
2022/1/24 下午10:40 Understand EVM bytecode – Part 1

https://blog.trustlook.com/understand-evm-bytecode-part-1/ 1/11

January 7, 2019

Understand

EVM bytecode

– Part 1

If you have started reading this article, I guess you already know

what EVM stands for. So I wouldn’t spend too much time on the

background of Ethereum. If you do need some basics of it, please go

  

m

021-

费提供

0家反

集用户

021-

费提供

0家反

集用户

ction



https://blog.trustlook.com/
https://twitter.com/trustlook
https://www.facebook.com/Trustlook
https://feedly.com/i/subscription/feed/https://blog.trustlook.com/rss/
https://blog.trustlook.com/virustotal-apk-malware-detection-data-2021-11/
https://blog.trustlook.com/virustotal-apk-bing-du-jian-ce-tong-ji-2021-11/
https://blog.trustlook.com/virustotal-apk-bing-du-jian-ce-tong-ji-2021-10/
https://blog.trustlook.com/
https://blog.trustlook.com/tag/news/
https://blog.trustlook.com/tag/product/
https://blog.trustlook.com/tag/research/
https://blog.trustlook.com/tag/virustotal/
https://blog.trustlook.com/tag/virustotal-zh/
https://blog.trustlook.com/tag/zh/
https://www.trustlook.com/
https://blog.trustlook.com/tag/malware/
https://blog.trustlook.com/virustotal-apk-malware-detection-data-2021-11/

2022/1/24 下午10:40 Understand EVM bytecode – Part 1

https://blog.trustlook.com/understand-evm-bytecode-part-1/ 2/11

ahead google “Ethereum Virtual Machine”. The main goal of these

series of articles is to help understanding everything about EVM

bytecode in case you will be involved in some work about bytecode

level contract audit or develop a decompiler of EVM bytecode.

Now let’s start with some very basic of EVM bytecode. EVM is a stack-

based Virtual Machine. If you have experience with any of similar

VMs (like Java VM, DVM, .NET VM), you wouldn’t have too much

difficulty to understand the basic idea of it. Basically, EVM bytecode

is the VM level machine language. You can image these level of code

is certainly not for human to read same as low level machine codes.

It can be compiled by high level EVM languages. The most popular

one would be Solidity for now. To understand EVM bytecodes better,

I will use a lot of simple Solidity samples for demo. So let’s start with

our very first simple example:

pragma solidity 0.4.25;

contract Demo1 {

 uint public balance;

 function add(uint value) public returns (uint256) {

 balance = balance + value;

 return balance;

 }

}

You may ask why I didn’t use the common HelloWorld as a start

example. That is because commonly a HelloWorld example will use a

string variable, and for our EVM bytecode, the string variable is a

dynamical length variable, and we will get another article to talk

about it later. So let’s just start with some a simple Add operation for

the very first demo.

To compile this piece of Solidity program, we need a compiler. I

really recommend Remix for this job. Remix is not just an online

compiler, it also supports a lot of great features you would love.

Please visit following link to start using it:

m

021-

费提供

0家反

集用户

021-

费提供

0家反

集用户

ction

https://blog.trustlook.com/virustotal-apk-malware-detection-data-2021-11/
https://blog.trustlook.com/virustotal-apk-bing-du-jian-ce-tong-ji-2021-11/
https://blog.trustlook.com/virustotal-apk-bing-du-jian-ce-tong-ji-2021-10/
https://blog.trustlook.com/
https://blog.trustlook.com/tag/news/
https://blog.trustlook.com/tag/product/
https://blog.trustlook.com/tag/research/
https://blog.trustlook.com/tag/virustotal/
https://blog.trustlook.com/tag/virustotal-zh/
https://blog.trustlook.com/tag/zh/
https://www.trustlook.com/
https://blog.trustlook.com/tag/malware/
https://blog.trustlook.com/virustotal-apk-malware-detection-data-2021-11/

2022/1/24 下午10:40 Understand EVM bytecode – Part 1

https://blog.trustlook.com/understand-evm-bytecode-part-1/ 3/11

https://remix.ethereum.org

The main GUI of Remix is shown as following photo:

The portal is straightforward to use. On the right column of the

page, there are tabs you can select for your interest.

After adding a new file demo1.sol in Remix portal, you can choose

the right compiler version from “Compile” tab for the compilation.

Here we are using “0.4.25”. When the compilation is done without

any errors, you can click on “Details” to get the EVM bytecode from

the value of “object” in the “BYTECODE” section of the popped out

page.

The whole string of it is:

608060405234801561001057600080fd5b5060c78061001f6000396000f3

0060806040526004361060485763ffffffff7c0100000000000000000000

0000000000000000000000000000000000006000350416631003e2d28114

m

021-

费提供

0家反

集用户

021-

费提供

0家反

集用户

ction

https://remix.ethereum.org/
https://blog.trustlook.com/virustotal-apk-malware-detection-data-2021-11/
https://blog.trustlook.com/virustotal-apk-bing-du-jian-ce-tong-ji-2021-11/
https://blog.trustlook.com/virustotal-apk-bing-du-jian-ce-tong-ji-2021-10/
https://blog.trustlook.com/
https://blog.trustlook.com/tag/news/
https://blog.trustlook.com/tag/product/
https://blog.trustlook.com/tag/research/
https://blog.trustlook.com/tag/virustotal/
https://blog.trustlook.com/tag/virustotal-zh/
https://blog.trustlook.com/tag/zh/
https://www.trustlook.com/
https://blog.trustlook.com/tag/malware/
https://blog.trustlook.com/virustotal-apk-malware-detection-data-2021-11/

2022/1/24 下午10:40 Understand EVM bytecode – Part 1

https://blog.trustlook.com/understand-evm-bytecode-part-1/ 4/11

604d578063b69ef8a8146074575b600080fd5b348015605857600080fd5b

5060626004356086565b60408051918252519081900360200190f35b3480

15607f57600080fd5b5060626095565b6000805482019081905591905056

5b600054815600a165627a7a7230582063aa00920d824233ab5307ef3a379

c757bdbee62fe00fe36a5d852c766e58fef0029

At the first glance of the string, you might be just lost, right? But

don’t worry we will explore the whole piece of binary string to

understand the in and out of it.

First, if you look at the string closely, you will know this is a HEX

format string to present a piece of binary. Yes, you are right. The real

EVM bytecode is actually a binary string, but in order to show it

better to others, it is always be presented in the HEX format. To

understand the every byte of the binary characters inside the string,

we need to first know some basics of EVM opcodes.

An opcode is a instruction of the EVM. Every opcode itself is a 8bit

unsigned integer. For example, 0x00 means STOP, 0x01 means ADD.

To understand all meanings of the opcodes, please refer to the

Ethereum Yellow Paper at:

https://ethereum.github.io/yellowpaper/paper.pdf

For now, we wouldn’t go through all of the opcodes to explain the

meanings. We just need to know the basics of them and explain the

new opcodes when we encountered them. So let’s start from the

first part of the EVM bytecode we got from Remix to explain:

6080604052

If we mapping all opcode into a readable instructions, we can get

following code:

00: 6080 PUSH1 0x80

02: 6040 PUSH1 0x40

04: 52 MSTORE

m

021-

费提供

0家反

集用户

021-

费提供

0家反

集用户

ction

https://ethereum.github.io/yellowpaper/paper.pdf
https://blog.trustlook.com/virustotal-apk-malware-detection-data-2021-11/
https://blog.trustlook.com/virustotal-apk-bing-du-jian-ce-tong-ji-2021-11/
https://blog.trustlook.com/virustotal-apk-bing-du-jian-ce-tong-ji-2021-10/
https://blog.trustlook.com/
https://blog.trustlook.com/tag/news/
https://blog.trustlook.com/tag/product/
https://blog.trustlook.com/tag/research/
https://blog.trustlook.com/tag/virustotal/
https://blog.trustlook.com/tag/virustotal-zh/
https://blog.trustlook.com/tag/zh/
https://www.trustlook.com/
https://blog.trustlook.com/tag/malware/
https://blog.trustlook.com/virustotal-apk-malware-detection-data-2021-11/

2022/1/24 下午10:40 Understand EVM bytecode – Part 1

https://blog.trustlook.com/understand-evm-bytecode-part-1/ 5/11

From above code snippet, we can see 2 opcodes, PUSH1 and

MSTORE. PUSH1 means to push 1-byte integer into stack for future

use. There are also PUSH2, PUSH3 … until PUSH32. In EVM all

integers are from 1-byte to 32-byte long. PUSH family opcodes are

the only ones come with operands in EVM bytecode, because for

rest of the opcodes they will use the values in the stack. For this

example, the first 2 PUSH1 will push 0x80 and 0x40 into the stack,

then MSTORE will use the 2 items in the stack for the memory write

operation. So the above code snippet is actually the EVM assembler

code:

mstore(0x40,0x80)

After MSTORE uses the 2 items in the stack, they will be popped out.

Commonly the result of the opcode will be pushed into the stack for

later use. However MSTORE does not have a return value, so it will

not push anything into the stack.

So in this way if you keep going through the whole EVM bytecode

Remix returned to us, you will get the whole list of opcodes. But

before we go further to explore more opcodes, let’s talk about 2

more concepts in the EVM environment, memory and storage.

Memory is a readable and writable structure designed for hash

calculation and external calls or returns. Memory is reset as stack

whenever the EVM starts. The difference from stack is that memory

can be accessed by address. For the earlier example, MSTORE will

save the specified value 0x80 into the according address 0x40. You

might wonder the meaning of this action. Actually, address 0x40 in

EVM memory is reserved for the “free memory pointer”, so when the

EVM code needs to use some memory, it will get the free memory

pointer from 0x40. Also, if you don’t want that memory be

overflowed by future operation, you need to update the value in

0x40 so future operation will not use the same memory again.

Other than memory and stack, storage variables are the ones which

hold states. So storage variables won’t be reset every time EVM

restarts. You can consider storage as a dictionary or hash table.

m

021-

费提供

0家反

集用户

021-

费提供

0家反

集用户

ction

https://blog.trustlook.com/virustotal-apk-malware-detection-data-2021-11/
https://blog.trustlook.com/virustotal-apk-bing-du-jian-ce-tong-ji-2021-11/
https://blog.trustlook.com/virustotal-apk-bing-du-jian-ce-tong-ji-2021-10/
https://blog.trustlook.com/
https://blog.trustlook.com/tag/news/
https://blog.trustlook.com/tag/product/
https://blog.trustlook.com/tag/research/
https://blog.trustlook.com/tag/virustotal/
https://blog.trustlook.com/tag/virustotal-zh/
https://blog.trustlook.com/tag/zh/
https://www.trustlook.com/
https://blog.trustlook.com/tag/malware/
https://blog.trustlook.com/virustotal-apk-malware-detection-data-2021-11/

2022/1/24 下午10:40 Understand EVM bytecode – Part 1

https://blog.trustlook.com/understand-evm-bytecode-part-1/ 6/11

Everything changed in storage will be recorded in the world states of

Ethereum ecosystem. Storage related opcodes are SLOAD and

SSTORE. We will talk more about storage variables when analyzing

more complicated structures like mappings or arrays.

Based on these information, let’s continue on the bytecode string.

05: 34 CALLVALUE

06: 80 DUP1

07: 15 ISZERO

08: 61 PUSH2 0x0010

0B: 57 JUMPI

0C: 6000 PUSH1 0x00

0E: 80 DUP1

0F: FD REVERT

10: 5B JUMPDEST

11: 50 POP

12: 60C7 PUSH1 0xc7

14: 80 DUP1

15: 61001F PUSH2 0x001f

18: 60 PUSH1 0x00

1A: 39 CODECOPY

1B: 60 PUSH1 0x00

1D: F3 RETURN

1E: 00 STOP

This code snippet is a bit long, but don’t worry about it. Let’s go

through it from step by step. CALLVALUE will push msg.value into

the stack, then DUP1 will duplicate that value on the stack and check

it whether it is 0 or not by using ISZERO. If the value ISZERO got from

stack is 0, this opcode will push a TRUE into the stack for next

instructions. The next PUSH2 will push a code address 0x0010 into

the stack for JUMPI. JUMPI is a conditional jump instruction which

uses 2 items from the stack. One is for the condition result, and the

other is for the jump address. If the condition (in this case, it is the

ISZERO(msg.value)) is satisfied the execution will jump to 0x0010,

otherwise the code will end with REVERT(0,0). So the bytecode from

address 0x05-0x0F can be transferred to following equivalent

Solidity code:

m

021-

费提供

0家反

集用户

021-

费提供

0家反

集用户

ction

https://blog.trustlook.com/virustotal-apk-malware-detection-data-2021-11/
https://blog.trustlook.com/virustotal-apk-bing-du-jian-ce-tong-ji-2021-11/
https://blog.trustlook.com/virustotal-apk-bing-du-jian-ce-tong-ji-2021-10/
https://blog.trustlook.com/
https://blog.trustlook.com/tag/news/
https://blog.trustlook.com/tag/product/
https://blog.trustlook.com/tag/research/
https://blog.trustlook.com/tag/virustotal/
https://blog.trustlook.com/tag/virustotal-zh/
https://blog.trustlook.com/tag/zh/
https://www.trustlook.com/
https://blog.trustlook.com/tag/malware/
https://blog.trustlook.com/virustotal-apk-malware-detection-data-2021-11/

2022/1/24 下午10:40 Understand EVM bytecode – Part 1

https://blog.trustlook.com/understand-evm-bytecode-part-1/ 7/11

if(msg.value != 0) revert();

The reason why we didn’t see this line in our original Solidity code is

because this check was injected by compiler for non-payable

functions.

To continue on the later part of the bytecode, if you arrange the

stack manually, you can see there is an instruction

CODECOPY(0x0,0x001F,0xC7). It means it will copy 0xC7 bytes code

from offset 0x1F into memory (0x0, 0xC7). Then the code will call

RETURN(0x0,0xC7) to hand the copied data back to EVM. Until now

you might have guessed out the logic of this operation and what is

the functionality of this piece of bytecode.

Apparently, the whole piece of bytecode generated from Remix

compiler has multiple parts. The set from 0-0x1E is the creation part

of the contract. This code will be only called during the smart

contract creation. It will call the constructor of the contract and also

copy the runtime part of code to EVM for creation. After the contract

account is created, then the runtime part of code from 0x1F-

(0x1F+0xC7) will be called for future transactions on this contract

and the constructor function will not be called anymore. Also, you

might have found that in the creation part of the bytecode, this is no

any JUMP or JUMPIinstructions to make the execution into the

runtime part bytecode.

To prove what we guess is correct, let’s make another Solidity code

with a constructor function:

pragma solidity 0.4.25;

contract Demo2 {

 uint public balance;

 function add(uint value) public returns (uint256) {

 balance = balance + value;

 return balance;

 }

m

021-

费提供

0家反

集用户

021-

费提供

0家反

集用户

ction

https://blog.trustlook.com/virustotal-apk-malware-detection-data-2021-11/
https://blog.trustlook.com/virustotal-apk-bing-du-jian-ce-tong-ji-2021-11/
https://blog.trustlook.com/virustotal-apk-bing-du-jian-ce-tong-ji-2021-10/
https://blog.trustlook.com/
https://blog.trustlook.com/tag/news/
https://blog.trustlook.com/tag/product/
https://blog.trustlook.com/tag/research/
https://blog.trustlook.com/tag/virustotal/
https://blog.trustlook.com/tag/virustotal-zh/
https://blog.trustlook.com/tag/zh/
https://www.trustlook.com/
https://blog.trustlook.com/tag/malware/
https://blog.trustlook.com/virustotal-apk-malware-detection-data-2021-11/

2022/1/24 下午10:40 Understand EVM bytecode – Part 1

https://blog.trustlook.com/understand-evm-bytecode-part-1/ 8/11

 constructor (uint value) public {

 balance = value;

 }

}

After compiling it with Remix, we can get the creation part of the

bytecode as following:

608060405234801561001057600080fd5b506040516020806100fa833981016040

525160005560c7806100336000396000f300

Apparently the code is longer than the previous one since we

defined a constructor function there. So let’s disassemble the

opcode into more readable codes:

0000 60 PUSH1 0x80

0002 60 PUSH1 0x40

0004 52 MSTORE

0005 34 CALLVALUE

0006 80 DUP1

0007 15 ISZERO

0008 61 PUSH2 0x0010

000B 57 JUMPI

000C 60 PUSH1 0x00

000E 80 DUP1

000F FD REVERT

0010 5B JUMPDEST

0011 50 POP

0012 60 PUSH1 0x40

0014 51 MLOAD

0015 60 PUSH1 0x20

0017 80 DUP1

0018 61 PUSH2 0x00fa

001B 83 DUP4

001C 39 CODECOPY

001D 81 DUP2

001E 01 ADD

001F 60 PUSH1 0x40

m

021-

费提供

0家反

集用户

021-

费提供

0家反

集用户

ction

https://blog.trustlook.com/virustotal-apk-malware-detection-data-2021-11/
https://blog.trustlook.com/virustotal-apk-bing-du-jian-ce-tong-ji-2021-11/
https://blog.trustlook.com/virustotal-apk-bing-du-jian-ce-tong-ji-2021-10/
https://blog.trustlook.com/
https://blog.trustlook.com/tag/news/
https://blog.trustlook.com/tag/product/
https://blog.trustlook.com/tag/research/
https://blog.trustlook.com/tag/virustotal/
https://blog.trustlook.com/tag/virustotal-zh/
https://blog.trustlook.com/tag/zh/
https://www.trustlook.com/
https://blog.trustlook.com/tag/malware/
https://blog.trustlook.com/virustotal-apk-malware-detection-data-2021-11/

2022/1/24 下午10:40 Understand EVM bytecode – Part 1

https://blog.trustlook.com/understand-evm-bytecode-part-1/ 9/11

0021 52 MSTORE

0022 51 MLOAD

0023 60 PUSH1 0x00

0025 55 SSTORE

0026 60 PUSH1 0xc7

0028 80 DUP1

0029 61 PUSH2 0x0033

002C 60 PUSH1 0x00

002E 39 CODECOPY

002F 60 PUSH1 0x00

0031 F3 RETURN

0032 00 STOP

We can see some similar code set at the start and end. But the code

set between 0x12 and 0x25 are new. So let’s focus on this new part.

First, in opcode set 0x12 and 0x14, MLOAD(0x40) was called to get

the value from memory at address 0x40. From previous section, we

already knew the address 0x40 in memory holds the free memory

pointer in EVM. In this case it is 0x80. Then after arranging the stack

by using PUSH and DUP, it will have [… 0x20, 0x00FA, 0x80] in stack

before calling CODECOPY. So the code will call CODECOPY(0x80,

0x00FA, 0x20). Apparently, this action didn’t show in previous demo

bytecode. It has something to do with the new code we put inside

the constructor function. It copies the last 32 bytes data from code

into the free memory address. It is likely the parameter value during

the deployment of the contract. Let’s keep going on the later

bytecode.

In the instructions set of 0x1D – 0x21, the code added 0x20 to the

current free memory pointer 0x80, and save it back to the address

0x40 by using MSTORE(0x40, 0x80+0x20).

Then the instruction at 0x22 will push the value returned by

MLOAD(0x80)into the stack, which is the 32-byte value copied from

the code. The later code at 0x23, 0x25 will save the value into the

storage offset 0x0 using SSTORE(0x0, MLOAD(0x80)). So in

summary, the instructions between 0x12 and 0x25 are basically

doing some operation like:

m

021-

费提供

0家反

集用户

021-

费提供

0家反

集用户

ction

https://blog.trustlook.com/virustotal-apk-malware-detection-data-2021-11/
https://blog.trustlook.com/virustotal-apk-bing-du-jian-ce-tong-ji-2021-11/
https://blog.trustlook.com/virustotal-apk-bing-du-jian-ce-tong-ji-2021-10/
https://blog.trustlook.com/
https://blog.trustlook.com/tag/news/
https://blog.trustlook.com/tag/product/
https://blog.trustlook.com/tag/research/
https://blog.trustlook.com/tag/virustotal/
https://blog.trustlook.com/tag/virustotal-zh/
https://blog.trustlook.com/tag/zh/
https://www.trustlook.com/
https://blog.trustlook.com/tag/malware/
https://blog.trustlook.com/virustotal-apk-malware-detection-data-2021-11/

2022/1/24 下午10:40 Understand EVM bytecode – Part 1

https://blog.trustlook.com/understand-evm-bytecode-part-1/ 10/11

SSTORE(0x0,CODECOPY(0x80, 0x00FA, 0x20))

Apparently, during the deployment of a new contract, the initialized

parameters are specified at the end of EVM bytecode in the

transaction data payload. Then in the process of creation, the

constructor function will get the the parameter by using CODECOPY.

So far, we have talked the basics of EVM bytecode, including the

three types of data structures in EVM: stack, memory and storage,

some regular opcodes involved in the smart contract creation, how

constructor parameters were transferred, and the structure of

compiled EVM bytecode. In next section we will talk about the

runtime part of the bytecode.

Understand EVM bytecode – Part 2

PS, We have published our online EVM decompiler to everyone.

Please feel free to use it. Any comments are welcome.

https://www.trustlook.com/products/smartcontractguardian

#RESEARCH

AUTHOR

c0zzy
Read more posts by this author.

m

021-

费提供

0家反

集用户

021-

费提供

0家反

集用户

ction

https://blog-dev.trustlook.com/understand-evm-bytecode-part-2/
https://www.trustlook.com/products/smartcontractguardian
https://blog.trustlook.com/tag/research/
https://blog.trustlook.com/author/c0zzy/
https://blog.trustlook.com/virustotal-apk-malware-detection-data-2021-11/
https://blog.trustlook.com/virustotal-apk-bing-du-jian-ce-tong-ji-2021-11/
https://blog.trustlook.com/virustotal-apk-bing-du-jian-ce-tong-ji-2021-10/
https://blog.trustlook.com/
https://blog.trustlook.com/tag/news/
https://blog.trustlook.com/tag/product/
https://blog.trustlook.com/tag/research/
https://blog.trustlook.com/tag/virustotal/
https://blog.trustlook.com/tag/virustotal-zh/
https://blog.trustlook.com/tag/zh/
https://www.trustlook.com/
https://blog.trustlook.com/tag/malware/
https://blog.trustlook.com/virustotal-apk-malware-detection-data-2021-11/

2022/1/24 下午10:40 Understand EVM bytecode – Part 1

https://blog.trustlook.com/understand-evm-bytecode-part-1/ 11/11

ALSO ON TRUSTLOOK BLOG

6 months ago 1 comment

At Trustlook, we monitor live
feed from VirusTotal (VT). On
a daily basis, we collect …

VirusTotalVirusTotal APK APK
MalwareMalware Detection Detection … …

• 3 years ago 1 comment

安全应用程序审核 --安全应用程序审核 --
LionmobiLionmobi

• 4 months ag

VirusTotal (简
旗下一家免

扫描服务的

VirusTotaVirusTota
测统计 20测统计 20

What do you think?
11 Responses

Upvote Funny Love Surprised Angry Sad

0 Comments Trustlook blog 🔒 1 Login

t Tweet f Share Sort by Best

LOG IN WITH

Start the discussion…

 Favorite

m

021-

费提供

0家反

集用户

021-

费提供

0家反

集用户

https://disqus.com/home/forums/trustlook-blog/
https://help.disqus.com/customer/portal/articles/466259-privacy-policy
https://disqus.com/home/inbox/
https://blog.trustlook.com/virustotal-apk-malware-detection-data-2021-11/
https://blog.trustlook.com/virustotal-apk-bing-du-jian-ce-tong-ji-2021-11/
https://blog.trustlook.com/virustotal-apk-bing-du-jian-ce-tong-ji-2021-10/

