
2022/1/24 下午10:40 Understand EVM bytecode – Part 4

https://blog.trustlook.com/understand-evm-bytecode-part-4/ 1/8

January 9, 2019

Understand

EVM bytecode

– Part 4

In previous section:

Understand EVM bytecode – Part 1

  



https://blog.trustlook.com/understand-evm-bytecode-part-1/
https://blog.trustlook.com/
https://twitter.com/trustlook
https://www.facebook.com/Trustlook
https://feedly.com/i/subscription/feed/https://blog.trustlook.com/rss/

2022/1/24 下午10:40 Understand EVM bytecode – Part 4

https://blog.trustlook.com/understand-evm-bytecode-part-4/ 2/8

Understand EVM bytecode – Part 2

Understand EVM bytecode – Part 3

We have talked about how different Solidity data types are

implemented in storage. For this section we will dig more about

memory and its usage in external calls in this section.

We have learned some basics about memory from previous

sections. We know memory is designed for HASH calculation or

interactions with external calls or returns. The memory structure has

reserved 0x0 and 0x20 for HASH calculation. At address 0x40 it will

store a free memory pointer for future use. When some memory

need to be allocated, the pointer can be adjusted accordingly so the

allocated memory won’t be re-visited again. Also, Memory only

accessible during contract execution. Once execution is finished, its

contents are discarded. Comparing to storage, it is more like the

RAM in computer.

Let’s look at all the opcodes which depends on memory besides

MLOADand MSTORE:

SHA3

CALLDATACOPY

CODECOPY

EXTCODECOPY

RETURNDATACOPY

LOG1,LOG2,LOG3,LOG4

CREATE

CALL

CALLCODE

RETURN

DELEGATECALL

STATICCALL

REVERT

We can see besides the SHA3 is used for calculate HASH value, most

of the rest opcodes are related to interactions with EVM. It includes

https://blog.trustlook.com/understand-evm-bytecode-part-2/
https://blog.trustlook.com/understand-evm-bytecode-part-3/

2022/1/24 下午10:40 Understand EVM bytecode – Part 4

https://blog.trustlook.com/understand-evm-bytecode-part-4/ 3/8

loading data from EVM data payload or code , or arranging data for

external calls and returns.

First, let’s look at opcode CALLDATACOPY. From Solidity document,

“calldatacopy(t, f, s)” is defined as “copy s bytes from calldata at

position f to mem at position t”. If you got experience to analyze

bytecode level contracts, you may observe that another similar

opcode CALLDATALOAD is more popular than this one. But the

difference of these 2 opcodes is that CALLDATALOAD only load 32-

bytes data into the stack instead of memory. If the contract public

function only uses integers in their arguments, then

CALLDATALOAD is good enough for the calls. The format of the data

payload will be as follows:

0x00: <function signature hash>

0x04: <first integer argument if any>

0x24: <second integer argument if any>

...

However, there are exceptions. Functions can support more data

types in Solidity other than pure integers. For example of a function

with struct or fixed size arrays:

When you look at the bytecode generated from above code, you can

see :

contract Data7 {

 address a;

 address b;

 function test(address [2] addresses) public returns (b

 a = addresses[0];

 b = addresses[1];

 return true;

 }

}

2022/1/24 下午10:40 Understand EVM bytecode – Part 4

https://blog.trustlook.com/understand-evm-bytecode-part-4/ 4/8

temp0 = mload(0x40);

mstore(0x40,(0x40 + temp0));

calldatacopy(temp0,0x4,0x40);

Apparently, this time CALLDATACOPY is used to copy the whole

argument into the memory for future use. It is not just fixed size of

arrays. For any parameter which has fixed size like struct.

CALLDATACOPY will be the one for the work.

However, things can be even more complicated when there is

dynamic arrays. For example:

We can see there is only one function test() uses an address array as

the argument. So how the data will be arranged inside the data

payload? Let’s still go into the bytecode for the truth. Here is the

code snippet before calling the test() function:

contract Data8 {

 address a;

 address b;

 function test(address [] addresses) public returns (bo

 a = addresses[0];

 b = addresses[1];

 return true;

 }

}

temp0 = mload(0x40);

temp1 = msg.data(0x4)

mstore(0x40,(0x20 + (temp0 + (msg.data((0x4 + temp1)) * 0x

mstore(temp0,msg.data((0x4 + temp1)));

calldatacopy((temp0 + 0x20),(0x24 + temp1),(msg.data((0x4

var1 = test(temp0);

2022/1/24 下午10:40 Understand EVM bytecode – Part 4

https://blog.trustlook.com/understand-evm-bytecode-part-4/ 5/8

It might not be that obvious to get the logic of the data payload

structure. But don’t worry. Let’s go through it together. The first line

“temp0 = mload(0x40);

” is a very popular one. It gets the free memory pointer from

memory address 0x40 into variable temp0. Then, temp1 will be

assigned with the value get from data payload at offset 0x4, which

regularly hold the first parameter when the type is integer. However,

apparently it is not finished yet in this case. This value in temp1 will

be used as an offset to locate the data starting from 0x4. This value

can be shown as “msg.data((0x4 + temp1))”. From above code snippet,

this value is the length of the array. The size of each item in the array

is 0x20. So “mstore(0x40,(0x20 + (temp0 + (msg.data((0x4 + temp1)) *

0x20))));” will adjust the free memory pointer to save a piece of

memory for this argument. Then, the array length will be copied into

the old free memory pointer and items of array will be copied too by

CALLDATACOPY. Finally, the memory pointer will be transferred to

test() function for operation.

After we have some basic idea how EVM data payload was arranged,

we can see how CALL related opcodes work and how memory is

involved in. Solidity document states “call(g, a, v, in, insize, out,

outsize) – call contract at address a with input mem[in..(in+insize))

providing g gas and v wei and output area mem[out..(out+outsize))

returning 0 on error (eg. out of gas) and 1 on success”. So when you

use this opcode to call other smart contract you need to supply all of

the information. Let’s look at a real example of external contract

reference:

pragma solidity ^0.4.18;

contract Deployed {

 function a() public pure returns (uint) {}

}

contract Existing {

 Deployed dc;

 function Existing(address _t) public {

 dc = Deployed(_t);

 }

 function getA() public view returns (uint result) {

 return dc.a();

2022/1/24 下午10:40 Understand EVM bytecode – Part 4

https://blog.trustlook.com/understand-evm-bytecode-part-4/ 6/8

Here we defined 2 smart contracts. The getA() function in the

Existingcontract will call the external function a() in Deployed. Here is

the compiled bytecode:

As always, the free memory pointer was loaded into variable temp0.

Then the function hash 0xDBE671F is saved into the free memory.

Then var11will hold the first storage variable which is dc in this case.

The require line will check if the address in var11 holds a contract

address. Finally, this address will be used to make an external call

“var11.gas(gasleft).value(0).call(temp0,4,temp0,0x20)”. The parameters

(temp0 and 4) in this call is the data payload it wants to send to the

external contract. In this case it sends 4 bytes from the address

temp0. From early code we know the 4 bytes are the function

signature hash value for a(). Because there is no other arguments in

the function, only 4 bytes function hash is needed to make this call.

If the function you want to call does have arguments, then the

compiler will arrange the memory in the way we have discussed

early for the call. The parameters (temp0 and 0x20) will have the

return data form the external call. EVM will get the data returned

from the external call and put it into the memory address opcode

CALL specified.

There is one thing worth mention about external call is that there is

some hard-coded address for builtin function in Solidity. If you look

at some real world EVM bytecode you will always find some external

calls using addresses 1,2,3 and 4. Apparently they are not normal

smart contract addresses. I have searched Internet, and not a lot of

 }

}

temp0 = mload(0x40);

mstore(temp0,0xDBE671F000000000000000000000000000000000000

var11 =uint160(sload(0x0));

require(extcodesize(var11));

var6 = var11.gas(gasleft).value(0).call(temp0,4,temp0,0x20

2022/1/24 下午10:40 Understand EVM bytecode – Part 4

https://blog.trustlook.com/understand-evm-bytecode-part-4/ 7/8

information about them can be found. But I do find some clue from

Solidity documents:

Expressions that might have a side-effect on memory allocation are

allowed, but those that might have a side-effect on other memory

objects are not. The built-in functions keccak256, sha256, ripemd160,

ecrecover, addmod and mulmod are allowed (even though they do call

external contracts).

Check what it says in the bracket. They call external contracts for

these built-in functions. Then I just wrote a smart contract with all

these functions inside, then I found following mapping for the hard-

coded addresses:

1 - ecrecover

2 - sha256

3 - ripemd160

4 - sha3

For recent version of Solidity compiler, SHA3 has its own opcode, so

no external call is needed for this calculation. But you can still see

some online smart contracts are using 0x4 to send external call for

this functionality.

So far, we have discussed how memory plays an important role in

the EVM environment, especially when making external calls to

other smart contracts. This is would be the last section for this

series. We have talked most of the things you might encounter when

you want to analyze the EVM bytecode. Hope it can help you a little

bit to understand how it works.

#RESEARCH

AUTHOR

c0zzy
Read more posts by this author.

https://blog.trustlook.com/tag/research/
https://blog.trustlook.com/author/c0zzy/

2022/1/24 下午10:40 Understand EVM bytecode – Part 4

https://blog.trustlook.com/understand-evm-bytecode-part-4/ 8/8

ALSO ON TRUSTLOOK BLOG

3 years ago 1 comment

安全应用程序审核 --安全应用程序审核 --
LionmobiLionmobi

• 6 months ago 1 comment

At Trustlook, we monitor live
feed from VirusTotal (VT). On
a daily basis, we collect …

VirusTotalVirusTotal APK APK
MalwareMalware Detection Detection … …

• 4 month

VirusTo
旗下一家

扫描服务

VirusTVirusT
测统计测统计

What do you think?
6 Responses

Upvote Funny Love Surprised Angry Sad

0 Comments Trustlook blog 🔒 1 Login

t Tweet f Share Sort by Best

LOG IN WITH

Start the discussion…

 Favorite

https://disqus.com/home/forums/trustlook-blog/
https://help.disqus.com/customer/portal/articles/466259-privacy-policy
https://disqus.com/home/inbox/

