
2022/1/21 上午12:25 Ethereum Yellow Paper Walkthrough (4/7) - Transaction Execution

https://www.lucassaldanha.com/transaction-execution-ethereum-yellow-paper-walkthrough-4-7/ 1/15

Article ethereum

Transaction
Execution -
Ethereum Yellow
Paper Walkthrough
(4/7)

Lucas Saldanha
05 Nov 2019 • 9 min read

In this post, we will look at how the Ethereum platform

executes transactions. We will learn the transaction validity

rules and why they exist. After that, we will deep-dive into the

transaction execution and understand the steps taken by the

node while processing a transaction.

This post is the fourth in the series Ethereum Yellow Paper

Walkthrough. The goal of this series is to demystify the

Home About Me   

https://www.lucassaldanha.com/author/lucas-saldanha/
https://www.lucassaldanha.com/author/lucas-saldanha/
https://www.lucassaldanha.com/
https://www.lucassaldanha.com/about-me/
https://twitter.com/lucascrsaldanha
https://www.facebook.com/lucascrsaldanha


2022/1/21 上午12:25 Ethereum Yellow Paper Walkthrough (4/7) - Transaction Execution

https://www.lucassaldanha.com/transaction-execution-ethereum-yellow-paper-walkthrough-4-7/ 2/15

concepts in the paper, making it accessible to a broader

audience. If you missed the previous posts, here they are!

(DISCLAIMER: this post is based on the Byzantium version of the

Yellow Paper, version 7e819ec from 20th October 2019)

Introduction

Along with the series, we talked about how Ethereum works as

a distributed computer. We also talked about how a user

interacts with this machine sending transactions to the system

(and paying the associated cost of these transactions).

In the first post of the series, we learned about the state

transition function, and how a sequence of state transitions

can represent the Ethereum computer.

At the simplest level, the state transition function takes the

current state and a transaction to compute the next state.

The blockchain paradigm - Ethereum Yellow Paper

Walkthrough (1/7)

—

Merkle Tree and Ethereum Objects (World State,

Transaction, Block, etc.) - Ethereum Yellow Paper

Walkthrough (2/7)

—

Gas and Payment - Ethereum Yellow Paper Walkthrough

(3/7)

—

https://ethereum.github.io/yellowpaper/paper.pdf
https://www.lucassaldanha.com/ethereum-yellow-paper-walkthrough-1/
https://www.lucassaldanha.com/ethereum-yellow-paper-walkthrough-2/
https://www.lucassaldanha.com/ethereum-yellow-paper-walkthrough-3-7-gas-and-payment/


2022/1/21 上午12:25 Ethereum Yellow Paper Walkthrough (4/7) - Transaction Execution

https://www.lucassaldanha.com/transaction-execution-ethereum-yellow-paper-walkthrough-4-7/ 3/15

Now, it is time to look under the hood and understand how

the Ethereum node executes a transaction. In this first part,

let's understand how a transaction is validated.

Transaction Validity

Before executing a transaction, the node validates that a

transaction passes a list of essential (intrinsic) rules. If a

transaction doesn't pass one of the five rules, the node won't

even try to execute the transaction.

The list of intrinsic rules is as follows:

There is also one rule that isn't part of the intrinsic group. It

Ethereum state transition function

The transaction is a well-formed RLP.1.

The transaction signature is valid.2.

The transaction nonce is valid (same as the transaction

sender account current nonce).

3.

The transaction's intrinsic cost is lower than the

transaction gas limit.

4.

The transaction sender account balance is equal to or

higher than the required upfront payment for the

transaction.

5.



2022/1/21 上午12:25 Ethereum Yellow Paper Walkthrough (4/7) - Transaction Execution

https://www.lucassaldanha.com/transaction-execution-ethereum-yellow-paper-walkthrough-4-7/ 4/15

states that the transaction must not be included in a block if,

by including it, the total gas limit of all transactions in the

block exceeds the block's gas limit.

Let's take a look into each one of the rules to understand how

they work and why they exist.

Well-formed RLP

This rule is probably the most straight forward to understand.

RLP or Recursive Length Prefix is an encoding method used

to serialize objects in Ethereum. As any other encoding

method, if you don't follow the rules when encoding an object,

decoding it fails, and you won't be able to retrieve the original

object from the encoded data.

The purpose of this rule is to ensure that any Ethereum client

that receives the transaction can decode it successfully and

execute it.

Valid transaction signature

Imagine that you have an Ethereum account with lots of Ether.

What would happen if someone creates a transfer transactions

from your account to their own? I am sure you wouldn't be

happy with someone impersonating you and stealing your

money. That is why transaction signatures are necessary.

Ethereum uses asymmetric cryptography to ensure that only a

user in control of an account can send transactions from it

https://github.com/ethereum/wiki/wiki/RLP


2022/1/21 上午12:25 Ethereum Yellow Paper Walkthrough (4/7) - Transaction Execution

https://www.lucassaldanha.com/transaction-execution-ethereum-yellow-paper-walkthrough-4-7/ 5/15

user in control of an account can send transactions from it.

Also, this same cryptography enables anyone to verify that the

transaction has been sent by an authorized user.

I won't get into the details of how ECDSA (Ethereum's

asymmetric cryptography algorithm of choice) works. All that

we need is the basics.

In asymmetric cryptography, there is a public key and a

private key. The private key should be kept a secret while the

public key can be shared with anyone. The private key is used

to create a signature that can be verified by anyone with the

corresponding public key. In the same way that you would

sign a letter to prove that you wrote it, you would sign an

Ethereum transaction to prove that you created that

transaction. Luckily, a cryptographic signature isn't as easy to

forge as our hand signatures.

In Ethereum, your account address is derived from your

public key. When sending transactions, the private key is used

to sign the transaction (remember the values v, r and s in the

transaction object?). All other nodes can then determine if the

owner of the private key associated with the sender account

actually signed the transaction.

As you can imagine, there is no point in executing transactions

that don't have a valid signature, hence why a valid transaction

signature is one of the intrinsic validity rules of a transaction.

Transaction nonce matching sender account nonce

https://en.wikipedia.org/wiki/Elliptic-curve_cryptography


2022/1/21 上午12:25 Ethereum Yellow Paper Walkthrough (4/7) - Transaction Execution

https://www.lucassaldanha.com/transaction-execution-ethereum-yellow-paper-walkthrough-4-7/ 6/15

g

In Ethereum, the account nonce represents the number of

transactions sent by that account (or, if the account is a

contract account, the number of contract creations). Without

the nonce, it would be possible to execute the same signed

transaction multiple times (this is called replay attack). Also,

due to Ethereum's distributed nature, different nodes might

try to include the same transaction into different blocks,

duplicating the same transaction in the chain. Imagine if this

duplicated transaction is sending Ether from your account to

someone else's account. How would you feel about sending

money to someone twice?

Whenever the user creates a new transaction, they set the

transaction nonce to match its current account nonce. During

the transaction execution, the node checks that the transaction

nonce matches the account nonce.

If for some reason the same transaction is resubmitted to the

node, because the account nonce has been incremented, this

new transaction won't be valid anymore.

By enforcing that a transaction nonce matches the account

nonce, Ethereum ensures that no replay attacks aren't possible

and that a transaction can only be executed and change state

once.

Transaction intrinsic cost lower than transaction
gas limit



2022/1/21 上午12:25 Ethereum Yellow Paper Walkthrough (4/7) - Transaction Execution

https://www.lucassaldanha.com/transaction-execution-ethereum-yellow-paper-walkthrough-4-7/ 7/15

In our previous post, we discussed why the user needs to pay

to use Ethereum and the concept of gas. In summary, every

transaction in Ethereum has a gas cost associated with it. The

cost of a transaction has two parts: the intrinsic cost and the

execution cost.

The execution cost of a transaction is calculated based on the

operations performed by the EVM to execute the transaction.

The more operations are required to execute the transaction,

the more expensive executing the transaction is.

The intrinsic cost of a transaction is calculated based on the

transaction payload. The transaction payload can be one of

these:

Let Nzeros be the total number of zero bytes of data in the

transaction payload, and Nnonzeros the total number of non-

zero bytes of data in the transaction payload. The following

formula represents the calculation of the transaction's intrinsic

cost (Section 6.2 in the Yellopaper, equations 54, 55 and 56):

Intrinsic Cost = Gtransaction + Gtxdatazero * Nzeros +

The EVM code to create a contract, if the transaction is

creating a smart contract;

—

The input data for a message execution, if the transaction

is calling a method in a smart contract;

—

Empty, if the transaction is only transferring value

between two accounts;

—

https://www.lucassaldanha.com/ethereum-yellow-paper-walkthrough-3-7-gas-and-payment/


2022/1/21 上午12:25 Ethereum Yellow Paper Walkthrough (4/7) - Transaction Execution

https://www.lucassaldanha.com/transaction-execution-ethereum-yellow-paper-walkthrough-4-7/ 8/15

Intrinsic Cost = Gtransaction + Gtxdatazero * Nzeros +

Gtxdatanonzero * Nnonzeros + Gtxcreate

In Appendix G, there is a Fee Schedule that contains all

associated costs for creating and executing a transaction. The

relevant part for the intrinsic cost is the following:

Now that we understand what the transaction's intrinsic cost is,

we can understand why a transaction with an intrinsic cost

higher than the gas limit is considered invalid. The gas limit of

a transaction defines the maximum amount of gas that the

transaction execution can spend. If before execution the

transaction cost higher than the gas limit, there is no point in

trying to execute the transaction.

Sender account balance equal to or higher than
required upfront payment

The transaction upfront cost is the amount of gas deducted

from the sender's account balance at the beginning of the

transaction execution.

The transaction upfront cost is calculated by the following

formula:

Gtransaction = 21,000 Wei—

Gtxcreate = 32,000 Wei—

Gtxdatazero = 4 Wei—

Gtxdatanonzero = 68 Wei (this changed in the Istanbul

release to 16 Wei)

—

https://eips.ethereum.org/EIPS/eip-2028


2022/1/21 上午12:25 Ethereum Yellow Paper Walkthrough (4/7) - Transaction Execution

https://www.lucassaldanha.com/transaction-execution-ethereum-yellow-paper-walkthrough-4-7/ 9/15

Upfront Cost = gasLimit * gasPrice + value

The transaction gas limit is the maximum amount of gas that

the sender is willing to spend on the transaction execution.

The transaction gas price is the value paid per unit of gas. The

transaction value is the amount of Wei sent to the message

call's recipient (e.g. transferring value) or as an endowment to

the contract being created. To understand better what is gas

and why it is used to execute a transaction, check out our

previous post.

Because the upfront cost is deducted at the beginning of the

transaction execution, it is pointless to start executing a

transaction from a sender which account balance is lower than

the upfront.

Transaction gas limit not exceeding block gas limit

This rule isn't one of the intrinsic rules. However, it is an

essential rule for the node that is selecting transactions to

include in a block. The block gas limit is the total gas that "fit"

in a block.

When selecting transactions for building the next block, the

node should check if by adding the candidate transaction it

won't go over the block gas limit. For a transaction to be

included in this block, the sum of the gas used for all other

transactions in the block plus the gas limit of the transaction

https://www.lucassaldanha.com/ethereum-yellow-paper-walkthrough-3-7-gas-and-payment/


2022/1/21 上午12:25 Ethereum Yellow Paper Walkthrough (4/7) - Transaction Execution

https://www.lucassaldanha.com/transaction-execution-ethereum-yellow-paper-walkthrough-4-7/ 10/15

being evaluated must be lower or equal the block gas limit.

Note that even if a transaction can't be included the current

block being created, it might be eligible for a future block.

Transaction Execution

After validating the transaction, it is time to execute it. In

Ethereum, the state is changed by executing transactions. The

transactions are grouped in blocks. Each block represents a list

of the transactions that, when executed in order, result in a

valid new state.

For each transaction execution, the following steps are taken:

d

Increment sender account nonce by one.1.

Reduce the sender balance by part of the up-front cost

(gasLimit * gasPrice).

2.

Define the gas available for the execution (gasLimit -

intrinsic cost)

3.

Execute the transaction operations (value transfer,

message call or contract creation)

4.

Refund sender for SELFDESTRUCT and SSTORE

operations.

5.

Refund any remaining gas to the sender.6.

Pay mining fees to the beneficiary account. The miner of

the block that includes this transaction chooses the

beneficiary account (usually an account that belongs to the

miner).

7.



2022/1/21 上午12:25 Ethereum Yellow Paper Walkthrough (4/7) - Transaction Execution

https://www.lucassaldanha.com/transaction-execution-ethereum-yellow-paper-walkthrough-4-7/ 11/15

Increment sender account nonce

Every time a transaction is executed, the sender account nonce

must be incremented. This increment happens at the

beginning of the execution.

Reduce sender balance by upfront gas cost

We deduct the upfront gas cost from the sender's account

balance. This mechanic is simple: the sender pays for the

agreed transaction cost (gasLimit * gasPrice).

Calculate gas available for execution

The gas available for the transaction execution is the total of

gas available for the transaction (gasLimit) subtracted by the

intrinsic cost.

Execute transaction operations

Executing the transaction also involves executing a list of EVM

operations. The only transaction that does not require any

EVM operation is a value transfer.

There is a gas cost for each EVM operation executed. During

the transaction execution, the operation's cost is deducted

from the gas available for execution one-by-one until one of

two things happen:

The execution runs out of available gas and fails



2022/1/21 上午12:25 Ethereum Yellow Paper Walkthrough (4/7) - Transaction Execution

https://www.lucassaldanha.com/transaction-execution-ethereum-yellow-paper-walkthrough-4-7/ 12/15

Refund sender for SELFDESTRUCT and SSTORE
operations

In Ethereum, the SELFDESTRUCT opcode is used to destroy

a contract not needed anymore. This operation entitles the

caller to receive 24,000 Wei for each destructed contract.

Also, when the SSTORE opcode is used to write zero

(effectively deleting value), the user is entitled to 15,00 Wei per

SSTORE writing zero.

One interesting aspect of the refund payment is that it is

capped by a maximum value. The cap ensures that miners can

determine the upper bound on the computational time to

execute the transaction (more details on the reason for gas fees

and refunds can be found on Ethereum's design rationnale

wiki page).

Another critical point is that the refund must happen after the

transaction operations execution. Therefore, no refund gas is

consumed by the transaction, preventing any exploit where

the transaction never runs out of gas.

Refund any remaining gas to sender

If the user upfront gas payment for the transaction exceeds

The execution runs out of available gas and fails.—

The execution finishes with zero or more gas available and

succeeds.

—

https://github.com/ethereum/wiki/wiki/Design-Rationale#gas-and-fees


2022/1/21 上午12:25 Ethereum Yellow Paper Walkthrough (4/7) - Transaction Execution

https://www.lucassaldanha.com/transaction-execution-ethereum-yellow-paper-walkthrough-4-7/ 13/15

p g p y

the gas used by the transaction, the sender is entitled to

receive the remaining gas back after the transaction execution.

Pay mining fees to the beneficiary account

The miner is entitled to receive all the gas used by the

transaction execution as a transaction fee. This mechanism

incentives miners to keep mining blocks and collaborating in

the security of the network.

Conclusion

In this post, we looked at the details of validating and

executing a transaction (section 6 of the Yellow Paper). In

sections 7 and 8 have more details on each type of transaction

(contract creation and message call). I'll save these sections for

a future post.

I believe the best way to understand the details of transaction

validation and execution is by reading the source code of one

of the clients that implement the protocol. As a Besu

contributor, I am familiarized with its implementation. Even

if you aren't super familiar with Java, I recommend you to take

a look at the code. Start with the

MainnetTransactionValidation.java and the

MainnetTransactionProcessor.java.

As always, please let me know if you find any mistakes in this

post. If you have any questions, please leave a comment down

https://github.com/hyperledger/besu
https://github.com/hyperledger/besu/blob/master/ethereum/core/src/main/java/org/hyperledger/besu/ethereum/mainnet/MainnetTransactionValidator.java
https://github.com/hyperledger/besu/blob/master/ethereum/core/src/main/java/org/hyperledger/besu/ethereum/mainnet/MainnetTransactionProcessor.java


2022/1/21 上午12:25 Ethereum Yellow Paper Walkthrough (4/7) - Transaction Execution

https://www.lucassaldanha.com/transaction-execution-ethereum-yellow-paper-walkthrough-4-7/ 14/15

below.

Catch you guys in the next one!

References

Ethereum Wiki - RLP—

A closer look at Ethereum signatures—

Ethereum Design Rationale—

Why are selfdestructs used in contract programming?

[Stack Exchange question]

—

What are the limits to gas refund? [Stack Exchange

question]

—

Share    Topic ethereum blockchain

Show Comments

Gas and Payment -…
Another day, another Ethereum

Yellow Paper blog post! In this…

04 Mar 2019



https://github.com/ethereum/wiki/wiki/RLP
https://hackernoon.com/a-closer-look-at-ethereum-signatures-5784c14abecc
https://github.com/ethereum/wiki/wiki/Design-Rationale
https://ethereum.stackexchange.com/questions/315/why-are-selfdestructs-used-in-contract-programming
https://ethereum.stackexchange.com/questions/594/what-are-the-limits-to-gas-refunds
https://twitter.com/share?text=Transaction%20Execution%20-%20Ethereum%20Yellow%20Paper%20Walkthrough%20(4/7)&url=https://www.lucassaldanha.com/transaction-execution-ethereum-yellow-paper-walkthrough-4-7/
https://www.facebook.com/sharer/sharer.php?u=https://www.lucassaldanha.com/transaction-execution-ethereum-yellow-paper-walkthrough-4-7/
https://www.linkedin.com/shareArticle?mini=true&url=https://www.lucassaldanha.com/transaction-execution-ethereum-yellow-paper-walkthrough-4-7//&title=Transaction%20Execution%20-%20Ethereum%20Yellow%20Paper%20Walkthrough%20(4/7)
mailto:?subject=Transaction%20Execution%20-%20Ethereum%20Yellow%20Paper%20Walkthrough%20(4/7)&body=https://www.lucassaldanha.com/transaction-execution-ethereum-yellow-paper-walkthrough-4-7/
https://www.lucassaldanha.com/tag/ethereum/
https://www.lucassaldanha.com/tag/blockchain/
https://www.lucassaldanha.com/ethereum-yellow-paper-walkthrough-3-7-gas-and-payment/


2022/1/21 上午12:25 Ethereum Yellow Paper Walkthrough (4/7) - Transaction Execution

https://www.lucassaldanha.com/transaction-execution-ethereum-yellow-paper-walkthrough-4-7/ 15/15

04 Mar 2019

Lucas Saldanha © 2022  Published with Ghost • Theme Attila • System theme

https://www.lucassaldanha.com/ethereum-yellow-paper-walkthrough-3-7-gas-and-payment/
https://www.lucassaldanha.com/rss/
https://ghost.org/
https://github.com/zutrinken/attila

