bulk loading data 74 getting help 35

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

281INDEX

data files 66
.ns file 66
allocation of 66
copying 235
limiting the size of 66

data modeling. See schema
design

data types, BSON definition
of 44

databases 65
allocating initial data files 25
automatic creation of 25
creating 25
listing 33
stats 33

databases (sharding metadata
collection) 214

db.isMaster() method 160
DBClientReplicaSet (C++

class) 272
dbpath (mongod option) 246
dbpath does not exit (error

message) 245
dbstats command 34, 67
deleteIndexes command 140
deletes 42, 124
denormalization, benefits of 63
deployment 219–228

file systems 221
in the cloud 222
server configuration 223

design patterns. See schema
design

dictionary (Python
primitive) 15

directoryperdb (mongod
option) 221

discover (mongostat
option) 231

disks 220
diagnosing performance

of 237
RAID configurations 221
suggestions for improving

performance of 239
distinct (aggregation

function) 96
document model 4
documents 5, 13

advantages of 4, 7
deep nesting of 74
example social news site

entry 5
lack of enforced schema 7
language representation

relation to agile
development 7

size limits 74
size vs. performance

considerations 74
space overhead 71
versioning 63

dot notation
ambivalence to arrays and

sub-documents 87
using with arrays 120

dot-operator, in a
projection 91

double (numeric data type) 72
drivers 15, 43–46

"fire and forget" behavior 46
API design 38
functions performed 43
networking protocol 45–46
object id generation 43
replica set failover and 179
replication and 177
safe mode. See getLastError

command
write concern and. See write

concern
drop (mongorestore

option) 234
dropDups (option for unique

indexes) 138
dropIndex() method 141
duplicate key error 138
durability, trade-off with

speed 11
dynamic attributes 255–256
dynamic queries 8
Dynamo 18

E

EBS (elastic block storage) 222
EC2 12

See also Amazon EC2
e-commerce 7

RDMBS suitability 57
sample product

document 58
schema for products and

categories 58
embedding vs. referencing 249
enablesharding command 194
endianness 219
ensureIndex() method 140
entity-attribute-value pattern 7

error messages 245
eventual consistency 17, 159
excluding fields from query

results 90
explain 147–149

millis value 147
n value 31
nscanned value 31, 147
output of 147
viewing attempted query

plans 151
exporting data 225
ext4 (file system) 221

F

f (mongod config file
option) 247

failover
and replication 158
example of 162

Fedora 242
file descriptors 221
file systems 221
finalize function

as used with group 97
as used with map-reduce 99

find method 77
find_one method 77
findAndModify

command 112–118
for implementing a

queue 254
implementing transactional

semantics with 114
options for 123

fire-and-forget (default write
mode) 11

foreign keys. See relationships
fork (mongod option) 246
Foursquare (location-based

social network) 274
FreeBSD 242
fs.chunks (GridFS

collection) 263
fs.files (GridFS collection) 263
fsync command 235

G

gem (Ruby command) 247
genOID() function (C++) 271
geoNear command 276
geospatial indexing. See spatial
of 39 indexing

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

282 INDEX

getCmdLineOpts
command 247

getIndexKeys() method 151
getIndexSpecs() method 141
getLastError command 46, 179

j (sync journal) option 180
specifying replication

defaults 172
getLastErrorDefaults (replica

set option) 172
getLastErrorModes 183
getReplicationInfo()

method 166
getSiblingDB() method 193
Gizzard (manual sharding

framework) 186
GridFS 262–265

collections used by 263
comparison with standard

file systems 262
default chunk size 262
using from mongofiles 265
using from Ruby 262, 264

GridIO (Ruby GridFS
class) 264

group command 92, 94
aggregation function 96
command options 96–97
limits of 96

H

halted replication 166
hardware requirements

219–223
CPU 219
disks 220

hash (Ruby primitive) 15
help() method 35
hidden (replica set

option) 172
hierarchical data. See trees
hint (forcing an index) 152
Homebrew 243
horizontal scaling 12
host, replica set config

option 171
HostAndPort (C++ class) 272
HTTP. See REST interface

I

importing data 225

index types
compound-key indexes

133–135
difference between single

and compound-key
133–134

multikey indexes 139–140
single-key indexes 133
sparse indexes 138–139
unique indexes 138

indexBounds (explain
field) 149

indexes
backups for 143
building in the

background 143
building process 141
compaction of 144
creating 59
creating and deleting 140
maximum key size 137
when to declare them 141
write lock when building 143

indexing 10
administration 140–144
arrays. See multikey indexes
B-tree (data structure).

See B-trees
caution about building

online 142
compound-key indexes.

See compound-key indexes
cookbook analogy 10,

130–133
efficiency issues 135–136
ensureIndex() method 31
geospatial. See spatial indexing
getIndexes() method 31
importance of number of

documents scanned 134
null values and 138
offline 143
ordering of keys 135
performance cost 135
RAM requirements 135
sharding and 204–205
unique indexes 59, 63
See also query optimization

index-only queries. See cover-
ing indexes

inserts 40
bulk 74
max insert size 75
safe 46

installing
on Linux 241–242
on OS X 242–243
on Windows 244
with Linux package

managers 242
with OS X package

managers 243
iostat utility 237
isMaster command 177
it (iterate) shell macro 30

J

j (write concern option) 224
Java driver 268–270

connection options 269
creating documents with 268
sample MongoDB

program 269
using WriteConcern

objects 269
JavaScript 24

querying with 88–89
this (keyword) 88
when to use 88

JavaScript shell. See command
shell

join tables 250
joins 58

alternatives to 64, 80
client-side 80
complexity introduced 4
complexity of 8
in RDBMS 60

journal (data directory) 224
journaling 11, 223–225

consequences of
disabling 12

guarantees provided by 224
j (getLastError option) 180
relationship to

replication 157
JSON 25

for document
representation 39

K

keyFile (mongod option) 228
keys names, saving space by

shortening 86
key-value stores 17, 56

implementing secondary
IN (SQL directive) 61 with unique indexes 60 indexes with 9

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

283INDEX

key-value stores (continued)
query model 9
use cases 17

killOp() method 231

L

licensing, core server 13
limit 78, 92
LinkedHashMap (Java

class) 15
listDatabases command 42
listshards command 193
little-endian support 219
load balancing, with

replication 158
local database 164
locality 258

definition of 206
in choice of shard key 206

locking the database against
writes 235

locking. See concurrency
logappend (mongod

option) 229
logging 228

slow queries 144
logout command 227
logpath (mongod option) 191,

229, 246
logrotate command 229
long polling 166
LVM (logical volume

manager) 221

M

MacPorts 243
maintenance, with

replication 158
many-to-many. See relationships
map-reduce 94–95, 98–99

emit() function 94
map function 94
querying the results

collection 95
reduce() function 95
using iteratively 99

master-slave replication 177
disadvantages of 177

max (finding max value) 95
maxBsonObjectSize field

(ismaster command) 177

MD5 (storage of) 261
Memcached 17
memory architecture 219
min (finding min values) 95
mmap (system call) 14
mongo (executable) 14, 24
mongod 14
mongod (executable) 14
mongod.lock (lock file) 66,

246
MongoDB

definition of 4
design philosophy 16
document-oriented data

model 5
open source status 5
operating system support 13
reasons for using 16–21
suitability for web

applications 5
uniqueness of data model 4
with object-oriented

languages 4
mongodump utility 16, 234
mongoexport utility 16, 225
mongofiles utility 265
mongoimport utility 16, 21,

225
mongorestore utility 16, 234
mongos 187

failure of 217
using mongodump with 215

mongos (executable) 14
mongosniff utility 16, 233
mongostat utility 16, 231
monitoring 228–233

custom plug-ins for 233
moveChunk command 212
moveprimary command 214
multikey indexes 48

See also index types
multi-updates. See updates
Munin 232
MySQL 17, 19

transaction logging 11

N

Nagios 232
namespaces 66
NASDAQ (example data

set) 145
noprealloc (server option) 66
normalization 3, 6

NoSQL 4
nssize (server option) 66
NTP (network time

protocol) 222
NumberInt() method 72
NumberLong() method 72

O

Object IDs 15, 40
as shard keys 205
compound 85
encoded creation

timestamp 44
format 43
string vs. binary encoding 45
use arrays of with $in

queries 81
object mappers

purpose of 57
using with MongoDB 58

object-relational mappers
(ORMs) 15, 20

See also object mappers
one-to-many. See relationships
open 13
oplog 164–166

default size of 167
how operations are

logged 165
idempotence of

operations 166
querying manually 164
sizing of 167
structure of entries 165

oplog.rs (system collection) 70,
164

optimistic locking.
See concurrency

or (Boolean) 81, 83
or (logical), expressed using

$in 83
Oracle database 17

P

padding factor 126
page faults 135
pagination 78

optimization of 92
partitioning. See sharding
performance

troubleshooting 237–240
permission denied (error
MD5 (as shard key) 206

message) 245

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

284 INDEX

PHP driver 266–268
connection options 267
creating documents with 266
persistent connections

and 267
sample MongoDB

program 267
PNUTS (Yahoo's internal data

store) 19
port (mongod option) 246
positional operator. See update

operators
PostGIS 274
PostgreSQL 17
precomputation 258
prefix queries 253
primary keys. See _id field
priority (replica set

option) 171
production deployments, The

Business Insider 20
Project Voldemort 17
projections 79–80, 90–91

Q

queries 26
_id lookups 77
. (dot operator) 80
against arrays 80
against null values 79
Boolean operators 83–85
explain() method 31
matching a prefix 80
matching sub-

documents 85–86
object id reference

lookups 77
range 30, 80
range type matching 82
ranges 81–82
regular expressions 80
selecting a subset of fields.

See projections
set operators 82–83
with complex types 86

query operators 80–92
$all (universal inclusion

operator) 82–83
$and (Boolean AND) 83
$exists (attribute

existence) 83
$gt (greater than) 9, 30,

80–81

$gte (greater than or equal
to) 81

$in (array inclusion) 81
$in (existential inclusion

operator) 82
$lt (less than) 30, 81
$lte (less than or equal to) 81
$mod (modulus) 90
$ne (attribute not equal

to) 83
$ne (not equal to) 109
$nin (negative existential

inclusion operator) 82–83
$not (negation) 84
$not (selector negation) 83
$or (selector Boolean

OR) 83
$or (selector logical OR) 84
$regex 90
$size (array operator) 88
combining for a single

key 82
query optimization 144–155

common query patterns and
indexes for 153–155

explain() method. See explain
profiling queries. See query

profiler
with compound-key

indexes 154
with single-key indexes

153–154
query optimizer

caching and expiring query
plans 153

internal 149–153
running queries in

parallel 151
query optimizing with covering

indexes. See covering
indexes

query options 90
query profiler 146–147
query selectors 26, 81, 90
queues (implementing)

254–255

R

RAM
determining working set

size 238
hardware requirement 220
in-memory databases 11

range queries, optimizing
indexes for 154

read (Ruby driver connection
option) 181

read scaling 181
consistency and 181
limitations of 181

real-time analytics. See analytics
recovery

from categorical node
failures 174

from network partitions 174
with a complete resync 174

reduce functions 92
redundancy, provided by

replication 158
regular expressions

querying with 89–90
with the $not operator 84

reIndex command 144
reIndex() method 236
relationships

indexes for 78
many-to-many 60–61,

250–251
one-to-many 62, 249–250
self-joining. See trees

releases 13
versioning of 241

removeshard command
213–214

removeUser() method 227
removing data, remove()

method 28
renameCollection()

method 68
repair (mongod option) 235
repairDatabase command 235
replica sets 159–177

administration of 169–177
and automated failover 10
authentication and 228
commit and rollback

168–169
config document 169
configuration

document 169–170
configuration options

171–173
connecting to 177–179
failover and recovery of

174–175
forcing reconfiguration

of 176
getting the status of 161
page size 135 heartbeat 167

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

285INDEX

replica sets (continued)
how failover works 168
minimum recommended

configuration 159
production

configurations 175–177
reconfiguring 174
re-election after failover 163
setting up 159–161
table of possible states 173
tagging 172, 182
with multiple data

centers 176
replication 10, 157–158

clock skew and 222
failover and 158
failure modes it protects

against 157
how it works 163–169
journaling and 157
use cases for 158–159

replset.minvalid (system
collection) 164

ReplSetConnection (Ruby
connection class) 178

replSetGetStatus
command 173

rest (mongod option) 246
REST interface 232, 246
Riak 17
rollback

implementation 117
implementing with

findAndModify 116
See also replica sets

rs.reconfig() method 174
rs.status() method 161, 173
Ruby

commands 42
connecting to MongoDB 39
cursors 40–41
deletes 41
hashes in 1.8, ordering 86
inserting documents with 40
installing 247–248
installing the driver 38
introduction to 38
irb (REPL) 39
querying the database 40
representing MongoDB

documents 39
sample application 47–52
Time objects 73
updates 41

S

safe mode 11, 179
Sagas paper 257
scalability, as an original design

goal 5
scaling

for reads. See read scaling
strategies for 239
See also sharding

scanAndOrder (explain
field) 148

schema design
denormalization 61, 64
dependence on database

features 56
dynamic attributes 58, 60
e-commerce examples.

See e-commerce
embedded documents.

See sub-documents
exceptions to the standard

patterns of 56
for RDBMSs 56
FriendFeed example 56
modeling tags 60
patterns 249, 258
principles 56–57
referencing other

documents 64
relationships. See relation-

ships
relevance of application

access patterns 57
using large documents 74
using meaningful ids

(slugs) 59
using sub-documents for

dynamic attributes. See sub-
documents

security 226–228
authentication. See authenti-

cation
JavaScript injection 89

sequential vs. random writes 11
SerialServer (sharded query

type) 201
serverStatus command

229–230
settings (config metadata

collection) 215
sh (sharding shell helper

object) 193
sh.enableSharding()

sh.moveChunk() method 212
sh.shardCollection()

method 194
sh.splitAt() method 212
sh.status() method 193, 198
shard clusters

adding a shard 213
backing up 215–216
bypassing the balancer 213
checking chunk

distribution 198
failover and recovery of

216–217
importance of

monitoring 213
monitoring of 212
network communication

requirements 226
querying and indexing

200–205
querying the change log 199
removing a shard 213
unsharding a collection 214

shard keys 189
coarse-grained keys 206
examples of 194
ideal attributes of 207
properties of an ineffective

shard key 205, 207
random distribution 206

shardcollection command 194
sharding 12, 185, 208–217

across data centers 210
checking which collections

are sharded 194
displaying configuration and

status 193
estimating cluster size 211
handling data center

failure 211
how it works 187–190
manual

implementations 185
problem definition 185–186
processes required 191
production deployment

techniques 208–217
query types 200
rationale for distributing

collections 188
sample deployment

topologies 209–210
shard keys 189
when to use 186

shards (composition of).

RubyGems 38 method 194 See sharding

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

286 INDEX

shardsvr (mongod option) 191
shell

examining a method's
implementation 36

numeric representations 72
tab completion 35

single point of failure 12
skip 78, 92

optimizing 92
slave_ok (connection

parameter) 178
slaveDelay (replica set

option) 172
slaves (system collection) 164
slowms (mongod flag) 145
smallfiles (server option) 66
solid state drives 186
sorting 78, 91–92

optimizing indexes for
153–154

optimizing skips with 92
to find maxima and

minima 95
spatial indexes

center queries 277
creating 275
querying with 275
querying within a box 277
with compound keys 277
with spherical geometry 278

spatial indexing 274, 278
split command 212
splitting, algorithm with small

data sizes 199
SPOF. See single point

of failure
SQL 8–9, 24

LIKE directive 80
max() function 95
min() function 95
range operators 81

SSDs. See solid state drives
stale data. See halted replication
state machines 112, 114
stats() methods.

See collections
sub-documents 62

updating 108
vs. top-level documents. See

embedding vs. referencing
subtypes. See binary data
system collections 70

system.indexes 33
system.indexes (system

system.namespaces
collection 70

system.profile (system
collection) 146

system.replset (system
collection) 164

system.users (system
collection) 227

T

table scans. See collection scans
tables, comparison with

MongoDB documents 58
tagging

in replica sets 182
setting

getLastErrorModes 183
TCP sockets 43
this (JavaScript keyword), map-

reduce usage 94
thrashing (disk) 136
thumbnails (storage of) 260
time

as represented in object
IDs 43

storing 73
storing time zones 73

Timestamp() (JavaScript
constructor) 165

timestamps, in the oplog 165
top command 230
transaction logging.

See journaling
transactional semantics

112–114
adding an item to a shopping

cart 110
inventory management 112,

118
voting on reviews 108

transactions, implementing in
MongoDB 256–257

trees 251–254
category hierarchy

example 105–108
denormalized ancestor

pattern 251
materialized path

pattern 251
representing threaded com-

ments with 251
using an ancestor list 61

troubleshooting

truncate. See removing data
tuning 14
Twitter, storing tweets 21

U

Ubuntu 242
uniqueness (enforcing) 46
unlocking the database (after

fsync lock) 235
update operators

$ (positional operator) 108,
122

$addToSet 28
$inc 104, 108, 119
$pullAll 117
$push 28, 103, 108
$rename 120
$set 26, 41, 102, 120
$unset 120

updates 26
advantages of targeted

updates 103
arguments provided 26
by replacement vs. by

operator 102–104
distinguishing syntax from

query syntax 118
findAndModify. See find-

AndModify command
in-place 120, 125
multiple documents 108,

119
on multiple documents 41
performance of 125–126
targeted 26

upgrading 236
upserts 110–111, 119
URIs. See connection URIs
use cases 20

agile development 20
analytics and logging 20
caching 21
variable schemas 21
web applications 20

UTC (Coordinated Universal
Time) 73

UTF-8 (character encoding
requirement) 72

V

v (mongod verbosity
collection) 70, 140 installation 245–246 option) 229

Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

287INDEX

versioning 13, 241
See also releases

vertical scaling 12
virtual collections 250
virtual memory, monitoring 230
votes (replica set option) 171

W

w (write concern option) 179
web applications 3

web console 232
Windows 244
Windows Time Service 222
wire protocol 43
WordSquared (online

game) 274
working data set 136
working set 159, 238
write concern 179–180

implementation of 180
write lock. See concurrency

wtimeout (write concern
option) 179

X

xfs (file system) 221

Y

yielding. See concurrency
Download from Wow! eBook <www.wowebook.com>

www.it-ebooks.info

http://www.it-ebooks.info/

Kyle Banker

B
ig data can mean big headaches. MongoDB is a document-
oriented database designed to be fl exible, scalable, and very
fast, even with big data loads. It’s built for high availability,

supports rich, dynamic schemas, and lets you easily distribute
data across multiple servers.

MongoDB in Action introduces you to MongoDB and the
document-oriented database model. Th is perfectly paced book
provides both the big picture you’ll need as a developer and
enough low-level detail to satisfy a system engineer. Numerous
examples will help you develop confi dence in the crucial area
of data modeling. You’ll also love the deep explanations of each
feature, including replication, auto-sharding, and deployment.

What’s Inside
● Indexes, queries, and standard DB operations
● Map-reduce for custom aggregations and reporting
● Schema design patterns
● Deploying for scale and high availability

Written for developers. No MongoDB or NoSQL experience
required.

Kyle Banker is a soft ware engineer at 10gen where he maintains
the offi cial MongoDB drivers for Ruby and C.

For access to the book’s forum and a free eBook for owners of this
book, go to manning.com/MongoDBinAction

$44.99 / Can $47.99 [INCLUDING eBOOK]

MongoDB IN ACTION

DATABASE

M A N N I N G

“Awesome! MongoDB
 in a nutshell.”—Hardy Ferentschik, Red Hat

“Excellent. Many
 practical examples.”
—Curtis Miller, Flatterline

“Not only the how,
 but also the why.”—Philip Hallstrom, PJKH, LLC

“Has a developer-centric
 fl avor—an excellent

 reference.”—Rick Wagner, Red Hat

“A must-read.”
—Daniel Bretoi

Advanced Energy

SEE INSERT

www.it-ebooks.info

http://www.it-ebooks.info/

	MongoDB in Action
	brief contents
	contents
	preface
	acknowledgments
	about this book
	How to use this book
	Roadmap
	Code conventions and downloads
	Software requirements
	Author Online

	about the cover illustration
	Part 1 Getting started
	Chapter 1 A database for the modern web
	1.1 Born in the cloud
	1.2 MongoDB’s key features
	1.2.1 The document data model
	1.2.2 Ad hoc queries
	1.2.3 Secondary indexes
	1.2.4 Replication
	1.2.5 Speed and durability
	1.2.6 Scaling

	1.3 MongoDB’s core server and tools
	1.3.1 The core server
	1.3.2 The JavaScript shell
	1.3.3 Database drivers
	1.3.4 Command-line tools

	1.4 Why MongoDB?
	1.4.1 MongoDB versus other databases
	1.4.2 Use cases and production deployments

	1.5 Tips and limitations
	1.6 Summary

	Chapter 2 MongoDB through the JavaScript shell
	2.1 Diving into the MongoDB shell
	2.1.1 Starting the shell
	2.1.2 Inserts and queries
	2.1.3 Updating documents
	2.1.4 Deleting data

	2.2 Creating and querying with indexes
	2.2.1 Creating a large collection
	2.2.2 Indexing and explain()

	2.3 Basic administration
	2.3.1 Getting database information
	2.3.2 How commands work

	2.4 Getting help
	2.5 Summary

	Chapter 3 Writing programs using MongoDB
	3.1 MongoDB through the Ruby lens
	3.1.1 Installing and connecting
	3.1.2 Inserting documents in Ruby
	3.1.3 Queries and cursors
	3.1.4 Updates and deletes
	3.1.5 Database commands

	3.2 How the drivers work
	3.2.1 Object ID generation
	3.2.2 BSON
	3.2.3 Over the network

	3.3 Building a simple application
	3.3.1 Setting up
	3.3.2 Gathering data
	3.3.3 Viewing the archive

	3.4 Summary

	Part 2 Application development in MongoDB
	Chapter 4 Document-oriented data
	4.1 Principles of schema design
	4.2 Designing an e-commerce data model
	4.2.1 Products and categories
	4.2.2 Users and orders
	4.2.3 Reviews

	4.3 Nuts and bolts: on databases, collections, and documents
	4.3.1 Databases
	4.3.2 Collections
	4.3.3 Documents and insertion

	4.4 Summary

	Chapter 5 Queries and aggregation
	5.1 E-commerce queries
	5.1.1 Products, categories, and reviews
	5.1.2 Users and orders

	5.2 MongoDB’s query language
	5.2.1 Query selectors
	5.2.2 Query options

	5.3 Aggregating orders
	5.3.1 Grouping reviews by user
	5.3.2 Map-reduce for orders by region

	5.4 Aggregation in detail
	5.4.1 Maxima and minima
	5.4.2 Distinct
	5.4.3 Group
	5.4.4 Map-reduce

	5.5 Summary

	Chapter 6 Updates, atomic operations, and deletes
	6.1 A brief tour of document updates
	6.2 E-commerce updates
	6.2.1 Products and categories
	6.2.2 Reviews
	6.2.3 Orders

	6.3 Atomic document processing
	6.3.1 Order state transitions
	6.3.2 Inventory management

	6.4 Nuts and bolts: MongoDB updates and deletes
	6.4.1 Update types and options
	6.4.2 Update operators
	6.4.3 The findAndModify command
	6.4.4 Deletes
	6.4.5 Concurrency, atomicity, and isolation
	6.4.6 Update performance notes

	6.5 Summary

	Part 3 MongoDB mastery
	Chapter 7 Indexing and query optimization
	7.1 Indexing theory
	7.1.1 A thought experiment
	7.1.2 Core indexing concepts
	7.1.3 B-trees

	7.2 Indexing in practice
	7.2.1 Index types
	7.2.2 Index administration

	7.3 Query optimization
	7.3.1 Identifying slow queries
	7.3.2 Examining slow queries
	7.3.3 Query patterns

	7.4 Summary

	Chapter 8 Replication
	8.1 Replication overview
	8.1.1 Why replication matters
	8.1.2 Replication use cases

	8.2 Replica sets
	8.2.1 Setup
	8.2.2 How replication works
	8.2.3 Administration

	8.3 Master-slave replication
	8.4 Drivers and replication
	8.4.1 Connections and failover
	8.4.2 Write concern
	8.4.3 Read scaling
	8.4.4 Tagging

	8.5 Summary

	Chapter 9 Sharding
	9.1 Sharding overview
	9.1.1 What sharding is
	9.1.2 How sharding works

	9.2 A sample shard cluster
	9.2.1 Setup
	9.2.2 Writing to a sharded cluster

	9.3 Querying and indexing a shard cluster
	9.3.1 Shard query types
	9.3.2 Indexing

	9.4 Choosing a shard key
	9.4.1 Ineffective shard keys
	9.4.2 Ideal shard keys

	9.5 Sharding in production
	9.5.1 Deployment and configuration
	9.5.2 Administration

	9.6 Summary

	Chapter 10 Deployment and administration
	10.1 Deployment
	10.1.1 Deployment environment
	10.1.2 Server configuration
	10.1.3 Data imports and exports
	10.1.4 Security

	10.2 Monitoring and diagnostics
	10.2.1 Logging
	10.2.2 Monitoring tools
	10.2.3 External monitoring applications
	10.2.4 Diagnostic tools (mongosniff, bsondump)

	10.3 Maintenance
	10.3.1 Backups and recovery
	10.3.2 Compaction and repair
	10.3.3 Upgrading

	10.4 Performance troubleshooting
	10.4.1 Check indexes and queries for efficiency
	10.4.2 Add RAM
	10.4.3 Increase disk performance
	10.4.4 Scale horizontally
	10.4.5 Seek professional assistance

	10.5 Summary

	Appendix A Installation
	A.1 Installation
	A.1.1 MongoDB on Linux
	A.1.2 MongoDB on Mac OS X
	A.1.3 MongoDB on Windows
	A.1.4 Compiling MongoDB from source
	A.1.5 Troubleshooting

	A.2 Basic configuration options
	A.3 Installing Ruby
	A.3.1 Linux and Mac OS X
	A.3.2 Windows

	Appendix B Design patterns
	B.1 Patterns
	B.1.1 Embed versus reference
	B.1.2 One-to-many
	B.1.3 Many-to-many
	B.1.4 Trees
	B.1.5 Worker queues
	B.1.6 Dynamic attributes
	B.1.7 Transactions
	B.1.8 Locality and precomputation

	B.2 Anti-patterns
	B.2.1 Careless indexing
	B.2.2 Motley types
	B.2.3 Bucket collections
	B.2.4 Large, deeply nested documents
	B.2.5 One collection per user
	B.2.6 Unshardable collections

	Appendix C Binary data and GridFS
	C.1 Simple binary storage
	C.1.1 Storing a thumbnail
	C.1.2 Storing an MD5

	C.2 GridFS
	C.2.1 GridFS in Ruby
	C.2.2 GridFS with mongofiles

	Appendix D MongoDB in PHP, Java, and C++
	D.1 PHP
	D.1.1 Documents
	D.1.2 Connections
	D.1.3 Sample program

	D.2 Java
	D.2.1 Documents
	D.2.2 Connections
	D.2.3 Sample program

	D.3 C++
	D.3.1 Documents
	D.3.2 Connections
	D.3.3 Sample program

	Appendix E Spatial indexing
	E.1 Spatial indexing basics
	E.2 Advanced queries
	E.3 Compound spatial indexes
	E.4 Spherical geometry

	index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

	back cover

