
2022/5/30 12:14 Generics in Go Explained with Code Examples

https://www.freecodecamp.org/news/generics-in-golang/ 1/13

MARCH 23, 2021 / #GO

Generics in Go Explained
with Code Examples

Pramono Winata

Generics were proposed a few years ago for Go, and

they have �nally been accepted into the language

earlier this year. And they're scheduled to be of�cially

released at the end of this year.

How will Generics really affect Go? Will it change how we code?

To really answer these questions, we will need to take a look at how

generics work. Conveniently, the devs have provided us with a web

compiler where we can experiment with generics ourselves.

What Do Generics Really Change
in Go?

Learn to code — free 3,000-hour curriculum

Forum Donate

https://www.freecodecamp.org/news/tag/go/
https://www.freecodecamp.org/news/author/pramono/
https://go2goplay.golang.org/
https://www.freecodecamp.org/
https://www.freecodecamp.org/news
https://forum.freecodecamp.org/
https://www.freecodecamp.org/donate/

2022/5/30 12:14 Generics in Go Explained with Code Examples

https://www.freecodecamp.org/news/generics-in-golang/ 2/13

Photo by Annie Spratt / Unsplash

Generics allow our functions or data structures to take in several

types that are de�ned in their generic form.

To truly understand what this means, let's take a look at a very

simple case.

Let's say you need to make a function that takes one slice and prints

it. Then you might write this type of function:

func Print(s []string) {
 for _, v := range s {
 fmt.Print(v)
 }
}

Simple, right? What if we want to have the slice be an integer? You

will need to make a new method for that:

Learn to code — free 3,000-hour curriculum

Forum Donate

https://unsplash.com/@anniespratt?utm_source=ghost&utm_medium=referral&utm_campaign=api-credit
https://unsplash.com/?utm_source=ghost&utm_medium=referral&utm_campaign=api-credit
https://www.freecodecamp.org/
https://www.freecodecamp.org/news
https://forum.freecodecamp.org/
https://www.freecodecamp.org/donate/

2022/5/30 12:14 Generics in Go Explained with Code Examples

https://www.freecodecamp.org/news/generics-in-golang/ 3/13

func Print(s []int) {

 for _, v := range s {

 fmt.Print(v)

 }

}

These solutions might seem redundant, as we're only changing the

parameter. But currently, that's how we solve it in Go without

resorting to making it into some interface.

And now with generics, they will allow us to declare our functions

like this:

func Print[T any](s []T) {

 for _, v := range s {

 fmt.Print(v)

 }

}

In the above function, we are declaring two things:

1. We have T, which is the type of the any keyword (this

keyword is speci�cally de�ned as part of a generic, which

indicates any type)

2. And our parameter, where we have variable s whose type is

a slice of T .

We will now be able to call our method like this:

func main() {
Print([]string{"Hello " "playground\n"})

Learn to code — free 3,000-hour curriculum

Forum Donate

https://www.freecodecamp.org/
https://www.freecodecamp.org/news
https://forum.freecodecamp.org/
https://www.freecodecamp.org/donate/

2022/5/30 12:14 Generics in Go Explained with Code Examples

https://www.freecodecamp.org/news/generics-in-golang/ 4/13

 Print([]string{ Hello, , playground\n })
 Print([]int{1,2,3})
}

One method for any type of variable – neat, huh?

This is just one of the very basic implementations for generics. But it

looks good so far.

Let's explore more and see how far generics can take us.

Limitations of Generics

Photo by Nick Tiemeyer / Unsplash

We have seen what generics can do. They let us specify a function

that can take in any kind of parameter.

But the example I gave before was a very simple one. There are

limitations on how far generics can take us. Printing, for example, is

tt i l i G l i t t t f i bl b i

Learn to code — free 3,000-hour curriculum

Forum Donate

https://unsplash.com/@nickeedoo?utm_source=ghost&utm_medium=referral&utm_campaign=api-credit
https://unsplash.com/?utm_source=ghost&utm_medium=referral&utm_campaign=api-credit
https://www.freecodecamp.org/
https://www.freecodecamp.org/news
https://forum.freecodecamp.org/
https://www.freecodecamp.org/donate/

2022/5/30 12:14 Generics in Go Explained with Code Examples

https://www.freecodecamp.org/news/generics-in-golang/ 5/13

pretty simple since Golang can print out any type of variable being

thrown into it.

What if we want to do more complex things? Let's say that we have

de�ned our own methods for a structure and want to call it:

package main

import (
 "fmt"
)

type worker string

func (w worker) Work(){
 fmt.Printf("%s is working\n", w)
}

func DoWork[T any](things []T) {
 for _, v := range things {
 v.Work()
 }
}

func main() {
 var a,b,c worker
 a = "A"
 b = "B"
 c = "C"
 DoWork([]worker{a,b,c})
}

And you will get this:

type checking failed for main

prog.go2:25:11: v.Work undefined (type bound for T has no method

It fails to run because the slice processed inside the function is of

Learn to code — free 3,000-hour curriculum

Forum Donate

https://www.freecodecamp.org/
https://www.freecodecamp.org/news
https://forum.freecodecamp.org/
https://www.freecodecamp.org/donate/

2022/5/30 12:14 Generics in Go Explained with Code Examples

https://www.freecodecamp.org/news/generics-in-golang/ 6/13

type any and it doesn't implement the method Work , which makes

it fail to run.

We can actually make it work, though, by using an interface:

package main

import (
 "fmt"
)

type Person interface {
 Work()
}

type worker string

func (w worker) Work(){
 fmt.Printf("%s is working\n", w)
}

func DoWork[T Person](things []T) {
 for _, v := range things {
 v.Work()
 }
}

func main() {
 var a,b,c worker
 a = "A"
 b = "B"
 c = "C"
 DoWork([]worker{a,b,c})
}

And it will print out this:

A is working

B is working

C is working

Learn to code — free 3,000-hour curriculum

Forum Donate

https://www.freecodecamp.org/
https://www.freecodecamp.org/news
https://forum.freecodecamp.org/
https://www.freecodecamp.org/donate/

2022/5/30 12:14 Generics in Go Explained with Code Examples

https://www.freecodecamp.org/news/generics-in-golang/ 7/13

Well it works with the interface, but just having an interface without

the generic works well, too:

package main

import (
 "fmt"
)

type Person interface {
 Work()
}

type worker string

func (w worker) Work(){
 fmt.Printf("%s is working\n", w)
}

func DoWorkInterface(things []Person) {
 for _, v := range things {
 v.Work()
 }
}

func main() {
 var d,e,f worker
 d = "D"
 e = "E"
 f = "F"
 DoWorkInterface([]Person{d,e,f})
}

This will give us the following result:

D is working

E is working

F is working

Learn to code — free 3,000-hour curriculum

Forum Donate

https://www.freecodecamp.org/
https://www.freecodecamp.org/news
https://forum.freecodecamp.org/
https://www.freecodecamp.org/donate/

2022/5/30 12:14 Generics in Go Explained with Code Examples

https://www.freecodecamp.org/news/generics-in-golang/ 8/13

Using generics will only add in extra logic to our code. So if using just

the interface is enough, I don't see any reason to add generics to the

code.

Generics are still in their very early phases of development, and they

do still have their limits for doing complex processing.

Playing Around With Constraint

Photo by Paulo Brandao / Unsplash

Earlier, we came upon the any type for our generic constraint.

Aside from that type, there are several other constraints we can use.

One of the constraints is comparable . Let's see how it works:

func Equal[T comparable](a, b T) bool {
 return a == b
}

Learn to code — free 3,000-hour curriculum

Forum Donate

https://unsplash.com/@pbrandao?utm_source=ghost&utm_medium=referral&utm_campaign=api-credit
https://unsplash.com/?utm_source=ghost&utm_medium=referral&utm_campaign=api-credit
https://www.freecodecamp.org/
https://www.freecodecamp.org/news
https://forum.freecodecamp.org/
https://www.freecodecamp.org/donate/

2022/5/30 12:14 Generics in Go Explained with Code Examples

https://www.freecodecamp.org/news/generics-in-golang/ 9/13

func main() {
 Equal("a","a")
}

Aside from that, we can also try to make our own constraint like this:

package main

import(
 "fmt"
)

type Number interface {
 type int, float64
}

func MultiplyTen[T Number](a T) T{
 return a*10
}

func main() {
 fmt.Println(MultiplyTen(10))
 fmt.Println(MultiplyTen(5.55))
}

And I think that's pretty neat – we can have one function for a

simple mathematical expression. Usually we will end up making two

functions to take it in or we'll use re�ection so we only write one

function.

While this is pretty cool, we'll still need to experiment quite a bit

with making our own constraints. It's still too early to know their

limitations. And we should be careful not to abuse it and only use it if

we are really sure it is needed.

Other Ways to Use Generics

Learn to code — free 3,000-hour curriculum

Forum Donate

https://www.freecodecamp.org/
https://www.freecodecamp.org/news
https://forum.freecodecamp.org/
https://www.freecodecamp.org/donate/

2022/5/30 12:14 Generics in Go Explained with Code Examples

https://www.freecodecamp.org/news/generics-in-golang/ 10/13

Photo by Marcelo Franchi / Unsplash

Aside from using generics as part of a function, you can also declare

them as variables like this:

type GenericSlice[T any] []T

And you can use this either as a parameter in a function or you can

make method out of that type:

func (g GenericSlice[T]) Print() {
 for _, v := range g {
 fmt.Println(v)
 }
}

func Print [T any](g GenericSlice[T]) {

Learn to code — free 3,000-hour curriculum

Forum Donate

https://unsplash.com/@jotaemee?utm_source=ghost&utm_medium=referral&utm_campaign=api-credit
https://unsplash.com/?utm_source=ghost&utm_medium=referral&utm_campaign=api-credit
https://www.freecodecamp.org/
https://www.freecodecamp.org/news
https://forum.freecodecamp.org/
https://www.freecodecamp.org/donate/

2022/5/30 12:14 Generics in Go Explained with Code Examples

https://www.freecodecamp.org/news/generics-in-golang/ 11/13

func Print [T any](g GenericSlice[T]) {
 for _, v := range g {
 fmt.Println(v)
 }
}

func main() {
 g := GenericSlice[int]{1,2,3}

 g.Print() //1 2 3
 Print(g) //1 2 3
}

The usage varies depending on your needs. All I can say is that we

still need to experiment with generics more to see what use cases

work best.

My Take On Generics
Generics are still in their very early phases (they're not even out

yet!), but I'm pretty impressed with how they're made. There aren't

many complicated terms and libraries needed to implement

generics, and this simplicity is great.

There are several use cases where I can already see that using

generics will be better (like the case with the multiply method). One

thing that a lot of people seem to be confused about is that generics

might be a replacement for using interfaces (both interface{} type

and Interface implementation).

My advice is not to think of generics as a replacement for anything.

Generics are just another tool provided for us in our coding life.

Also, Generics might look fancy and cool, and you might want to use

them in every block of your code. But don't overuse them – only

whenever they're really needed, not whenever they can �t.

And that's it. Thanks for reading my article, and I truly hope generics

can become useful for you

Learn to code — free 3,000-hour curriculum

Forum Donate

https://www.freecodecamp.org/
https://www.freecodecamp.org/news
https://forum.freecodecamp.org/
https://www.freecodecamp.org/donate/

2022/5/30 12:14 Generics in Go Explained with Code Examples

https://www.freecodecamp.org/news/generics-in-golang/ 12/13

freeCodeCamp is a donor-supported tax-exempt 501(c)(3) nonpro�t organization (United

States Federal Tax Identi�cation Number: 82-0779546)

Our mission: to help people learn to code for free. We accomplish this by creating thousands of

videos, articles, and interactive coding lessons - all freely available to the public. We also have

thousands of freeCodeCamp study groups around the world.

Donations to freeCodeCamp go toward our education initiatives, and help pay for servers,

services, and staff.

You can make a tax-deductible donation here.

Trending Guides

can become useful for you.

Lastly, shout-out to this site which was a great reference for me

when writing this article. It explains a lot of the backstory regarding

generics in Go.

Have fun with Generics!

Pramono Winata

Read more posts by this author.

If you read this far, tweet to the author to show them you care.

Tweet a thanks

Learn to code for free. freeCodeCamp's open source curriculum has

helped more than 40,000 people get jobs as developers.

Get started

Learn to code — free 3,000-hour curriculum

Forum Donate

https://www.freecodecamp.org/donate/
https://bitfieldconsulting.com/golang/generics
https://www.freecodecamp.org/news/author/pramono/
https://www.freecodecamp.org/news/author/pramono/
https://www.freecodecamp.org/learn/
https://www.freecodecamp.org/
https://www.freecodecamp.org/news
https://forum.freecodecamp.org/
https://www.freecodecamp.org/donate/

2022/5/30 12:14 Generics in Go Explained with Code Examples

https://www.freecodecamp.org/news/generics-in-golang/ 13/13

Trending Guides

Zoom Screen Sharing

Decimal Place Value

How to Get Into BIOS

String to Int in C++

What is msmpeng.exe

Facetime Not Working

Desktop Icons Missing

How to Copy and Paste

Delete a Page in Word

vcruntime140.dll Error

C++ Vector

What is CPU

IPV4 vs IPV6

What is IPTV

HTML Font Size

Change Mouse DPI

How to Make a GIF

Git Rename Branch

Make a Video Game

CSS Media Queries

How to Open .dat Files

Record Calls on iPhone

Ascending vs Descending

HTML Email Link Tutorial

Python List Comprehension

Password Protect Zip File

Restore Deleted Word File

Software Engineering Guide

How to Find Your IP Address

How to Find iPhone Download

Our Nonpro�t

About Alumni Network Open Source Shop Support Sponsors Academic Honesty

Code of Conduct Privacy Policy Terms of Service Copyright Policy

Learn to code — free 3,000-hour curriculum

Forum Donate

https://www.freecodecamp.org/news/zoom-screen-sharing-how-to-share-my-screen-on-zoom-solved/
https://www.freecodecamp.org/news/decimal-place-value-hundreds-thousandths-and-beyond/
https://www.freecodecamp.org/news/how-to-get-into-bios-in-windows-10-bios-setup-pc-guide/
https://www.freecodecamp.org/news/string-to-int-in-c-how-to-convert-a-string-to-an-integer-example/
https://www.freecodecamp.org/news/what-is-msmpeng-exe-why-is-it-of-high-cpu-disk-usage/
https://www.freecodecamp.org/news/why-is-my-facetime-not-working/
https://www.freecodecamp.org/news/desktop-icons-missing-how-to-fix-windows-10-pc-icons-that-have-disappeared/
https://www.freecodecamp.org/news/how-to-copy-and-paste-on-a-computer-windows-pc-keyboard-shortcut-guide/
https://www.freecodecamp.org/news/how-to-delete-a-page-in-word-remove-blank-or-extra-pages/
https://www.freecodecamp.org/news/vcruntime140-dll-was-not-found-solved-on-windows-10-pc/
https://www.freecodecamp.org/news/c-vector-std-pattern-vector-in-cpp-with-example-code/
https://www.freecodecamp.org/news/what-is-cpu-meaning-definition-and-what-cpu-stands-for/
https://www.freecodecamp.org/news/ipv4-vs-ipv6-what-is-the-difference-between-ip-addressing-schemes/
https://www.freecodecamp.org/news/what-is-iptv-ip-tv-service-guide/
https://www.freecodecamp.org/news/html-font-size-how-to-change-text-size-using-inline-css-style/
https://www.freecodecamp.org/news/how-to-change-mouse-dpi-settings-in-windows-10/
https://www.freecodecamp.org/news/how-to-make-a-gif-create-animated-gifs-without-downloading-software/
https://www.freecodecamp.org/news/git-rename-branch-how-to-change-a-local-branch-name/
https://www.freecodecamp.org/news/how-to-make-a-video-game-create-your-own-game-from-scratch-tutorial/
https://www.freecodecamp.org/news/media-query-css-example-max-and-min-screen-width-for-mobile-responsive-design/
https://www.freecodecamp.org/news/dat-file-how-to-open-the-dat-file-format-extension/
https://www.freecodecamp.org/news/how-to-record-a-phone-call-on-iphone/
https://www.freecodecamp.org/news/descending-order-vs-ascending-order-what-does-it-mean/
https://www.freecodecamp.org/news/mailto-link-how-to-make-an-html-email-link-example-code/
https://www.freecodecamp.org/news/list-comprehension-in-python-with-code-examples/
https://www.freecodecamp.org/news/password-protect-zip-file-windows10/
https://www.freecodecamp.org/news/how-to-recover-an-unsaved-word-document-restore-a-deleted-word-file/
https://www.freecodecamp.org/news/what-is-software-engineering-how-to-become-a-software-engineer/
https://www.freecodecamp.org/news/what-is-my-ip-address-for-my-router-how-to-find-your-wifi-address/
https://www.freecodecamp.org/news/iphone-downloads-folder-where-are-my-downloads-ios-and-ipad/
https://www.freecodecamp.org/news/about/
https://www.linkedin.com/school/free-code-camp/people/
https://github.com/freeCodeCamp/
https://www.freecodecamp.org/news/shop/
https://www.freecodecamp.org/news/support/
https://www.freecodecamp.org/news/sponsors/
https://www.freecodecamp.org/news/academic-honesty-policy/
https://www.freecodecamp.org/news/code-of-conduct/
https://www.freecodecamp.org/news/privacy-policy/
https://www.freecodecamp.org/news/terms-of-service/
https://www.freecodecamp.org/news/copyright-policy/
https://www.freecodecamp.org/
https://www.freecodecamp.org/news
https://forum.freecodecamp.org/
https://www.freecodecamp.org/donate/

